WO2014095991A1 - Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif - Google Patents

Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif Download PDF

Info

Publication number
WO2014095991A1
WO2014095991A1 PCT/EP2013/077077 EP2013077077W WO2014095991A1 WO 2014095991 A1 WO2014095991 A1 WO 2014095991A1 EP 2013077077 W EP2013077077 W EP 2013077077W WO 2014095991 A1 WO2014095991 A1 WO 2014095991A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
cells
fibers
electrically insulating
pads
Prior art date
Application number
PCT/EP2013/077077
Other languages
English (en)
Inventor
Charlotte Gillot
Stéphane GUILLEREZ
Philippe Voarino
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP13815463.8A priority Critical patent/EP2936565A1/fr
Priority to JP2015548478A priority patent/JP2016500487A/ja
Priority to CN201380066087.6A priority patent/CN104871322A/zh
Priority to KR1020157017490A priority patent/KR20150099535A/ko
Priority to US14/652,626 priority patent/US9653636B2/en
Publication of WO2014095991A1 publication Critical patent/WO2014095991A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a device for interconnecting photovoltaic cells with rear-panel contacts, enabling the cells to be modulated, as well as a module for photovoltaic cells with rear-panel contacts comprising such a device, and a method for manufacturing such a module.
  • the photovoltaic cells with rear-panel contacts are a particular type of cell which have their two metal electrodes on their rear face, that is to say their face opposite to the face receiving the solar radiation.
  • Electrical connection pads are then formed respectively on each of said electrodes to allow their connection to an electrical circuit for collecting the photogenerated current.
  • This configuration of the cells is particularly advantageous for producing a module comprising a plurality of such cells.
  • a first possibility is, as for standard photovoltaic cells, to use copper strips welded respectively on the pads of each of the metal electrodes on the rear face.
  • metal connectors may be employed.
  • the document US 201 1/0126878 thus proposes to interconnect the cells by means of preformed copper ribbons to reduce the thermomechanical stresses due to the difference in coefficient of thermal expansion between the cell material (generally silicon) and the copper.
  • a second possibility is, for the cells of the type "Metal Wrap Through” (MWT) or EWT ("Emitter Wrap Through”), to weld or paste the cells on a metallized film.
  • MMT Metal Wrap Through
  • EWT emitter Wrap Through
  • backsheet the protective back sheet
  • main functions are to provide insulation electrical and protect the module from external aggression, which fulfills this additional support role, a copper layer having the interconnecting metal tracks being deposited on the face of the protective backsheet in contact with the connection pads on the rear face cells.
  • a disadvantage of this technique is the high cost of such a metallized film, which is made with methods similar to those used for the production of printed circuits.
  • this technique involves a significant loss of material since the formation of the conductive tracks generally assumes the deposition of the metallized film on the entire surface of the protective backsheet followed by a chemical etching to keep only the regions intended to constitute the tracks .
  • the conductive tracks are formed on a support in the form of a mesh (or "mesh" according to the English terminology) of a polymeric material, said net being interposed between the protective backsheet and cells.
  • the assembly is then laminated with an encapsulating material which passes through the mesh of the net to ensure the mechanical strength of the module.
  • Said electrically insulating layer may be present on each cell, on the connector or on the metallized film.
  • said insulating layer may be an independent layer interposed between each cell and the connector or the metallized film.
  • WO 2012/059534 discloses a particular example of such an electrically insulating layer, which is in the form of a fiberglass fabric. Said layer is placed between the cells and the connectors, the electrical connection being made through the fabric. This requires that the meshes of said fabric are dimensioned so that, during the connection by welding the cells on the connectors, the fusible fusible alloy passes through the fabric.
  • this insulating layer involves an additional step in the manufacture of the module.
  • An object of the invention is therefore to design a means for interconnecting photovoltaic cells with rear-panel contacts that overcomes the aforementioned drawbacks.
  • the interconnection of the cells must be able to be achieved by implementing a minimum of steps and implementing the least possible separate components.
  • a device for interconnecting photovoltaic cells with rear-panel contacts characterized in that it comprises at least one layer of a fabric of electrically insulating fibers, said fabric comprising at least one portion of wire or ribbon made of an electrically conductive material woven with said fibers and arranged to be flush with the surface of at least one region of the fabric to form an electrical contact area for connection to a contact pad on the face back of a cell.
  • Said at least one portion of electrically conductive wire or tape may be parallel to the weft fibers of said fabric or to the warp fibers of said fabric.
  • said portion of electrically conductive wire consists of a plurality of strands.
  • the porosity of said fabric is chosen so as to allow impregnation of a photovoltaic cell encapsulation material during a step of lamination of the cells and of said device.
  • said fabric is a three-dimensional fabric comprising at least two layers of electrically insulating fibers, said layers being secured to one another by a plurality of electrically insulating fibers.
  • the electrically insulating fibers of said fabric may be glass fibers or textile fibers.
  • Said fabric advantageously has a weight per unit area of between 10 and
  • said portion of electrically conductive wire or tape is arranged to be flush with the surface of a region of a first face of the electrically insulating fiber fabric and at the surface of a region of a second face of the opposite fabric to the first face, so as to form electrical contact areas on two sides of said interconnection device.
  • the fabric may advantageously contain fibers made of a material for encapsulating photovoltaic cells, said material being adapted to impregnate the tissue and encapsulate the photovoltaic cells during a step of lamination of the cells and of said device.
  • Another subject of the invention relates to a photovoltaic cell module with interconnected rear-facing contacts, comprising a plurality of photovoltaic cells with rear-panel contacts and an interconnection device as described. above arranged along the rear face of the cells, the arrangement of the electrical contact areas on the surface of the electrically insulating fiber fabric of said device being chosen so that the contact pads of the cells are integral with the contact areas of said device and that said contact pads are electrically insulated from each other by a region of the electrically insulating fiber cloth layer located between said pads.
  • the interconnection device provides the electrical connection of at least one contact pad of a cell to a contact pad having a reverse polarity of an adjacent cell via a same electrical contact zone or through two distinct electrical contact zones, said zones being electrically connected by a ribbon arranged transversely to said zones.
  • said module may comprise, between the rear face of said cells and the interconnection device, at least one layer of a fabric made of electrically insulating fibers.
  • the cells and the interconnection device may be encapsulated in an encapsulation material, said material impregnating the fabric of the interconnection device.
  • Another object of the invention relates to a method of manufacturing a module comprising a plurality of photovoltaic cells with interconnected rear-facing contacts, which comprises:
  • the electrical connection of the pads with the electrical contact zones is made by welding.
  • the electrical connection of the pads with the electrical contact areas is achieved by gluing by means of a conductive adhesive.
  • Said method may further comprise a step of lamination of the device connected to the cells with an encapsulating material, said material impregnating the mesh of the fabric.
  • said method comprises inserting an electrically insulating fabric between the interconnection device and the rear face of the photovoltaic cells before making the electrical connection between the pads and the zones. electrical contact, then the realization of said electrical connection by providing an electrically conductive material, said material being able to pass through said fabric.
  • the provision of the interconnection device advantageously comprises weaving the electrically insulating fibers and said at least one portion of electrically conductive wire or tape to form the fabric.
  • FIG. 1 is a sectional view, before lamination, of the components of a module according to one embodiment of the invention
  • FIG. 2 schematically illustrates an example of interconnection of cells with contacts on the rear face
  • FIGS. 3A and 3B illustrate two embodiments of the interconnection device in which the electrically insulating fiber fabric is a three-dimensional fabric
  • FIG. 4 illustrates an embodiment of a module in which an electrically insulating layer is interposed between the rear face of the cells and the interconnection device
  • FIGS. 5 and 6 illustrate examples of modules according to the invention.
  • Figure 1 is a sectional view of the components necessary for the realization of a module comprising interconnected photovoltaic cells, before the lamination step.
  • the module may comprise a larger number of photovoltaic cells, which may for example be arranged in rows and columns.
  • An interconnection device 1 is arranged along the rear faces of the cells PV1, PV2.
  • said device 1 comprises a fabric of electrically insulating fibers 10.
  • the fabric also includes weft fibers perpendicular to the warp fibers.
  • the device 1 comprises at least a portion 100 of electrically conductive wire or tape arranged among the fibers of the fabric, and flush on one side of the fabric (so-called front face) so as to form a zone 101 of electrical contact.
  • the zone 101 being put in vis-à-vis an interconnect pad located on the rear face of a photovoltaic cell, it can be connected electrically (reference 102) thereto by any known means such as welding, conductive glue, etc.
  • This device has the advantage of providing an electrical connection by a contact between the electrical contact zone and the contact pad. It is therefore not necessary to size the fiber fabric for the passage of the interconnection material, whether it is a fusible alloy in the case of a weld or glue.
  • said portion 100 of electrically conductive wire or tape is arranged to be flush with two regions of the front face of the fabric, so as to form two contact areas electrical 101 vis-à-vis two contact pads of each of the two cells.
  • the electrical contact areas formed by the outcropping of the portion of electrically conductive wire or tape to the fabric surface may be on two opposite sides of the fabric.
  • the conductive areas of the fabric disposed opposite the face of the cell are intended to allow contact with one or more ribbons for obtaining electrical connections to the outside.
  • portion of wire or ribbon means that the electrically conductive wire or ribbon does not extend over the entire length or width of the interconnection device 1, but over a portion thereof sufficient to Interconnect two adjacent photovoltaic cells.
  • the portion of wire or ribbon does not have a length as large as that of the warp and / or weft son.
  • the interconnection device may therefore comprise several distinct portions of wire or ribbon extending on the same line, but not electrically connected to each other.
  • the interconnection device has electrically insulating regions 103 which allow isolating the electric contact areas 101 from the regions of the cell other than the contact pads.
  • the portion of wire or ribbon is arranged relative to the fibers of the fabric so that between two areas of electrical contact, the wire or ribbon passes under the fibers of the fabric: these regions of the device are electrically insulating because of the presence of the fibers on the surface.
  • the fabric may be made with fibers of different diameters to adjust the conductive regions and the insulating regions.
  • the insulating regions 103 may be made with larger fibers to provide a better overlap of the underlying wire or conductive strip portion.
  • the front face of the module (intended to receive the solar radiation) is covered with a glass plate 4 intended to protect the front face of the cells.
  • backsheet The rear face of the module is in turn covered by a protective sheet 5 called "backsheet”.
  • the electrical contact zones 101 of the device 1 are electrically connected to the contact pads of the cells PV1, PV2.
  • connection can be made by any type of conventional method such as welding or gluing.
  • the setting in module can, for example, include a lamination step, during which the encapsulation material or materials previously added to the various components of the module become (n) viscous, impregnated (s) the fabric because of the porosity of it and encapsulate (s) the different cells.
  • the invention is therefore not limited to a particular module setting technique.
  • the device described above has the advantage of being inexpensive and not causing loss of material.
  • the same device ensures both the electrical connection of the cells
  • FIG. 2 illustrates, from below, the principle of interconnection of the + and - poles of four cells PV1 to PV4 of a module.
  • each cell is schematized as a rectangle with three aligned positive pads and three aligned negative pads.
  • the contact pads + of the cell PV1 are electrically connected to the contact pads - of the adjacent cell PV2 by a first portion 100a of electrically conductive wire or tape.
  • the contact pads + of the PV2 cell are electrically connected to the contact pads - of the adjacent cell PV3 by a second portion 100b of electrically conductive wire or tape.
  • the contact pads + of the cell PV3 are electrically connected to the contact pads - of the adjacent cell PV4 by a third portion 100c of electrically conductive wire or tape.
  • portions 100a and 100c are aligned, they are not part of a continuous wire or ribbon and therefore they are not electrically connected.
  • the arrangement of the portions of electrically conductive yarn or tape in the insulating fiber fabric, and regions in which these portions are flush with the surface of the fabric, is defined according to the electrical wiring plane of the cells within the module.
  • the insertion of the portions of electrically conductive wire or tape is performed during weaving of the fabric.
  • the electrically insulating fiber fabric has a satin or twill type armor rather than a linen type.
  • the satin or twill type weaves exhibit a greater variety of patterns and allow to better adapt to cabling constraints and by providing a greater freedom of arrangement portions of electrically conductive wire or tape.
  • the definition of these types of armor is known as such and will not be described in detail here.
  • the electrically insulating fibers of the fabric are advantageously glass fibers or textile fibers such as polyamide for example.
  • the fabric typically has a basis weight of between 10 and
  • the fabric advantageously has a sufficient porosity that allows the impregnation of the encapsulation material (s) of the photovoltaic cells during a possible lamination step performed during the setting in module.
  • the encapsulating material which is generally a thermoplastic polymer or an elastomer such as EVA for example, becomes viscous under the effect of the heating implemented during the lamination and is able to pass through the meshes of the fabric of the so to impregnate it.
  • the fabric does not prevent a homogeneous distribution of the encapsulation material in the module.
  • the electrically insulating fiber fabric may be impregnated with a material to give it a certain dimensional stability.
  • said fabric may comprise fibers made of an encapsulating material (for example a thermoplastic) intended to melt during the lamination step.
  • an encapsulating material for example a thermoplastic
  • the fabric may be a so-called "3D" (three-dimensional) fabric comprising at least two layers 1 1, 12 of electrically insulating fibers 10, said layers 1 1, 12 being secured to one another by a plurality of electrically insulating fibers (not shown).
  • 3D three-dimensional
  • the fibers forming each of the layers may be identical or different.
  • the electrical contact areas 101 may be made by a portion of electrically conductive wire or tape, for example copper, silver or a copper-based alloy or silver.
  • the area of each electrical contact zone intended to be connected to a contact pad is preferably between 1 and 7 mm 2 .
  • the section of the wire or ribbon is typically between 0.1 and 0.5 mm 2 .
  • a copper ribbon 2 mm wide and 0.1 mm thick may be used.
  • it When it is a wire, it can be made of a single strand or a plurality of parallel strands arranged sufficiently close to each other to be connected to the same pad of a cell. In the latter case, said strands may optionally be separated from one another by one or more electrically insulating fibers.
  • the advantage of a plurality of strands with respect to a ribbon of equivalent cross-section is that it makes it possible to obtain a more flexible conductive portion, which reduces the thermomechanical stresses experienced by the latter during weaving and when module.
  • an electrically insulating porous layer 13 (for example, a fiberglass fabric) can be inserted between the rear face of the cells and the interconnection device.
  • This layer 13 reinforces the electrical isolation of the contact pads of the different cells.
  • Such a layer is of particular interest when the interconnection device comprises regions 101 'where a portion 100 of electrically conductive wire or tape is flush with the surface of the fabric but which are not intended to be connected to the contact pads of the cells. . These regions 101 'are therefore functionally different from the electrical contact zones 101.
  • the electrically insulating layer 13 makes it possible to avoid any unwanted electrical connection between the regions 101 'of the interconnection device and the contact pads of the cells.
  • Said layer 13 may be formed of the same electrically insulating fabric as the interconnection device (without any conductive wire or ribbon in this case), or of a different fabric.
  • the interconnection device provides the electrical connection of at least one contact pad of a cell to a contact pad having a reverse polarity of an adjacent cell.
  • connection is made by a same electrical contact zone which is arranged along said pads.
  • connection is made by two distinct electrical contact zones, said zones being electrically connected to each other by a portion of ribbon arranged transversely to said zones.
  • FIGS 5 and 6 illustrate two examples of implementation of the invention.
  • FIG. 5 schematically illustrates a module of 2x2 photovoltaic cells with rear-panel contacts PV1 to PV4.
  • Each cell has four contact pads connected to an output + and three contact pads connected to an output -.
  • the pads + of the cell PV2 are connected to the pads - of the cell PV4 by two sets of conductive wires 101, 101a, said portions being electrically connected by a ribbon 104 arranged transversely to said portions.
  • the ribbon portion 104 may be welded to each of said wire portions 101, 101a, on the face opposite to the cells of the interconnect device 1.
  • the ribbon portion may be integrated into a three-dimensional tissue between two layers of said tissue.
  • FIG. 6 schematically illustrates another module of 2x2 photovoltaic cells with rear-panel contacts PV1 to PV4.
  • Each cell has three contact pads connected to an output + and three contact pads connected to an output -.
  • three wire portions 101 connect the contact pads - of the PV1 cell to the contact pads + of the PV3 cell.
  • the contact pads + of the cell PV2 are connected to the contact pads - of the cell PV4 by three portions of wire 101b.
  • the contact pads - of the cell PV3 are connected to the contact poles + of the cell PV4 by two separate wire portions 101a, 101d and connected by a ribbon portion 104, which extends transversely to said portions 101a, 101 d.
  • the electrodes are formed on the rear face by interdigitated fingers.
  • An adhesive point or a weld zone is then formed on the electrical contact zones of the fabric and / or at the level of the electrodes according to the interconnection plane.
  • the interconnection device is tailored according to the module to be produced, taking into account in particular the number and type of cells and the interconnection plane of said cells.

Abstract

L'invention concerne un dispositif (1) d'interconnexion de cellules photovoltaïques à contacts en face arrière (PV1, PV2), caractérisé en ce qu'il comprend au moins une couche d'un tissu de fibres (10) électriquement isolantes comprenant au moins une portion (100) de fil ou de ruban en un matériau électriquement conducteur tissée avec lesdites fibres (10) et agencée de sorte à affleurer à la surface d'au moins une région du tissu pour former une zone (101) de contact électrique destinée à être connectée à un plot de contact situé sur la face arrière d'une cellule. L'invention concerne également un module de cellules photovoltaïques à contacts en face arrière interconnectées, comprenant un dispositif d'interconnexion (1) agencé le long de la face arrière (F2) des cellules, ainsi qu'un procédé de fabrication d'un tel module.

Description

DISPOSITIF D'INTERCONNEXION DE CELLULES PHOTOVOLTAIQUES
A CONTACTS EN FACE ARRIERE,
ET MODULE COMPRENANT UN TEL DISPOSITIF DOMAINE DE L'INVENTION
La présente invention concerne un dispositif d'interconnexion de cellules photovoltaïques à contacts en face arrière, permettant la mise en module desdites cellules, ainsi qu'un module de cellules photovoltaïques à contacts en face arrière comprenant un tel dispositif, et un procédé de fabrication d'un tel module.
ARRIERE PLAN DE L'INVENTION
Les cellules photovoltaïques à contacts en face arrière sont un type particulier de cellules qui présentent leurs deux électrodes métalliques sur leur face arrière, c'est-à-dire leur face opposée à la face recevant le rayonnement solaire.
Des plots de connexion électrique sont alors formés respectivement sur chacune desdites électrodes en vue de permettre leur connexion à un circuit électrique permettant de collecter le courant photogénéré.
Cette configuration des cellules est particulièrement avantageuse pour la réalisation d'un module comprenant une pluralité de telles cellules.
En effet, elle permet de simplifier l'assemblage - toutes les interconnexions étant effectuées du même côté - et d'augmenter les rendements de production des modules.
En outre, elle permet de rapprocher les cellules les unes des autres, ce qui a pour effet d'augmenter significativement les performances électriques du module.
A l'heure actuelle, deux modes d'interconnexion des cellules à contacts en face arrière sont principalement employés.
Une première possibilité consiste, comme pour les cellules photovoltaïques standards, à utiliser des rubans de cuivre soudés respectivement sur les plots de chacune des électrodes métalliques en face arrière. De manière alternative, des connecteurs métalliques peuvent être employés.
Le document US 201 1/0126878 propose ainsi d'interconnecter les cellules au moyen de rubans de cuivre préalablement mis en forme pour réduire les contraintes thermomécaniques dues à la différence de coefficient de dilatation thermique entre le matériau des cellules (généralement du silicium) et le cuivre.
Une seconde possibilité consiste, pour les cellules de type « Métal Wrap Through » (MWT) ou EWT (« Emitter Wrap Through »), à souder ou coller les cellules sur un film métallisé.
En général, c'est la feuille arrière protectrice (dite « backsheet » selon la terminologie anglo-saxonne), dont les principales fonctions sont d'assurer une isolation électrique et de protéger le module des agressions extérieures, qui remplit ce rôle additionnel de support, une couche de cuivre comportant les pistes métalliques d'interconnexion étant déposée sur la face de la feuille arrière protectrice en contact avec les plots de connexion sur la face arrière des cellules.
On pourra à cet égard se référer au document US 201 1/0067751 , qui décrit une telle feuille arrière protectrice métallisée localement.
Un inconvénient de cette technique est le coût élevé d'un tel film métallisé, qui est réalisé avec des procédés similaires à ceux employés pour la réalisation des circuits imprimés.
Par ailleurs, cette technique implique une perte significative de matière puisque la formation des pistes conductrices suppose généralement le dépôt du film métallisé sur toute la surface de la feuille arrière protectrice suivi d'une gravure chimique pour ne conserver que les régions destinées à constituer les pistes.
Le document US 5,972,732 décrit quant à lui plusieurs variantes de cette technique. Selon un mode de réalisation, les pistes conductrices sont formées sur un support se présentant sous la forme d'un filet (ou « mesh » selon la terminologie anglo-saxonne) en un matériau polymère, ledit filet étant intercalé entre la feuille arrière protectrice et les cellules. L'ensemble est ensuite laminé avec un matériau encapsulant qui traverse les mailles du filet afin d'assurer la tenue mécanique du module.
Dans tous les cas, ces techniques présentent l'inconvénient de nécessiter la mise en place d'une couche électriquement isolante entre les cellules et les connecteurs ou les pistes métalliques, afin d'éviter les courts-circuits.
Ladite couche électriquement isolante peut être présente sur chaque cellule, sur le connecteur ou sur le film métallisé.
De manière alternative, ladite couche isolante peut être une couche indépendante intercalée entre chaque cellule et le connecteur ou le film métallisé.
Le document WO 2012/059534 décrit un exemple particulier d'une telle couche électriquement isolante, qui se présente sous la forme d'un tissu de fibres de verre. Ladite couche est placée entre les cellules et les connecteurs, la connexion électrique étant effectuée à travers le tissu. Ceci nécessite que les mailles dudit tissu soient dimensionnées pour que, lors de la connexion par soudure des cellules sur les connecteurs, l'alliage fusible fondu traverse le tissu.
Quelle que soit la forme sous laquelle se présente cette couche isolante, sa mise en place implique une étape supplémentaire dans la fabrication du module.
Un but de l'invention est donc de concevoir un moyen d'interconnexion des cellules photovoltaïques à contacts en face arrière qui pallie les inconvénients précités. Notamment, l'interconnexion des cellules doit pouvoir être réalisée en mettant en œuvre un minimum d'étapes et en mettant en œuvre le moins de composants distincts possible. BREVE DESCRIPTION DE L'INVENTION
Conformément à l'invention, il est proposé un dispositif d'interconnexion de cellules photovoltaïques à contacts en face arrière caractérisé en ce qu'il comprend au moins une couche d'un tissu de fibres électriquement isolantes, ledit tissu comprenant au moins une portion de fil ou de ruban en un matériau électriquement conducteur tissée avec lesdites fibres et agencée de sorte à affleurer à la surface d'au moins une région du tissu pour former une zone de contact électrique destinée à être connectée à un plot de contact situé sur la face arrière d'une cellule.
Ladite au moins une portion de fil ou de ruban électriquement conducteur peut être parallèle aux fibres de trame dudit tissu ou aux fibres de chaîne dudit tissu.
Selon un mode de réalisation, ladite portion de fil électriquement conducteur est constituée d'une pluralité de brins.
De manière avantageuse, la porosité dudit tissu est choisie de sorte à permettre l'imprégnation d'un matériau d'encapsulation des cellules photovoltaïques lors d'une étape de lamination des cellules et dudit dispositif.
Selon une forme d'exécution de l'invention, ledit tissu est un tissu tridimensionnel comprenant au moins deux couches de fibres électriquement isolantes, lesdites couches étant solidaires l'une de l'autre par une pluralité de fibres électriquement isolantes.
Par exemple, les fibres électriquement isolantes dudit tissu peuvent être des fibres de verre ou des fibres textiles.
Ledit tissu présente avantageusement une masse surfacique comprise entre 10 et
100 g/cm2.
Selon un mode de réalisation, ladite portion de fil ou de ruban électriquement conducteur est agencée de sorte à affleurer à la surface d'une région d'une première face du tissu de fibres électriquement isolantes et à la surface d'une région d'une seconde face du tissu opposée à la première face, de sorte à former des zones de contact électrique sur deux faces dudit dispositif d'interconnexion.
Le tissu peut avantageusement contenir des fibres en un matériau d'encapsulation des cellules photovoltaïques, ledit matériau étant adapté pour imprégner le tissu et encapsuler les cellules photovoltaïques lors d'une étape de lamination des cellules et dudit dispositif.
Un autre objet de l'invention concerne un module de cellules photovoltaïques à contacts en face arrière interconnectées, comprenant une pluralité de cellules photovoltaïques à contacts en face arrière et un dispositif d'interconnexion tel que décrit ci-dessus agencé le long de la face arrière des cellules, la disposition des zones de contact électrique à la surface du tissu de fibres électriquement isolantes dudit dispositif étant choisie de sorte que les plots de contact des cellules soient solidaires des zones de contact dudit dispositif et que lesdits plots de contact soient isolés électriquement les uns des autres par une région de la couche de tissu de fibres électriquement isolantes située entre lesdits plots.
Selon un mode de réalisation dudit module, le dispositif d'interconnexion assure la connexion électrique d'au moins un plot de contact d'une cellule à un plot de contact ayant une polarité inverse d'une cellule adjacente par l'intermédiaire d'une même zone de contact électrique ou par l'intermédiaire de deux zones de contact électrique distinctes, lesdites zones étant connectées électriquement par un ruban agencé transversalement auxdites zones.
Par ailleurs, ledit module peut comprendre, entre la face arrière desdites cellules et le dispositif d'interconnexion, au moins une couche d'un tissu constitué de fibres électriquement isolantes.
D'autre part, les cellules et le dispositif d'interconnexion peuvent être encapsulés dans un matériau d'encapsulation, ledit matériau imprégnant le tissu du dispositif d'interconnexion.
Enfin, un autre objet de l'invention concerne un procédé de fabrication d'un module comprenant une pluralité de cellules photovoltaïques à contacts en face arrière interconnectées, qui comprend :
- la fourniture d'un dispositif d'interconnexion tel que décrit plus haut,
- la mise en correspondance des plots de contact de chacune desdites cellules avec les zones de contact électrique dudit dispositif, lesdits plots de contact étant isolés les uns des autres par une portion de la couche de tissu de fibres électriquement isolantes située entre lesdits plots,
- la réalisation d'une connexion électrique entre les plots et lesdites zones de contact électrique.
La connexion électrique des plots avec les zones de contact électrique est réalisée par soudure.
De manière alternative, la connexion électrique des plots avec les zones de contact électrique est réalisée par collage au moyen d'un adhésif conducteur.
Ledit procédé peut en outre comprendre une étape de lamination du dispositif connecté aux cellules avec un matériau encapsulant, ledit matériau imprégnant les mailles du tissu.
Selon un mode de réalisation, ledit procédé comprend l'insertion d'un tissu électriquement isolant entre le dispositif d'interconnexion et la face arrière des cellules photovoltaïques avant la réalisation de la connexion électrique entre les plots et les zones de contact électrique, puis la réalisation de ladite connexion électrique par apport d'un matériau électriquement conducteur, ledit matériau étant apte à traverser ledit tissu.
La fourniture du dispositif d'interconnexion comprend avantageusement le tissage des fibres électriquement isolantes et de ladite au moins une portion de fil ou de ruban électriquement conducteur pour former le tissu.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue en coupe, avant lamination, des composants d'un module selon un mode de réalisation de l'invention,
la figure 2 illustre de manière schématique un exemple d'interconnexion de cellules à contacts en face arrière,
les figures 3A et 3B illustrent deux modes de réalisation du dispositif d'interconnexion dans lequel le tissu de fibres électriquement isolantes est un tissu tridimensionnel,
la figure 4 illustre un mode de réalisation d'un module dans lequel une couche électriquement isolante est intercalée entre la face arrière des cellules et le dispositif d'interconnexion,
- les figures 5 et 6 illustrent des exemples de modules selon l'invention.
DESCRIPTION DETAILLEE DE L'INVENTION
La figure 1 est une vue en coupe des composants nécessaires à la réalisation d'un module comprenant des cellules photovoltaïques interconnectées, avant l'étape de lamination.
Sur cette figure sont représentées deux cellules à contacts en face arrière PV1 , PV2, disposées côte à côte en vue de former un module. La face avant des cellules est désignée par le repère F1 ; la face arrière, qui porte les plots de contact, par le repère F2.
Naturellement, le module peut comprendre un plus grand nombre de cellules photovoltaïques, qui peuvent être par exemple agencées en lignes et en colonnes.
Un dispositif d'interconnexion 1 est agencé le long des faces arrière des cellules PV1 , PV2.
Comme cela sera expliqué en détail plus bas, ledit dispositif 1 comprend un tissu de fibres électriquement isolantes 10.
Sur la figure 1 , seules les fibres de chaîne sont représentées (en coupe), mais le tissu comprend également des fibres de trame perpendiculaires aux fibres de chaîne. Par ailleurs, le dispositif 1 comprend au moins une portion 100 de fil ou de ruban électriquement conducteur agencée parmi les fibres du tissu, et affleurant sur une face du tissu (dite face avant) de sorte à former une zone 101 de contact électrique.
Par « parmi » on entend que la portion 100 de fil ou de ruban est tissée en même temps que les fibres électriquement isolantes, selon la même armure que celle dudit tissu.
C'est ce tissage qui assure la tenue mécanique des zones conductrices sur le tissu avant la lamination.
La zone 101 étant mise en vis-à-vis d'un plot d'interconnexion situé sur la face arrière d'une cellule photovoltaïque, elle peut être connectée électriquement (repère 102) à celui-ci par tout moyen connu tel que soudure, colle conductrice, etc.
Ce dispositif présente l'avantage de procurer une connexion électrique par un contact entre la zone de contact électrique et le plot de contact. Il n'est donc pas nécessaire de dimensionner le tissu de fibres en vue du passage du matériau d'interconnexion, qu'il s'agisse d'un alliage fusible dans le cas d'une soudure ou d'une colle.
De manière avantageuse, pour réaliser l'interconnexion de deux cellules PV1 , PV2, ladite portion 100 de fil ou de ruban électriquement conducteur est agencée de sorte à affleurer en deux régions de la face avant du tissu, de sorte à former deux zones de contact électrique 101 en vis-à-vis de deux plots de contact de chacune des deux cellules.
On peut ainsi mettre en contact les pôles positifs d'une cellule avec les pôles négatifs d'une cellule adjacente.
Eventuellement, les zones de contact électrique formées par l'affleurement de la portion de fil ou de ruban électriquement conducteur à la surface du tissu peuvent se trouver sur deux faces opposées du tissu.
Les zones conductrices du tissu disposées en face opposée à celle de la cellule sont destinées à permettre un contact avec un ou des rubans permettant d'obtenir une connectique électrique vers l'extérieur.
On entend par « portion de fil ou de ruban » le fait que le fil ou le ruban électriquement conducteur ne s'étend pas sur toute la longueur ou la largeur du dispositif d'interconnexion 1 , mais sur une portion de celui-ci suffisante pour interconnecter deux cellules photovoltaïques adjacentes.
En d'autres termes, la portion de fil ou le ruban ne présente pas une longueur aussi grande que celle des fils de chaîne et/ou de trame.
Lorsque le module comprend une pluralité de cellules alignées, le dispositif d'interconnexion peut donc comprendre plusieurs portions distinctes de fil ou de ruban s'étendant sur une même ligne, mais non connectées électriquement entre elles.
Par ailleurs, entre deux zones de contact électrique 101 , le dispositif d'interconnexion présente des régions électriquement isolantes 103 qui permettent d'isoler les zones de contact électrique 101 des régions de la cellule autres que les plots de contact.
En effet, la portion de fil ou de ruban est agencée par rapport aux fibres du tissu de telle sorte qu'entre deux zones de contact électrique, le fil ou le ruban passe sous les fibres du tissu : ces régions du dispositif sont donc électriquement isolantes du fait de la présence des fibres à la surface.
Eventuellement, il est possible de fabriquer le tissu avec des fibres de différents diamètres pour ajuster les régions conductrices et les régions isolantes. Ainsi, par exemple, les régions isolantes 103 peuvent être réalisées avec des fibres plus grosses pour procurer un meilleur recouvrement de la portion de fil ou de ruban conducteur sous- jacente.
De part et d'autre de l'ensemble formé des cellules PV1 , PV2 interconnectées et du dispositif d'interconnexion 1 , sont représentées deux couches 2, 3 d'un matériau d'encapsulation.
La face avant du module (destinée à recevoir le rayonnement solaire) est recouverte d'une plaque de verre 4 destinée à protéger la face avant des cellules.
La face arrière du module est quant à elle recouverte d'une feuille protectrice 5 dite « backsheet ».
Lors de la fabrication du module, on connecte électriquement les zones de contact électrique 101 du dispositif 1 avec les plots de contact des cellules PV1 , PV2.
La connexion peut être réalisée par tout type de méthode classique telle que la soudure ou le collage.
Puis on superpose les différents composants du module et l'on procède à la mise en module de l'ensemble.
La mise en module peut, par exemple, comprendre une étape de lamination, au cours de laquelle le ou les matériaux d'encapsulation préalablement ajoutés aux différents composants du module devien(nen)t visqueux, imprègne(nt) le tissu du fait de la porosité de celui-ci et encapsule(nt) les différentes cellules.
Il existe d'autres techniques de mise en module qui ne mettent pas en œuvre de matériau d'encapsulation.
Il existe également d'autres techniques de mise en module que la lamination.
L'invention n'est donc pas limitée à une technique de mise en module particulière. Par rapport aux dispositifs d'interconnexion existants, le dispositif décrit ci-dessus présente l'avantage d'être peu coûteux et de ne pas occasionner de pertes de matière.
Par ailleurs, le même dispositif assure à la fois la connexion électrique des cellules
(par les zones de contact électrique 101 ) et l'isolation électrique des plots (par les régions électriquement isolantes 103). Enfin, le fait que la portion de fil ou de ruban électriquement conducteur ne soit pas plane permet de réduire les contraintes thermomécaniques au niveau de la connexion des cellules.
La figure 2 illustre en vue de dessous le principe d'interconnexion des pôles + et - de quatre cellules PV1 à PV4 d'un module.
Dans cet exemple, chaque cellule est schématisée sous la forme d'un rectangle avec trois plots positifs alignés et trois plots négatifs alignés.
Les plots de contact + de la cellule PV1 sont connectés électriquement aux plots de contact - de la cellule adjacente PV2 par une première portion 100a de fil ou de ruban électriquement conducteur.
Les plots de contact + de la cellule PV2 sont connectés électriquement aux plots de contact - de la cellule adjacente PV3 par une deuxième portion 100b de fil ou de ruban électriquement conducteur.
Les plots de contact + de la cellule PV3 sont connectés électriquement aux plots de contact - de la cellule adjacente PV4 par une troisième portion 100c de fil ou de ruban électriquement conducteur.
Bien que les portions 100a et 100c soient alignées, elles ne font pas partie d'un fil ou ruban continu et par conséquent elles ne sont pas connectées électriquement.
La disposition des portions de fil ou de ruban électriquement conducteur dans le tissu de fibres isolantes, et des régions dans lesquelles ces portions affleurent à la surface du tissu, est définie en fonction du plan de câblage électrique des cellules au sein du module.
L'insertion des portions de fil ou de ruban électriquement conducteur est réalisée pendant le tissage du tissu.
En particulier, elle peut être réalisée en remplaçant une fibre électriquement isolante destinée à constituer le tissu par un fil continu électriquement conducteur qui est, ensuite découpé en portion(s) selon le plan d'interconnexion désiré.
L'homme du métier est à même de positionner les différentes portions de fil ou de ruban électriquement conducteur aux emplacements souhaités pour les zones d'interconnexion.
De préférence, le tissu de fibres électriquement isolantes présente une armure de type satin ou sergé plutôt que de type toile.
En effet, par opposition à la toile dans laquelle une fibre de trame passe successivement au-dessus et au-dessous des fibres de chaîne, formant ainsi un motif de damier, les armures de type satin ou sergé présentent une plus grande diversité de motifs et permettent de mieux s'adapter aux contraintes de câblage et en procurant une plus grande liberté d'agencement des portions de fil ou de ruban électriquement conducteur. La définition de ces types d'armures est connue en tant que telle et ne sera donc pas décrite en détail ici.
Les fibres électriquement isolantes du tissu sont avantageusement des fibres de verre ou des fibres textiles telles qu'en polyamide par exemple.
Le tissu présente typiquement une masse surfacique comprise entre 10 et
100 g/cm2.
Par ailleurs, le tissu présente avantageusement une porosité suffisante qui permet l'imprégnation du ou des matériaux d'encapsulation des cellules photovoltaïques lors d'une éventuelle étape de lamination réalisée au cours de la mise en module.
Ainsi, le matériau d'encapsulation, qui est généralement un polymère thermoplastique ou un élastomère tel que de l'EVA par exemple, devient visqueux sous l'effet du chauffage mis en œuvre pendant la lamination et est apte à traverser les mailles du tissu de sorte à l'imprégner.
Le tissu n'empêche donc pas une répartition homogène du matériau d'encapsulation dans le module.
Selon un mode de réalisation particulier, le tissu de fibres électriquement isolantes peut être imprégné d'un matériau permettant de lui conférer une certaine stabilité dimensionnelle.
D'autre part, ledit tissu peut comprendre des fibres réalisées en un matériau d'encapsulation (par exemple un thermoplastique) destinées à fondre lors de l'étape de lamination.
Selon une forme d'exécution de l'invention, illustrée sur les figures 3A et 3B, le tissu peut être un tissu dit « 3D » (tridimensionnel) comprenant au moins deux couches 1 1 , 12 de fibres électriquement isolantes 10, lesdites couches 1 1 , 12 étant solidaires l'une de l'autre par une pluralité de fibres électriquement isolantes (non représentées).
Les fibres formant chacune des couches peuvent être identiques ou différentes.
Il est ainsi possible d'intercaler une portion 100 de fil ou de ruban électriquement conducteur à différentes épaisseurs du tissu (entre différentes couches).
Ceci permet en particulier, dans certaines régions, de faire affleurer le fil ou le ruban à la surface de l'une et/ou l'autre des deux faces du tissu, et, dans d'autres régions, de laisser le fil ou le ruban dans l'épaisseur de tissu pour former des régions électriquement isolantes. Par ailleurs, dans ces dernières régions, les couches de fibres situées de part et d'autre du fil ou du ruban assurent en outre un maintien mécanique, d'autant plus utile que la distance entre deux zones de contact électrique formées par la même portion est grande et que la portion de fil ou de ruban est rectiligne, comme illustré sur la figure 3B.
Comme exposé plus haut, les zones de contact électrique 101 peuvent être réalisées par une portion de fil ou de ruban électriquement conducteur, par exemple en cuivre, en argent ou en un alliage à base de cuivre ou d'argent . La surface de chaque zone de contact électrique destinée à être connectée à un plot de contact est de préférence comprise entre 1 et 7 mm2.
La section du fil ou du ruban est typiquement comprise entre 0,1 et 0,5 mm2.
Par exemple, on peut utiliser un ruban de cuivre de 2 mm de largeur et 0,1 mm d'épaisseur.
Lorsqu'il s'agit d'un fil, celui-ci peut être réalisé d'un unique brin ou d'une pluralité de brins parallèles agencés suffisamment proches les uns des autres pour pouvoir être connectés à un même plot d'une cellule. Dans ce dernier cas, lesdits brins peuvent éventuellement être séparés les uns des autres par une ou plusieurs fibres électriquement isolantes.
L'avantage d'une pluralité de brins par rapport à un ruban de section équivalente est qu'il permet d'obtenir une portion conductrice plus souple, ce qui réduit les contraintes thermomécaniques subies par celle-ci lors du tissage et de la mise en module.
Selon un mode de réalisation, illustré à la figure 4, on peut intercaler une couche poreuse 13 électriquement isolante (par exemple, un tissu de fibres de verre) entre la face arrière des cellules et le dispositif d'interconnexion.
Cette couche 13 permet de renforcer l'isolation électrique des plots de contact des différentes cellules.
Une telle couche présente notamment un intérêt lorsque le dispositif d'interconnexion comprend des régions 101 ' où une portion 100 de fil ou de ruban électriquement conducteur affleure à la surface du tissu mais qui ne sont pas destinées à être connectées aux plots de contact des cellules. Ces régions 101 ' sont donc fonctionnellement différentes des zones de contact électrique 101 .
Dans ce cas, la couche électriquement isolante 13 permet d'éviter toute liaison électrique intempestive entre les régions 101 ' du dispositif d'interconnexion et les plots de contact des cellules.
Il est cependant nécessaire de choisir la porosité de ladite couche 13 pour permettre le passage du matériau d'interconnexion (alliage de soudure ou colle) destiné à connecter électriquement les zones de contact électrique 101 et les plots de contact correspondants.
Ladite couche 13 peut être formée du même tissu électriquement isolant que le dispositif d'interconnexion (sans aucun fil ou ruban conducteur dans ce cas), ou bien d'un tissu différent.
Comme on l'a vu plus haut, le dispositif d'interconnexion assure la connexion électrique d'au moins un plot de contact d'une cellule à un plot de contact ayant une polarité inverse d'une cellule adjacente.
Selon une forme d'exécution, ladite connexion est réalisée par une même zone de contact électrique qui est agencée le long desdits plots. Selon une forme d'exécution alternative, ladite connexion est réalisée par deux zones de contact électrique distinctes, lesdites zones étant connectées électriquement entre elles par une portion de ruban agencée transversalement auxdites zones
Les figures 5 et 6 illustrent deux exemples de mise en œuvre de l'invention.
La figure 5 illustre de manière schématique un module de 2x2 cellules photovoltaïques à contacts en face arrière PV1 à PV4.
Chaque cellule possède quatre plots de contact reliés à une sortie + et trois plots de contact reliés à une sortie -.
Les plots + de la cellule PV2 sont reliées aux plots - de la cellule PV4 par deux séries de fils conducteurs 101 , 101 a, lesdites portions étant connectées électriquement par un ruban 104 agencé transversalement auxdites portions.
Comme illustré dans la partie droite de la figure, la portion de ruban 104 peut être soudée à chacune desdites portions de fil 101 , 101 a, sur la face opposée aux cellules du dispositif d'interconnexion 1 .
De manière alternative, la portion de ruban peut être intégrée dans un tissu tridimensionnel, entre deux couches dudit tissu.
La figure 6 illustre de manière schématique un autre module de 2x2 cellules photovoltaïques à contacts en face arrière PV1 à PV4.
Chaque cellule possède trois plots de contact reliés à une sortie + et trois plots de contact reliés à une sortie -.
Dans le dispositif d'interconnexion, dont seules les portions de fil ou de ruban formant des zones de contact électrique sont illustrées, trois portions de fil 101 relient les plots de contact - de la cellule PV1 aux plots de contact + de la cellule PV3.
De même, les plots de contact + de la cellule PV2 sont reliés aux plots de contact - de la cellule PV4 par trois portions de fil 101 b.
Les plots de contact - de la cellule PV3 sont reliés aux pôles de contact + de la cellule PV4 par deux portions de fil 101 a, 101 d distinctes et reliées par une portion de ruban 104, qui s'étend transversalement auxdites portions 101 a, 101 d.
Dans le mode de réalisation particulier d'une structure à contacts interdigités en face arrière (IBC, acronyme du terme anglo-saxon « Interdigitated Back Contact »), les électrodes sont formées en face arrière par des doigts interdigités.
Un point de colle ou une zone de soudure est alors formé sur les zones de contact électrique du tissu et/ou au niveau des électrodes selon le plan d'interconnexion.
Enfin, il va de soi que les exemples que l'on vient de donner ne sont que des illustrations particulières en aucun cas limitatives quant aux domaines d'application de l'invention. En particulier, comme mentionné plus haut, le dispositif d'interconnexion est réalisé à façon en fonction du module à réaliser, en tenant compte notamment du nombre et du type de cellules et du plan d'interconnexion desdites cellules. REFERENCES
US 201 1/0126878
US 201 1/0067751
US 5,972,732
WO 2012/059534

Claims

REVENDICATIONS
1 . Dispositif (1 ) d'interconnexion de cellules photovoltaïques à contacts en face arrière (PV1 , PV2), caractérisé en ce qu'il comprend au moins une couche d'un tissu de fibres (10) électriquement isolantes comprenant au moins une portion (100) de fil ou de ruban en un matériau électriquement conducteur tissée avec lesdites fibres (10) et agencée de sorte à affleurer à la surface d'au moins une région du tissu pour former une zone (101 ) de contact électrique destinée à être connectée à un plot de contact situé sur la face arrière d'une cellule.
2. Dispositif selon la revendication 1 , caractérisé en ce que ladite au moins une portion (100) de fil ou de ruban électriquement conducteur est parallèle aux fibres de trame dudit tissu.
3. Dispositif selon la revendication 1 , caractérisé en ce que ladite au moins une portion (100) de fil ou de ruban électriquement conducteur est parallèle aux fibres de chaîne dudit tissu.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que ladite portion de fil électriquement conducteur est constituée d'une pluralité de brins.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la porosité dudit tissu est choisie de sorte à permettre l'imprégnation d'un matériau d'encapsulation des cellules photovoltaïques lors d'une étape de lamination des cellules et dudit dispositif.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que ledit tissu est un tissu tridimensionnel comprenant au moins deux couches (1 1 , 12) de fibres électriquement isolantes, lesdites couches étant solidaires l'une de l'autre par une pluralité de fibres électriquement isolantes.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que les fibres (10) électriquement isolantes dudit tissu sont des fibres de verre ou des fibres textiles.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que ledit tissu présente une masse surfacique comprise entre 10 et 100 g/cm2.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que ladite portion (100) de fil ou de ruban électriquement conducteur est agencée de sorte à affleurer à la surface d'une région d'une première face du tissu de fibres électriquement isolantes et à la surface d'une région d'une seconde face du tissu opposée à la première face, de sorte à former des zones de contact électrique (101 ) sur deux faces dudit dispositif d'interconnexion (1 ).
10. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que le tissu contient des fibres en un matériau d'encapsulation des cellules photovoltaïques, ledit matériau étant adapté pour imprégner le tissu et encapsuler les cellules photovoltaïques lors d'une étape de lamination des cellules et dudit dispositif.
1 1 . Module de cellules photovoltaïques à contacts en face arrière interconnectées, caractérisé en ce qu'il comprend une pluralité de cellules photovoltaïques à contacts en face arrière (PV1 , PV2) et un dispositif d'interconnexion (1 ) selon l'une des revendications 1 à 10 agencé le long de la face arrière (F2) des cellules, la disposition des zones de contact électrique (101 ) à la surface du tissu de fibres électriquement isolantes dudit dispositif (1 ) étant choisie de sorte que les plots de contact des cellules soient solidaires des zones de contact dudit dispositif et que lesdits plots de contact soient isolés électriquement les uns des autres par une région (103) de la couche de tissu de fibres électriquement isolantes située entre lesdits plots.
12. Module selon la revendication 1 1 , caractérisé en ce que le dispositif d'interconnexion (1 ) assure la connexion électrique d'au moins un plot de contact d'une cellule à un plot de contact ayant une polarité inverse d'une cellule adjacente par l'intermédiaire d'une même zone de contact électrique (101 ) ou par l'intermédiaire de deux zones de contact électrique (101 , 101 a) distinctes, lesdites zones (101 , 101 a) étant connectées électriquement par un ruban agencé transversalement auxdites zones.
13. Module selon l'une des revendications 1 1 ou 12, caractérisé en ce qu'il comprend, entre la face arrière (F2) desdites cellules (PV1 , PV2) et le dispositif d'interconnexion (1 ), au moins une couche (13) d'un tissu constitué de fibres électriquement isolantes.
14. Module selon l'une des revendications 1 1 à 13, caractérisé en ce que les cellules et le dispositif d'interconnexion sont encapsulés dans un matériau d'encapsulation, ledit matériau imprégnant le tissu du dispositif d'interconnexion.
15. Procédé de fabrication d'un module comprenant une pluralité de cellules photovoltaïques à contacts en face arrière (PV1 , PV2) interconnectées, caractérisé en ce qu'il comprend :
- la fourniture d'un dispositif d'interconnexion (1 ) selon l'une des revendications 1 à 10,
- la mise en correspondance des plots de contact de chacune desdites cellules avec les zones de contact électrique (101 ) dudit dispositif, lesdits plots de contact étant isolés les uns des autres par une portion (103) de la couche de tissu de fibres électriquement isolantes située entre lesdits plots,
- la réalisation d'une connexion électrique (102) entre les plots et lesdites zones de contact électrique (101 ).
16. Procédé selon la revendication 15, caractérisé en ce que la connexion électrique des plots avec les zones de contact électrique est réalisée par soudure.
17. Procédé selon la revendication 15, caractérisé en ce que la connexion électrique des plots avec les zones de contact électrique est réalisée par collage au moyen d'un adhésif conducteur.
18. Procédé selon l'une des revendications 15 à 17, caractérisé en ce qu'il comprend une étape de lamination du dispositif (1 ) connecté aux cellules avec un matériau encapsulant, ledit matériau imprégnant les mailles du tissu.
19. Procédé selon l'une des revendications 15 à 18, caractérisé en ce qu'il comprend l'insertion d'un tissu (13) électriquement isolant entre le dispositif d'interconnexion (1 ) et la face arrière (F2) des cellules photovoltaïques (PV1 , PV2) avant la réalisation de la connexion électrique entre les plots et les zones de contact électrique (101 ), puis la réalisation de ladite connexion électrique par apport d'un matériau électriquement conducteur, ledit matériau étant apte à traverser ledit tissu (13).
20. Procédé selon l'une des revendications 15 à 19, caractérisé en ce que la fourniture du dispositif d'interconnexion comprend le tissage des fibres (10) électriquement isolantes et de ladite au moins une portion (100) de fil ou de ruban électriquement conducteur pour former le tissu.
PCT/EP2013/077077 2012-12-18 2013-12-18 Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif WO2014095991A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13815463.8A EP2936565A1 (fr) 2012-12-18 2013-12-18 Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif
JP2015548478A JP2016500487A (ja) 2012-12-18 2013-12-18 裏面にコンタクトを有する太陽電池を相互接続するためのデバイス、およびかかるデバイスを含むモジュール
CN201380066087.6A CN104871322A (zh) 2012-12-18 2013-12-18 用于互连具有背面接触的光电池的器件以及包括这种器件的模块
KR1020157017490A KR20150099535A (ko) 2012-12-18 2013-12-18 후면 상에 콘택을 가진 광전지를 상호연결하기 위한 장치 및 그러한 장치를 포함하는 모듈
US14/652,626 US9653636B2 (en) 2012-12-18 2013-12-18 Device for interconnecting photovoltaic cells having contacts on their back side, and module comprising such a device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262258 2012-12-18
FR1262258A FR2999804B1 (fr) 2012-12-18 2012-12-18 Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif

Publications (1)

Publication Number Publication Date
WO2014095991A1 true WO2014095991A1 (fr) 2014-06-26

Family

ID=48521043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077077 WO2014095991A1 (fr) 2012-12-18 2013-12-18 Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif

Country Status (7)

Country Link
US (1) US9653636B2 (fr)
EP (1) EP2936565A1 (fr)
JP (1) JP2016500487A (fr)
KR (1) KR20150099535A (fr)
CN (1) CN104871322A (fr)
FR (1) FR2999804B1 (fr)
WO (1) WO2014095991A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016096422A1 (fr) * 2014-12-15 2016-06-23 Imec Vzw Procédé d'interconnexion de cellules photovoltaïques à contact arrière
WO2016156276A1 (fr) * 2015-03-30 2016-10-06 Imec Vzw Cellules photovoltaïques de mise en contact et d'interconnexion électrique
US20160380134A1 (en) * 2015-06-26 2016-12-29 Richard Hamilton SEWELL Wire-based metallization for solar cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3258503B1 (fr) * 2016-06-17 2023-04-12 IMEC vzw Armure hybride pour la mise en contact électrique de cellules photovoltaïques
EP3358630B1 (fr) * 2017-02-06 2020-04-15 IMEC vzw Panneaux photovoltaïques partiellement translucides et leurs procédés de fabrication
EP3410494B1 (fr) * 2017-05-29 2019-10-09 Sefar AG Cellule photovoltaïque et panneau et leur procédé de production
US10233571B1 (en) * 2017-12-26 2019-03-19 GM Global Technology Operations LLC Multi-functional textiles with integrated sensing and control elements
CN109659402A (zh) * 2019-01-24 2019-04-19 常州时创能源科技有限公司 太阳能电池片的串连工艺
PT3723206T (pt) * 2019-04-08 2022-10-28 Vibia Lighting S L Dispositivo elétrico conectável a uma banda condutora têxtil
FR3117673B1 (fr) * 2020-12-16 2023-04-28 Commissariat Energie Atomique Interconnecteur pour chaînes de cellules solaires destinées à former un module photovoltaïque

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369930A1 (fr) * 2002-06-07 2003-12-10 E.I. Du Pont De Nemours And Company Polymer fibres et rubans avec des particules conductrices pour des électrodes de cellules solaires
US20040244193A1 (en) * 2003-06-06 2004-12-09 Infineon Technologies Ag Method of making contact with conductive fibers
WO2012059534A2 (fr) * 2010-11-05 2012-05-10 Photovoltech N.V. Utilisation d'une couche uniforme de matériau isolant dans des cellules solaires à contact arrière
US20120167959A1 (en) * 2009-06-04 2012-07-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Photovoltaic module having a planar cell connector
WO2012173487A1 (fr) * 2011-06-17 2012-12-20 Stichting Onderzoek Centrum Nederland Système photovoltaïque et connecteur pour cellule photovoltaïque avec contacts interdigités
EP2660878A1 (fr) * 2012-05-04 2013-11-06 Sol Invictus Energy Matières tissées hybrides utiles dans la production de cellules solaires à contact arrière

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255047A (en) * 1961-09-07 1966-06-07 Int Rectifier Corp Flexible fabric support structure for photovoltaic cells
US5972732A (en) 1997-12-19 1999-10-26 Sandia Corporation Method of monolithic module assembly
JP2004288898A (ja) * 2003-03-24 2004-10-14 Canon Inc 太陽電池モジュールの製造方法
EP2100336A4 (fr) 2006-12-22 2013-04-10 Applied Materials Inc Technologies d'interconnexion pour cellules et modules solaires a contact arriere
CN102113130A (zh) 2008-04-29 2011-06-29 应用材料股份有限公司 使用单石模块组合技术制造的光伏打模块
US20100031997A1 (en) * 2008-08-11 2010-02-11 Basol Bulent M Flexible thin film photovoltaic modules and manufacturing the same
US20100089434A1 (en) * 2008-10-11 2010-04-15 Fishman Oleg S Efficient Air-Cooled Solar Photovoltaic Modules and Collectors for High Power Applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369930A1 (fr) * 2002-06-07 2003-12-10 E.I. Du Pont De Nemours And Company Polymer fibres et rubans avec des particules conductrices pour des électrodes de cellules solaires
US20040244193A1 (en) * 2003-06-06 2004-12-09 Infineon Technologies Ag Method of making contact with conductive fibers
US20120167959A1 (en) * 2009-06-04 2012-07-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Photovoltaic module having a planar cell connector
WO2012059534A2 (fr) * 2010-11-05 2012-05-10 Photovoltech N.V. Utilisation d'une couche uniforme de matériau isolant dans des cellules solaires à contact arrière
WO2012173487A1 (fr) * 2011-06-17 2012-12-20 Stichting Onderzoek Centrum Nederland Système photovoltaïque et connecteur pour cellule photovoltaïque avec contacts interdigités
EP2660878A1 (fr) * 2012-05-04 2013-11-06 Sol Invictus Energy Matières tissées hybrides utiles dans la production de cellules solaires à contact arrière

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016096422A1 (fr) * 2014-12-15 2016-06-23 Imec Vzw Procédé d'interconnexion de cellules photovoltaïques à contact arrière
CN107004730A (zh) * 2014-12-15 2017-08-01 Imec 非营利协会 用于互连背接触光伏电池的方法
CN107004730B (zh) * 2014-12-15 2019-10-08 Imec 非营利协会 用于互连背接触光伏电池的方法
WO2016156276A1 (fr) * 2015-03-30 2016-10-06 Imec Vzw Cellules photovoltaïques de mise en contact et d'interconnexion électrique
CN107438904A (zh) * 2015-03-30 2017-12-05 Imec 非营利协会 电接触和互连光伏电池
US20160380134A1 (en) * 2015-06-26 2016-12-29 Richard Hamilton SEWELL Wire-based metallization for solar cells
KR20180014173A (ko) * 2015-06-26 2018-02-07 선파워 코포레이션 태양 전지용 와이어 기반 금속배선
US9935213B2 (en) * 2015-06-26 2018-04-03 Sunpower Corporation Wire-based metallization for solar cells
KR102594305B1 (ko) * 2015-06-26 2023-10-26 선파워 코포레이션 태양 전지용 와이어 기반 금속배선

Also Published As

Publication number Publication date
CN104871322A (zh) 2015-08-26
KR20150099535A (ko) 2015-08-31
JP2016500487A (ja) 2016-01-12
FR2999804B1 (fr) 2015-01-09
FR2999804A1 (fr) 2014-06-20
EP2936565A1 (fr) 2015-10-28
US9653636B2 (en) 2017-05-16
US20150340529A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
EP2936565A1 (fr) Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif
EP2057687B1 (fr) Puce microelectronique nue munie d'une rainure formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure
EP0128822B1 (fr) Procédé de fabrication de cartes à mémoire et cartes obtenues suivant ce procédé
FR2944610A1 (fr) Dispositif electrochrome a transparence controlee
EP2159848A1 (fr) Composite enroulable photovoltaïque et dispositif de protection solaire comportant un tel composite
FR2725310A1 (fr) Cellule solaire pourvue de contacts d'un nouveau type
WO2006045968A1 (fr) Structure multicouche monolithique pour la connexion de cellules a semi-conducteur
EP3493277B1 (fr) Procédé d'interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
EP2591498A1 (fr) Procédé d'assemblage d'une puce dans un substrat souple
TWI536587B (zh) The use of a uniform layer of insulating material in a back contact with a solar cell
EP2510553A1 (fr) Cellule photovoltaïque, procédé d'assemblage d'une pluralité de cellules et assemblage de plusieurs cellules photovoltaïques
FR2850488A1 (fr) Module photovoltaique comportant des bornes de connexion avec l'exterieur
FR3039706A1 (fr) Procede de fabrication d'un module photovoltaique ayant des pertes resistives faibles
CN102449783B (zh) 具有平面电池连接器的光伏组件
EP4002491A1 (fr) Module photovoltaïque leger et flexible ameliore
WO2017021287A1 (fr) Module photovoltaïque ayant des pertes résistives faibles
EP3496160A1 (fr) Module photovoltaïque comportant des cellules photovoltaïques interconnectées par des éléments d'interconnexion
EP2108724B1 (fr) Procédé de tissage pour réaliser une nappe textile chauffante et nappe textile chauffante
FR2694139A1 (fr) Substrat d'interconnexion pour composants électroniques et son procédé de fabrication.
EP3755169A1 (fr) Piece de vetement integrant au moins un fil conducteur et procede de realisation associe
EP3914116B1 (fr) Piece de vetement integrant au moins deux fils conducteurs interconnectes et procede d'interconnexion associe
EP0930807B1 (fr) Vitrage chauffant
FR3123762A1 (fr) Elément d’interconnexion électrique d’au moins deux cellules photovoltaïques
FR2856336A1 (fr) Feuille de matiere thermoplastique renforcee par des elements unidirectionnels de renforcement, et procede de fabrication
FR2673327A1 (fr) Dispositif et cellule photovoltauique formes sur une plaque courbee et pouvant presenter une transparence partielle.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13815463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013815463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14652626

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015548478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157017490

Country of ref document: KR

Kind code of ref document: A