WO2014094369A1 - 一种虚拟全息输入输出控制方法及系统 - Google Patents

一种虚拟全息输入输出控制方法及系统 Download PDF

Info

Publication number
WO2014094369A1
WO2014094369A1 PCT/CN2013/070376 CN2013070376W WO2014094369A1 WO 2014094369 A1 WO2014094369 A1 WO 2014094369A1 CN 2013070376 W CN2013070376 W CN 2013070376W WO 2014094369 A1 WO2014094369 A1 WO 2014094369A1
Authority
WO
WIPO (PCT)
Prior art keywords
holographic
output
virtual input
information
decoding
Prior art date
Application number
PCT/CN2013/070376
Other languages
English (en)
French (fr)
Inventor
黄祖銮
欧阳爱安
Original Assignee
深圳市世纪天河科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市世纪天河科技有限公司 filed Critical 深圳市世纪天河科技有限公司
Publication of WO2014094369A1 publication Critical patent/WO2014094369A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • G06F3/0426Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected tracking fingers with respect to a virtual keyboard projected or printed on the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/023Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
    • G06F3/0233Character input methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0061Adaptation of holography to specific applications in haptic applications when the observer interacts with the holobject

Definitions

  • the invention relates to an image input and output control method and system, in particular to a virtual holographic input and output control method and system. Background technique
  • the technical problem solved by the invention is: constructing a virtual holographic input and output control method and system, overcoming the virtual output function of the prior art virtual input without the terminal device, the display effect is intuitive and not operable, and the holographic projection cannot be realized. And technical issues of control.
  • the technical solution of the present invention is: Providing a holographic virtual input and output control method, comprising the following steps:
  • Holographic virtual input input holographic virtual input information, including virtual keyboard input, stereo holographic input, and holographic air virtual input, video stream input;
  • Identifying and converting input information receiving holographic virtual input information, and locating and encoding the holographic virtual input information, the positioning process is as follows: using a virtual keyboard button The location and definition are located at the frequency of the infrared rays on the virtual keyboard keys and the wavelength bits generated by the temperature of the skin; the encoding process is as follows: The holographic virtual input information is defined as a linear data chain, and the holographic virtual input is removed by decorrelation processing The redundancy of the information is then added to the encoded data by a sufficient number of bits to ensure that the number of bits of change between the available codewords is minimal; the decoding process is as follows: Huffman decoding of the encoded information is divided into three steps: In one step, the coded information is divided into code values; the second step is to store the code values in the memory, and the third step is to input the code values generated in the first step into and out of the output; during the decoding process, the coded information is first brightnessed. Decoding, and then chro
  • Holographic output Performs holographic image output, including static holographic display output and dynamic holographic control output.
  • a further technical solution of the present invention is: in the step of identifying and converting input information, the decorrelation processing includes linear prediction decorrelation processing, the encoding includes predictive coding, and the predictive coding uses linear prediction to perform image information samples one by one Related processing.
  • a further technical solution of the present invention is: in the step of identifying and converting input information, the decorrelation processing includes orthogonal transform decorrelation processing, the encoding includes motion change coding, and the orthogonal transform decorrelation processing utilizes one-dimensional, A two-dimensional or three-dimensional orthogonal transform transform domain of a set of de-correlated distributions of image samples in one-dimensional n, two-dimensional n X n, three-dimensional n X n X n blocks, the motion change coding according to transform coefficients in the transform domain
  • the energy size is assigned to a digital compression band for encoding.
  • a further technical solution of the present invention is: in the step of identifying and converting input information, further comprising reducing redundancy between pixels in the input image.
  • a further technical solution of the present invention is: in the step of identifying and converting the input information, further comprising preset image fidelity, and adjusting the output precision of the received holographic virtual input information to be consistent with the preset image fidelity.
  • the technical solution of the present invention is: constructing a holographic virtual input/output control system, comprising: a holographic virtual input unit for inputting holographic virtual input information, an identification conversion unit for performing recognition and conversion, and an output unit for outputting holographic information
  • the identification conversion unit includes a positioning module, an encoding module and a decoding module, wherein the positioning module is based on the infrared information: using the position of the button (each button position is pre-determined according to the internationally positioned keyboard 104 key standard) And the frequency of the infrared rays (the infrared rays are defined on the internationally positioned keyboard 104 keys on each button) and the temperature generated by the temperature of the skin (ie the skin is the same as the infrared defined by the internationally positioned keyboard 104 keys)
  • the generated wavelength is as follows:
  • the holographic virtual input information is defined as a linear data chain, the redundancy of the holographic virtual input information is removed by decorrelation processing, and then sufficient
  • the decoding process is as follows: Huffman decoding is performed on the encoded information;; the encoding module first removes the redundancy of the holographic virtual input information by decorrelation processing, and then Encoding the holographic virtual input information by adding a sufficient number of bits to the encoded data to ensure that the number of bits of change between the available codewords is minimized; the decoding module performs Huffman decoding on the encoded information, ie, first Encoding information is subjected to luminance decoding, and then chroma decoding is performed; the output unit performs holographic image output, Including static and dynamic holographic holographic display output control output.
  • the encoding module includes a linear prediction decorrelation module and a predictive coding module, and the predictive coding module performs decorrelation processing on the image information samples one by one using linear prediction.
  • the encoding module includes an orthogonal transform decorrelation processing module and a motion change encoding module, and the orthogonal transform decorrelation processing module uses one-dimensional, two-dimensional or three-dimensional orthogonal transform to one-dimensional n And a set of image samples in the two-dimensional n X n, three-dimensional n X n X n block, a transform domain in the de-correlation distribution set, wherein the motion change coding module allocates a digital compression frequency band according to the transform coefficient energy size in the transform domain for encoding.
  • a further technical solution of the present invention is that the identification conversion unit further comprises reducing an inter-pixel redundancy mapper in the input image.
  • the identification conversion unit further comprises adjusting the output precision of the received holographic virtual input information to a quantizer that is consistent with the preset image fidelity.
  • the technical effect of the present invention is to construct a virtual holographic input and output control method and system, and to locate, encode and decode the holographic virtual input information by identifying and converting the received holographic virtual input information, and then outputting the holographic image, including Perform static holographic display output and dynamic holographic control output.
  • the image output of the technical solution has a cast
  • the shadow function uses holographic technology to image the projection device, including dynamic images. At the same time, it can output static holographic images and dynamic holographic images, that is, switch between 3D and 2D images. At the same time, the current general-purpose chip design is adopted to reduce the cost.
  • Figure 1 is a flow chart of the present invention.
  • FIG. 2 is a diagram of a specific embodiment of the present invention. detailed description
  • a specific implementation manner of the present invention is: Providing a holographic virtual input/output control method, including the following steps:
  • Steps loo Holographic virtual input
  • gp Enter holographic virtual input information, including virtual keyboard input, stereo holographic input, and holographic aerial virtual input, video stream input.
  • holographic virtual input information virtual keyboard input including holographic virtual input, such as laser keyboard; stereo holographic input, ie three-dimensional input; holographic aerial virtual input, such as aerial keyboard, input image with laser keyboard
  • holographic virtual input such as laser keyboard
  • Mainly virtual keyboard input three-dimensional coordinates, mainly receiving three-dimensional stereoscopic images and infrared matrix, gp: accepting matrix information by human body infrared sensing.
  • Full stereo holographic input ie three-dimensional input: The laser circle range is directly projected by the laser, and the space object within this range will be circled as a three-dimensional input.
  • Holographic air virtual input such as air keyboard, etc.: The square aperture is directly projected by the laser, and then divided into 10 parallel lines and 10 vertical lines by the infrared diode, as long as the human body senses in the corresponding point, The corresponding instruction is issued.
  • Video stream input video format, such as RMVB, WMA, etc.
  • Step 200 Identify and convert the input information, gP: receive the holographic virtual input information, and perform positioning, encoding, and decoding on the holographic virtual input information.
  • the positioning process is as follows: using the position and definition of the button in the virtual keyboard on the virtual keyboard button Frequency of infrared rays And the wavelength bits generated by the temperature of the skin are positioned; the above three-point condition is sampled and encoded.
  • the encoding process is as follows: The encoding process is as follows: First, the redundancy of the holographic virtual input information is removed by decorrelation processing, and then Encoding the holographic virtual input information is accomplished by adding enough bits to the encoded data to ensure that the number of bits of change between available codewords is minimized.
  • the decoding process is as follows: Huffman decoding is performed on the encoded information, and then the encoded information is first subjected to luminance decoding, and then chroma decoding is performed.
  • the specific implementation process is as follows: Receive holographic virtual input information, and locate, encode, and decode the holographic virtual input information. Specifically, the following processes are included:
  • the positioning process is as follows: In the specific implementation process, according to the infrared information, the position of the button and the frequency of the infrared light and the temperature of the skin are generated, and the position is pre-determined according to the internationally positioned keyboard 104 key standard. The position, which defines the infrared rays on each of the keys of the internationally positioned keyboard 104 key, that is, the wavelength produced by each distance of the skin 104 keys of the internationally-defined keyboard that is defined by the infrared rays.
  • the encoding process is as follows: First, the redundancy of the holographic virtual input information is removed by decorrelation processing, and then sufficient bits are added to the encoded data to ensure that the number of bits of change between available codewords is minimized.
  • Encoding of the holographic virtual input information The originating end of the image coding system consists essentially of two parts. First, the original digital image subjected to high-precision analog-digital conversion is subjected to decorrelation processing to remove the redundancy of the information. Then, according to a certain allowable distortion requirement, the de-correlated signal is encoded and re-coded. Linear correlation and orthogonal transform are generally used for decorrelation processing; correspondingly, predictive coding and motion change coding are performed first. Predictive coding uses linear prediction to decorrelate image information samples one by one. For a pixel 50, it predicts 50 by using a weighted sum (linear combination) of one of the neighboring pixel luminances as an estimate.
  • the method further includes reducing redundancy between pixels in the input image.
  • the method further includes preset image fidelity, and adjusting the output precision of the received holographic virtual input information to be consistent with the preset image fidelity.
  • the image predictive coding process pixels of the same plane position of the previous frame are used as prediction estimates.
  • the transform domain coding de-correlates the set of image samples in the one-dimensional, two-dimensional ⁇ , three-dimensional ⁇ ⁇ block by one-dimensional, two-dimensional or three-dimensional orthogonal transform to obtain a transform domain in which the energy distribution is concentrated; By assigning a number according to the energy of the transform coefficient energy in the transform domain, the frequency band can be compressed.
  • the most commonly used orthogonal transform is the discrete cosine transform (DCT), which is typically chosen to be 8 or 16.
  • DCT discrete cosine transform
  • the three-dimensional orthogonal transform removes the correlation in the three-dimensional direction and it can be compressed to an average of 1 bit per sample.
  • Image coding can be applied to digital transmission of basic still pictures, digital video conference calls, and digital color broadcast television.
  • the corresponding compression target, ie the transmission digital rate range is initially set at 64 kbit/s, 2 Mbit/s, 8 Mbit/s and 34 Mbit/s.
  • the decoding process is as follows: Huffman decoding is performed on the encoded information, and then the encoded information is first subjected to luminance decoding, and then chroma decoding is performed. Huffman decoding of the encoded information, defining the link as:
  • N(i) is multiplexed: the leftmost leaf node number of the i-th layer is indicated in c), and the number of each leaf node of the layer in this level is indicated in d).
  • the encoding is performed according to the above procedure.
  • Huffman decoding is performed on an MCU, and chroma decoding is required after the luminance decoding is completed. After decoding, six one-dimensional arrays with 64-bit elements are obtained, which are: 4 y luma arrays, 1 c6 chroma array, 1 C, chroma array. Decoding the luminance and chrominance is actually decoding the luminance array and the chrominance array. For an array, Huffman decoding includes DC decoding and AC decoding. The decoding of the first element of the array is called DC decoding (abbreviated as DC decoding), and the decoding of the remaining 63 elements is called AC decoding (abbreviated as AC decoding).
  • DC decoding abbreviated as DC decoding
  • AC decoding abbreviated as AC decoding
  • the JPEG file generally contains four Huffman tables, namely a luminance DG table, an AC table, a chroma DC table, and an AC table. Decoding different data requires calling a different Huffman table.
  • the data decoded by the DC is called the DC value, but the final DC value is the sum of the directly decoded DC value and the DC value of the previous array immediately following the array.
  • AC decoding generally yields multiple data, including some consecutive 0 data and one non-zero data.
  • the Huffman code is its minimum decoding unit, and the decoding process of each Huffman code is roughly the same.
  • a Huffman code consists of a dock and a code value of 2, the dock is used to uniquely identify the Huffman code, and with Huffman The table one-to-one correspondence, the code value is the actual size of the code.
  • Step 300 Holographic output
  • gp Perform holographic image output, including static holographic display output and dynamic holographic control output.
  • a specific embodiment of the present invention is: constructing a holographic virtual input/output control system, including a holographic virtual input unit 1 for inputting holographic virtual input information, an identification conversion unit 2 for performing recognition and conversion, and outputting holographic information.
  • the positioning module 21 performs the wavelength of the specific button, the frequency of the infrared rays, and the temperature of the skin according to the infrared information.
  • the encoding module 22 first removes the redundancy of the holographic virtual input information by decorrelation processing, and then adds enough digits to the encoded data to ensure that the number of bits of change between available codewords is minimized.
  • Encoding the holographic virtual input information; the decoding module 23 performs Huffman decoding on the encoded information, gp, first performs luminance decoding on the encoded information, and then performs chrominance decoding; and the output unit 3 performs holographic image output, including performing Static holographic display output and dynamic holographic control Out.
  • the identification conversion unit 2 further includes reducing the inter-pixel redundancy mapper in the input image.
  • the identification conversion unit 2 further includes a quantizer that adjusts the output precision of the received holographic virtual input information to a predetermined image fidelity.
  • holographic virtual input unit 1 input holographic virtual input information, including virtual keyboard input, stereo holographic input, holographic air virtual input, video stream input
  • the recognition conversion unit 2 receives the holographic virtual input information, and positions, encodes, and decodes the holographic virtual input information. Specifically, the following processes are included:
  • the positioning process is as follows: The positioning module 21 is based on the infrared information: using the position of the button (the key position is determined in advance according to the internationally positioned keyboard 104 key standard) and the frequency of the infrared light (the infrared light is defined in the international positioning The keyboard 104 button is used on each button) and the temperature of the skin is generated by the wavelength (ie, the wavelength of the skin generated by the distance between the skin and the infrared-defining internationally positioned keyboard 104 key).
  • the encoding process is as follows: the encoding module 22 uses the positioning module to locate the holographic virtual input information, and then removes the redundancy of the holographic virtual input information through a decorrelation process, and then goes to the encoded data.
  • Encoding the holographic virtual input information is accomplished by adding enough bits to ensure that the number of bits of change between the available codewords is minimized.
  • the originating end of the image coding system consists essentially of two parts. First, the original digital image subjected to high-precision analog-digital conversion is subjected to decorrelation processing to remove the redundancy of the information. Then, according to a certain allowable distortion requirement, the de-correlated signal is encoded and re-coded. Linear correlation and orthogonal transform are generally used for decorrelation processing; correspondingly, predictive coding and motion change coding are performed first. Predictive coding uses linear prediction to decorrelate image information samples one by one.
  • the method further includes reducing redundancy between pixels in the input image.
  • the method further includes preset image fidelity, and adjusting the output precision of the received holographic virtual input information to be consistent with the preset image fidelity.
  • One-dimensional fixed prediction one-dimensional difference pulse code modulation
  • Conditional Transmission Inter Prediction Frametic Difference Pulse Code Modulation: Pixels of the same plane position of the previous frame are used as prediction estimates.
  • the transform domain coding de-correlates the set of image samples in the one-dimensional, two-dimensional ⁇ ⁇ , three-dimensional ⁇ ⁇ block by one-dimensional, two-dimensional or three-dimensional orthogonal transform to obtain a transform domain with a concentrated energy distribution; , assigning a number according to the energy of the transform coefficient in the transform domain,
  • the frequency band can be compressed.
  • the most commonly used orthogonal transform is the discrete cosine transform (DCT), which is typically chosen to be 8 or 16.
  • DCT discrete cosine transform
  • the three-dimensional orthogonal transform removes the correlation in the three-dimensional direction and it can be compressed to an average of 1 bit per sample.
  • Image coding can be applied to digital transmission of basic still pictures, digital video conference calls, and digital color broadcast television.
  • the corresponding compression target, ie the transmission digital rate range is initially set at 64 kbit/s, 2 Mbit/s, 8 Mbit/s and 34 Mbit/s.
  • the decoding process is as follows:
  • the decoding module 23 performs Huffman decoding on the encoded information, and first performs luminance decoding on the encoded information, and then performs chroma decoding.
  • Huffman decoding of the encoded information defining the link as:
  • weight [B(i+l)]. weight+A[B(i)]. weight, B(i+1) Insertion: B(i+1) Subsequent elements compare the weights of the two corresponding As from the way of going to the next. If the former is large, B(i+1) and the elements are interchanged; if the two are equal, the corresponding levels are compared, if the former is larger , then the two are interchanged; otherwise, exit.
  • N (i) is multiplexed: the leftmost leaf node number of the i-th layer is indicated in c), and the number of each leaf node of the layer in the hierarchy is indicated in d).
  • the encoding is performed according to the above procedure.
  • Huffman decoding is performed on an MCU, and chroma decoding is required after the luminance decoding is completed. After decoding, we get six one-dimensional arrays with 64-bit elements, which are: 4 y luma arrays, 1 c6 chroma array, 1 C, chroma array. Decoding the luminance and chrominance is actually decoding the luminance array and the chrominance array. For an array, Huffman decoding includes DC decoding and AC decoding. The decoding of the first element of the array is called DC decoding (abbreviated as DC decoding), and the decoding of the remaining 63 elements is called AC decoding (abbreviated as AC decoding).
  • DC decoding abbreviated as DC decoding
  • AC decoding abbreviated as AC decoding
  • the JPEG file generally contains four Huffman tables, namely the luminance DG table, the AC table, the chrominance DC table, and the AC table. Decoding different data requires calling a different Huffman table.
  • the DC decoded data is called the DC value, but the final DC value is the sum of the directly decoded DC value and the DC value of the previous array immediately following the array.
  • AC decoding typically yields multiple data, including some consecutive 0 data and one non-zero data. Regardless of whether it is luminance or chrominance decoding, whether it is AC or DC decoding, Huffman code is its minimum decoding unit, and the decoding process of each Huffman code is roughly the same.
  • a Huffman code consists of a wharf and a code value of two. The dock is used to uniquely identify the Huffman code and corresponds to the Huffman table. The code value is the actual size of the code.
  • the output unit 3 performs holographic image output, including performing a static holographic display output and a dynamic holographic control output.
  • the output visual image or stereo motion map is projected onto a wall or a stereo space to enable control display of the input.
  • the technical effect of the present invention is to construct a virtual holographic input and output control method and system, and to locate, encode and decode the holographic virtual input information by identifying and converting the received holographic virtual input information, and then outputting the holographic image, including Perform static holographic display output and dynamic holographic control output.
  • the image output of the technical solution has a cast
  • the shadow function uses holographic technology to image the projection device, including dynamic images. At the same time, it can output static holographic images and dynamic holographic images, that is, switch between 3D and 2D images. At the same time, the current general-purpose chip design is adopted to reduce the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明涉及一种虚拟全息输入输出控制方法及系统,通过识别并转换接收的全息虚拟输入信息,对所述全息虚拟输入信息进行定位、编码及解码,然后输出全息图像,包括进行静态的全息显示输出和动态的全息控制输出。本技术方案的图像输出中具有投影功能,采用全息技术进行投影设备图像,包括动态图像,同时可以输出静态的全息图像和动态的全息图像,即在三维二维图像进行切换,同时,采用现通用芯片设计以降低成本。

Description

一种虚拟全息输入输出控制方法及系统 技术领域
本发明涉及一种图像输入输出控制方法及系统,尤其涉及一种虚 拟全息输入输出控制方法及系统。 背景技术
随着平板电子技术的发展, 触摸控制技术也有了长足的发展。现 有技术中, 通过虚拟输入, 包括虚拟激光键盘输入, 让用户能像操作 普通键盘一样轻易地打出文章或电子邮件。I_Tech 虚拟键盘 采用光 投照技术, 几乎能在任意平面上投影出全尺寸的电脑键盘。虚拟键盘 用在 PDA 和智能手机上时, 可方便地进行电子邮件收发、 文字处理 及电子表格制作, 用户可以将笔记本电脑和桌面机留在家里了。虚拟 键盘的适用性技术对用户手指运动加以研究,对键盘击打动作进行解 码和记录。但现有技术的虚拟输入没有终端设备的虚拟输出功能, 显 示效果不过直观且不具有可操作性, 不能实现全息式投影及控制。 发明内容
本发明解决的技术问题是:构建一种虚拟全息输入输出控制方法 及系统, 克服现有技术虚拟输入没有终端设备的虚拟输出功能, 显示 效果不过直观且不具有可操作性,不能实现全息式投影及控制的技术 问题。
本发明的技术方案是: 提供一种全息虚拟输入输出控制方法, 包 括如下步骤:
全息虚拟输入: 输入全息虚拟输入信息, 包括虚拟键盘输入、 立 体全息输入以及全息空中虚拟输入、 视频流输入;
识别并转换输入信息: 接收全息虚拟输入信息, 对所述全息虚拟 输入信息进行定位及编码, 所述定位过程如下: 利用虚拟键盘中按键 的位置及定义在虚拟键盘按键上红外线的频率以及皮肤的温度产生 的波长位进行定位; 所述编码过程如下: 将全息虚拟输入信息定义为 线性数据链, 通过去相关处理去掉所述全息虚拟输入信息的冗余度, 然后向被编码的数据中加入足够的位数以确保可用的码字之间变化 的位数最小; 所述解码过程如下: 对编码信息进行 Huffman解码分 为三步: 第一步, 即将编码后的信息分生成码值; 第二步, 将码值存 放在内存中, 第三步, 将第一步生成的码值进出输出; 解码过程中, 先对编码信息进行亮度解码, 再进行色度解码;
全息输出: 进行全息图像输出, 包括进行静态的全息显示输出和 动态的全息控制输出。
本发明的进一步技术方案是: 在识别并转换输入信息步骤中, 所 述去相关处理包括线性预测去相关处理, 所述编码包括预测编码, 所 述预测编码利用线性预测逐个对图像信息样本进行去相关处理。
本发明的进一步技术方案是: 在识别并转换输入信息步骤中, 所 述去相关处理包括正交变换去相关处理,所述编码包括运动变化编码, 所述正交变换去相关处理利用一维、 二维或三维正交变换对一维 n、 二维 n X n、 三维 n X n X n块中的图像样本的集合去相关分布集中的 变换域,所述运动变化编码根据变换域中变换系数能量大小分配数码 压缩频带进行编码。
本发明的进一步技术方案是: 在识别并转换输入信息步骤中, 还 包括减少输入图像中像素间的冗余。
本发明的进一步技术方案是: 在识别并转换输入信息步骤中, 还 包括预设图像保真度,将接收的所述全息虚拟输入信息的输出精度调 整到与预设图像保真度相一致。
本发明的技术方案是: 构建一种全息虚拟输入输出控制系统, 包 括输入全息虚拟输入信息的全息虚拟输入单元、进行识别转换的识别 转换单元、输出全息信息的输出单元, 所述识别转换单元包括定位模 块、 编码模块和解码模块, 所述定位模块根据红外线信息: 利用按键 的位置 (会预先根据国际定位的键盘 104键标准定议好每一个按键位 置)及红外线的频率 (将红外线定义在国际定位的键盘 104键每一个 按键上)及皮肤的温度产生的波长位(即皮肤同红外线的定义好的国 际定位的键盘 104键的每一个距离而产生的波长); 所述编码过程如 下: 将全息虚拟输入信息定义为线性数据链, 通过去相关处理去掉所 述全息虚拟输入信息的冗余度,然后向被编码的数据中加入足够的位 数以确保可用的码字之间变化的位数最小; 所述解码过程如下: 对 编码信息进行 Huffman解码;; 所述编码模块首先通过去相关处理去 掉所述全息虚拟输入信息的冗余度,然后向被编码的数据中加入足够 的位数以确保可用的码字之间变化的位数最小实现对所述全息虚拟 输入信息的编码; 所述解码模块对编码信息进行 Huffman解码, 即, 首先对编码信息进行亮度解码, 再进行色度解码; 所述输出单元进行 全息图像输出,包括进行静态的全息显示输出和动态的全息控制输出。
本发明的进一步技术方案是:所述编码模块包括线性预测去相关 模块和预测编码模块,所述预测编码模块利用线性预测逐个对图像信 息样本进行去相关处理。
本发明的进一步技术方案是:所述编码模块包括正交变换去相关 处理模块和运动变化编码模块,所述正交变换去相关处理模块利用一 维、 二维或三维正交变换对一维 n、 二维 n X n、 三维 n X n X n块中的 图像样本的集合去相关分布集中的变换域,所述运动变化编码模块根 据变换域中变换系数能量大小分配数码压缩频带进行编码。
本发明的进一步技术方案是:所述识别转换单元还包括减少输入 图像中像素间冗余映射器。
本发明的进一步技术方案是:所述识别转换单元还包括将接收的 所述全息虚拟输入信息的输出精度调整到与预设图像保真度相一致 的量化器。
本发明的技术效果是:构建一种虚拟全息输入输出控制方法及系 统, 通过识别并转换接收的全息虚拟输入信息, 对所述全息虚拟输入 信息进行定位、 编码及解码, 然后输出全息图像, 包括进行静态的全 息显示输出和动态的全息控制输出。本技术方案的图像输出中具有投 影功能, 采用全息技术进行投影设备图像, 包括动态图像, 同时可以 输出静态的全息图像和动态的全息图像,即在三维二维图像进行切换, 同时, 采用现通用芯片设计以降低成本。 附图说明
图 1为本发明的流程图。
图 2为本发明的具体实施方式图。 具体实施方式
下面结合具体实施例, 对本发明技术方案进一步说明。
如图 1所示, 本发明的具体实施方式是: 提供一种全息虚拟输入 输出控制方法, 包括如下步骤:
步骤 loo: 全息虚拟输入, gp : 输入全息虚拟输入信息, 包括虚 拟键盘输入、 立体全息输入以及全息空中虚拟输入、 视频流输入。
具体实施过程如下: 输入全息虚拟输入信息, 全息虚拟输入包 括的虚拟键盘输入, 如, 激光键盘; 立体全息输入, 即三维立体输 入; 全息空中虚拟输入, 如空中键盘等, 输入的图像有激光键盘, 主要是虚拟键盘输入, 三维坐标, 主要是接收三维立体扫描图像及 红外线矩阵, gp : 利用人体红外线感应而接受矩阵信息。 虚拟键盘 输入, 比如激光键盘: 由激光器加印有键盘排列滤纸, 当激光点亮 时会投影出带激光的键盘出来,可放置在平面上。全立体全息输入, 即三维立体输入: 由激光器直接投影出激光圈范围, 在此范围内的 空间实物, 都将圈定为三维立体输入。 全息空中虚拟输入, 如空中 键盘等: 由激光器直投出四方形的光圈, 再由红外线二极管切分成 平行 10条线和垂直的 10条线进行交叉, 只要人体感应在相应的点 内,就会相应的发出指令。视频流输入:视频格式,如 RMVB, WMA等。
步骤 200: 识别并转换输入信息, gP : 接收全息虚拟输入信息, 对所述全息虚拟输入信息进行定位、编码及解码,所述定位过程如下: 利用虚拟键盘中按键的位置及定义在虚拟键盘按键上红外线的频率 以及皮肤的温度产生的波长位进行定位;利上述三点条件进行采样做 编码所述编码过程如下: 所述编码过程如下: 首先通过去相关处理去 掉所述全息虚拟输入信息的冗余度,然后向被编码的数据中加入足够 的位数以确保可用的码字之间变化的位数最小实现对所述全息虚拟 输入信息的编码。所述解码过程如下:对编码信息进行 Huffman解码, 首先对编码信息进行亮度解码, 再进行色度解码。
具体实施过程如下: 接收全息虚拟输入信息, 对所述全息虚拟输 入信息进行定位、 编码及解码。 具体包括如下过程:
所述定位过程如下: 具体实施过程中, 根据红外线信息, 利用按 键的位置以及红外线的频率及皮肤的温度产生的波长位,该位置会预 先根据国际定位的键盘 104键标准定议好每一个按键位置,该频率将 红外线定义在国际定位的键盘 104键每一个按键上,该波长即皮肤同 红外线的定义好的国际定位的键盘 104 键的每一个距离而产生的波 长。所述编码过程如下: 首先通过去相关处理去掉所述全息虚拟输入 信息的冗余度,然后向被编码的数据中加入足够的位数以确保可用的 码字之间变化的位数最小实现对所述全息虚拟输入信息的编码。图像 编码系统的发信端基本上由两部分组成。首先,对经过高精度模 -数变 换的原始数字图像进行去相关处理, 去除信息的冗余度; 然后, 根据 一定的允许失真要求, 对去相关后的信号编码即重新码化。一般用线 性预测和正交变换进行去相关处理; 与之相对应, 先进行预测编码和 运动变化编码。 预测编码利用线性预测逐个对图像信息样本去相关。 对某个像素 50来说, 它用邻近一些像素亮度的加权和 (线性组合) 一 -作为估值,对 50进行预测。50与… -之间的差值 e i)就是预测误差。 由于相邻像素与 50间存在相关性,差值的统计平均能量就变得很小。 因此, 只需用少量数码就可以实现差值图像的传输。 具体实施过程 中, 在识别并转换输入信息步骤中, 还包括减少输入图像中像素间的 冗余。在识别并转换输入信息步骤中, 还包括预设图像保真度, 将接 收的所述全息虚拟输入信息的输出精度调整到与预设图像保真度相 一致。 图像预测编码过程中,用前一帧同一平面位置的像素作为预测估 值。 对于只有少量活动的图像 (如可视电话), 画面中约有百分之七 十以上的帧间差值等于零或很小, 因此这些差值可舍弃不传。 由于帧 间差值的传输以其幅度是否大于某个阈值为条件,又称为条件传输帧 间预测。
变换域编码用一维、 二维或三维正交变换对一维 、 二维 Χη、 三维 χ χ 块中的图像样本的集合去相关,得到能量分布比较集中 的变换域; 在再码化时, 根据变换域中变换系数能量大小分配数码, 就能压缩频带。 最常用的正交变换是离散余弦变换 (DCT) , 7值一般 选为 8或 16。 三维正交变换同时去除了三维方向的相关性,它可以压 缩到平均每样本 1 比特。 图像编码可应用于基本静止图片的数字传 输、 数字电视电话会议以及数字彩色广播电视。相应的压缩目标, 即 传输数码率范围,初步定为 64千比特 /秒、 2兆比特 /秒、 8兆比特 / 秒和 34兆比特 /秒级。
所述解码过程如下: 对编码信息进行 Huffman解码, 首先对编码 信息进行亮度解码,再进行色度解码。对编码信息进行 Huffman解码, 定义链接为:
A[il]. Iink=i2, A[i2]. Iink=i3, ···, A[im]. link=0,
则称 A[ik] (其中 k=l,2,一,m)是以 A[il]为首节点,以 A[im]为尾 节点的线性链。 设有另一个以 A[jl]为首节点的线性链,若令 A[im]. link=jl,则实现了由 A[il]到 A[jl]的链接,同时以 il和 jl为 首节点的线性链中的每个元素的层次加 1。 当链接表合并到只有 2个 数据链时结束,此时可以确定每个数据的层次,节省一次循环的时间。 求层次表的具体步骤如下:
a)初始化。 链接表 A的第 1歹 ^、 第 3列分别赋值 1和 0,第 2列 为数据的权重; 索引表 B为 {bi=i}, ί=1,2,···,Ρ。
b)权重排序。 根据权重的大小,按照从小到大对 B进行排序。 c )链接。 挑选 B ( i )和 B ( i + 1 )对应的链接表进行链接。
d)权重计算以及排序 A[B(i+l)]. weight=[B(i+l)]. weight+A[B(i)]. weight, B(i+1) 进行插入操作: B(i+1)与其后续元素从前往后逐个比较二者对应 A中 的权值大小,若前者大,则 B(i+1)和该元素互换;若二者相等,则比较 二者对应的层次,若前者大,则二者互换; 否则,退出。
重复步骤 c)和 d),直至链接表 A合并到只有 2个数据链。
利用层次表来求编号。 设层次表 M为 k层,则步骤如下: a)求层次表^
b) 由定理 1 求各层最左边叶子节点号 N(i) 。 初始 化:幽 =0, t=M(k);迭代: N(i)=t/2, t=M(i)+N(i), i=k-l, k-2, ·'·,2。 c)按照概率表顺序,依次求各叶子节点在本层次中的编号。
A[i]. link=N (A[i]. layer); N(A[i]. layer) =N(A[i] . layer) +1; i=l, 2, ···, P.其中 N(i)复用:在 c)中表示第 i层的最左边叶子节点编 号,在 d)中表示该层的各叶子节点在本层次中的编号。
根据数据层次数和编号,按上述过程求编码。
对一个 MCU进行 Huffman解码, 需在完成亮度解码后才能进行 色度解码。 解码后得到 6个具有 64位元素 的一维数组 , 分别是: 4个 y亮度数组、 1个 c6色度数组、 1个 C, 色度数组 。 对亮度和 色度进行解码其实就是对 亮 度 数组 和 色度 数 组 的解 码。对 一个 数组来说 , Huffman解码包括直流解码和交流解码 。 对数组 第一个元素的解码称为直流解码 (简记为 DC解码), 对剩下的 63个 元素 的解码称为交流解码 (简记为 AC解码 )。 JPEG文件中一般包 含 4个 Huffman表, 即亮度 DG表、 AC表 , 色度 DC表 、 AC表。 对 不同的数据进行解码需要调用不同的 Huffman表 。 DC解码 出的数 据称为 DC值 , 但最终 的 DC值却是直接解码出的 DC值与该数组紧 跟的前面一个数组的 DC值之和。 AC解码一般会得到多个数据, 包括 一些连续 0数据和一个非 0数据。不管是亮度还是色度解码 , 也不 管是 AC 还是 DC 解码 , Huffman 码是其最小解码单位 , 且每个 Huffman码的解码流程都是大致相同的。 一个 Huffman码包括码头和 码值 2部分 ,码头用来惟 一的标识 该 Huffman码 ,并 与 Huffman 表一一对应 , 码值是该码的实际大小。
步骤 300 : 全息输出, gp : 进行全息图像输出, 包括进行静态的 全息显示输出和动态的全息控制输出。输出可视图像或立体功运动图 投影到墙壁或立体空间中, 以实现输入的控制显示。
如图 2所示, 本发明的具体实施方式是: 构建一种全息虚拟输入 输出控制系统, 包括输入全息虚拟输入信息的全息虚拟输入单元 1、 进行识别转换的识别转换单元 2、 输出全息信息的输出单元 3, 所述 识别转换单元 2包括定位模块 21、编码模块 22和解码模块 23, 所述 定位模块 21根据红外线信息, 利用具体的按键的位置、 红外线的频 率及皮肤的温度产生的波长进行定位; 所述编码模块 22首先通过去 相关处理去掉所述全息虚拟输入信息的冗余度,然后向被编码的数据 中加入足够的位数以确保可用的码字之间变化的位数最小实现对所 述全息虚拟输入信息的编码; 所述解码模块 23 对编码信息进行 Huffman解码, gp,首先对编码信息进行亮度解码,再进行色度解码; 所述输出单元 3进行全息图像输出,包括进行静态的全息显示输出和 动态的全息控制输出。具体实施例中, 所述识别转换单元 2还包括减 少输入图像中像素间冗余映射器。所述识别转换单元 2还包括将接收 的所述全息虚拟输入信息的输出精度调整到与预设图像保真度相一 致的量化器。
具体实施过程如下:全息虚拟输入单元 1输入全息虚拟输入信息, 包括虚拟键盘输入、立体全息输入以及全息空中虚拟输入、视频流输 入
识别转换单元 2接收全息虚拟输入信息,对所述全息虚拟输入信 息进行定位、 编码及解码。 具体包括如下过程:
所述定位过程如下: 所述定位模块 21根据红外线信息: 利用按 键的位置 (会预先根据国际定位的键盘 104键标准定议好每一个按键 位置)及红外线的频率 (将红外线定义在国际定位的键盘 104键每一 个按键上)及皮肤的温度产生的波长位(即皮肤同红外线的定义好的 国际定位的键盘 104键的每一个距离而产生的波长)。 所述编码过程如下: 所述编码模块 22利用所述定位模块对所述 全息虚拟输入信息的定位,再通过去相关处理去掉所述全息虚拟输入 信息的冗余度,然后向被编码的数据中加入足够的位数以确保可用的 码字之间变化的位数最小实现对所述全息虚拟输入信息的编码。图像 编码系统的发信端基本上由两部分组成。首先,对经过高精度模 -数变 换的原始数字图像进行去相关处理, 去除信息的冗余度; 然后, 根据 一定的允许失真要求, 对去相关后的信号编码即重新码化。一般用线 性预测和正交变换进行去相关处理; 与之相对应, 先进行预测编码和 运动变化编码。 预测编码利用线性预测逐个对图像信息样本去相关。 对某个像素 50来说, 它用邻近一些像素亮度的加权和 (线性组合) 一 -作为估值,对 50进行预测。50与… -之间的差值 e i)就是预测误差。 由于相邻像素与 50间存在相关性,差值的统计平均能量就变得很小。 因此, 只需用少量数码就可以实现差值图像的传输。 具体实施过程 中, 在识别并转换输入信息步骤中, 还包括减少输入图像中像素间的 冗余。在识别并转换输入信息步骤中, 还包括预设图像保真度, 将接 收的所述全息虚拟输入信息的输出精度调整到与预设图像保真度相 一致。
图像预测编码(差值脉码调制)主要有三种预测方法。①一维固 定预测(一维差值脉码调制): 用 2a中的 51或 52对 50预测,加权系 数固定并且小于 1。 ②二维固定预测(二维差值脉码调制):当预测估 值取 5 和 5 的平均时, 称之为二维平均预测,而当预测估值取 -一 =51+52-53时,称之为二维平面预测。 ③条件传输帧间预测(帧差脉码 调制): 用前一帧同一平面位置的像素作为预测估值。 对于只有少量 活动的图像 (如可视电话), 画面中约有百分之七十以上的帧间差值 等于零或很小, 因此这些差值可舍弃不传。 由于帧间差值的传输以其 幅度是否大于某个阈值为条件, 又称为条件传输帧间预测。
变换域编码用一维、 二维或三维正交变换对一维 、 二维 Χ η、 三维 χ χ 块中的图像样本的集合去相关,得到能量分布比较集中 的变换域; 在再码化时, 根据变换域中变换系数能量大小分配数码, 就能压缩频带。 最常用的正交变换是离散余弦变换 (DCT), 7值一般 选为 8或 16。 三维正交变换同时去除了三维方向的相关性,它可以压 缩到平均每样本 1 比特。 图像编码可应用于基本静止图片的数字传 输、 数字电视电话会议以及数字彩色广播电视。相应的压缩目标, 即 传输数码率范围,初步定为 64千比特 /秒、 2兆比特 /秒、 8兆比特 / 秒和 34兆比特 /秒级。
所述解码过程如下: 所述解码模块 23对编码信息进行 Huffman 解码, 首先对编码信息进行亮度解码, 再进行色度解码。对编码信息 进行 Huffman解码, 定义链接为:
A[il]. Iink=i2, A[i2]. Iink=i3, ···, A[im]. link=0,
则称 A[ik] (其中 k=l,2,一,m)是以 A[il]为首节点,以 A[im]为尾 节点的线性链。 设有另一个以 A[jl]为首节点的线性链,若令 A[im].link=jl,则实现了由 A[il]到 A[jl]的链接,同时以 il和 jl为 首节点的线性链中的每个元素的层次加 1。 当链接表合并到只有 2个 数据链时结束,此时可以确定每个数据的层次,节省一次循环的时间。 求层次表的具体步骤如下:
a)初始化。 链接表 A的第 1歹 ^、 第 3列分别赋值 1和 0,第 2列 为数据的权重; 索引表 B为 {bi=i}, ί=1,2,···,Ρ。
b)权重排序。 根据权重的大小,按照从小到大对 B进行排序。 c )链接。 挑选 B ( i )和 B ( i + 1 )对应的链接表进行链接。
d)权重计算以及排序
A[B(i+l)]. weight=[B(i+l)]. weight+A[B(i)]. weight, B(i+1) 进行插入操作: B(i+1)与其后续元素从前往后逐个比较二者对应 A中 的权值大小,若前者大,则 B(i+1)和该元素互换;若二者相等,则比较 二者对应的层次,若前者大,则二者互换; 否则,退出。
重复步骤 c)和 d),直至链接表 A合并到只有 2个数据链。
利用层次表来求编号。 设层次表 M为 k层,则步骤如下: a)求层次表^
b) 由定理 1 求各层最左边叶子节点号 N(i) 。 初始 化:幽 =0, t=M (k);迭代: N (i) =t/2, t=M (i) +N (i) , i=k-l, k-2, ·'·,2。 c)按照概率表顺序,依次求各叶子节点在本层次中的编号。
A [i] . link=N (A [i] . layer); N (A [i] . layer) =N (A [i] . layer) +1; i=l, 2, ···, P.其中 N (i)复用:在 c)中表示第 i层的最左边叶子节点编 号,在 d)中表示该层的各叶子节点在本层次中的编号。
根据数据层次数和编号,按上述过程求编码。
对一个 MCU进行 Huffman解码, 需在完成亮度解码后才能进行 色度解码。 解码后得到 6个具有 64位元素 的一维数组 , 分别是: 4个 y亮度数组、 1个 c6色度数组、 1个 C, 色度数组 。 对亮度和 色度进行解码其实就是对 亮 度 数组 和 色度 数 组 的解 码。对 一个 数组来说 , Huffman解码包括直流解码和交流解码 。 对数组 第一个元素的解码称为直流解码 (简记为 DC解码), 对剩下的 63个 元素 的解码称为交流解码 (简记为 AC解码 )。 JPEG文件中一般包 含 4个 Huffman表, 即亮度 DG表、 AC表 , 色度 DC表 、 AC表。 对 不同的数据进行解码需要调用不同的 Huffman表 。 DC解码 出的数 据称为 DC值 , 但最终 的 DC值却是直接解码出的 DC值与该数组紧 跟的前面一个数组的 DC值之和。 AC解码一般会得到多个数据, 包括 一些连续 0数据和一个非 0数据。不管是亮度还是色度解码 , 也不 管是 AC 还是 DC 解码 , Huffman 码是其最小解码单位 , 且每个 Huffman码的解码流程都是大致相同的。 一个 Huffman码包括码头和 码值 2部分 ,码头用来惟 一的标识 该 Huffman码 ,并 与 Huffman 表一一对应, 码值是该码的实际大小。
所述输出单元 3进行全息图像输出,包括进行静态的全息显示输 出和动态的全息控制输出。输出可视图像或立体功运动图投影到墙壁 或立体空间中, 以实现输入的控制显示。
本发明的技术效果是:构建一种虚拟全息输入输出控制方法及系 统, 通过识别并转换接收的全息虚拟输入信息, 对所述全息虚拟输入 信息进行定位、 编码及解码, 然后输出全息图像, 包括进行静态的全 息显示输出和动态的全息控制输出。本技术方案的图像输出中具有投 影功能, 采用全息技术进行投影设备图像, 包括动态图像, 同时可以 输出静态的全息图像和动态的全息图像,即在三维二维图像进行切换, 同时, 采用现通用芯片设计以降低成本。
以上内容是结合具体的优选实施方式对本发明所作的进一步详 细说明, 不能认定本发明的具体实施只局限于这些说明。对于本发明 所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims

权利要求书
1.一种全息虚拟输入输出控制方法,其特征在于,包括如下步骤: 全息虚拟输入: 输入全息虚拟输入信息, 包括虚拟键盘输入、 立 体全息输入以及全息空中虚拟输入、 视频流输入;
识别并转换输入信息: 接收全息虚拟输入信息, 对所述全息虚拟 输入信息进行定位及编码, 所述定位过程如下: 利用虚拟键盘中按键 的位置及定义在虚拟键盘按键上红外线的频率以及皮肤的温度产生 的波长位进行定位; 所述编码过程如下: 将全息虚拟输入信息定义为 线性数据链, 通过去相关处理去掉所述全息虚拟输入信息的冗余度, 然后向被编码的数据中加入足够的位数以确保可用的码字之间变化 的位数最小; 所述解码过程如下: 对编码信息进行 Huffman解码分 为三步: 第一步, 即将编码后的信息分生成码值; 第二步, 将码值存 放在内存中, 第三步, 将第一步生成的码值进出输出; 解码过程中, 先对编码信息进行亮度解码, 再进行色度解码;
全息输出: 进行全息图像输出, 包括进行静态的全息显示输出和 动态的全息控制输出。
2.根据权利要求 1所述一种全息虚拟输入输出控制方法,其特征 在于, 在识别并转换输入信息步骤中, 所述去相关处理包括线性预测 去相关处理, 所述编码包括预测编码, 所述预测编码利用线性预测逐 个对图像信息样本进行去相关处理。
3.根据权利要求 2所述一种全息 虚拟输入输出控制方法, 其特 征在于, 在识别并转换输入信息步骤中, 所述去相关处理包括正交变 换去相关处理, 所述编码包括运动变化编码, 所述正交变换去相关处 理利用一维、 二维或三维正交变换对一维 n、 二维 n X n、 三维 n X n X n块中的图像样本的集合去相关分布集中的变换域, 所述运动变化 编码根据变换域中变换系数能量大小分配数码压缩频带进行编码。
4.根据权利要求 1所述一种全息虚拟输入输出控制方法,其特征 在于, 在识别并转换输入信息步骤中, 还包括减少输入图像中像素间 的冗余。
5.根据权利要求 1所述一种全息虚拟输入输出控制方法,其特征 在于, 在识别并转换输入信息步骤中, 还包括预设图像保真度, 将接 收的所述全息虚拟输入信息的输出精度调整到与预设图像保真度相 一致。
6. 一种全息虚拟输入输出控制系统, 其特征在于, 包括输入全 息虚拟输入信息的全息虚拟输入单元、进行识别转换的识别转换单元、 输出全息信息的输出单元, 所述识别转换单元包括定位模块、编码模 块和解码模块, 所述定位模块根据红外线信息: 利用虚拟键盘中按键 的位置及定义在虚拟键盘按键上红外线的频率以及皮肤的温度产生 的波长位进行定位;所述编码模块首先通过去相关处理去掉所述全息 虚拟输入信息的冗余度,然后向被编码的数据中加入足够的位数以确 保可用的码字之间变化的位数最小实现对所述全息虚拟输入信息的 编码; 所述解码模块对编码信息进行 Huffman解码, 对编码信息进行 Huffman解码分为三步: 第一步, 即将编码后的信息分生成码值; 第 二步,将码值存放在内存中,第三步,将第一步生成的码值进出输出; 解码过程中, 先对编码信息进行亮度解码, 再进行色度解码; 所述输 出单元进行全息图像输出,包括进行静态的全息显示输出和动态的全 息控制输出。
7.根据权利要求 6所述一种全息虚拟输入输出控制系统,其特征 在于, 所述编码模块包括线性预测去相关模块和预测编码模块, 所述 预测编码模块利用线性预测逐个对图像信息样本进行去相关处理。
8.根据权利要求 6所述一种全息虚拟输入输出控制系统,其特征 在于,所述编码模块包括正交变换去相关处理模块和运动变化编码模 块, 所述正交变换去相关处理模块利用一维、二维或三维正交变换对 一维 n、二维 n X n、三维 n X n X n块中的图像样本的集合去相关分布 集中的变换域,所述运动变化编码模块根据变换域中变换系数能量大 小分配数码压缩频带进行编码。
9.根据权利要求 6所述一种全息虚拟输入输出控制系统,其特征 在于, 所述识别转换单元还包括减少输入图像中像素间冗余映射器。
10.根据权利要求 1所述一种全息虚拟输入输出控制方法, 其特征在 于,所述识别转换单元还包括将接收的所述全息虚拟输入信息的输出 精度调整到与预设图像保真度相一致的量化器。
PCT/CN2013/070376 2012-12-17 2013-01-11 一种虚拟全息输入输出控制方法及系统 WO2014094369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210546999.0 2012-12-17
CN201210546999.0A CN103049083B (zh) 2012-12-17 2012-12-17 一种虚拟全息输入输出控制方法及系统

Publications (1)

Publication Number Publication Date
WO2014094369A1 true WO2014094369A1 (zh) 2014-06-26

Family

ID=48061752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070376 WO2014094369A1 (zh) 2012-12-17 2013-01-11 一种虚拟全息输入输出控制方法及系统

Country Status (2)

Country Link
CN (1) CN103049083B (zh)
WO (1) WO2014094369A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049083B (zh) * 2012-12-17 2016-08-17 深圳市世纪天河科技有限公司 一种虚拟全息输入输出控制方法及系统
CN104808792B (zh) * 2015-04-14 2019-03-29 联想(北京)有限公司 一种信息处理方法及电子设备
CN109031676B (zh) * 2017-06-08 2020-05-26 京东方科技集团股份有限公司 投影装置、平视显示设备及车载视觉辅助系统
CN107065815A (zh) * 2017-06-16 2017-08-18 深圳市新太阳数码有限公司 一种老年人情感智能控制系统
CN107609100A (zh) * 2017-09-11 2018-01-19 叙永县图书馆 一种体感式图书馆资源数据库系统及方法
CN108629272A (zh) * 2018-03-16 2018-10-09 上海灵至科技有限公司 一种基于单目摄像头的嵌入式手势控制方法及系统
CN108874124A (zh) * 2018-05-23 2018-11-23 京东方科技集团股份有限公司 一种虚拟种植系统及虚拟种植方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020070921A1 (en) * 2000-12-13 2002-06-13 Feldman Stephen E. Holographic keyboard
CN101013346A (zh) * 2007-01-12 2007-08-08 吴卫丹 具有保密、保洁功能的非接触性全息键盘装置
CN102023796A (zh) * 2009-09-11 2011-04-20 鸿富锦精密工业(深圳)有限公司 虚拟键盘的显示系统及其实现方法
CN103049083A (zh) * 2012-12-17 2013-04-17 深圳市世纪天河科技有限公司 一种虚拟全息输入输出控制方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795344B (zh) * 2010-03-02 2013-03-27 北京大学 数字全息图像压缩、解码方法及系统、传输方法及系统
CN102693042A (zh) * 2011-03-22 2012-09-26 中兴通讯股份有限公司 一种影像键盘生成方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020070921A1 (en) * 2000-12-13 2002-06-13 Feldman Stephen E. Holographic keyboard
CN101013346A (zh) * 2007-01-12 2007-08-08 吴卫丹 具有保密、保洁功能的非接触性全息键盘装置
CN102023796A (zh) * 2009-09-11 2011-04-20 鸿富锦精密工业(深圳)有限公司 虚拟键盘的显示系统及其实现方法
CN103049083A (zh) * 2012-12-17 2013-04-17 深圳市世纪天河科技有限公司 一种虚拟全息输入输出控制方法及系统

Also Published As

Publication number Publication date
CN103049083B (zh) 2016-08-17
CN103049083A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
Liu et al. Parallel fractal compression method for big video data
WO2014094369A1 (zh) 一种虚拟全息输入输出控制方法及系统
KR102071764B1 (ko) 영상 부호화, 복호화 방법 및 장치
CN110710217B (zh) 用于对最后有效系数标志进行代码化的方法和设备
CN102369522B (zh) 计算引擎的并行流水线式集成电路实现
CN101350929B (zh) 表示图像帧的非帧边缘区块时的增强的压缩方法
CN105556971A (zh) 针对帧内块复制预测中的块翻动和跳跃模式的编码器侧判定
CN107027033B (zh) 一种用于使用贴片拷贝的视频编解码方法
CN104854866A (zh) 下一代视频的内容自适应、特性补偿预测
CN104885471A (zh) 用于下一代视频的编码/未编码的数据的内容自适应熵编码
CN110073663A (zh) 使用级别图的变换系数代码化
JP2019508918A (ja) 参照フレームのバッファ追跡を通じた動きベクトル参照の選択
CN102356635A (zh) 视频获取和处理系统
US11917156B2 (en) Adaptation of scan order for entropy coding
US10951894B2 (en) Transform block-level scan order selection for video coding
CN110169068A (zh) Dc系数符号代码化方案
US10630974B2 (en) Coding of intra-prediction modes
CN113709458A (zh) 视频编解码中的位移矢量预测方法、装置及设备
WO2022194137A1 (zh) 视频图像的编解码方法及相关设备
CN114979711B (zh) 音视频或图像分层压缩方法和装置
CN114600463A (zh) 视频编码和视频解码
JP2002135597A (ja) オブジェクト形状符号化装置
WO2023040745A1 (zh) 特征图编解码方法和装置
Mukati Light field coding and processing for view sequences
CN116743993A (zh) 特征域光流确定方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 28.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13865024

Country of ref document: EP

Kind code of ref document: A1