WO2014094366A1 - 光纤位置检测方法及装置,和具有该装置的光纤熔接机 - Google Patents

光纤位置检测方法及装置,和具有该装置的光纤熔接机 Download PDF

Info

Publication number
WO2014094366A1
WO2014094366A1 PCT/CN2013/070184 CN2013070184W WO2014094366A1 WO 2014094366 A1 WO2014094366 A1 WO 2014094366A1 CN 2013070184 W CN2013070184 W CN 2013070184W WO 2014094366 A1 WO2014094366 A1 WO 2014094366A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
fiber
core
optical fibre
Prior art date
Application number
PCT/CN2013/070184
Other languages
English (en)
French (fr)
Inventor
罗春晖
Original Assignee
Luo Chunhui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Chunhui filed Critical Luo Chunhui
Priority to CN201380003933.XA priority Critical patent/CN104040392A/zh
Publication of WO2014094366A1 publication Critical patent/WO2014094366A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2553Splicing machines, e.g. optical fibre fusion splicer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling

Definitions

  • Optical fibers are media for conducting light.
  • a typical optical fiber includes a core portion that can transmit light and a cladding portion that is coated on the outside of the core. The light is incident from the end face of the core portion of the optical fiber, and is totally reflected inside the core portion and transmitted inside the core portion. As shown in Fig.
  • a general optical fiber structure is composed of a core 1 and a cladding 2 wrapped around the core 1 to form a core portion of the optical fiber, and a cladding portion (coating portion) is wrapped around the core.
  • Light travels inside the core.
  • the comprehensive magnification of the lens is required to be more than 200 times, so The design and installation requirements of the optical path are very high, and the related mechanical manufacturing must be very precise.
  • the algorithm of the computer vision recognition system is complicated, which necessitates the use of a control system with a relatively fast processing speed, all of which leads to a high cost of the finished product. No less.
  • the above-mentioned fusion technology such as the Chinese invention patent CN102520509A, discloses a photonic crystal fiber imaging system comprising a first imaging unit and a second imaging unit for respectively acquiring end faces of the two photonic crystal fibers that are placed opposite each other.
  • Taiwanese patent TWI271562B discloses a welded surface detecting device for a series of spliced optical fibers.
  • the series fused optical woven fabric comprises first and second optical fiber segments that are fused in series.
  • the welding surface is located in the welding area of the first and second fiber sections.
  • the detecting device comprises a fixed series of spliced optical fiber carrier, a parallel light generating unit capable of generating parallel rays, and an image processing unit.
  • the image processing unit has a picker corresponding to the parallel light generating unit.
  • the picker can capture and amplify the parallel light to illuminate the image of the series fused fiber, and the precise position of the welded surface can be detected.
  • the focal length of the picker is large, a fiber can be directly disposed therein.
  • the cutter cuts immediately after the position is detected to reduce the error caused by the replacement of the device.
  • the determination of the position of the fiber in the invention is based on the dark line formed by the parallelization of the light through the fiber cladding and the core (core).
  • the dark line is substantially similar to the core of the fiber, so the positioning is still A picker with a very high precision is required, and it is mainly used to judge the relative position between the cores.
  • the present invention provides a method of enabling fiber position detection using low cost equipment, and corresponding detection apparatus, and a fiber fusion splicer using the apparatus, relative to the prior art.
  • the technical solution of the present invention is as follows: A fiber position detecting method, comprising the following steps,
  • the intensity of the collected points is recorded, and the points of acquisition are selected at points on either side of the core of the fiber.
  • the illumination light is parallel light perpendicular to the axial direction of the core.
  • the collecting the refracted ray comprises collecting a two-dimensional distribution of light rays in the acquisition plane, the acquisition plane being perpendicular to the parallel light direction.
  • the invention provides a fiber position detecting device, comprising: a clamp for fixing an optical fiber; a light source emitting light to a positioning area of the core of the optical fiber, wherein the emitted light is refracted by the core of the optical fiber; the image collecting device, the image The collecting device is located on the opposite side of the light source, collects the light refracted by the bare fiber core in the collecting surface, and records the position information and the light intensity information of the collected light, wherein the collecting surface is a plane perpendicular to the illuminating light; image processing The device receives the collected signal of the image capturing device, and compares the light intensity information at different positions.
  • the light source is a light source that emits parallel rays, and the parallel rays are perpendicular to a direction in which the fibers extend.
  • the image acquisition device comprises N photosensors, wherein N is an integer greater than or equal to 2.
  • the N photosensors are arranged on the same straight line.
  • the N photosensors are arranged in a dot matrix, and at least some of the sensors are related to a lattice The centerline is symmetrically arranged.
  • N photosensors are arranged in a lattice arrangement, wherein N is greater than or equal to 6.
  • the invention further provides a fiber fusion splicer according to the technical solution of the above-mentioned fiber position detecting device, comprising: a clamp for fixing the optical fiber; a position adjusting device for adjusting the position of the jig and the optical fiber; the light source, emitting light to a positioning area of the core of the optical fiber; the image capturing device is located on the opposite side of the light source, collects the light refracted by the exposed core of the optical fiber in the collecting surface, and records the position information and the light intensity information of the collected light, wherein
  • the collecting surface is a plane perpendicular to the illuminating light;
  • the image processing device receives the collected signal of the image collecting device, and compares the light intensity information at different positions;
  • the discharge welding device is located at two sides of the positioning area for discharging the spliced fiber Core.
  • the fiber fusion splicer further includes a control unit that controls the position adjustment device to adjust the position of the jig and the optical fiber according to a signal sent from the image processing device.
  • the principle of the present invention is as follows: When there is no optical fiber, the light is directly directed to the plane where the light collector is located, and the portion of the collector located at both ends cannot sense the light source. When the optical fiber enters, the optical fiber blocks the parallel light and is refracted due to the optical fiber itself.
  • the lens effect will form a scattering, which will form a linear spot on the plane of the collector, so that the part of the collector at both ends will feel the light, so the position of the head of the fiber can be determined, and two
  • the sensor can determine whether the fiber deviates from the center according to the acceptance of the brightness intensity. If the light intensity is consistent, it indicates that at a predetermined center position, if it is strong or weak, it indicates that there is a deviation, and at the same time, compared with the pre-stored time intensity data of the height, The height of the fiber can be determined. Further, if the fiber slit is straight, the parallel beam is irradiated from the fiber edge to the entire beam and the whole beam is irradiated onto the fiber.
  • the scattering is a uniform and regular change. On the contrary, if the fiber cut is not good, then Throughout the process, the resulting scattering is a jumpy value, by which the flatness of the fiber cut can be determined.
  • the present invention utilizes the position and intensity of a two-dimensional distribution of light to determine the upper and lower slopes of the fiber. At the same time, by using the device proposed by the invention, the determination of the quality of the fusion of the optical fiber and the determination of the quality of the optical fiber stripping can be realized.
  • the contact point is detected after the optical fiber is welded, and the change of the value before and after the judgment can be obtained.
  • the quality of the weld In the same way, pre-data storage is performed on the type of fiber to be stripped, and the core of the stripped fiber is detected, and the variation of the scattering data of the two is compared to determine the stripping quality of the fiber.
  • the core or core of the optical fiber is a whole including the core 1 and the cladding 2, and the covering portion 3 is a coating layer coated or coated on the outside of the core.
  • FIG. 1 is a schematic view of a positioning device in a prior art optical fiber fusion splicer.
  • FIGS. 2 and 3 are schematic views of an embodiment of a fiber positioning device of the present invention.
  • 4 is a schematic diagram of sensor distribution in another embodiment of the fiber positioning device of the present invention.
  • 5 and 6 are schematic views of an embodiment of the optical fiber fusion splicer of the present invention.
  • Fig. 7 is a schematic view showing another embodiment of the optical fiber fusion splicer of the present invention.
  • Figure 8 is a schematic illustration of the detecting and discharging device of the embodiment of Figure 7.
  • Figure 9 is a schematic illustration of another embodiment of the detecting and discharging device of the embodiment of Figure 7.
  • Figure 10 is a schematic view of still another embodiment of the optical fiber fusion splicer of the present invention.
  • Figure 11 is a schematic cross-sectional view of a general optical fiber.
  • the core of the optical fiber refers to the entirety of the cladding and the core.
  • the optical fiber includes a cladding portion and a core portion.
  • a precision positioning device for an optical fiber includes a parallel light source 201, a fiber optic location 202, a pedestal 203, and two sensors 204 and 205.
  • the parallel light source 201 is located above the pedestal 203.
  • the light rays emitted by the parallel light source 201 are symmetrically distributed with respect to the fiber position 202, that is, the light at the two ends is equidistant from the fiber position 202. (It is impossible to completely equidistant in actual installation.
  • the correction value is set to improve the accuracy)
  • the midpoint of the line between the two sensors 204 and 205 is the projection point of the light source 201 and is perpendicular to the direction of the optical fiber 202.
  • the basic fiber optic precision positioning device works by the fact that when there is no fiber, the sensors 204 and 205 cannot sense the light source.
  • the fiber deviates from the center if the light intensity is consistent. , indicating that at a predetermined central position, if one is strong or weak, it indicates that there is a deviation, and at the same time, compared with the pre-stored time intensity data of the height, the height of the optical fiber can be determined.
  • the fiber cut is straight and tidy according to the change process from weak to strong. For example, if the fiber cut is straight, the parallel beam splits from the edge of the beam to the fiber beam and the entire beam is incident on the fiber. The resulting scattering is a uniform and regular change.
  • the photosensors 204 and 205 can also be replaced by CCD or other image capturing devices, as long as the light intensity information can be extracted and the corresponding light intensity of the corresponding position can be output.
  • the parallel light source 201 can also be replaced by other light sources, and the incident light passes through the refraction of the core of the optical fiber. The regular distribution is formed. According to the light intensity and position information in this distribution, the position of the core of the optical fiber can be analyzed by the alignment of the symmetrical position or the variation of the intensity of the peripheral position.
  • an advanced optical fiber measuring device has a sensor arrangement as shown in FIG. 4.
  • a photosensor 304 is distributed on the lower plane 301 in the form of a dot matrix, and the light source is located at the center on the lower plane.
  • the sensor 304 is symmetrically distributed about the projection point 302, and the more the sensor distribution is located further away from the projection point 302, the advancement direction 303 of the fiber passes through the projection point 302.
  • This embodiment is a precision detecting device.
  • the form distribution of the photosensor 304 can effectively measure the distribution of the curve; when the source of the parallel light and the lower plane are constant, when the optical fiber rotates along the parallel light axis, the lower projection line also rotates with this, and always remains perpendicular to the optical fiber. This change can also be measured by the distribution of photosensors 304 in the form of a dot matrix. Therefore, based on the embodiment 1, the embodiment can also determine the precise 3-dimensional position of the optical fiber in the space, and can perform 6-axis adjustment for the fusion machine with high precision.
  • an optical fiber fusion splicer comprising an optical fiber propulsion device, a mechanical calibration device (usually a V-shaped groove), a crucible, a reel adjustment device, a discharge device, a stripping device, etc., since these are commonly used
  • a mechanical calibration device usually a V-shaped groove
  • a crucible usually a V-shaped groove
  • a reel adjustment device usually a V-shaped groove
  • a discharge device usually a V-shaped groove
  • stripping device a stripping device
  • two fiber cores 405 to be welded are respectively mounted on the propulsion device 403 and the mechanical calibration device 404 on both sides, and the parallel light source 401 is located above the positioning area (near the welding position), and the detection substrate 402 is positioned.
  • the detection substrate 402 is positioned below the area, light intensity sensors 502 and 503 are mounted on the detection substrate 402.
  • Upper, the discharge electrodes 501 are located on both sides of the fusion position.
  • the specific structure can also refer to the side view 6 of the fusion splicer.
  • the working mode of this embodiment is that the cut fiber core 405 is placed in the pusher 403 and the mechanical calibration device 404, and then the pusher 403 on one side advances the fiber core 405 under the constraint of the mechanical calibration device 404. And the parallel light emitted by the light source 401 meets to form a scattered linear spot, which is detected by the detectors 502 and 503, determines the position of the optical head, and determines whether the incision conforms to the standard according to whether the change of the light intensity is uniform or regular, and needs to be renewed.
  • the fiber Place, then make a retreat, then repeat the above action on the other side of the fiber, and then control the system to compare the data measured on both sides of the fiber, that is, the scatter data measured twice on both sides of the fiber, that is, in the two light intensity sensors 502 Whether the values on 503 and 503 are within the required range, that is, the spatial positions of the two fibers are aligned. If not, the fiber is taken out or fine-tuned. If so, then both sides are simultaneously pushed, and the electrode 501 is discharged to complete the welding. At this time, 401 emits a light beam again, and detectors 502 and 503 detect light scattering at the interface to determine the welding effect.
  • the determination of the quality of the fusion of the optical fiber and the determination of the quality of the optical fiber stripping can be realized.
  • the principle is to save the data before the welding of the optical fiber, and to detect the contact point after the optical fiber welding. , judge the change of the value before and after, you can get the welding quality of the fiber.
  • pre-data storage is performed on the type of fiber to be stripped, and the stripped fiber is detected, and the variation of the scattering data of the two is compared to determine the stripping quality of the fiber.
  • an optical fiber fusion splicer as shown in FIG. 7, includes a detecting and discharging device 601, a pushing and holding device 602, a mechanical calibration device 603, an optical fiber core 604, a ⁇ , a shaft Adjustment device 605.
  • the specific structure of the detecting and discharging device 601 is as shown in FIG. 8, and includes a light source 701, a discharging device 702, a detecting substrate 705, and light intensity detecting devices 703 and 704 (which may be single or multiple sensors) mounted on the detecting substrate 705. .
  • the light source 701 and the detecting substrate 705 are two sets, and are disposed at an angle separated by a central axis of the optical fiber core 604.
  • the working principle of this embodiment is that when the stripped fiber 604 is placed into the advancement gripping device 602 and the mechanical calibration device 603, when the device of Figure 8 is selected, the fiber 604 is advanced by the propulsion device 602 along the mechanical calibration device. 603 is advanced to interfere with the light source 701. Alternatively, if the two light sources are turned on at the same time, the light source is sequentially turned on. At this time, if the optical fiber is not at the center of the parallel light source, the light intensity of the two side sensors 703 and 704 is inevitably inconsistent.
  • the adjusting device 605 adjusts the fiber to the center of the light source to make the light intensity of the two sides uniform, and similarly determines the light intensity of the other side light source, adjusts the fiber to the center, and then performs the distance back. Repeat the above steps for the other side of the optical fiber, and then advance at the same time, after the discharge is welded, and after the welding, sequentially turn on the light source to detect the scattered light intensity of the optical fiber, and determine the welding effect.
  • Another core position determining method of the embodiment inputs the first optical fiber, records the light intensity distribution through the first optical fiber, exits the first optical fiber, and then inputs the second optical fiber to obtain the light intensity distribution of the second optical fiber.
  • FIG. 9 is another embodiment of the detection and discharge device 601 of the present embodiment of the fiber fusion splicer, including a light source 801, an electrode 802, and sensor arrays 803 and 804. As long as the accuracy of the detection device is sufficient, the spatial position of the fiber can be clearly known.
  • the sensing device of Figure 8 or Figure 9 is selected, depending on the manufacturing process and cost requirements.
  • Figure 9 is an advanced sensor as described above that utilizes an array of light intensity sensors to detect the spatial position of the fiber.
  • a further embodiment of the optical fiber fusion splicer of the present invention includes a light source 901, and a detection substrate 902 having not less than two sensors, which is the same as the optical fiber detecting device described above, and the optical fiber clamping device 903 can A stripping device 904 that moves back and forth processes the fiber core 905.
  • the fiber stripping effect is determined. After the stripping device 904 peels and cuts the fiber sheath, the light source 901 illuminates the fiber 905. If the fiber stripping effect is good, the light intensity sensor on the detecting substrate 902 is detected.
  • the photoelectric detecting device of the invention can meet the needs of all the smashing .
  • the biggest highlight of the present invention is to make full use of the scattering effect formed when the parallel light passes through the optical fiber, and invent a set of implementation methods for realizing the position detection and the result determination by using the scattering effect, and designing different requirements by using this method.
  • the method of fiber fusion splicer Compared with the conventional optical fiber fusion splicing machine based on the camera and the computer visual recognition system, the invention is reduced in cost by an order of magnitude, and the manufacturing difficulty is greatly reduced, and at the same time, the automatic optical fiber fusion splicer is integrated for stripping, cutting and welding.
  • the foundation is a revolutionary invention in this industry.

Abstract

一种光纤位置检测方法及装置,以及具有该装置的光纤熔接机。该检测方法包括,将定位区间的光纤(202)去除包覆部,裸露出芯部(405);从光纤(202)的侧面用光线照射芯部(405),在光纤(202)的另一侧采集经过光纤芯部(405)折射后的光线;对采集的光线在N个不同位置的点取该点的光强,其中N为大于等于2的整数,根据各点的位置坐标和对应的光强,判断光纤芯部(405)的位置。该检测方法和装置利用光穿越光纤时形成的散射效果,使得使用较低精度的光线采集器或光电传感器来进行光纤位置探测和结果判定成为可能,从而降低成本和制造难度。

Description

光纤位置检测方法及装置, 和具有该装置的光纤熔接机 技术领域 本发明涉及一种光通讯元件的位置检测方法及装置, 和一种使用该装置的 光纤熔接机。 背景技术 光纤是用于传导光线的媒介, 通常的光纤包括可以透光的核心部和包覆在 核心外部的包覆部。 光线由光纤核心部的端面入射, 在核心部内部形成全反射, 在核心部内部传输。 通常的光纤结构如图 11所示, 由纤芯 1和包在纤芯 1外的包层 2组成光纤 的芯部, 在芯部外包裹有包覆部 (涂覆部)。 光线在纤芯内部进行传播。 当需要将两段光纤进行熔接时, 需要对两段光纤进行精确的定位, 以避免 因光纤错位导致在熔接处产生大量的损耗。 在目前市场上销售的各个厂家的产 品, 几乎全部是采用摄像头观察光纤, 利用计算机视觉识别系统来对准光纤, 为了保证光纤的定位精度, 对镜头的综合放大倍率要求在 200倍以上, 因此对 光路的设计和安装要求很高, 同时也导致相关的机械制造必须非常精密, 另外 计算机视觉识别系统的算法复杂, 导致必须采用一个处理速度比较快的控制系 统, 所有这些导致该成品的成本居高不下。 上述的熔接技术, 如中国发明专利 CN102520509A中公开了一种光子晶体光 纤成像系统, 包括第一成像单元和第二成像单元, 分别用于获取正对放置的被 熔接的两根光子晶体光纤的端面图像, 该发明考虑了杂散光、 反射光、 相干光 等因素的影响, 设计了转折光路, 同时获取两被熔光纤的端面图像, 图像清晰, 满足熔接需求。 又如中国台湾专利 TWI271562B中公开了一种串联式熔接光纤之熔接面检测 装置, 如图 1 所示, 该串联式熔接光织包含串联熔接的第一、 二光纤段。 该熔 接面位于第一、 二光纤段的熔接区域中, 该检测装置包含一固定串联式熔接光 织的光纤载具、 一可产生平行光线的平行光产生单元, 及一影像处理单元。 该 影像处理单元具有一与平行光产生单元相对应的撷取器。 藉此使该撷取器可撷 取并放大平行光线照射串联式熔接光纤的影像, 得检测出熔接面的精确位置, 同时, 因为撷取器的焦距较大, 故能直接于其中设置一光纤切割器, 在于检测 完位置后立即进行切割, 以减少因更换设备而产生的误差。 很明显的, 该发明 中对光纤位置的判断是依靠平行光经过光纤包层和核心部 (纤芯) 折射后形成 的暗线进行定位, 该暗线与光纤核心部尺度基本相似的, 所以定位的仍需要具 有很高精度的撷取器, 并且其主要用于判断纤芯之间的相对位置。 发明内容 本发明相对于现有技术, 提供了一种能够利用低成本设备实现光纤位置检 测的方法, 以及相应的检测装置, 和使用该装置的光纤熔接机。 本发明的技术方案如下: 一种光纤位置检测方法, 包括如下歩骤,
A. 将定位区间的光纤去除包覆部, 裸露出芯部;
B. 从光纤的侧面用光线照射芯部, 在光纤的另一侧采集经过光纤芯部折 射后的光线;
C. 对采集的光线在 N个不同位置的点取该点的光强, 其中 N为大于等于 2的整数, 根据各点的位置坐标和对应的光强,判断光纤芯部的位置。 优选地, 记录所采集点的光强, 且采集点选取位于光纤芯部两侧的点。 优选地, 所述照射用光线是与芯部轴向垂直的平行光。 优选地, 所述采集折射后光线包括采集在采集平面内光线的二维分布, 该 采集平面与平行光方向垂直。 本发明提供的一种光纤位置检测装置, 包括: 夹具, 用于固定光纤; 光源, 发射光线至光纤芯部的定位区域, 所述发射光线经过光纤芯部折射 后散射; 图像采集装置, 该图像采集装置位于光源对侧, 在采集面内采集经过裸露 的光纤芯部折射的光线, 并记录采集到光线的位置信息和光强信息, 其中, 采 集面是一个与照射光线垂直的平面; 图像处理装置, 接收图像采集装置的采集信号, 对不同位置的光强信息进 行比较处理。 优选地, 所述光源是发射平行光线的光源, 所述平行光线与光纤延伸方向 垂直。 优选地, 所述的图像采集装置包括 N个光电传感器, 其中 N是大于等于 2 的整数。 优选地, 所述 N个光电传感器布置在同一直线上。 优选地, 所述 N个光电传感器成点阵布置, 并且至少部分传感器关于点阵 的中心线对称布置。 优选地, 成点阵布置布置的 N个光电传感器, 其中 N大于等于 6。 基于上述光纤位置检测装置的技术方案上, 本发明进而还提供了一种光纤 熔接机, 包括: 夹具, 用于固定光纤; 位置调节装置, 用于调整夹具及光纤的位置; 光源, 发射光线至光纤芯部的定位区域; 图像采集装置, 该图像采集装置位于光源对侧, 在采集面内采集经过裸露 的光纤芯部折射的光线, 并记录采集到光线的位置信息和光强信息, 其中, 采 集面是一个与照射光线垂直的平面; 图像处理装置, 接收图像采集装置的采集信号, 对不同位置的光强信息进 行比较处理; 放电熔接装置, 其位于定位区域两侧, 用于放电熔接光纤芯部。 优选地, 所述光纤熔接机还包括控制单元, 其根据图像处理装置发出的信 号, 控制位置调节装置调节夹具及光纤的位置。 本发明的原理如下: 当没有光纤时, 光线直射至光线采集器所在平面, 采集器位于两端的部分 不能感受到光源, 当有光纤进入时, 光纤遮挡了平行光并进行折射时, 由于光 纤本身的透镜效果, 会形成散射, 会在采集器所在平面上形成直线射斑, 使采 集器位于两端的部分感受到光线, 因此可以判定出光纤的头部位置, 同时两个 传感器根据接受光亮强度的判定, 可以确定光纤是否偏离了中心, 如果光强一 致, 说明在预定的中心位置, 如果一强一弱, 说明有偏离, 同时和预存的该高 度的时光强度数据比较, 可以判定光纤的高低。 进一歩的, 如果光纤切口平直, 那么平行光束从光束边缘照射光纤切口到整个光束照射到光纤上的过程中, 形 成的散射是个均匀有规律的变化过程, 相反, 如果光纤切口不佳, 则整个过程 中, 形成的散射是存在跳跃性的数值, 通过这个规律, 可以判定光纤切口的平 直度。 当平行光的光源和下平面一定时, 光纤如果上倾或下倾, 会在投射面上分 别形成一个向内和向外的弧线, 且倾角越大弧度越大。 在一些实施例中, 本发 明利用测量光线二维分布的位置和强度, 来判断光纤的上、 下倾斜度。 同时, 利用本发明提出的装置, 还可以实现对光纤熔接质量的判定和对光 纤剥切质量的判定, 其原理是, 在光纤焊接后对接点进行探测, 判断前后数值 的变化, 可以得出光纤的焊接质量。 同理, 对要剥切的光纤种类进行预先的数 据储存, 将剥切后的光纤芯部进行探测, 比较两者的散射数据的变化, 可以判 定光纤的剥切质量。 本发明和实施例中, 光纤芯部或芯部是包括纤芯 1和包层 2在内的整体, 包覆部 3是包覆或涂覆在芯部外的包覆层。 与现有技术相比, 本发明的有益效果: 利用光穿越光纤时形成的散射效果, 使得使用较低精度的光线采集器或光电传感器来进行光纤位置探测和结果判定 成为可能, 以及利用这个方法和装置设计出不同要求的光纤熔接机的办法。 本 发明和传统的以摄像头和计算机视觉识别系统为基础的光纤熔接机相比, 成本 明显下降, 制造难度降低。 本发明还为集剥, 切, 焊为一体的全自动光纤熔接 机奠定了基础。 附图说明 图 1为现有技术光纤熔接机中定位装置的示意图。 图 2和 3是本发明的光纤定位装置实施例的示意图。 图 4是本发明另一光纤定位装置实施例中传感器分布的示意图。 图 5和 6是本发明的光纤熔接机实施例的示意图。 图 7是本发明的光纤熔接机另一实施例的示意图。 图 8是图 7所示实施例中探测及放电装置的示意图。 图 9是图 7所示实施例中探测及放电装置另一实施方式的示意图。 图 10是本发明光纤熔接机又一实施例的示意图。 图 11是一般光纤的横截面示意图。 具体实施方式 下面结合试验例及具体实施方式对本发明作进一歩的详细描述。 但不应将 此理解为本发明上述主题的范围仅限于以下的实施例, 凡基于本发明内容所实 现的技术均属于本发明的范围。 下述实施例中, 光纤芯部指包层和纤芯构成的整体。 光纤包括包覆部和芯 部。 本发明的一个具体实施例, 一种光纤的精密定位装置, 如图 2和 3所示, 包括平行光源 201, 光纤位置 202, 基座 203, 两个传感器 204和 205。 其中, 平行光源 201位于基座 203上方, 优选的平行光源 201射出的光线关于光纤位 置 202对称分布, 即两个端部的光线距离光纤位置 202等距, (实际安装中不可 能完全等距, 可通过设定校正值来提高精度), 且两个传感器 204和 205之间的 连线中点是光源 201的投射点, 且和光纤 202的来向垂直。 这个基础的光纤的精密定位装置的工作原理是, 当没有光纤时, 传感器 204 和 205 不能感受到光源, 当有光纤进入时, 光线经过裸露的光纤芯部的折射, 会在距离光纤一定距离的下平面 203 上形成一个和光纤垂直的直线分布, 使传 感器 203和 204感受到光线。 当一束和光纤直径宽度接近的平行光垂直射过光 纤时, 如果光束偏向光纤的一侧, 则在平面上的直线投影会显示出一边宽一边 窄, 一边亮一边暗, 当平行光的的光源和平面距离一定时, 光纤位置的上下移 动会导致投射出来的直线光斑的长短和亮度发生变化, 因此根据两个传感器接 受的光亮强度的判定, 可以确定光纤是否偏离了中心, 如果光强一致, 说明在 预定的中心位置, 如果一强一弱, 说明有偏离, 同时和预存的该高度的时光强 度数据比较, 可以判定光纤的高低。 同时还可以根据这个数值从弱到强的变化 过程, 来以判定光纤切口是否平直整齐。 例如, 如果光纤切口平直, 那么平行 光束从光束边缘照射光纤切口到整个光束照射到光纤上的过程中, 形成的散射 是个均匀有规律的变化过程, 相反, 如果光纤切口不佳, 则整个过程中, 形成 的散射是存在跳跃性的数值, 通过这个规律, 可以判定光纤切口的平直度。 在这一实施例中, 很明显地, 光电传感器 204和 205也可以由 CCD或其他 影像撷取设备替代, 只要能够撷取光线强弱信息, 并输出对应位置的对应光强 即可。 同样平行光源 201 也可以被其他光源代替, 入射光经过光纤芯部的折射会 形成规律的分布, 根据这一分布中的光强和位置信息, 利用对称位置的比对, 或周边位置光强的变化规律即可分析得出光纤芯部的位置。 本发明的另一个实施例, 一个高级的光纤测定装置, 其传感器布置如图 4 所示, 下平面 301上以点阵的形式分布有光电传感器 304, 光源在下平面上投射 点 302位于中心, 光电传感器 304关于投射点 302对称分布, 并且在距离投射 点 302越远的位置传感器分布的数量越多,光纤的前进方向 303经过投射点 302。 本实施例是个精密探测装置, 当光纤进入后, 光纤如果上倾或下倾, 会在投射 面上分别形成一个向内和向外的弧线, 且倾角越大弧度越大, 以点阵的形式分 布有光电传感器 304可以有效的测出该曲线分布; 当平行光的光源和下平面一 定时, 光纤沿平行光为轴心旋转时, 下投射直线也跟这旋转, 始终保持和光纤 垂直, 这一变化同样可以由以点阵的形式分布有光电传感器 304测出。 因此, 在实施例 1 的基础上, 本实施例还可以判读出光纤在空间的精确 3维位置, 可 以进行 6轴调整, 用于对精度要求高的熔接机。 本发明的一个实施例, 一种光纤熔接机, 包括光纤的推进装置, 机械校准 装置(通常是 V型槽), Χ,Υ轴调整装置, 放电装置, 剥切装置等, 由于这些都 是常用装置, 种类繁多, 并且不是本发明的要点, 因此, 本实施例中将不再详 细绘出, 用方块图加注解来表示。 该光纤熔接机涉及改进部分的结构如附图 5 和 6所示,包括平行光源 401,检测基板 402、推进装置 403、机械校准装置 404、 光纤芯部 405、 放电电极 501、 位于检测基板 402上的光强传感器 502和 503。 其中, 图 5所示, 两个待熔接的光纤芯部 405分别安装在两侧的推进装置 403 和机械校准装置 404上, 平行光源 401位于定位区域 (熔接位置附近) 上方, 检测基板 402位于定位区域下方, 光强传感器 502和 503安装在检测基板 402 上, 放电电极 501 位于熔接位置两侧。 其具体结构还可以参考该熔接机的侧视 图 6。 本实施例的工作方式是, 将切剥好的光纤芯部 405放进推进器 403和机械 校准装置 404中,然后一侧的推进器 403推进光纤芯部 405在机械校准装置 404 的约束下前进, 和光源 401 发出的平行光相遇, 形成散射直线光斑, 被探测器 502和 503检测到, 确定了光头位置, 同时根据光强的变化是否均匀和有规律, 判定切口是否符合标准, 是否需要重新放置, 然后做定距后退, 然后另一侧的 光纤重复上述动作, 然后控制系统比较两侧的光纤测的数据, 即两侧的光纤两 次测的散射数据, 即在两个光强传感器 502和 503上的数值是否在要求范围内, 即两个光纤的空间位置是对准的, 如果不是, 取出光纤重新放置或进行微调, 如果是, 这时两边同时推进, 电极 501进行放电, 完成熔接, 这时 401再次发 射出光束, 探测器 502和 503探测接口处的光线散射, 判定熔接效果, 为了提 高判定精度, 这时根据需要, 也可以由两侧的推进器 403 同向晃动, 进行一定 范围内的探测。 同时, 利用本实施例中的光电传感器, 还可以实现对光纤熔接质量的判定 和对光纤剥切质量的判定, 其原理是, 对光纤焊接前的数据进行保存, 在光纤 焊接后对接点进行探测, 判断前后数值的变化, 可以得出光纤的焊接质量。 同 理, 对要剥切的光纤种类进行预先的数据储存, 将剥切后的光纤进行探测, 比 较两者的散射数据的变化, 可以判定光纤的剥切质量。 本发明光纤熔接机的另一实施例, 一种光纤熔接机, 如图 7所示, 包括探 测及放电装置 601、 推进夹持装置 602、 机械校准装置 603、 光纤芯部 604、 Χ,Υ 轴调节装置 605。 其中, 探测及放电装置 601具体结构如图 8所示, 包括光源 701、 放电装置 702, 探测基板 705, 安装在探测基板 705上的光强探测装置 703和 704 (可以 是单个或多个传感器)。 光源 701和探测基板 705为两套, 并且以光纤芯部 604 为中心轴间隔一个夹角设置。 本实施例的工作原理是, 当切剥好的光纤 604被放进推进夹持装置 602和 机械校准装置 603后, 当选用附图 8中的装置时, 光纤 604被推进装置 602沿 机械校准装置 603推进到和光源 701发生干涉, 可选的, 如果同时打开两个光 源有干扰的话, 依次打开光源, 这时, 如果光纤不在平行光源的中心, 必然会 导致两边传感器 703和 704的光强不一致, 同过对两边光强的判定, 调节装置 605调节光纤到光源的中心, 使两边光强达到一致, 同理对另一侧光源的光强做 判定, 调节光纤到中心, 然后做定距后退, 对另一侧光纤重复上述歩骤, 然后 同时前进, 放电熔接, 熔接后, 依次打开光源检测光纤的散射光强, 判定熔接 效果。 本实施例的另一种芯部位置判断方法, 输入第一光纤, 记录光线经过第一 光纤产生光强分布, 退出第一光纤后, 再输入第二光纤, 撷取第二光纤的光强 分布, 调节第二光纤的位置, 使得光线经过第二光纤折射后的光强分布与第一 光纤的光强分布一致即可。 需要指出的是, 在调节装置中, 可以选择一侧固定, 一侧做双轴调节, 或 两侧做单轴调节, 具体的选用方式, 取决于传感器的精度。 例如, 图 9是本光纤熔接机实施例中探测及放电装置 601 的另一中实施方 式, 包括光源 801, 电极 802, 传感器阵列 803和 804。 只要探测装置的精度足 够就可以清楚的知道光纤的空间位置。 选择图 8或图 9中的传感装置, 取决于制造工艺和成本要求, 图 9是一个 前面所述高级的传感器, 通过光强传感器阵列来实现对光纤空间位置的探测。 本发明光纤熔接机又一实施例, 如图 10所示, 其包括光源 901, 有不少于 2个传感器的检测基板 902,和前面所述的光纤探测装置相同,光纤夹持装置 903, 可来回运动的剥切装置 904, 对光纤芯部 905进行加工。本实施例是对在全自动 装置中, 光纤剥切效果的判定, 当剥切装置 904对光纤外皮剥离切割后, 光源 901照射光纤 905, 如果光纤剥离效果好, 探测基板 902上的光强传感器就可以 接收到合适的光强, 同时可以对光头利用前面提到的特性 6, 判定切割的好坏, 反之, 则表示剥切效果不佳, 则需重复剥切动作。 全自动的光纤熔接机, 从剥, 切, 焊一体的, 机械上到达的方法很多, 但 对每一歩的效果进行判定才是最重要的, 本发明的光电探测装置可以满足所有 歩骤的需要。 总结, 本发明最大亮点的是充分利用了平行光穿越光纤时形成的散射效果, 发明了一整套利用这个散射效果来实现在位置探测和结果判定的实现方法, 以 及利用这个方法设计出不同要求的光纤熔接机的办法。 本发明和传统的以摄像 头和计算机视觉识别系统为基础的光纤熔接机相比, 成本上下降了一个数量级, 制造难度大大降低, 同时为集剥, 切, 焊为一体的全自动光纤熔接机奠定了基 础, 是此行业革命性的发明。

Claims

权 利 要
1
A. 将定位区间的光纤去除包覆部, 裸露出芯部;
B. 从光纤的侧面用光线照射芯部, 在光纤的另一侧采集经过光纤芯部折 射后的光线;
C. 对采集的光线在 N个不同位置的点取该点的光强, 其中 N为大于等于 2的整数, 根据各点的位置坐标和对应的光强,判断光纤芯部的位置。
2、 根据权利要求 1所述的光纤位置检测方法, 其特征在于: 记录所采集 点的光强, 且采集点选取位于光纤芯部两侧的点。
3、 根据权利要求 2所述的光纤位置检测方法, 其特征在于: 所述照射用 光线是与芯部轴向垂直的平行光。
4、 根据权利要求 1至 3之一所述的光纤位置检测方法, 其特征在于: 所 述采集折射后光线包括采集在采集平面内光线的二维分布, 该采集平 面与平行光方向垂直。
5、 根据权利要求 1或 3所述的光纤位置检测方法, 其特征在于: 在定位 区间内移动所述光纤芯部, 并记录和比较折射光线的变化。
6、 一种光纤位置检测装置, 包括: 夹具, 用于固定光纤; 光源, 发射光线至光纤芯部的定位区域, 所述发射光线经过光纤芯部 折射后散射; 图像采集装置, 该图像采集装置位于光源对侧, 在采集面内采集经过 裸露的光纤芯部折射的光线, 并记录采集到光线的位置信息和光强信息, 其中, 采集面是一个与照射光线垂直的平面; 图像处理装置, 接收图像采集装置的采集信号, 对不同位置的光强信 息进行比较处理。 、 根据权利要求 6所述的装置, 其特征在于: 所述光源是发射平行光线 的光源, 所述平行光线与光纤延伸方向垂直。 、 根据权利要求 6或 7所述的装置, 其特征在于: 所述的图像采集装置 包括 N个光电传感器, 其中 N是大于等于 2的整数。 、 根据权利要求 8所述的装置, 其特征在于: 所述 N个光电传感器布置 在同一直线上。 0、 根据权利要求 9所述的装置, 其特征在于: 所述 N个光电传感器成点 阵布置, 并且至少部分传感器关于点阵的中心线对称布置。 1、 根据权利要求 10所述的装置, 其特征在于: 成点阵布置布置的 N个 光电传感器, 其中 N大于等于 6。 2、 一种光纤熔接机, 包括: 夹具, 用于固定光纤; 位置调节装置, 用于调整夹具及光纤的位置; 光源, 发射光线至光纤芯部的定位区域; 图像采集装置, 该图像采集装置位于光源对侧, 在采集面内采集经 过裸露的光纤芯部折射的光线, 并记录采集到光线的位置信息和光强信 息, 其中, 采集面是一个与照射光线垂直的平面; 图像处理装置, 接收图像采集装置的采集信号, 对不同位置的光强 信息进行比较处理; 放电熔接装置, 其位于定位区域两侧, 用于放电熔接光纤芯部。 、 根据权利要求 9所述的光纤熔接机, 其特征在于: 所述光纤熔接机还 包括控制单元, 其根据图像处理装置发出的信号, 控制位置调节装置 调节夹具及光纤的位置。
PCT/CN2013/070184 2012-12-20 2013-01-08 光纤位置检测方法及装置,和具有该装置的光纤熔接机 WO2014094366A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380003933.XA CN104040392A (zh) 2012-12-20 2013-01-08 光纤位置检测方法及装置,和具有该装置的光纤熔接机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2012/086997 2012-12-20
CN2012086997 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014094366A1 true WO2014094366A1 (zh) 2014-06-26

Family

ID=50977590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070184 WO2014094366A1 (zh) 2012-12-20 2013-01-08 光纤位置检测方法及装置,和具有该装置的光纤熔接机

Country Status (1)

Country Link
WO (1) WO2014094366A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570446A (en) * 1994-06-16 1996-10-29 Telefoanaktiebolaget Lm Ericsson Alignment and control in splicing optical fibers
JP2000205997A (ja) * 1999-01-19 2000-07-28 Fujikura Ltd 光ファイバにおけるコア中心位置の検出方法
CN1949006A (zh) * 2006-10-19 2007-04-18 暨南大学 基于空间衍射光的保偏光纤定轴方法及其装置
CN101375191A (zh) * 2005-12-30 2009-02-25 艾利森电话股份有限公司 光纤的位置确定

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570446A (en) * 1994-06-16 1996-10-29 Telefoanaktiebolaget Lm Ericsson Alignment and control in splicing optical fibers
JP2000205997A (ja) * 1999-01-19 2000-07-28 Fujikura Ltd 光ファイバにおけるコア中心位置の検出方法
CN101375191A (zh) * 2005-12-30 2009-02-25 艾利森电话股份有限公司 光纤的位置确定
CN1949006A (zh) * 2006-10-19 2007-04-18 暨南大学 基于空间衍射光的保偏光纤定轴方法及其装置

Similar Documents

Publication Publication Date Title
JP5996635B2 (ja) マルチスポット収集光学系
DK3014238T3 (en) Method for detecting defects in a rod-shaped transparent object
TW201205114A (en) Linear chromatic confocal microscope system
CN103105403A (zh) 透明光学元件表面缺陷的检测方法及装置
JP6487617B2 (ja) マイクロレンズアレイの欠陥検査方法及び欠陥検査装置
WO2014194177A1 (en) A surface feature manager
US7869034B2 (en) Multi-angle and multi-channel inspecting device
JP6819362B2 (ja) 共焦点計測装置
JP2000155071A (ja) 焦点距離測定装置及び焦点距離測定方法
JP2015068670A (ja) シート状物の欠点検査装置およびシート状物の欠点検査方法
WO2007025350A1 (en) Fibre assessment apparatus and method
JP3672812B2 (ja) 被覆光ファイバーの被覆層の直径及び/又は偏心度を測定する方法及び装置
JP4864734B2 (ja) 光変位センサー及びそれを用いた変位測定装置
WO2020162409A1 (ja) プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置
WO2014134803A1 (zh) 光纤位置检测方法及装置和具有该装置的熔接机
JP2010139483A (ja) 光導波路の検査システム及び検査方法
CN111812775A (zh) 一种特种光纤参数检测熔接装置及方法
WO2014094366A1 (zh) 光纤位置检测方法及装置,和具有该装置的光纤熔接机
CN209764385U (zh) 用于检测光纤透镜出光光束偏轴角度的设备
US10627346B2 (en) Refractive index measuring device and refractive index measuring method
JP2001305372A (ja) 光ファイバのコア測定装置,融着接続装置及びそれに用いる焦点位置設定方法並びに光ファイバの識別方法
CN108107305A (zh) 一种电缆检测装置
JPH0429401Y2 (zh)
CN104040392A (zh) 光纤位置检测方法及装置,和具有该装置的光纤熔接机
CN110082076A (zh) 用于检测光纤透镜出光光束偏轴角度的设备及其检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864614

Country of ref document: EP

Kind code of ref document: A1