WO2014095565A2 - Verfahren zur regelung eines elektromotors eines antriebsstranges eines hybridfahrzeuges - Google Patents

Verfahren zur regelung eines elektromotors eines antriebsstranges eines hybridfahrzeuges Download PDF

Info

Publication number
WO2014095565A2
WO2014095565A2 PCT/EP2013/076381 EP2013076381W WO2014095565A2 WO 2014095565 A2 WO2014095565 A2 WO 2014095565A2 EP 2013076381 W EP2013076381 W EP 2013076381W WO 2014095565 A2 WO2014095565 A2 WO 2014095565A2
Authority
WO
WIPO (PCT)
Prior art keywords
torque
shaft
dyn
shaft torque
electric motor
Prior art date
Application number
PCT/EP2013/076381
Other languages
English (en)
French (fr)
Other versions
WO2014095565A3 (de
Inventor
Helmut Kokal
Luigi Del Re
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to DE112013006106.6T priority Critical patent/DE112013006106A5/de
Priority to US14/652,356 priority patent/US9517761B2/en
Priority to CN201380071038.1A priority patent/CN104936809B/zh
Publication of WO2014095565A2 publication Critical patent/WO2014095565A2/de
Publication of WO2014095565A3 publication Critical patent/WO2014095565A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0042Transfer function lag; delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator

Definitions

  • the subject invention relates to a method for controlling an electric motor of a drive train of a hybrid vehicle, wherein the electric motor via a drive shaft with the drive wheels and via a motor shaft with an internal combustion engine, the ununiformities in the driveline introduces Dreben, is connected to a drive controller of the electric motor, a setting torque is given.
  • a well-known powertrain concept of a modern hybrid vehicle includes an electric motor that drives the drive wheels of the vehicle, possibly and a transmission, a differential gear and side shafts via a drive shaft.
  • the electric motor is additionally connected via a clutch and connecting shafts with an internal combustion engine in order to increase the range of the hybrid vehicle.
  • smaller combustion engines such as 2- or 3-cylinder engines, used because the engine is used only to support the electric motor.
  • an internal combustion engine has due to the combustion surges on a cyclically fluctuating torque, whereby on the output shaft (or flywheel) of the internal combustion engine rotational irregularities arise that propagate through the electric machine in the drive train and are perceived there as vibrations, which improves the ride comfort of the hybrid vehicle reduced.
  • This object is achieved in that the shaft torque of the motor shaft of the current working cycle of the internal combustion engine is detected and supplied to a Kompensati- onsregler, in the compensation controller, the shaft torque of a previous working cycle of the engine is stored and from the shaft torque of the current cycle, the shaft torque of a previous cycle and compensating for the shaft torque of a previous work cycle shifted by a system delay, a compensated shaft torque is associated with the desired torque command given by a superordinate control unit to compensate the rotational nonuniformities of the internal combustion engine by the electric motor for determining the actuating torque.
  • the adjusting torque contains a component that has been cleared of the system delay (and thus lies in the future), which allows the drive controller of the electric motor to react in good time and fast enough to rotational irregularities of the motor shaft through this anticipation, and especially without additional intervention in the drive control, to correct.
  • rotational nonuniformities are compensated by the electric motor of the drive train, thereby preventing them from propagating into the drive train.
  • control is used to attenuate resonances occurring at the connecting shaft in a dynamometer and electric load machine test stand assembly when the resonant frequency is in the range of the operating frequency of the internal combustion engine falls in order to realize a high dynamics in the test bench.
  • control is used to follow the rotational irregularities of the internal combustion engine with the loading machine as accurately as possible in order to avoid a swinging.
  • the loading machine is thus regulated so that it follows the speed of the internal combustion engine as well as possible, so that the loading machine rotates with the same rotational uniformity as the internal combustion engine.
  • the electric motor rotates with the same rotational nonuniformity, since otherwise it would be transmitted directly into the drive train.
  • the powertrain of a hybrid vehicle is usually mechanically designed so that no resonances can occur, since that would only cause problems in real operation of the hybrid vehicle. Thus, the same control concept is used completely differently.
  • the shaft torque at the motor shaft can be easily determined if the speed of the internal combustion engine and the speed of the electric motor are detected and fed to a torque estimator who estimates therefrom a current shaft torque of the motor shaft.
  • torque estimators are known per se and can easily process the measured values of the rotational speeds that are present in the drive train in any case.
  • a wave torque adjusted by the DC component is determined. The reason for this is that only the alternating part of the transmitted torque from the combustion engine to the electric motor is responsible for the rotational irregularities. Thus, it is expedient to determine only the alternating component of the shaft torque.
  • a transient wave moment is calculated from the wave moment of the current cycle and the wave moment of a previous cycle by subtracting the current wave moment from the stored previous wave moment, determining a predictive wave moment by compensating for and compensating for the system delay in the stored previous wave moment Shaft torque is determined as the sum of the predictive shaft torque and the transient shaft torque.
  • 1 is a block diagram of the control of the drive train of a hybrid vehicle
  • FIG. 2 shows a block diagram of the compensation controller.
  • FIG. 1 shows a drive train 1 of a hybrid vehicle consisting of an electric motor 2, which is connected via a transmission shaft 4 with a transmission 5.
  • the transmission 5 drives via a drive shaft 7, e.g. in the form of a propeller shaft, a differential gear 6 at. From differential gear 6, two vehicle wheels 9 are in turn driven via two side shafts 8.
  • the electric motor 2 is further connected via motor shafts 1 1 and a clutch 10 with an internal combustion engine s. About the clutch 10, the engine 3 can be switched on as needed.
  • Other required and per se well known electrical components such as e.g. a battery, a battery management system, inverter, etc., are not shown in Figure 1 for reasons of clarity.
  • a compensation controller K determines a compensation torque T comp , with which the target torque T so n for determining the actuating torque T ste ii for the drive controller 14 (essentially motor control and inverter) of the electric motor 2 is corrected.
  • is for example given by a higher-level control unit 15, for example a hybrid control unit.
  • the shaft torque T w of the motor shaft 1 1 is used here (when the clutch 10 is closed, a shaft can be assumed).
  • the shaft torque T w can be measured directly or, as here, can be estimated by means of a control torque estimator 13 from the rotational speed ni C E of the internal combustion engine 3 and the rotational speed n E M of the electric motor 2.
  • a control torque estimator 13 from the rotational speed ni C E of the internal combustion engine 3 and the rotational speed n E M of the electric motor 2.
  • Such torque estimators 13, for example in the form of an extended Kalman filter, are well known, which is why will not be discussed here.
  • CE, n E M can be detected by suitable speed sensors 12 (which are generally installed in the drive train 1 anyway).
  • the DC component of the shaft torque T w can also be filtered out, so that in the compensation controller K only the dynamic component of the shaft torque T w , dyn containing the rotational nonuniformities is processed.
  • the DC component can also be removed in the compensation controller K, for example by a filter at the input of the compensation controller K.
  • T w and w.dyn Through the speed measurement and the processing of the measured speeds RiicE. n E M in the torque estimator 13, the shaft torque T w or T w , dyn is always available only with a time delay. In addition, the regulation and responsiveness of the actuators themselves introduces a time delay.
  • system delay The processing, control and plant-specific delays and dead times are referred to below as system delay.
  • the system delay can be determined in advance, for example on a powertrain test bench, and must be regarded as known. If necessary, the system delay can also be estimated. Due to the system delay can be reacted by the drive controller 14 of the electric motor 2 always delayed and too slow to rotational irregularities of the motor shaft 1 1. In order to be able to compensate for this nonuniformity of rotation, future (predictive) system-delay-free actual values of the shaft torque T w , dyn are now determined and used for the control, as described below with reference to FIG described.
  • a duty cycle eg a complete combustion cycle of all cylinders in an internal combustion engine (eg 720 ° crank angle in a gasoline engine) occurs recurrently.
  • a memory unit M is provided in the compensation controller K in which the shaft torques T w , dyn (n-1) of at least one working cycle (n-1) preceding the current work cycle (n) of the internal combustion engine 3 are stored.
  • the memory unit M thus always stores the values of a past, preferably immediately preceding, working cycle.
  • the storage is preferably carried out angularly or time-resolved in discrete steps, for example a value of the shaft torque T w , dyn per degree crank angle or per millisecond.
  • the memory M is preferably designed as a cyclic memory (as indicated in FIG. 2), ie the triggered values are triggered by the selected angle or time resolution in a resolution-triggered manner until they fall out of the memory M again. If, for example, a resolution of one value per crank angle is selected, the memory M has 720 memory locations for a duty cycle to be stored.
  • the shaft moments of the previous duty cycle T w , dyn (n-1) are now supplied from the memory M time synchronous (or angle synchronous) a calculation unit S, ie the current time (or angle) - related to the duty cycle - each at the same time (or angle) stored value of the previous cycle (n-1) into the calculation tion unit S is supplied.
  • the current shaft torques T w , dyn (n) of the calculation unit S are supplied.
  • the current shaft torques T w , dyn (n) change from one duty cycle (n-1) to the next duty cycle (n) by a possibly existing transient component. If the shaft torque T w , dyn does not change over a work cycle, then the powertrain is in a quasi steady state operation that repeats per work cycle, this fraction being called the iterative part. In this case the transient share would be zero.
  • the dynamics of the transient component is less than the dynamics of the iterative component.
  • the stored values of the shaft torque T w , dyn (n-1) of the previous work cycle (n-1) are now used to determine predictive (future) shaft torques and thereby to compensate for the system delay.
  • a transient component in the form of the transient wave moments T w , dyn_trans is first calculated in the calculation unit S, in that the actual shaft moments T w , dyn (n) are synchronous (or angle-synchronous) with the stored preceding shaft moments T w , dyn ( n-1).
  • the system delay is still contained in this transient component T w , dyn_trans.
  • a correction unit V now predictive wave moments T w , dyn_kom are further determined by the system delay in the stored previous wave moments Tw, dyn (n-1) is compensated. This is done, for example, by not transmitting the associated stored value of the shaft torque T w , dyn (n-1) to the current crank angle (or time), but the time further forward by the known system delay, ie a future value.
  • the correction unit V for example, itself a memory unit for past wave moments T w , dyn (n-1) included in order to determine the correct values and can pass on.
  • the compensated wave torque T komp is thus a mixture of a predictive component without system delay and a transient component with system delay.
  • the information with the high dynamics which is necessary for a phase-correct regulation.
  • the dynamics of the transient component is much lower than that of the predictive component, which is why the system delay is easy.
  • the correction unit V can also be dispensed with in the calculation unit S if, for example, the memory unit M has two outputs, wherein the shaft moments T w , dyn (n-1) associated with the current angle (or time) are output at one output and at the other output, the time lagged by the system delay wave moments T w , dyn_kom values are output, so if the correction unit V is integrated in the memory.
  • two cyclic storage units can be provided in the compensation controller K, wherein in a storage unit each of the entire cycle time or angular resolution, eg 720 ° crank angle in an Otto internal combustion engine, is stored and in the other, shortened by the system delay duty cycle, eg 690 ° crank angle in a gasoline engine and a system delay of 30 °. At the second output there is always a value around the system delay "future".
  • the drive controller 14 thus receives, as a setting torque T ste ii, a variable which contains a predictive component which is the system delay in the future. In this way, the drive controller 14 can compensate for the rotational irregularities of the motor shaft 1 1 with the electric motor 2.

Abstract

Für eine einfach umzusetzende und auszuführende Regelung eines Elektromotors (2) eines Antriebsstranges (1) eines Hybridfahrzeuges wird vorgeschlagen, das Wellenmoment (Tw) der Motorwelle (11) des aktuellen Arbeitszyklus (n) des Verbrennungsmotors (3) zu erfassen und einem Kompensationsregler (K) zuzuführen, im Kompensationsregler (K) das Wellenmoment (Tw(n-1 )) eines vorgehenden Arbeitszyklus (n-1 ) des Verbrennungsmotors (3) zu speichern und aus dem Wellenmoment (Tw(n)) des aktuellen Arbeitszyklus (n), dem Wellenmoments (Tw(n-1)) eines vorherigen Arbeitszyklus (n-1) und dem um eine Systemverzögerung verschobenen Wellenmoments des vorherigen Arbeitszyklus (n-1) ein kompensiertes Wellenmoment (Tkomp) zu berechnen, das zur Ermittlung des Stelldrehmoments (Tstell) mit dem von einer übergeordneten Steuereinheit (15) vorgegebenen Solldrehmoment (Tsoll) verknüpft wird.

Description

Verfahren zur Regelung eines Elektromotors eines Antriebsstranges eines Hybridfahrzeuges
Die gegenständliche Erfindung betrifft ein Verfahren zur Regelung eines Elektromotors eines Antriebsstranges eines Hybridfahrzeuges, wobei der Elektromotor über eine Antriebswelle mit den Antriebsrädern und über eine Motorwelle mit einem Verbrennungsmotor, der Dre- hungleichförmigkeiten in den Antriebsstrang einbringt, verbunden ist und einem Antriebsregler des Elektromotors ein Stelldrehmoment vorgegeben wird.
Ein bekanntes Antriebsstrangkonzept eines modernen Hybridfahrzeugs umfasst einen Elektromotor, der über eine Antriebswelle die Antriebsräder des Fahrzeugs, eventuell und ein Getriebe, ein Differentialgetriebe und Seitenwellen, antreibt. Der Elektromotor ist zusätzlich über eine Kupplung und Verbindungswellen mit einem Verbrennungsmotor verbunden, um die Reichweite des Hybridfahrzeugs zu erhöhen. Dazu werden kleinere Verbrennungsmotoren, z.B. 2- oder 3-Zylindermotoren, eingesetzt, da der Verbrennungsmotor nur als Unterstützung des Elektromotors verwendet wird. Ein Verbrennungsmotor weist jedoch aufgrund der Verbrennungsstöße ein zyklisch schwankendes Drehmoment auf, wodurch an der Abtriebswelle (bzw. am Schwungrad) des Verbrennungsmotors Drehungleichförmigkeiten entstehen, die sich über die elektrische Maschine in den Antriebsstrang fortpflanzen und dort als Schwingungen wahrgenommen werden, was den Fahrkomfort des Hybridfahrzeugs reduziert. Es sind daher bereits Regelstrategien bekannt geworden, die versuchen, diese Drehungleichförmigkeiten im Antriebsstrang eines solchen Hybridfahrzeugs auszuregeln. Z.B. wurde im Rahmen des Vortrags„Effizienter E-Fahrzeugantrieb mit dem kompakten CEA-Konzept - Combustion Engine Assist", C.Beidl, et al., 7.MTZ Fachtagung Der Antrieb von morgen, 24. und 25. Jänner 2012, Wolfsburg, eine Regelung vorgestellt, die die Drehungleichförmigkeit mittels einer sogenannten Harmonie Oriented Control (HOC) kompensiert. Hierzu wird analog zur feldorientierten Regelung von Elektromotoren eine Park-Transformation der Drehzahlschwingungen in ein synchron mit der Frequenz der Schwingung drehendes Koordinatensystem durchgeführt. Dabei werden die an der Schwingung beteiligten Beschleunigungen im neuen Koordinatensystem mit zwei Pl-Reglern ausgeregelt, sodass sich nach Rücktrans- formation ein Kompensationsanteil des vorzugebenden Soll-Drehmoments ergibt, mit der das Solldrehmoment des Drehzahlreglers des Elektromotors korrigiert wird. Ein ähnliches Konzept findet sich in der WO 2012/156258 A2, wobei hier die Kompensation vor der Rück- transformation der feldorientierten Regelung des Elektromotors erfolgt. Beiden Verfahren ist der relativ hohe Rechenaufwand für die Durchführung der Transformationen gemein, was auch bei der Implementierung im Fahrzeug eine entsprechend leistungsfähige Recheneinheit bedingt.
Aus der DE 10 2009 047 1 16 A1 und der DE 199 39 250 A1 gehen Verfahren zur Kompen- sation einer Drehungleichförmigkeit in einem Antriebsstrang aus einem Verbrennungsmotor und einem Elektromotor hervor, bei denen die Drehungleichförmigkeit zuerst bestimmt wird und der Elektromotor gesteuert wird, um dieser Drehungleichförmigkeit entgegenzuwirken. Aufgrund der Systemverzögerungen und dem Nacheilen des Reglers ist das aber nur bis zu einer bestimmten Dynamik der Drehungleichförmigkeit möglich. Es war daher eine Aufgabe der gegenständlichen Erfindung, eine alternative Regelung eines Elektromotors eines solchen Antriebsstranges eines Hybridfahrzeugs anzugeben, die besonders einfach umzusetzen und auszuführen ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Wellenmoment der Motorwelle des aktuellen Arbeitszyklus des Verbrennungsmotors erfasst und einem Kompensati- onsregler zugeführt wird, im Kompensationsregler das Wellenmoment eines vorgehenden Arbeitszyklus des Verbrennungsmotors gespeichert wird und aus dem Wellenmoment des aktuellen Arbeitszyklus, dem Wellenmoments eines vorherigen Arbeitszyklus und dem um eine Systemverzögerung verschobenen Wellenmoment eines vorherigen Arbeitszyklus ein kompensiertes Wellenmoment berechnet wird, das zur Ermittlung des Stelldrehmoments mit dem von einer übergeordneten Steuereinheit vorgegebenen Solldrehmoment verknüpft wird, um die Drehungleichförmigkeiten des Verbrennungsmotors durch den Elektromotor zu kompensieren.
Auf diese Weise kann erreicht werden, dass das Stelldrehmoment eine um die Systemverzögerung bereinigte (und damit in der Zukunft liegende) Komponente enthält, was es dem Antriebsregler des Elektromotors ermöglicht, durch diese Antizipation rechtzeitig und schnell genug auf Drehungleichförmigkeiten der Motorwelle zu reagieren und diese, vor allem auch ohne zusätzlichen Eingriff in die Antriebsregelung, auszuregeln. Damit werden Drehungleichförmigkeiten durch den Elektromotor des Antriebsstranges kompensiert, wodurch verhindert wird, dass sich diese in den Antriebsstrang fortpflanzen. Aus der WO 2010/023228 A2 ist zwar das Grundkonzept der erfindungsgemäßen Regelung bekannt, allerdings in einem gänzlich anderen Zusammenhang und mit einer gänzlich anderen Zielsetzung. Hier wird die Regelung verwendet, um in einer Prüfstandsanordnung aus Verbrennungsmotor und elektrischer Belastungsmaschine auftretende Resonanzen an der Verbindungswelle zu dämpfen, wenn die Resonanzfrequenz im Bereich der Betriebsfrequenz des Verbrennungsmotors fällt, um eine hohe Dynamik im Prüfstand realisieren zu können. Dazu wird die Regelung verwendet, um den Drehungleichformigkeiten des Verbrennungsmotors mit der Belastungsmaschine möglichst genau nachzufahren, um ein Aufschwingen zu vermeiden. Die Belastungsmaschine wird also so geregelt, dass sie der Drehzahl des Ver- brennungsmotors möglichst gut folgt, die Belastungsmaschine also mit derselben Drehun- gleichförmigkeit dreht wie der Verbrennungsmotor.
Im Hybridfahrzeug muss aber vermieden werden, dass sich der Elektromotor mit derselben Drehungleichförmigkeit dreht, da diese ansonsten direkt in den Antriebsstrang weitergegeben werden würde. Darüber hinaus ist der Antriebsstrang eines Hybridfahrzeugs mechanisch in der Regel so ausgelegt, dass keine Resonanzen auftreten können, da das im realen Betrieb des Hybridfahrzeugs nur Probleme machen würde. Somit wird das an sich gleiche Regelungskonzept völlig unterschiedlich verwendet.
Das Wellenmoment an der Motorwelle kann einfach ermittelt werden, wenn die Drehzahl des Verbrennungsmotors und die Drehzahl des Elektromotors erfasst und einem Drehmomen- tenschätzer zugeführt werden, der daraus ein aktuelles Wellenmoment der Motorwelle schätzt. Solche Drehmomentenschätzer sind an sich hinlänglich bekannt und können die im Antriebsstrang ohnehin vorhandenen Messwerte der Drehzahlen auf einfache Weise verarbeiten. Damit kann die aufwendigere, direkte Messung des Wellenmoments vermieden werden. Vorteilhafterweise wird ein um den Gleichanteil bereinigtes Wellenmoment ermittelt. Der Grund dafür ist, dass nur der Wechselanteil des übertragenen Momentes vom Verbrennungsmotor zum Elektromotor für die Drehungleichformigkeiten verantwortlich ist. Somit ist es zielführend, nur den Wechselanteil des Wellenmomentes zu ermitteln.
Ganz besonders vorteilhaft wird aus dem Wellenmoment des aktuellen Arbeitszyklus und dem Wellenmoments eines vorherigen Arbeitszyklus ein transientes Wellenmoment berechnet, indem das aktuelle Wellenmoment von dem gespeicherten vorangegangenen Wellenmoment abgezogen wird, ein prädiktives Wellenmomente ermittelt, indem die Systemverzögerung im gespeicherten vorangegangenen Wellenmoment kompensiert wird und das kompensierte Wellenmoment als Summe aus dem prädiktiven Wellenmomente und dem tran- sienten Wellenmoment ermittelt wird. Das lässt sich mit wenigen Operationen bewerkstelligen, was den Rechenaufwand zur Ermittlung des kompensierten Wellenmoments deutlich reduziert. Die gegenständliche Erfindung wird nachfolgend unter Bezugnahme auf die Figuren 1 und 2 näher erläutert, die beispielhaft, schematisch und nicht einschränkend vorteilhafte Ausgestaltungen der Erfindung zeigen. Dabei zeigt
Fig.1 ein Blockschaltbild der Regelung des Antriebsstranges eines Hybridfahrzeugs und
Fig.2 ein Blockschaltbild des Kompensationsreglers.
Fig.1 zeigt einen Antriebsstrang 1 eines Hybridfahrzeugs bestehend aus einem Elektromotor 2, der über einer Getriebewelle 4 mit einem Getriebe 5 verbunden ist. Das Getriebe 5 treibt über eine Antriebswelle 7, z.B. in Form einer Kardanwelle, ein Differentialgetriebe 6 an. Vom Differentialgetriebe 6 werden wiederum über zwei Seitenwellen 8 zwei Fahrzeugräder 9 angetrieben. Der Elektromotor 2 ist weiters über Motorwellen 1 1 und eine Kupplung 10 mit einem Verbrennungsmotor s verbunden. Über die Kupplung 10 kann der Verbrennungsmotor 3 bedarfsweise zugeschaltet werden. Selbstverständlich sind auch andere Konfigurationen eines Antriebsstranges 1 denkbar, z.B. ohne Getriebe 5 oder direkt angetriebene Fahrzeugräder 9. Andere benötigte und an sich hinlänglich bekannte elektrische Komponenten, wie z.B. eine Batterie, ein Batteriemanagementsystem, Umrichter, etc., sind in Fig.1 aus Gründen der Übersichtlichkeit nicht dargestellt.
Ist der Verbrennungsmotor 3 in den Antriebsstrang 1 eingekuppelt entstehen zwischen Verbrennungsmotor 3 und Elektromotor 2 an der Motorwelle 1 1 Drehungleichförmigkeiten, die im Antriebsstrang 1 1 zu kompensieren (im Sinne von reduzieren) sind. Dazu ist ein Kompensationsregler K vorgesehen, der ein Kompensationsdrehmoment Tkomp ermittelt, mit dem das Solldrehmoment Tson zur Ermittlung des Stelldrehmoments Tsteii für den Antriebsregler 14 (im Wesentlichen Motorsteuerung und Umrichter) des Elektromotors 2 korrigiert wird. Das Solldrehmoment TS0|| wird z.B. von einer übergeordneten Steuereinheit 15, z.B. einer Hybridsteuereinheit, vorgegeben. Als Eingang für den Kompensationsregler K dient hier das Wellendrehmoment Tw der Motorwelle 1 1 (bei geschlossener Kupplung 10 kann eine Welle angenommen werden). Das Wellendrehmoment Tw kann direkt gemessen werden, oder kann, wie hier, mittels eines regelungstechnischen Drehmomentenschätzers 13 aus der Drehzahl niCE des Verbrennungsmotors 3 und der Drehzahl nEM des Elektromotors 2 geschätzt werden. Solche Drehmomentenschätzer 13, z.B. in Form eines erweiterten Kaiman Filters, sind hinlänglich bekannt, weshalb hier nicht näher eingegangen wird. Die Drehzahlen I"||CE, nEM können durch geeignete Drehzahlsensoren 12 (die in der Regel im Antriebsstrang 1 ohnehin verbaut sind), erfasst werden.
Durch den Drehmomentenschätzer 13 kann der Gleichanteil des Wellenmoments Tw auch herausgefiltert werden, sodass im Kompensationsregler K nur mehr der dynamische Anteil des Wellenmoments Tw,dyn, der die Drehungleichförmigkeiten enthält, verarbeitet wird. Der Gleichanteil kann aber auch in der Kompensationsregler K entfernt werden, z.B. durch einen Filter am Eingang des Kompensationsreglers K. Die nachfolgende Erläuterung gilt für Tw und w.dyn gleichermaßen. Durch die Drehzahlmessung und die Verarbeitung der gemessenen Drehzahlen riicE. nEM im Drehmomentenschätzer 13, steht das Wellenmoment Tw bzw. Tw,dyn aber immer nur zeitverzögert zur Verfügung. Außerdem wird durch die Regelung und dem Reaktionsvermögen der Stellglieder selbst eine Zeitverzögerung eingeführt. Die verarbeitungs-, regelungs- und anlagenspezifischen Verzögerungen bzw. Totzeiten werden in weiterer Folge allgemein als Sys- temverzögerung bezeichnet. Die Systemverzögerung kann aber vorab, z.B. auf einem An- triebsstrangprüfstand, ermittelt werden und ist als bekannt anzusehen. Gegebenenfalls kann die Systemverzögerung auch geschätzt werden. Durch die Systemverzögerung kann durch den Antriebsregler 14 des Elektromotors 2 immer nur zeitverzögert und zu langsam auf Drehungleichförmigkeiten der Motorwelle 1 1 reagiert werden. Um dieses Drehungleichförmigkei- ten trotzdem kompensieren zu können, werden nun zur Kompensation unter Ausnutzung des zyklischen Arbeitsspiels des Verbrennungsmotors 3 zukünftige (prädiktive) systemverzöge- rungsfreie Istwerte des Wellenmoments Tw,dyn ermittelt und für die Regelung verwendet, wie nachfolgend anhand der Fig.2 beschrieben.
Ein Arbeitszyklus, z.B. ein kompletter Verbrennungszyklus aller Zylinder bei einem Verbrennungsmotor (z.B. 720° Kurbelwinkel bei einem Ottomotor), tritt wiederkehrend auf. Dieser Umstand wird ausgenutzt. Dazu ist im Kompensationsregler K eine Speichereinheit M vorgesehen, in der die Wellenmomente Tw,dyn(n-1 ) zumindest eines dem aktuellen Arbeitszyklus (n) vorangegangenen Arbeitszyklus (n-1 ) des Verbrennungsmotors 3 gespeichert sind. In der Speichereinheit M sind somit immer die Werte eines vergangenen, bevorzugt des unmittelbar vorangegangenen, Arbeitszyklus gespeichert. Die Speicherung erfolgt dabei bevorzugt winkel- bzw. zeitaufgelöst in diskreten Schritten, z.B. ein Wert des Wellenmoments Tw,dyn pro Grad Kurbelwinkel oder pro Millisekunde. Bevorzugt ist der Speicher M als zyklischer Speicher ausgeführt (wie in Fig.2 angedeutet), d.h. dass die gespeicherten Werte getriggert durch die gewählte Winkel- oder Zeitauflösung auflösungsgetriggert durchgeschoben werden, bis diese wieder aus dem Speicher M herausfallen. Wird z.B. eine Auflösung von einem Wert pro Grad Kurbelwinkel gewählt, so hat der Speicher M 720 Speicherplätze für einen zu speichernden Arbeitszyklus.
Die Wellenmomente des vorangegangenen Arbeitszyklus Tw,dyn(n-1 ) werden nun aus dem Speicher M zeitsynchron (oder winkelsynchron) einer Berechnungseinheit S zugeführt, d.h. das zur aktuellen Zeit (oder Winkel) - bezogen auf den Arbeitszyklus - der jeweils zur selben Zeit (oder Winkel) gespeicherte Wert des vergangenen Arbeitszyklus (n-1 ) in die Berech- nungseinheit S zugeführt wird. Ebenso werden die aktuellen Wellenmomente Tw,dyn(n) der Berechnungseinheit S zugeführt.
Die aktuellen Wellenmomente Tw,dyn(n) ändern sich von einem Arbeitszyklus (n-1 ) zum nächsten Arbeitszyklus (n) um einen eventuell vorhandenen transienten Anteil. Ändert sich das Wellenmoment Tw,dyn über einen Arbeitszyklus nicht, dann ist der Antriebsstrang in einem quasistationären Betrieb, der sich pro Arbeitszyklus wiederholt, wobei dieser Anteil als iterativer Anteil bezeichnet wird. In diesem Fall wäre der transiente Anteil Null. Die Dynamik des transienten Anteils ist dabei geringer als die Dynamik des iterativen Anteils.
In einer bevorzugten Methode werden nun die gespeicherten Werte des Wellenmoments Tw,dyn(n-1 ) des vorangegangenen Arbeitszyklus (n-1 ) herangezogen, um prädiktive (in der Zukunft liegende) Wellenmomente zu ermitteln und um damit die Systemverzögerung zu kompensieren. Es wird dazu in der Berechnungseinheit S zuerst ein transienter Anteil in Form der transienten Wellenmomente Tw,dyn_trans berechnet, indem die aktuellen Wellenmomente Tw,dyn(n) zeitsynchron (oder winkelsynchron) von den gespeicherten vorangegange- nen Wellenmomente Tw,dyn(n-1 ) abgezogen werden. In diesem transienten Anteil Tw,dyn_trans ist aber immer noch die Systemverzögerung enthalten.
In einer Korrektureinheit V werden nun weiters prädiktive Wellenmomente Tw,dyn_kom ermittelt, indem die Systemverzögerung in den gespeicherten vorangegangenen Wellenmomente Tw,dyn(n-1 ) kompensiert wird. Das erfolgt z.B. indem zum aktuellen Kurbelwinkel (oder Zeit) nicht der zugehörige gespeicherte Wert des Wellenmoments Tw,dyn(n-1 ), sondern der um die bekannte System Verzögerung zeitlich weiter vorne liegende, also ein zukünftiger, Wert weitergegeben wird. Dazu kann die Korrektureinheit V z.B. selbst eine Speichereinheit für vergangene Wellenmomente Tw,dyn(n-1 ) enthalten, um die richtigen Werte ermitteln und weitergeben zu können. Die derart kompensierten (prädiktiven) Wellenmomente Tw,dyn_kom (ohne Systemverzögerung) und die transienten Wellenmomente Tw,dyn_trans (mit Systemverzögerung) werden nun addiert, wodurch sich ein kompensiertes Wellenmoment Tkomp ergibt, das letztendlich der Regelung rückgeführt wird. Das kompensierte Wellenmoment Tkomp ist damit eine Mischung aus einem prädiktiven Anteil ohne System Verzögerung und einem transienten Anteil mit Systemverzögerung. Im prädiktiven, nun Systemverzögerungsfreien Anteil steckt die Information mit der hohen Dynamik, welche für eine phasenrichtige Regelung notwendig ist. Die Dynamik des transienten Anteils ist wesentlich geringer als die des prädiktiven Anteils, weshalb hier die Systemverzögerung problemlos ist.
Auf die Korrektureinheit V kann in der Berechnungseinheit S auch verzichtet werden, wenn z.B. die Speichereinheit M zwei Ausgänge aufweist, wobei an einem Ausgang die zum aktu- eilen Winkel (oder Zeit) zugehörigen Wellenmomente Tw,dyn(n-1 ) ausgegeben werden und am anderen Ausgang, die um die Systemverzögerung zeitlich verschobenen Wellenmomente Tw,dyn_kom Werte ausgegeben werden, wenn also die Korrektureinheit V im Speicher integriert ist. Alternativ können im Kompensationsregler K auch zwei zyklische Speichereinheiten vorgesehen sein, wobei in einer Speichereinheit jeweils der gesamte Arbeitszyklus zeit- oder winkelaufgelöst, z.B. 720° Kurbelwinkel bei einem Otto-Verbrennungsmotor, gespeichert wird und in der anderen, der um die Systemverzögerung verkürzte Arbeitszyklus, z.B. 690° Kurbelwinkel bei einem Otto-Verbrennungsmotor und einer Systemverzögerung von 30°. Am zweiten Ausgang liegt damit immer ein um die Systemverzögerung„zukünftiger" Wert an.
Der Antriebsregler 14 erhält somit als Stellmoment Tsteii eine Größe, die eine prädiktive Kom- ponente enthält, die um die Systemverzögerung in der Zukunft liegt. Auf diese Weise kann der Antriebsregler 14 die Drehungleichförmigkeiten der Motorwelle 1 1 mit dem Elektromotor 2 kompensieren.

Claims

Patentansprüche
1 . Verfahren zur Regelung eines Elektromotors (2) eines Antriebsstranges (1 ) eines Hybridfahrzeuges, wobei der Elektromotor (2) über eine Antriebswelle (7) mit den Antriebsrädern (9) und über eine Motorwelle (1 1 ) mit einem Verbrennungsmotor (3), der Drehungleichför- migkeiten in den Antriebsstrang (1 ) einbringt, verbunden ist, und einem Antriebsregler (14) des Elektromotors (2) ein Stelldrehmoment (Tsteii) vorgegeben wird, dadurch gekennzeichnet, dass das Wellenmoment (Tw) der Motorwelle (1 1 ) des aktuellen Arbeitszyklus (n) des Verbrennungsmotors (3) erfasst und einem Kompensationsregler (K) zugeführt wird, dass im Kompensationsregler (K) das Wellenmoment (Tw(n-1 )) eines vorgehenden Arbeitszyklus (n- 1 ) des Verbrennungsmotors (3) gespeichert wird und dass aus dem Wellenmoment (Tw(n)) des aktuellen Arbeitszyklus (n), dem Wellenmoments (Tw(n-1 )) eines vorherigen Arbeitszyklus (n-1 ) und dem um eine Systemverzögerung verschobenen Wellenmoments des vorherigen Arbeitszyklus (n-1 ) ein kompensiertes Wellenmoment (Tkomp) berechnet wird, das zur Ermittlung des Stelldrehmoments (Tsteii) mit dem von einer übergeordneten Steuereinheit (15) vorgegebenen Solldrehmoment (Tson) verknüpft wird, um die Drehungleichförmigkeiten des Verbrennungsmotors (3) durch den Elektromotor (2) zu kompensieren.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Drehzahl (Π|0Ε) des Verbrennungsmotors (3) und die Drehzahl (ΠΕΜ) des Elektromotors (2) erfasst und einem Drehmomentenschätzer (13) zugeführt wird, der ein aktuelles Wellenmoment (Tw) der Motorwelle (1 1 ) schätzt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein um den
Gleichanteil bereinigtes Wellenmoment (Tw,dyn) ermittelt und dem Kompensationsregler (K) zugeführt wird.
4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass aus dem Wellenmoment (Tw(n), Tw,dyn(n)) des aktuellen Arbeitszyklus (n) und dem Wellenmoments (Tw(n- 1 ), Tw,dyn(n-1 )) eines vorherigen Arbeitszyklus (n-1 ) ein transientes Wellenmoment
(Tw,dyn_trans) berechnet wird, indem das aktuelle Wellenmoment (Tw(n), Tw,dyn(n)) von dem gespeicherten vorangegangenen Wellenmoment (Tw(n-1 ),Tw,dyn(n-1 )) abgezogen wird, dass ein prädiktives Wellenmomente (Tw_kom , Tw,dyn_kom ) ermittelt wird, indem die Systemverzögerung im gespeicherten vorangegangenen Wellenmoment (Tw(n-1 )Tw,dyn(n-1 )) kompensiert wird und dass das kompensierte Wellenmoment (Tkomp) als Summe aus dem prädiktiven Wellenmomente (Tw_kom , Tw,dyn_komP) und dem transienten Wellenmoment (Tw trans, Tw,dyn_trans) ermittelt wird.
PCT/EP2013/076381 2012-12-21 2013-12-12 Verfahren zur regelung eines elektromotors eines antriebsstranges eines hybridfahrzeuges WO2014095565A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013006106.6T DE112013006106A5 (de) 2012-12-21 2013-12-12 Verfahren zur Regelung eines Elektromotors eines Antriebsstranges eines Hybridfahrzeuges
US14/652,356 US9517761B2 (en) 2012-12-21 2013-12-12 Method for compensating rotational irregularities of an internal combustion engine of a drive train of a hybrid vehicle
CN201380071038.1A CN104936809B (zh) 2012-12-21 2013-12-12 用于调节混合动力车辆的驱动系的电动机的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50614/2012A AT511916B1 (de) 2012-12-21 2012-12-21 Verfahren zur Regelung eines Elektromotors eines Antriebsstranges eines Hybridfahrzeuges
ATA50614/2012 2012-12-21

Publications (2)

Publication Number Publication Date
WO2014095565A2 true WO2014095565A2 (de) 2014-06-26
WO2014095565A3 WO2014095565A3 (de) 2014-08-28

Family

ID=47833601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/076381 WO2014095565A2 (de) 2012-12-21 2013-12-12 Verfahren zur regelung eines elektromotors eines antriebsstranges eines hybridfahrzeuges

Country Status (5)

Country Link
US (1) US9517761B2 (de)
CN (1) CN104936809B (de)
AT (1) AT511916B1 (de)
DE (1) DE112013006106A5 (de)
WO (1) WO2014095565A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112297870A (zh) * 2019-07-30 2021-02-02 比亚迪股份有限公司 车辆及其控制方法与装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019790A1 (fr) * 2014-04-11 2015-10-16 Motorisations Aeronautiques Procede de controle d'un systeme propulseur hybride
IT201600094657A1 (it) * 2016-09-21 2018-03-21 Same Deutz Fahr Italia S P A Veicolo per uso agricolo con mezzi di analisi stato veicolo e comando gruppo differenziale
AT519092B1 (de) * 2016-11-28 2018-04-15 Avl List Gmbh Verfahren und Vorrichtung zur Regelung einer Prüfstandsanordnung
JP6521484B2 (ja) 2017-02-23 2019-05-29 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6519957B2 (ja) * 2017-02-23 2019-05-29 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6504527B2 (ja) 2017-02-23 2019-04-24 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6601440B2 (ja) * 2017-02-24 2019-11-06 株式会社アドヴィックス 車両の制御装置
JP7000879B2 (ja) * 2018-01-30 2022-01-19 株式会社アイシン 車両の制御装置
CN112977394B (zh) * 2021-02-18 2024-01-23 精进电动科技股份有限公司 一种抑制发动机扭矩脉动的方法和混合动力系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2321708A2 (de) * 2008-09-01 2011-05-18 AVL List GmbH Verfahren und regelanordnung zur regelung einer regelstrecke mit sich wiederholendem arbeitszyklus
US20120078456A1 (en) * 2010-09-29 2012-03-29 Aisin Aw Co., Ltd. Control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796698B2 (ja) * 1995-02-02 1998-09-10 株式会社エクォス・リサーチ ハイブリッド車両
DE19939250A1 (de) * 1999-08-19 2001-03-22 Siemens Ag Verfahren und Vorrichtung zur Dämpfung von Drehschwingungen einer Verbrennungsmaschine
AT7889U3 (de) * 2005-06-15 2006-12-15 Avl List Gmbh Verfahren zur prüfung eines dynamischen drehmomenterzeugers und vorrichtung zur ermittlung des dynamischen verhaltens einer verbindungswelle
DE102005061414A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridfahrzeugs
DE102006005470A1 (de) * 2006-02-07 2007-08-09 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Parallelhybridantriebsstranges eines Fahrzeugs
DE102009047116A1 (de) * 2009-11-25 2011-05-26 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs, insbesondere eines Kraftfahrzeugs
DE102011101846B4 (de) 2011-05-17 2016-02-18 Avl Software And Functions Gmbh Verfahren und Antivibrationsregelungseinrichtung zum Ausgleichen von durch eine Verbrennungskraftmaschine erzeugte Vibrations-Schwingungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2321708A2 (de) * 2008-09-01 2011-05-18 AVL List GmbH Verfahren und regelanordnung zur regelung einer regelstrecke mit sich wiederholendem arbeitszyklus
US20120078456A1 (en) * 2010-09-29 2012-03-29 Aisin Aw Co., Ltd. Control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOKAL H ET AL: "Bandwidth extension of dynamical test benches by modified mechanical design under adaptive feedforward disturbance rejection", AMERICAN CONTROL CONFERENCE (ACC), 2010, IEEE, PISCATAWAY, NJ, USA, 30. Juni 2010 (2010-06-30), Seiten 6151-6156, XP031719998, ISBN: 978-1-4244-7426-4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112297870A (zh) * 2019-07-30 2021-02-02 比亚迪股份有限公司 车辆及其控制方法与装置
CN112297870B (zh) * 2019-07-30 2023-03-14 比亚迪股份有限公司 车辆及其控制方法与装置

Also Published As

Publication number Publication date
US20150344022A1 (en) 2015-12-03
WO2014095565A3 (de) 2014-08-28
AT511916B1 (de) 2018-01-15
DE112013006106A5 (de) 2015-09-17
CN104936809B (zh) 2017-09-22
US9517761B2 (en) 2016-12-13
AT511916A2 (de) 2013-03-15
AT511916A3 (de) 2017-12-15
CN104936809A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014095565A2 (de) Verfahren zur regelung eines elektromotors eines antriebsstranges eines hybridfahrzeuges
EP2321708B1 (de) Verfahren und regelanordnung zur regelung einer regelstrecke mit sich wiederholendem arbeitszyklus
DE112012005793B4 (de) Schwingungsdämpfungssteuerungsgerät
WO2016070876A1 (de) Verfahren zur schwingungsdämpfung eines antriebsstrangs mittels einer elektromaschine
WO2005009770A1 (de) Regelstrategie für elektromechanisch leistungsverzweigende hybridantriebe
AT508909B1 (de) Verfahren und einrichtung zur regelung einer prüfstandsanordnung
EP3205014B1 (de) Steuervorrichtung für eine elektromaschine, fahrzeug und verfahren
DE102005044828A1 (de) Verfahren und Vorrichtung zur Ermittlung eines optimalen Betriebspunktes bei Fahrzeugen mit Hybridantrieb
DE102014104896A1 (de) Elektromotor-Steuervorrichtung
DE3416496A1 (de) Verfahren und schaltungsanordnung zum simulieren von pruefstandstraegheitsmomenten
DE102014213080A1 (de) Verfahren zum Abstellen einer Brennkraftmaschine
DE2902376A1 (de) Einrichtung zur schwingungsdaempfung
DE102006036217A1 (de) Verfahren zur Verbesserung der Fahreigenschaften eines Hybridantriebs
AT520537B1 (de) Verfahren zum Betreiben eines Prüfstands
DE102014204154A1 (de) Prüfstand zum Prüfen eines Motoranbauteils
EP3729042A1 (de) Verfahren zum betreiben eines prüfstands
DE102016207328A1 (de) Verfahren und Vorrichtung zum Steuern eines elektrischen Fahrzeugantriebssystems
AT522354B1 (de) Verfahren zum Betreiben eines Prüfstands
EP3036141B1 (de) Fahrzeugantriebssteuerung
DE102016117299A1 (de) Nutzerschnittstellenvorrichtung eines Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems und Steuerverfahren der Nutzerschnittstellenvorrichtung des Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems
EP3063032B1 (de) Verfahren zum betreiben einer hybridantriebseinrichtung sowie entsprechende hybridantriebseinrichtung
WO2018177647A1 (de) Verfahren und vorrichtung zur schwingungskompensation eines an einer welle wirkenden drehmomentes
DE102017205490A1 (de) Verfahren und Vorrichtung zur Schwingungskompensation eines an einer Welle wirkenden Drehmomentes
DE102011111775A1 (de) Einseitige Detektion und Deaktivierung des Aufschwingens eines Integrierers für eine Drehzahlsteuerung in einem Fahrzeug
DE102015212623A1 (de) Verfahren zum Betrieb parallel geschalteter Generatoreinheiten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13814486

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14652356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130061066

Country of ref document: DE

Ref document number: 112013006106

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13814486

Country of ref document: EP

Kind code of ref document: A2