WO2014092091A1 - Magnetic pyrolysis device - Google Patents

Magnetic pyrolysis device Download PDF

Info

Publication number
WO2014092091A1
WO2014092091A1 PCT/JP2013/083113 JP2013083113W WO2014092091A1 WO 2014092091 A1 WO2014092091 A1 WO 2014092091A1 JP 2013083113 W JP2013083113 W JP 2013083113W WO 2014092091 A1 WO2014092091 A1 WO 2014092091A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air supply
supply pipe
space
organic matter
Prior art date
Application number
PCT/JP2013/083113
Other languages
French (fr)
Japanese (ja)
Inventor
敏 丸山
Original Assignee
有限会社グリーン・フィールド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社グリーン・フィールド filed Critical 有限会社グリーン・フィールド
Publication of WO2014092091A1 publication Critical patent/WO2014092091A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/70Combustion with application of specific energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/00001Treating oxidant before combustion, e.g. by adding a catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a magnetic pyrolysis apparatus that thermally decomposes organic matter using magnetic heat.
  • a heat-resistant container that forms a pyrolysis chamber that is substantially cut off from the external space, an air intake port for pyrolysis air that is provided on the wall of the heat-resistant container, and that takes air into the pyrolysis chamber by natural intake air;
  • Inlet air restricting means for restricting the amount of air flowing into the pyrolysis chamber by restricting the inlet, and a pyrolysis air by forming a magnetic field on the air passage leading the air from the air inlet to the pyrolysis chamber
  • the exhaust gas is exhausted to the atmosphere by a harmful substance removal system that aerated the exhaust gas in the water tank to make it harmless, a catalyst system that adsorbs difficult-to-decompose substances such as dioxins and chlorofluorocarbons contained in the
  • the outer peripheral wall of the heat-resistant container is exposed to the outside air, and the heat of the thermal decomposition treatment chamber is radiated from the outer peripheral wall to the outside during the thermal decomposition of the waste, and the heat retaining performance is low. Therefore, the heat in the pyrolysis chamber is constantly cooled by the outer peripheral wall of the heat-resistant container, and the entire pyrolysis chamber cannot be maintained at a constant temperature during pyrolysis, and waste is efficiently pyrolyzed in a short time. Can not do it. In addition, this pyrolysis furnace does not heat the air flowing into the pyrolysis chamber from the air intake, and is supplied with air having substantially the same temperature as the external ambient temperature.
  • the temperature of the pyrolysis chamber decreases, and the temperature of the pyrolysis chamber during pyrolysis cannot be maintained at a constant high temperature. It may not be possible for a long time.
  • the pyrolysis furnace rapidly reduces the temperature of the fire in the pyrolysis chamber if waste with a moisture content higher than necessary is introduced. Fire may extinguish.
  • the premise of the present invention for solving the above-mentioned problems includes a cracking furnace having a predetermined volume, an air supply mechanism for supplying air to the cracking furnace, and an exhaust mechanism for exhausting gas from the cracking furnace, An organic matter storage space for storing the organic matter to be decomposed, a treatment ash storage space for dropping treated ash that is located below the organic matter storage space, and an open / close mechanism installed in the decomposition furnace to store the organic matter
  • a magnet that has an inlet for introducing organic matter into the space, and an outlet that is opened and closed by an opening and closing mechanism installed in the decomposition furnace to take out the treated ash from the treated ash storage space, and thermally decomposes the organic matter using magnetic heat It is a thermal decomposition apparatus.
  • the peripheral wall of the cracking furnace is a first peripheral wall facing the outside, a second peripheral wall located inside the first peripheral wall, and an accommodation space located inside the second peripheral wall.
  • An airtight heat insulating layer formed between the first and second peripheral walls, the cracking furnace being defined between the first and second peripheral walls and extending to the treated ash storage space and extending from the bottom to the top of the organic matter storage space;
  • An air fluidized layer defined between the second and third peripheral walls and extending from the bottom to the top of the organic material storage space, and an air supply mechanism is installed on the peripheral wall extending to the bottom of the organic material storage space.
  • a plurality of first air supply pipes that allow air to flow into the organic substance containing space and the air fluidized bed from the side of the air, and permanent magnets that are attached to the first air supply pipes and magnetize the air that passes through the first air supply pipes,
  • the mechanism extends outside from the cracking furnace And scan the exhaust pipe is to include a blower for forcibly discharging gas generated in the organic material receiving space is disposed in the gas exhaust pipe during the thermal decomposition of organic matter.
  • the air fluidized bed has a bottom opening that opens to the bottom of the organic matter accommodation space and a top opening that opens to the top of the organic matter accommodation space, and is connected to the organic matter accommodation space at the bottom opening and the top opening. ing.
  • the first air supply pipe includes an outer first air supply pipe that extends outward from the first peripheral wall, and an inner first that extends through the first and second peripheral walls to the inside of the cracking furnace.
  • Heat insulation formed from an air supply pipe and an air supply opening that is located at the tip of the inner first air supply pipe and opens into the organic substance containing space and the air fluidized layer, and the outer first air supply pipe is located on the first peripheral wall side
  • a member and a flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the first air supply pipe, and a plurality of permanent magnets are arranged opposite to each other inside the outer first air supply pipe extending outside the heat insulating member.
  • the air supply mechanism is installed on the peripheral wall extending to the intermediate portion of the organic matter storage space, and a plurality of second air supply pipes that allow air to flow into the organic matter storage space from the intermediate portion side, And a permanent magnet that magnetizes the air that is attached to the two air supply pipes and passes through the second air supply pipe.
  • the second air supply pipe includes an outer second air supply pipe that extends outward from the first peripheral wall, and an inner second air pipe that extends through the first to third peripheral walls to the inside of the cracking furnace.
  • a heat insulating member that is formed from an air supply pipe and an air supply opening that is located at a distal end portion of the inner second air supply pipe and opens into the organic substance housing space, and the outer second air supply pipe is located on the first peripheral wall side; 2 and a flow rate adjusting mechanism capable of adjusting the flow rate of the air flowing into the air supply pipe, and a plurality of permanent magnets are arranged opposite to each other inside the outer second air supply pipe extending outside the heat insulating member.
  • the air supply mechanism is installed on a peripheral wall extending in the intermediate part of the organic substance containing space, and a plurality of third air supply pipes that allow air to flow into the air fluidized bed from the intermediate part side, And a permanent magnet that magnetizes the air that is attached to the three supply pipes and passes through the third supply pipe.
  • the third supply pipe has an outer third supply pipe extending outward from the first peripheral wall, and an inner third extending through the first and second peripheral walls to the inside of the cracking furnace.
  • a heat insulating member that is formed from an air supply pipe and an air supply opening that is located at a distal end portion of the inner third air supply pipe and opens into the air fluidized bed, and the outer third air supply pipe is located on the first peripheral wall side;
  • a flow rate adjusting mechanism capable of adjusting the flow rate of the air flowing into the three air supply pipes, and a plurality of permanent magnets are arranged opposite to each other inside the outer third air supply pipe extending outside the heat insulating member.
  • the air supply mechanism is installed on a peripheral wall that extends to the bottom of the organic matter storage space, and a plurality of fourth supply pipes that allow air to flow into the organic matter storage space from the bottom side, and the fourth supply pipes.
  • a permanent magnet that is attached to the trachea and magnetizes the air passing through the fourth air supply pipe.
  • the fourth supply pipe has an outer fourth supply pipe extending outward from the first peripheral wall, and an inner fourth extending through the first and second peripheral walls to the inside of the cracking furnace.
  • a heat insulating member that is formed from an air supply pipe and an air supply opening that is located at a distal end portion of the inner fourth air supply pipe and opens to the air fluidized bed, and the outer fourth air supply pipe is located on the first peripheral wall side;
  • a flow rate adjusting mechanism capable of adjusting the flow rate of the air flowing into the four air supply pipes, and a plurality of permanent magnets are arranged opposite to each other inside the outer fourth air supply pipe extending outside the heat insulating member.
  • the magnetic pyrolysis apparatus includes at least one ventilation mechanism that is formed on a peripheral wall extending into the treated ash containing space and allows air to flow into the treated ash containing space.
  • the ventilation mechanism includes a ventilation pipe that extends through the first and first peripheral walls to the inside of the cracking furnace, and ventilation that is located at the tip of the ventilation pipe and opens into the treatment ash containing space. It is formed from a mouth and a flow rate adjusting mechanism capable of adjusting the flow rate of air flowing into the vent pipe.
  • the exhaust mechanism is connected to the gas exhaust pipe, and a water tank for venting the gas generated in the organic matter storage space during the thermal decomposition of the organic matter, and a component contained in the gas connected to the gas exhaust pipe are included. And a filter to be removed.
  • the decomposition temperature during the thermal decomposition of the organic substance is in the range of 200 to 400 ° C.
  • an organic substance having a moisture content of 65 to 95% can be pyrolyzed in the organic substance containing space.
  • the continuous time of thermal decomposition in the organic matter accommodation space when the organic matter is continuously introduced into the organic matter accommodation space while containing the fire species in the organic matter accommodation space is from 1 week to 2 Months.
  • the treated ash taken out from the treated ash containing space is made into a ceramic, and the treated ash mixed organic matter obtained by mixing the ceramicized treated ash with the organic matter is put into the organic matter containing space.
  • the ceramicized treated ash is introduced into the organic material storage space together with the organic material.
  • the cracking furnace is defined between the first and second peripheral walls and has an airtight heat insulating layer extending between the treated ash containing space and the organic matter containing space, and the organic matter is thermally decomposed. Since heat release from the heat of the cracking furnace to the outside air is prevented by the hermetic heat insulating layer, the thermal insulation performance in the cracking furnace is high, and the heat of the organic substance containing space is not cooled by the peripheral wall of the cracking furnace, The entire organic substance housing space can be maintained at a constant temperature, and the organic substance can be efficiently thermally decomposed in a short time.
  • a plurality of first air supply pipes installed on a peripheral wall allow air to flow into the organic matter accommodation space from the bottom side of the organic matter accommodation space, so that the air magnetized by the permanent magnet is the entire area of the organic matter accommodation space. Therefore, air for generating the magnetic heat necessary for the thermal decomposition of organic matter can be sufficiently supplied to the entire area of the organic matter containing space, and the organic matter can be reliably pyrolyzed in the organic matter containing space. In addition, the organic matter can be efficiently thermally decomposed in a short time.
  • the magnetic pyrolysis apparatus is heated by the heat of the organic substance containing space while the air flowing into the air fluidized bed from the first air supply pipe flows through the air fluidized bed, and the temperature of the air rises by the air fluidized bed to a predetermined temperature. Since the heated air is supplied to the organic matter storage space, the temperature of the organic matter storage space during the thermal decomposition can be maintained at a constant high temperature, and the thermal decomposition of the organic matter can be performed at a stable temperature for a long time. it can.
  • the temperature of the organic matter storage space of the cracking furnace is maintained at a constant high temperature, even if an organic matter with a high water content is introduced, the fire type in the organic matter storage space is not extinguished, and the fire type is kept for a long time.
  • the organic matter having a high water content can be reliably pyrolyzed by the fire type.
  • the magnetic thermal decomposition apparatus in which the air fluidized bed has a bottom opening that opens to the bottom of the organic matter containing space and a top opening that opens to the top of the organic matter containing space, and is connected to the organic matter containing space at the bottom opening and the top opening. Since the air supplied from the first air supply pipes flows into the organic matter storage space from the bottom opening during the thermal decomposition of the organic matter, the organic matter can be reliably pyrolyzed in the organic matter storage space, and the organic matter can be efficiently used in a short time. Can be pyrolyzed well.
  • the magnetic pyrolysis apparatus is heated by the heat of the organic substance containing space while the air flowing into the air fluidized bed from the first air supply pipe flows from the bottom opening to the top opening of the air fluidized bed, and the temperature of the air is reduced to the air. Since the air heated by the fluidized bed and heated to the specified temperature is supplied to the organic matter storage space, the temperature of the organic matter storage space during the thermal decomposition can be maintained at a constant high temperature, and the thermal decomposition of the organic matter is stable. Can be carried out at a high temperature for a long time.
  • the magnetic pyrolysis apparatus has an adjustable flow rate control mechanism, and a plurality of permanent magnets are arranged opposite to each other inside the first outer air supply pipe extending outside the heat insulating member. Since air supplied from the air supply port of one air supply pipe flows into the organic matter storage space, the magnetized air is sufficiently supplied to the bottom of the organic matter storage space in order to generate magnetic heat necessary for thermal decomposition of the organic matter.
  • the magnetic pyrolysis apparatus is heated by the heat generated in the organic substance containing space while the air flowing into the air fluidized bed from the air inlets of the first air supply pipes flows from the bottom opening to the top opening of the air fluidized bed.
  • the temperature of the air flowing through the air fluidized bed rises, and the air heated to a predetermined temperature is supplied from the air fluidized bed to the organic matter housing space.
  • the thermal decomposition of the organic matter can be performed at a stable temperature for a long time.
  • the magnetic pyrolysis apparatus can adjust the flow rate of air flowing into these first air supply pipes by the flow rate adjustment mechanism, even if the temperature is lowered in a portion where the air at the bottom of the organic matter storage space is lean, the flow rate adjustment By adjusting the air flow rate by the mechanism and increasing the air flow rate at that location to allow more air to flow in, the temperature at that location can be raised, and the local temperature at the bottom of the organic matter storage space can be increased. Decline can be prevented. Even if the temperature of the bottom of the organic substance containing space is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism, and the air flow rate at that location is decreased to allow less air to flow in.
  • the temperature of the location can be lowered
  • air is surely magnetized by the action of a magnetic field created by the permanent magnets arranged opposite to each other inside the outer first air supply pipe extending outside the heat insulating member, thereby activating and activating the air. Air accelerates the generation of magnetic heat in the organic material storage space, and the activated air contacts the organic material stored in the organic material storage space, so that rapid thermal decomposition by the magnetic heat derived from the seed fire on the surface of the organic material Reaction occurs and the organic matter can be surely thermally decomposed.
  • the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold
  • a plurality of second air supply pipes that are installed on a peripheral wall that extends to an intermediate portion of the organic matter accommodation space and allows air to flow into the organic matter accommodation space from the side of the intermediate portion, and the second air supply pipes that are attached to these second air supply pipes
  • a magnetic pyrolysis apparatus including a permanent magnet that magnetizes air that passes through a plurality of second air supply pipes installed on a peripheral wall causes air to flow into the organic matter accommodation space from the intermediate portion side of the organic matter accommodation space. Therefore, the air magnetized by the permanent magnet is uniformly supplied to the entire area of the organic substance accommodating space, so that the air for generating the heat necessary for the thermal decomposition of the organic substance can be sufficiently supplied to the entire organic substance accommodating space.
  • the organic matter can be reliably pyrolyzed in the organic matter housing space, and the organic matter can be efficiently pyrolyzed in a short time.
  • the second air supply pipe is located at the distal end of the outer air supply pipe extending outward from the first peripheral wall, the inner second air supply pipe and the inner second air supply pipe extending through the first to third peripheral walls and extending inside the cracking furnace. And a flow rate adjusting mechanism that is formed from an air supply opening that opens into the organic substance housing space, and an outer second air supply pipe that can adjust the flow rate of the air flowing into the second air supply pipe and the heat insulating member positioned on the first peripheral wall side.
  • the magnetized air for generating the magnetic heat necessary for the thermal decomposition of the organic substance can be sufficiently supplied to the intermediate part of the organic substance storage space.
  • the organic matter can be reliably pyrolyzed in the organic matter storage space. Together, it can be efficiently pyrolyzed in a short time the organics.
  • the magnetic pyrolysis apparatus can adjust the flow rate of the air flowing into these second air supply pipes by the flow rate adjustment mechanism, even if the temperature is lowered at the top of the organic matter storage space or in the middle portion of the organic material storage space, the temperature is lowered.
  • the temperature at that location can be raised, and the top or middle of the organic matter storage space It is possible to prevent a local decrease in temperature.
  • the air flow rate is adjusted by the flow rate adjustment mechanism, and the air flow rate at that point is reduced.
  • the temperature at that location can be lowered, and the local rise in temperature at the top or middle of the organic matter storage space can be prevented.
  • air is reliably magnetized by the action of a magnetic field created by the permanent magnets arranged opposite to the inside of the outer second air supply pipe extending outside the heat insulating member, thereby activating and activating the air. Air accelerates the generation of magnetic heat in the organic material storage space, and the activated air contacts the organic material stored in the organic material storage space, so that rapid thermal decomposition by the magnetic heat derived from the seed fire on the surface of the organic material Reaction occurs and the organic matter can be surely thermally decomposed.
  • the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold
  • a plurality of third air supply pipes that are installed on a peripheral wall that extends to the middle part of the organic substance containing space and that allows air to flow into the air fluidized bed from the side of the intermediate part, and a third air supply pipe that is attached to these third air supply pipes And a permanent magnet that magnetizes the air passing through the organic pyrolysis device, while the magnetized air that has flowed into the air fluidized bed from the air inlet of the third air supply pipe flows through the air fluidized bed.
  • the temperature of the air flowing through the air fluidized bed rises due to the heat generated in the air, and the air heated to a predetermined temperature is supplied from the air fluidized bed to the organic matter accommodating space.
  • the organic substance can be thermally decomposed at a stable temperature for a long time.
  • the heat supply member is formed from an air supply opening that is located in the air fluidized bed and the outer third air supply pipe can adjust the flow rate of the air flowing into the third air supply pipe and the heat insulating member located on the first peripheral wall side.
  • a magnetic pyrolysis apparatus having a plurality of permanent magnets arranged oppositely to the inside of an outer third air supply pipe extending outside the heat insulating member, the air flow from the air supply ports of the third air supply pipe
  • the magnetized air that has flowed into the layer is heated by the heat generated in the organic substance containing space while flowing through the air fluidized bed, the temperature of the air flowing through the air fluidized bed rises, and the air heated to a predetermined temperature is air Pyrolysis is performed from the fluidized bed to the organic matter storage space
  • the temperature of the organic material receiving space can be maintained at a constant high temperature, thermal decomposition of organic matter can be done a long time in a stable temperature in.
  • the magnetic pyrolysis apparatus can adjust the flow rate of air flowing into the third air supply pipe by the flow rate adjusting mechanism, the temperature of the air flowing through the air fluidized bed is adjusted by the flow rate of air flowing into the air fluidized bed. However, it is possible to prevent the temperature of the air flowing through the air fluidized bed from being lowered, and the air adjusted to a predetermined high temperature can be supplied from the air fluidized bed to the organic substance containing space.
  • air is surely magnetized by the action of a magnetic field created by the permanent magnets arranged opposite to each other inside the outer third air supply pipe extending outside the heat insulating member, thereby activating and activating the air.
  • the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold
  • the air supply mechanism is installed on the peripheral wall extending to the bottom of the organic matter housing space, and a plurality of fourth air supply pipes that allow air to flow into the organic matter containing space from the bottom side, and are attached to the fourth air supply pipes and pass through the fourth air supply pipe And a permanent magnet that magnetizes the air to be permeated through the plurality of fourth air supply pipes installed on the peripheral wall from the bottom side of the organic matter containing space into the organic matter containing space. Since air magnetized by the magnet is uniformly supplied to the entire area of the organic matter storage space, the air for generating the heat necessary for the thermal decomposition of the organic matter can be sufficiently supplied to the entire area of the organic matter storage space.
  • the organic matter can be reliably pyrolyzed in the housing space, and the organic matter can be efficiently pyrolyzed in a short time.
  • a plurality of permanent magnets arranged oppositely to the inside of the outer fourth air supply pipe extending to the outside of the heat insulating member.
  • the air supplied from the air supply port flows into the organic material storage space, the air for generating the heat necessary for the thermal decomposition of the organic material can be sufficiently supplied to the bottom of the organic material storage space.
  • Machine was capable of efficiently pyrolyzed in a short time. Since the magnetic pyrolysis apparatus can adjust the flow rate of air flowing into the fourth air supply pipe by the flow rate adjusting mechanism, even if the temperature is lowered at the bottom of the organic matter containing space, the flow rate is adjusted. By adjusting the air flow rate by the mechanism and increasing the air flow rate at that location to allow more air to flow in, the temperature at that location can be raised, and the local temperature at the bottom of the organic matter storage space can be increased.
  • Decline can be prevented. Even if the temperature of the bottom of the organic substance containing space is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism, and the air flow rate at that location is decreased to allow less air to flow in. Thereby, the temperature of the location can be lowered
  • air is surely magnetized by the action of the magnetic field created by the permanent magnets arranged opposite to the inside of the outer fourth supply pipe extending outside the heat insulating member, thereby activating and activating the air.
  • the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold
  • these permanent magnets are arranged oppositely to the inside of the outer fourth supply pipe that extends to the outside of the heat insulating member, the heat of the cracking furnace is blocked by the heat insulating member during the thermal decomposition of the organic matter, and the heat is supplied to the outer fourth supply pipe. It is difficult to transmit to the trachea, and it is possible to prevent a decrease in the magnetic force of these permanent magnets due to the high temperature of the outer fourth supply pipe, and it is possible to reliably magnetize the air passing through the fourth supply pipe by these magnets.
  • a magnetic pyrolysis apparatus including at least one ventilation mechanism that is formed on a peripheral wall extending into the treated ash accommodating space and allows air to flow into the treated ash accommodating space is formed on the peripheral wall of the treated ash accommodating space during thermal decomposition of organic matter. Since the air ventilated from the ventilation mechanism flows into the organic matter accommodation space from the treated ash accommodation space, the air for generating heat necessary for the thermal decomposition of the organic matter can be sufficiently supplied to the organic matter accommodation space, and the organic matter accommodation In addition to being able to reliably pyrolyze organic matter in the space, it is possible to efficiently pyrolyze organic matter in a short time.
  • the ventilation mechanism passes through the first and second peripheral walls and extends to the inside of the cracking furnace, the ventilation opening located at the tip of the ventilation pipe and opening in the treated ash accommodating space, and the flow rate of air flowing into the ventilation pipe
  • the magnetic pyrolysis apparatus formed from an adjustable flow rate adjusting mechanism is configured such that air vented from a vent pipe installed on the peripheral wall of the treated ash accommodating space from the treated ash accommodating space to the organic matter accommodating space during the thermal decomposition of the organic matter. Therefore, the air for generating the heat necessary for the thermal decomposition of the organic matter can be sufficiently supplied to the organic matter containing space, the organic matter can be reliably pyrolyzed in the organic matter containing space, and the organic matter can be removed.
  • the magnetic pyrolysis apparatus can adjust the flow rate of the air flowing into the vent pipe by the flow rate adjusting mechanism, even if the air in the organic substance containing space becomes diluted and the temperature of the space decreases, the air flow rate adjusting mechanism allows the air to flow.
  • the temperature of the space can be increased, and the local decrease in temperature in the organic matter storage space can be reduced. Can be prevented.
  • the flow rate adjustment mechanism adjusts the air flow rate to reduce the air flow rate in the vent pipe to accommodate less air. By flowing into the space, the temperature of the space can be lowered, and a local rise in temperature in the organic matter accommodation space can be prevented.
  • a magnetic pyrolysis apparatus including a water tank that allows an exhaust mechanism to vent gas generated in an organic substance housing space during the pyrolysis of the organic substance and a filter that removes components contained in the gas, causes the gas generated in the organic substance accommodation space to pass through the water tank.
  • harmful components and odor components contained in the gas can be dissolved in the water stored in the water tank, and the harmful components and odor components can be separated from the gas through the water tank.
  • harmful components and odor components contained in the gas can be collected by the filter, and harmful components and odor components can be separated from the gas through the filter.
  • the magnetic pyrolysis apparatus has a decomposition temperature in the range of 200 to 400 ° C. during the pyrolysis of organic matter, so that the organic matter thrown into the organic matter storage space does not burn, and the organic matter can be converted into treated ash. The generation of dioxins during the thermal decomposition of organic matter can be prevented.
  • the magnetic pyrolysis apparatus can thermally decompose organic matter having a moisture content of 65-95% in the organic matter containing space, it can of course process organic matter having a moisture content of less than 65% by pyrolysis. By treating the organic matter containing the product by thermal decomposition, the organic matter can be converted into treated ash.
  • the magnetic pyrolysis apparatus has an organic matter accommodation space because the continuous time of thermal decomposition in the organic matter accommodation space is one week to two months when the organic matter accommodation space is continuously charged with the fire species in the organic matter accommodation space.
  • the thermal decomposition of organic matter in can be maintained at a stable temperature for a long period of time, the apparatus can be operated for a long time, and a large amount of organic matter can be processed through the apparatus.
  • the magnetic pyrolysis apparatus puts the treated ash mixed organic matter mixed with the ceramicized treated ash into the organic matter, or throws the ceramicized treated ash together with the organic matter into the organic matter containing space.
  • the heat retention function of the treated ash it is possible to maintain the thermal decomposition of organic matter in the organic matter storage space at a stable temperature for a long period of time, and to operate the device for a long time, Organic matter can be processed.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along line CC in FIG. 3.
  • the front view of a magnetic thermal decomposition apparatus which abbreviate
  • the side view of a magnetic thermal decomposition apparatus which abbreviate
  • the top view of the air supply mechanism installed in the front-and-rear wall and right-and-left side wall extended in the bottom part of organic substance accommodation space.
  • the side view of the air supply mechanism installed in the front-and-rear wall and right-and-left side wall extended in the bottom part of organic substance accommodation space.
  • the top view of the air supply mechanism installed in the left-right side wall extended in the intermediate part of organic substance accommodation space.
  • FIG. 20 is an end view taken along line DD in FIG. 19.
  • FIG. 22 is an end view taken along line EE of FIG. 21.
  • the side view of the magnetic thermal decomposition apparatus of FIG. FIG. 25 is a cross-sectional view similar to FIG. 6 of the magnetic pyrolysis apparatus of FIG. 24.
  • FIG. 25 is a cross-sectional view of the magnetothermal decomposition apparatus of FIG. 24 similar to FIG.
  • the front view of the magnetic thermal decomposition apparatus of FIG. 24 which abbreviate
  • the side view of the air supply mechanism installed in the right-and-left side wall extended in the intermediate part of organic substance accommodation space.
  • FIG. 1 is a perspective view of the magnetic pyrolysis apparatus 10A shown as an example.
  • 2 is a top view of the magnetic pyrolysis apparatus 10A
  • FIG. 3 is a front view of the magnetic pyrolysis apparatus 10A.
  • FIG. 4 is a side view of the magnetic pyrolysis apparatus 10A
  • FIG. 5 is a rear view of the magnetic pyrolysis apparatus 10A.
  • 6 is a cross-sectional view taken along the line AA in FIG. 3
  • FIG. 7 is a cross-sectional view taken along the line BB in FIG. 8 is a cross-sectional view taken along the line CC of FIG. 3, and FIG.
  • FIG. 9 is a partially enlarged view of the front wall 16 and the left side wall 19.
  • the vertical direction is indicated by an arrow X
  • the horizontal direction is indicated by an arrow Y
  • the front-rear direction is indicated by an arrow Z.
  • FIG. 4 a state in which the lid member 28 is pivoted upward in the vertical direction is indicated by an imaginary line. 6 to 8, the exhaust mechanism 13 is not shown.
  • the magnetic thermal decomposition apparatus 10A thermally decomposes organic waste (organic matter) at a predetermined decomposition temperature using magnetic heat, and turns the organic waste into magnetized ceramic ash (treated ash).
  • the magnetic thermal decomposition apparatus 10 ⁇ / b> A includes a decomposition furnace 11 having a predetermined volume, an air supply mechanism 12 that supplies air to the decomposition furnace 11, and an exhaust mechanism 13 that exhausts gas generated in the decomposition furnace 11 from the decomposition furnace 11. ing.
  • the cracking furnace 11 is a six-sided housing having a top wall 14 and a bottom wall 15, a front wall 16 (peripheral wall) and a rear wall 17 (peripheral wall), a right side wall 18 (peripheral wall) and a left side wall 19 (peripheral wall). is there.
  • the cracking furnace 11 includes an organic substance storage space 20 having a predetermined volume surrounded by the walls 14 to 19 (the top wall 14, front and rear walls 16, 17 and left and right side walls 18, 19 (both side walls)), and a lower part of the organic substance storage space 20. And a treated ash containing space 21 having a predetermined volume surrounded by the walls 14 to 19 (the bottom wall 15, the front and rear walls 16, 17, and the left and right side walls 18, 19 (both side walls)).
  • the organic matter storage space 20 has a top portion 22 located on the top wall 14 side, a bottom portion 24 located on the bottom wall 15 side, and an intermediate portion 23 located between the top portion 22 and the bottom portion 24 (FIG. 10, FIG. 11).
  • a plurality of rectangular net-like slats 25 are detachably installed on the bottom 24 of the organic substance storage space 20, and the organic substance storage space 20 and the treated ash storage space 21 are separated with the slats 25 interposed therebetween.
  • the organic substance storage space 20 has a volume larger than that of the treated ash storage space 21, and its volume is in the range of 3 to 15 times that of the space 21.
  • the slats 25 are partially illustrated, but the slats 25 are actually installed on the entire bottom 24.
  • the slats 25 are placed on a frame material attached to the bottom 24 of the space 20.
  • the top wall 14 is made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and the shape thereof is formed in a substantially rectangular shape.
  • the outer surface of the top wall 14 is painted with resin.
  • the top wall 14 is formed with a rectangular inlet 26 for introducing organic waste into the organic substance storage space 20, and a lid 98 of a water tank 92, which will be described later, is installed to be openable and closable.
  • the top wall 14 is provided with an electric opening / closing mechanism 27 that opens and closes the insertion port 26.
  • the opening / closing mechanism 27 has the same shape and the same size as the insertion port 26 and a rectangular planar member 28, an electric motor 29 (motor) (see FIG. 5), a link 30 that rotates the lid member 28, and an electric motor 29. And a drive member 31 that transmits power to the link 30 by driving.
  • the lid member 28 is made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and its shape is formed into a substantially rectangular shape.
  • the lid member 28 includes a first lid member having a predetermined area facing the outside (outside) of the cracking furnace 11, and a second lid member having a predetermined area facing the organic matter storage space 20 located inside the first lid member. Formed from.
  • the outer surface of the first lid member is painted with resin.
  • the first lid member and the second lid member are connected by a connecting plate extending between the lid members.
  • the first and second lid members and the connecting plate are firmly joined (fixed) by welding.
  • An airtight heat insulating layer is defined between the first lid member and the second lid member.
  • the lid member 28 is pivoted up and down around one end by the opening / closing mechanism 27. As shown by the phantom line in FIG. 4, when the lid member 28 pivots upward and downward through the opening / closing mechanism 27, the input port 26 is opened, and organic waste is input from the input port 26 into the organic substance containing space 20. Can do.
  • the lid member 28 pivots downward in the vertical direction via the opening / closing mechanism 27 from the state where the insertion port 26 is opened, the insertion port 26 is hermetically closed (sealed).
  • a manual opening / closing mechanism can be installed without installing the electric opening / closing mechanism 27 on the top wall 14.
  • the manual opening / closing mechanism for example, using the lever principle, the insertion port 26 is opened by pulling the lever so as to tilt to one side, and the insertion port 26 is closed by raising the lever to the other side.
  • the driving member 31 connected thereto is driven by rotating the electric motor 29 in one direction, and the driving member 31 is connected thereto by driving the driving member 31.
  • the link 30 is operated by driving the driving member 31, thereby moving the lid member 28 up and down. Turn downward in the direction.
  • the opening / closing mechanism is not limited to that shown in the figure, and other known opening / closing mechanisms may be employed.
  • the bottom wall 15 is made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and the shape thereof is formed into a substantially rectangular shape.
  • the bottom wall 15 has a front edge firmly joined (fixed) to the front wall 16 by welding, a rear end edge firmly joined (fixed) to the rear wall 17 by welding, and both side edges thereof are left and right side walls. 18 and 19 are firmly joined (fixed) by welding.
  • a pedestal 32 made of synthetic resin is fixed to the lower surface of the bottom wall 15, and the pedestal 32 is grounded to the ground.
  • the front wall 16 includes a first front wall 33 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11 and an inner side (backward in the front-rear direction) of the first front wall 33 (inward in the radial direction of the peripheral wall).
  • the second front wall 34 (second peripheral wall) having a predetermined area located on the second wall 34 and the inner side of the second front wall 34 (backward in the front-rear direction) (inward in the radial direction of the peripheral wall) and facing the organic matter storage space 20 It is formed from a third front wall 35 (third peripheral wall) having a predetermined area.
  • the outer surface of the first front wall 33 is painted with resin.
  • the first front wall to the third front wall 33 to 35 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and their shapes are formed in a substantially rectangular shape.
  • the first front wall 33 extends between the top wall 14 and the bottom wall 15.
  • the first front wall 33 has its upper edge firmly joined (fixed) to the top wall 14 by welding, its lower edge is firmly joined (fixed) to the bottom wall 15 by welding, and both side edges thereof are The left and right side walls 18 and 19 are connected (integrated).
  • the second front wall 34 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first front wall 33 inward (backward in the front-rear direction) by a predetermined dimension.
  • the upper edge of the second front wall 34 is firmly joined (fixed) to the top wall 14 by welding, the lower edge thereof is joined to the bottom wall 15 by welding, and both side edges thereof are the left and right side walls 18, 19. Connected (integrated).
  • the first front wall 33 and the second front wall 34 are connected by a connecting portion 36 that extends in the vertical direction.
  • the connecting portion 36 of the first and second front walls 33 and 34 is firmly joined (fixed) by welding.
  • An airtight heat insulating layer 37 (airtight air layer) is defined between the first front wall 33 and the second front wall 34.
  • the airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21.
  • the third front wall 35 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20 while being spaced apart from the second front wall 34 inwardly (backward in the front-rear direction) by a predetermined dimension.
  • the upper end edge of the third front wall 35 is spaced downward from the top wall 14, and the upper end edge is not joined to the top wall 14.
  • the lower end edge ends at the bottom 24 of the organic matter accommodation space 20 does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15.
  • the side edges of the third front wall 35 are connected (integrated) to the left and right side walls 18 and 19.
  • the second front wall 34 and the third front wall 35 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction at substantially equal intervals.
  • the second and third front walls 34 and 35 and the connecting member 38 are firmly joined (fixed) by welding.
  • An air fluidized bed 39 is defined between the second front wall 34 and the third front wall 35.
  • the air fluidized bed 39 defined on the front wall 16 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20.
  • the air fluidized bed 39 of the front wall 16 has a bottom opening 40 that opens to the bottom 24 of the organic material accommodation space 20 and a top opening 41 that opens to the top 22 of the space 20 (see FIGS. 10 and 11). 40 and the top opening 41 are connected to the organic matter accommodation space 20.
  • a confirmation port 42 for confirming the space 20 is formed on the front wall 16 (the peripheral wall of the cracking furnace 11) extending to the bottom 24 of the organic material storage space 20.
  • the confirmation opening 42 is provided with an opening / closing mechanism 43 for opening and closing it.
  • the confirmation port 42 is opened and closed by an opening / closing mechanism 43.
  • the opening / closing mechanism 43 includes a lid member 44 (confirmation lid) disposed at the center in the lateral direction of the front wall 16, a hinge 45 that connects the lid member 44 to the front wall 16, and a lever 46 that holds the lid member 44 in a closed state. And is formed from.
  • the lid member 44 is connected to the front wall 16 via a hinge 45, and pivots outwardly and laterally inwardly about one end by the hinge 45.
  • the confirmation port 42 is opened.
  • an input state of the organic waste input into the organic material storage space 20 is confirmed, or a fire type is stored in the space 20.
  • the state of thermal decomposition in the organic substance accommodation space 20 is observed.
  • Seven air supply mechanisms 12 are installed on the front wall 16 (the peripheral wall of the cracking furnace 11) extending to the bottom 24 of the organic substance storage space 20 (three of the seven are lid members 44 (confirmation lids)). ).
  • the air supply mechanisms 12 installed on the front wall 16 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the vertical direction and the horizontal direction.
  • the number of air supply mechanisms 12 installed on the front wall 16 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and six or eight or more air supply mechanisms 12 may be included in the front wall 16 of the bottom portion 24. It may be installed in.
  • a rectangular outlet 47 for taking out the treated ash from the treated ash containing space 21 is formed on the front wall 16 (the peripheral wall of the cracking furnace 11) extending to the treated ash containing space 21.
  • An opening / closing mechanism 48 for opening and closing the outlet 47 is installed.
  • the outlet 47 is opened and closed by an opening / closing mechanism 48.
  • the opening / closing mechanism 48 includes a pair of left and right lid members 49 (extraction lids), a hinge 50 that connects the lid member 49 to the front wall 16, and a lever 51 that holds the lid member 49 closed.
  • the lid members 49 are connected to the front wall 16 via a hinge 50 and pivoted outwardly and inwardly about one end by the hinge 50.
  • the right side wall 18 includes a first right side wall 52 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11, and an inner side (laterally rightward) of the first right side wall 52 (inside the radial direction of the peripheral wall).
  • the second right side wall 53 (second peripheral wall) having a predetermined area located on the inner side and the inner side (right side in the lateral direction) of the second right side wall 53 (inward in the radial direction of the peripheral wall). It is formed of a third right side wall 54 (third peripheral wall) having a predetermined area facing each other.
  • the outer surface of the first right side wall 52 is painted with resin.
  • the first right side wall to the third right side wall 52 to 54 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate, and their shapes are formed in a substantially rectangular shape.
  • the first right side wall 52 extends between the top wall 14 and the bottom wall 15.
  • the upper right edge of the first right side wall 52 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding.
  • the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
  • the second right side wall 53 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first right side wall 52 inward (laterally rightward) by a predetermined dimension.
  • the upper right edge of the second right side wall 53 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding.
  • the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
  • the first right side wall 52 and the second right side wall 53 are connected by a connecting portion 36 extending in the vertical direction.
  • the connecting portion 36 of the first and second right side walls 52 and 53 is firmly joined (fixed) by welding.
  • An airtight heat insulating layer 37 (airtight air layer) is defined between the first right side wall 52 and the second right side wall 53.
  • the airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21.
  • the airtight heat insulating layer 37 formed on the right wall 18 is connected to the airtight heat insulating layer 37 on the front wall 16.
  • the third right side wall 54 extends between the top part 22 and the bottom part 24 of the organic matter storage space 20 while being spaced apart from the second right side wall 53 inward (laterally rightward) by a predetermined dimension.
  • the upper right edge of the third right side wall 54 is separated from the top wall 14, and the upper end edge is not joined to the top wall 14.
  • the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15.
  • the front end edge of the third right side wall 54 is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
  • the second right side wall 53 and the third right side wall 54 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction.
  • the second and third right side walls 53 and 54 and the connecting member 38 are firmly joined (fixed) by welding.
  • An air fluidized bed 39 is defined between the second right side wall 53 and the third right side wall 54.
  • the air fluidized bed 39 defined on the right side wall 18 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20.
  • the air fluidized bed 39 of the right side wall 18 has a bottom opening 40 that opens to the bottom 24 of the organic substance containing space 20 and a top opening 41 that opens to the top 22 of the space 20.
  • the bottom opening 40 and the top opening 41 are spaces. 20 and the air fluidized bed 39 on the front wall 16.
  • Three air supply mechanisms 12 are installed on the right side wall 18 (the peripheral wall of the cracking furnace 11) extending to the intermediate part 23 of the organic matter accommodation space 20. These air supply mechanisms 12 installed on the right side wall 18 of the intermediate portion 23 of the space 20 are arranged at substantially equal intervals in the vertical direction and the front-rear direction.
  • the number of the air supply mechanisms 12 installed on the right side wall 18 of the intermediate portion 23 of the space 20 is not limited to that shown in the figure, and two or less or four or more air supply mechanisms 12 are provided on the right side of the intermediate portion 23. It may be installed on the wall 18.
  • air supply mechanisms 12 are installed on the right side wall 18 (the peripheral wall of the cracking furnace 11) extending to the bottom 24 of the organic substance storage space 20.
  • the air supply mechanisms 12 installed on the right side wall 18 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the front-rear direction.
  • the number of air supply mechanisms 12 installed on the right side wall 18 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and three or less or five or more air supply mechanisms 12 may be provided on the right side wall 18 of the bottom portion 24. It may be installed in.
  • one ventilation mechanism 55 that allows air to flow into the space 21 is installed.
  • the number of ventilation mechanisms 55 installed on the right side wall 18 extending into the treated ash containing space 21 is not limited to that shown in the figure, and two or more ventilation mechanisms 55 are installed on the right side wall 18 of the space 21. Also good.
  • the left side wall 19 includes a first left side wall 56 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11, and an inner side (lateral left side) of the first left side wall 56 (inside the radial direction of the peripheral wall).
  • the second left side wall 57 (second peripheral wall) having a predetermined area located on the inner side and the inner side of the second left side wall 57 (left side in the lateral direction) (inward in the radial direction of the peripheral wall). It is formed of a third left side wall 58 (third peripheral wall) having a predetermined area facing each other.
  • the outer surface of the first left side wall 56 is painted with resin.
  • the first left side wall to the third left side wall 56 to 58 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate, and their shapes are formed in a substantially rectangular shape.
  • the first left side wall 56 extends between the top wall 14 and the bottom wall 15.
  • the upper left edge of the first left side wall 56 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding.
  • the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
  • the second left side wall 57 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first left side wall 56 inward (laterally leftward) by a predetermined dimension.
  • the upper left edge of the second left side wall 57 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding.
  • the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
  • the first left side wall 56 and the second left side wall 57 are connected by a connecting part 36 extending in the vertical direction.
  • the connecting portions 36 of the first and second left side walls 56 and 57 are firmly joined (fixed) by welding.
  • An airtight heat insulating layer 37 (airtight air layer) is defined between the first left side wall 56 and the second left side wall 57.
  • the airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21.
  • the airtight heat insulating layer 37 on the left side wall 19 is connected to the airtight heat insulating layer 37 on the front wall 16.
  • the third left side wall 58 extends between the top part 22 and the bottom part 24 of the organic matter storage space 20 while being spaced apart from the second left side wall 56 inward (laterally leftward) by a predetermined dimension.
  • the upper left edge of the third left side wall 58 is separated from the top wall 14, and the upper end edge is not joined to the top wall 14.
  • the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15.
  • the front end edge of the third left side wall 58 is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
  • the second left side wall 57 and the third left side wall 58 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction.
  • the second and third left side walls 57, 58 and the connecting member 38 are firmly joined (fixed) by welding.
  • An air fluidized bed 39 is defined between the second left side wall 57 and the third left side wall 58.
  • the air fluidized bed 39 defined on the left side wall 19 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20.
  • the air fluidized bed 39 in the left side wall 19 has a bottom opening 40 that opens to the bottom 24 of the organic matter accommodation space 20 and a top opening 41 that opens to the top 22 of the space 20. 20 and the air fluidized bed 39 on the front wall 16.
  • Three air supply mechanisms 12 are installed on the left side wall 19 (the peripheral wall of the cracking furnace 11) extending to the intermediate part 23 of the organic matter accommodation space 20. These air supply mechanisms 12 installed on the left side wall 19 of the intermediate portion 23 of the space 20 are arranged at substantially equal intervals in the vertical direction and the front-rear direction.
  • the number of the air supply mechanisms 12 installed on the left side wall 19 of the intermediate portion 23 of the space 20 is not limited to that shown in the figure, and two or less or four or more air supply mechanisms 12 are provided on the left side of the intermediate portion 23. It may be installed on the wall 19.
  • air supply mechanisms 12 are installed on the left side wall 19 (the peripheral wall of the cracking furnace 11) that extends to the bottom 24 of the organic matter storage space 20.
  • the air supply mechanisms 12 installed on the left side wall 19 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the front-rear direction.
  • the number of air supply mechanisms 12 installed on the left side wall 19 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and three or less or five or more air supply mechanisms 12 may be provided on the left side wall 19 of the bottom portion 24. May be installed.
  • one ventilation mechanism 55 that allows air to flow into the space 21 is installed.
  • the number of ventilation mechanisms 55 installed on the left side wall 19 extending into the treated ash accommodating space 21 is not limited to that shown in the figure, and two or more ventilation mechanisms 55 are installed on the left side wall 19 of the space 21. Also good.
  • the rear wall 17 includes a first rear wall 59 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11, and an inner side (front-rear direction front) of the first rear wall 59 (inward in the radial direction of the peripheral wall).
  • the second front wall 60 (second peripheral wall) having a predetermined area located on the front side and the inner side of the second rear wall 60 (frontward in the front-rear direction) (inward in the radial direction of the peripheral wall) and opposed to the organic matter storage space 20 It is formed from a third rear wall 61 (third peripheral wall) having a predetermined area.
  • the outer surface of the first rear wall 59 is painted with resin.
  • the first rear wall to the third rear wall 59 to 61 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate, and their shapes are formed in a substantially rectangular shape.
  • the first rear wall 59 extends between the top wall 14 and the bottom wall 15.
  • the first rear wall 59 has its upper edge firmly joined (fixed) to the top wall 14 by welding, its lower edge is firmly joined (fixed) to the bottom wall 15 by welding, and both side edges thereof are The left and right side walls 18 and 19 are connected (integrated).
  • the second rear wall 60 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first rear wall 59 inward (forward in the front-rear direction) by a predetermined dimension.
  • the second rear wall 60 has an upper edge firmly joined (fixed) to the top wall 14 by welding, a lower end edge firmly joined (fixed) to the bottom wall 15 by welding, and both side edges thereof are The left and right side walls 18 and 19 are connected (integrated).
  • the first rear wall 59 and the second rear wall 60 are connected by a connecting portion 36 extending in the vertical direction.
  • the connection plates 36 of the first and second rear walls 59, 60 are firmly joined (fixed) by welding.
  • An airtight heat insulating layer 37 (airtight air layer) is defined between the first rear wall 59 and the second rear wall 60.
  • the airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21.
  • the airtight heat insulating layer 37 formed on the rear wall 17 is connected to the airtight heat insulating layer 37 on the right side wall 18 and is connected to the airtight heat insulating layer 37 on the left side wall 19.
  • the third rear wall 61 extends between the top portion 22 and the bottom portion 24 of the organic matter storage space 20 while being spaced apart from the second front wall 60 inward (backward in the front-rear direction) by a predetermined dimension.
  • the upper end edge of the third rear wall 61 is separated from the top wall 14, and the upper end edge is not joined to the top wall 14.
  • the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15.
  • the third rear wall 61 is connected (integrated) to the left and right side walls 18 and 19 at both side edges.
  • the second rear wall 60 and the third rear wall 61 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction.
  • the second and third rear walls 60 and 61 and the connecting member 38 are firmly joined (fixed) by welding.
  • An air fluidized bed 39 is defined between the second rear wall 60 and the third rear wall 61.
  • the air fluidized bed 39 defined on the rear wall 17 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20.
  • the air fluidized bed 39 of the rear wall 17 has a bottom opening 40 that opens to the bottom 24 of the organic matter containing space 20 and a top opening 41 that opens to the top 22 of the space 20.
  • the bottom opening 40 and the top opening 41 are spaces. 20 and the air fluidized bed 39 on the right side wall 18 and the left side wall 19.
  • Seven air supply mechanisms 12 are installed on the rear wall 17 (the peripheral wall of the decomposition furnace 11) extending to the bottom 24 of the organic substance storage space 20. These air supply mechanisms 12 installed on the rear wall 17 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the vertical direction and the horizontal direction.
  • the number of air supply mechanisms 12 installed on the rear wall 17 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and six or less or eight or more air supply mechanisms 12 may be included in the rear wall 17 of the bottom portion 24. It may be installed in.
  • FIG. 10 is a front view of the magnetothermal decomposition apparatus 10A with the first and second front walls 34 and 35 omitted, and FIG. 11 shows the magnetism with the first and second left side walls 56 and 57 omitted. It is a side view of 10 A of thermal decomposition apparatuses. 12 is a top view of the air supply mechanism 12A installed on the front and rear walls 16 and 17 and the left and right side walls 18 and 19 extending to the bottom 24 of the organic matter accommodation space 20. FIG. 13 shows the bottom 24 of the organic matter accommodation space 20. It is a side view of the air supply mechanism 12A installed on the extending front and rear walls 16, 17 and left and right side walls 18, 19. 10 and 11, the outer first and second air supply pipes 64 and 73 are not shown.
  • These air supply mechanisms 12A (air supply members) installed on the front and rear walls 16 and 17 and the left and right side walls 18 and 19 extending to the bottom 24 of the organic matter housing space 20 are formed from the space 24 and the air fluidized bed from the bottom 24 side of the space 20.
  • the first air supply pipes 62 are box-shaped outer first air supply pipes 64 extending outward from the first front and rear walls 33 and 59 (first peripheral wall) and the first left and right side walls 52 and 56 (first peripheral wall), Disassemble through first and second front and rear walls 33, 34, 59, 60 (first and second peripheral walls) and first and second left and right side walls 52, 53, 56, 57 (first and second peripheral walls). It is formed from a cylindrical inner first air supply pipe 65 extending to the inside of the furnace 11, and an air supply port 66 that is located at the tip of the inner first air supply pipe 65 and opens to the organic matter storage space 20 and the air fluidized bed 39. ing. The front end portion of the inner first air supply pipe 65 is cut obliquely, whereby the air supply port 66 opens downward in the vertical direction of the organic matter accommodation space 20 and the air fluidized bed 39.
  • the outer first air supply pipe 64 includes a front end wall and a rear end wall, a top wall and a bottom wall, and both side walls, and has a predetermined thickness of heat insulation located on the first front and rear walls 33 and 59 and the first left and right side walls 52 and 56 side.
  • a member 67 and a flow rate adjusting mechanism 68 capable of adjusting the flow rate of air flowing into the first air supply pipe 62 are provided.
  • the outer first air supply pipe 64 (including the heat insulating member 67) has an air flow path 69 through which air passes at the center in the axial direction.
  • the outer first air supply pipe 64 (including the heat insulating member 67) is detachably fixed to the first front and rear walls 33 and 59 and the first left and right side walls 52 and 56 via bolts.
  • the inner first air supply pipe 65 has a peripheral edge firmly fixed to the first front and rear walls 33 and 59 (first peripheral wall) and the first left and right side walls 52 and 56 (first peripheral wall) by welding.
  • the inner first air supply pipe 65 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer first air supply pipe 64.
  • the two permanent magnets 63 are arranged opposite to the inner space of the outer first air supply pipe 64 extending outside the heat insulating member 67 so as to sandwich the air flow path 69 of the outer first air supply pipe 64.
  • the permanent magnets 63 may be installed such that the south and north poles face each other, the north and south poles face each other, or the south and south poles face each other.
  • a ferrite magnet, an alkoni magnet, a neodymium magnet, or a samarium cobalt magnet can be used as the permanent magnet 63.
  • the permanent magnets 63 have a predetermined magnetic flux density, create a magnetic field in the air flow path 69 of the outer first supply pipe 64, and pass through the first supply pipe 62 (the air flow path 69 of the outer first supply pipe 64). Air is activated by magnetizing the air.
  • the permanent magnets 63 are detachably fixed to the outer first air supply pipe 64 via bolts.
  • the number of permanent magnets 63 is not particularly limited, and an even number (four or more) of magnets 63 facing each other may be attached to the outer first air supply pipe 64.
  • the heat insulating member 67 is made of a flame-retardant synthetic resin, prevents conduction of heat generated in the first front and rear walls 33 and 59 and the first left and right side walls 52 and 56 to the outer first air supply pipe 64, and is caused by heat. A reduction in the magnetic force of the permanent magnet 63 is prevented.
  • FIG. 14 is a top view of the air supply mechanism 12B installed on the left and right side walls 18 and 19 extending to the intermediate portion 23 of the organic matter accommodation space 20, and FIG. 15 is the left and right side walls 18 extending to the intermediate portion 23 of the organic matter accommodation space 20.
  • 19 is a side view of the air supply mechanism 12B.
  • These air supply mechanisms 12B installed on the left and right side walls 18 and 19 extending to the intermediate portion 23 of the organic substance containing space 20 include a plurality of second air supply pipes 71 that allow air to flow into the space 20 from the intermediate portion 23 side of the space 20. And a permanent magnet 72 attached to the second air supply pipe 71.
  • the second air supply pipe 71 includes a box-shaped outer second air supply pipe 73 extending outward from the first left and right side walls 52 and 56 (first peripheral wall), and first to third left and right side walls 52 to 54, 56 to.
  • a cylindrical inner second air supply pipe 74 that extends through 58 (first to third peripheral walls) and extends to the inside of the cracking furnace 11, and is located at the distal end of the inner second air supply pipe 74 and opens into the organic matter storage space 20.
  • the air supply port 75 is formed. The distal end portion of the inner second air supply pipe 74 is cut obliquely, whereby the air supply port 75 opens downward in the vertical direction of the space 20.
  • the outer second air supply pipe 73 includes a front end wall and a rear end wall, a top wall and a bottom wall, both side walls, a heat insulating member 76 having a predetermined thickness located on the first left and right side walls 52 and 56, and a second air supply pipe. And a flow rate adjusting mechanism 68 capable of adjusting the flow rate of the air flowing into 71.
  • the outer second air supply pipe 73 (including the heat insulating member 76) has an air flow path 69 through which air passes at the center in the axial direction.
  • the outer second air supply pipe 73 (including the heat insulating member 76) is detachably fixed to the first left and right side walls 52 and 56 via bolts.
  • the inner second air supply pipe 74 has a peripheral edge firmly fixed to the first left and right side walls 52 and 56 by welding.
  • the inner second air supply pipe 74 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer second air supply pipe 73.
  • the two permanent magnets 72 are arranged opposite to the inner space of the outer second air supply pipe 73 extending outside the heat insulating member 76 so as to sandwich the air flow path 69 of the outer second air supply pipe 73.
  • the permanent magnets 72 may be installed such that the S pole and the N pole face each other, the N poles face each other, or the S poles face each other.
  • a ferrite magnet, an arconi magnet, a neodymium magnet, or a samarium cobalt magnet can be used as the permanent magnet 72.
  • the permanent magnets 72 have a predetermined magnetic flux density, create a magnetic field in the air flow path 69 of the outer second supply pipe 73, and pass through the second supply pipe 71 (the air flow path 69 of the outer second supply pipe 73). Air is activated by magnetizing the air.
  • the permanent magnets 72 are detachably fixed to the outer second air supply pipe 73 via bolts.
  • the number of permanent magnets 72 is not particularly limited, and an even number (four or more) of magnets 72 facing each other may be attached to the outer second air supply pipe 73.
  • the heat insulating member 76 is made of a flame retardant synthetic resin, prevents conduction of heat generated in the first left and right side walls 52 and 56 to the outer second air supply pipe 73, and reduces the magnetic force of the permanent magnet 72 due to heat. To prevent.
  • FIG. 16 is a front view of the air supply mechanism 12 in a state where the air flow path 69 is opened by the flow rate adjusting mechanism 68
  • FIG. 17 is a view of the air supply in a state where the air flow path 69 is closed by the flow rate adjusting mechanism 68
  • 3 is a front view of a mechanism 12.
  • FIG. FIG. 18 is a partially cutaway front view of the air supply mechanism 12 shown with the front end plates of the air supply pipes 64 and 73 broken away.
  • the flow rate adjusting mechanism 68 includes a front end plate 77 of the outer first air supply pipe 64 or the outer second air supply pipe 73, a shutter plate 78 disposed inside the front end plate 77, and a fixing for fixing the shutter plate 78 to the front end plate 77.
  • the screw 79 is formed.
  • the front end plate 77 has three fixed openings 80 that are long in the vertical direction
  • the shutter plate 78 has three moving openings 81 that are the same shape and size as the fixed opening 80 and that are long in the vertical direction.
  • the fixing screw 79 is rotated to release the fixing between the front end plate 77 and the shutter plate 78, the shutter plate 78 is slid, and the moving opening 81 is moved to the position of the fixing opening 80.
  • the fixed opening 80 is fully opened, and the air channel 69 is opened (fully opened). In this state, the fixing screw 79 is rotated to fix the front end plate 77 and the shutter plate 78, and the fully open state can be maintained.
  • the opening area of the fixed opening 80 can be adjusted by sliding the shutter plate 78 and shifting the position of the moving opening 81 of the shutter plate 78 with respect to the position of the fixed opening 80.
  • the flow rate of the passing air (the flow rate of the air flowing into the air flow channel 69) can be adjusted.
  • the shutter plate 78 is slid so that the fixed opening 80 of the front end plate 77 is fully opened or has a predetermined opening area.
  • air of a predetermined flow rate flows into the air flow path 69 of the outer first supply pipe 64, the air is magnetized by the magnetic force of the permanent magnet 63, and the magnetized air is supplied to the outer first supply pipe.
  • the inner first air supply pipe 65 After flowing into the inner first air supply pipe 65 from the trachea 64, it flows into the organic matter accommodation space 20 and the air fluidized bed 39 from the inner first air supply pipe 65.
  • the fixed opening 80 By sliding the shutter plate 78 and closing the fixed opening 80 by the shutter plate 78, the fixed opening 80 is fully closed, and the air flow paths 69 and 70 of the outer first air supply pipe 64 and the inner first air supply pipe 65 are opened. It closes and the inflow of the air to the organic substance accommodation space 20 and the air fluidized bed 39 stops.
  • By increasing the opening area of the fixed opening 80 of the front end plate 77 a large amount of air can be supplied to the organic matter storage space 20 and the air fluidized bed 39, and the opening area of the fixed opening 80 of the front end plate 77 can be reduced. By doing so, a small amount of air can be supplied to the space 20 and the air fluidized bed 39.
  • the shutter plate 78 is slid so that the fixed opening 80 of the front end plate 77 is fully opened or has a predetermined opening area.
  • air of a predetermined flow rate flows into the air flow path 69 of the outer second supply pipe 73, the air is magnetized by the magnetic force of the permanent magnet 72, and the magnetized air is supplied to the outer second supply pipe.
  • the inner second air supply pipe 74 After flowing into the inner second air supply pipe 74 from the trachea 73, it flows into the organic matter accommodation space 20 from the inner second air supply pipe 74.
  • the fixed opening 80 is fully closed, and the air flow paths 69 and 70 of the outer second air supply pipe 73 and the inner second air supply pipe 74 are closed. It closes and the inflow of the air to the organic substance accommodation space 20 stops.
  • FIG. 19 is a front view of the ventilation mechanism 55 in a state in which the ventilation path 85 is closed by the flow rate adjustment mechanism 84
  • FIG. 20 is an end view taken along the line DD of FIG. 21
  • FIG. 22 is a front view of the ventilation mechanism 55 in a state in which the ventilation path 85 is opened by the flow rate adjustment mechanism 84
  • FIG. 22 is an end view taken along the line EE of FIG.
  • the ventilation mechanism 55 (venting member) installed in the right side wall 18 and the left side wall 19 extending into the treated ash accommodating space 21 is the first and second right side walls 52 and 53 (first and second peripheral walls) or the first and second side walls.
  • the ventilation pipe 82 has a ventilation path 85 extending in the axial direction thereof.
  • the flow rate adjusting mechanism 84 includes a circular front end plate 86 of the ventilation pipe 82 positioned on the first right side wall 52 and the first left side wall 56, a circular shutter plate 87 disposed inside the front end plate 86, and a front end A rotating screw 88 that rotates the shutter plate 87 clockwise and counterclockwise while connecting the plate 86 and the shutter plate 87 is formed.
  • the front end plate 86 has three fan-shaped fixed openings 89 arranged in the circumferential direction
  • the shutter plate 87 has three moving openings 90 arranged in the circumferential direction of the same shape and size as the fixed openings 89.
  • the openings 89, 90 communicate with each other, and the fixed opening 89. Becomes fully open, and the vent pipe 82 (vent path 85) is opened.
  • the opening area of the fixed opening 89 can be adjusted by rotating the shutter plate 87 and shifting the position of the moving opening 90 with respect to the position of the fixed opening 89, so that the air passing through the fixed opening 89 can be adjusted.
  • the flow rate (the flow rate of air flowing into the air passage 85) can be adjusted.
  • vent pipe 82 vent passage 85 of the vent mechanism 55 is opened by the flow rate adjusting mechanism 84 while the magnetic pyrolysis apparatus 10A is in operation (decomposing organic waste), as shown by an arrow in FIG. Outside air
  • enters the ventilation pipe 82 through the openings 89 and 90 flows into the treated ash accommodation space 21 through the ventilation pipe 82, and flows into the organic matter accommodation space 20 from the space 21.
  • By increasing the opening area of the fixed opening 89 it is possible to supply a large amount of air to the organic matter accommodation space 20, and by reducing the opening area of the fixed opening 89, supply a small amount of air to the space 20. can do.
  • the exhaust mechanism 13 includes a gas exhaust pipe 91, a water tank 92, a filter 93, a blower 94 (fan or blower), and a chimney 95.
  • the gas exhaust pipe 91 extends from the upper part of the cracking furnace 11 (upper part of the rear wall 17) to the outside of the cracking furnace 11.
  • An electric motor 29 that forms an opening / closing mechanism 27 is installed on the rear wall 17, and a control panel 96 is installed.
  • the control panel 96 incorporates a microcomputer having a central processing unit (CPU or MPU) and a storage device (memory).
  • the electric motor 29 and the blower 94 are connected to the control panel 96 via a cable, and are connected to the microcomputer of the control panel 96 via an interface.
  • a one-chip temperature sensor and a one-chip humidity sensor are installed inside the decomposition furnace 11. The temperature sensor and the humidity sensor are connected to the microcomputer of the control panel 96 through an interface.
  • the control panel 96 is supplied with electricity via a cable. Although not shown, the control panel 96 is provided with an ON / OFF switch and a display, and is provided with a blue blinking lamp for notifying safety, a red blinking lamp for notifying danger, and a yellow blinking lamp for notifying operation. On the display of the control panel 96, the output (number of rotations) of the blower 94 is displayed, and the temperature and humidity inside the decomposition furnace 11 (organic matter accommodation space 20) are displayed. The output (number of rotations) of the electric motor 29 and the blower 94 can be adjusted by the display (touch panel) of the control panel 96. The exhaust mechanism 13, the electric motor 29, and the control panel 96 are accommodated in a housing 97 fixed to the rear wall 17, and exposure to the outside air is prevented by the housing 97.
  • the water tank 92 is installed between the gas exhaust pipes 91 and connected to the exhaust pipe 91.
  • a lid 98 is attached to the top of the water tank 92.
  • the water tank 92 is filled with water (tap water) up to a predetermined water level.
  • the gas generated in the decomposition furnace 11 (organic matter storage space 20) flows into the water tank 92 through the gas exhaust pipe 91, and the gas is passed through the water tank 92 or the water in the water tank 92 in the process of flowing inside the water tank 92.
  • the gas generated in the decomposition furnace 11 is passed through the water in the water tank 92 or the water tank 92, so that harmful substances and odor components contained in the gas are dissolved in water, and the harmful substances and odor components are separated from the gas. .
  • the water filled there can be exchanged every predetermined period, so that the water contaminated with harmful substances can be exchanged for new one.
  • the filter 93 is on the downstream side of the water tank 92 and is installed between the gas exhaust pipes 91 and connected to the exhaust pipe 91.
  • the filter 93 is detachably accommodated in the filter case 99.
  • the filter 93 may be a medium-high performance filter, a HEPA filter, or a gas removal filter that uses glass fiber, carbon fiber, synthetic resin fiber, or a removal agent (chemical) as a filter medium.
  • Gas that flows out of the water tank 92 flows into the filter 93 (filter case 99) through the gas exhaust pipe 91, and the gas flows through the filter 93.
  • the filter 93 By causing the gas to flow through the filter 93, harmful substances and odor components remaining in the gas are collected by the filter 93, and the harmful substances and odor components are separated from the gas.
  • the filter 93 contaminated with harmful substances can be replaced with a new one.
  • harmful substances (toxic gases) and odor components contained in the gas include ammonia, acetaldehyde, toluene, styrene, xylene, methyl mercaptan, hydrogen sulfide, methyl sulfide, methyl disulfide, trimethylamine, isobutanol, ethyl acetate, methyl There are isobutyl ketone, propionic acid, normal acid and the like.
  • the blower 94 is installed on the gas exhaust pipe 91 on the downstream side of the filter 93.
  • the blower 94 forcibly exhausts the gas in the gas exhaust pipe 91. Accordingly, the gas inside the cracking furnace 11 is forcibly exhausted by the blower 94, and the air (outside air) passes through the air supply mechanism 12 and the ventilation mechanism 55 to the inside of the cracking furnace 11 (the organic matter storage space 20, the treated ash). It is forcibly supplied to the accommodation space 21).
  • the output of the blower 94 can be freely adjusted by inverter control, whereby the amount of gas exhausted from the cracking furnace 11 can be adjusted.
  • the chimney 95 is connected to the extended end of the gas exhaust pipe 91 (on the downstream side of the blower 94), and extends upward from the top wall 14.
  • the gas from which harmful substances and odor components are removed by the water tank 92 and the filter 93 is discharged from the chimney 95 to the outside air.
  • FIG. 23 is a side view of the magnetic pyrolysis apparatus 10A shown in a state where cow dung 100 (organic waste) is being charged from the inlet 26.
  • FIG. An example of an organic waste processing procedure in the magnetic pyrolysis apparatus 10A will be described as follows.
  • Organic waste thermally decomposed in the magnetic pyrolysis apparatus 10A is particularly limited as long as it is organic matter other than inorganic matter such as wood waste, paper waste, plastic waste, food waste, sludge waste, livestock waste, etc. There is no.
  • no organic waste is put into the organic substance storage space 20 of the cracking furnace 11, and the inlet 26, the confirmation port 42, and the outlet are opened by the lid members 28, 44, 49.
  • cow dung 100 livestock excrement
  • a high water absorption rate 65 to 95%) containing a large amount of water
  • the confirmation opening 42 is opened and ash (heat insulating material) (not shown) is placed on the slats 25 in the organic matter storage space 20.
  • a seed fire floor is formed by spreading several centimeters or several tens of centimeters, the opening 26 is opened, the cow dung 100 collected from the barn is put into the organic matter storage space 20 of the cracking furnace 11, and the ash spread on the slats 25.
  • Put fire types ignited charcoal, bamboo charcoal, coconut husk charcoal, charcoal, briquettes, coke.
  • a granular or powdery ceramic or a mixture of ash and ceramic may be spread to make a fire bed.
  • the worker turns on the ON / OFF switch of the control panel 96 of the magnetic pyrolysis apparatus 10A.
  • the switch When the switch is turned on, electricity is supplied to the control panel 96, and the electric motor 29, the blower 94, the temperature sensor, and the humidity sensor of the electric opening / closing mechanism 27 are turned on.
  • an operation screen is displayed on the display of the control panel 96.
  • the worker confirms the output of the blower 94 and determines whether or not the output has been changed.
  • an operation screen is displayed on the display of the control panel 96.
  • the blower 94 is operated with the output.
  • the operator confirms that the inlet 26 is closed by the lid member 28 by looking at the inlet closing message displayed on the display.
  • the display shows a message indicating that the inlet is closed and an operation stop message, and also displays the room temperature as the temperature of the organic matter storage space 20 and the same humidity as the external environment as the humidity of the space 20.
  • the operator rotates the lever 46 to release the lock between the front wall 16 and the lid member 44, and turns the lid member 44 to open the confirmation port 42.
  • the worker spreads ash (or granular or powdered ceramic or a mixture of ash and ceramic) evenly over the slats 25 of the organic material accommodation space 20 from the confirmation opening 42 to create a fire bed. After the ash is spread on the slats 25, the operator confirms that the insertion port 26 is closed by the lid member 28, and presses the lid opening switch of the display.
  • the control panel 96 blinks the red blinking lamp, activates the electric opening / closing mechanism 27 installed on the top wall 14, and gradually opens the inlet 26.
  • the control panel 96 turns the lid member 28 upward and downward by starting the electric motor 29 and operating the link 30 thereby.
  • the control panel 96 stops the electric motor 29, blinks the blue blinking lamp, and closes the inlet opening end message, opening the inlet. Message and operation stop message are displayed on the display.
  • cow dung 100 After confirming the input port opening end message, the input port open message, and the operation stop message, the worker inputs cow dung 100 from the input port 26.
  • sawdust and wood chips are added as necessary.
  • a mixture in which cow dung 100 and sawdust and wood chips are mixed in advance may be made, and the mixture may be charged from the inlet 26.
  • the cow dung 100 sawdust, wood waste, mixture
  • the cow dung 100 sawdust, wood waste, mixture
  • a transport mechanism such as a belt conveyor.
  • the operator confirms the organic matter storage space 20 from the opened confirmation opening 42, and creates a fire type storage space for putting a fire kind between the ash-covered slats 25 and the introduced cow dung 100. .
  • the worker puts cow dung 100 into the top 22 of the organic matter storage space 20 and creates a fire type storage space, and then presses the lid closing switch of the display (touch panel).
  • the control panel 96 blinks the red blinking lamp, restarts the electric opening / closing mechanism 27 installed on the top wall 14, and gradually closes the inlet 26.
  • the control panel 96 turns the lid member 28 downward in the vertical direction by starting the electric motor 29 and operating the link 30 thereby.
  • the inlet 26 is hermetically closed (sealed) by the lid 28.
  • the control panel 96 blinks the blue blinking lamp, and displays a charging port closing end message, a charging port closing message, and an operation stop message on the display.
  • the control panel 96 activates the blower 94, blinks the yellow blinking lamp, and displays the inlet closing message and the operating message on the display.
  • the blower 94 is activated, the air in the gas exhaust pipe 91 is sucked toward the blower 94 and the air is forcibly discharged from the chimney 95 through the exhaust pipe 91 to the outside. Further, as the air in the organic matter accommodation space 20 (including the treated ash treatment ash accommodation space 21) flows into the gas exhaust pipe 91, air (from the confirmation port 42 and the air supply mechanisms 12A and 12B to the organic matter accommodation space 20) Outside air) is supplied.
  • the operator stores fire types (ignited charcoal, bamboo charcoal, coconut husk charcoal, charcoal, briquettes, coke, etc.) from the confirmation opening 42 and puts the fire types on the ash (fire type floor) spread on the slats 25. Put it on.
  • the kind of fire is arranged at the bottom 24 of the organic matter storage space 20 of the cracking furnace 11.
  • a predetermined amount of air (from the air supply port 66 of the first air supply pipe 62 to the organic matter storage space 20 and the air fluidized bed 39 of the decomposition furnace 11). Outside air) is supplied, and a predetermined amount of air (outside air) is supplied from the air supply port 75 of the second air supply pipe 71 to the organic matter storage space 20 of the decomposition furnace 11.
  • the gas is forcibly exhausted from the gas exhaust pipe 91 by the blower 94, so that air is continuously supplied from the first air supply pipe 62 and the second air supply pipe 71 to the organic substance containing space 20 and the air fluidized bed 39. Is done.
  • the air passing through the first air supply pipe 62 (outer first air supply pipe 64) is magnetized and activated (ionized and minus) by passing through the magnetic field of the outer first air supply pipe 64 made by the permanent magnet 63. Be charged with ions).
  • the air activated by the first air supply pipe 62 passes through the first air supply pipe 62 (outer first air supply pipe 64), flows into the bottom 24 of the organic matter accommodation space 20, and travels from the bottom 24 to the top 22 of the space 20. It contacts with cow dung 100 (organic waste) while flowing. Further, the activated air passes through the first air supply pipe 62 (outer first air supply pipe 64), flows into the air fluidized bed 39, and flows into the organic matter accommodation space 20 from the bottom opening 40 of the air fluidized bed 39.
  • the air passing through the second air supply pipe 71 (outer second air supply pipe 73) is magnetized and activated (ionized and minus) by passing through the magnetic field of the outer second air supply pipe 73 formed by the permanent magnet 72. Be charged with ions).
  • the air activated by the second air supply pipe 71 passes through the second air supply pipe 71 (outer second air supply pipe 73) and flows into the intermediate portion 23 of the organic matter housing space 20, and from the intermediate portion 23 of the space 20 to the top portion 22. In contact with cow dung 100 (organic waste).
  • Air is magnetized by the action of the magnetic field created by the permanent magnets 63 and 72 attached to the first air supply pipe 62 and the second air supply pipe 71, thereby activating (minus ionizing) the air, and the activated air becomes While promoting the generation of magnetic heat (heat of seed fire) in the organic matter storage space 20, the activated air comes into contact with the cow dung (organic waste) stored in the space 20, so that the cow dung 100 (sawdust and wood chips, An abrupt pyrolysis reaction due to magnetic heat derived from the seed fire occurs on the surface of the mixture), and the cow dung 100 (sawdust, wood chips, mixture) is gradually pyrolyzed.
  • the pyrolysis temperature in the organic substance containing space 20 of the cracking furnace 11 reaches a range of 200 to 400 ° C., and the magnetic heat due to the pyrolysis reaction is stored in the space 20.
  • the temperature of the organic matter storage space 20 is maintained at a constant high temperature, the thermal decomposition reaction of the cow dung 100 in the space 20 continues, and the thermal decomposition of the cow dung 100 is continued.
  • the cow dung 100 thermally decomposed in the organic matter storage space 20 becomes ceramic ash (treated ash).
  • the ceramic ash passes through the slats 25, falls from the organic matter storage space 20 to the treated ash storage space 21, and accumulates in the space 21.
  • the volume of ceramic ash is about 1/200 to 1/350 of that of cow dung 100.
  • the thermal decomposition of the cow dung 100 While the thermal decomposition of the cow dung 100 is continued, the heat of the organic material storage space 20 is transmitted from the space 20 to the front and rear walls 16, 17 and the left and right side walls 18, 19, and the second and third front and rear walls 34, 35, 60, 61 and the second and third left and right side walls 53, 54, 57, 58 become high temperature, whereby the air in the air fluidized bed 39 is heated and flows from the bottom opening 40 to the top opening 41 of the air fluidized bed 39. In the meantime, the air temperature rises. While the thermal decomposition of the cow dung 100 is continued, the activated high-temperature air flows into the organic substance containing space 20 from the top opening 41 of the air fluidized bed 39, whereby the temperature of the space 20 is maintained at a constant high temperature.
  • air heated to a predetermined high temperature in the air fluidized bed 39 is supplied from the air fluidized bed 39 to the organic matter containing space 20, so that the temperature of the space 20 during the pyrolysis is kept constant.
  • the cow dung 100 is thermally decomposed for a long time at a stable temperature.
  • gas decomposed gas
  • the gas filled in the top portion 22 of the organic substance accommodation space 20 is forced to flow into the gas exhaust pipe 91 from the upper portion of the rear wall 17 by the blower 94.
  • the gas flows through the gas exhaust pipe 91 and flows into the water tank 92.
  • the gas is passed through the water stored in the water tank 92 or the water tank 92, and harmful substances and odor components contained in the gas are dissolved in the water, whereby the harmful substances and odor components are separated from the gas.
  • the gas flowing out of the water tank 92 flows into the filter 93 (filter case 99) through the gas exhaust pipe 91.
  • the filter 93 harmful substances and odor components contained in the gas are collected (adsorbed) on the filter medium, and the harmful substances and odor components are separated from the gas.
  • the gas from which harmful substances and odor components have been removed by the water tank 92 and the filter 93 reaches the chimney 95 through the gas exhaust pipe 91 from the filter 93 and is discharged from the chimney 95 to the outside air.
  • the cow dung 100 is continuously decomposed in the organic matter storage space 20, and the volume (amount) of the cow dung 100 put into the space 20. Gradually decreases.
  • the cow dung 100 is replenished to the space 20 from the insertion port 26.
  • the operator presses the lid opening switch of the display.
  • the control panel 96 blinks the red blinking lamp, activates the opening / closing mechanism 27 installed on the top wall 14, and gradually opens the inlet 26.
  • the control panel 96 stops the electric motor 29, blinks the blue blinking lamp, and closes the inlet opening end message, opening the inlet. Message and operation stop message are displayed on the display.
  • the operator After confirming the input port opening end message, the input port open message, and the operation stop message, the operator inputs the cow dung 100 from the input port 26 and replenishes the shortage of the pyrolyzed cow dung 100.
  • the operator presses the lid closing switch of the display after replenishing cow dung 100 in the organic matter storage space 20.
  • the control panel 96 blinks the red blinking lamp, restarts the opening / closing mechanism 27, and gradually closes the insertion port 26. After the inlet 26 is closed, the cow dung 100 is continuously thermally decomposed in the organic matter storage space 20.
  • the operation is continuously performed for a predetermined period by periodically replenishing cow dung 100 (organic waste) during the operation (during thermal decomposition).
  • the continuous time (operation duration) of the thermal decomposition in the magnetic thermal decomposition apparatus 10A is one week to two months.
  • the operator takes out the ceramic ash from the space 21.
  • the operator rotates the lever 51 to release the lock between the front wall 16 and the lid member 49, rotates the lid member 49 to open the outlet 47, and then scrapes ceramic ash from the outlet 47 with a stick or the like. Remove (scrap out).
  • the lid member 49 is turned, the lever 51 is rotated to lock the front wall 16 and the lid member 49, and the outlet 47 is closed.
  • the ceramic ash (treated ash) made in the organic matter storage space 20 has excellent heat retaining properties, the ceramic ash is mixed in the cow dung 100 (organic waste) and is put into the space 20, or By putting ceramic ash into the space 20 together with the cow dung 100, thermal decomposition of the cow dung 100 can be further promoted.
  • the thermal decomposition of cow dung 100 (organic waste) in the organic matter storage space 20 is maintained at a stable temperature for a long period of time by using the thermal insulation function of the ceramic ash.
  • the apparatus 10A can be operated for a long time, and a large amount of organic waste can be processed through the apparatus 10A.
  • the magnetic pyrolysis apparatus 10A is in operation (continuation of thermal decomposition). Middle), in the process of thermal decomposition proceeding at the bottom 24 of the organic substance containing space 20, an excessive air location is generated at the bottom 24 of the space 20, and the temperature of the thermal decomposition reaction is increased more than necessary at that location. As it rises above, the cow dung 100 may burn at the bottom 24 as it is.
  • the first air supply pipe installed on the front wall 16 The flow rate adjusting mechanism 68 of 62 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of the air flowing into the first air supply pipe 62 is reduced. Further, the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the right side wall 18 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the air flowing into the first air supply pipe 62 is reduced. Reduce the flow rate.
  • the air flow rate of all the first air supply pipes 62 installed on the front wall 16 may be reduced, or the air flow rate of any of the first air supply pipes 62 installed on the front wall 16 may be reduced.
  • the air flow rate of all the first air supply pipes 62 installed on the right side wall 18 may be reduced, or the air flow rate of any of the first air supply pipes 62 installed on the right side wall 18 may be reduced.
  • the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the front wall 16 or the right side wall 18 the flow rate of the air flowing into the first air supply pipe 62 is reduced, so that the space 20 near the front wall 16 Excess air in the bottom 24 of the space 20 near the bottom 24 and the right side wall 18 is eliminated.
  • the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease.
  • the operator determines that the excess air in the space 20 has been eliminated by the temperature and humidity of the space 20 and the amount of gas exhausted, and maintains the flow rate of the flow rate adjusting mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
  • the magnetic pyrolysis apparatus 10A is in operation (thermal decomposition).
  • the process in which pyrolysis proceeds in the top portion 22 and the intermediate portion 23 of the organic matter storage space 20 an excessive air location occurs at the top portion 22 and the intermediate portion 23 of the space 20, and the rate of the pyrolysis reaction at that location.
  • the temperature of the space 20 displayed on the display increases, the humidity of the space 20 decreases, and the chimney 95 The amount of gas exhausted increases.
  • the operator determines the excess air in the space 20 based on the temperature and humidity of the space 20 and the exhaust amount of gas.
  • the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed in the air supply is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is reduced. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is reduced. Reduce the flow rate.
  • the air flow rate of all the second air supply pipes 71 installed on the rear wall 17 may be reduced, or the air flow rate of any of the second air supply pipes 71 installed on the rear wall 17 may be reduced. Moreover, the air flow rate of all the second air supply pipes 71 installed on the left side wall 19 may be reduced, or the air flow rate of any of the second air supply pipes 71 installed on the left side wall 19 may be reduced. .
  • the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19, the flow rate of the air flowing into the second air supply pipe 71 is reduced, so that the space 20 near the rear wall 17 Excessive air in the top portion 22 and the intermediate portion 23 of the space 20 near the top portion 22 and the intermediate portion 23 and the left side wall 19 is eliminated.
  • the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease.
  • the operator determines that the excess air in the space 20 has been eliminated by the temperature and humidity of the space 20 and the amount of gas exhausted, and maintains the flow rate of the flow rate adjusting mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
  • the flow rate adjusting mechanism 68 (the flow rate adjusting mechanism 68 of the outer first air supply pipe 64) of the first air supply pipe 62 (the air supply mechanism 12A) is throttled (when the opening area of the fixed opening 80 is small).
  • a lean portion of air is generated at the bottom 24 of the space 20 to generate heat.
  • the temperature of the decomposition reaction is lowered and the temperature is lowered, the air necessary for the thermal decomposition is insufficient at the location, and the thermal decomposition reaction may be reduced at the location.
  • the first air supply pipe installed on the front wall 16 The flow rate adjusting mechanism 68 of 62 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of the air flowing into the first air supply pipe 62 is increased. Further, the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the right side wall 18 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the air flowing into the first air supply pipe 62 is discharged. Increase the flow rate.
  • the air flow rate of all the first air supply pipes 62 installed on the front wall 16 may be increased, or the air flow rate of any of the first air supply pipes 62 installed on the front wall 16 may be increased. Moreover, the air flow rate of all the first air supply pipes 62 installed on the right side wall 18 may be increased, or the air flow rate of any of the first air supply pipes 62 installed on the right side wall 18 may be increased. .
  • the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display rises, the humidity of the space 20 falls, and the amount of gas exhausted from the chimney 95 increases. To increase.
  • the operator determines that the air shortage in the space 20 has been eliminated by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjustment mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
  • the flow rate adjusting mechanism 68 (the flow rate adjusting mechanism 68 of the outer second air supply tube 73) of the second air supply tube 71 (air supply mechanism 12B) is throttled (when the opening area of the fixed opening 80 is small).
  • air is transferred to the top 22 or the intermediate part 23 of the space 20.
  • a dilute part is generated, the rate of the thermal decomposition reaction is slowed, and the temperature is lowered.
  • the air required for the thermal decomposition is insufficient at the part, and the thermal decomposition reaction may be lowered at the part.
  • the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed at the top is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is increased. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is removed. Increase the flow rate.
  • the air flow rate of all the second supply pipes 71 installed on the rear wall 17 may be increased, or the air flow rate of any of the second supply pipes 71 installed on the rear wall 17 may be increased.
  • the air flow rate of all the second air supply pipes 71 installed on the left side wall 19 may be increased, or the air flow rate of any of the second air supply pipes 71 installed on the left side wall 19 may be increased.
  • the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19 to increase the flow rate of air flowing into the second air supply pipe 71, the space 20 near the rear wall 17 Air shortages at the top 22 and the middle part 23 of the space 20 near the top part 22 and the middle part 23 and the left side wall 19 are eliminated.
  • the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display rises, the humidity of the space 20 falls, and the amount of gas exhausted from the chimney 95 increases. To increase.
  • the operator determines that the air shortage in the space 20 has been eliminated by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjustment mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
  • the magnetized air is supplied from the air supply pipes 62 and 71 to the organic matter accommodation space 20.
  • the thermal decomposition reaction in the space 20 reaches a wide range, the air at the bottom 24, the intermediate portion 23, and the top 24 of the space 20 becomes lean, the air necessary for the thermal decomposition is insufficient in the space 20, and the temperature of the space 20 increases. In addition to a decrease more than necessary, the thermal decomposition reaction of the space 20 may decrease.
  • the flow rate adjusting mechanism 84 of the vent pipe 82 on the right side wall 18 and the left side wall 19 is opened (the shutter plate 87 is rotated to open the fixed opening 89), and air (outside air) is passed from the vent pipe 82 to the treated ash accommodating space 21. ).
  • the flow rate adjusting mechanism 84 of the ventilation pipe 82 installed on either the right side wall 18 or the left side wall 19 can be opened.
  • the opening area of the fixed opening 89 of the front end plate 86 the flow rate of air passing through the vent pipe 82 can be adjusted.
  • the air that has flowed into the treated ash storage space 21 flows into the organic matter storage space 20 from the space 21, and the air shortage in the space 20 is eliminated.
  • the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display rises, the humidity of the space 20 falls, and the amount of gas exhausted from the chimney 95 increases. To increase.
  • the operator determines that the air shortage in the space 20 has been eliminated by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjustment mechanism 84 of the vent pipe 82 (maintains the opening area of the fixed opening). In the state, the operation of the device 10A is continued.
  • the rate of the thermal decomposition reaction in the organic matter accommodation space 20 becomes faster than necessary and the temperature rises more than necessary, and remains as it is. Then, the cow dung 100 may burn in the space 20.
  • the thermal decomposition reaction proceeds more than necessary in the space 20
  • the temperature of the space 20 displayed on the display increases, the humidity of the space 20 decreases, and the amount of gas exhausted from the chimney 95 increases.
  • the operator determines the excess air in the space 20 based on the temperature and humidity of the space 20 and the exhaust amount of gas.
  • the flow rate adjusting mechanism 84 of the right side wall 18 or the left side wall 19 of the vent pipe 82 is closed (the shutter plate 87 is rotated to close the fixed opening 89), and the air from the vent pipe 82 to the treated ash accommodating space 21 ( Block inflow of outside air).
  • the flow rate adjustment mechanism 84 is adjusted to reduce the air flow rate through the vent pipe 82.
  • the air flowing into the treated ash accommodating space 21 is blocked, or the air flowing into the space 21 is reduced, so that excess air in the space 20 is eliminated.
  • the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease.
  • the operator determines that the shortage of air in the space 20 has been resolved by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjusting mechanism 84 of the vent pipe 82 (maintains the opening area of the fixed opening 89). In this state, the operation of the device 10A is continued.
  • the magnetic pyrolysis apparatus 10A has been described with respect to opening / closing or adjusting the flow rate adjusting mechanism 68 of the first and second supply pipes 62, 71, and opening / closing or adjusting the flow rate adjusting mechanism 84 of the ventilation pipe 82.
  • the flow rate of air in the first and second supply pipes 62 and 71 and the flow rate of air in the ventilation pipe 82 may be set in advance depending on the type of organic waste.
  • the air is surely magnetized by the action of the magnetic field created by the permanent magnets 63 and 72 arranged opposite to the inside of the first and second supply pipes 62 and 71 extending outside the heat insulating members 67 and 76.
  • the air is activated, and the activated air promotes the generation of magnetic heat in the organic material accommodation space 20 and the activated air contacts the cow dung 100 (organic waste) accommodated in the space 20.
  • a rapid pyrolysis reaction due to magnetic heat derived from the seed fire occurs on the surface of the cow dung 100, and the cow dung 100 can be reliably pyrolyzed.
  • the activated air promotes the generation of magnetic heat in the organic material containing space 20, and the magnetic heat derived from the seed fire is stored in the space 20, so that the temperature of the space 20 is kept constant. While being able to hold
  • the permanent magnets 63 and 72 are disposed oppositely to the inside of the supply pipes 64 and 73 extending outside the heat insulating members 67 and 76, during the thermal decomposition of the cow dung 100 (organic waste).
  • Heat of the cracking furnace 11 is blocked by the heat insulating members 67 and 76, heat is hardly transmitted to the air supply pipes 64 and 73, and the magnetic force of the permanent magnets 63 and 72 is prevented from being lowered due to the high temperature of the air supply pipes 64 and 73.
  • the air passing through the air supply pipes 62 and 71 can be reliably magnetized by the magnets 63 and 72.
  • the magnetic pyrolysis apparatus 10A can adjust the flow rate of air flowing into the first air supply pipe 62 by the flow rate adjusting mechanism 68, it is assumed that the temperature has decreased at a location where the air at the bottom 24 of the organic matter storage space 20 is lean. However, by adjusting the flow rate of air by the flow rate adjusting mechanism 68 and increasing the flow rate of air at that location to allow a large amount of air to flow in, the temperature at that location can be increased, and the bottom 24 of the space 20 can be increased. A local drop in temperature can be prevented. Further, even if the temperature of the bottom 24 of the organic matter storage space 20 is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism 68 to reduce the air flow rate at that location. Is allowed to flow, the temperature at that point can be lowered, and a local rise in temperature at the bottom 24 of the space 20 can be prevented.
  • the magnetic pyrolysis apparatus 10A can adjust the flow rate of the air flowing into the second air supply pipe 71 by the flow rate adjusting mechanism 68, the temperature at the point where the air in the top portion 22 or the intermediate portion 23 of the organic matter storage space 20 is lean. Even if the air flow rate decreases, the flow rate adjustment mechanism 68 adjusts the air flow rate, increases the air flow rate at that location, and allows a large amount of air to flow in, thereby increasing the temperature at that location. It is possible to prevent a local decrease in temperature at the top portion 22 and the intermediate portion 23 of the.
  • the air flow rate is adjusted by the flow rate adjusting mechanism 68 to reduce the air flow rate at that location.
  • the temperature at that point can be lowered, and a local rise in temperature at the top portion 22 and the intermediate portion 23 of the space 20 can be prevented.
  • the magnetic pyrolysis apparatus 10A is necessary for the thermal decomposition of the cow dung 100 because the air ventilated from the vent pipe 82 flows into the organic matter storage space 20 from the treated ash storage space 21 during the thermal decomposition of the cow dung 100 (waste). Air for generating magnetic heat can be sufficiently supplied to the space 20, the cow dung 100 can be reliably pyrolyzed in the space 20, and the cow dung 100 can be efficiently thermally decomposed in a short time. it can.
  • the magnetic pyrolysis apparatus 10A can adjust the flow rate of the air flowing into the vent pipe 82 by the flow rate adjusting mechanism 84, even if the air in the organic matter storage space 20 becomes lean and the temperature of the space 20 decreases,
  • the temperature of the space 20 can be increased by adjusting the flow rate of the air by the flow rate adjusting mechanism 84 and increasing the flow rate of the air in the vent pipe 82 so that a large amount of air flows into the space 20. It is possible to prevent a local drop of the.
  • the flow rate adjustment mechanism 84 adjusts the air flow rate to reduce the air flow rate in the vent pipe 82. By causing air to flow into the space 20, the temperature of the space 20 can be lowered, and a local increase in temperature in the space 20 can be prevented.
  • the magnetic thermal decomposition apparatus 10 ⁇ / b> A allows the gas generated in the organic matter storage space 20 to pass through the water tank 92, so that harmful components and odor components contained in the gas can be dissolved in the water stored in the water tank 92. It is possible to separate harmful components and odor components from the gas through the gas. Further, by allowing the gas to pass through the filter 93, harmful components and odor components contained in the gas can be collected by the filter 93, and the harmful components and odor components can be separated from the gas via the filter 93. .
  • the magnetic pyrolysis apparatus 10A since the decomposition temperature during the thermal decomposition of the cow dung 100 (organic waste) is in the range of 200 to 400 ° C., the cow dung 100 put into the organic matter storage space 20 does not burn, 100 can be made into ceramic ash (treated ash), and generation of dioxins during thermal decomposition of cow dung 100 can be prevented.
  • the magnetic thermal decomposition apparatus 10A maintains the thermal decomposition of the cow dung 100 (organic waste) in the space 20 at a stable temperature for a long period of time because the continuous time of thermal decomposition in the organic material accommodation space 20 is one week to two months.
  • the apparatus 10A can be operated for a long time, and a large amount of cow dung 100 can be processed through the apparatus 10A.
  • FIG. 24 is a perspective view of a magnetic pyrolysis apparatus 10B shown as another example
  • FIG. 25 is a side view of the magnetic pyrolysis apparatus 10B of FIG. 26 is a cross-sectional view similar to FIG. 6 of the magnetic pyrolysis apparatus 10B of FIG. 24,
  • FIG. 27 is a cross-sectional view similar to FIG. 7 of the magnetic pyrolysis apparatus 10B of FIG. 28
  • FIG. 29 shows the left and right side walls 18 extending to the intermediate portion 23 of the organic matter storage space 20.
  • 19 is a top view of the air supply mechanism 12C.
  • FIG. 30 is a side view of the air supply mechanism installed on the left and right side walls extending to the middle part of the organic matter storage space
  • FIG. 31 is the side view of the supply mechanism installed on the left and right side walls 18 and 19 extending to the bottom 24 of the organic matter storage space 20.
  • It is a top view of air mechanism 12D.
  • FIG. 32 is a side view of the air supply mechanism 12 ⁇ / b> D installed on the left and right side walls 18, 19 extending to the bottom 24 of the organic substance accommodation space 20.
  • the vertical direction is indicated by an arrow X
  • the horizontal direction is indicated by an arrow Y
  • the front-rear direction is indicated by an arrow Z. 26 and 27, the exhaust mechanism 13 is not shown.
  • This magnetic pyrolysis apparatus 10B is different from that shown in FIG. 1 in that a third air supply pipe and a second air supply pipe 71 (air supply mechanism 12B) are provided on the left and right side walls 18 and 19 (peripheral walls) extending to the intermediate portion 23 of the organic matter storage space 20.
  • the fourth air supply pipe (air supply mechanism 12D) together with the first air supply pipe 62 (air supply mechanism 12A) is provided on the left and right side walls 18, 19 (peripheral walls) extending to the bottom 24 of the space 20 in that the (air supply mechanism 12C) is installed.
  • the other configuration is the same as that of the magnetic pyrolysis apparatus 10A of FIG. 1, and therefore the other configuration of the apparatus 10B is incorporated by using the description of FIG. The detailed description of is omitted.
  • the magnetic thermal decomposition apparatus 10 ⁇ / b> A includes a decomposition furnace 11 having a predetermined volume, an air supply mechanism 12 that supplies air to the decomposition furnace 11, and an exhaust mechanism 13 that exhausts gas generated in the decomposition furnace 11 from the decomposition furnace 11. ing.
  • the cracking furnace 11 is a six-sided housing having a top wall 14 and a bottom wall 15, a front wall 16 and a rear wall 17, a right side wall 18 and a left side wall 19.
  • the cracking furnace 11 includes an organic substance containing space 20 having a predetermined volume surrounded by the walls 14 to 19 (the top wall 14, the front and rear walls 16, 17, and the left and right side walls 18, 19), and the walls 20 located below the space 20. 14 to 19 (bottom wall 15, front and rear walls 16, 17, left and right side walls 18, 19) and a predetermined volume of treated ash containing space 21.
  • the organic matter storage space 20 has a top portion 22 located on the top wall 14 side, a bottom portion 24 located on the bottom wall 15 side, and an intermediate portion 23 located between the top portion 22 and the bottom portion 24 (FIG. 10, FIG. 11).
  • These air supply mechanisms 12C (air supply members) installed in the left and right side walls 18 and 19 extending to the intermediate portion 23 of the organic matter containing space 20 allow a plurality of air to flow into the air fluidized bed 39 from the intermediate portion 23 side of the space 20.
  • the third air supply pipes 101 and permanent magnets 102 attached to the third air supply pipes 101 are provided.
  • those air supply mechanisms 12B installed in the left and right side walls 18 and 19 are the same as those of the apparatus 10A of FIG. 1, the description of the air supply mechanisms 12B is omitted by using the description of FIGS. .
  • the third air supply pipes 101 include a box-shaped outer third air supply pipe 103 extending outward from the first left and right side walls 52 and 56 (first peripheral walls), and the first and second left and right side walls 52, 53, 56, 67 (first and second peripheral walls) passing through the inner side of the cracking furnace 11 extending through the inner side of the cracking furnace 11, and an opening in the air fluidized bed 39 located at the tip of the inner third air supply pipe 104
  • the air supply port 105 is formed.
  • the distal end portion of the inner third air supply pipe 104 is cut vertically so that the air supply port 105 faces the third left and right side walls 54 and 58.
  • the outer third air supply pipe 103 includes a front end wall and a rear end wall, a top wall and a bottom wall, and both side walls, a heat insulating member 106 having a predetermined thickness located on the first left and right side walls 52 and 56, and a third air supply pipe. And a flow rate adjusting mechanism 68 capable of adjusting the flow rate of the air flowing into 103. Since the flow rate adjusting mechanism 68 is the same as that of the first and second air supply pipes 62 and 71, the description thereof will be omitted by using the description of FIGS.
  • the outer third air supply pipe 103 (including the heat insulating member 106) has an air passage 69 through which air passes at the center in the axial direction.
  • the outer third air supply pipe 103 (including the heat insulating member 106) is detachably fixed to the first left and right side walls 52 and 56 via bolts.
  • the inner second air supply pipe 104 is firmly fixed to the first left and right side walls 52 and 56 at the periphery of the base end thereof by welding.
  • the inner third air supply pipe 104 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer third air supply pipe 103.
  • the two permanent magnets 102 are arranged opposite to the inner space of the outer third air supply pipe 103 extending outside the heat insulating member 106 so as to sandwich the air flow 69 of the outer second air supply pipe 103.
  • the permanent magnets 102 may be installed such that the south and north poles face each other, the north and south poles face each other, or the south poles face each other.
  • a ferrite magnet, an arconi magnet, a neodymium magnet, or a samarium cobalt magnet can be used as the permanent magnet 102.
  • These permanent magnets 102 have a predetermined magnetic flux density, create a magnetic field in the air flow path 78 of the outer third supply pipe 103, and pass through the third supply pipe 101 (the air flow path 69 of the outer third supply pipe 103). Air is activated by magnetizing the air.
  • the permanent magnets 102 are detachably fixed to the outer third air supply pipe 103 via bolts.
  • the number of permanent magnets 102 is not particularly limited, and an even number (four or more) of magnets 102 facing each other may be attached to the outer third air supply pipe 103.
  • the heat insulating member 106 is made of a flame retardant synthetic resin, prevents conduction of heat generated in the first left and right side walls 52 and 56 to the outer third air supply pipe 103, and reduces the magnetic force of the permanent magnet 102 due to heat. To prevent.
  • These air supply mechanisms 12D (air supply members) installed on the left and right side walls 18 and 19 that extend to the bottom 24 of the organic matter storage space 20 have a plurality of first air flows into the space 20 from the bottom 24 side of the organic matter storage space 20.
  • the four air supply pipes 107 and the permanent magnets 108 attached to the fourth air supply pipes 107 are provided.
  • those air supply mechanisms 12A installed in the left and right side walls 18 and 19 are the same as those of the apparatus 10A of FIG. 1, the description of the air supply mechanisms 12A is omitted by using the description of FIGS. .
  • the fourth air supply pipes 107 include a box-shaped outer fourth air supply pipe 109 extending outward from the first left and right side walls 52, 56 (first peripheral wall), and the first and second left and right side walls 52, 53, 56, 57 (first and second peripheral walls) and the inside inner fourth supply pipe 110 extending inside the third left and right side walls 54 and 61 and the distal end portion of the inner fourth supply pipe 110 and containing organic matter
  • the air supply port 111 is open to the space 20.
  • the front end portion of the inner fourth air supply pipe 110 is cut obliquely, whereby the air supply port 111 is opened downward in the vertical direction of the organic matter accommodation space 20.
  • the outer fourth air supply pipe 109 includes a front end wall and a rear end wall, a top wall and a bottom wall, both side walls, a heat insulating member 112 having a predetermined thickness located on the first left and right side walls 52 and 56, and a fourth air supply pipe. And a flow rate adjusting mechanism 68 capable of adjusting the flow rate of air flowing into 107. Since the flow rate adjusting mechanism 68 is the same as that of the first and second air supply pipes 62 and 71, the description thereof will be omitted by using the description of FIGS.
  • the outer fourth air supply pipe 109 (including the heat insulating member 112) has an air passage 69 through which air passes at the center in the axial direction.
  • the outer fourth air supply pipe 109 (including the heat insulating member 112) is detachably fixed to the first left and right side walls 52 and 56 via bolts.
  • the inner fourth air supply pipe 110 has a peripheral edge firmly fixed to the first left and right side walls 52 and 56 by welding.
  • the inner fourth air supply pipe 110 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer fourth air supply pipe 109.
  • the two permanent magnets 108 are arranged opposite to the inner space of the outer fourth air supply pipe 109 extending outside the heat insulating member 112 so as to sandwich the air flow path 69 of the outer fourth air supply pipe 109.
  • the permanent magnets 108 may be installed such that the S pole and the N pole face each other, the N poles face each other, or the S poles face each other.
  • a ferrite magnet, an arconi magnet, a neodymium magnet, or a samarium cobalt magnet can be used as the permanent magnet 198.
  • These permanent magnets 108 have a predetermined magnetic flux density, create a magnetic field in the air flow path 69 of the outer fourth supply pipe 109, and pass through the fourth supply pipe 107 (the air flow path 69 of the outer fourth supply pipe 109). Air is activated by magnetizing the air.
  • the permanent magnets 108 are detachably fixed to the outer fourth supply pipe 109 via bolts.
  • the number of permanent magnets 108 is not particularly limited, and an even number (four or more) of magnets 108 facing each other may be attached to the outer fourth supply pipe 109.
  • the heat insulating member 112 is made of a flame retardant synthetic resin, prevents conduction of heat generated in the first left and right side walls 52 and 56 to the outer fourth supply pipe 109, and reduces the magnetic force of the permanent magnet 108 due to heat. To prevent.
  • the magnetic pyrolysis apparatus 10B has a decomposition temperature in the range of 200 to 400 ° C. during the thermal decomposition of organic waste. Further, the continuous time of thermal decomposition in the organic substance storage space 20 is one week to two months.
  • the flow rate adjusting mechanisms 68 (the outer first air supply pipe 64 and the outer fourth air supply) of all the first air supply pipes 62 (the air supply mechanism 12A) and all the fourth air supply pipes 107 (the air supply mechanism 12D).
  • the flow rate adjusting mechanism 68 of the air supply pipe 109 is fully open, during the operation of the magnetic pyrolysis apparatus 10B (while the thermal decomposition continues), during the process of thermal decomposition at the bottom 24 of the organic matter storage space 20, the space 20 An excessive air location is generated at the bottom 24, and the temperature of the thermal decomposition reaction increases more than necessary at that location, and the temperature rises more than necessary, and the cow dung 100 may burn at the bottom 24 as it is.
  • the first air supply pipe installed on the front wall 16 62 and the flow rate adjusting mechanism 68 of the fourth supply pipe 107 are throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 is reduced. Decrease.
  • the flow rate adjusting mechanism 68 of the first air supply pipe 62 and the fourth air supply pipe 107 installed on the right side wall 18 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the first air supply pipe 62 and the flow rate of the air flowing into the fourth air supply pipe 107 are reduced.
  • the flow rate adjusting mechanism 68 of the first supply pipe 62 and the fourth supply pipe 107 installed on the front wall 16 and the right side wall 18 is adjusted to reduce the flow rate of air flowing into the first supply pipe 62 and the fourth supply pipe 107. By doing so, excess air in the bottom 24 of the space 20 near the front wall 16 and the bottom 24 of the space 20 near the right side wall 18 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
  • the flow rate adjusting mechanisms 68 flow rate adjusting mechanisms 68 of the outer third air supply tube 103) of all the third air supply tubes 101 (the air supply mechanism 12C) are fully open, the temperature of the air flowing through the air fluidized bed 39 is lowered. In some cases, high-temperature air cannot be supplied from the air fluidized bed 39 to the organic matter accommodation space 20. In this case, the flow rate adjusting mechanism 68 of the third supply pipe 101 installed on the left and right side walls 18 and 19 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80) and flows into the third supply pipe 101. Reduce the air flow.
  • the temperature of the air flowing through the air fluidized bed 39 is adjusted by adjusting the flow rate adjusting mechanism 68 of the third air supply pipe 101 installed on the left and right side walls 18 and 19 to reduce the flow rate of the air flowing into the third air supply pipe 101.
  • the high temperature air is supplied from the air fluidized bed 39 to the organic substance containing space 20 and the flow rate of the flow rate adjusting mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained), and the operation of the apparatus 10B is continued. To do.
  • the magnetic pyrolysis apparatus 10B is in operation (thermal decomposition).
  • the process in which pyrolysis proceeds in the top portion 22 and the intermediate portion 23 of the organic matter storage space 20 an excessive air location occurs at the top portion 22 and the intermediate portion 23 of the space 20, and the rate of the pyrolysis reaction at that location.
  • the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed in the air supply is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is reduced. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is reduced. Reduce the flow rate.
  • the flow rate of the air flowing into the second air supply pipe 71 is reduced, so that the space 20 near the rear wall 17 Excessive air in the top portion 22 and the intermediate portion 23 of the space 20 near the top portion 22 and the intermediate portion 23 and the left side wall 19 is eliminated.
  • the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
  • the first air supply pipe 62 (air supply mechanism 12A) and the fourth air supply pipe 107 (air supply mechanism 12D) have a flow rate adjustment mechanism 68 (the outer first air supply pipe 64 and the fourth air supply pipe 109 flow rate adjustment mechanism 68).
  • a portion where air is diluted is generated, the rate of the thermal decomposition reaction is slowed and the temperature is lowered, the air necessary for the thermal decomposition is insufficient at the portion, and the thermal decomposition reaction is lowered at the portion. There is a case.
  • the first air supply pipe installed on the front wall 16 62 and the flow rate adjusting mechanism 68 of the fourth supply pipe 107 are opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 Increase.
  • the flow rate adjusting mechanism 68 of the first air supply pipe 62 and the fourth air supply pipe 107 installed on the right side wall 18 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the first air supply pipe 62 and the flow rate of the air flowing into the fourth air supply pipe 107 are increased.
  • the flow rate adjustment mechanism 68 of the first supply pipe 62 and the fourth supply pipe 107 installed on the front wall 16 and the right side wall 18 is adjusted to increase the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107. By doing so, air shortages at the bottom 24 of the space 20 near the front wall 16 and the bottom 24 of the space 20 near the right side wall 18 are eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
  • the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed at the top is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is increased. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is removed. Increase the flow rate.
  • the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19 By adjusting the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19 to increase the flow rate of air flowing into the second air supply pipe 71, the space 20 near the rear wall 17 Air shortages at the top 22 and the middle part 23 of the space 20 near the top part 22 and the middle part 23 and the left side wall 19 are eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
  • the space 20 is magnetized from the supply pipes 62, 71, 101, 107.
  • air is supplied, if the thermal decomposition reaction reaches a wide range in the space 20, the air in the bottom 24, the intermediate portion 23, and the top 24 of the space 20 becomes lean, and there is not enough air in the space 20 for thermal decomposition.
  • the temperature of the space 20 may decrease more than necessary, and the thermal decomposition reaction of the space 20 may decrease.
  • the flow rate adjusting mechanism 84 of the vent pipe 82 on the right side wall 18 and the left side wall 19 is opened (the shutter plate 87 is rotated to open the fixed opening 89), and air (outside air) is passed from the vent pipe 82 to the treated ash accommodating space 21. ).
  • the flow rate of the air passing through the vent pipe 82 can be adjusted by adjusting the opening area of the fixed opening 89 of the front end plate 86.
  • the air that has flowed into the treated ash storage space 21 flows into the organic matter storage space 20 from the space 21, and the air shortage in the space 20 is eliminated.
  • the thermal decomposition reaction returns to normal, and the operation of the apparatus 10A is continued in a state where the flow rate of the flow rate adjustment mechanism 84 of the vent pipe 82 is maintained (the opening area of the fixed opening is maintained).
  • the rate of the thermal decomposition reaction in the organic matter containing space 20 becomes higher than necessary and the temperature rises more than necessary, and remains as it is. Then, the cow dung 100 may burn in the space 20.
  • the flow rate adjusting mechanism 84 of the right side wall 18 or the left side wall 19 of the vent pipe 82 is closed (the shutter plate 87 is rotated to close the fixed opening 89), and the air from the vent pipe 82 to the treated ash accommodating space 21 ( Block inflow of outside air).
  • the flow rate adjustment mechanism 84 is adjusted to reduce the air flow rate through the vent pipe 82.
  • the air flowing into the treated ash accommodating space 21 is blocked, or the air flowing into the space 21 is reduced, so that excess air in the space 20 is eliminated.
  • the thermal decomposition reaction returns to normal, and the operation of the apparatus 10A is continued in a state where the flow rate of the flow rate adjustment mechanism 84 of the vent pipe 82 is maintained (the opening area of the fixed opening 89 is maintained).
  • the flow rate adjusting mechanism 84 of the vent pipe 82 is opened / closed or adjusted.
  • the flow rate of air in the first to fourth supply pipes 62, 71, 101, and 107 depends on the type of organic waste.
  • the air flow rate of the vent pipe 82 may be set in advance, and when thermal decomposition is started in this state, the flow rate adjusting mechanisms 68 of the first to fourth supply pipes 62, 71, 101, 107 are used.
  • This magnetic pyrolysis apparatus 10B has the following effects in addition to the effects of the apparatus 10A of FIG. Since the magnetic pyrolysis apparatus 10B can adjust the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 by the flow rate adjustment mechanism 68, the air at the bottom 24 of the organic matter storage space 20 is lean. Even if the temperature is lowered at this point, the flow rate adjustment mechanism 68 adjusts the air flow rate, and by increasing the air flow rate at that location to allow more air to flow, the temperature at that location can be raised, A local decrease in temperature at the bottom 24 of the space 20 can be prevented.
  • the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 is adjusted by the flow rate adjustment mechanism 68. Then, by reducing the flow rate of air at that location and allowing a small amount of air to flow in, the temperature at that location can be lowered, and a local increase in temperature at the bottom 24 of the space 20 can be prevented.
  • the magnetic pyrolysis apparatus 10B can adjust the flow rate of air flowing into the third supply pipe 101 by the flow rate adjusting mechanism 68, the air pyrolysis device 39B flows in the air fluidized bed 39 by the flow rate of air flowing into the air fluidized bed 39. While adjusting the temperature of the air, it is possible to prevent the temperature of the air flowing through the air fluidized bed 39 from being lowered, and the air adjusted to a predetermined high temperature can be supplied from the air fluidized bed 39 to the organic matter accommodation space 20. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Treatment Of Sludge (AREA)

Abstract

[Problem] To provide a magnetic pyrolysis device that is capable of efficiently performing pyrolysis of organic waste material in a short amount of time and that is capable of performing pyrolysis of organic waste material at a stable temperature over a long period of time. [Solution] A magnetic pyrolysis device (10A) in which: the walls (16, 18) of a decomposition furnace (11) are formed from first through third walls and the decomposition furnace (11) comprises an airtight insulating layer that is formed between the first and the second wall and an air flow layer that is formed between the second and the third walls; an air supply mechanism (12) comprises a first air supply pipe that is arranged on a peripheral wall that extends to the bottom section of an organic material accommodation space and that causes air to flow from the bottom section side to the organic material accommodation space and the air flow layer, and a permanent magnet that is attached to the first air supply tube and that magnetizes air; and an exhaust mechanism (13) comprises a gas exhaust pipe that extends from the decomposition furnace (11) to the outside and a blower that forcibly discharges gas that is generated in the organic material accommodation space during pyrolysis of organic waste material.

Description

磁気熱分解装置Magnetic pyrolysis device
 本発明は、磁気熱を利用して有機物を熱分解する磁気熱分解装置に関する。 The present invention relates to a magnetic pyrolysis apparatus that thermally decomposes organic matter using magnetic heat.
 外部空間から略遮断された熱分解処理室を形成する耐熱容器と、耐熱容器の壁部に設けられて、空気を熱分解処理室に自然吸気で取り入れる熱分解用空気の空気取入口と、空気取入口を絞ることによって熱分解処理室への空気の流入量を制限する流入空気制限手段と、空気取入口から熱分解処理室に空気を導く空気通路上に磁場を形成して熱分解用空気を磁気処理する複数対の磁石と、耐熱容器内部に棚状のスノコで廃棄物を支持する廃棄物支持手段と、耐熱容器内部の壁部に設けられた排気ガスの排出口と、排出口より排出された排気ガスを水槽内で曝気して無害化する有害物の除去システムと、排気ガスに含まれるダイオキシン類やフロン等の難分解物質を吸着する触媒システムと、ファン部によって排気ガスを大気中に排気する排気手段とを備えた熱分解炉が公開されている(特許文献1参照)。この熱分解炉は、空気通路上において熱分解用空気に磁界を作用させるとともに、熱分解処理室内のわずかな空気を利用して熱分解処理物を継続的に燃焼することができ、熱分解によるダイオキシンの再合成温度を経ることがないため、ダイオキシン類の生成を抑制することができる。 A heat-resistant container that forms a pyrolysis chamber that is substantially cut off from the external space, an air intake port for pyrolysis air that is provided on the wall of the heat-resistant container, and that takes air into the pyrolysis chamber by natural intake air; Inlet air restricting means for restricting the amount of air flowing into the pyrolysis chamber by restricting the inlet, and a pyrolysis air by forming a magnetic field on the air passage leading the air from the air inlet to the pyrolysis chamber A plurality of pairs of magnets for magnetic processing, a waste support means for supporting waste with shelf-like slats inside the heat-resistant container, an exhaust gas exhaust port provided on the wall inside the heat-resistant container, and an exhaust port The exhaust gas is exhausted to the atmosphere by a harmful substance removal system that aerated the exhaust gas in the water tank to make it harmless, a catalyst system that adsorbs difficult-to-decompose substances such as dioxins and chlorofluorocarbons contained in the exhaust gas, and a fan unit. Exhaust to exhaust Pyrolysis furnace comprising a stage has been published (see Patent Document 1). In this pyrolysis furnace, a magnetic field is applied to the pyrolysis air in the air passage, and the pyrolysis product can be continuously burned using a small amount of air in the pyrolysis chamber. Since the dioxin resynthesis temperature is not passed, the production of dioxins can be suppressed.
特開2008-55381号公報JP 2008-55381 A
 前記特許文献1に開示の熱分解炉は、耐熱容器の外周壁が外気に露出し、廃棄物の熱分解中に熱分解処理室の熱が外周壁から外部に放熱され、その保温性能が低いから、熱分解処理室の熱が耐熱容器の外周壁によって常時冷やされ、熱分解中における熱分解処理室全域を一定の温度に保持することができず、廃棄物を短時間に効率よく熱分解することができない。また、この熱分解炉は、空気取入口から熱分解処理室へ流入する空気を加熱することはなく、外部の周囲温度と略同一の温度の空気が供給されるから、空気取入口から取り入れた熱分解用空気の量によっては熱分解処理室の温度が低下し、熱分解中における熱分解処理室の温度を一定の高温に保持することができず、廃棄物の熱分解を安定した温度で長時間行うことができない場合がある。さらに、熱分解炉は、熱分解処理室に投入する廃棄物の含水率にもよるが、必要以上に高い含水率の廃棄物を投入すると、熱分解処理室の火種の温度が急激に低下して火種が鎮火してしまう場合がある。 In the thermal decomposition furnace disclosed in Patent Document 1, the outer peripheral wall of the heat-resistant container is exposed to the outside air, and the heat of the thermal decomposition treatment chamber is radiated from the outer peripheral wall to the outside during the thermal decomposition of the waste, and the heat retaining performance is low. Therefore, the heat in the pyrolysis chamber is constantly cooled by the outer peripheral wall of the heat-resistant container, and the entire pyrolysis chamber cannot be maintained at a constant temperature during pyrolysis, and waste is efficiently pyrolyzed in a short time. Can not do it. In addition, this pyrolysis furnace does not heat the air flowing into the pyrolysis chamber from the air intake, and is supplied with air having substantially the same temperature as the external ambient temperature. Depending on the amount of pyrolysis air, the temperature of the pyrolysis chamber decreases, and the temperature of the pyrolysis chamber during pyrolysis cannot be maintained at a constant high temperature. It may not be possible for a long time. In addition, depending on the moisture content of the waste to be introduced into the pyrolysis chamber, the pyrolysis furnace rapidly reduces the temperature of the fire in the pyrolysis chamber if waste with a moisture content higher than necessary is introduced. Fire may extinguish.
 本発明の目的は、熱分解中の温度低下を防ぐことができ、熱分解中における温度を一定の高温に保持することができる磁気熱分解装置を提供することにある。本発明の他の目的は、有機物を短時間に効率よく熱分解することができ、有機物の熱分解を安定した温度で長時間行うことができる磁気熱分解装置を提供することにある。 An object of the present invention is to provide a magnetic pyrolysis apparatus that can prevent a temperature drop during thermal decomposition and can maintain the temperature during thermal decomposition at a constant high temperature. Another object of the present invention is to provide a magnetic pyrolysis apparatus capable of efficiently thermally decomposing organic matter in a short time and capable of thermally decomposing the organic matter at a stable temperature for a long time.
 前記課題を解決するための本発明の前提は、所定容積の分解炉と、分解炉に空気を給気する給気機構と、分解炉からガスを排気する排気機構とを備え、分解炉が、分解対象の有機物を収容する有機物収容空間と、有機物収容空間の下方に位置して有機物を処理した処理灰が落下する処理灰収容空間と、分解炉に設置された開閉機構によって開閉されて有機物収容空間に有機物を投入する投入口と、分解炉に設置された開閉機構によって開閉されて処理灰収容空間から処理灰を取り出す取出口とを有し、磁気熱を利用して有機物を熱分解する磁気熱分解装置である。 The premise of the present invention for solving the above-mentioned problems includes a cracking furnace having a predetermined volume, an air supply mechanism for supplying air to the cracking furnace, and an exhaust mechanism for exhausting gas from the cracking furnace, An organic matter storage space for storing the organic matter to be decomposed, a treatment ash storage space for dropping treated ash that is located below the organic matter storage space, and an open / close mechanism installed in the decomposition furnace to store the organic matter A magnet that has an inlet for introducing organic matter into the space, and an outlet that is opened and closed by an opening and closing mechanism installed in the decomposition furnace to take out the treated ash from the treated ash storage space, and thermally decomposes the organic matter using magnetic heat It is a thermal decomposition apparatus.
 前記前提における本発明の特徴は、分解炉の周壁が、その外部に対向する第1周壁と、第1周壁の内側に位置する第2周壁と、第2周壁の内側に位置して収容空間に対向する第3周壁とから形成され、分解炉が、第1および第2周壁の間に画成されて処理灰収容空間に延びるとともに有機物収容空間の底部から頂部に向かって延びる気密断熱層と、第2および第3周壁の間に画成されて有機物収容空間の底部から頂部に向かって延びる空気流動層とを有し、給気機構が、有機物収容空間の底部に延びる周壁に設置されて底部の側から有機物収容空間および空気流動層に空気を流入させる複数の第1給気管と、それら第1給気管に取り付けられて第1給気管を通過する空気を磁化する永久磁石とを含み、排気機構が、分解炉から外部に延びるガス排気管と、ガス排気管に設置されて有機物の熱分解中に有機物収容空間に発生したガスを強制的に排気する送風機とを含むことにある。 The feature of the present invention based on the above premise is that the peripheral wall of the cracking furnace is a first peripheral wall facing the outside, a second peripheral wall located inside the first peripheral wall, and an accommodation space located inside the second peripheral wall. An airtight heat insulating layer formed between the first and second peripheral walls, the cracking furnace being defined between the first and second peripheral walls and extending to the treated ash storage space and extending from the bottom to the top of the organic matter storage space; An air fluidized layer defined between the second and third peripheral walls and extending from the bottom to the top of the organic material storage space, and an air supply mechanism is installed on the peripheral wall extending to the bottom of the organic material storage space. A plurality of first air supply pipes that allow air to flow into the organic substance containing space and the air fluidized bed from the side of the air, and permanent magnets that are attached to the first air supply pipes and magnetize the air that passes through the first air supply pipes, The mechanism extends outside from the cracking furnace And scan the exhaust pipe is to include a blower for forcibly discharging gas generated in the organic material receiving space is disposed in the gas exhaust pipe during the thermal decomposition of organic matter.
 本発明の一例としては、空気流動層が、有機物収容空間の底部に開口する底部開口と、有機物収容空間の頂部に開口する頂部開口とを有するとともに、底部開口および頂部開口において有機物収容空間につながっている。 As an example of the present invention, the air fluidized bed has a bottom opening that opens to the bottom of the organic matter accommodation space and a top opening that opens to the top of the organic matter accommodation space, and is connected to the organic matter accommodation space at the bottom opening and the top opening. ing.
 本発明の他の一例としては、第1給気管が、第1周壁から外側に向かって延びる外側第1給気管と、第1および第2周壁を貫通して分解炉の内側に延びる内側第1給気管と、内側第1給気管の先端部に位置して有機物収容空間および空気流動層に開口する給気口とから形成され、外側第1給気管が、第1周壁の側に位置する断熱部材と、第1給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第1給気管の内部に対向配置されている。 As another example of the present invention, the first air supply pipe includes an outer first air supply pipe that extends outward from the first peripheral wall, and an inner first that extends through the first and second peripheral walls to the inside of the cracking furnace. Heat insulation formed from an air supply pipe and an air supply opening that is located at the tip of the inner first air supply pipe and opens into the organic substance containing space and the air fluidized layer, and the outer first air supply pipe is located on the first peripheral wall side A member and a flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the first air supply pipe, and a plurality of permanent magnets are arranged opposite to each other inside the outer first air supply pipe extending outside the heat insulating member. .
 本発明の他の一例としては、給気機構が、有機物収容空間の中間部に延びる周壁に設置されて中間部の側から有機物収容空間に空気を流入させる複数の第2給気管と、それら第2給気管に取り付けられて第2給気管を通過する空気を磁化する永久磁石とを含む。 As another example of the present invention, the air supply mechanism is installed on the peripheral wall extending to the intermediate portion of the organic matter storage space, and a plurality of second air supply pipes that allow air to flow into the organic matter storage space from the intermediate portion side, And a permanent magnet that magnetizes the air that is attached to the two air supply pipes and passes through the second air supply pipe.
 本発明の他の一例としては、第2給気管が、第1周壁から外側に向かって延びる外側第2給気管と、第1~第3周壁を貫通して分解炉の内側に延びる内側第2給気管と、内側第2給気管の先端部に位置して有機物収容空間に開口する給気口とから形成され、外側第2給気管が、第1周壁の側に位置する断熱部材と、第2給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第2給気管の内部に対向配置されている。 As another example of the present invention, the second air supply pipe includes an outer second air supply pipe that extends outward from the first peripheral wall, and an inner second air pipe that extends through the first to third peripheral walls to the inside of the cracking furnace. A heat insulating member that is formed from an air supply pipe and an air supply opening that is located at a distal end portion of the inner second air supply pipe and opens into the organic substance housing space, and the outer second air supply pipe is located on the first peripheral wall side; 2 and a flow rate adjusting mechanism capable of adjusting the flow rate of the air flowing into the air supply pipe, and a plurality of permanent magnets are arranged opposite to each other inside the outer second air supply pipe extending outside the heat insulating member.
 本発明の他の一例としては、給気機構が、有機物収容空間の中間部に延びる周壁に設置されて中間部の側から空気流動層に空気を流入させる複数の第3給気管と、それら第3給気管に取り付けられて第3給気管を通過する空気を磁化する永久磁石とを含む。 As another example of the present invention, the air supply mechanism is installed on a peripheral wall extending in the intermediate part of the organic substance containing space, and a plurality of third air supply pipes that allow air to flow into the air fluidized bed from the intermediate part side, And a permanent magnet that magnetizes the air that is attached to the three supply pipes and passes through the third supply pipe.
 本発明の他の一例としては、第3給気管が、第1周壁から外側に向かって延びる外側第3給気管と、第1および第2周壁を貫通して分解炉の内側に延びる内側第3給気管と、内側第3給気管の先端部に位置して空気流動層に開口する給気口とから形成され、外側第3給気管が、第1周壁の側に位置する断熱部材と、第3給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第3給気管の内部に対向配置されている。 As another example of the present invention, the third supply pipe has an outer third supply pipe extending outward from the first peripheral wall, and an inner third extending through the first and second peripheral walls to the inside of the cracking furnace. A heat insulating member that is formed from an air supply pipe and an air supply opening that is located at a distal end portion of the inner third air supply pipe and opens into the air fluidized bed, and the outer third air supply pipe is located on the first peripheral wall side; And a flow rate adjusting mechanism capable of adjusting the flow rate of the air flowing into the three air supply pipes, and a plurality of permanent magnets are arranged opposite to each other inside the outer third air supply pipe extending outside the heat insulating member.
 本発明の他の一例としては、給気機構が、有機物収容空間の底部に延びる周壁に設置されて底部の側から有機物収容空間に空気を流入させる複数の第4給気管と、それら第4給気管に取り付けられて第4給気管を通過する空気を磁化する永久磁石とを含む。 As another example of the present invention, the air supply mechanism is installed on a peripheral wall that extends to the bottom of the organic matter storage space, and a plurality of fourth supply pipes that allow air to flow into the organic matter storage space from the bottom side, and the fourth supply pipes. A permanent magnet that is attached to the trachea and magnetizes the air passing through the fourth air supply pipe.
 本発明の他の一例としては、第4給気管が、第1周壁から外側に向かって延びる外側第4給気管と、第1および第2周壁を貫通して分解炉の内側に延びる内側第4給気管と、内側第4給気管の先端部に位置して空気流動層に開口する給気口とから形成され、外側第4給気管が、第1周壁の側に位置する断熱部材と、第4給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第4給気管の内部に対向配置されている。 As another example of the present invention, the fourth supply pipe has an outer fourth supply pipe extending outward from the first peripheral wall, and an inner fourth extending through the first and second peripheral walls to the inside of the cracking furnace. A heat insulating member that is formed from an air supply pipe and an air supply opening that is located at a distal end portion of the inner fourth air supply pipe and opens to the air fluidized bed, and the outer fourth air supply pipe is located on the first peripheral wall side; And a flow rate adjusting mechanism capable of adjusting the flow rate of the air flowing into the four air supply pipes, and a plurality of permanent magnets are arranged opposite to each other inside the outer fourth air supply pipe extending outside the heat insulating member.
 本発明の他の一例としては、磁気熱分解装置が処理灰収容空間に延びる周壁に作られて処理灰収容空間に空気を流入させる少なくとも1個の通気機構を含む。 As another example of the present invention, the magnetic pyrolysis apparatus includes at least one ventilation mechanism that is formed on a peripheral wall extending into the treated ash containing space and allows air to flow into the treated ash containing space.
 本発明の他の一例としては、通気機構が、第1および第1周壁を貫通して分解炉の内側に延びる通気管と、通気管の先端部に位置して処理灰収容空間に開口する通気口と、通気管に流入する空気の流量を調節可能な流量調節機構とから形成されている。 As another example of the present invention, the ventilation mechanism includes a ventilation pipe that extends through the first and first peripheral walls to the inside of the cracking furnace, and ventilation that is located at the tip of the ventilation pipe and opens into the treatment ash containing space. It is formed from a mouth and a flow rate adjusting mechanism capable of adjusting the flow rate of air flowing into the vent pipe.
 本発明の他の一例としては、排気機構が、ガス排気管につながって有機物の熱分解中に有機物収容空間で発生したガスを通気させる水槽と、ガス排気管につながってガスに含まれる成分を取り除くフィルタとを含む。 As another example of the present invention, the exhaust mechanism is connected to the gas exhaust pipe, and a water tank for venting the gas generated in the organic matter storage space during the thermal decomposition of the organic matter, and a component contained in the gas connected to the gas exhaust pipe are included. And a filter to be removed.
 本発明の他の一例として、磁気熱分解装置では、有機物の熱分解中における分解温度が200~400℃の範囲にある。 As another example of the present invention, in the magnetic pyrolysis apparatus, the decomposition temperature during the thermal decomposition of the organic substance is in the range of 200 to 400 ° C.
 本発明の他の一例として、磁気熱分解装置では、含水率が65~95%の有機物を有機物収容空間において熱分解可能である。 As another example of the present invention, in the magnetic pyrolysis apparatus, an organic substance having a moisture content of 65 to 95% can be pyrolyzed in the organic substance containing space.
 本発明の他の一例として、磁気熱分解装置では、有機物収容空間に火種を収容しつつ、有機物収容空間に有機物の投入を継続した場合の有機物収容空間における熱分解の連続時間が1週間~2ヶ月である。 As another example of the present invention, in the magneto-pyrolysis apparatus, the continuous time of thermal decomposition in the organic matter accommodation space when the organic matter is continuously introduced into the organic matter accommodation space while containing the fire species in the organic matter accommodation space is from 1 week to 2 Months.
 本発明の他の一例として、磁気熱分解装置では、処理灰収容空間から取り出された処理灰がセラミック化しており、セラミック化した処理灰を有機物に混合した処理灰混合有機物を有機物収容空間に投入し、または、セラミック化した処理灰を有機物とともに有機物収容空間に投入する。 As another example of the present invention, in the magnetic pyrolysis apparatus, the treated ash taken out from the treated ash containing space is made into a ceramic, and the treated ash mixed organic matter obtained by mixing the ceramicized treated ash with the organic matter is put into the organic matter containing space. Alternatively, the ceramicized treated ash is introduced into the organic material storage space together with the organic material.
 本発明にかかる磁気熱分解装置によれば、分解炉が第1および第2周壁の間に画成されて処理灰収容空間と有機物収容空間とに延びる気密断熱層を有し、有機物の熱分解中における分解炉の熱の外気への放熱が気密断熱層によって防止されるから、分解炉における保温性能が高く、有機物収容空間の熱が分解炉の周壁によって冷やされることはなく、熱分解中における有機物収容空間全域を一定の温度に保持することができ、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、周壁に設置された複数の第1給気管が有機物収容空間の底部の側から有機物収容空間に空気を流入させることで、永久磁石によって磁化された空気が有機物収容空間の全域に満遍なく給気されるから、有機物の熱分解に必要な磁気熱を発生させるための空気を有機物収容空間全域に十分に給気することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、それら第1給気管から空気流動層に流入した空気が空気流動層を流動する間に有機物収容空間の熱によって加熱され、空気の温度が空気流動層によって上昇し、所定温度に加熱された空気が有機物収容空間に給気されるから、熱分解中における有機物収容空間の温度を一定の高温に保持することができ、有機物の熱分解を安定した温度で長時間行うことができる。また、分解炉の有機物収容空間の温度が一定の高温に保持されるから、含水量の高い有機物が投入されたとしても、それによって有機物収容空間の火種が鎮火することはなく、火種を長時間維持することができ、その火種によって含水率の高い有機物を確実に熱分解することができる。 According to the magnetic pyrolysis apparatus of the present invention, the cracking furnace is defined between the first and second peripheral walls and has an airtight heat insulating layer extending between the treated ash containing space and the organic matter containing space, and the organic matter is thermally decomposed. Since heat release from the heat of the cracking furnace to the outside air is prevented by the hermetic heat insulating layer, the thermal insulation performance in the cracking furnace is high, and the heat of the organic substance containing space is not cooled by the peripheral wall of the cracking furnace, The entire organic substance housing space can be maintained at a constant temperature, and the organic substance can be efficiently thermally decomposed in a short time. In the magnetic pyrolysis apparatus, a plurality of first air supply pipes installed on a peripheral wall allow air to flow into the organic matter accommodation space from the bottom side of the organic matter accommodation space, so that the air magnetized by the permanent magnet is the entire area of the organic matter accommodation space. Therefore, air for generating the magnetic heat necessary for the thermal decomposition of organic matter can be sufficiently supplied to the entire area of the organic matter containing space, and the organic matter can be reliably pyrolyzed in the organic matter containing space. In addition, the organic matter can be efficiently thermally decomposed in a short time. The magnetic pyrolysis apparatus is heated by the heat of the organic substance containing space while the air flowing into the air fluidized bed from the first air supply pipe flows through the air fluidized bed, and the temperature of the air rises by the air fluidized bed to a predetermined temperature. Since the heated air is supplied to the organic matter storage space, the temperature of the organic matter storage space during the thermal decomposition can be maintained at a constant high temperature, and the thermal decomposition of the organic matter can be performed at a stable temperature for a long time. it can. In addition, since the temperature of the organic matter storage space of the cracking furnace is maintained at a constant high temperature, even if an organic matter with a high water content is introduced, the fire type in the organic matter storage space is not extinguished, and the fire type is kept for a long time. The organic matter having a high water content can be reliably pyrolyzed by the fire type.
 空気流動層が有機物収容空間の底部に開口する底部開口と有機物収容空間の頂部に開口する頂部開口とを有するとともに、底部開口および頂部開口において有機物収容空間につながっている磁気熱分解装置は、有機物の熱分解中にそれら第1給気管から給気された空気が底部開口から有機物収容空間に流入するから、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、それら第1給気管から空気流動層に流入した空気が空気流動層の底部開口から頂部開口に向かって流動する間に有機物収容空間の熱によって加熱され、空気の温度が空気流動層によって上昇し、所定温度に加熱された空気が有機物収容空間に給気されるから、熱分解中における有機物収容空間の温度を一定の高温に保持することができ、有機物の熱分解を安定した温度で長時間行うことができる。 The magnetic thermal decomposition apparatus in which the air fluidized bed has a bottom opening that opens to the bottom of the organic matter containing space and a top opening that opens to the top of the organic matter containing space, and is connected to the organic matter containing space at the bottom opening and the top opening. Since the air supplied from the first air supply pipes flows into the organic matter storage space from the bottom opening during the thermal decomposition of the organic matter, the organic matter can be reliably pyrolyzed in the organic matter storage space, and the organic matter can be efficiently used in a short time. Can be pyrolyzed well. The magnetic pyrolysis apparatus is heated by the heat of the organic substance containing space while the air flowing into the air fluidized bed from the first air supply pipe flows from the bottom opening to the top opening of the air fluidized bed, and the temperature of the air is reduced to the air. Since the air heated by the fluidized bed and heated to the specified temperature is supplied to the organic matter storage space, the temperature of the organic matter storage space during the thermal decomposition can be maintained at a constant high temperature, and the thermal decomposition of the organic matter is stable. Can be carried out at a high temperature for a long time.
 第1給気管が第1周壁から外側に向かって延びる外側第1給気管と第1および第2周壁を貫通して分解炉の内側に延びる内側第1給気管と内側第1給気管の先端部に位置して有機物収容空間および空気流動層に開口する給気口とから形成され、外側第1給気管が第1周壁の側に位置する断熱部材と第1給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第1給気管の内部に対向配置されている磁気熱分解装置は、有機物の熱分解中にそれら第1給気管の給気口から給気された空気が有機物収容空間に流入するから、有機物の熱分解に必要な磁気熱を発生させるため磁化された空気を有機物収容空間の底部に十分に給気することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、それら第1給気管の給気口から空気流動層に流入した空気が空気流動層の底部開口から頂部開口に向かって流動する間に有機物収容空間において発生した熱によって加熱され、空気流動層を流動する空気の温度が上昇し、所定温度に加熱された空気が空気流動層から有機物収容空間に給気されるから、熱分解中における有機物収容空間の温度を一定の高温に保持することができ、有機物の熱分解を安定した温度で長時間行うことができる。磁気熱分解装置は、それら第1給気管に流入する空気の流量を流量調節機構によって調節することができるから、有機物収容空間の底部の空気が希薄な箇所において温度が低下したとしても、流量調節機構によって空気の流量を調節し、その箇所における空気の流量を増加させて多くの空気を流入させることで、その箇所の温度を上昇させることができ、有機物収容空間の底部における温度の局所的な低下を防ぐことができる。また、有機物収容空間の底部の空気が過多な箇所において温度が必要以上に上昇したとしても、流量調節機構によって空気の流量を調節し、その箇所における空気の流量を減少させて少ない空気を流入させることで、その箇所の温度を下降させることができ、有機物収容空間の底部における温度の局所的な上昇を防ぐことができる。磁気熱分解装置は、断熱部材の外側に延びる外側第1給気管の内部に対向配置されたそれら永久磁石が作る磁場の作用によって空気が確実に磁化され、それによって空気が活性化し、活性化した空気が有機物収容空間における磁気熱の発生を促進するとともに、活性化した空気が有機物収容空間に収容された有機物に接触することで、有機物の表面で種火から派生した磁気熱による急激な熱分解反応が生じ、有機物を確実に熱分解することができる。磁気熱分解装置は、活性化した空気が有機物収容空間における磁気熱の発生を促進することで、種火から派生した磁気熱が有機物収容空間に蓄熱されるから、有機物収容空間の温度を一定の高温に保持することができるとともに、有機物収容空間における有機物の熱分解を長期間にわたって維持することができる。さらに、それら永久磁石が断熱部材の外側に延びる外側第1給気管の内部に対向配置されているから、有機物の熱分解中に分解炉の熱が断熱部材によって遮断され、熱が外側第1給気管に伝わり難く、外側第1給気管が高温になることによるそれら永久磁石の磁力の低下を防ぐことができ、それら磁石によって第1給気管を通過する空気を確実に磁化することができる。 Front end portions of an inner first air supply pipe and an inner first air supply pipe extending through the first and second peripheral walls to the inside of the cracking furnace, the first air supply pipe extending outward from the first peripheral wall A heat insulating member located on the first peripheral wall side and a flow rate of air flowing into the first air supply pipe. The magnetic pyrolysis apparatus has an adjustable flow rate control mechanism, and a plurality of permanent magnets are arranged opposite to each other inside the first outer air supply pipe extending outside the heat insulating member. Since air supplied from the air supply port of one air supply pipe flows into the organic matter storage space, the magnetized air is sufficiently supplied to the bottom of the organic matter storage space in order to generate magnetic heat necessary for thermal decomposition of the organic matter. Ensure that organic matter is contained in the organic matter storage space. It is possible to decompose organic substances can be efficiently pyrolyzed in a short time. The magnetic pyrolysis apparatus is heated by the heat generated in the organic substance containing space while the air flowing into the air fluidized bed from the air inlets of the first air supply pipes flows from the bottom opening to the top opening of the air fluidized bed. The temperature of the air flowing through the air fluidized bed rises, and the air heated to a predetermined temperature is supplied from the air fluidized bed to the organic matter housing space. The thermal decomposition of the organic matter can be performed at a stable temperature for a long time. Since the magnetic pyrolysis apparatus can adjust the flow rate of air flowing into these first air supply pipes by the flow rate adjustment mechanism, even if the temperature is lowered in a portion where the air at the bottom of the organic matter storage space is lean, the flow rate adjustment By adjusting the air flow rate by the mechanism and increasing the air flow rate at that location to allow more air to flow in, the temperature at that location can be raised, and the local temperature at the bottom of the organic matter storage space can be increased. Decline can be prevented. Even if the temperature of the bottom of the organic substance containing space is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism, and the air flow rate at that location is decreased to allow less air to flow in. Thereby, the temperature of the location can be lowered | hung and the local raise of the temperature in the bottom part of organic substance accommodation space can be prevented. In the magnetic pyrolysis apparatus, air is surely magnetized by the action of a magnetic field created by the permanent magnets arranged opposite to each other inside the outer first air supply pipe extending outside the heat insulating member, thereby activating and activating the air. Air accelerates the generation of magnetic heat in the organic material storage space, and the activated air contacts the organic material stored in the organic material storage space, so that rapid thermal decomposition by the magnetic heat derived from the seed fire on the surface of the organic material Reaction occurs and the organic matter can be surely thermally decomposed. In the magnetic pyrolysis apparatus, the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold | maintain to high temperature, the thermal decomposition of the organic substance in an organic substance accommodation space can be maintained over a long period of time. Furthermore, since these permanent magnets are arranged oppositely to the inside of the outer first air supply pipe extending to the outside of the heat insulating member, the heat of the cracking furnace is blocked by the heat insulating member during the thermal decomposition of the organic matter, and the heat is supplied to the outer first supply pipe. It is difficult to transmit to the trachea, and it is possible to prevent a decrease in the magnetic force of the permanent magnets due to the high temperature of the outer first air supply pipe, and the air passing through the first air supply pipe can be reliably magnetized by the magnets.
 給気機構が有機物収容空間の中間部に延びる周壁に設置されて中間部の側から有機物収容空間に空気を流入させる複数の第2給気管とそれら第2給気管に取り付けられて第2給気管を通過する空気を磁化する永久磁石とを含む磁気熱分解装置は、周壁に設置された複数の第2給気管を介して有機物収容空間の中間部の側から有機物収容空間に空気を流入させることで、永久磁石によって磁化された空気が有機物収容空間の全域に満遍なく給気されるから、有機物の熱分解に必要な熱を発生させるための空気を有機物収容空間全域に十分に給気することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。 A plurality of second air supply pipes that are installed on a peripheral wall that extends to an intermediate portion of the organic matter accommodation space and allows air to flow into the organic matter accommodation space from the side of the intermediate portion, and the second air supply pipes that are attached to these second air supply pipes A magnetic pyrolysis apparatus including a permanent magnet that magnetizes air that passes through a plurality of second air supply pipes installed on a peripheral wall causes air to flow into the organic matter accommodation space from the intermediate portion side of the organic matter accommodation space. Therefore, the air magnetized by the permanent magnet is uniformly supplied to the entire area of the organic substance accommodating space, so that the air for generating the heat necessary for the thermal decomposition of the organic substance can be sufficiently supplied to the entire organic substance accommodating space. In addition, the organic matter can be reliably pyrolyzed in the organic matter housing space, and the organic matter can be efficiently pyrolyzed in a short time.
 第2給気管が第1周壁から外側に向かって延びる外側給気管と第1~第3周壁を貫通して分解炉の内側に延びる内側第2給気管と内側第2給気管の先端部に位置して有機物収容空間に開口する給気口とから形成され、外側第2給気管が第1周壁の側に位置する断熱部材と第2給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第2給気管の内部に対向配置されている磁気熱分解装置は、有機物の熱分解中にそれら第2給気管の給気口から給気された空気が有機物収容空間に流入するから、有機物の熱分解に必要な磁気熱を発生させるための磁化された空気を有機物収容空間の中間部に十分に給気することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、それら第2給気管に流入する空気の流量を流量調節機構によって調節することができるから、有機物収容空間の頂部や中間部の空気が希薄な箇所において温度が低下したとしても、流量調節機構によって空気の流量を調節し、その箇所における空気の流量を増加させて多くの空気を流入させることで、その箇所の温度を上昇させることができ、有機物収容空間の頂部や中間部における温度の局所的な低下を防ぐことができる。また、有機物収容空間の頂部や中間部の空気が過多な箇所において温度が必要以上に上昇したとしても、流量調節機構によって空気の流量を調節し、その箇所における空気の流量を減少させて少ない空気を流入させることで、その箇所の温度を下降させることができ、有機物収容空間の頂部や中間部における温度の局所的な上昇を防ぐことができる。磁気熱分解装置は、断熱部材の外側に延びる外側第2給気管の内部に対向配置されたそれら永久磁石が作る磁場の作用によって空気が確実に磁化され、それによって空気が活性化し、活性化した空気が有機物収容空間における磁気熱の発生を促進するとともに、活性化した空気が有機物収容空間に収容された有機物に接触することで、有機物の表面で種火から派生した磁気熱による急激な熱分解反応が生じ、有機物を確実に熱分解することができる。磁気熱分解装置は、活性化した空気が有機物収容空間における磁気熱の発生を促進することで、種火から派生した磁気熱が有機物収容空間に蓄熱されるから、有機物収容空間の温度を一定の高温に保持することができるとともに、有機物収容空間における有機物の熱分解を長期間にわたって維持することができる。さらに、それら永久磁石が断熱部材の外側に延びる外側第2給気管の内部に対向配置されているから、有機物の熱分解中に分解炉の熱が断熱部材によって遮断され、熱が外側第2給気管に伝わり難く、外側第2給気管が高温になることによるそれら永久磁石の磁力の低下を防ぐことができ、それら磁石によって第2給気管を通過する空気を確実に磁化することができる。 The second air supply pipe is located at the distal end of the outer air supply pipe extending outward from the first peripheral wall, the inner second air supply pipe and the inner second air supply pipe extending through the first to third peripheral walls and extending inside the cracking furnace. And a flow rate adjusting mechanism that is formed from an air supply opening that opens into the organic substance housing space, and an outer second air supply pipe that can adjust the flow rate of the air flowing into the second air supply pipe and the heat insulating member positioned on the first peripheral wall side. And a plurality of permanent magnets arranged oppositely to the inside of the second outer air supply pipe extending outside the heat insulating member, the air supply of these second air supply pipes during the thermal decomposition of the organic matter Since the air supplied from the mouth flows into the organic substance storage space, the magnetized air for generating the magnetic heat necessary for the thermal decomposition of the organic substance can be sufficiently supplied to the intermediate part of the organic substance storage space. The organic matter can be reliably pyrolyzed in the organic matter storage space. Together, it can be efficiently pyrolyzed in a short time the organics. Since the magnetic pyrolysis apparatus can adjust the flow rate of the air flowing into these second air supply pipes by the flow rate adjustment mechanism, even if the temperature is lowered at the top of the organic matter storage space or in the middle portion of the organic material storage space, the temperature is lowered. By adjusting the air flow rate with the flow rate adjustment mechanism and increasing the air flow rate at that location to allow more air to flow in, the temperature at that location can be raised, and the top or middle of the organic matter storage space It is possible to prevent a local decrease in temperature. Also, even if the temperature of the top or middle part of the organic substance containing space is excessively high, the air flow rate is adjusted by the flow rate adjustment mechanism, and the air flow rate at that point is reduced. As a result, the temperature at that location can be lowered, and the local rise in temperature at the top or middle of the organic matter storage space can be prevented. In the magnetic pyrolysis apparatus, air is reliably magnetized by the action of a magnetic field created by the permanent magnets arranged opposite to the inside of the outer second air supply pipe extending outside the heat insulating member, thereby activating and activating the air. Air accelerates the generation of magnetic heat in the organic material storage space, and the activated air contacts the organic material stored in the organic material storage space, so that rapid thermal decomposition by the magnetic heat derived from the seed fire on the surface of the organic material Reaction occurs and the organic matter can be surely thermally decomposed. In the magnetic pyrolysis apparatus, the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold | maintain to high temperature, the thermal decomposition of the organic substance in an organic substance accommodation space can be maintained over a long period of time. Furthermore, since these permanent magnets are arranged oppositely to the inside of the outer second air supply pipe extending to the outside of the heat insulating member, the heat of the cracking furnace is blocked by the heat insulating member during the thermal decomposition of the organic matter, and the heat is supplied to the outer second supply pipe. It is difficult to transmit to the trachea, and it is possible to prevent a decrease in the magnetic force of the permanent magnets due to the high temperature of the outer second air supply pipe, and the air passing through the second air supply pipe can be reliably magnetized by the magnets.
 給気機構が有機物収容空間の中間部に延びる周壁に設置されて中間部の側から空気流動層に空気を流入させる複数の第3給気管とそれら第3給気管に取り付けられて第3給気管を通過する空気を磁化する永久磁石とを含む磁気熱分解装置は、それら第3給気管の給気口から空気流動層に流入した磁化された空気が空気流動層を流動する間に有機物収容空間において発生した熱によって加熱され、空気流動層を流動する空気の温度が上昇し、所定温度に加熱された空気が空気流動層から有機物収容空間に給気されるから、熱分解中における有機物収容空間の温度を一定の高温に保持することができ、有機物の熱分解を安定した温度で長時間行うことができる。 A plurality of third air supply pipes that are installed on a peripheral wall that extends to the middle part of the organic substance containing space and that allows air to flow into the air fluidized bed from the side of the intermediate part, and a third air supply pipe that is attached to these third air supply pipes And a permanent magnet that magnetizes the air passing through the organic pyrolysis device, while the magnetized air that has flowed into the air fluidized bed from the air inlet of the third air supply pipe flows through the air fluidized bed. The temperature of the air flowing through the air fluidized bed rises due to the heat generated in the air, and the air heated to a predetermined temperature is supplied from the air fluidized bed to the organic matter accommodating space. Thus, the organic substance can be thermally decomposed at a stable temperature for a long time.
 第3給気管が第1周壁から外側に向かって延びる外側第3給気管と第1および第2周壁を貫通して分解炉の内側に延びる内側第3給気管と内側第3給気管の先端部に位置して空気流動層に開口する給気口とから形成され、外側第3給気管が第1周壁の側に位置する断熱部材と第3給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第3給気管の内部に対向配置されている磁気熱分解装置は、それら第3給気管の給気口から空気流動層に流入した磁化された空気が空気流動層を流動する間に有機物収容空間において発生した熱によって加熱され、空気流動層を流動する空気の温度が上昇し、所定温度に加熱された空気が空気流動層から有機物収容空間に給気されるから、熱分解中における有機物収容空間の温度を一定の高温に保持することができ、有機物の熱分解を安定した温度で長時間行うことができる。磁気熱分解装置は、それら第3給気管に流入する空気の流量を流量調節機構によって調節することができるから、空気流動層に流入させる空気の流量によって空気流動層を流動する空気の温度を調節しつつ、空気流動層を流動する空気の温度低下を防ぐことができ、所定の高温に調節された空気を空気流動層から有機物収容空間に給気することができる。磁気熱分解装置は、断熱部材の外側に延びる外側第3給気管の内部に対向配置されたそれら永久磁石が作る磁場の作用によって空気が確実に磁化され、それによって空気が活性化し、活性化した空気が有機物収容空間における磁気熱の発生を促進するとともに、活性化した空気が有機物収容空間に収容された有機物に接触することで、有機物の表面で種火から派生した磁気熱による急激な熱分解反応が生じ、有機物を確実に熱分解することができる。磁気熱分解装置は、活性化した空気が有機物収容空間における磁気熱の発生を促進することで、種火から派生した磁気熱が有機物収容空間に蓄熱されるから、有機物収容空間の温度を一定の高温に保持することができるとともに、有機物収容空間における有機物の熱分解を長期間にわたって維持することができる。さらに、それら永久磁石が断熱部材の外側に延びる外側第3給気管の内部に対向配置されているから、有機物の熱分解中に分解炉の熱が断熱部材によって遮断され、熱が外側第3給気管に伝わり難く、外側第3給気管が高温になることによるそれら永久磁石の磁力の低下を防ぐことができ、それら磁石によって第3給気管を通過する空気を確実に磁化することができる。 Front end portions of an inner third air supply pipe and an inner third air supply pipe extending through the first and second peripheral walls to the inside of the cracking furnace, the third air supply pipe extending outward from the first peripheral wall The heat supply member is formed from an air supply opening that is located in the air fluidized bed and the outer third air supply pipe can adjust the flow rate of the air flowing into the third air supply pipe and the heat insulating member located on the first peripheral wall side. And a magnetic pyrolysis apparatus having a plurality of permanent magnets arranged oppositely to the inside of an outer third air supply pipe extending outside the heat insulating member, the air flow from the air supply ports of the third air supply pipe The magnetized air that has flowed into the layer is heated by the heat generated in the organic substance containing space while flowing through the air fluidized bed, the temperature of the air flowing through the air fluidized bed rises, and the air heated to a predetermined temperature is air Pyrolysis is performed from the fluidized bed to the organic matter storage space The temperature of the organic material receiving space can be maintained at a constant high temperature, thermal decomposition of organic matter can be done a long time in a stable temperature in. Since the magnetic pyrolysis apparatus can adjust the flow rate of air flowing into the third air supply pipe by the flow rate adjusting mechanism, the temperature of the air flowing through the air fluidized bed is adjusted by the flow rate of air flowing into the air fluidized bed. However, it is possible to prevent the temperature of the air flowing through the air fluidized bed from being lowered, and the air adjusted to a predetermined high temperature can be supplied from the air fluidized bed to the organic substance containing space. In the magnetic pyrolysis apparatus, air is surely magnetized by the action of a magnetic field created by the permanent magnets arranged opposite to each other inside the outer third air supply pipe extending outside the heat insulating member, thereby activating and activating the air. Air accelerates the generation of magnetic heat in the organic material storage space, and the activated air contacts the organic material stored in the organic material storage space, so that rapid thermal decomposition by the magnetic heat derived from the seed fire on the surface of the organic material Reaction occurs and the organic matter can be surely thermally decomposed. In the magnetic pyrolysis apparatus, the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold | maintain to high temperature, the thermal decomposition of the organic substance in an organic substance accommodation space can be maintained over a long period of time. Furthermore, since these permanent magnets are disposed opposite to the inside of the outer third air supply pipe extending outside the heat insulating member, the heat of the cracking furnace is blocked by the heat insulating member during the thermal decomposition of the organic matter, and the heat is supplied to the outer third supply pipe. It is difficult to transmit to the trachea, and it is possible to prevent a decrease in the magnetic force of these permanent magnets due to the high temperature of the outer third air supply pipe, and it is possible to reliably magnetize the air passing through the third air supply pipe by these magnets.
 給気機構が有機物収容空間の底部に延びる周壁に設置されて底部の側から有機物収容空間に空気を流入させる複数の第4給気管とそれら第4給気管に取り付けられて第4給気管を通過する空気を磁化する永久磁石とを含む磁気熱分解装置は、周壁に設置された複数の第4給気管を介して有機物収容空間の底部の側から有機物収容空間に空気を流入させることで、永久磁石によって磁化された空気が有機物収容空間の全域に満遍なく給気されるから、有機物の熱分解に必要な熱を発生させるための空気を有機物収容空間全域に十分に給気することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。 The air supply mechanism is installed on the peripheral wall extending to the bottom of the organic matter housing space, and a plurality of fourth air supply pipes that allow air to flow into the organic matter containing space from the bottom side, and are attached to the fourth air supply pipes and pass through the fourth air supply pipe And a permanent magnet that magnetizes the air to be permeated through the plurality of fourth air supply pipes installed on the peripheral wall from the bottom side of the organic matter containing space into the organic matter containing space. Since air magnetized by the magnet is uniformly supplied to the entire area of the organic matter storage space, the air for generating the heat necessary for the thermal decomposition of the organic matter can be sufficiently supplied to the entire area of the organic matter storage space. The organic matter can be reliably pyrolyzed in the housing space, and the organic matter can be efficiently pyrolyzed in a short time.
 第4給気管が第1周壁から外側に向かって延びる外側第4給気管と第1および第2周壁を貫通して分解炉の内側に延びる内側第4給気管と内側第4給気管の先端部に位置して空気流動層に開口する給気口とから形成され、外側第4給気管が第1周壁の側に位置する断熱部材と第4給気管に流入する空気の流量を調節可能な流量調節機構とを有し、永久磁石の複数個が断熱部材の外側に延びる外側第4給気管の内部に対向配置されている磁気熱分解装置は、有機物の熱分解中にそれら第4給気管の給気口から給気された空気が有機物収容空間に流入するから、有機物の熱分解に必要な熱を発生させるための空気を有機物収容空間の底部に十分に給気することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、それら第4給気管に流入する空気の流量を流量調節機構によって調節することができるから、有機物収容空間の底部の空気が希薄な箇所において温度が低下したとしても、流量調節機構によって空気の流量を調節し、その箇所における空気の流量を増加させて多くの空気を流入させることで、その箇所の温度を上昇させることができ、有機物収容空間の底部における温度の局所的な低下を防ぐことができる。また、有機物収容空間の底部の空気が過多な箇所において温度が必要以上に上昇したとしても、流量調節機構によって空気の流量を調節し、その箇所における空気の流量を減少させて少ない空気を流入させることで、その箇所の温度を下降させることができ、有機物収容空間の底部における温度の局所的な上昇を防ぐことができる。磁気熱分解装置は、断熱部材の外側に延びる外側第4給気管の内部に対向配置されたそれら永久磁石が作る磁場の作用によって空気が確実に磁化され、それによって空気が活性化し、活性化した空気が有機物収容空間における磁気熱の発生を促進するとともに、活性化した空気が有機物収容空間に収容された有機物に接触することで、有機物の表面で種火から派生した磁気熱による急激な熱分解反応が生じ、有機物を確実に熱分解することができる。磁気熱分解装置は、活性化した空気が有機物収容空間における磁気熱の発生を促進することで、種火から派生した磁気熱が有機物収容空間に蓄熱されるから、有機物収容空間の温度を一定の高温に保持することができるとともに、有機物収容空間における有機物の熱分解を長期間にわたって維持することができる。さらに、それら永久磁石が断熱部材の外側に延びる外側第4給気管の内部に対向配置されているから、有機物の熱分解中に分解炉の熱が断熱部材によって遮断され、熱が外側第4給気管に伝わり難く、外側第4給気管が高温になることによるそれら永久磁石の磁力の低下を防ぐことができ、それら磁石によって第4給気管を通過する空気を確実に磁化することができる。 Front end portions of an inner fourth supply pipe and an inner fourth supply pipe extending through the first and second peripheral walls and extending to the inside of the cracking furnace through the fourth supply pipe extending outward from the first peripheral wall A heat supply member that is formed at the air inlet and is open to the air fluidized bed, and an outer fourth air supply pipe that can adjust the flow rate of the air flowing into the fourth air supply pipe and the heat insulating member located on the first peripheral wall side. And a plurality of permanent magnets arranged oppositely to the inside of the outer fourth air supply pipe extending to the outside of the heat insulating member. Since the air supplied from the air supply port flows into the organic material storage space, the air for generating the heat necessary for the thermal decomposition of the organic material can be sufficiently supplied to the bottom of the organic material storage space. In addition to being able to reliably decompose organic matter in space, Machine was capable of efficiently pyrolyzed in a short time. Since the magnetic pyrolysis apparatus can adjust the flow rate of air flowing into the fourth air supply pipe by the flow rate adjusting mechanism, even if the temperature is lowered at the bottom of the organic matter containing space, the flow rate is adjusted. By adjusting the air flow rate by the mechanism and increasing the air flow rate at that location to allow more air to flow in, the temperature at that location can be raised, and the local temperature at the bottom of the organic matter storage space can be increased. Decline can be prevented. Even if the temperature of the bottom of the organic substance containing space is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism, and the air flow rate at that location is decreased to allow less air to flow in. Thereby, the temperature of the location can be lowered | hung and the local raise of the temperature in the bottom part of organic substance accommodation space can be prevented. In the magnetic pyrolysis apparatus, air is surely magnetized by the action of the magnetic field created by the permanent magnets arranged opposite to the inside of the outer fourth supply pipe extending outside the heat insulating member, thereby activating and activating the air. Air accelerates the generation of magnetic heat in the organic material storage space, and the activated air contacts the organic material stored in the organic material storage space, so that rapid thermal decomposition by the magnetic heat derived from the seed fire on the surface of the organic material Reaction occurs and the organic matter can be surely thermally decomposed. In the magnetic pyrolysis apparatus, the activated air promotes the generation of magnetic heat in the organic material storage space, and the magnetic heat derived from the seed fire is stored in the organic material storage space, so that the temperature of the organic material storage space is kept constant. While being able to hold | maintain to high temperature, the thermal decomposition of the organic substance in an organic substance accommodation space can be maintained over a long period of time. Furthermore, since these permanent magnets are arranged oppositely to the inside of the outer fourth supply pipe that extends to the outside of the heat insulating member, the heat of the cracking furnace is blocked by the heat insulating member during the thermal decomposition of the organic matter, and the heat is supplied to the outer fourth supply pipe. It is difficult to transmit to the trachea, and it is possible to prevent a decrease in the magnetic force of these permanent magnets due to the high temperature of the outer fourth supply pipe, and it is possible to reliably magnetize the air passing through the fourth supply pipe by these magnets.
 処理灰収容空間に延びる周壁に作られて処理灰収容空間に空気を流入させる少なくとも1個の通気機構を含む磁気熱分解装置は、有機物の熱分解中に処理灰収容空間の周壁に作られた通気機構から通気された空気が処理灰収容空間から有機物収容空間に流入するから、有機物の熱分解に必要な熱を発生させるための空気を有機物収容空間に十分に供給することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。 A magnetic pyrolysis apparatus including at least one ventilation mechanism that is formed on a peripheral wall extending into the treated ash accommodating space and allows air to flow into the treated ash accommodating space is formed on the peripheral wall of the treated ash accommodating space during thermal decomposition of organic matter. Since the air ventilated from the ventilation mechanism flows into the organic matter accommodation space from the treated ash accommodation space, the air for generating heat necessary for the thermal decomposition of the organic matter can be sufficiently supplied to the organic matter accommodation space, and the organic matter accommodation In addition to being able to reliably pyrolyze organic matter in the space, it is possible to efficiently pyrolyze organic matter in a short time.
 通気機構が第1および第2周壁を貫通して分解炉の内側に延びる通気管と通気管の先端部に位置して処理灰収容空間に開口する通気口と通気管に流入する空気の流量を調節可能な流量調節機構とから形成されている磁気熱分解装置は、有機物の熱分解中に処理灰収容空間の周壁に設置された通気管から通気された空気が処理灰収容空間から有機物収容空間に流入するから、有機物の熱分解に必要な熱を発生させるための空気を有機物収容空間に十分に供給することができ、有機物収容空間において有機物を確実に熱分解することができるとともに、有機物を短時間に効率よく熱分解することができる。磁気熱分解装置は、通気管に流入する空気の流量を流量調節機構によって調節することができるから、有機物収容空間の空気が希薄になって空間の温度が低下したとしても、流量調節機構によって空気の流量を調節し、通気管における空気の流量を増加させて多くの空気を有機物収容空間に流入させることで、空間の温度を上昇させることができ、有機物収容空間における温度の局所的な低下を防ぐことができる。また、有機物収容空間の空気が過多になって空間の温度が必要以上に上昇したとしても、流量調節機構によって空気の流量を調節し、通気管における空気の流量を減少させて少ない空気を有機物収容空間に流入させることで、空間の温度を下降させることができ、有機物収容空間における温度の局所的な上昇を防ぐことができる。 The ventilation mechanism passes through the first and second peripheral walls and extends to the inside of the cracking furnace, the ventilation opening located at the tip of the ventilation pipe and opening in the treated ash accommodating space, and the flow rate of air flowing into the ventilation pipe The magnetic pyrolysis apparatus formed from an adjustable flow rate adjusting mechanism is configured such that air vented from a vent pipe installed on the peripheral wall of the treated ash accommodating space from the treated ash accommodating space to the organic matter accommodating space during the thermal decomposition of the organic matter. Therefore, the air for generating the heat necessary for the thermal decomposition of the organic matter can be sufficiently supplied to the organic matter containing space, the organic matter can be reliably pyrolyzed in the organic matter containing space, and the organic matter can be removed. Pyrolysis can be efficiently performed in a short time. Since the magnetic pyrolysis apparatus can adjust the flow rate of the air flowing into the vent pipe by the flow rate adjusting mechanism, even if the air in the organic substance containing space becomes diluted and the temperature of the space decreases, the air flow rate adjusting mechanism allows the air to flow. By adjusting the flow rate of the air and increasing the air flow rate in the vent pipe to allow a large amount of air to flow into the organic matter storage space, the temperature of the space can be increased, and the local decrease in temperature in the organic matter storage space can be reduced. Can be prevented. Also, even if the air in the organic matter storage space becomes excessive and the temperature of the space rises more than necessary, the flow rate adjustment mechanism adjusts the air flow rate to reduce the air flow rate in the vent pipe to accommodate less air. By flowing into the space, the temperature of the space can be lowered, and a local rise in temperature in the organic matter accommodation space can be prevented.
 排気機構が有機物の熱分解中に有機物収容空間で発生したガスを通気させる水槽とガスに含まれる成分を取り除くフィルタとを含む磁気熱分解装置は、有機物収容空間で発生したガスを水槽に通気させることで、ガスに含まれる有害成分や臭気成分を水槽に貯水された水に溶け込ませることができ、水槽を介してガスから有害成分や臭気成分を分離することができる。また、ガスをフィルタに通気させることで、ガスに含まれる有害成分や臭気成分をフィルタに捕集させることができ、フィルタを介してガスから有害成分や臭気成分を分離することができる。 A magnetic pyrolysis apparatus including a water tank that allows an exhaust mechanism to vent gas generated in an organic substance housing space during the pyrolysis of the organic substance and a filter that removes components contained in the gas, causes the gas generated in the organic substance accommodation space to pass through the water tank. Thus, harmful components and odor components contained in the gas can be dissolved in the water stored in the water tank, and the harmful components and odor components can be separated from the gas through the water tank. Moreover, by letting gas pass through the filter, harmful components and odor components contained in the gas can be collected by the filter, and harmful components and odor components can be separated from the gas through the filter.
 磁気熱分解装置は、有機物の熱分解中における分解温度が200~400℃の範囲にあるから、有機物収容空間に投入された有機物が燃焼することはなく、有機物を処理灰にすることができるとともに、有機物の熱分解中におけるダイオキシン類の発生を防ぐことができる。 The magnetic pyrolysis apparatus has a decomposition temperature in the range of 200 to 400 ° C. during the pyrolysis of organic matter, so that the organic matter thrown into the organic matter storage space does not burn, and the organic matter can be converted into treated ash. The generation of dioxins during the thermal decomposition of organic matter can be prevented.
 磁気熱分解装置は、含水率が65~95%の有機物を有機物収容空間において熱分解可能であるから、含水率が65%未満の有機物を熱分解によって処理することができることはもちろん、多量の水分を含む有機物を熱分解によって処理することで、その有機物を処理灰にすることができる。 Since the magnetic pyrolysis apparatus can thermally decompose organic matter having a moisture content of 65-95% in the organic matter containing space, it can of course process organic matter having a moisture content of less than 65% by pyrolysis. By treating the organic matter containing the product by thermal decomposition, the organic matter can be converted into treated ash.
 磁気熱分解装置は、有機物収容空間に火種を収容しつつ、有機物収容空間に有機物の投入を継続した場合の有機物収容空間における熱分解の連続時間が1週間~2ヶ月であるから、有機物収容空間における有機物の熱分解を安定した温度で長期間にわたって維持することができ、装置を長時間稼働させることができるとともに、装置を介して大量の有機物を処理することができる。 The magnetic pyrolysis apparatus has an organic matter accommodation space because the continuous time of thermal decomposition in the organic matter accommodation space is one week to two months when the organic matter accommodation space is continuously charged with the fire species in the organic matter accommodation space. The thermal decomposition of organic matter in can be maintained at a stable temperature for a long period of time, the apparatus can be operated for a long time, and a large amount of organic matter can be processed through the apparatus.
 磁気熱分解装置は、セラミック化した処理灰を有機物に混合した処理灰混合有機物を有機物収容空間に投入し、または、セラミック化した処理灰を有機物とともに有機物収容空間に投入するから、それらセラミック化した処理灰の保温機能を利用することで、有機物収容空間における有機物の熱分解を安定した温度で長期間にわたって維持することができ、装置を長時間稼働させることができるとともに、装置を介して大量の有機物を処理することができる。 The magnetic pyrolysis apparatus puts the treated ash mixed organic matter mixed with the ceramicized treated ash into the organic matter, or throws the ceramicized treated ash together with the organic matter into the organic matter containing space. By utilizing the heat retention function of the treated ash, it is possible to maintain the thermal decomposition of organic matter in the organic matter storage space at a stable temperature for a long period of time, and to operate the device for a long time, Organic matter can be processed.
一例として示す磁気熱分解装置の斜視図。The perspective view of the magnetic pyrolysis apparatus shown as an example. 磁気熱分解装置の上面図。The top view of a magnetic pyrolysis apparatus. 磁気熱分解装置の正面図。The front view of a magnetic pyrolysis apparatus. 磁気熱分解装置の側面図。The side view of a magnetic pyrolysis apparatus. 磁気熱分解装置の背面図。The rear view of a magnetic pyrolysis apparatus. 図3のA-A線矢視断面図。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図3のB-B線矢視断面図。FIG. 4 is a cross-sectional view taken along line BB in FIG. 3. 図3のC-C線矢視断面図。FIG. 4 is a cross-sectional view taken along line CC in FIG. 3. 前壁および左側壁の部分拡大図。The elements on larger scale of a front wall and a left side wall. 第1および第2前壁を省略して示す磁気熱分解装置の正面図。The front view of a magnetic thermal decomposition apparatus which abbreviate | omits and shows the 1st and 2nd front wall. 第1および第2左側壁を省略して示す磁気熱分解装置の側面図。The side view of a magnetic thermal decomposition apparatus which abbreviate | omits and shows the 1st and 2nd left side wall. 有機物収容空間の底部に延びる前後壁や左右側壁に設置された給気機構の上面図。The top view of the air supply mechanism installed in the front-and-rear wall and right-and-left side wall extended in the bottom part of organic substance accommodation space. 有機物収容空間の底部に延びる前後壁や左右側壁に設置された給気機構の側面図。The side view of the air supply mechanism installed in the front-and-rear wall and right-and-left side wall extended in the bottom part of organic substance accommodation space. 有機物収容空間の中間部に延びる左右側壁に設置された給気機構の上面図。The top view of the air supply mechanism installed in the left-right side wall extended in the intermediate part of organic substance accommodation space. 有機物収容空間の中間部に延びる左右側壁に設置された給気機構の側面図。The side view of the air supply mechanism installed in the right-and-left side wall extended in the intermediate part of organic substance accommodation space. 流量調節機構によって空気流路が開放された状態の給気機構の正面図。The front view of the air supply mechanism of the state by which the air flow path was open | released by the flow volume adjustment mechanism. 流量調節機構によって空気流路が閉鎖された状態の給気機構の正面図。The front view of the air supply mechanism of the state by which the air flow path was closed by the flow volume adjustment mechanism. 給気管の前端板を破断して示す給気機構の部分破断正面図。The partially broken front view of the air supply mechanism which fractures | ruptures and shows the front-end board of an air supply pipe | tube. 流量調節機構によって通気路が閉鎖された状態の通気機構の正面図。The front view of the ventilation mechanism of the state by which the ventilation path was closed by the flow volume adjustment mechanism. 図19のD-D線端面図。FIG. 20 is an end view taken along line DD in FIG. 19. 流量調節機構によって通気路が開放された状態の通気機構の正面図。The front view of the ventilation mechanism of the state by which the ventilation path was open | released by the flow volume adjustment mechanism. 図21のE-E線端面図。FIG. 22 is an end view taken along line EE of FIG. 21. 投入口から牛糞を投入している状態で示す磁気熱分解装置の側面図。The side view of the magnetic thermal decomposition apparatus shown in the state which has supplied cow dung from the insertion port. 他の一例として示す磁気熱分解装置の斜視図。The perspective view of the magnetic pyrolysis apparatus shown as another example. 図24の磁気熱分解装置の側面図。The side view of the magnetic thermal decomposition apparatus of FIG. 図24の磁気熱分解装置の図6と同様の断面図。FIG. 25 is a cross-sectional view similar to FIG. 6 of the magnetic pyrolysis apparatus of FIG. 24. 図24の磁気熱分解装置の図7と同様の断面図。FIG. 25 is a cross-sectional view of the magnetothermal decomposition apparatus of FIG. 24 similar to FIG. 第1および第2前壁を省略して示す図24の磁気熱分解装置の正面図。The front view of the magnetic thermal decomposition apparatus of FIG. 24 which abbreviate | omits the 1st and 2nd front wall and shows. 有機物収容空間の中間部に延びる左右側壁に設置された給気機構の上面図。The top view of the air supply mechanism installed in the left-right side wall extended in the intermediate part of organic substance accommodation space. 有機物収容空間の中間部に延びる左右側壁に設置された給気機構の側面図。The side view of the air supply mechanism installed in the right-and-left side wall extended in the intermediate part of organic substance accommodation space. 有機物収容空間の底部に延びる左右側壁に設置された給気機構の上面図。The top view of the air supply mechanism installed in the right-and-left side wall extended in the bottom part of organic substance accommodation space. 有機物収容空間の底部に延びる左右側壁に設置された給気機構の側面図。The side view of the air supply mechanism installed in the right-and-left side wall extended in the bottom part of organic substance accommodation space.
 一例として示す磁気熱分解装置10Aの斜視図である図1等の添付の図面を参照し、本発明にかかる磁気熱分解装置の詳細を説明すると、以下のとおりである。なお、図2は、磁気熱分解装置10Aの上面図であり、図3は、磁気熱分解装置10Aの正面図である。図4は、磁気熱分解装置10Aの側面図であり、図5は、磁気熱分解装置10Aの背面図である。図6は、図3のA-A線矢視断面図であり、図7は、図3のB-B線矢視断面図である。図8は、図3のC-C線矢視断面図であり、図9は、前壁16および左側壁19の部分拡大図である。図1では、上下方向を矢印Xで示し、横方向を矢印Yで示すとともに、前後方向を矢印Zで示す。図4では、蓋部材28が上下方向上方へ旋回した状態を仮想線で示す。図6~図8では、排気機構13の図示を省略している。 The details of the magnetic pyrolysis apparatus according to the present invention will be described with reference to the accompanying drawings such as FIG. 1 which is a perspective view of the magnetic pyrolysis apparatus 10A shown as an example. 2 is a top view of the magnetic pyrolysis apparatus 10A, and FIG. 3 is a front view of the magnetic pyrolysis apparatus 10A. FIG. 4 is a side view of the magnetic pyrolysis apparatus 10A, and FIG. 5 is a rear view of the magnetic pyrolysis apparatus 10A. 6 is a cross-sectional view taken along the line AA in FIG. 3, and FIG. 7 is a cross-sectional view taken along the line BB in FIG. 8 is a cross-sectional view taken along the line CC of FIG. 3, and FIG. 9 is a partially enlarged view of the front wall 16 and the left side wall 19. As shown in FIG. In FIG. 1, the vertical direction is indicated by an arrow X, the horizontal direction is indicated by an arrow Y, and the front-rear direction is indicated by an arrow Z. In FIG. 4, a state in which the lid member 28 is pivoted upward in the vertical direction is indicated by an imaginary line. 6 to 8, the exhaust mechanism 13 is not shown.
 磁気熱分解装置10Aは、磁気熱を利用して有機廃棄物(有機物)を所定の分解温度で熱分解し、有機廃棄物を磁化されたセラミック灰(処理灰)にする。磁気熱分解装置10Aは、所定容積の分解炉11と、分解炉11に空気を給気する給気機構12と、分解炉11に発生したガスを分解炉11から排気する排気機構13とを備えている。分解炉11は、頂壁14および底壁15と、前壁16(周壁)および後壁17(周壁)と、右側壁18(周壁)および左側壁19(周壁)とを有する六面筐体である。 The magnetic thermal decomposition apparatus 10A thermally decomposes organic waste (organic matter) at a predetermined decomposition temperature using magnetic heat, and turns the organic waste into magnetized ceramic ash (treated ash). The magnetic thermal decomposition apparatus 10 </ b> A includes a decomposition furnace 11 having a predetermined volume, an air supply mechanism 12 that supplies air to the decomposition furnace 11, and an exhaust mechanism 13 that exhausts gas generated in the decomposition furnace 11 from the decomposition furnace 11. ing. The cracking furnace 11 is a six-sided housing having a top wall 14 and a bottom wall 15, a front wall 16 (peripheral wall) and a rear wall 17 (peripheral wall), a right side wall 18 (peripheral wall) and a left side wall 19 (peripheral wall). is there.
 分解炉11は、それら壁14~19(頂壁14、前後壁16,17、左右側壁18,19(両側壁))に囲繞された所定容積の有機物収容空間20と、有機物収容空間20の下方に位置してそれら壁14~19(底壁15、前後壁16,17、左右側壁18,19(両側壁))に囲繞された所定容積の処理灰収容空間21とを有する。有機物収容空間20は、頂壁14の側に位置する頂部22と、底壁15の側に位置する底部24と、頂部22および底部24の間に位置する中間部23とを有する(図10,11参照)。 The cracking furnace 11 includes an organic substance storage space 20 having a predetermined volume surrounded by the walls 14 to 19 (the top wall 14, front and rear walls 16, 17 and left and right side walls 18, 19 (both side walls)), and a lower part of the organic substance storage space 20. And a treated ash containing space 21 having a predetermined volume surrounded by the walls 14 to 19 (the bottom wall 15, the front and rear walls 16, 17, and the left and right side walls 18, 19 (both side walls)). The organic matter storage space 20 has a top portion 22 located on the top wall 14 side, a bottom portion 24 located on the bottom wall 15 side, and an intermediate portion 23 located between the top portion 22 and the bottom portion 24 (FIG. 10, FIG. 11).
 分解炉11では、有機物収容空間20の底部24に矩形網状の複数個のスノコ25が着脱可能に設置され、それらスノコ25を挟んで有機物収容空間20と処理灰収容空間21とが区分されている。有機物収容空間20は、その容積が処理灰収容空間21のそれよりも大きく、その容積が空間21のそれの3~15倍の範囲にある。なお、図7では、スノコ25を部分的に図示しているが、実際にはスノコ25が底部24の全体に設置される。スノコ25は、空間20の底部24に取り付けられたフレーム材の上に載置されている。 In the cracking furnace 11, a plurality of rectangular net-like slats 25 are detachably installed on the bottom 24 of the organic substance storage space 20, and the organic substance storage space 20 and the treated ash storage space 21 are separated with the slats 25 interposed therebetween. . The organic substance storage space 20 has a volume larger than that of the treated ash storage space 21, and its volume is in the range of 3 to 15 times that of the space 21. In FIG. 7, the slats 25 are partially illustrated, but the slats 25 are actually installed on the entire bottom 24. The slats 25 are placed on a frame material attached to the bottom 24 of the space 20.
 頂壁14は、所定の厚みを有する鋼板やステンレス板、アルミ板等の金属板から作られ、その形状が略矩形に成形されている。頂壁14の外面には、樹脂による塗装が施されている。頂壁14には、有機物収容空間20に有機廃棄物を投入するための矩形の投入口26が作られ、後記する水槽92の蓋98が開閉可能に設置されている。頂壁14には、投入口26を開閉する電動式の開閉機構27が設置されている。開閉機構27は、投入口26と同形同大であって平面形状が矩形の蓋部材28と、電動機29(モーター)(図5参照)と、蓋部材28を旋回させるリンク30と、電動機29の駆動によってリンク30に動力を伝達する駆動部材31とから形成されている。 The top wall 14 is made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and the shape thereof is formed in a substantially rectangular shape. The outer surface of the top wall 14 is painted with resin. The top wall 14 is formed with a rectangular inlet 26 for introducing organic waste into the organic substance storage space 20, and a lid 98 of a water tank 92, which will be described later, is installed to be openable and closable. The top wall 14 is provided with an electric opening / closing mechanism 27 that opens and closes the insertion port 26. The opening / closing mechanism 27 has the same shape and the same size as the insertion port 26 and a rectangular planar member 28, an electric motor 29 (motor) (see FIG. 5), a link 30 that rotates the lid member 28, and an electric motor 29. And a drive member 31 that transmits power to the link 30 by driving.
 蓋部材28は、所定の厚みを有する鋼板やステンレス板、アルミ板等の金属板から作られ、その形状が略矩形に成形されている。蓋部材28は、分解炉11の外部(外側)に対向する所定面積の第1蓋部材と、第1蓋部材の内側に位置して有機物収容空間20に対向する所定面積の第2蓋部材とから形成されている。第1蓋部材の外面には、樹脂による塗装が施されている。第1蓋部材と第2蓋部材とは、それら蓋部材の間に延びる連結板によって連結されている。第1および第2蓋部材と連結板とは、溶接によって強固に接合(固定)されている。第1蓋部材と第2蓋部材との間には、気密断熱層(気密空気層)が画成されている。 The lid member 28 is made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and its shape is formed into a substantially rectangular shape. The lid member 28 includes a first lid member having a predetermined area facing the outside (outside) of the cracking furnace 11, and a second lid member having a predetermined area facing the organic matter storage space 20 located inside the first lid member. Formed from. The outer surface of the first lid member is painted with resin. The first lid member and the second lid member are connected by a connecting plate extending between the lid members. The first and second lid members and the connecting plate are firmly joined (fixed) by welding. An airtight heat insulating layer (airtight air layer) is defined between the first lid member and the second lid member.
 蓋部材28は、開閉機構27によって一端部を中心として上下方向へ旋回する。図4に仮想線で示すように、蓋部材28が開閉機構27を介して上下方向上方へ旋回すると、投入口26が開放され、投入口26から有機物収容空間20に有機廃棄物を投入することができる。投入口26が開放された状態から蓋部材28が開閉機構27を介して上下方向下方へ旋回すると、投入口26が気密に閉鎖(密閉)される。分解炉11の大きさ(縦横幅寸法)によっては、頂壁14に電動式の開閉機構27を設置することなく、手動の開閉機構を設置することもできる。手動の開閉機構では、たとえば、梃子の原理を利用し、レバーを一方へ倒すように引くことによって投入口26を開放し、レバーを他方へ起こすことによって投入口26を閉鎖する。 The lid member 28 is pivoted up and down around one end by the opening / closing mechanism 27. As shown by the phantom line in FIG. 4, when the lid member 28 pivots upward and downward through the opening / closing mechanism 27, the input port 26 is opened, and organic waste is input from the input port 26 into the organic substance containing space 20. Can do. When the lid member 28 pivots downward in the vertical direction via the opening / closing mechanism 27 from the state where the insertion port 26 is opened, the insertion port 26 is hermetically closed (sealed). Depending on the size (length and width) of the cracking furnace 11, a manual opening / closing mechanism can be installed without installing the electric opening / closing mechanism 27 on the top wall 14. In the manual opening / closing mechanism, for example, using the lever principle, the insertion port 26 is opened by pulling the lever so as to tilt to one side, and the insertion port 26 is closed by raising the lever to the other side.
 なお、電動式の開閉機構27によって投入口26を開放するには、たとえば、電動機29の一方向への回転によってそれに連結された駆動部材31を駆動させ、駆動部材31の駆動によってそれに連結されたリンク30を動作させることで、蓋部材28を上下方向上方へ旋回させる。また、開閉機構27によって投入口26を閉鎖するには、電動機29の他方向への回転によって駆動部材31を駆動させ、駆動部材31の駆動によってリンク30を動作させることで、蓋部材28を上下方向下方へ旋回させる。なお、開閉機構としては図示のそれに限らず、公知の他の開閉機構を採用することもできる。 In order to open the insertion port 26 by the electric opening / closing mechanism 27, for example, the driving member 31 connected thereto is driven by rotating the electric motor 29 in one direction, and the driving member 31 is connected thereto by driving the driving member 31. By operating the link 30, the lid member 28 is swung upward and downward. Further, in order to close the insertion port 26 by the opening / closing mechanism 27, the driving member 31 is driven by rotation of the electric motor 29 in the other direction, and the link 30 is operated by driving the driving member 31, thereby moving the lid member 28 up and down. Turn downward in the direction. The opening / closing mechanism is not limited to that shown in the figure, and other known opening / closing mechanisms may be employed.
 底壁15は、所定の厚みを有する鋼板やステンレス板、アルミ板等の金属板から作られており、その形状が略矩形に成形されている。底壁15は、その前端縁が前壁16に溶接によって強固に接合(固定)され、その後端縁が後壁17に溶接によって強固に接合(固定)されているとともに、その両側縁が左右側壁18,19に溶接によって強固に接合(固定)されている。底壁15の下面には合成樹脂から作られた台座32が固定され、台座32が地面に接地している。 The bottom wall 15 is made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and the shape thereof is formed into a substantially rectangular shape. The bottom wall 15 has a front edge firmly joined (fixed) to the front wall 16 by welding, a rear end edge firmly joined (fixed) to the rear wall 17 by welding, and both side edges thereof are left and right side walls. 18 and 19 are firmly joined (fixed) by welding. A pedestal 32 made of synthetic resin is fixed to the lower surface of the bottom wall 15, and the pedestal 32 is grounded to the ground.
 前壁16は、分解炉11の外部(外側)に対向する所定面積の第1前壁33(第1周壁)と、第1前壁33の内側(前後方向後方)(周壁の径方向内方)に位置する所定面積の第2前壁34(第2周壁)と、第2前壁34の内側(前後方向後方)(周壁の径方向内方)に位置して有機物収容空間20に対向する所定面積の第3前壁35(第3周壁)とから形成されている。第1前壁33の外面には、樹脂による塗装が施されている。第1前壁~第3前壁33~35は、所定の厚みを有する鋼板やステンレス板、アルミ板等の金属板から作られており、それらの形状が略矩形に成形されている。 The front wall 16 includes a first front wall 33 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11 and an inner side (backward in the front-rear direction) of the first front wall 33 (inward in the radial direction of the peripheral wall). The second front wall 34 (second peripheral wall) having a predetermined area located on the second wall 34 and the inner side of the second front wall 34 (backward in the front-rear direction) (inward in the radial direction of the peripheral wall) and facing the organic matter storage space 20 It is formed from a third front wall 35 (third peripheral wall) having a predetermined area. The outer surface of the first front wall 33 is painted with resin. The first front wall to the third front wall 33 to 35 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate having a predetermined thickness, and their shapes are formed in a substantially rectangular shape.
 第1前壁33は、頂壁14と底壁15との間に延びている。第1前壁33は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されているとともに、その両側縁が左右側壁18,19に連結(一体化)されている。第2前壁34は、第1前壁33から内側(前後方向後方)へ所定寸法離間しつつ、頂壁14と底壁15との間に延びている。第2前壁34は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって接合されているとともに、その両側縁が左右側壁18,19に連結(一体化)されている。 The first front wall 33 extends between the top wall 14 and the bottom wall 15. The first front wall 33 has its upper edge firmly joined (fixed) to the top wall 14 by welding, its lower edge is firmly joined (fixed) to the bottom wall 15 by welding, and both side edges thereof are The left and right side walls 18 and 19 are connected (integrated). The second front wall 34 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first front wall 33 inward (backward in the front-rear direction) by a predetermined dimension. The upper edge of the second front wall 34 is firmly joined (fixed) to the top wall 14 by welding, the lower edge thereof is joined to the bottom wall 15 by welding, and both side edges thereof are the left and right side walls 18, 19. Connected (integrated).
 第1前壁33と第2前壁34とは、上下方向へ延びる連結部36によって連結されている。第1および第2前壁33,34の連結部36は、溶接によって強固に接合(固定)されている。第1前壁33と第2前壁34との間には、気密断熱層37(気密空気層)が画成されている。気密断熱層37は、処理灰収容空間21に延びるとともに有機物収容空間20の頂部22と底部24との間に延びている。 The first front wall 33 and the second front wall 34 are connected by a connecting portion 36 that extends in the vertical direction. The connecting portion 36 of the first and second front walls 33 and 34 is firmly joined (fixed) by welding. An airtight heat insulating layer 37 (airtight air layer) is defined between the first front wall 33 and the second front wall 34. The airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21.
 第3前壁35は、第2前壁34から内側(前後方向後方)へ所定寸法離間しつつ、有機物収容空間20の頂部22と底部24との間に延びている。第3前壁35は、その上端縁が頂壁14から下方へ離間しており、上端縁が頂壁14に非接合である。さらに、その下端縁が有機物収容空間20の底部24で終了し、処理灰収容空間21に存在せず、下端縁が底壁15に非接合である。第3前壁35は、その両側縁が左右側壁18,19に連結(一体化)されている。 The third front wall 35 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20 while being spaced apart from the second front wall 34 inwardly (backward in the front-rear direction) by a predetermined dimension. The upper end edge of the third front wall 35 is spaced downward from the top wall 14, and the upper end edge is not joined to the top wall 14. Furthermore, the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15. The side edges of the third front wall 35 are connected (integrated) to the left and right side walls 18 and 19.
 第2前壁34と第3前壁35とは、上下方向および横方向へ略等間隔で並ぶ複数本の棒状または板状の連結材38によって連結されている。第2および第3前壁34,35とそれら連結材38とは、溶接によって強固に接合(固定)されている。第2前壁34と第3前壁35との間には、空気流動層39が画成されている。前壁16に画成された空気流動層39は、有機物収容空間20の頂部22と底部24との間に延びている。前壁16の空気流動層39は、有機物収容空間20の底部24に開口する底部開口40と、空間20の頂部22に開口する頂部開口41とを有し(図10,11参照)、底部開口40と頂部開口41とにおいて有機物収容空間20につながっている。 The second front wall 34 and the third front wall 35 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction at substantially equal intervals. The second and third front walls 34 and 35 and the connecting member 38 are firmly joined (fixed) by welding. An air fluidized bed 39 is defined between the second front wall 34 and the third front wall 35. The air fluidized bed 39 defined on the front wall 16 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20. The air fluidized bed 39 of the front wall 16 has a bottom opening 40 that opens to the bottom 24 of the organic material accommodation space 20 and a top opening 41 that opens to the top 22 of the space 20 (see FIGS. 10 and 11). 40 and the top opening 41 are connected to the organic matter accommodation space 20.
 有機物収容空間20の底部24に延びる前壁16(分解炉11の周壁)には、空間20の確認するための確認口42(着火口)が作られている。確認口42には、それを開閉するための開閉機構43が設置されている。確認口42は、開閉機構43によって開閉する。開閉機構43は、前壁16の横方向中央に配置された蓋部材44(確認蓋)と、前壁16に蓋部材44を接続する蝶番45と、蓋部材44の閉鎖状態を保持するレバー46とから形成されている。蓋部材44は、蝶番45を介して前壁16に連結され、蝶番45によって一端部を中心に横方向外方と横方向内方とへ旋回する。 A confirmation port 42 (ignition port) for confirming the space 20 is formed on the front wall 16 (the peripheral wall of the cracking furnace 11) extending to the bottom 24 of the organic material storage space 20. The confirmation opening 42 is provided with an opening / closing mechanism 43 for opening and closing it. The confirmation port 42 is opened and closed by an opening / closing mechanism 43. The opening / closing mechanism 43 includes a lid member 44 (confirmation lid) disposed at the center in the lateral direction of the front wall 16, a hinge 45 that connects the lid member 44 to the front wall 16, and a lever 46 that holds the lid member 44 in a closed state. And is formed from. The lid member 44 is connected to the front wall 16 via a hinge 45, and pivots outwardly and laterally inwardly about one end by the hinge 45.
 それらレバー46を上下方向上方へ回転させて前壁16と蓋部材44とのロックを解除し、蝶番45を介して蓋部材44を横方向外方へ旋回させると、確認口42が開放される。確認口42が開放された状態で、有機物収容空間20に投入された有機廃棄物の投入状態を確認し、または、空間20に火種を収納する。さらに、有機物収容空間20における熱分解の様子を観察する。確認口42が開放された状態から蝶番45を介して蓋部材44を横方向内方へ旋回させ、レバー46を上下方向下方へ回転させて前壁16と蓋部材44とをロックすることで、確認口42が気密に閉鎖(密閉)される。 When the lever 46 is rotated upward and downward to unlock the front wall 16 and the lid member 44 and the lid member 44 is turned laterally outward via the hinge 45, the confirmation port 42 is opened. . In a state where the confirmation opening 42 is opened, an input state of the organic waste input into the organic material storage space 20 is confirmed, or a fire type is stored in the space 20. Furthermore, the state of thermal decomposition in the organic substance accommodation space 20 is observed. By turning the lid member 44 inward in the lateral direction through the hinge 45 from the state in which the confirmation opening 42 is opened, the lever 46 is rotated downward in the vertical direction to lock the front wall 16 and the lid member 44, The confirmation opening 42 is hermetically closed (sealed).
 有機物収容空間20の底部24に延びる前壁16(分解炉11の周壁)には、7個の給気機構12が設置されている(7個のうち、3個は蓋部材44(確認蓋))。空間20の底部24の前壁16に設置されたそれら給気機構12は、上下方向と横方向とへ略等間隔離間して並んでいる。なお、空間20の底部24の前壁16に設置された給気機構12の個数を図示のそれに限定するものではなく、6個以下または8個以上の給気機構12が底部24の前壁16に設置されていてもよい。 Seven air supply mechanisms 12 are installed on the front wall 16 (the peripheral wall of the cracking furnace 11) extending to the bottom 24 of the organic substance storage space 20 (three of the seven are lid members 44 (confirmation lids)). ). The air supply mechanisms 12 installed on the front wall 16 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the vertical direction and the horizontal direction. The number of air supply mechanisms 12 installed on the front wall 16 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and six or eight or more air supply mechanisms 12 may be included in the front wall 16 of the bottom portion 24. It may be installed in.
 処理灰収容空間21に延びる前壁16(分解炉11の周壁)には、処理灰収容空間21から処理灰を取り出すための矩形の取出口47が作られている。取出口47には、それを開閉する開閉機構48が設置されている。取出口47は、開閉機構48によって開閉する。開閉機構48は、左右一対の蓋部材49(取出蓋)と、前壁16に蓋部材49を接続する蝶番50と、蓋部材49の閉鎖状態を保持するレバー51とから形成されている。それら蓋部材49は、蝶番50を介して前壁16に連結され、蝶番50によって一端部を中心に横方向外方と横方向内方とへ旋回する。 A rectangular outlet 47 for taking out the treated ash from the treated ash containing space 21 is formed on the front wall 16 (the peripheral wall of the cracking furnace 11) extending to the treated ash containing space 21. An opening / closing mechanism 48 for opening and closing the outlet 47 is installed. The outlet 47 is opened and closed by an opening / closing mechanism 48. The opening / closing mechanism 48 includes a pair of left and right lid members 49 (extraction lids), a hinge 50 that connects the lid member 49 to the front wall 16, and a lever 51 that holds the lid member 49 closed. The lid members 49 are connected to the front wall 16 via a hinge 50 and pivoted outwardly and inwardly about one end by the hinge 50.
 レバー51を上下方向下方へ回転させて前壁16と蓋部材49とのロックを解除し、蝶番50を介して蓋部材49を横方向外方へ旋回させると、取出口47が開放される。取出口47が開放された状態で処理灰収容空間21に存在する処理灰を分解炉11の外側に取り出す(掻き出す)。取出口47が開放された状態から蝶番50を介して蓋部材49を横方向内方へ旋回させ、レバー51を上下方向上方へ回転させて前壁16と蓋部材49とをロックすることで、取出口47が気密に閉鎖(密閉)される。 When the lever 51 is rotated downward in the vertical direction to release the lock between the front wall 16 and the lid member 49 and the lid member 49 is turned laterally outward via the hinge 50, the outlet 47 is opened. The treated ash present in the treated ash containing space 21 with the outlet 47 opened is taken out (scraped out) to the outside of the cracking furnace 11. By turning the lid member 49 laterally inward via the hinge 50 from the state in which the outlet 47 is opened, the lever 51 is rotated upward and downward to lock the front wall 16 and the lid member 49, The outlet 47 is hermetically closed (sealed).
 右側壁18は、分解炉11の外部(外側)に対向する所定面積の第1右側壁52(第1周壁)と、第1右側壁52の内側(横方向右方)(周壁の径方向内方)に位置する所定面積の第2右側壁53(第2周壁)と、第2右側壁53の内側(横方向右方)(周壁の径方向内方)に位置して有機物収容空間20に対向する所定面積の第3右側壁54(第3周壁)とから形成されている。第1右側壁52の外面には、樹脂による塗装が施されている。第1右側壁~第3右側壁52~54は、鋼板やステンレス板、アルミ板等の金属板から作られており、それらの形状が略矩形に成形されている。 The right side wall 18 includes a first right side wall 52 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11, and an inner side (laterally rightward) of the first right side wall 52 (inside the radial direction of the peripheral wall). The second right side wall 53 (second peripheral wall) having a predetermined area located on the inner side and the inner side (right side in the lateral direction) of the second right side wall 53 (inward in the radial direction of the peripheral wall). It is formed of a third right side wall 54 (third peripheral wall) having a predetermined area facing each other. The outer surface of the first right side wall 52 is painted with resin. The first right side wall to the third right side wall 52 to 54 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate, and their shapes are formed in a substantially rectangular shape.
 第1右側壁52は、頂壁14と底壁15との間に延びている。第1右側壁52は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されている。さらに、その前端縁が前壁16に連結(一体化)され、その後端縁が後壁17に連結(一体化)されている。第2右側壁53は、第1右側壁52から内側(横方向右方)へ所定寸法離間しつつ、頂壁14と底壁15との間に延びている。第2右側壁53は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されている。さらに、その前端縁が前壁16に連結(一体化)され、その後端縁が後壁17に連結(一体化)されている。 The first right side wall 52 extends between the top wall 14 and the bottom wall 15. The upper right edge of the first right side wall 52 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding. Further, the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17. The second right side wall 53 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first right side wall 52 inward (laterally rightward) by a predetermined dimension. The upper right edge of the second right side wall 53 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding. Further, the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
 第1右側壁52と第2右側壁53とは、上下方向へ延びる連結部36によって連結されている。第1および第2右側壁52,53の連結部36は、溶接によって強固に接合(固定)されている。第1右側壁52と第2右側壁53との間には、気密断熱層37(気密空気層)が画成されている。気密断熱層37は、処理灰収容空間21に延びるとともに有機物収容空間20の頂部22と底部24との間に延びている。右側壁18に形成された気密断熱層37は、前壁16の気密断熱層37につながっている。 The first right side wall 52 and the second right side wall 53 are connected by a connecting portion 36 extending in the vertical direction. The connecting portion 36 of the first and second right side walls 52 and 53 is firmly joined (fixed) by welding. An airtight heat insulating layer 37 (airtight air layer) is defined between the first right side wall 52 and the second right side wall 53. The airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21. The airtight heat insulating layer 37 formed on the right wall 18 is connected to the airtight heat insulating layer 37 on the front wall 16.
 第3右側壁54は、第2右側壁53から内側(横方向右方)へ所定寸法離間しつつ、有機物収容空間20の頂部22と底部24との間に延びている。第3右側壁54は、その上端縁が頂壁14から離間しており、上端縁が頂壁14に非接合である。さらに、その下端縁が有機物収容空間20の底部24で終了し、処理灰収容空間21に存在せず、下端縁が底壁15に非接合である。第3右側壁54は、その前端縁が前壁16に連結(一体化)され、その後端縁が後壁17に連結(一体化)されている。 The third right side wall 54 extends between the top part 22 and the bottom part 24 of the organic matter storage space 20 while being spaced apart from the second right side wall 53 inward (laterally rightward) by a predetermined dimension. The upper right edge of the third right side wall 54 is separated from the top wall 14, and the upper end edge is not joined to the top wall 14. Furthermore, the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15. The front end edge of the third right side wall 54 is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
 第2右側壁53と第3右側壁54とは、上下方向および横方向へ並ぶ複数本の棒状または板状の連結材38によって連結されている。第2および第3右側壁53,54とそれら連結材38とは、溶接によって強固に接合(固定)されている。第2右側壁53と第3右側壁54との間には、空気流動層39が画成されている。右側壁18に画成された空気流動層39は、有機物収容空間20の頂部22と底部24との間に延びている。右側壁18の空気流動層39は、有機物収容空間20の底部24に開口する底部開口40と、空間20の頂部22に開口する頂部開口41とを有し、底部開口40および頂部開口41において空間20につながるとともに、前壁16の空気流動層39につながっている。 The second right side wall 53 and the third right side wall 54 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction. The second and third right side walls 53 and 54 and the connecting member 38 are firmly joined (fixed) by welding. An air fluidized bed 39 is defined between the second right side wall 53 and the third right side wall 54. The air fluidized bed 39 defined on the right side wall 18 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20. The air fluidized bed 39 of the right side wall 18 has a bottom opening 40 that opens to the bottom 24 of the organic substance containing space 20 and a top opening 41 that opens to the top 22 of the space 20. The bottom opening 40 and the top opening 41 are spaces. 20 and the air fluidized bed 39 on the front wall 16.
 有機物収容空間20の中間部23に延びる右側壁18(分解炉11の周壁)には、3個の給気機構12が設置されている。空間20の中間部23の右側壁18に設置されたそれら給気機構12は、上下方向と前後方向とへ略等間隔離間して並んでいる。なお、空間20の中間部23の右側壁18に設置された給気機構12の個数を図示のそれに限定するものではなく、2個以下または4個以上の給気機構12が中間部23の右側壁18に設置されていてもよい。 Three air supply mechanisms 12 are installed on the right side wall 18 (the peripheral wall of the cracking furnace 11) extending to the intermediate part 23 of the organic matter accommodation space 20. These air supply mechanisms 12 installed on the right side wall 18 of the intermediate portion 23 of the space 20 are arranged at substantially equal intervals in the vertical direction and the front-rear direction. The number of the air supply mechanisms 12 installed on the right side wall 18 of the intermediate portion 23 of the space 20 is not limited to that shown in the figure, and two or less or four or more air supply mechanisms 12 are provided on the right side of the intermediate portion 23. It may be installed on the wall 18.
 有機物収容空間20の底部24に延びる右側壁18(分解炉11の周壁)には、4個の給気機構12が設置されている。空間20の底部24の右側壁18に設置されたそれら給気機構12は、前後方向へ略等間隔離間して並んでいる。なお、空間20の底部24の右側壁18に設置された給気機構12の個数を図示のそれに限定するものではなく、3個以下または5個以上の給気機構12が底部24の右側壁18に設置されていてもよい。 Four air supply mechanisms 12 are installed on the right side wall 18 (the peripheral wall of the cracking furnace 11) extending to the bottom 24 of the organic substance storage space 20. The air supply mechanisms 12 installed on the right side wall 18 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the front-rear direction. The number of air supply mechanisms 12 installed on the right side wall 18 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and three or less or five or more air supply mechanisms 12 may be provided on the right side wall 18 of the bottom portion 24. It may be installed in.
 処理灰収容空間21に延びる右側壁18(周壁)の前後方向中央には、空間21に空気を流入させる1個の通気機構55が設置されている。なお、処理灰収容空間21に延びる右側壁18に設置された通気機構55の個数を図示のそれに限定するものではなく、2個以上の通気機構55が空間21の右側壁18に設置されていてもよい。 At the center in the front-rear direction of the right side wall 18 (peripheral wall) extending to the treated ash containing space 21, one ventilation mechanism 55 that allows air to flow into the space 21 is installed. The number of ventilation mechanisms 55 installed on the right side wall 18 extending into the treated ash containing space 21 is not limited to that shown in the figure, and two or more ventilation mechanisms 55 are installed on the right side wall 18 of the space 21. Also good.
 左側壁19は、分解炉11の外部(外側)に対向する所定面積の第1左側壁56(第1周壁)と、第1左側壁56の内側(横方向左方)(周壁の径方向内方)に位置する所定面積の第2左側壁57(第2周壁)と、第2左側壁57の内側(横方向左方)(周壁の径方向内方)に位置して有機物収容空間20に対向する所定面積の第3左側壁58(第3周壁)とから形成されている。第1左側壁56の外面には、樹脂による塗装が施されている。第1左側壁~第3左側壁56~58は、鋼板やステンレス板、アルミ板等の金属板から作られており、それらの形状が略矩形に成形されている。 The left side wall 19 includes a first left side wall 56 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11, and an inner side (lateral left side) of the first left side wall 56 (inside the radial direction of the peripheral wall). The second left side wall 57 (second peripheral wall) having a predetermined area located on the inner side and the inner side of the second left side wall 57 (left side in the lateral direction) (inward in the radial direction of the peripheral wall). It is formed of a third left side wall 58 (third peripheral wall) having a predetermined area facing each other. The outer surface of the first left side wall 56 is painted with resin. The first left side wall to the third left side wall 56 to 58 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate, and their shapes are formed in a substantially rectangular shape.
 第1左側壁56は、頂壁14と底壁15との間に延びている。第1左側壁56は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されている。さらに、その前端縁が前壁16に連結(一体化)され、その後端縁が後壁17に連結(一体化)されている。第2左側壁57は、第1左側壁56から内側(横方向左方)へ所定寸法離間しつつ、頂壁14と底壁15との間に延びている。第2左側壁57は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されている。さらに、その前端縁が前壁16に連結(一体化)され、その後端縁が後壁17に連結(一体化)されている。 The first left side wall 56 extends between the top wall 14 and the bottom wall 15. The upper left edge of the first left side wall 56 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding. Further, the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17. The second left side wall 57 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first left side wall 56 inward (laterally leftward) by a predetermined dimension. The upper left edge of the second left side wall 57 is firmly joined (fixed) to the top wall 14 by welding, and the lower end edge is firmly joined (fixed) to the bottom wall 15 by welding. Further, the front end edge is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
 第1左側壁56と第2左側壁57とは、上下方向へ延びる連結部36によって連結されている。第1および第2左側壁56,57の連結部36は、溶接によって強固に接合(固定)されている。第1左側壁56と第2左側壁57との間には、気密断熱層37(気密空気層)が画成されている。気密断熱層37は、処理灰収容空間21に延びるとともに有機物収容空間20の頂部22と底部24との間に延びている。左側壁19の気密断熱層37は、前壁16の気密断熱層37につながっている。 The first left side wall 56 and the second left side wall 57 are connected by a connecting part 36 extending in the vertical direction. The connecting portions 36 of the first and second left side walls 56 and 57 are firmly joined (fixed) by welding. An airtight heat insulating layer 37 (airtight air layer) is defined between the first left side wall 56 and the second left side wall 57. The airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21. The airtight heat insulating layer 37 on the left side wall 19 is connected to the airtight heat insulating layer 37 on the front wall 16.
 第3左側壁58は、第2左側壁56から内側(横方向左方)へ所定寸法離間しつつ、有機物収容空間20の頂部22と底部24との間に延びている。第3左側壁58は、その上端縁が頂壁14から離間しており、上端縁が頂壁14に非接合である。さらに、その下端縁が有機物収容空間20の底部24で終了し、処理灰収容空間21に存在せず、下端縁が底壁15に非接合である。第3左側壁58は、その前端縁が前壁16に連結(一体化)され、その後端縁が後壁17に連結(一体化)されている。 The third left side wall 58 extends between the top part 22 and the bottom part 24 of the organic matter storage space 20 while being spaced apart from the second left side wall 56 inward (laterally leftward) by a predetermined dimension. The upper left edge of the third left side wall 58 is separated from the top wall 14, and the upper end edge is not joined to the top wall 14. Furthermore, the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15. The front end edge of the third left side wall 58 is connected (integrated) to the front wall 16, and the rear end edge is connected (integrated) to the rear wall 17.
 第2左側壁57と第3左側壁58とは、上下方向および横方向へ並ぶ複数本の棒状または板状の連結材38によって連結されている。第2および第3左側壁57,58とそれら連結材38とは、溶接によって強固に接合(固定)されている。第2左側壁57と第3左側壁58との間には、空気流動層39が画成されている。左側壁19に画成された空気流動層39は、有機物収容空間20の頂部22と底部24との間に延びている。左側壁19の空気流動層39は、有機物収容空間20の底部24に開口する底部開口40と、空間20の頂部22に開口する頂部開口41とを有し、底部開口40および頂部開口41において空間20につながるとともに、前壁16の空気流動層39につながっている。 The second left side wall 57 and the third left side wall 58 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction. The second and third left side walls 57, 58 and the connecting member 38 are firmly joined (fixed) by welding. An air fluidized bed 39 is defined between the second left side wall 57 and the third left side wall 58. The air fluidized bed 39 defined on the left side wall 19 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20. The air fluidized bed 39 in the left side wall 19 has a bottom opening 40 that opens to the bottom 24 of the organic matter accommodation space 20 and a top opening 41 that opens to the top 22 of the space 20. 20 and the air fluidized bed 39 on the front wall 16.
 有機物収容空間20の中間部23に延びる左側壁19(分解炉11の周壁)には、3個の給気機構12が設置されている。空間20の中間部23の左側壁19に設置されたそれら給気機構12は、上下方向と前後方向とへ略等間隔離間して並んでいる。なお、空間20の中間部23の左側壁19に設置された給気機構12の個数を図示のそれに限定するものではなく、2個以下または4個以上の給気機構12が中間部23の左側壁19に設置されていてもよい。 Three air supply mechanisms 12 are installed on the left side wall 19 (the peripheral wall of the cracking furnace 11) extending to the intermediate part 23 of the organic matter accommodation space 20. These air supply mechanisms 12 installed on the left side wall 19 of the intermediate portion 23 of the space 20 are arranged at substantially equal intervals in the vertical direction and the front-rear direction. The number of the air supply mechanisms 12 installed on the left side wall 19 of the intermediate portion 23 of the space 20 is not limited to that shown in the figure, and two or less or four or more air supply mechanisms 12 are provided on the left side of the intermediate portion 23. It may be installed on the wall 19.
 有機物収容空間20の底部24に延びる左側壁19(分解炉11の周壁)には、4個の給気機構12が設置されている。空間20の底部24の左側壁19に設置されたそれら給気機構12は、前後方向へ略等間隔離間して並んでいる。なお、空間20の底部24の左側壁19に設置された給気機構12の個数を図示のそれに限定するものではなく、3個以下または5個以上の給気機構12が底部24の左側壁19に設置されていてもよい。 Four air supply mechanisms 12 are installed on the left side wall 19 (the peripheral wall of the cracking furnace 11) that extends to the bottom 24 of the organic matter storage space 20. The air supply mechanisms 12 installed on the left side wall 19 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the front-rear direction. The number of air supply mechanisms 12 installed on the left side wall 19 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and three or less or five or more air supply mechanisms 12 may be provided on the left side wall 19 of the bottom portion 24. May be installed.
 処理灰収容空間21に延びる左側壁19(周壁)の前後方向中央には、空間21に空気を流入させる1個の通気機構55が設置されている。なお、処理灰収容空間21に延びる左側壁19に設置された通気機構55の個数を図示のそれに限定するものではなく、2個以上の通気機構55が空間21の左側壁19に設置されていてもよい。 At the center in the front-rear direction of the left side wall 19 (peripheral wall) extending into the treated ash containing space 21, one ventilation mechanism 55 that allows air to flow into the space 21 is installed. The number of ventilation mechanisms 55 installed on the left side wall 19 extending into the treated ash accommodating space 21 is not limited to that shown in the figure, and two or more ventilation mechanisms 55 are installed on the left side wall 19 of the space 21. Also good.
 後壁17は、分解炉11の外部(外側)に対向する所定面積の第1後壁59(第1周壁)と、第1後壁59の内側(前後方向前方)(周壁の径方向内方)に位置する所定面積の第2前壁60(第2周壁)と、第2後壁60の内側(前後方向前方)(周壁の径方向内方)に位置して有機物収容空間20に対向する所定面積の第3後壁61(第3周壁)とから形成されている。第1後壁59の外面には、樹脂による塗装が施されている。第1後壁~第3後壁59~61は、鋼板やステンレス板、アルミ板等の金属板から作られており、それらの形状が略矩形に成形されている。 The rear wall 17 includes a first rear wall 59 (first peripheral wall) having a predetermined area facing the outside (outside) of the cracking furnace 11, and an inner side (front-rear direction front) of the first rear wall 59 (inward in the radial direction of the peripheral wall). The second front wall 60 (second peripheral wall) having a predetermined area located on the front side and the inner side of the second rear wall 60 (frontward in the front-rear direction) (inward in the radial direction of the peripheral wall) and opposed to the organic matter storage space 20 It is formed from a third rear wall 61 (third peripheral wall) having a predetermined area. The outer surface of the first rear wall 59 is painted with resin. The first rear wall to the third rear wall 59 to 61 are made of a metal plate such as a steel plate, a stainless steel plate, or an aluminum plate, and their shapes are formed in a substantially rectangular shape.
 第1後壁59は、頂壁14と底壁15との間に延びている。第1後壁59は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されているとともに、その両側縁が左右側壁18,19に連結(一体化)されている。第2後壁60は、第1後壁59から内側(前後方向前方)へ所定寸法離間しつつ、頂壁14と底壁15との間に延びている。第2後壁60は、その上端縁が頂壁14に溶接によって強固に接合(固定)され、その下端縁が底壁15に溶接によって強固に接合(固定)されているとともに、その両側縁が左右側壁18,19に連結(一体化)されている。 The first rear wall 59 extends between the top wall 14 and the bottom wall 15. The first rear wall 59 has its upper edge firmly joined (fixed) to the top wall 14 by welding, its lower edge is firmly joined (fixed) to the bottom wall 15 by welding, and both side edges thereof are The left and right side walls 18 and 19 are connected (integrated). The second rear wall 60 extends between the top wall 14 and the bottom wall 15 while being spaced apart from the first rear wall 59 inward (forward in the front-rear direction) by a predetermined dimension. The second rear wall 60 has an upper edge firmly joined (fixed) to the top wall 14 by welding, a lower end edge firmly joined (fixed) to the bottom wall 15 by welding, and both side edges thereof are The left and right side walls 18 and 19 are connected (integrated).
 第1後壁59と第2後壁60とは、上下方向へ延びる連結部36によって連結されている。第1および第2後壁59,60の連結板36は、溶接によって強固に接合(固定)されている。第1後壁59と第2後壁60との間には、気密断熱層37(気密空気層)が画成されている。気密断熱層37は、処理灰収容空間21に延びるとともに有機物収容空間20の頂部22と底部24との間に延びている。後壁17に形成された気密断熱層37は、右側壁18の気密断熱層37につながっているとともに、左側壁19の気密断熱層37につながっている。 The first rear wall 59 and the second rear wall 60 are connected by a connecting portion 36 extending in the vertical direction. The connection plates 36 of the first and second rear walls 59, 60 are firmly joined (fixed) by welding. An airtight heat insulating layer 37 (airtight air layer) is defined between the first rear wall 59 and the second rear wall 60. The airtight heat insulating layer 37 extends between the top portion 22 and the bottom portion 24 of the organic matter containing space 20 while extending into the treated ash containing space 21. The airtight heat insulating layer 37 formed on the rear wall 17 is connected to the airtight heat insulating layer 37 on the right side wall 18 and is connected to the airtight heat insulating layer 37 on the left side wall 19.
 第3後壁61は、第2前壁60から内側(前後方向後方)へ所定寸法離間しつつ、有機物収容空間20の頂部22と底部24との間に延びている。第3後壁61は、その上端縁が頂壁14から離間しており、上端縁が頂壁14に非接合である。さらに、その下端縁が有機物収容空間20の底部24で終了し、処理灰収容空間21に存在せず、下端縁が底壁15に非接合である。第3後壁61は、その両側縁が左右側壁18,19に連結(一体化)されている。 The third rear wall 61 extends between the top portion 22 and the bottom portion 24 of the organic matter storage space 20 while being spaced apart from the second front wall 60 inward (backward in the front-rear direction) by a predetermined dimension. The upper end edge of the third rear wall 61 is separated from the top wall 14, and the upper end edge is not joined to the top wall 14. Furthermore, the lower end edge ends at the bottom 24 of the organic matter accommodation space 20, does not exist in the treated ash accommodation space 21, and the lower end edge is not joined to the bottom wall 15. The third rear wall 61 is connected (integrated) to the left and right side walls 18 and 19 at both side edges.
 第2後壁60と第3後壁61とは、上下方向および横方向へ並ぶ複数本の棒状または板状の連結材38によって連結されている。第2および第3後壁60,61とそれら連結材38とは、溶接によって強固に接合(固定)されている。第2後壁60と第3後壁61との間には、空気流動層39が画成されている。後壁17に画成された空気流動層39は、有機物収容空間20の頂部22と底部24との間に延びている。後壁17の空気流動層39は、有機物収容空間20の底部24に開口する底部開口40と、空間20の頂部22に開口する頂部開口41とを有し、底部開口40および頂部開口41において空間20につながるとともに、右側壁18および左側壁19の空気流動層39につながっている。 The second rear wall 60 and the third rear wall 61 are connected by a plurality of rod-like or plate-like connecting members 38 arranged in the vertical direction and the horizontal direction. The second and third rear walls 60 and 61 and the connecting member 38 are firmly joined (fixed) by welding. An air fluidized bed 39 is defined between the second rear wall 60 and the third rear wall 61. The air fluidized bed 39 defined on the rear wall 17 extends between the top portion 22 and the bottom portion 24 of the organic matter accommodation space 20. The air fluidized bed 39 of the rear wall 17 has a bottom opening 40 that opens to the bottom 24 of the organic matter containing space 20 and a top opening 41 that opens to the top 22 of the space 20. The bottom opening 40 and the top opening 41 are spaces. 20 and the air fluidized bed 39 on the right side wall 18 and the left side wall 19.
 有機物収容空間20の底部24に延びる後壁17(分解炉11の周壁)には、7個の給気機構12が設置されている。空間20の底部24の後壁17に設置されたそれら給気機構12は、上下方向と横方向とへ略等間隔離間して並んでいる。なお、空間20の底部24の後壁17に設置された給気機構12の個数を図示のそれに限定するものではなく、6個以下または8個以上の給気機構12が底部24の後壁17に設置されていてもよい。 Seven air supply mechanisms 12 are installed on the rear wall 17 (the peripheral wall of the decomposition furnace 11) extending to the bottom 24 of the organic substance storage space 20. These air supply mechanisms 12 installed on the rear wall 17 of the bottom portion 24 of the space 20 are arranged at substantially equal intervals in the vertical direction and the horizontal direction. The number of air supply mechanisms 12 installed on the rear wall 17 of the bottom portion 24 of the space 20 is not limited to that shown in the figure, and six or less or eight or more air supply mechanisms 12 may be included in the rear wall 17 of the bottom portion 24. It may be installed in.
 図10は、第1および第2前壁34,35を省略して示す磁気熱分解装置10Aの正面図であり、図11は、第1および第2左側壁56,57を省略して示す磁気熱分解装置10Aの側面図である。図12は、有機物収容空間20の底部24に延びる前後壁16,17や左右側壁18,19に設置された給気機構12Aの上面図であり、図13は、有機物収容空間20の底部24に延びる前後壁16,17や左右側壁18,19に設置された給気機構12Aの側面図である。図10,11では、外側第1および第2給気管64,73の図示を省略している。 10 is a front view of the magnetothermal decomposition apparatus 10A with the first and second front walls 34 and 35 omitted, and FIG. 11 shows the magnetism with the first and second left side walls 56 and 57 omitted. It is a side view of 10 A of thermal decomposition apparatuses. 12 is a top view of the air supply mechanism 12A installed on the front and rear walls 16 and 17 and the left and right side walls 18 and 19 extending to the bottom 24 of the organic matter accommodation space 20. FIG. 13 shows the bottom 24 of the organic matter accommodation space 20. It is a side view of the air supply mechanism 12A installed on the extending front and rear walls 16, 17 and left and right side walls 18, 19. 10 and 11, the outer first and second air supply pipes 64 and 73 are not shown.
 有機物収容空間20の底部24に延びる前後壁16,17や左右側壁18,19に設置されたそれら給気機構12A(給気部材)は、空間20の底部24の側から空間20および空気流動層39に空気を流入させる複数の第1給気管62と、それら第1給気管62に取り付けられた永久磁石63とを有する。 These air supply mechanisms 12A (air supply members) installed on the front and rear walls 16 and 17 and the left and right side walls 18 and 19 extending to the bottom 24 of the organic matter housing space 20 are formed from the space 24 and the air fluidized bed from the bottom 24 side of the space 20. A plurality of first air supply pipes 62 that allow air to flow into the air supply 39 and permanent magnets 63 attached to the first air supply pipes 62.
 それら第1給気管62は、第1前後壁33,59(第1周壁)や第1左右側壁52,56(第1周壁)から外側に向かって延びる箱状の外側第1給気管64と、第1および第2前後壁33,34,59,60(第1および第2周壁)や第1および第2左右側壁52,53,56,57(第1および第2周壁)を貫通して分解炉11の内側に延びる筒状の内側第1給気管65と、内側第1給気管65の先端部に位置して有機物収容空間20および空気流動層39に開口する給気口66とから形成されている。内側第1給気管65の先端部が斜めに切断され、それによって、給気口66が有機物収容空間20および空気流動層39の上下方向下方へ開口している。 The first air supply pipes 62 are box-shaped outer first air supply pipes 64 extending outward from the first front and rear walls 33 and 59 (first peripheral wall) and the first left and right side walls 52 and 56 (first peripheral wall), Disassemble through first and second front and rear walls 33, 34, 59, 60 (first and second peripheral walls) and first and second left and right side walls 52, 53, 56, 57 (first and second peripheral walls). It is formed from a cylindrical inner first air supply pipe 65 extending to the inside of the furnace 11, and an air supply port 66 that is located at the tip of the inner first air supply pipe 65 and opens to the organic matter storage space 20 and the air fluidized bed 39. ing. The front end portion of the inner first air supply pipe 65 is cut obliquely, whereby the air supply port 66 opens downward in the vertical direction of the organic matter accommodation space 20 and the air fluidized bed 39.
 外側第1給気管64は、前端壁および後端壁、頂壁および底壁、両側壁を備え、第1前後壁33,59や第1左右側壁52,56の側に位置する所定厚みの断熱部材67と、第1給気管62に流入する空気の流量を調節可能な流量調節機構68とを有する。外側第1給気管64(断熱部材67を含む)は、その軸方向中心に空気が通る空気流路69が形成されている。外側第1給気管64(断熱部材67を含む)は、ボルトを介して第1前後壁33,59や第1左右側壁52,56に着脱可能に固定されている。内側第1給気管65は、その基端部の周縁が第1前後壁33,59(第1周壁)や第1左右側壁52,56(第1周壁)に溶接によって強固に固定されている。内側第1給気管65は、その軸方向中心に空気が通る空気流路70が形成され、その流路70が外側第1給気管64の空気流路69に連通している。 The outer first air supply pipe 64 includes a front end wall and a rear end wall, a top wall and a bottom wall, and both side walls, and has a predetermined thickness of heat insulation located on the first front and rear walls 33 and 59 and the first left and right side walls 52 and 56 side. A member 67 and a flow rate adjusting mechanism 68 capable of adjusting the flow rate of air flowing into the first air supply pipe 62 are provided. The outer first air supply pipe 64 (including the heat insulating member 67) has an air flow path 69 through which air passes at the center in the axial direction. The outer first air supply pipe 64 (including the heat insulating member 67) is detachably fixed to the first front and rear walls 33 and 59 and the first left and right side walls 52 and 56 via bolts. The inner first air supply pipe 65 has a peripheral edge firmly fixed to the first front and rear walls 33 and 59 (first peripheral wall) and the first left and right side walls 52 and 56 (first peripheral wall) by welding. The inner first air supply pipe 65 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer first air supply pipe 64.
 永久磁石63は、外側第1給気管64の空気流路69を挟むように、2つのそれが断熱部材67の外側に延びる外側第1給気管64の内部空間に対向配置されている。それら永久磁石63は、S極とN極とが対向して設置される場合、N極どうしが対向して設置される場合、または、S極どうしが対向して設置される場合がある。永久磁石63には、フェライト磁石、アルコニ磁石、ネオジム磁石、サマリウムコバルト磁石を使用することができる。それら永久磁石63は、所定の磁束密度を有し、外側第1給気管64の空気流路69に磁場を作り、第1給気管62(外側第1給気管64の空気流路69)を通過する空気を磁化することで、空気を活性化する。 The two permanent magnets 63 are arranged opposite to the inner space of the outer first air supply pipe 64 extending outside the heat insulating member 67 so as to sandwich the air flow path 69 of the outer first air supply pipe 64. The permanent magnets 63 may be installed such that the south and north poles face each other, the north and south poles face each other, or the south and south poles face each other. As the permanent magnet 63, a ferrite magnet, an alkoni magnet, a neodymium magnet, or a samarium cobalt magnet can be used. The permanent magnets 63 have a predetermined magnetic flux density, create a magnetic field in the air flow path 69 of the outer first supply pipe 64, and pass through the first supply pipe 62 (the air flow path 69 of the outer first supply pipe 64). Air is activated by magnetizing the air.
 それら永久磁石63は、ボルトを介して外側第1給気管64に着脱可能に固定されている。なお、永久磁石63の個数について、特に限定はなく、互いに対向する偶数個(4個以上)の磁石63が外側第1給気管64に取り付けられていてもよい。断熱部材67は、難燃性の合成樹脂から作られ、第1前後壁33,59や第1左右側壁52,56に発生した熱の外側第1給気管64への伝導を防止し、熱による永久磁石63の磁力の低下を防止する。 These permanent magnets 63 are detachably fixed to the outer first air supply pipe 64 via bolts. The number of permanent magnets 63 is not particularly limited, and an even number (four or more) of magnets 63 facing each other may be attached to the outer first air supply pipe 64. The heat insulating member 67 is made of a flame-retardant synthetic resin, prevents conduction of heat generated in the first front and rear walls 33 and 59 and the first left and right side walls 52 and 56 to the outer first air supply pipe 64, and is caused by heat. A reduction in the magnetic force of the permanent magnet 63 is prevented.
 図14は、有機物収容空間20の中間部23に延びる左右側壁18,19に設置された給気機構12Bの上面図であり、図15は、有機物収容空間20の中間部23に延びる左右側壁18,19に設置された給気機構12Bの側面図である。有機物収容空間20の中間部23に延びる左右側壁18,19に設置されたそれら給気機構12Bは、空間20の中間部23の側から空間20に空気を流入させる複数の第2給気管71と、それら第2給気管71に取り付けられた永久磁石72とを有する。 14 is a top view of the air supply mechanism 12B installed on the left and right side walls 18 and 19 extending to the intermediate portion 23 of the organic matter accommodation space 20, and FIG. 15 is the left and right side walls 18 extending to the intermediate portion 23 of the organic matter accommodation space 20. , 19 is a side view of the air supply mechanism 12B. These air supply mechanisms 12B installed on the left and right side walls 18 and 19 extending to the intermediate portion 23 of the organic substance containing space 20 include a plurality of second air supply pipes 71 that allow air to flow into the space 20 from the intermediate portion 23 side of the space 20. And a permanent magnet 72 attached to the second air supply pipe 71.
 それら第2給気管71は、第1左右側壁52,56(第1周壁)から外側に向かって延びる箱状の外側第2給気管73と、第1~第3左右側壁52~54,56~58(第1~第3周壁)を貫通して分解炉11の内側に延びる筒状の内側第2給気管74と、内側第2給気管74の先端部に位置して有機物収容空間20に開口する給気口75とから形成されている。内側第2給気管74の先端部が斜めに切断され、それによって、給気口75が空間20の上下方向下方へ開口している。 The second air supply pipe 71 includes a box-shaped outer second air supply pipe 73 extending outward from the first left and right side walls 52 and 56 (first peripheral wall), and first to third left and right side walls 52 to 54, 56 to. A cylindrical inner second air supply pipe 74 that extends through 58 (first to third peripheral walls) and extends to the inside of the cracking furnace 11, and is located at the distal end of the inner second air supply pipe 74 and opens into the organic matter storage space 20. The air supply port 75 is formed. The distal end portion of the inner second air supply pipe 74 is cut obliquely, whereby the air supply port 75 opens downward in the vertical direction of the space 20.
 外側第2給気管73は、前端壁および後端壁、頂壁および底壁、両側壁を備え、第1左右側壁52,56の側に位置する所定厚みの断熱部材76と、第2給気管71に流入する空気の流量を調節可能な流量調節機構68とを有する。外側第2給気管73(断熱部材76を含む)は、その軸方向中心に空気が通る空気流路69が形成されている。外側第2給気管73(断熱部材76を含む)は、ボルトを介して第1左右側壁52,56に着脱可能に固定されている。内側第2給気管74は、その基端部の周縁が第1左右側壁52,56に溶接によって強固に固定されている。内側第2給気管74は、その軸方向中心に空気が通る空気流路70が形成され、その流路70が外側第2給気管73の空気流路69に連通している。 The outer second air supply pipe 73 includes a front end wall and a rear end wall, a top wall and a bottom wall, both side walls, a heat insulating member 76 having a predetermined thickness located on the first left and right side walls 52 and 56, and a second air supply pipe. And a flow rate adjusting mechanism 68 capable of adjusting the flow rate of the air flowing into 71. The outer second air supply pipe 73 (including the heat insulating member 76) has an air flow path 69 through which air passes at the center in the axial direction. The outer second air supply pipe 73 (including the heat insulating member 76) is detachably fixed to the first left and right side walls 52 and 56 via bolts. The inner second air supply pipe 74 has a peripheral edge firmly fixed to the first left and right side walls 52 and 56 by welding. The inner second air supply pipe 74 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer second air supply pipe 73.
 永久磁石72は、外側第2給気管73の空気流路69を挟むように、2つのそれが断熱部材76の外側に延びる外側第2給気管73の内部空間に対向配置されている。それら永久磁石72は、S極とN極とが対向して設置される場合、N極どうしが対向して設置される場合、または、S極どうしが対向して設置される場合がある。永久磁石72には、フェライト磁石、アルコニ磁石、ネオジム磁石、サマリウムコバルト磁石を使用することができる。それら永久磁石72は所定の磁束密度を有し、外側第2給気管73の空気流路69に磁場を作り、第2給気管71(外側第2給気管73の空気流路69)を通過する空気を磁化することで、空気を活性化する。 The two permanent magnets 72 are arranged opposite to the inner space of the outer second air supply pipe 73 extending outside the heat insulating member 76 so as to sandwich the air flow path 69 of the outer second air supply pipe 73. The permanent magnets 72 may be installed such that the S pole and the N pole face each other, the N poles face each other, or the S poles face each other. As the permanent magnet 72, a ferrite magnet, an arconi magnet, a neodymium magnet, or a samarium cobalt magnet can be used. The permanent magnets 72 have a predetermined magnetic flux density, create a magnetic field in the air flow path 69 of the outer second supply pipe 73, and pass through the second supply pipe 71 (the air flow path 69 of the outer second supply pipe 73). Air is activated by magnetizing the air.
 それら永久磁石72は、ボルトを介して外側第2給気管73に着脱可能に固定されている。なお、永久磁石72の個数について、特に限定はなく、互いに対向する偶数個(4個以上)の磁石72が外側第2給気管73に取り付けられていてもよい。断熱部材76は、難燃性の合成樹脂から作られ、第1左右側壁52,56に発生した熱の外側第2給気管73への伝導を防止し、熱による永久磁石72の磁力の低下を防止する。 These permanent magnets 72 are detachably fixed to the outer second air supply pipe 73 via bolts. The number of permanent magnets 72 is not particularly limited, and an even number (four or more) of magnets 72 facing each other may be attached to the outer second air supply pipe 73. The heat insulating member 76 is made of a flame retardant synthetic resin, prevents conduction of heat generated in the first left and right side walls 52 and 56 to the outer second air supply pipe 73, and reduces the magnetic force of the permanent magnet 72 due to heat. To prevent.
 図16は、流量調節機構68によって空気流路69が開放された状態の給気機構12の正面図であり、図17は、流量調節機構68によって空気流路69が閉鎖された状態の給気機構12の正面図である。図18は、給気管64,73の前端板を破断して示す給気機構12の部分破断正面図である。流量調節機構68は、外側第1給気管64または外側第2給気管73の前端板77と、前端板77の内側に配置されたシャッタ板78と、前端板77にシャッタ板78を固定する固定螺子79とから形成されている。 FIG. 16 is a front view of the air supply mechanism 12 in a state where the air flow path 69 is opened by the flow rate adjusting mechanism 68, and FIG. 17 is a view of the air supply in a state where the air flow path 69 is closed by the flow rate adjusting mechanism 68. 3 is a front view of a mechanism 12. FIG. FIG. 18 is a partially cutaway front view of the air supply mechanism 12 shown with the front end plates of the air supply pipes 64 and 73 broken away. The flow rate adjusting mechanism 68 includes a front end plate 77 of the outer first air supply pipe 64 or the outer second air supply pipe 73, a shutter plate 78 disposed inside the front end plate 77, and a fixing for fixing the shutter plate 78 to the front end plate 77. The screw 79 is formed.
 前端板77は、上下方向へ長い3つの固定開口80を有し、シャッタ板78は、固定開口80と同形同大の上下方向へ長い3つの移動開口81を有する。固定螺子79を回転させて前端板77とシャッタ板78との固定を解除し、シャッタ板78をスライドさせ、固定開口80の位置に移動開口81を移動させることで、それら開口80,81どうしが連通し、固定開口80が全開となり、空気流路69が開放(全開)される。この状態で固定螺子79を回転させて前端板77とシャッタ板78とを固定し、全開状態を保持することができる。なお、シャッタ板78をスライドさせ、固定開口80の位置に対してシャッタ板78の移動開口81の位置をずらすことで、固定開口80の開口面積を調節することができ、それによって固定開口80を通過する空気の流量(空気流路69に流入する空気の流量)を調節することができる。 The front end plate 77 has three fixed openings 80 that are long in the vertical direction, and the shutter plate 78 has three moving openings 81 that are the same shape and size as the fixed opening 80 and that are long in the vertical direction. The fixing screw 79 is rotated to release the fixing between the front end plate 77 and the shutter plate 78, the shutter plate 78 is slid, and the moving opening 81 is moved to the position of the fixing opening 80. The fixed opening 80 is fully opened, and the air channel 69 is opened (fully opened). In this state, the fixing screw 79 is rotated to fix the front end plate 77 and the shutter plate 78, and the fully open state can be maintained. Note that the opening area of the fixed opening 80 can be adjusted by sliding the shutter plate 78 and shifting the position of the moving opening 81 of the shutter plate 78 with respect to the position of the fixed opening 80. The flow rate of the passing air (the flow rate of the air flowing into the air flow channel 69) can be adjusted.
 第1給気管62では、磁気熱分解装置10Aの稼働中(有機廃棄物の分解中)に、シャッタ板78をスライドさせて前端板77の固定開口80を全開または所定の開口面積にすると、図12,13に矢印で示すように、所定流量の空気が外側第1給気管64の空気流路69に流入し、空気が永久磁石63の磁力によって磁化され、磁化された空気が外側第1給気管64から内側第1給気管65に流入した後、内側第1給気管65から有機物収容空間20や空気流動層39に流入する。なお、シャッタ板78をスライドさせ、シャッタ板78によって固定開口80を塞ぐことで、固定開口80が全閉となり、外側第1給気管64および内側第1給気管65の空気流路69,70が閉鎖され、有機物収容空間20や空気流動層39への空気の流入が停止する。前端板77の固定開口80の開口面積を大きくすることで、多くの流量の空気を有機物収容空間20や空気流動層39に供給することができ、前端板77の固定開口80の開口面積を小さくすることで、少ない流量の空気を空間20や空気流動層39に供給することができる。 In the first air supply pipe 62, when the magnetic pyrolysis apparatus 10A is in operation (during decomposition of organic waste), the shutter plate 78 is slid so that the fixed opening 80 of the front end plate 77 is fully opened or has a predetermined opening area. As indicated by arrows in FIGS. 12 and 13, air of a predetermined flow rate flows into the air flow path 69 of the outer first supply pipe 64, the air is magnetized by the magnetic force of the permanent magnet 63, and the magnetized air is supplied to the outer first supply pipe. After flowing into the inner first air supply pipe 65 from the trachea 64, it flows into the organic matter accommodation space 20 and the air fluidized bed 39 from the inner first air supply pipe 65. By sliding the shutter plate 78 and closing the fixed opening 80 by the shutter plate 78, the fixed opening 80 is fully closed, and the air flow paths 69 and 70 of the outer first air supply pipe 64 and the inner first air supply pipe 65 are opened. It closes and the inflow of the air to the organic substance accommodation space 20 and the air fluidized bed 39 stops. By increasing the opening area of the fixed opening 80 of the front end plate 77, a large amount of air can be supplied to the organic matter storage space 20 and the air fluidized bed 39, and the opening area of the fixed opening 80 of the front end plate 77 can be reduced. By doing so, a small amount of air can be supplied to the space 20 and the air fluidized bed 39.
 第2給気管71では、磁気熱分解装置10Aの稼働中(有機廃棄物の分解中)に、シャッタ板78をスライドさせて前端板77の固定開口80を全開または所定の開口面積にすると、図14,15に矢印で示すように、所定流量の空気が外側第2給気管73の空気流路69に流入し、空気が永久磁石72の磁力によって磁化され、磁化された空気が外側第2給気管73から内側第2給気管74に流入した後、内側第2給気管74から有機物収容空間20に流入する。なお、シャッタ板78をスライドさせ、シャッタ板78によって固定開口80を塞ぐことで、固定開口80が全閉となり、外側第2給気管73および内側第2給気管74の空気流路69,70が閉鎖され、有機物収容空間20への空気の流入が停止する。前端板77の固定開口80の開口面積を大きくすることで、多くの流量の空気を有機物収容空間20に供給することができ、前端板77の固定開口80の開口面積を小さくすることで、少ない流量の空気を空間20に供給することができる。 In the second air supply pipe 71, when the magnetic pyrolysis apparatus 10A is in operation (during decomposition of organic waste), the shutter plate 78 is slid so that the fixed opening 80 of the front end plate 77 is fully opened or has a predetermined opening area. As indicated by arrows in FIGS. 14 and 15, air of a predetermined flow rate flows into the air flow path 69 of the outer second supply pipe 73, the air is magnetized by the magnetic force of the permanent magnet 72, and the magnetized air is supplied to the outer second supply pipe. After flowing into the inner second air supply pipe 74 from the trachea 73, it flows into the organic matter accommodation space 20 from the inner second air supply pipe 74. In addition, by sliding the shutter plate 78 and closing the fixed opening 80 with the shutter plate 78, the fixed opening 80 is fully closed, and the air flow paths 69 and 70 of the outer second air supply pipe 73 and the inner second air supply pipe 74 are closed. It closes and the inflow of the air to the organic substance accommodation space 20 stops. By increasing the opening area of the fixed opening 80 of the front end plate 77, it is possible to supply a large amount of air to the organic matter accommodation space 20, and by reducing the opening area of the fixed opening 80 of the front end plate 77, there is little. A flow rate of air can be supplied to the space 20.
 図19は、流量調節機構84によって通気路85が閉鎖された状態の通気機構55の正面図であり、図20は、図19のD-D線端面図である。図21は、流量調節機構84によって通気路85が開放された状態の通気機構55の正面図であり、図22は、図21のE-E線端面図である。処理灰収容空間21に延びる右側壁18や左側壁19に設置された通気機構55(通気部材)は、第1および第2右側壁52,53(第1および第2周壁)または第1および第2左側壁56,57(第1および第2周壁)を貫通して分解炉11の内側に延びる筒状の通気管82と、通気管82の先端部に位置して処理灰収容空間21に開口する通気口83と、通気管82に流入する空気の流量を調節可能な流量調節機構84とから形成されている。通気管82は、その軸方向へ延びる通気路85を有する。 19 is a front view of the ventilation mechanism 55 in a state in which the ventilation path 85 is closed by the flow rate adjustment mechanism 84, and FIG. 20 is an end view taken along the line DD of FIG. 21 is a front view of the ventilation mechanism 55 in a state in which the ventilation path 85 is opened by the flow rate adjustment mechanism 84, and FIG. 22 is an end view taken along the line EE of FIG. The ventilation mechanism 55 (venting member) installed in the right side wall 18 and the left side wall 19 extending into the treated ash accommodating space 21 is the first and second right side walls 52 and 53 (first and second peripheral walls) or the first and second side walls. 2 Cylindrical vent pipe 82 extending through the left side walls 56 and 57 (first and second peripheral walls) to the inside of the cracking furnace 11, and opening to the treated ash accommodating space 21 at the tip of the vent pipe 82 And a flow rate adjusting mechanism 84 that can adjust the flow rate of the air flowing into the vent pipe 82. The ventilation pipe 82 has a ventilation path 85 extending in the axial direction thereof.
 流量調節機構84は、第1右側壁52や第1左側壁56の側に位置する通気管82の円形の前端板86と、前端板86の内側に配置された円形のシャッタ板87と、前端板86とシャッタ板87とを連結しつつ、シャッタ板87を時計回り方向と反時計回り方向とへ回転させる回転螺子88とから形成されている。前端板86は、周り方向へ並ぶ扇形の3つの固定開口89を有し、シャッタ板87は、固定開口89と同形同大の周り方向へ並ぶ3つの移動開口90を有する。 The flow rate adjusting mechanism 84 includes a circular front end plate 86 of the ventilation pipe 82 positioned on the first right side wall 52 and the first left side wall 56, a circular shutter plate 87 disposed inside the front end plate 86, and a front end A rotating screw 88 that rotates the shutter plate 87 clockwise and counterclockwise while connecting the plate 86 and the shutter plate 87 is formed. The front end plate 86 has three fan-shaped fixed openings 89 arranged in the circumferential direction, and the shutter plate 87 has three moving openings 90 arranged in the circumferential direction of the same shape and size as the fixed openings 89.
 回転螺子88を回転させてシャッタ板87を回転させ、前端板86の固定開口89の位置にシャッタ板87の移動開口90を移動させることで、それら開口89,90どうしが連通し、固定開口89が全開となり、通気管82(通気路85)が開放される。なお、シャッタ板87を回転させて固定開口89の位置に対して移動開口90の位置をずらすことで、固定開口89の開口面積を調節することができ、それによって固定開口89を通過する空気の流量(通気路85に流入する空気の流量)を調節することができる。通気管82が開放された状態から、シャッタ板87をスライドさせ、シャッタ板87によって固定開口89を塞ぐことで、固定開口89が全閉となり、通気路85が閉鎖される。 By rotating the rotary screw 88 to rotate the shutter plate 87 and moving the moving opening 90 of the shutter plate 87 to the position of the fixed opening 89 of the front end plate 86, the openings 89, 90 communicate with each other, and the fixed opening 89. Becomes fully open, and the vent pipe 82 (vent path 85) is opened. Note that the opening area of the fixed opening 89 can be adjusted by rotating the shutter plate 87 and shifting the position of the moving opening 90 with respect to the position of the fixed opening 89, so that the air passing through the fixed opening 89 can be adjusted. The flow rate (the flow rate of air flowing into the air passage 85) can be adjusted. By sliding the shutter plate 87 from the state in which the vent pipe 82 is opened and closing the fixed opening 89 by the shutter plate 87, the fixed opening 89 is fully closed and the vent path 85 is closed.
 磁気熱分解装置10Aの稼働中(有機廃棄物の分解中)に、流量調節機構84によって通気機構55の通気管82(通気路85)を開放すると、図22に矢印で示すように、空気(外気)が開口89,90から通気管82に進入し、通気管82を通って処理灰収容空間21に流入するとともに、空間21から有機物収容空間20に流入する。固定開口89の開口面積を大きくすることで、多くの流量の空気を有機物収容空間20に供給することができ、固定開口89の開口面積を小さくすることで、少ない流量の空気を空間20に供給することができる。 If the vent pipe 82 (vent passage 85) of the vent mechanism 55 is opened by the flow rate adjusting mechanism 84 while the magnetic pyrolysis apparatus 10A is in operation (decomposing organic waste), as shown by an arrow in FIG. Outside air) enters the ventilation pipe 82 through the openings 89 and 90, flows into the treated ash accommodation space 21 through the ventilation pipe 82, and flows into the organic matter accommodation space 20 from the space 21. By increasing the opening area of the fixed opening 89, it is possible to supply a large amount of air to the organic matter accommodation space 20, and by reducing the opening area of the fixed opening 89, supply a small amount of air to the space 20. can do.
 排気機構13は、図5に示すように、ガス排気管91、水槽92、フィルタ93、送風機94(ファンまたはブロワ)、煙突95から形成されている。ガス排気管91は、分解炉11の上部(後壁17の上部)から分解炉11の外部に延びている。後壁17には、開閉機構27を形成する電動機29が設置されているとともに、制御盤96が設置されている。制御盤96には、中央処理装置(CPUまたはMPU)と記憶装置(メモリ)とを有するマイクロコンピュータが内蔵されている。電動機29や送風機94は、ケーブルを介して制御盤96に接続され、インターフェイスを介して制御盤96のマイクロコンピュータに接続されている。なお、図示はしていないが、分解炉11の内部にはワンチップ温度センサ、ワンチップ湿度センサが設置されている。温度センサや湿度センサは、インターフェイスを介して制御盤96のマイクロコンピュータに接続されている。 As shown in FIG. 5, the exhaust mechanism 13 includes a gas exhaust pipe 91, a water tank 92, a filter 93, a blower 94 (fan or blower), and a chimney 95. The gas exhaust pipe 91 extends from the upper part of the cracking furnace 11 (upper part of the rear wall 17) to the outside of the cracking furnace 11. An electric motor 29 that forms an opening / closing mechanism 27 is installed on the rear wall 17, and a control panel 96 is installed. The control panel 96 incorporates a microcomputer having a central processing unit (CPU or MPU) and a storage device (memory). The electric motor 29 and the blower 94 are connected to the control panel 96 via a cable, and are connected to the microcomputer of the control panel 96 via an interface. Although not shown, a one-chip temperature sensor and a one-chip humidity sensor are installed inside the decomposition furnace 11. The temperature sensor and the humidity sensor are connected to the microcomputer of the control panel 96 through an interface.
 制御盤96には、ケーブルを介して電気が供給されている。制御盤96には、図示はしていないが、ON/OFFスイッチやディスプレイが取り付けられ、安全を知らせる青色点滅ランプ、危険を知らせる赤色点滅ランプ、運転中を知らせる黄色点滅ランプが設置されている。制御盤96のディスプレイには、送風機94の出力(回転数)が表示されるとともに、分解炉11の内部(有機物収容空間20)の温度および湿度が表示される。制御盤96のディスプレイ(タッチパネル)によって電動機29や送風機94の出力(回転数)を調節することができる。なお、排気機構13や電動機29、制御盤96は、後壁17に固定されたハウジング97に収納され、ハウジング97によってそれらの外気への露出が防止されている。 The control panel 96 is supplied with electricity via a cable. Although not shown, the control panel 96 is provided with an ON / OFF switch and a display, and is provided with a blue blinking lamp for notifying safety, a red blinking lamp for notifying danger, and a yellow blinking lamp for notifying operation. On the display of the control panel 96, the output (number of rotations) of the blower 94 is displayed, and the temperature and humidity inside the decomposition furnace 11 (organic matter accommodation space 20) are displayed. The output (number of rotations) of the electric motor 29 and the blower 94 can be adjusted by the display (touch panel) of the control panel 96. The exhaust mechanism 13, the electric motor 29, and the control panel 96 are accommodated in a housing 97 fixed to the rear wall 17, and exposure to the outside air is prevented by the housing 97.
 水槽92は、ガス排気管91の間に設置されて排気管91につながっている。水槽92の頂部には、蓋98が取り付けられている。水槽92の内部には、所定の水位まで水(水道水)が充填されている。水槽92にはガス排気管91を介して分解炉11(有機物収容空間20)で発生したガスが流入し、そのガスが水槽92の内部を流動する過程で水槽92または水槽92の水に通気される。水槽92では、分解炉11で発生したガスを水槽92や水槽92の水に通気させることで、ガスに含まれる有害物質や臭気成分を水に溶け込ませ、ガスから有害物質や臭気成分を分離する。水槽92では、そこに充填された水を所定期間毎に交換することで、有害物質で汚れた水を新しいそれと交換することができる。 The water tank 92 is installed between the gas exhaust pipes 91 and connected to the exhaust pipe 91. A lid 98 is attached to the top of the water tank 92. The water tank 92 is filled with water (tap water) up to a predetermined water level. The gas generated in the decomposition furnace 11 (organic matter storage space 20) flows into the water tank 92 through the gas exhaust pipe 91, and the gas is passed through the water tank 92 or the water in the water tank 92 in the process of flowing inside the water tank 92. The In the water tank 92, the gas generated in the decomposition furnace 11 is passed through the water in the water tank 92 or the water tank 92, so that harmful substances and odor components contained in the gas are dissolved in water, and the harmful substances and odor components are separated from the gas. . In the water tank 92, the water filled there can be exchanged every predetermined period, so that the water contaminated with harmful substances can be exchanged for new one.
 フィルタ93は、水槽92の後流の側であって、ガス排気管91の間に設置されて排気管91につながっている。フィルタ93は、フィルタケース99に着脱可能に収納されている。フィルタ93には、ガラス繊維や炭素繊維、合成樹脂繊維、除去剤(化学薬品)を濾材とした中高性能フィルタやHEPAフィルタ、ガス除去フィルタを使用することができる。フィルタ93(フィルタケース99)にはガス排気管91を介して水槽92から流出したガスが流入し、そのガスがフィルタ93を通流する。ガスをフィルタ93に通流させることで、ガスに残存する有害物質や臭気成分がフィルタ93に捕集され、ガスから有害物質や臭気成分を分離する。フィルタケース99に収納されたフィルタ93を定期的に交換することで、有害物質で汚れたフィルタ93を新しいそれと交換することができる。 The filter 93 is on the downstream side of the water tank 92 and is installed between the gas exhaust pipes 91 and connected to the exhaust pipe 91. The filter 93 is detachably accommodated in the filter case 99. The filter 93 may be a medium-high performance filter, a HEPA filter, or a gas removal filter that uses glass fiber, carbon fiber, synthetic resin fiber, or a removal agent (chemical) as a filter medium. Gas that flows out of the water tank 92 flows into the filter 93 (filter case 99) through the gas exhaust pipe 91, and the gas flows through the filter 93. By causing the gas to flow through the filter 93, harmful substances and odor components remaining in the gas are collected by the filter 93, and the harmful substances and odor components are separated from the gas. By periodically replacing the filter 93 stored in the filter case 99, the filter 93 contaminated with harmful substances can be replaced with a new one.
 なお、ガスに含まれる有害物質(有毒ガス)や臭気成分には、アンモニアやアセトアルデヒド、トルエン、スチレン、キシレン、メチルメルカプタン、硫化水素、硫化メチル、二硫化メチル、トリメチルアミン、イソブタノール、酢酸エチル、メチルイソブチルケトン、プロピオン酸、ノルマル酸等がある。 In addition, harmful substances (toxic gases) and odor components contained in the gas include ammonia, acetaldehyde, toluene, styrene, xylene, methyl mercaptan, hydrogen sulfide, methyl sulfide, methyl disulfide, trimethylamine, isobutanol, ethyl acetate, methyl There are isobutyl ketone, propionic acid, normal acid and the like.
 送風機94は、フィルタ93の後流の側であって、ガス排気管91に設置されている。送風機94は、ガス排気管91のガスを強制的に排気する。したがって、分解炉11の内部のガスが送風機94によって強制的に排気されるとともに、空気(外気)が給気機構12や通気機構55を通って分解炉11の内部(有機物収容空間20、処理灰収容空間21)に強制的に供給される。なお、送風機94の出力は、インバーター制御によって自由に調節することができ、それによって分解炉11から排気するガスの排気量を調節することができる。煙突95は、ガス排気管91の延出端部(送風機94の後流の側)に連結され、頂壁14から上方へ延びている。水槽92やフィルタ93によって有害物質や臭気成分が除去されたガスは、煙突95から外気に放出される。 The blower 94 is installed on the gas exhaust pipe 91 on the downstream side of the filter 93. The blower 94 forcibly exhausts the gas in the gas exhaust pipe 91. Accordingly, the gas inside the cracking furnace 11 is forcibly exhausted by the blower 94, and the air (outside air) passes through the air supply mechanism 12 and the ventilation mechanism 55 to the inside of the cracking furnace 11 (the organic matter storage space 20, the treated ash). It is forcibly supplied to the accommodation space 21). Note that the output of the blower 94 can be freely adjusted by inverter control, whereby the amount of gas exhausted from the cracking furnace 11 can be adjusted. The chimney 95 is connected to the extended end of the gas exhaust pipe 91 (on the downstream side of the blower 94), and extends upward from the top wall 14. The gas from which harmful substances and odor components are removed by the water tank 92 and the filter 93 is discharged from the chimney 95 to the outside air.
 図23は、投入口26から牛糞100(有機廃棄物)を投入している状態で示す磁気熱分解装置10Aの側面図である。磁気熱分解装置10Aにおける有機廃棄物の処理手順の一例を説明すると、以下のとおりである。磁気熱分解装置10Aにおいて熱分解する有機廃棄物は、木材廃棄物や紙類廃棄物、プラスチック廃棄物、飲食物廃棄物、汚泥廃棄物、家畜廃棄物等の無機物以外の有機物であれば特に限定はない。なお、磁気熱分解装置10Aの初期稼働時では、分解炉11の有機物収容空間20に有機廃棄物が投入されておらず、蓋部材28,44,49によって投入口26や確認口42、取出口47が閉鎖され、給気機構12A,12B(第1および第2給気管62,71)の流量調節機構68が全開にされて給気機構12A,12Bが開放されているとともに、通気機構55の流量調節機構84が全閉にされて通気機構55が閉鎖されているものとする。 FIG. 23 is a side view of the magnetic pyrolysis apparatus 10A shown in a state where cow dung 100 (organic waste) is being charged from the inlet 26. FIG. An example of an organic waste processing procedure in the magnetic pyrolysis apparatus 10A will be described as follows. Organic waste thermally decomposed in the magnetic pyrolysis apparatus 10A is particularly limited as long as it is organic matter other than inorganic matter such as wood waste, paper waste, plastic waste, food waste, sludge waste, livestock waste, etc. There is no. During the initial operation of the magnetic pyrolysis apparatus 10A, no organic waste is put into the organic substance storage space 20 of the cracking furnace 11, and the inlet 26, the confirmation port 42, and the outlet are opened by the lid members 28, 44, 49. 47 is closed, the flow rate adjusting mechanism 68 of the air supply mechanisms 12A and 12B (first and second air supply pipes 62 and 71) is fully opened, and the air supply mechanisms 12A and 12B are opened. It is assumed that the flow rate adjustment mechanism 84 is fully closed and the ventilation mechanism 55 is closed.
 この実施の形態では、多くの水分を含んだ高い吸水率(65~95%)を有する牛糞100(家畜の排泄物)を熱分解し、セラミック灰(処理灰)にするものとする。磁気熱分解装置10Aを利用して初めて牛糞100(有機廃棄物)を熱分解する場合、確認口42を開けて有機物収容空間20のスノコ25の上に灰(断熱材)(図示せず)を数センチまたは数十センチ敷き詰めて種火の床を作り、投入口26を開けて分解炉11の有機物収容空間20に牛舎から集めた牛糞100を投入するとともに、スノコ25に敷き詰めた灰の上に火種(着火した木炭、竹炭、ヤシガラ炭、炭団、練炭、コークス)を載せる。なお、灰の他に、粒状や紛状のセラミックまたは灰およびセラミックの混合物を敷き詰めて種火の床を作ってもよい。 In this embodiment, it is assumed that cow dung 100 (livestock excrement) having a high water absorption rate (65 to 95%) containing a large amount of water is thermally decomposed into ceramic ash (treated ash). When the cattle dung 100 (organic waste) is pyrolyzed for the first time using the magnetic pyrolysis apparatus 10A, the confirmation opening 42 is opened and ash (heat insulating material) (not shown) is placed on the slats 25 in the organic matter storage space 20. A seed fire floor is formed by spreading several centimeters or several tens of centimeters, the opening 26 is opened, the cow dung 100 collected from the barn is put into the organic matter storage space 20 of the cracking furnace 11, and the ash spread on the slats 25. Put fire types (ignited charcoal, bamboo charcoal, coconut husk charcoal, charcoal, briquettes, coke). In addition to the ash, a granular or powdery ceramic or a mixture of ash and ceramic may be spread to make a fire bed.
 作業者は、磁気熱分解装置10Aの制御盤96のON/OFFスイッチをONにする。スイッチをONにすると、制御盤96に電気が給電され、電動式の開閉機構27の電動機29、送風機94、温度センサ、湿度センサがONになる。制御盤96のディスプレイには、図示はしていないが、操作画面が表示される。操作画面には、送風機94の出力(回転数)、投入口26の開閉を示す投入口開放中メッセージや投入口閉鎖中メッセージのいずれか、装置10Aの運転中を示す運転中メッセージや装置10Aの停止中を示す運転停止メッセージのいずれか、分解炉11の有機物収容空間20の温度、空間20の湿度、蓋開放スイッチ、蓋閉鎖スイッチ、運転開始スイッチ、運転停止スイッチ、出力変更スイッチが表示される。 The worker turns on the ON / OFF switch of the control panel 96 of the magnetic pyrolysis apparatus 10A. When the switch is turned on, electricity is supplied to the control panel 96, and the electric motor 29, the blower 94, the temperature sensor, and the humidity sensor of the electric opening / closing mechanism 27 are turned on. Although not shown, an operation screen is displayed on the display of the control panel 96. On the operation screen, either the output (number of rotations) of the blower 94, a message indicating that the inlet 26 is being opened or closed, a message indicating that the inlet 10 is being closed, a message indicating that the device 10A is in operation, One of the operation stop messages indicating that the operation is stopped, the temperature of the organic substance storage space 20 of the cracking furnace 11, the humidity of the space 20, the lid open switch, the cover close switch, the operation start switch, the operation stop switch, and the output change switch are displayed. .
 作業者は、送風機94の出力を確認し、出力の変更の有無を判断する。出力を変更する場合、ディスプレイ(タッチパネル)の出力変更スイッチを押し、ディスプレイに出力変更画面(図示せず)を表示し、送風機出力入力エリアに送風機94の変更後の出力を入力した後、決定ボタンを押す。変更された送風機94の出力が制御盤96のメモリに格納された後、制御盤96のディスプレイに操作画面が表示される。送風機94の出力が変更されると、その出力で送風機94が運転される。送風機94の出力を確認または変更した後、作業者は、ディスプレイに表示された投入口閉鎖メッセージを見ることで、投入口26が蓋部材28によって閉鎖されていることを確認する。なお、ディスプレイには、投入口閉鎖中メッセージや運転停止メッセージが表示されるとともに、有機物収容空間20の温度として室温が表示され、空間20の湿度として外部環境と同一のそれが表示される。 The worker confirms the output of the blower 94 and determines whether or not the output has been changed. When changing the output, press the output change switch on the display (touch panel) to display an output change screen (not shown) on the display, and input the changed output of the blower 94 to the blower output input area, and then press the enter button. Press. After the changed output of the blower 94 is stored in the memory of the control panel 96, an operation screen is displayed on the display of the control panel 96. When the output of the blower 94 is changed, the blower 94 is operated with the output. After confirming or changing the output of the blower 94, the operator confirms that the inlet 26 is closed by the lid member 28 by looking at the inlet closing message displayed on the display. The display shows a message indicating that the inlet is closed and an operation stop message, and also displays the room temperature as the temperature of the organic matter storage space 20 and the same humidity as the external environment as the humidity of the space 20.
 作業者は、レバー46を回転させて前壁16と蓋部材44とのロックを解除し、蓋部材44を旋回させて確認口42を開ける。作業者は、確認口42から有機物収容空間20のスノコ25の上に満遍なく灰(または粒状や紛状のセラミックまたは灰およびセラミックの混合物)を敷き詰めて種火の床を作る。作業者は、スノコ25の上に灰を敷き詰めた後、蓋部材28によって投入口26が閉鎖されていることを確認し、ディスプレイの蓋開放スイッチを押す。 The operator rotates the lever 46 to release the lock between the front wall 16 and the lid member 44, and turns the lid member 44 to open the confirmation port 42. The worker spreads ash (or granular or powdered ceramic or a mixture of ash and ceramic) evenly over the slats 25 of the organic material accommodation space 20 from the confirmation opening 42 to create a fire bed. After the ash is spread on the slats 25, the operator confirms that the insertion port 26 is closed by the lid member 28, and presses the lid opening switch of the display.
 蓋開放スイッチを押すと、制御盤96は、赤色点滅ランプを点滅させるとともに、頂壁14に設置された電動式の開閉機構27を起動させ、投入口26を次第に開放する。制御盤96は、電動機29を起動させ、それによってリンク30を動作させることで、蓋部材28を上下方向上方へ旋回させる。蓋部材28の上下方向上方への旋回(投入口26の開放)が完了すると、制御盤96は、電動機29を停止させ、青色点滅ランプを点滅させるとともに、投入口開放終了メッセージ、投入口開放中メッセージ、運転停止メッセージをディスプレイに表示する。 When the lid opening switch is pressed, the control panel 96 blinks the red blinking lamp, activates the electric opening / closing mechanism 27 installed on the top wall 14, and gradually opens the inlet 26. The control panel 96 turns the lid member 28 upward and downward by starting the electric motor 29 and operating the link 30 thereby. When the turning of the lid member 28 in the vertical direction (opening of the inlet 26) is completed, the control panel 96 stops the electric motor 29, blinks the blue blinking lamp, and closes the inlet opening end message, opening the inlet. Message and operation stop message are displayed on the display.
 作業者は、投入口開放終了メッセージや投入口開放中メッセージ、運転停止メッセージを確認した後、投入口26から牛糞100を投入する。なお、必要に応じておが屑や木屑を投入する。また、あらかじめ牛糞100とおが屑や木屑とを混合させた混合物を作り、投入口26からその混合物を投入してもよい。牛糞100(おが屑や木屑、混合物)は、スコップ等を利用した手動で投入することができる他、図示はしていないが、ベルトコンベア等の搬送機構を利用して牛糞100(おが屑や木屑、混合物)を計量しつつ投入することもできる。牛糞100の投入した後、作業者は、開放中の確認口42から有機物収容空間20を確認しつつ、灰を敷き詰めたスノコ25と投入した牛糞100との間に火種を入れる火種収納スペースを作る。 After confirming the input port opening end message, the input port open message, and the operation stop message, the worker inputs cow dung 100 from the input port 26. In addition, sawdust and wood chips are added as necessary. Alternatively, a mixture in which cow dung 100 and sawdust and wood chips are mixed in advance may be made, and the mixture may be charged from the inlet 26. The cow dung 100 (sawdust, wood waste, mixture) can be manually input using a scoop or the like, and although not shown, the cow dung 100 (sawdust, wood waste, mixture) using a transport mechanism such as a belt conveyor. ) Can be added while weighing. After the cow dung 100 is thrown in, the operator confirms the organic matter storage space 20 from the opened confirmation opening 42, and creates a fire type storage space for putting a fire kind between the ash-covered slats 25 and the introduced cow dung 100. .
 作業者は、牛糞100を有機物収容空間20の頂部22まで投入するとともに、火種収納スペースを作った後、ディスプレイ(タッチパネル)の蓋閉鎖スイッチを押す。蓋閉鎖スイッチを押すと、制御盤96は、赤色点滅ランプを点滅させるとともに、頂壁14に設置された電動式の開閉機構27を再起動させ、投入口26を次第に閉鎖する。制御盤96は、電動機29を起動させ、それによってリンク30を動作させることで、蓋部材28を上下方向下方へ旋回させる。蓋部材28の上下方向下方への旋回(投入口26の閉鎖)が完了すると、蓋部材28によって投入口26が気密に閉鎖(密閉)される。制御盤96は、蓋部材28による投入口26の閉鎖が完了すると、青色点滅ランプを点滅させるとともに、投入口閉鎖終了メッセージ、投入口閉鎖中メッセージ、運転停止メッセージをディスプレイに表示する。 The worker puts cow dung 100 into the top 22 of the organic matter storage space 20 and creates a fire type storage space, and then presses the lid closing switch of the display (touch panel). When the lid closing switch is pressed, the control panel 96 blinks the red blinking lamp, restarts the electric opening / closing mechanism 27 installed on the top wall 14, and gradually closes the inlet 26. The control panel 96 turns the lid member 28 downward in the vertical direction by starting the electric motor 29 and operating the link 30 thereby. When the downward rotation of the lid member 28 in the vertical direction (closing of the inlet 26) is completed, the inlet 26 is hermetically closed (sealed) by the lid 28. When the closing of the charging port 26 by the lid member 28 is completed, the control panel 96 blinks the blue blinking lamp, and displays a charging port closing end message, a charging port closing message, and an operation stop message on the display.
 次に、作業者は、ディスプレイの運転開始スイッチを押す。運転開始スイッチを押すと、制御盤96は、送風機94を起動させ、黄色点滅ランプを点滅させるとともに、投入口閉鎖中メッセージ、運転中メッセージをディスプレイに表示する。送風機94が起動すると、ガス排気管91の空気が送風機94に向かって吸引され、空気が排気管91をとおって煙突95から外部へ強制的に放出される。さらに、有機物収容空間20(処理灰処理灰収容空間21を含む)の空気がガス排気管91に流入することにともなって、確認口42や給気機構12A,12Bから有機物収容空間20に空気(外気)が給気される。作業者は、確認口42から火種収納スペースに火種(着火した木炭、竹炭、ヤシガラ炭、炭団、練炭、コークス等)を収納し、スノコ25に敷き詰めた灰(火種の床)の上に火種を載せる。火種は、分解炉11の有機物収容空間20の底部24に配置される。火種を火種収納スペースに収納した後、作業者は、蓋部材44を旋回させて確認口42を閉め、レバー46を回転させて前壁16と蓋部材44とをロックし、確認口42を気密に閉鎖(密閉)する。 Next, the operator presses the operation start switch on the display. When the operation start switch is pressed, the control panel 96 activates the blower 94, blinks the yellow blinking lamp, and displays the inlet closing message and the operating message on the display. When the blower 94 is activated, the air in the gas exhaust pipe 91 is sucked toward the blower 94 and the air is forcibly discharged from the chimney 95 through the exhaust pipe 91 to the outside. Further, as the air in the organic matter accommodation space 20 (including the treated ash treatment ash accommodation space 21) flows into the gas exhaust pipe 91, air (from the confirmation port 42 and the air supply mechanisms 12A and 12B to the organic matter accommodation space 20) Outside air) is supplied. The operator stores fire types (ignited charcoal, bamboo charcoal, coconut husk charcoal, charcoal, briquettes, coke, etc.) from the confirmation opening 42 and puts the fire types on the ash (fire type floor) spread on the slats 25. Put it on. The kind of fire is arranged at the bottom 24 of the organic matter storage space 20 of the cracking furnace 11. After storing the fire type in the fire type storage space, the operator turns the lid member 44 to close the confirmation port 42, rotates the lever 46 to lock the front wall 16 and the lid member 44, and seals the confirmation port 42. Close (close).
 蓋部材44によって投入口26と確認口42とが閉鎖されると、それら第1給気管62の給気口66から分解炉11の有機物収容空間20と空気流動層39とに所定量の空気(外気)が給気されるとともに、それら第2給気管71の給気口75から分解炉11の有機物収容空間20に所定量の空気(外気)が給気される。なお、送風機94によってガス排気管91からガスが強制的に排気されることで、第1給気管62や第2給気管71から有機物収容空間20や空気流動層39に継続して空気が給気される。 When the introduction port 26 and the confirmation port 42 are closed by the lid member 44, a predetermined amount of air (from the air supply port 66 of the first air supply pipe 62 to the organic matter storage space 20 and the air fluidized bed 39 of the decomposition furnace 11). Outside air) is supplied, and a predetermined amount of air (outside air) is supplied from the air supply port 75 of the second air supply pipe 71 to the organic matter storage space 20 of the decomposition furnace 11. In addition, the gas is forcibly exhausted from the gas exhaust pipe 91 by the blower 94, so that air is continuously supplied from the first air supply pipe 62 and the second air supply pipe 71 to the organic substance containing space 20 and the air fluidized bed 39. Is done.
 第1給気管62(外側第1給気管64)を通過する空気は、永久磁石63によって作られた外側第1給気管64の磁場を通ることで、磁化されるとともに活性化(イオン化してマイナスイオンを帯びる)する。第1給気管62によって活性化した空気は、第1給気管62(外側第1給気管64)を通過して有機物収容空間20の底部24に流入し、空間20の底部24から頂部22に向かって流動しつつ、牛糞100(有機廃棄物)と接触する。さらに、活性化した空気は、第1給気管62(外側第1給気管64)を通過して空気流動層39に流入し、空気流動層39の底部開口40から有機物収容空間20に流入して空間20の底部24から頂部22に向かって流動しつつ、牛糞100(有機廃棄物)と接触する。また、活性化した空気は、空気流動層39の底部開口40の側から空気流動層39の頂部開口41に向かって流動し、空気流動層39の頂部開口41から有機物収容空間20に流入して牛糞100(有機廃棄物)と接触する。 The air passing through the first air supply pipe 62 (outer first air supply pipe 64) is magnetized and activated (ionized and minus) by passing through the magnetic field of the outer first air supply pipe 64 made by the permanent magnet 63. Be charged with ions). The air activated by the first air supply pipe 62 passes through the first air supply pipe 62 (outer first air supply pipe 64), flows into the bottom 24 of the organic matter accommodation space 20, and travels from the bottom 24 to the top 22 of the space 20. It contacts with cow dung 100 (organic waste) while flowing. Further, the activated air passes through the first air supply pipe 62 (outer first air supply pipe 64), flows into the air fluidized bed 39, and flows into the organic matter accommodation space 20 from the bottom opening 40 of the air fluidized bed 39. While flowing from the bottom 24 to the top 22 of the space 20, it comes into contact with cow dung 100 (organic waste). Further, the activated air flows from the bottom opening 40 side of the air fluidized bed 39 toward the top opening 41 of the air fluidized bed 39 and flows into the organic substance containing space 20 from the top opening 41 of the air fluidized bed 39. Contact with cow dung 100 (organic waste).
 第2給気管71(外側第2給気管73)を通過する空気は、永久磁石72によって作られた外側第2給気管73の磁場を通ることで、磁化されるとともに活性化(イオン化してマイナスイオンを帯びる)する。第2給気管71によって活性化した空気は、第2給気管71(外側第2給気管73)を通過して有機物収容空間20の中間部23に流入し、空間20の中間部23から頂部22に向かって流動しつつ、牛糞100(有機廃棄物)と接触する。 The air passing through the second air supply pipe 71 (outer second air supply pipe 73) is magnetized and activated (ionized and minus) by passing through the magnetic field of the outer second air supply pipe 73 formed by the permanent magnet 72. Be charged with ions). The air activated by the second air supply pipe 71 passes through the second air supply pipe 71 (outer second air supply pipe 73) and flows into the intermediate portion 23 of the organic matter housing space 20, and from the intermediate portion 23 of the space 20 to the top portion 22. In contact with cow dung 100 (organic waste).
 それら第1給気管62やそれら第2給気管71に取り付けられた永久磁石63,72が作る磁場の作用によって空気が磁化され、それによって空気が活性化(マイナスイオン化)し、活性化した空気が有機物収容空間20における磁気熱(種火の熱)の発生を促進するとともに、活性化した空気が空間20に収容された牛糞(有機廃棄物)に接触することで、牛糞100(おが屑や木屑、混合物)の表面で種火から派生した磁気熱による急激な熱分解反応が生じ、牛糞100(おが屑や木屑、混合物)が次第に熱分解される。 Air is magnetized by the action of the magnetic field created by the permanent magnets 63 and 72 attached to the first air supply pipe 62 and the second air supply pipe 71, thereby activating (minus ionizing) the air, and the activated air becomes While promoting the generation of magnetic heat (heat of seed fire) in the organic matter storage space 20, the activated air comes into contact with the cow dung (organic waste) stored in the space 20, so that the cow dung 100 (sawdust and wood chips, An abrupt pyrolysis reaction due to magnetic heat derived from the seed fire occurs on the surface of the mixture), and the cow dung 100 (sawdust, wood chips, mixture) is gradually pyrolyzed.
 磁気熱分解装置10Aでは、分解炉11の有機物収容空間20における熱分解温度が200~400℃の範囲に達し、熱分解反応による磁気熱が空間20に蓄熱される。磁気熱分解装置10Aでは、有機物収容空間20の温度が一定の高温に保持されるとともに、空間20における牛糞100の熱分解反応が連続し、牛糞100の熱分解が継続される。有機物収容空間20において熱分解された牛糞100は、セラミック灰(処理灰)になる。セラミック灰は、スノコ25を通過して有機物収容空間20から処理理灰収容空間21に落下し、空間21に堆積する。セラミック灰は、その体積が牛糞100のそれの約1/200~1/350である。 In the magnetic pyrolysis apparatus 10A, the pyrolysis temperature in the organic substance containing space 20 of the cracking furnace 11 reaches a range of 200 to 400 ° C., and the magnetic heat due to the pyrolysis reaction is stored in the space 20. In the magnetic pyrolysis apparatus 10A, the temperature of the organic matter storage space 20 is maintained at a constant high temperature, the thermal decomposition reaction of the cow dung 100 in the space 20 continues, and the thermal decomposition of the cow dung 100 is continued. The cow dung 100 thermally decomposed in the organic matter storage space 20 becomes ceramic ash (treated ash). The ceramic ash passes through the slats 25, falls from the organic matter storage space 20 to the treated ash storage space 21, and accumulates in the space 21. The volume of ceramic ash is about 1/200 to 1/350 of that of cow dung 100.
 牛糞100の熱分解が継続される間に、有機物収容空間20の熱が空間20から前後壁16,17や左右側壁18,19に伝達されて第2および第3前後壁34,35,60,61や第2および第3左右側壁53,54,57,58が高温になり、それによって空気流動層39の空気が加熱され、空気流動層39の底部開口40から頂部開口41へ向かって流動する間に空気の温度が上昇する。牛糞100の熱分解の継続中では、活性化した高温の空気が空気流動層39の頂部開口41から有機物収容空間20に流入することで、空間20の温度が一定の高温に保持される。磁気熱分解装置10Aでは、空気流動層39において所定の高温に加熱された空気が空気流動層39から有機物収容空間20に給気されるから、熱分解中における空間20の温度が一定の高温に保持され、牛糞100の熱分解が安定した温度で長時間行われる。 While the thermal decomposition of the cow dung 100 is continued, the heat of the organic material storage space 20 is transmitted from the space 20 to the front and rear walls 16, 17 and the left and right side walls 18, 19, and the second and third front and rear walls 34, 35, 60, 61 and the second and third left and right side walls 53, 54, 57, 58 become high temperature, whereby the air in the air fluidized bed 39 is heated and flows from the bottom opening 40 to the top opening 41 of the air fluidized bed 39. In the meantime, the air temperature rises. While the thermal decomposition of the cow dung 100 is continued, the activated high-temperature air flows into the organic substance containing space 20 from the top opening 41 of the air fluidized bed 39, whereby the temperature of the space 20 is maintained at a constant high temperature. In the magnetic pyrolysis apparatus 10A, air heated to a predetermined high temperature in the air fluidized bed 39 is supplied from the air fluidized bed 39 to the organic matter containing space 20, so that the temperature of the space 20 during the pyrolysis is kept constant. The cow dung 100 is thermally decomposed for a long time at a stable temperature.
 牛糞100(有機廃棄物)の熱分解では、有機物収容空間20においてガス(分解ガス)が発生する。有機物収容空間20の頂部22に充満したガスは、送風機94によって後壁17の上部からガス排気管91に強制的に流入する。ガスは、ガス排気管91を流動して水槽92に流入する。水槽92では、水槽92や水槽92に貯水された水にガスが通気され、ガスに含まれる有害物質や臭気成分が水に溶け込むことで、ガスから有害物質や臭気成分が分離される。水槽92から流出したガスは、ガス排気管91を通ってフィルタ93(フィルタケース99)に流入する。フィルタ93では、ガスに含まれる有害物質や臭気成分が濾材に捕集(吸着)され、ガスから有害物質や臭気成分が分離される。水槽92やフィルタ93によって有害物質や臭気成分が除去されたガスは、フィルタ93からガス排気管91を通って煙突95に達し、煙突95から外気に放出される。 In the thermal decomposition of cow dung 100 (organic waste), gas (decomposed gas) is generated in the organic matter storage space 20. The gas filled in the top portion 22 of the organic substance accommodation space 20 is forced to flow into the gas exhaust pipe 91 from the upper portion of the rear wall 17 by the blower 94. The gas flows through the gas exhaust pipe 91 and flows into the water tank 92. In the water tank 92, the gas is passed through the water stored in the water tank 92 or the water tank 92, and harmful substances and odor components contained in the gas are dissolved in the water, whereby the harmful substances and odor components are separated from the gas. The gas flowing out of the water tank 92 flows into the filter 93 (filter case 99) through the gas exhaust pipe 91. In the filter 93, harmful substances and odor components contained in the gas are collected (adsorbed) on the filter medium, and the harmful substances and odor components are separated from the gas. The gas from which harmful substances and odor components have been removed by the water tank 92 and the filter 93 reaches the chimney 95 through the gas exhaust pipe 91 from the filter 93 and is discharged from the chimney 95 to the outside air.
 牛糞100(有機廃棄物)の熱分解中(装置10Aの運転中)では、有機物収容空間20において牛糞100の熱分解が継続して行われ、空間20に投入された牛糞100の体積(量)が次第に減少する。有機物収容空間20に存在する牛糞100の体積が減少した場合、投入口26から空間20に牛糞100を補充する。作業者は、ディスプレイの蓋開放スイッチを押す。蓋開放スイッチを押すと、制御盤96は、赤色点滅ランプを点滅させるとともに、頂壁14に設置された開閉機構27を起動させ、投入口26を次第に開放する。蓋部材28の上下方向上方への旋回(投入口26の開放)が完了すると、制御盤96は、電動機29を停止させ、青色点滅ランプを点滅させるとともに、投入口開放終了メッセージ、投入口開放中メッセージ、運転停止メッセージをディスプレイに表示する。 During thermal decomposition of the cow dung 100 (organic waste) (during operation of the apparatus 10 </ b> A), the cow dung 100 is continuously decomposed in the organic matter storage space 20, and the volume (amount) of the cow dung 100 put into the space 20. Gradually decreases. When the volume of the cow dung 100 existing in the organic matter storage space 20 decreases, the cow dung 100 is replenished to the space 20 from the insertion port 26. The operator presses the lid opening switch of the display. When the lid opening switch is pressed, the control panel 96 blinks the red blinking lamp, activates the opening / closing mechanism 27 installed on the top wall 14, and gradually opens the inlet 26. When the turning of the lid member 28 in the vertical direction (opening of the inlet 26) is completed, the control panel 96 stops the electric motor 29, blinks the blue blinking lamp, and closes the inlet opening end message, opening the inlet. Message and operation stop message are displayed on the display.
 作業者は、投入口開放終了メッセージや投入口開放中メッセージ、運転停止メッセージを確認した後、投入口26から牛糞100を投入し、熱分解された牛糞100の不足分を補充する。作業者は、有機物収容空間20に牛糞100を補充した後、ディスプレイの蓋閉鎖スイッチを押す。蓋閉鎖スイッチを押すと、制御盤96は、赤色点滅ランプを点滅させるとともに、開閉機構27を再起動させ、投入口26を次第に閉鎖する。投入口26が閉鎖された後、有機物収容空間20では、牛糞100の熱分解が継続して行われる。磁気熱分解装置10Aでは、その運転中(熱分解中)に牛糞100(有機廃棄物)を定期的に補充することにより、運転(熱分解)を所定期間継続して行う。磁気熱分解装置10Aにおける熱分解の連続時間(運転継続時間)は、1週間~2ヶ月である。 After confirming the input port opening end message, the input port open message, and the operation stop message, the operator inputs the cow dung 100 from the input port 26 and replenishes the shortage of the pyrolyzed cow dung 100. The operator presses the lid closing switch of the display after replenishing cow dung 100 in the organic matter storage space 20. When the lid closing switch is pressed, the control panel 96 blinks the red blinking lamp, restarts the opening / closing mechanism 27, and gradually closes the insertion port 26. After the inlet 26 is closed, the cow dung 100 is continuously thermally decomposed in the organic matter storage space 20. In the magnetic thermal decomposition apparatus 10A, the operation (thermal decomposition) is continuously performed for a predetermined period by periodically replenishing cow dung 100 (organic waste) during the operation (during thermal decomposition). The continuous time (operation duration) of the thermal decomposition in the magnetic thermal decomposition apparatus 10A is one week to two months.
 磁気熱分解装置10Aの運転中(熱分解の継続中)に発生したセラミック灰が処理理灰収容空間21に堆積した場合、作業者はそのセラミック灰を空間21から取り出す。作業者は、レバー51を回転させて前壁16と蓋部材49とのロックを解除し、蓋部材49を旋回させて取出口47を開放した後、取出口47からセラミック灰を掻き出し棒等で取り出す(掻き出す)。セラミック灰を取り出した後、蓋部材49を旋回させ、レバー51を回転させて前壁16と蓋部材49とをロックし、取出口47を閉める。 When the ceramic ash generated during the operation of the magnetic pyrolysis apparatus 10A (while the thermal decomposition is continuing) is accumulated in the treated ash storage space 21, the operator takes out the ceramic ash from the space 21. The operator rotates the lever 51 to release the lock between the front wall 16 and the lid member 49, rotates the lid member 49 to open the outlet 47, and then scrapes ceramic ash from the outlet 47 with a stick or the like. Remove (scrap out). After taking out the ceramic ash, the lid member 49 is turned, the lever 51 is rotated to lock the front wall 16 and the lid member 49, and the outlet 47 is closed.
 なお、有機物収容空間20において作られたセラミック灰(処理灰)は優れた保温性を有することから、牛糞100(有機廃棄物)にセラミック灰を混入させ、それを空間20に投入し、または、セラミック灰を牛糞100とともに空間20に投入することで、牛糞100の熱分解を一層促進することができる。セラミック灰を熱分解に利用した磁気熱分解装置10Aでは、セラミック灰の保温機能を利用することで、有機物収容空間20における牛糞100(有機廃棄物)の熱分解を安定した温度で長期間にわたって維持することができ、装置10Aを長時間稼働させることができるとともに、装置10Aを介して大量の有機廃棄物を処理することができる。 In addition, since the ceramic ash (treated ash) made in the organic matter storage space 20 has excellent heat retaining properties, the ceramic ash is mixed in the cow dung 100 (organic waste) and is put into the space 20, or By putting ceramic ash into the space 20 together with the cow dung 100, thermal decomposition of the cow dung 100 can be further promoted. In the magnetic pyrolysis apparatus 10A using ceramic ash for thermal decomposition, the thermal decomposition of cow dung 100 (organic waste) in the organic matter storage space 20 is maintained at a stable temperature for a long period of time by using the thermal insulation function of the ceramic ash. The apparatus 10A can be operated for a long time, and a large amount of organic waste can be processed through the apparatus 10A.
 全ての第1給気管62(給気機構12A)の流量調節機構68(外側第1給気管64の流量調節機構68)が全開である場合、磁気熱分解装置10Aの運転中(熱分解の継続中)、有機物収容空間20の底部24で熱分解が進行する過程において、空間20の底部24に空気過多の箇所が生じ、その箇所において熱分解反応の速度が必要以上に早くなるとともに温度が必要以上に上昇し、そのままでは底部24において牛糞100が燃焼してしまう場合がある。空間20の底部24に空気過多が生じ、熱分解反応が必要以上に進む場合、ディスプレイに表示された空間20の温度が増加し、空間20の湿度が低下するとともに、煙突95から排気されるガスの量が増加する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気過多を判断する。 When the flow rate adjusting mechanisms 68 of all the first air supply pipes 62 (the air supply mechanisms 12A) (the flow rate adjusting mechanisms 68 of the outer first air supply pipes 64) are fully open, the magnetic pyrolysis apparatus 10A is in operation (continuation of thermal decomposition). Middle), in the process of thermal decomposition proceeding at the bottom 24 of the organic substance containing space 20, an excessive air location is generated at the bottom 24 of the space 20, and the temperature of the thermal decomposition reaction is increased more than necessary at that location. As it rises above, the cow dung 100 may burn at the bottom 24 as it is. When excess air is generated at the bottom 24 of the space 20 and the thermal decomposition reaction proceeds more than necessary, the temperature of the space 20 displayed on the display increases, the humidity of the space 20 decreases, and the gas exhausted from the chimney 95 The amount of increases. The operator determines the excess air in the space 20 based on the temperature and humidity of the space 20 and the exhaust amount of gas.
 たとえば、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24において空気過多が生じ、その状態を作業者が認識した場合、前壁16に設置された第1給気管62の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第1給気管62に流入する空気の流量を減少させる。さらに、右側壁18に設置された第1給気管62の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第1給気管62に流入する空気の流量を減少させる。なお、前壁16に設置された全ての第1給気管62の空気流量を減少させてもよく、前壁16に設置されたいずれかの第1給気管62の空気流量を減少させてもよい。また、右側壁18に設置された全ての第1給気管62の空気流量を減少させてもよく、右側壁18に設置されたいずれかの第1給気管62の空気流量を減少させてもよい。 For example, when excess air occurs at the bottom 24 of the space 20 close to the front wall 16 or the bottom 24 of the space 20 close to the right wall 18 and the operator recognizes this state, the first air supply pipe installed on the front wall 16 The flow rate adjusting mechanism 68 of 62 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of the air flowing into the first air supply pipe 62 is reduced. Further, the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the right side wall 18 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the air flowing into the first air supply pipe 62 is reduced. Reduce the flow rate. In addition, the air flow rate of all the first air supply pipes 62 installed on the front wall 16 may be reduced, or the air flow rate of any of the first air supply pipes 62 installed on the front wall 16 may be reduced. . Moreover, the air flow rate of all the first air supply pipes 62 installed on the right side wall 18 may be reduced, or the air flow rate of any of the first air supply pipes 62 installed on the right side wall 18 may be reduced. .
 前壁16や右側壁18に設置された第1給気管62の流量調節機構68を調節し、第1給気管62に流入する空気の流量を減少させることで、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24における空気過多が解消される。空気過多が解消されると、熱分解反応が正常に戻り、ディスプレイに表示された有機物収容空間20の温度が下降し、空間20の湿度が上昇するとともに、煙突95から排気されるガスの量が減少する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気過多が解消されたと判断し、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Aの運転を継続する。 By adjusting the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the front wall 16 or the right side wall 18, the flow rate of the air flowing into the first air supply pipe 62 is reduced, so that the space 20 near the front wall 16 Excess air in the bottom 24 of the space 20 near the bottom 24 and the right side wall 18 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease. The operator determines that the excess air in the space 20 has been eliminated by the temperature and humidity of the space 20 and the amount of gas exhausted, and maintains the flow rate of the flow rate adjusting mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
 また、全ての第2給気管71(給気機構12B)の流量調節機構68(外側第2給気管73の流量調節機構68)が全開である場合、磁気熱分解装置10Aの運転中(熱分解の継続中)、有機物収容空間20の頂部22や中間部23で熱分解が進行する過程において、空間20の頂部22や中間部23に空気過多の箇所が生じ、その箇所において熱分解反応の速度が必要以上に早くなるとともに温度が必要以上に上昇し、そのままでは頂部22や中間部23において牛糞100が燃焼してしまう場合がある。空間20の頂部22や中間部23に空気過多が生じ、熱分解反応が必要以上に進む場合、ディスプレイに表示された空間20の温度が増加し、空間20の湿度が低下するとともに、煙突95から排気されるガスの量が増加する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気過多を判断する。 Further, when the flow rate adjustment mechanisms 68 of all the second air supply pipes 71 (the air supply mechanisms 12B) (the flow rate adjustment mechanisms 68 of the outer second air supply pipes 73) are fully open, the magnetic pyrolysis apparatus 10A is in operation (thermal decomposition). In the process in which pyrolysis proceeds in the top portion 22 and the intermediate portion 23 of the organic matter storage space 20, an excessive air location occurs at the top portion 22 and the intermediate portion 23 of the space 20, and the rate of the pyrolysis reaction at that location. However, the temperature rises more than necessary and the cow dung 100 may burn at the top portion 22 or the intermediate portion 23 as it is. When excessive air is generated in the top portion 22 or the intermediate portion 23 of the space 20 and the thermal decomposition reaction proceeds more than necessary, the temperature of the space 20 displayed on the display increases, the humidity of the space 20 decreases, and the chimney 95 The amount of gas exhausted increases. The operator determines the excess air in the space 20 based on the temperature and humidity of the space 20 and the exhaust amount of gas.
 たとえば、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23において空気過多が生じ、その状態を作業者が認識した場合、後壁17に設置された第2給気管71の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第2給気管71に流入する空気の流量を減少させる。さらに、左側壁19に設置された第2給気管71の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第2給気管71に流入する空気の流量を減少させる。なお、後壁17に設置された全ての第2給気管71の空気流量を減少させてもよく、後壁17に設置されたいずれかの第2給気管71の空気流量を減少させてもよい。また、左側壁19に設置された全ての第2給気管71の空気流量を減少させてもよく、左側壁19に設置されたいずれかの第2給気管71の空気流量を減少させてもよい。 For example, when an excess of air occurs at the top 22 or the middle part 23 of the space 20 near the rear wall 17 and the top 22 or the middle part 23 of the space 20 near the left side wall 19, and the operator recognizes the state, the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed in the air supply is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is reduced. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is reduced. Reduce the flow rate. Note that the air flow rate of all the second air supply pipes 71 installed on the rear wall 17 may be reduced, or the air flow rate of any of the second air supply pipes 71 installed on the rear wall 17 may be reduced. . Moreover, the air flow rate of all the second air supply pipes 71 installed on the left side wall 19 may be reduced, or the air flow rate of any of the second air supply pipes 71 installed on the left side wall 19 may be reduced. .
 後壁17や左側壁19に設置された第2給気管71の流量調節機構68を調節し、第2給気管71に流入する空気の流量を減少させることで、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23における空気過多が解消される。空気過多が解消されると、熱分解反応が正常に戻り、ディスプレイに表示された有機物収容空間20の温度が下降し、空間20の湿度が上昇するとともに、煙突95から排気されるガスの量が減少する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気過多が解消されたと判断し、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Aの運転を継続する。 By adjusting the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19, the flow rate of the air flowing into the second air supply pipe 71 is reduced, so that the space 20 near the rear wall 17 Excessive air in the top portion 22 and the intermediate portion 23 of the space 20 near the top portion 22 and the intermediate portion 23 and the left side wall 19 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease. The operator determines that the excess air in the space 20 has been eliminated by the temperature and humidity of the space 20 and the amount of gas exhausted, and maintains the flow rate of the flow rate adjusting mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
 次に、第1給気管62(給気機構12A)の流量調節機構68(外側第1給気管64の流量調節機構68)が絞られている場合(固定開口80の開口面積が小さい場合)であって、磁気熱分解装置10Aの運転中(熱分解の継続中)、有機物収容空間20の底部24で熱分解が進行する過程において、空間20の底部24に空気の希薄な箇所が生じ、熱分解反応の速度が遅くなるとともに温度が低くなり、その箇所において熱分解に必要な空気が不足し、その箇所において熱分解反応が低下する場合がある。空間20の底部24に空気不足が生じ、熱分解反応が低下した場合、ディスプレイに表示された有機物収容空間20の温度が低下し、空間20の湿度が増加するとともに、煙突95から排気されるガスの量が減少する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足を判断する。 Next, when the flow rate adjusting mechanism 68 (the flow rate adjusting mechanism 68 of the outer first air supply pipe 64) of the first air supply pipe 62 (the air supply mechanism 12A) is throttled (when the opening area of the fixed opening 80 is small). In the process of thermal decomposition at the bottom 24 of the organic matter storage space 20 during the operation of the magnetic pyrolysis apparatus 10A (while the thermal decomposition is continuing), a lean portion of air is generated at the bottom 24 of the space 20 to generate heat. The temperature of the decomposition reaction is lowered and the temperature is lowered, the air necessary for the thermal decomposition is insufficient at the location, and the thermal decomposition reaction may be reduced at the location. When air shortage occurs in the bottom portion 24 of the space 20 and the thermal decomposition reaction is lowered, the temperature of the organic substance containing space 20 displayed on the display is lowered, the humidity of the space 20 is increased, and the gas exhausted from the chimney 95 The amount of decreases. The operator determines the lack of air in the space 20 based on the temperature and humidity of the space 20 and the amount of gas exhausted.
 たとえば、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24において空気不足が生じ、その状態を作業者が認識した場合、前壁16に設置された第1給気管62の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第1給気管62に流入する空気の流量を増加させる。さらに、右側壁18に設置された第1給気管62の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第1給気管62に流入する空気の流量を増加させる。なお、前壁16に設置された全ての第1給気管62の空気流量を増加させてもよく、前壁16に設置されたいずれかの第1給気管62の空気流量を増加させてもよい。また、右側壁18に設置された全ての第1給気管62の空気流量を増加させてもよく、右側壁18に設置されたいずれかの第1給気管62の空気流量を増加させてもよい。 For example, when an air shortage occurs at the bottom 24 of the space 20 close to the front wall 16 or the bottom 24 of the space 20 close to the right wall 18 and the operator recognizes this state, the first air supply pipe installed on the front wall 16 The flow rate adjusting mechanism 68 of 62 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of the air flowing into the first air supply pipe 62 is increased. Further, the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the right side wall 18 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the air flowing into the first air supply pipe 62 is discharged. Increase the flow rate. Note that the air flow rate of all the first air supply pipes 62 installed on the front wall 16 may be increased, or the air flow rate of any of the first air supply pipes 62 installed on the front wall 16 may be increased. . Moreover, the air flow rate of all the first air supply pipes 62 installed on the right side wall 18 may be increased, or the air flow rate of any of the first air supply pipes 62 installed on the right side wall 18 may be increased. .
 前壁16や右側壁18に設置された第1給気管62の流量調節機構68を調節し、第1給気管62に流入する空気の流量を増加させることで、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24における空気不足が解消される。空気不足が解消されると、熱分解反応が正常に戻り、ディスプレイに表示された有機物収容空間20の温度が上昇し、空間20の湿度が下降するとともに、煙突95から排気されるガスの量が増加する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足が解消されたと判断し、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Aの運転を継続する。 By adjusting the flow rate adjusting mechanism 68 of the first air supply pipe 62 installed on the front wall 16 or the right side wall 18 and increasing the flow rate of the air flowing into the first air supply pipe 62, the space 20 near the front wall 16 Air shortage at the bottom 24 of the space 20 near the bottom 24 and the right side wall 18 is eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display rises, the humidity of the space 20 falls, and the amount of gas exhausted from the chimney 95 increases. To increase. The operator determines that the air shortage in the space 20 has been eliminated by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjustment mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
 また、第2給気管71(給気機構12B)の流量調節機構68(外側第2給気管73の流量調節機構68)が絞られている場合(固定開口80の開口面積が小さい場合)であって、磁気熱分解装置10Aの運転中(熱分解の継続中)、有機物収容空間20の頂部22や中間部23で熱分解が進行する過程において、空間20の頂部22や中間部23に空気の希薄な箇所が生じ、熱分解反応の速度が遅くなるとともに温度が低くなり、その箇所において熱分解に必要な空気が不足し、その箇所において熱分解反応が低下する場合がある。空間20の頂部22や中間部23に空気不足が生じ、熱分解反応が低下した場合、ディスプレイに表示された空間20の温度が低下し、空間20の湿度が増加するとともに、煙突95から排気されるガスの量が減少する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足を判断する。 Further, the flow rate adjusting mechanism 68 (the flow rate adjusting mechanism 68 of the outer second air supply tube 73) of the second air supply tube 71 (air supply mechanism 12B) is throttled (when the opening area of the fixed opening 80 is small). During the operation of the magnetic pyrolysis apparatus 10A (while the thermal decomposition is ongoing), in the process in which the thermal decomposition proceeds at the top 22 or the intermediate part 23 of the organic matter storage space 20, air is transferred to the top 22 or the intermediate part 23 of the space 20. A dilute part is generated, the rate of the thermal decomposition reaction is slowed, and the temperature is lowered. The air required for the thermal decomposition is insufficient at the part, and the thermal decomposition reaction may be lowered at the part. When air shortage occurs at the top portion 22 or the intermediate portion 23 of the space 20 and the thermal decomposition reaction is lowered, the temperature of the space 20 displayed on the display is lowered, the humidity of the space 20 is increased, and the exhaust is exhausted from the chimney 95. The amount of gas is reduced. The operator determines the lack of air in the space 20 based on the temperature and humidity of the space 20 and the amount of gas exhausted.
 たとえば、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23において空気不足が生じ、その状態を作業者が認識した場合、後壁17に設置された第2給気管71の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第2給気管71に流入する空気の流量を増加させる。さらに、左側壁19に設置された第2給気管71の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第2給気管71に流入する空気の流量を増加させる。なお、後壁17に設置された全ての第2給気管71の空気流量を増加させてもよく、後壁17に設置されたいずれかの第2給気管71の空気流量を増加させてもよい。また、左側壁19に設置された全ての第2給気管71の空気流量を増加させてもよく、左側壁19に設置されたいずれかの第2給気管71の空気流量を増加させてもよい。 For example, when an air shortage occurs at the top part 22 or the intermediate part 23 of the space 20 near the rear wall 17 or at the top part 22 or the intermediate part 23 of the space 20 near the left side wall 19, and the operator recognizes this state, the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed at the top is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is increased. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is removed. Increase the flow rate. In addition, the air flow rate of all the second supply pipes 71 installed on the rear wall 17 may be increased, or the air flow rate of any of the second supply pipes 71 installed on the rear wall 17 may be increased. . Moreover, the air flow rate of all the second air supply pipes 71 installed on the left side wall 19 may be increased, or the air flow rate of any of the second air supply pipes 71 installed on the left side wall 19 may be increased. .
 後壁17や左側壁19に設置された第2給気管71の流量調節機構68を調節し、第2給気管71に流入する空気の流量を増加させることで、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23における空気不足が解消される。空気不足が解消されると、熱分解反応が正常に戻り、ディスプレイに表示された有機物収容空間20の温度が上昇し、空間20の湿度が下降するとともに、煙突95から排気されるガスの量が増加する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足が解消されたと判断し、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Aの運転を継続する。 By adjusting the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19 to increase the flow rate of air flowing into the second air supply pipe 71, the space 20 near the rear wall 17 Air shortages at the top 22 and the middle part 23 of the space 20 near the top part 22 and the middle part 23 and the left side wall 19 are eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display rises, the humidity of the space 20 falls, and the amount of gas exhausted from the chimney 95 increases. To increase. The operator determines that the air shortage in the space 20 has been eliminated by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjustment mechanism 68 (maintaining the opening area of the fixed opening 80). The operation of the device 10A is continued.
 第1給気管62および第2給気管71の流量調節機構68を開けて装置10Aの運転を継続した場合、それら給気管62,71から有機物収容空間20に磁化された空気が給気されるが、空間20において熱分解反応が広範囲に及ぶと、空間20の底部24や中間部23、頂部24の空気が希薄になり、空間20において熱分解に必要な空気が不足し、空間20の温度が必要以上に低下するとともに、空間20の熱分解反応が低下する場合がある。有機物収容空間20に空気不足が生じ、熱分解反応が低下した場合、ディスプレイに表示された空間20の温度が低下し、空間20の湿度が増加するとともに、煙突95から排気されるガスの量が減少する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足を判断する。 When the flow rate adjusting mechanism 68 of the first air supply pipe 62 and the second air supply pipe 71 is opened and the operation of the apparatus 10A is continued, the magnetized air is supplied from the air supply pipes 62 and 71 to the organic matter accommodation space 20. When the thermal decomposition reaction in the space 20 reaches a wide range, the air at the bottom 24, the intermediate portion 23, and the top 24 of the space 20 becomes lean, the air necessary for the thermal decomposition is insufficient in the space 20, and the temperature of the space 20 increases. In addition to a decrease more than necessary, the thermal decomposition reaction of the space 20 may decrease. When air shortage occurs in the organic matter storage space 20 and the thermal decomposition reaction decreases, the temperature of the space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease. The operator determines the lack of air in the space 20 based on the temperature and humidity of the space 20 and the amount of gas exhausted.
 この場合、右側壁18や左側壁19の通気管82の流量調節機構84を開放し(シャッタ板87を回転させて固定開口89を開ける)、通気管82から処理灰収容空間21に空気(外気)を流入させる。なお、右側壁18または左側壁19のいずれかに設置された通気管82の流量調節機構84を開放することもできる。また、前端板86の固定開口89の開口面積を調節することで、通気管82を通る空気の流量を調節することができる。処理灰収容空間21に流入した空気は、空間21から有機物収容空間20に流入し、空間20の空気不足が解消される。空気不足が解消されると、熱分解反応が正常に戻り、ディスプレイに表示された有機物収容空間20の温度が上昇し、空間20の湿度が下降するとともに、煙突95から排気されるガスの量が増加する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足が解消されたと判断し、通気管82の流量調節機構84の流量を維持(固定開口の開口面積を維持)した状態で、装置10Aの運転を継続する。 In this case, the flow rate adjusting mechanism 84 of the vent pipe 82 on the right side wall 18 and the left side wall 19 is opened (the shutter plate 87 is rotated to open the fixed opening 89), and air (outside air) is passed from the vent pipe 82 to the treated ash accommodating space 21. ). In addition, the flow rate adjusting mechanism 84 of the ventilation pipe 82 installed on either the right side wall 18 or the left side wall 19 can be opened. Further, by adjusting the opening area of the fixed opening 89 of the front end plate 86, the flow rate of air passing through the vent pipe 82 can be adjusted. The air that has flowed into the treated ash storage space 21 flows into the organic matter storage space 20 from the space 21, and the air shortage in the space 20 is eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display rises, the humidity of the space 20 falls, and the amount of gas exhausted from the chimney 95 increases. To increase. The operator determines that the air shortage in the space 20 has been eliminated by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjustment mechanism 84 of the vent pipe 82 (maintains the opening area of the fixed opening). In the state, the operation of the device 10A is continued.
 通気管82の流量調節機構84を開放し、その状態で装置10Aの運転を続けた結果、有機物収容空間20において熱分解反応の速度が必要以上に早くなるとともに温度が必要以上に上昇し、そのままでは空間20において牛糞100が燃焼してしまう場合がある。空間20において熱分解反応が必要以上に進む場合、ディスプレイに表示された空間20の温度が上昇し、空間20の湿度が低下するとともに、煙突95から排気されるガスの量が増加する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気過多を判断する。 As a result of opening the flow rate adjusting mechanism 84 of the ventilation pipe 82 and continuing the operation of the apparatus 10A in that state, the rate of the thermal decomposition reaction in the organic matter accommodation space 20 becomes faster than necessary and the temperature rises more than necessary, and remains as it is. Then, the cow dung 100 may burn in the space 20. When the thermal decomposition reaction proceeds more than necessary in the space 20, the temperature of the space 20 displayed on the display increases, the humidity of the space 20 decreases, and the amount of gas exhausted from the chimney 95 increases. The operator determines the excess air in the space 20 based on the temperature and humidity of the space 20 and the exhaust amount of gas.
 この場合、右側壁18や左側壁19の通気管82の流量調節機構84を閉鎖し(シャッタ板87を回転させて固定開口89を閉める)、通気管82から処理灰収容空間21への空気(外気)の流入を遮断する。または、流量調節機構84を調節して通気管82を通る空気の流量を少なくする。処理灰収容空間21に流入する空気が遮断され、または、空間21に流入する空気が減少することで、空間20の空気過多が解消される。空気過多が解消されると、熱分解反応が正常に戻り、ディスプレイに表示された有機物収容空間20の温度が低下し、空間20の湿度が上昇するとともに、煙突95から排気されるガスの量が減少する。作業者は、空間20の温度や湿度、ガスの排気量によって空間20における空気不足が解消されたと判断し、通気管82の流量調節機構84の流量を維持(固定開口89の開口面積を維持)した状態で、装置10Aの運転を継続する。 In this case, the flow rate adjusting mechanism 84 of the right side wall 18 or the left side wall 19 of the vent pipe 82 is closed (the shutter plate 87 is rotated to close the fixed opening 89), and the air from the vent pipe 82 to the treated ash accommodating space 21 ( Block inflow of outside air). Alternatively, the flow rate adjustment mechanism 84 is adjusted to reduce the air flow rate through the vent pipe 82. The air flowing into the treated ash accommodating space 21 is blocked, or the air flowing into the space 21 is reduced, so that excess air in the space 20 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, the temperature of the organic matter storage space 20 displayed on the display decreases, the humidity of the space 20 increases, and the amount of gas exhausted from the chimney 95 increases. Decrease. The operator determines that the shortage of air in the space 20 has been resolved by the temperature, humidity, and gas displacement of the space 20, and maintains the flow rate of the flow rate adjusting mechanism 84 of the vent pipe 82 (maintains the opening area of the fixed opening 89). In this state, the operation of the device 10A is continued.
 なお、磁気熱分解装置10Aについて、第1および第2給気管62,71の流量調節機構68を開閉または調節する場合、通気管82の流量調節機構84を開閉または調節する場合を説明したが、この磁気熱分解装置10Aでは、有機廃棄物の種類によって、第1および第2給気管62,71の空気の流量や通気管82の空気の流量を事前に設定しておけばよく、その状態で熱分解が開始されると、第1および第2給気管62,71の流量調節機構68や通気管82の流量調節機構84を開閉または調節する必要がほとんどなく、第1および第2給気管62,71の流量調節機構68や通気管82の流量調節機構84を設定状態のまま装置10Aの運転を継続することができる。 The magnetic pyrolysis apparatus 10A has been described with respect to opening / closing or adjusting the flow rate adjusting mechanism 68 of the first and second supply pipes 62, 71, and opening / closing or adjusting the flow rate adjusting mechanism 84 of the ventilation pipe 82. In this magnetic pyrolysis apparatus 10A, the flow rate of air in the first and second supply pipes 62 and 71 and the flow rate of air in the ventilation pipe 82 may be set in advance depending on the type of organic waste. When the thermal decomposition is started, there is almost no need to open / close or adjust the flow rate adjustment mechanism 68 of the first and second supply pipes 62 and 71 and the flow rate adjustment mechanism 84 of the ventilation pipe 82, and the first and second supply pipes 62. , 71 and the flow rate adjusting mechanism 84 of the vent pipe 82 can be continued to operate the apparatus 10A.
 磁気熱分解装置10Aは、断熱部材67,76の外側に延びる第1および第2給気管62,71の内部に対向配置されたそれら永久磁石63,72が作る磁場の作用によって空気が確実に磁化され、それによって空気が活性化し、活性化した空気が有機物収容空間20における磁気熱の発生を促進するとともに、活性化した空気が空間20に収容された牛糞100(有機廃棄物)に接触することで、牛糞100の表面で種火から派生した磁気熱による急激な熱分解反応が生じ、牛糞100を確実に熱分解することができる。 In the magnetic pyrolysis apparatus 10A, the air is surely magnetized by the action of the magnetic field created by the permanent magnets 63 and 72 arranged opposite to the inside of the first and second supply pipes 62 and 71 extending outside the heat insulating members 67 and 76. As a result, the air is activated, and the activated air promotes the generation of magnetic heat in the organic material accommodation space 20 and the activated air contacts the cow dung 100 (organic waste) accommodated in the space 20. Thus, a rapid pyrolysis reaction due to magnetic heat derived from the seed fire occurs on the surface of the cow dung 100, and the cow dung 100 can be reliably pyrolyzed.
 磁気熱分解装置10Aは、活性化した空気が有機物収容空間20における磁気熱の発生を促進することで、種火から派生した磁気熱が空間20に蓄熱されるから、空間20の温度を一定の高温に保持することができるとともに、空間20における有機物の熱分解を長期間(1週間~2ヶ月)にわたって維持することができる。磁気熱分解装置10Aは、それら永久磁石63,72が断熱部材67,76の外側に延びる給気管64,73の内部に対向配置されているから、牛糞100(有機廃棄物)の熱分解中に分解炉11の熱が断熱部材67,76によって遮断され、熱が給気管64,73に伝わり難く、給気管64,73が高温になることによるそれら永久磁石63,72の磁力の低下を防ぐことができ、それら磁石63,72によって給気管62,71を通過する空気を確実に磁化することができる。 In the magnetic pyrolysis apparatus 10A, the activated air promotes the generation of magnetic heat in the organic material containing space 20, and the magnetic heat derived from the seed fire is stored in the space 20, so that the temperature of the space 20 is kept constant. While being able to hold | maintain at high temperature, the thermal decomposition of the organic substance in the space 20 can be maintained over a long period (1 week-2 months). In the magnetic pyrolysis apparatus 10A, since the permanent magnets 63 and 72 are disposed oppositely to the inside of the supply pipes 64 and 73 extending outside the heat insulating members 67 and 76, during the thermal decomposition of the cow dung 100 (organic waste). Heat of the cracking furnace 11 is blocked by the heat insulating members 67 and 76, heat is hardly transmitted to the air supply pipes 64 and 73, and the magnetic force of the permanent magnets 63 and 72 is prevented from being lowered due to the high temperature of the air supply pipes 64 and 73. The air passing through the air supply pipes 62 and 71 can be reliably magnetized by the magnets 63 and 72.
 磁気熱分解装置10Aは、第1給気管62に流入する空気の流量を流量調節機構68によって調節することができるから、有機物収容空間20の底部24の空気が希薄な箇所において温度が低下したとしても、流量調節機構68によって空気の流量を調節し、その箇所における空気の流量を増加させて多くの空気を流入させることで、その箇所の温度を上昇させることができ、空間20の底部24における温度の局所的な低下を防ぐことができる。また、有機物収容空間20の底部24の空気が過多な箇所において温度が必要以上に上昇したとしても、流量調節機構68によって空気の流量を調節し、その箇所における空気の流量を減少させて少ない空気を流入させることで、その箇所の温度を下降させることができ、空間20の底部24における温度の局所的な上昇を防ぐことができる。 Since the magnetic pyrolysis apparatus 10A can adjust the flow rate of air flowing into the first air supply pipe 62 by the flow rate adjusting mechanism 68, it is assumed that the temperature has decreased at a location where the air at the bottom 24 of the organic matter storage space 20 is lean. However, by adjusting the flow rate of air by the flow rate adjusting mechanism 68 and increasing the flow rate of air at that location to allow a large amount of air to flow in, the temperature at that location can be increased, and the bottom 24 of the space 20 can be increased. A local drop in temperature can be prevented. Further, even if the temperature of the bottom 24 of the organic matter storage space 20 is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism 68 to reduce the air flow rate at that location. Is allowed to flow, the temperature at that point can be lowered, and a local rise in temperature at the bottom 24 of the space 20 can be prevented.
 磁気熱分解装置10Aは、第2給気管71に流入する空気の流量を流量調節機構68によって調節することができるから、有機物収容空間20の頂部22や中間部23の空気が希薄な箇所において温度が低下したとしても、流量調節機構68によって空気の流量を調節し、その箇所における空気の流量を増加させて多くの空気を流入させることで、その箇所の温度を上昇させることができ、空間20の頂部22や中間部23における温度の局所的な低下を防ぐことができる。また、有機物収容空間20の頂部22や中間部23の空気が過多な箇所において温度が必要以上に上昇したとしても、流量調節機構68によって空気の流量を調節し、その箇所における空気の流量を減少させて少ない空気を流入させることで、その箇所の温度を下降させることができ、空間20の頂部22や中間部23における温度の局所的な上昇を防ぐことができる。 Since the magnetic pyrolysis apparatus 10A can adjust the flow rate of the air flowing into the second air supply pipe 71 by the flow rate adjusting mechanism 68, the temperature at the point where the air in the top portion 22 or the intermediate portion 23 of the organic matter storage space 20 is lean. Even if the air flow rate decreases, the flow rate adjustment mechanism 68 adjusts the air flow rate, increases the air flow rate at that location, and allows a large amount of air to flow in, thereby increasing the temperature at that location. It is possible to prevent a local decrease in temperature at the top portion 22 and the intermediate portion 23 of the. Further, even if the temperature of the top portion 22 and the intermediate portion 23 of the organic matter storage space 20 is excessively high, the air flow rate is adjusted by the flow rate adjusting mechanism 68 to reduce the air flow rate at that location. By letting a small amount of air flow in, the temperature at that point can be lowered, and a local rise in temperature at the top portion 22 and the intermediate portion 23 of the space 20 can be prevented.
 磁気熱分解装置10Aは、牛糞100(有廃棄物)の熱分解中に通気管82から通気された空気が処理灰収容空間21から有機物収容空間20に流入するから、牛糞100の熱分解に必要な磁気熱を発生させるための空気を空間20に十分に供給することができ、空間20において牛糞100を確実に熱分解することができるとともに、牛糞100を短時間に効率よく熱分解することができる。 The magnetic pyrolysis apparatus 10A is necessary for the thermal decomposition of the cow dung 100 because the air ventilated from the vent pipe 82 flows into the organic matter storage space 20 from the treated ash storage space 21 during the thermal decomposition of the cow dung 100 (waste). Air for generating magnetic heat can be sufficiently supplied to the space 20, the cow dung 100 can be reliably pyrolyzed in the space 20, and the cow dung 100 can be efficiently thermally decomposed in a short time. it can.
 磁気熱分解装置10Aは、通気管82に流入する空気の流量を流量調節機構84によって調節することができるから、有機物収容空間20の空気が希薄になって空間20の温度が低下したとしても、流量調節機構84によって空気の流量を調節し、通気管82における空気の流量を増加させて多くの空気を空間20に流入させることで、空間20の温度を上昇させることができ、空間20における温度の局所的な低下を防ぐことができる。また、有機物収容空間20の空気が過多になって空間20の温度が必要以上に上昇したとしても、流量調節機構84によって空気の流量を調節し、通気管82における空気の流量を減少させて少ない空気を空間20に流入させることで、空間20の温度を下降させることができ、空間20における温度の局所的な上昇を防ぐことができる。 Since the magnetic pyrolysis apparatus 10A can adjust the flow rate of the air flowing into the vent pipe 82 by the flow rate adjusting mechanism 84, even if the air in the organic matter storage space 20 becomes lean and the temperature of the space 20 decreases, The temperature of the space 20 can be increased by adjusting the flow rate of the air by the flow rate adjusting mechanism 84 and increasing the flow rate of the air in the vent pipe 82 so that a large amount of air flows into the space 20. It is possible to prevent a local drop of the. Further, even when the air in the organic material storage space 20 becomes excessive and the temperature of the space 20 rises more than necessary, the flow rate adjustment mechanism 84 adjusts the air flow rate to reduce the air flow rate in the vent pipe 82. By causing air to flow into the space 20, the temperature of the space 20 can be lowered, and a local increase in temperature in the space 20 can be prevented.
 磁気熱分解装置10Aは、有機物収容空間20で発生したガスを水槽92に通気させることで、ガスに含まれる有害成分や臭気成分を水槽92に貯水された水に溶け込ませることができ、水槽92を介してガスから有害成分や臭気成分を分離することができる。また、ガスをフィルタ93に通気させることで、ガスに含まれる有害成分や臭気成分をフィルタ93に捕集させることができ、フィルタ93を介してガスから有害成分や臭気成分を分離することができる。 The magnetic thermal decomposition apparatus 10 </ b> A allows the gas generated in the organic matter storage space 20 to pass through the water tank 92, so that harmful components and odor components contained in the gas can be dissolved in the water stored in the water tank 92. It is possible to separate harmful components and odor components from the gas through the gas. Further, by allowing the gas to pass through the filter 93, harmful components and odor components contained in the gas can be collected by the filter 93, and the harmful components and odor components can be separated from the gas via the filter 93. .
 磁気熱分解装置10Aは、牛糞100(有機廃棄物)の熱分解中における分解温度が200~400℃の範囲にあるから、有機物収容空間20に投入された牛糞100が燃焼することはなく、牛糞100をセラミック灰(処理灰)にすることができるとともに、牛糞100の熱分解中におけるダイオキシン類の発生を防ぐことができる。磁気熱分解装置10Aは、有機物収容空間20における熱分解の連続時間が1週間~2ヶ月であるから、空間20における牛糞100(有機廃棄物)の熱分解を安定した温度で長期間にわたって維持することができ、装置10Aを長時間稼働させることができるとともに、装置10Aを介して大量の牛糞100を処理することができる。 In the magnetic pyrolysis apparatus 10A, since the decomposition temperature during the thermal decomposition of the cow dung 100 (organic waste) is in the range of 200 to 400 ° C., the cow dung 100 put into the organic matter storage space 20 does not burn, 100 can be made into ceramic ash (treated ash), and generation of dioxins during thermal decomposition of cow dung 100 can be prevented. The magnetic thermal decomposition apparatus 10A maintains the thermal decomposition of the cow dung 100 (organic waste) in the space 20 at a stable temperature for a long period of time because the continuous time of thermal decomposition in the organic material accommodation space 20 is one week to two months. The apparatus 10A can be operated for a long time, and a large amount of cow dung 100 can be processed through the apparatus 10A.
 図24は、他の一例として示す磁気熱分解装置10Bの斜視図であり、図25は、図24の磁気熱分解装置10Bの側面図である。図26は、図24の磁気熱分解装置10Bの図6と同様の断面図であり、図27は、図24の磁気熱分解装置10Bの図7と同様の断面図である。図28は、第1および第2前壁33,34を省略して示す図24の磁気熱分解装置10Bの正面図であり、図29は、有機物収容空間20の中間部23に延びる左右側壁18,19に設置された給気機構12Cの上面図である。図30は、有機物収容空間の中間部に延びる左右側壁に設置された給気機構の側面図であり、図31は、有機物収容空間20の底部24に延びる左右側壁18,19に設置された給気機構12Dの上面図である。図32は、有機物収容空間20の底部24に延びる左右側壁18,19に設置された給気機構12Dの側面図である。図24では、上下方向を矢印Xで示し、横方向を矢印Yで示すとともに、前後方向を矢印Zで示す。図26,27では、排気機構13の図示を省略している。 FIG. 24 is a perspective view of a magnetic pyrolysis apparatus 10B shown as another example, and FIG. 25 is a side view of the magnetic pyrolysis apparatus 10B of FIG. 26 is a cross-sectional view similar to FIG. 6 of the magnetic pyrolysis apparatus 10B of FIG. 24, and FIG. 27 is a cross-sectional view similar to FIG. 7 of the magnetic pyrolysis apparatus 10B of FIG. 28 is a front view of the magnetothermal decomposition apparatus 10B shown in FIG. 24 with the first and second front walls 33 and 34 omitted, and FIG. 29 shows the left and right side walls 18 extending to the intermediate portion 23 of the organic matter storage space 20. , 19 is a top view of the air supply mechanism 12C. FIG. 30 is a side view of the air supply mechanism installed on the left and right side walls extending to the middle part of the organic matter storage space, and FIG. 31 is the side view of the supply mechanism installed on the left and right side walls 18 and 19 extending to the bottom 24 of the organic matter storage space 20. It is a top view of air mechanism 12D. FIG. 32 is a side view of the air supply mechanism 12 </ b> D installed on the left and right side walls 18, 19 extending to the bottom 24 of the organic substance accommodation space 20. In FIG. 24, the vertical direction is indicated by an arrow X, the horizontal direction is indicated by an arrow Y, and the front-rear direction is indicated by an arrow Z. 26 and 27, the exhaust mechanism 13 is not shown.
 この磁気熱分解装置10Bが図1のそれと異なるところは、有機物収容空間20の中間部23に延びる左右側壁18,19(周壁)に第2給気管71(給気機構12B)とともに第3給気管(給気機構12C)が設置されている点、空間20の底部24に延びる左右側壁18,19(周壁)に第1給気管62(給気機構12A)とともに第4給気管(給気機構12D)が設置されている点にあり、その他の構成は図1の磁気熱分解装置10Aと同一であるから、その他の構成については図1の説明を援用することで、この装置10Bにおけるその他の構成の詳細な説明は省略する。 This magnetic pyrolysis apparatus 10B is different from that shown in FIG. 1 in that a third air supply pipe and a second air supply pipe 71 (air supply mechanism 12B) are provided on the left and right side walls 18 and 19 (peripheral walls) extending to the intermediate portion 23 of the organic matter storage space 20. The fourth air supply pipe (air supply mechanism 12D) together with the first air supply pipe 62 (air supply mechanism 12A) is provided on the left and right side walls 18, 19 (peripheral walls) extending to the bottom 24 of the space 20 in that the (air supply mechanism 12C) is installed. ) Is installed, and the other configuration is the same as that of the magnetic pyrolysis apparatus 10A of FIG. 1, and therefore the other configuration of the apparatus 10B is incorporated by using the description of FIG. The detailed description of is omitted.
 磁気熱分解装置10Bは、磁気熱分解装置10Aと同様に、磁気熱を利用して有機廃棄物(有機物)を所定の分解温度で熱分解し、有機廃棄物を磁化されたセラミック灰(処理灰)にする。磁気熱分解装置10Aは、所定容積の分解炉11と、分解炉11に空気を給気する給気機構12と、分解炉11に発生したガスを分解炉11から排気する排気機構13とを備えている。分解炉11は、頂壁14および底壁15と、前壁16および後壁17と、右側壁18および左側壁19とを有する六面筐体である。 Similarly to the magnetic pyrolysis apparatus 10A, the magnetic pyrolysis apparatus 10B thermally decomposes organic waste (organic matter) at a predetermined decomposition temperature using magnetic heat, and magnetizes the organic waste (processed ash). ). The magnetic thermal decomposition apparatus 10 </ b> A includes a decomposition furnace 11 having a predetermined volume, an air supply mechanism 12 that supplies air to the decomposition furnace 11, and an exhaust mechanism 13 that exhausts gas generated in the decomposition furnace 11 from the decomposition furnace 11. ing. The cracking furnace 11 is a six-sided housing having a top wall 14 and a bottom wall 15, a front wall 16 and a rear wall 17, a right side wall 18 and a left side wall 19.
 分解炉11は、それら壁14~19(頂壁14、前後壁16,17、左右側壁18,19)に囲繞された所定容積の有機物収容空間20と、空間20の下方に位置してそれら壁14~19(底壁15、前後壁16,17、左右側壁18,19)に囲繞された所定容積の処理灰収容空間21とを有する。有機物収容空間20は、頂壁14の側に位置する頂部22と、底壁15の側に位置する底部24と、頂部22および底部24の間に位置する中間部23とを有する(図10,11参照)。 The cracking furnace 11 includes an organic substance containing space 20 having a predetermined volume surrounded by the walls 14 to 19 (the top wall 14, the front and rear walls 16, 17, and the left and right side walls 18, 19), and the walls 20 located below the space 20. 14 to 19 (bottom wall 15, front and rear walls 16, 17, left and right side walls 18, 19) and a predetermined volume of treated ash containing space 21. The organic matter storage space 20 has a top portion 22 located on the top wall 14 side, a bottom portion 24 located on the bottom wall 15 side, and an intermediate portion 23 located between the top portion 22 and the bottom portion 24 (FIG. 10, FIG. 11).
 有機物収容空間20の中間部23に延びる左右側壁18,19に設置されたそれら給気機構12C(給気部材)は、空間20の中間部23の側から空気流動層39に空気を流入させる複数の第3給気管101と、それら第3給気管101に取り付けられた永久磁石102とを有する。なお、左右側壁18,19に設置されたそれら給気機構12Bは、図1の装置10Aのそれと同一であるから、図14,15の説明を援用することで給気機構12Bの説明は省略する。 These air supply mechanisms 12C (air supply members) installed in the left and right side walls 18 and 19 extending to the intermediate portion 23 of the organic matter containing space 20 allow a plurality of air to flow into the air fluidized bed 39 from the intermediate portion 23 side of the space 20. The third air supply pipes 101 and permanent magnets 102 attached to the third air supply pipes 101 are provided. In addition, since those air supply mechanisms 12B installed in the left and right side walls 18 and 19 are the same as those of the apparatus 10A of FIG. 1, the description of the air supply mechanisms 12B is omitted by using the description of FIGS. .
 それら第3給気管101は、第1左右側壁52,56(第1周壁)から外側に向かって延びる箱状の外側第3給気管103と、第1および第2左右側壁52,53,56,67(第1および第2周壁)を貫通して分解炉11の内側に延びる筒状の内側第3給気管104と、内側第3給気管104の先端部に位置して空気流動層39に開口する給気口105とから形成されている。内側第3給気管104の先端部が垂直に切断され、それによって、給気口105が第3左右側壁54,58に対向している。 The third air supply pipes 101 include a box-shaped outer third air supply pipe 103 extending outward from the first left and right side walls 52 and 56 (first peripheral walls), and the first and second left and right side walls 52, 53, 56, 67 (first and second peripheral walls) passing through the inner side of the cracking furnace 11 extending through the inner side of the cracking furnace 11, and an opening in the air fluidized bed 39 located at the tip of the inner third air supply pipe 104 The air supply port 105 is formed. The distal end portion of the inner third air supply pipe 104 is cut vertically so that the air supply port 105 faces the third left and right side walls 54 and 58.
 外側第3給気管103は、前端壁および後端壁、頂壁および底壁、両側壁を備え、第1左右側壁52,56の側に位置する所定厚みの断熱部材106と、第3給気管103に流入する空気の流量を調節可能な流量調節機構68とを有する。なお、流量調節機構68は第1および第2給気管62,71のそれと同一であるから、図16~図18の説明を援用することで、その説明は省略する。 The outer third air supply pipe 103 includes a front end wall and a rear end wall, a top wall and a bottom wall, and both side walls, a heat insulating member 106 having a predetermined thickness located on the first left and right side walls 52 and 56, and a third air supply pipe. And a flow rate adjusting mechanism 68 capable of adjusting the flow rate of the air flowing into 103. Since the flow rate adjusting mechanism 68 is the same as that of the first and second air supply pipes 62 and 71, the description thereof will be omitted by using the description of FIGS.
 外側第3給気管103(断熱部材106を含む)は、その軸方向中心に空気が通る空気流路69が形成されている。外側第3給気管103(断熱部材106を含む)は、ボルトを介して第1左右側壁52,56に着脱可能に固定されている。内側第2給気管104は、その基端部の周縁が第1左右側壁52,56に溶接によって強固に固定されている。内側第3給気管104は、その軸方向中心に空気が通る空気流路70が形成され、その流路70が外側第3給気管103の空気流路69に連通している。 The outer third air supply pipe 103 (including the heat insulating member 106) has an air passage 69 through which air passes at the center in the axial direction. The outer third air supply pipe 103 (including the heat insulating member 106) is detachably fixed to the first left and right side walls 52 and 56 via bolts. The inner second air supply pipe 104 is firmly fixed to the first left and right side walls 52 and 56 at the periphery of the base end thereof by welding. The inner third air supply pipe 104 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer third air supply pipe 103.
 永久磁石102は、外側第2給気管103の空気流69を挟むように、2つのそれが断熱部材106の外側に延びる外側第3給気管103の内部空間に対向配置されている。それら永久磁石102は、S極とN極とが対向して設置される場合、N極どうしが対向して設置される場合、または、S極どうしが対向して設置される場合がある。永久磁石102には、フェライト磁石、アルコニ磁石、ネオジム磁石、サマリウムコバルト磁石を使用することができる。それら永久磁石102は所定の磁束密度を有し、外側第3給気管103の空気流路78に磁場を作り、第3給気管101(外側第3給気管103の空気流路69)を通過する空気を磁化することで、空気を活性化する。 The two permanent magnets 102 are arranged opposite to the inner space of the outer third air supply pipe 103 extending outside the heat insulating member 106 so as to sandwich the air flow 69 of the outer second air supply pipe 103. The permanent magnets 102 may be installed such that the south and north poles face each other, the north and south poles face each other, or the south poles face each other. As the permanent magnet 102, a ferrite magnet, an arconi magnet, a neodymium magnet, or a samarium cobalt magnet can be used. These permanent magnets 102 have a predetermined magnetic flux density, create a magnetic field in the air flow path 78 of the outer third supply pipe 103, and pass through the third supply pipe 101 (the air flow path 69 of the outer third supply pipe 103). Air is activated by magnetizing the air.
 それら永久磁石102は、ボルトを介して外側第3給気管103に着脱可能に固定されている。なお、永久磁石102の個数について、特に限定はなく、互いに対向する偶数個(4個以上)の磁石102が外側第3給気管103に取り付けられていてもよい。断熱部材106は、難燃性の合成樹脂から作られ、第1左右側壁52,56に発生した熱の外側第3給気管103への伝導を防止し、熱による永久磁石102の磁力の低下を防止する。 These permanent magnets 102 are detachably fixed to the outer third air supply pipe 103 via bolts. The number of permanent magnets 102 is not particularly limited, and an even number (four or more) of magnets 102 facing each other may be attached to the outer third air supply pipe 103. The heat insulating member 106 is made of a flame retardant synthetic resin, prevents conduction of heat generated in the first left and right side walls 52 and 56 to the outer third air supply pipe 103, and reduces the magnetic force of the permanent magnet 102 due to heat. To prevent.
 有機物収容空間20の底部24に延びる左右側壁18,19に設置されたそれら給気機構12D(給気部材)は、有機物収容空間20の底部24の側から空間20に空気を流入させる複数の第4給気管107と、それら第4給気管107に取り付けられた永久磁石108とを有する。なお、左右側壁18,19に設置されたそれら給気機構12Aは、図1の装置10Aのそれと同一であるから、図12,13の説明を援用することで給気機構12Aの説明は省略する。 These air supply mechanisms 12D (air supply members) installed on the left and right side walls 18 and 19 that extend to the bottom 24 of the organic matter storage space 20 have a plurality of first air flows into the space 20 from the bottom 24 side of the organic matter storage space 20. The four air supply pipes 107 and the permanent magnets 108 attached to the fourth air supply pipes 107 are provided. In addition, since those air supply mechanisms 12A installed in the left and right side walls 18 and 19 are the same as those of the apparatus 10A of FIG. 1, the description of the air supply mechanisms 12A is omitted by using the description of FIGS. .
 それら第4給気管107は、第1左右側壁52,56(第1周壁)から外側に向かって延びる箱状の外側第4給気管109と、第1および第2左右側壁52,53,56,57(第1および第2周壁)を貫通するとともに第3左右側壁54,61の内側に延びる筒状の内側第4給気管110と、内側第4給気管110の先端部に位置して有機物収容空間20に開口する給気口111とから形成されている。内側第4給気管110の先端部が斜めに切断され、それによって、給気口111が有機物収容空間20の上下方向下方へ開口している。 The fourth air supply pipes 107 include a box-shaped outer fourth air supply pipe 109 extending outward from the first left and right side walls 52, 56 (first peripheral wall), and the first and second left and right side walls 52, 53, 56, 57 (first and second peripheral walls) and the inside inner fourth supply pipe 110 extending inside the third left and right side walls 54 and 61 and the distal end portion of the inner fourth supply pipe 110 and containing organic matter The air supply port 111 is open to the space 20. The front end portion of the inner fourth air supply pipe 110 is cut obliquely, whereby the air supply port 111 is opened downward in the vertical direction of the organic matter accommodation space 20.
 外側第4給気管109は、前端壁および後端壁、頂壁および底壁、両側壁を備え、第1左右側壁52,56の側に位置する所定厚みの断熱部材112と、第4給気管107に流入する空気の流量を調節可能な流量調節機構68とを有する。なお、流量調節機構68は第1および第2給気管62,71のそれと同一であるから、図16~図18の説明を援用することで、その説明は省略する。 The outer fourth air supply pipe 109 includes a front end wall and a rear end wall, a top wall and a bottom wall, both side walls, a heat insulating member 112 having a predetermined thickness located on the first left and right side walls 52 and 56, and a fourth air supply pipe. And a flow rate adjusting mechanism 68 capable of adjusting the flow rate of air flowing into 107. Since the flow rate adjusting mechanism 68 is the same as that of the first and second air supply pipes 62 and 71, the description thereof will be omitted by using the description of FIGS.
 外側第4給気管109(断熱部材112を含む)は、その軸方向中心に空気が通る空気流路69が形成されている。外側第4給気管109(断熱部材112を含む)は、ボルトを介して第1左右側壁52,56に着脱可能に固定されている。内側第4給気管110は、その基端部の周縁が第1左右側壁52,56に溶接によって強固に固定されている。内側第4給気管110は、その軸方向中心に空気が通る空気流路70が形成され、その流路70が外側第4給気管109の空気流路69に連通している。 The outer fourth air supply pipe 109 (including the heat insulating member 112) has an air passage 69 through which air passes at the center in the axial direction. The outer fourth air supply pipe 109 (including the heat insulating member 112) is detachably fixed to the first left and right side walls 52 and 56 via bolts. The inner fourth air supply pipe 110 has a peripheral edge firmly fixed to the first left and right side walls 52 and 56 by welding. The inner fourth air supply pipe 110 has an air flow path 70 through which air passes at the center in the axial direction, and the flow path 70 communicates with the air flow path 69 of the outer fourth air supply pipe 109.
 永久磁石108は、外側第4給気管109の空気流路69を挟むように、2つのそれが断熱部材112の外側に延びる外側第4給気管109の内部空間に対向配置されている。それら永久磁石108は、S極とN極とが対向して設置される場合、N極どうしが対向して設置される場合、または、S極どうしが対向して設置される場合がある。永久磁石198には、フェライト磁石、アルコニ磁石、ネオジム磁石、サマリウムコバルト磁石を使用することができる。それら永久磁石108は、所定の磁束密度を有し、外側第4給気管109の空気流路69に磁場を作り、第4給気管107(外側第4給気管109の空気流路69)を通過する空気を磁化することで、空気を活性化する。 The two permanent magnets 108 are arranged opposite to the inner space of the outer fourth air supply pipe 109 extending outside the heat insulating member 112 so as to sandwich the air flow path 69 of the outer fourth air supply pipe 109. The permanent magnets 108 may be installed such that the S pole and the N pole face each other, the N poles face each other, or the S poles face each other. As the permanent magnet 198, a ferrite magnet, an arconi magnet, a neodymium magnet, or a samarium cobalt magnet can be used. These permanent magnets 108 have a predetermined magnetic flux density, create a magnetic field in the air flow path 69 of the outer fourth supply pipe 109, and pass through the fourth supply pipe 107 (the air flow path 69 of the outer fourth supply pipe 109). Air is activated by magnetizing the air.
 それら永久磁石108は、ボルトを介して外側第4給気管109に着脱可能に固定されている。なお、永久磁石108の個数について、特に限定はなく、互いに対向する偶数個(4個以上)の磁石108が外側第4給気管109に取り付けられていてもよい。断熱部材112は、難燃性の合成樹脂から作られ、第1左右側壁52,56に発生した熱の外側第4給気管109への伝導を防止し、熱による永久磁石108の磁力の低下を防止する。 These permanent magnets 108 are detachably fixed to the outer fourth supply pipe 109 via bolts. The number of permanent magnets 108 is not particularly limited, and an even number (four or more) of magnets 108 facing each other may be attached to the outer fourth supply pipe 109. The heat insulating member 112 is made of a flame retardant synthetic resin, prevents conduction of heat generated in the first left and right side walls 52 and 56 to the outer fourth supply pipe 109, and reduces the magnetic force of the permanent magnet 108 due to heat. To prevent.
 磁気熱分解装置10Bにおける有機廃棄物の処理手順の一例は図1の装置10Aのそれと同一であるから、図23の説明を援用することで、この装置10Bにおける有機廃棄物の処理手順の説明は省略する。なお、磁気熱分解装置10Bは、有機廃棄物の熱分解中における分解温度が200~400℃の範囲にある。また、有機物収容空間20における熱分解の連続時間が1週間~2ヶ月である。 An example of the processing procedure of the organic waste in the magnetic pyrolysis apparatus 10B is the same as that of the apparatus 10A of FIG. 1, so that the description of the processing procedure of the organic waste in the apparatus 10B can be explained by using the description of FIG. Omitted. The magnetic pyrolysis apparatus 10B has a decomposition temperature in the range of 200 to 400 ° C. during the thermal decomposition of organic waste. Further, the continuous time of thermal decomposition in the organic substance storage space 20 is one week to two months.
 磁気熱分解装置10Bにおいて、全ての第1給気管62(給気機構12A)や全ての第4給気管107(給気機構12D)の流量調節機構68(外側第1給気管64や外側第4給気管109の流量調節機構68)が全開である場合、磁気熱分解装置10Bの運転中(熱分解の継続中)、有機物収容空間20の底部24で熱分解が進行する過程において、空間20の底部24に空気過多の箇所が生じ、その箇所において熱分解反応の速度が必要以上に早くなるとともに温度が必要以上に上昇し、そのままでは底部24において牛糞100が燃焼してしまう場合がある。 In the magnetic pyrolysis apparatus 10B, the flow rate adjusting mechanisms 68 (the outer first air supply pipe 64 and the outer fourth air supply) of all the first air supply pipes 62 (the air supply mechanism 12A) and all the fourth air supply pipes 107 (the air supply mechanism 12D). When the flow rate adjusting mechanism 68) of the air supply pipe 109 is fully open, during the operation of the magnetic pyrolysis apparatus 10B (while the thermal decomposition continues), during the process of thermal decomposition at the bottom 24 of the organic matter storage space 20, the space 20 An excessive air location is generated at the bottom 24, and the temperature of the thermal decomposition reaction increases more than necessary at that location, and the temperature rises more than necessary, and the cow dung 100 may burn at the bottom 24 as it is.
 たとえば、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24において空気過多が生じ、その状態を作業者が認識した場合、前壁16に設置された第1給気管62や第4給気管107の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第1給気管62第4給気管107に流入する空気の流量を減少させる。さらに、右側壁18に設置された第1給気管62や第4給気管107の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第1給気管62や第4給気管107に流入する空気の流量を減少させる。 For example, when excess air occurs at the bottom 24 of the space 20 close to the front wall 16 or the bottom 24 of the space 20 close to the right wall 18 and the operator recognizes this state, the first air supply pipe installed on the front wall 16 62 and the flow rate adjusting mechanism 68 of the fourth supply pipe 107 are throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 is reduced. Decrease. Further, the flow rate adjusting mechanism 68 of the first air supply pipe 62 and the fourth air supply pipe 107 installed on the right side wall 18 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the first air supply pipe 62 and the flow rate of the air flowing into the fourth air supply pipe 107 are reduced.
 前壁16や右側壁18に設置された第1給気管62や第4給気管107の流量調節機構68を調節し、第1給気管62や第4給気管107に流入する空気の流量を減少させることで、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24における空気過多が解消される。空気過多が解消されると、熱分解反応が正常に戻り、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Bの運転を継続する。 The flow rate adjusting mechanism 68 of the first supply pipe 62 and the fourth supply pipe 107 installed on the front wall 16 and the right side wall 18 is adjusted to reduce the flow rate of air flowing into the first supply pipe 62 and the fourth supply pipe 107. By doing so, excess air in the bottom 24 of the space 20 near the front wall 16 and the bottom 24 of the space 20 near the right side wall 18 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
 全ての第3給気管101(給気機構12C)の流量調節機構68(外側第3給気管103の流量調節機構68)が全開である場合、空気流動層39を流動する空気の温度が低下し、高温の空気を空気流動層39から有機物収容空間20に給気することができない場合がある。この場合、左右側壁18,19に設置された第3給気管101の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第3給気管101に流入する空気の流量を減少させる。左右側壁18,19に設置された第3給気管101の流量調節機構68を調節し、第3給気管101に流入する空気の流量を減少させることで、空気流動層39を流動する空気の温度が上昇し、空気流動層39から有機物収容空間20に高温の空気が給気され、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Bの運転を継続する。 When the flow rate adjusting mechanisms 68 (flow rate adjusting mechanisms 68 of the outer third air supply tube 103) of all the third air supply tubes 101 (the air supply mechanism 12C) are fully open, the temperature of the air flowing through the air fluidized bed 39 is lowered. In some cases, high-temperature air cannot be supplied from the air fluidized bed 39 to the organic matter accommodation space 20. In this case, the flow rate adjusting mechanism 68 of the third supply pipe 101 installed on the left and right side walls 18 and 19 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80) and flows into the third supply pipe 101. Reduce the air flow. The temperature of the air flowing through the air fluidized bed 39 is adjusted by adjusting the flow rate adjusting mechanism 68 of the third air supply pipe 101 installed on the left and right side walls 18 and 19 to reduce the flow rate of the air flowing into the third air supply pipe 101. The high temperature air is supplied from the air fluidized bed 39 to the organic substance containing space 20 and the flow rate of the flow rate adjusting mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained), and the operation of the apparatus 10B is continued. To do.
 また、全ての第2給気管71(給気機構12B)の流量調節機構68(外側第2給気管73の流量調節機構68)が全開である場合、磁気熱分解装置10Bの運転中(熱分解の継続中)、有機物収容空間20の頂部22や中間部23で熱分解が進行する過程において、空間20の頂部22や中間部23に空気過多の箇所が生じ、その箇所において熱分解反応の速度が必要以上に早くなるとともに温度が必要以上に上昇し、そのままでは頂部22や中間部23において牛糞100が燃焼してしまう場合がある。 Further, when the flow rate adjustment mechanisms 68 of all the second air supply pipes 71 (the air supply mechanisms 12B) (the flow rate adjustment mechanisms 68 of the outer second air supply pipes 73) are fully open, the magnetic pyrolysis apparatus 10B is in operation (thermal decomposition). In the process in which pyrolysis proceeds in the top portion 22 and the intermediate portion 23 of the organic matter storage space 20, an excessive air location occurs at the top portion 22 and the intermediate portion 23 of the space 20, and the rate of the pyrolysis reaction at that location. However, the temperature rises more than necessary and the cow dung 100 may burn at the top portion 22 or the intermediate portion 23 as it is.
 たとえば、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23において空気過多が生じ、その状態を作業者が認識した場合、後壁17に設置された第2給気管71の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第2給気管71に流入する空気の流量を減少させる。さらに、左側壁19に設置された第2給気管71の流量調節機構68を絞り(シャッタ板78をスライドさせて固定開口80の開口面積を小さくする)、第2給気管71に流入する空気の流量を減少させる。 For example, when an excess of air occurs at the top 22 or the middle part 23 of the space 20 near the rear wall 17 and the top 22 or the middle part 23 of the space 20 near the left side wall 19, and the operator recognizes the state, the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed in the air supply is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is reduced. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is throttled (the shutter plate 78 is slid to reduce the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is reduced. Reduce the flow rate.
 後壁17や左側壁19に設置された第2給気管71の流量調節機構68を調節し、第2給気管71に流入する空気の流量を減少させることで、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23における空気過多が解消される。空気過多が解消されると、熱分解反応が正常に戻り、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Bの運転を継続する。 By adjusting the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19, the flow rate of the air flowing into the second air supply pipe 71 is reduced, so that the space 20 near the rear wall 17 Excessive air in the top portion 22 and the intermediate portion 23 of the space 20 near the top portion 22 and the intermediate portion 23 and the left side wall 19 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
 第1給気管62(給気機構12A)や第4給気管107(給気機構12D)の流量調節機構68(外側第1給気管64や外側第4給気管109の流量調節機構68)が絞られている場合(固定開口80の開口面積が小さい場合)であって、磁気熱分解装置10Bの運転中(熱分解の継続中)、有機物収容空間20の底部24で熱分解が進行する過程において、空間20の底部24に空気の希薄な箇所が生じ、熱分解反応の速度が遅くなるとともに温度が低くなり、その箇所において熱分解に必要な空気が不足し、その箇所において熱分解反応が低下する場合がある。 The first air supply pipe 62 (air supply mechanism 12A) and the fourth air supply pipe 107 (air supply mechanism 12D) have a flow rate adjustment mechanism 68 (the outer first air supply pipe 64 and the fourth air supply pipe 109 flow rate adjustment mechanism 68). In the process in which the pyrolysis proceeds at the bottom 24 of the organic substance storage space 20 during operation of the magnetic pyrolysis apparatus 10B (while the pyrolysis continues). In the bottom portion 24 of the space 20, a portion where air is diluted is generated, the rate of the thermal decomposition reaction is slowed and the temperature is lowered, the air necessary for the thermal decomposition is insufficient at the portion, and the thermal decomposition reaction is lowered at the portion. There is a case.
 たとえば、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24において空気不足が生じ、その状態を作業者が認識した場合、前壁16に設置された第1給気管62や第4給気管107の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第1給気管62や第4給気管107に流入する空気の流量を増加させる。さらに、右側壁18に設置された第1給気管62や第4給気管107の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第1給気管62や第4給気管107に流入する空気の流量を増加させる。 For example, when an air shortage occurs at the bottom 24 of the space 20 close to the front wall 16 or the bottom 24 of the space 20 close to the right wall 18 and the operator recognizes this state, the first air supply pipe installed on the front wall 16 62 and the flow rate adjusting mechanism 68 of the fourth supply pipe 107 are opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 Increase. Further, the flow rate adjusting mechanism 68 of the first air supply pipe 62 and the fourth air supply pipe 107 installed on the right side wall 18 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the first air supply pipe 62 and the flow rate of the air flowing into the fourth air supply pipe 107 are increased.
 前壁16や右側壁18に設置された第1給気管62や第4給気管107の流量調節機構68を調節し、第1給気管62や第4給気管107に流入する空気の流量を増加させることで、前壁16に近い空間20の底部24や右側壁18に近い空間20の底部24における空気不足が解消される。空気不足が解消されると、熱分解反応が正常に戻り、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Bの運転を継続する。 The flow rate adjustment mechanism 68 of the first supply pipe 62 and the fourth supply pipe 107 installed on the front wall 16 and the right side wall 18 is adjusted to increase the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107. By doing so, air shortages at the bottom 24 of the space 20 near the front wall 16 and the bottom 24 of the space 20 near the right side wall 18 are eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
 第3給気管101(給気機構12C)の流量調節機構68(外側第3給気管103の流量調節機構68)が絞られている場合(固定開口80の開口面積が小さい場合)であって、磁気熱分解装置10Bの運転中(熱分解の継続中)、第1給気管62だけでは空気流動層39に十分に空気が給気されない場合がある。この場合、左右側壁18,19に設置された第3給気管101の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第3給気管101に流入する空気の流量を増加させる。第3給気管101の流量調節機構68を調節し、第3給気管101に流入する空気の流量を増加させることで、空気流動層39に十分に空気が給気され、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Bの運転を継続する。 When the flow rate adjustment mechanism 68 (flow rate adjustment mechanism 68 of the outer third supply tube 103) of the third supply tube 101 (supply mechanism 12C) is throttled (when the opening area of the fixed opening 80 is small), During the operation of the magnetic pyrolysis apparatus 10B (during the thermal decomposition), there is a case where air is not sufficiently supplied to the air fluidized bed 39 using only the first air supply pipe 62. In this case, the flow rate adjusting mechanism 68 of the third air supply pipe 101 installed on the left and right side walls 18 and 19 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80) and flows into the third air supply pipe 101. Increase the air flow. By adjusting the flow rate adjusting mechanism 68 of the third air supply pipe 101 and increasing the flow rate of air flowing into the third air supply pipe 101, air is sufficiently supplied to the air fluidized bed 39, and the flow rate of the flow rate adjusting mechanism 68 is increased. Is maintained (the opening area of the fixed opening 80 is maintained), and the operation of the apparatus 10B is continued.
 第2給気管71(給気機構12B)の流量調節機構68(外側第2給気管73の流量調節機構68)が絞られている場合(固定開口80の開口面積が小さい場合)であって、磁気熱分解装置10Bの運転中(熱分解の継続中)、有機物収容空間20の頂部22や中間部23で熱分解が進行する過程において、空間20の頂部22や中間部23に空気の希薄な箇所が生じ、熱分解反応の速度が遅くなるとともに温度が低くなり、その箇所において熱分解に必要な空気が不足し、その箇所において熱分解反応が低下する場合がある。 When the flow rate adjustment mechanism 68 (the flow rate adjustment mechanism 68 of the outer second supply tube 73) of the second supply pipe 71 (supply mechanism 12B) is throttled (when the opening area of the fixed opening 80 is small), During the operation of the magnetic pyrolysis apparatus 10B (during the ongoing pyrolysis), in the process in which pyrolysis proceeds at the top 22 and the intermediate part 23 of the organic matter storage space 20, air is diluted in the top 22 and the intermediate part 23 of the space 20. A part is generated, and the temperature of the pyrolysis reaction is lowered and the temperature is lowered. In some cases, the air required for the pyrolysis is insufficient, and the pyrolysis reaction is lowered in the part.
 たとえば、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23において空気不足が生じ、その状態を作業者が認識した場合、後壁17に設置された第2給気管71の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第2給気管71に流入する空気の流量を増加させる。さらに、左側壁19に設置された第2給気管71の流量調節機構68を開け(シャッタ板78をスライドさせて固定開口80の開口面積を大きくする)、第2給気管71に流入する空気の流量を増加させる。 For example, when an air shortage occurs at the top part 22 or the intermediate part 23 of the space 20 near the rear wall 17 or at the top part 22 or the intermediate part 23 of the space 20 near the left side wall 19, and the operator recognizes this state, the rear wall 17 The flow rate adjusting mechanism 68 of the second air supply pipe 71 installed at the top is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the flow rate of air flowing into the second air supply pipe 71 is increased. Further, the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the left side wall 19 is opened (the shutter plate 78 is slid to increase the opening area of the fixed opening 80), and the air flowing into the second air supply pipe 71 is removed. Increase the flow rate.
 後壁17や左側壁19に設置された第2給気管71の流量調節機構68を調節し、第2給気管71に流入する空気の流量を増加させることで、後壁17に近い空間20の頂部22や中間部23、左側壁19に近い空間20の頂部22や中間部23における空気不足が解消される。空気不足が解消されると、熱分解反応が正常に戻り、流量調節機構68の流量を維持(固定開口80の開口面積を維持)した状態で、装置10Bの運転を継続する。 By adjusting the flow rate adjusting mechanism 68 of the second air supply pipe 71 installed on the rear wall 17 or the left side wall 19 to increase the flow rate of air flowing into the second air supply pipe 71, the space 20 near the rear wall 17 Air shortages at the top 22 and the middle part 23 of the space 20 near the top part 22 and the middle part 23 and the left side wall 19 are eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10B is continued in a state where the flow rate of the flow rate adjustment mechanism 68 is maintained (the opening area of the fixed opening 80 is maintained).
 第1給気管~第4給気管62,71,101,107の流量調節機構68を開けて装置10Bの運転を継続した場合、それら給気管62,71,101,107から空間20に磁化された空気が給気されるが、空間20において熱分解反応が広範囲に及ぶと、空間20の底部24や中間部23、頂部24の空気が希薄になり、空間20において熱分解に必要な空気が不足し、空間20の温度が必要以上に低下するとともに、空間20の熱分解反応が低下する場合がある。 When the flow control mechanism 68 of the first to fourth supply pipes 62, 71, 101, 107 is opened and the operation of the apparatus 10B is continued, the space 20 is magnetized from the supply pipes 62, 71, 101, 107. Although air is supplied, if the thermal decomposition reaction reaches a wide range in the space 20, the air in the bottom 24, the intermediate portion 23, and the top 24 of the space 20 becomes lean, and there is not enough air in the space 20 for thermal decomposition. In addition, the temperature of the space 20 may decrease more than necessary, and the thermal decomposition reaction of the space 20 may decrease.
 この場合、右側壁18や左側壁19の通気管82の流量調節機構84を開放し(シャッタ板87を回転させて固定開口89を開ける)、通気管82から処理灰収容空間21に空気(外気)を流入させる。なお、前端板86の固定開口89の開口面積を調節することで、通気管82を通る空気の流量を調節することができる。処理灰収容空間21に流入した空気は、空間21から有機物収容空間20に流入し、空間20の空気不足が解消される。空気不足が解消されると、熱分解反応が正常に戻り、通気管82の流量調節機構84の流量を維持(固定開口の開口面積を維持)した状態で、装置10Aの運転を継続する。 In this case, the flow rate adjusting mechanism 84 of the vent pipe 82 on the right side wall 18 and the left side wall 19 is opened (the shutter plate 87 is rotated to open the fixed opening 89), and air (outside air) is passed from the vent pipe 82 to the treated ash accommodating space 21. ). It should be noted that the flow rate of the air passing through the vent pipe 82 can be adjusted by adjusting the opening area of the fixed opening 89 of the front end plate 86. The air that has flowed into the treated ash storage space 21 flows into the organic matter storage space 20 from the space 21, and the air shortage in the space 20 is eliminated. When the air shortage is resolved, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10A is continued in a state where the flow rate of the flow rate adjustment mechanism 84 of the vent pipe 82 is maintained (the opening area of the fixed opening is maintained).
 通気管82の流量調節機構84を開放し、その状態で装置10Bの運転を続けた結果、有機物収容空間20において熱分解反応の速度が必要以上に早くなるとともに温度が必要以上に上昇し、そのままでは空間20において牛糞100が燃焼してしまう場合がある。この場合、右側壁18や左側壁19の通気管82の流量調節機構84を閉鎖し(シャッタ板87を回転させて固定開口89を閉める)、通気管82から処理灰収容空間21への空気(外気)の流入を遮断する。または、流量調節機構84を調節して通気管82を通る空気の流量を少なくする。処理灰収容空間21に流入する空気が遮断され、または、空間21に流入する空気が減少することで、空間20の空気過多が解消される。空気過多が解消されると、熱分解反応が正常に戻り、通気管82の流量調節機構84の流量を維持(固定開口89の開口面積を維持)した状態で、装置10Aの運転を継続する。 As a result of opening the flow rate adjusting mechanism 84 of the vent pipe 82 and continuing the operation of the apparatus 10B in that state, the rate of the thermal decomposition reaction in the organic matter containing space 20 becomes higher than necessary and the temperature rises more than necessary, and remains as it is. Then, the cow dung 100 may burn in the space 20. In this case, the flow rate adjusting mechanism 84 of the right side wall 18 or the left side wall 19 of the vent pipe 82 is closed (the shutter plate 87 is rotated to close the fixed opening 89), and the air from the vent pipe 82 to the treated ash accommodating space 21 ( Block inflow of outside air). Alternatively, the flow rate adjustment mechanism 84 is adjusted to reduce the air flow rate through the vent pipe 82. The air flowing into the treated ash accommodating space 21 is blocked, or the air flowing into the space 21 is reduced, so that excess air in the space 20 is eliminated. When the excess air is eliminated, the thermal decomposition reaction returns to normal, and the operation of the apparatus 10A is continued in a state where the flow rate of the flow rate adjustment mechanism 84 of the vent pipe 82 is maintained (the opening area of the fixed opening 89 is maintained).
 なお、磁気熱分解装置10Bについて、第1給気管~第4給気管62,71,101,107の流量調節機構68を開閉または調節する場合、通気管82の流量調節機構84を開閉または調節する場合を説明したが、この磁気熱分解装置10Bでは、図1の装置10Aと同様に、有機廃棄物の種類によって、第1給気管~第4給気管62,71,101,107の空気の流量や通気管82の空気の流量を事前に設定しておけばよく、その状態で熱分解が開始されると、第1給気管~第4給気管62,71,101,107の流量調節機構68や通気管82の流量調節機構84を開閉または調節する必要がほとんどなく、第1給気管~第4給気管62,71,101,107の流量調節機構68や通気管82の流量調節機構84を設定状態のまま装置10Bの運転を継続することができる。 In the case of the magnetic pyrolysis apparatus 10B, when the flow rate adjusting mechanism 68 of the first to fourth supply pipes 62, 71, 101, 107 is opened / closed or adjusted, the flow rate adjusting mechanism 84 of the vent pipe 82 is opened / closed or adjusted. In the magnetic pyrolysis apparatus 10B, as in the apparatus 10A of FIG. 1, the flow rate of air in the first to fourth supply pipes 62, 71, 101, and 107 depends on the type of organic waste. And the air flow rate of the vent pipe 82 may be set in advance, and when thermal decomposition is started in this state, the flow rate adjusting mechanisms 68 of the first to fourth supply pipes 62, 71, 101, 107 are used. There is almost no need to open / close or adjust the flow rate adjustment mechanism 84 of the ventilation pipe 82, and the flow rate adjustment mechanism 68 of the first to fourth supply pipes 62, 71, 101, 107 and the flow rate adjustment mechanism 84 of the ventilation pipe 82 are provided. Set status It is possible to continue the operation of the or device 10B.
 この磁気熱分解装置10Bは、図1の装置10Aが有する効果に加え、以下の効果を有する。磁気熱分解装置10Bは、第1給気管62や第4給気管107に流入する空気の流量を流量調節機構68によって調節することができるから、有機物収容空間20の底部24の空気が希薄な箇所において温度が低下したとしても、流量調節機構68によって空気の流量を調節し、その箇所における空気の流量を増加させて多くの空気を流入させることで、その箇所の温度を上昇させることができ、空間20の底部24における温度の局所的な低下を防ぐことができる。また、有機物収容空間20の底部24の空気が過多な箇所において温度が必要以上に上昇したとしても、第1給気管62や第4給気管107に流入する空気の流量を流量調節機構68によって調節し、その箇所における空気の流量を減少させて少ない空気を流入させることで、その箇所の温度を下降させることができ、空間20の底部24における温度の局所的な上昇を防ぐことができる。 This magnetic pyrolysis apparatus 10B has the following effects in addition to the effects of the apparatus 10A of FIG. Since the magnetic pyrolysis apparatus 10B can adjust the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 by the flow rate adjustment mechanism 68, the air at the bottom 24 of the organic matter storage space 20 is lean. Even if the temperature is lowered at this point, the flow rate adjustment mechanism 68 adjusts the air flow rate, and by increasing the air flow rate at that location to allow more air to flow, the temperature at that location can be raised, A local decrease in temperature at the bottom 24 of the space 20 can be prevented. Further, even if the temperature of the bottom 24 of the organic matter storage space 20 is excessively high, the flow rate of the air flowing into the first supply pipe 62 and the fourth supply pipe 107 is adjusted by the flow rate adjustment mechanism 68. Then, by reducing the flow rate of air at that location and allowing a small amount of air to flow in, the temperature at that location can be lowered, and a local increase in temperature at the bottom 24 of the space 20 can be prevented.
 磁気熱分解装置10Bは、それら第3給気管101に流入する空気の流量を流量調節機構68によって調節することができるから、空気流動層39に流入させる空気の流量によって空気流動層39を流動する空気の温度を調節しつつ、空気流動層39を流動する空気の温度低下を防ぐことができ、所定の高温に調節された空気を空気流動層39から有機物収容空間20に給気することができる。 Since the magnetic pyrolysis apparatus 10B can adjust the flow rate of air flowing into the third supply pipe 101 by the flow rate adjusting mechanism 68, the air pyrolysis device 39B flows in the air fluidized bed 39 by the flow rate of air flowing into the air fluidized bed 39. While adjusting the temperature of the air, it is possible to prevent the temperature of the air flowing through the air fluidized bed 39 from being lowered, and the air adjusted to a predetermined high temperature can be supplied from the air fluidized bed 39 to the organic matter accommodation space 20. .
 10A 磁気熱分解装置
 10B 磁気熱分解装置
 11  分解炉
 12  給気機構
 13  排気機構
 14  頂壁
 15  底壁
 16  前壁
 17  後壁
 18  右側壁
 19  左側壁
 20  有機物収容空間
 21  処理灰収容空間
 22  頂部
 23  中間部
 24  底部
 25  スノコ
 26  投入口
 27  開閉機構
 28  蓋部材
 29  電動機
 30  リンク
 31  駆動部材
 33  第1前壁(第1周壁)
 34  第2前壁(第2周壁)
 35  第3前壁(第3周壁)
 37  気密断熱層
 39  空気流動層
 40  底部開口
 41  頂部開口
 42  確認口
 43  開閉機構
 44  蓋部材
 47  取出口
 48  開閉機構
 49  蓋部材
 52  第1右側壁(第1周壁)
 53  第2右側壁(第2周壁)
 54  第3右側壁(第3周壁)
 55  通気機構
 56  第1左側壁(第1周壁)
 57  第2左側壁(第1周壁)
 58  第3左側壁(第1周壁)
 59  第1後壁(第1周壁)
 60  第2後壁(第1周壁)
 61  第3後壁(第1周壁)
 62  第1給気管
 63  永久磁石
 64  外側第1給気管
 65  内側第1給気管
 66  給気口
 67  断熱部材
 68  流量調節機構
 71  第2給気管
 72  永久磁石
 73  外側第2給気管
 74  内側第2給気管
 75  給気口
 76  断熱部材
 77  前端板
 78  シャッタ板
 80  固定開口
 81  移動開口
 82  通気管
 83  通気口
 84  流量調節機構
 86  前端板
 87  シャッタ板
 89  固定開口
 90  移動開口
 91  ガス排気管
 92  水槽
 93  フィルタ
 94  送風機
 95  煙突
 100 牛糞(有機廃棄物)
 101 第3給気管
 102 永久磁石
 103 外側第3給気管
 104 内側第3給気管
 105 給気口
 106 断熱部材
 107  第4給気管
 108 永久磁石
 109 外側第4給気管
 110 内側第4給気管
 111 給気口
 112 断熱部材
DESCRIPTION OF SYMBOLS 10A Magnetic pyrolysis apparatus 10B Magnetic pyrolysis apparatus 11 Decomposition furnace 12 Air supply mechanism 13 Exhaust mechanism 14 Top wall 15 Bottom wall 16 Front wall 17 Rear wall 18 Right side wall 19 Left side wall 20 Organic substance accommodation space 21 Treated ash accommodation space 22 Top 23 Intermediate part 24 Bottom part 25 Snowboard 26 Input port 27 Opening / closing mechanism 28 Lid member 29 Electric motor 30 Link 31 Drive member 33 First front wall (first peripheral wall)
34 Second front wall (second peripheral wall)
35 Third front wall (third wall)
37 airtight heat insulating layer 39 air fluidized bed 40 bottom opening 41 top opening 42 confirmation opening 43 opening / closing mechanism 44 lid member 47 outlet 48 opening / closing mechanism 49 lid member 52 first right side wall (first peripheral wall)
53 Second right side wall (second peripheral wall)
54 3rd right side wall (3rd surrounding wall)
55 Ventilation mechanism 56 First left side wall (first peripheral wall)
57 Second left side wall (first peripheral wall)
58 3rd left side wall (1st wall)
59 1st rear wall (1st wall)
60 Second rear wall (first peripheral wall)
61 3rd rear wall (1st wall)
62 1st air supply pipe 63 Permanent magnet 64 Outer 1st air supply pipe 65 Inner 1st air supply pipe 66 Air supply port 67 Heat insulation member 68 Flow control mechanism 71 2nd air supply pipe 72 Permanent magnet 73 Outer 2nd air supply pipe 74 Inner 2nd air supply Trachea 75 Air supply port 76 Heat insulation member 77 Front end plate 78 Shutter plate 80 Fixed opening 81 Moving opening 82 Venting pipe 83 Venting port 84 Flow rate adjusting mechanism 86 Front end plate 87 Shutter plate 89 Fixed opening 90 Moving opening 91 Gas exhaust pipe 92 Water tank 93 Filter 94 Blower 95 Chimney 100 Cow dung (organic waste)
DESCRIPTION OF SYMBOLS 101 3rd air supply pipe 102 Permanent magnet 103 Outer 3rd air supply pipe 104 Inner 3rd air supply pipe 105 Air supply port 106 Heat insulation member 107 4th air supply pipe 108 Permanent magnet 109 Outer 4th air supply pipe 110 Inner 4th air supply pipe 111 Supply air Mouth 112 Heat insulation member

Claims (16)

  1.  所定容積の分解炉と、前記分解炉に空気を給気する給気機構と、前記分解炉からガスを排気する排気機構とを備え、前記分解炉が、分解対象の有機物を収容する有機物収容空間と、前記有機物収容空間の下方に位置して前記有機物を処理した処理灰が落下する処理灰収容空間と、前記分解炉に設置された開閉機構によって開閉されて前記有機物収容空間に有機物を投入する投入口と、前記分解炉に設置された開閉機構によって開閉されて前記処理灰収容空間から処理灰を取り出す取出口とを有し、磁気熱を利用して有機物を熱分解する磁気熱分解装置において、
     前記分解炉の周壁が、該分解炉の外部に対向する第1周壁と、前記第1周壁の内側に位置する第2周壁と、前記第2周壁の内側に位置して前記収容空間に対向する第3周壁とから形成され、前記分解炉が、前記第1および第2周壁の間に画成されて前記処理灰収容空間に延びるとともに前記有機物収容空間の底部から頂部に向かって延びる気密断熱層と、前記第2および第3周壁の間に画成されて前記有機物収容空間の底部から頂部に向かって延びる空気流動層とを有し、
     前記給気機構が、前記有機物収容空間の底部に延びる周壁に設置されて該底部の側から前記有機物収容空間および前記空気流動層に空気を流入させる複数の第1給気管と、それら第1給気管に取り付けられて該第1給気管を通過する空気を磁化する永久磁石とを含み、前記排気機構が、前記分解炉から外部に延びるガス排気管と、前記ガス排気管に設置されて前記有機物の熱分解中に前記有機物収容空間に発生したガスを強制的に排気する送風機とを含むことを特徴とする磁気熱分解装置。
    A decomposition chamber having a predetermined volume, an air supply mechanism for supplying air to the decomposition furnace, and an exhaust mechanism for exhausting gas from the decomposition furnace, wherein the decomposition furnace stores an organic matter storage space for storing an organic matter to be decomposed And a treated ash containing space that falls below the organic matter containing space where treated ash that has treated the organic matter falls, and is opened and closed by an opening / closing mechanism installed in the decomposition furnace, and the organic matter is put into the organic matter containing space In a magnetic pyrolysis apparatus that has an inlet and an outlet that is opened and closed by an opening and closing mechanism installed in the cracking furnace and takes out the treated ash from the treated ash containing space, and thermally decomposes organic matter using magnetic heat ,
    A peripheral wall of the cracking furnace is located at the first peripheral wall facing the outside of the cracking furnace, a second peripheral wall located inside the first peripheral wall, and inside the second peripheral wall and facing the accommodating space. An airtight heat insulating layer formed between the first and second peripheral walls and extending to the treated ash containing space and extending from the bottom to the top of the organic matter containing space. And an air fluidized layer defined between the second and third peripheral walls and extending from the bottom to the top of the organic matter containing space,
    A plurality of first air supply pipes that are installed on a peripheral wall extending to the bottom of the organic matter housing space and allow air to flow into the organic matter housing space and the air fluidized bed from the bottom side; A permanent magnet attached to a trachea and magnetizing the air passing through the first air supply pipe, wherein the exhaust mechanism is installed in the gas exhaust pipe, and the organic matter is installed in the gas exhaust pipe. And a blower for forcibly exhausting the gas generated in the organic substance containing space during the thermal decomposition of the magnetic pyrolysis apparatus.
  2.  前記空気流動層が、前記有機物収容空間の底部に開口する底部開口と、前記有機物収容空間の頂部に開口する頂部開口とを有するとともに、前記底部開口および前記頂部開口において前記有機物収容空間につながっている請求項1に記載の磁気熱分解装置。 The air fluidized bed has a bottom opening that opens to the bottom of the organic matter housing space, and a top opening that opens to the top of the organic matter housing space, and is connected to the organic matter housing space at the bottom opening and the top opening. The magnetic pyrolysis apparatus according to claim 1.
  3.  前記第1給気管が、前記第1周壁から外側に向かって延びる外側第1給気管と、前記第1および第2周壁を貫通して前記分解炉の内側に延びる内側第1給気管と、前記内側第1給気管の先端部に位置して前記有機物収容空間および前記空気流動層に開口する給気口とから形成され、前記外側第1給気管が、前記第1周壁の側に位置する断熱部材と、前記第1給気管に流入する空気の流量を調節可能な流量調節機構とを有し、前記永久磁石の複数個が、前記断熱部材の外側に延びる前記外側第1給気管の内部に対向配置されている請求項1または請求項2に記載の磁気熱分解装置。 An outer first air supply pipe extending outward from the first peripheral wall; an inner first air supply pipe extending through the first and second peripheral walls to the inside of the cracking furnace; Heat insulation formed at the distal end portion of the inner first air supply pipe and formed from the organic substance housing space and the air supply opening opened to the air fluidized bed, wherein the outer first air supply pipe is located on the first peripheral wall side. A member and a flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the first air supply pipe, wherein a plurality of the permanent magnets are disposed inside the outer first air supply pipe extending outside the heat insulating member. The magnetothermal decomposition apparatus according to claim 1 or 2, wherein the magnetothermal decomposition apparatus is disposed so as to face each other.
  4.  前記給気機構が、前記有機物収容空間の中間部に延びる周壁に設置されて該中間部の側から該有機物収容空間に空気を流入させる複数の第2給気管と、それら第2給気管に取り付けられて該第2給気管を通過する空気を磁化する永久磁石とを含む請求項1ないし請求項3いずれかに記載の磁気熱分解装置。 The air supply mechanism is installed on a peripheral wall extending to an intermediate portion of the organic substance housing space, and a plurality of second air supply pipes that allow air to flow into the organic substance containing space from the intermediate portion side, and are attached to the second air supply pipes 4. The magnetothermal decomposition apparatus according to claim 1, further comprising a permanent magnet that magnetizes air passing through the second air supply pipe.
  5.  前記第2給気管が、前記第1周壁から外側に向かって延びる外側第2給気管と、前記第1~第3周壁を貫通して前記分解炉の内側に延びる内側第2給気管と、前記内側第2給気管の先端部に位置して前記有機物収容空間に開口する給気口とから形成され、前記外側第2給気管が、前記第1周壁の側に位置する断熱部材と、前記第2給気管に流入する空気の流量を調節可能な流量調節機構とを有し、前記永久磁石の複数個が、前記断熱部材の外側に延びる前記外側第2給気管の内部に対向配置されている請求項4に記載の磁気熱分解装置。 The second air supply pipe extending outward from the first peripheral wall; an inner second air supply pipe extending through the first to third peripheral walls to the inside of the cracking furnace; A heat insulating member located at a tip of an inner second air supply pipe and opening into the organic substance housing space, wherein the outer second air supply pipe is located on the first peripheral wall side; A flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the air supply pipe, and a plurality of the permanent magnets are arranged opposite to each other inside the outer second air supply pipe extending outside the heat insulating member. The magnetic pyrolysis apparatus according to claim 4.
  6.  前記給気機構が、前記有機物収容空間の中間部に延びる周壁に設置されて該中間部の側から前記空気流動層に空気を流入させる複数の第3給気管と、それら第3給気管に取り付けられて該第3給気管を通過する空気を磁化する永久磁石とを含む請求項1ないし請求項5いずれかに記載の磁気熱分解装置。 The air supply mechanism is installed on a peripheral wall extending to an intermediate portion of the organic substance containing space, and a plurality of third air supply pipes that allow air to flow into the air fluidized bed from the intermediate portion side, and are attached to the third air supply pipes And a permanent magnet that magnetizes air passing through the third air supply pipe.
  7.  前記第3給気管が、前記第1周壁から外側に向かって延びる外側第3給気管と、前記第1および第2周壁を貫通して前記分解炉の内側に延びる内側第3給気管と、前記内側第3給気管の先端部に位置して前記空気流動層に開口する給気口とから形成され、前記外側第3給気管が、前記第1周壁の側に位置する断熱部材と、前記第3給気管に流入する空気の流量を調節可能な流量調節機構とを有し、前記永久磁石の複数個が、前記断熱部材の外側に延びる前記外側第3給気管の内部に対向配置されている請求項6に記載の磁気熱分解装置。 The third air supply pipe extending outward from the first peripheral wall, an outer third air supply pipe extending through the first and second peripheral walls and extending to the inside of the cracking furnace, and A heat insulating member located at the tip of the inner third air supply pipe and opening to the air fluidized layer, wherein the outer third air supply pipe is located on the first peripheral wall side; A flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the three air supply pipes, and a plurality of the permanent magnets are arranged opposite to each other inside the outer third air supply pipe extending outside the heat insulating member. The magnetic pyrolysis apparatus according to claim 6.
  8.  前記給気機構が、前記有機物収容空間の底部に延びる周壁に設置されて該底部の側から該有機物収容空間に空気を流入させる複数の第4給気管と、それら第4給気管に取り付けられて該第4給気管を通過する空気を磁化する永久磁石とを含む請求項1ないし請求項7いずれかに記載の磁気熱分解装置。 The air supply mechanism is installed on a peripheral wall extending to the bottom of the organic substance housing space, and a plurality of fourth air supply pipes that allow air to flow into the organic substance containing space from the bottom side, and are attached to the fourth air supply pipes The magnetothermal decomposition apparatus according to claim 1, further comprising a permanent magnet that magnetizes air passing through the fourth air supply pipe.
  9.  前記第4給気管が、前記第1周壁から外側に向かって延びる外側第4給気管と、前記第1および第2周壁を貫通して前記分解炉の内側に延びる内側第4給気管と、前記内側第4給気管の先端部に位置して前記空気流動層に開口する給気口とから形成され、前記外側第4給気管が、前記第1周壁の側に位置する断熱部材と、前記第4給気管に流入する空気の流量を調節可能な流量調節機構とを有し、前記永久磁石の複数個が、前記断熱部材の外側に延びる前記外側第4給気管の内部に対向配置されている請求項8に記載の磁気熱分解装置。 The fourth air supply pipe extends outward from the first peripheral wall, the outer fourth air supply pipe extends through the first and second peripheral walls, and the inner fourth air supply pipe extends to the inside of the cracking furnace; A heat insulating member located at a front end portion of the inner fourth air supply pipe and opening into the air fluidized layer, wherein the outer fourth air supply pipe is located on the first peripheral wall side; A flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the four air supply pipes, and a plurality of the permanent magnets are disposed opposite to each other inside the outer fourth air supply pipe extending outside the heat insulating member. The magnetic pyrolysis apparatus according to claim 8.
  10.  前記磁気熱分解装置が、前記処理灰収容空間に延びる周壁に作られて該処理灰収容空間に空気を流入させる少なくとも1個の通気機構を含む請求項1ないし請求項9いずれかに記載の磁気熱分解装置。 The magnetism according to any one of claims 1 to 9, wherein the magnetic pyrolysis device includes at least one ventilation mechanism which is formed on a peripheral wall extending into the treated ash accommodating space and allows air to flow into the treated ash accommodating space. Pyrolysis device.
  11.  前記通気機構が、前記第1および第2周壁を貫通して前記分解炉の内側に延びる通気管と、前記通気管の先端部に位置して前記処理灰収容空間に開口する通気口と、前記通気管に流入する空気の流量を調節可能な流量調節機構とから形成されている請求項10に記載の磁気熱分解装置。 The vent mechanism extending through the first and second peripheral walls to the inside of the cracking furnace, the vent located at the tip of the vent pipe and opening into the treated ash containing space; The magnetic pyrolysis apparatus according to claim 10, which is formed of a flow rate adjusting mechanism capable of adjusting a flow rate of air flowing into the ventilation pipe.
  12.  前記排気機構が、前記ガス排気管につながって前記有機物の熱分解中に前記有機物収容空間で発生したガスを通気させる水槽と、前記ガス排気管につながって前記ガスに含まれる成分を取り除くフィルタとを含む請求項1ないし請求項11いずれかに記載の磁気熱分解装置。 A water tank through which the exhaust mechanism is connected to the gas exhaust pipe and vents the gas generated in the organic substance housing space during the thermal decomposition of the organic substance; and a filter that is connected to the gas exhaust pipe and removes components contained in the gas. The magnetic thermal decomposition apparatus in any one of Claims 1 thru | or 11 containing these.
  13.  前記磁気熱分解装置では、前記有機物の熱分解中における分解温度が200~400℃の範囲にある請求項1ないし請求項12いずれかに記載の磁気熱分解装置。 The magnetic pyrolysis apparatus according to any one of claims 1 to 12, wherein in the magnetothermal decomposition apparatus, a decomposition temperature during the thermal decomposition of the organic substance is in a range of 200 to 400 ° C.
  14.  前記磁気熱分解装置では、含水率が65~95%の前記有機物を前記有機物収容空間において熱分解可能である請求項1ないし請求項13いずれかに記載の磁気熱分解装置。 14. The magnetic pyrolysis apparatus according to claim 1, wherein the organic pyrolysis apparatus is capable of thermally decomposing the organic matter having a moisture content of 65 to 95% in the organic substance containing space.
  15.  前記磁気熱分解装置では、前記有機物収容空間に火種を収容しつつ、前記有機物収容空間に有機物の投入を継続した場合の該有機物収容空間における熱分解の連続時間が1週間~2ヶ月である請求項1ないし請求項14いずれかに記載の磁気熱分解装置。 In the magnetic thermal decomposition apparatus, the continuous time of thermal decomposition in the organic matter accommodation space is 1 week to 2 months when the organic matter is continuously charged into the organic matter accommodation space while containing the fire species in the organic matter accommodation space. The magnetic pyrolysis apparatus according to any one of claims 1 to 14.
  16.  前記磁気熱分解装置では、前記処理灰収容空間から取り出された処理灰がセラミック化しており、前記セラミック化した処理灰を前記有機物に混合した処理灰混合有機物を前記有機物収容空間に投入し、または、前記セラミック化した処理灰を前記有機物とともに前記有機物収容空間に投入する請求項1ないし請求項15いずれかに記載の磁気熱分解装置。 In the magnetic pyrolysis apparatus, the treated ash taken out from the treated ash containing space is ceramicized, and the treated ash mixed organic matter obtained by mixing the ceramicized treated ash with the organic matter is put into the organic matter containing space, or The magnetothermal decomposition apparatus according to any one of claims 1 to 15, wherein the ceramicized treated ash is introduced into the organic substance containing space together with the organic substance.
PCT/JP2013/083113 2012-12-12 2013-12-10 Magnetic pyrolysis device WO2014092091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012271380A JP2014113574A (en) 2012-12-12 2012-12-12 Magnetic pyrolysis device
JP2012-271380 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014092091A1 true WO2014092091A1 (en) 2014-06-19

Family

ID=50934379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083113 WO2014092091A1 (en) 2012-12-12 2013-12-10 Magnetic pyrolysis device

Country Status (2)

Country Link
JP (1) JP2014113574A (en)
WO (1) WO2014092091A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146769A1 (en) * 2016-02-24 2017-08-31 Amen Dhyllon Furnace apparatus
CN111853807A (en) * 2020-08-01 2020-10-30 鑫源昊(浙江)环保能源科技有限公司 Magnetization low temperature cracker with magnetism grey enclosed layer
WO2021225429A1 (en) * 2020-05-04 2021-11-11 Millennium E & C (M) SDN. BHD. An apparatus and method for solid waste treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008559A (en) * 2006-06-29 2008-01-17 Yoshiharu Yokota Pyrolytic furnace
JP2008202845A (en) * 2007-02-20 2008-09-04 Fuso Giken:Kk Combustible treatment equipment
WO2009084631A1 (en) * 2007-12-27 2009-07-09 Ishihama, Tetsunobu Method and apparatus for low-temperature decomposition of substance to be treated
WO2012073711A1 (en) * 2010-12-01 2012-06-07 株式会社 エコ・アシスト長崎 Method for low-temperature pyrolysis, and low-temperature pyrolysis furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008559A (en) * 2006-06-29 2008-01-17 Yoshiharu Yokota Pyrolytic furnace
JP2008202845A (en) * 2007-02-20 2008-09-04 Fuso Giken:Kk Combustible treatment equipment
WO2009084631A1 (en) * 2007-12-27 2009-07-09 Ishihama, Tetsunobu Method and apparatus for low-temperature decomposition of substance to be treated
WO2012073711A1 (en) * 2010-12-01 2012-06-07 株式会社 エコ・アシスト長崎 Method for low-temperature pyrolysis, and low-temperature pyrolysis furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146769A1 (en) * 2016-02-24 2017-08-31 Amen Dhyllon Furnace apparatus
CN107532797A (en) * 2016-02-24 2018-01-02 A·迪隆 Stove device
JP2018509581A (en) * 2016-02-24 2018-04-05 ディロン, アーメンDHYLLON, Amen Furnace equipment
EA031377B1 (en) * 2016-02-24 2018-12-28 Амен Дхиллон Furnace apparatus
CN107532797B (en) * 2016-02-24 2019-03-01 A·迪隆 Stove device
WO2021225429A1 (en) * 2020-05-04 2021-11-11 Millennium E & C (M) SDN. BHD. An apparatus and method for solid waste treatment
CN111853807A (en) * 2020-08-01 2020-10-30 鑫源昊(浙江)环保能源科技有限公司 Magnetization low temperature cracker with magnetism grey enclosed layer

Also Published As

Publication number Publication date
JP2014113574A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP4380783B2 (en) Waste plastic / organic decomposition method, decomposition apparatus and decomposition system
JP4337128B2 (en) Low-temperature decomposition processing equipment for processed products
JP5403723B1 (en) Raw garbage processing method and processing apparatus
JP5220162B2 (en) Waste pyrolysis equipment
JP6490972B2 (en) Low temperature pyrolysis furnace, low temperature pyrolysis treatment system, and low temperature pyrolysis treatment method
WO2014092091A1 (en) Magnetic pyrolysis device
KR101176765B1 (en) The heat treatment of waste materials
JP2010155231A (en) Method of making cold decomposition treatment of material to be treated and device using this method
JP2010155231A6 (en) Method and apparatus for low-temperature decomposition treatment of processed material
JP3122682U (en) Low temperature heat treatment furnace
JP2008202845A (en) Combustible treatment equipment
KR101768887B1 (en) Food garbage annihilation control system
JP5232212B2 (en) Infectious waste treatment equipment
WO2014092092A1 (en) Magnetic pyrolysis device
JP2008190733A (en) Low-temperature heat treatment method and device for waste
WO1995033585A1 (en) Device and method for heat dechlorinating collected dust and ash
JP2013126642A (en) Method and device for decomposing organic substance
JP3139645U (en) Garbage disposal equipment
KR20000050008A (en) Device for Vanishing Organic Refuse
JP2004324961A (en) Processing method and device for organic solid waste
JP4811826B2 (en) Waste organic matter low temperature magnetic decomposition treatment equipment
JP2020175347A (en) Organic matter decomposer
JP3150354U (en) Organic waste treatment equipment
JP5431615B1 (en) Organic matter treatment and heat utilization equipment
JP2014025599A (en) Low-temperature organic substance treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 24.11.15.

122 Ep: pct application non-entry in european phase

Ref document number: 13863583

Country of ref document: EP

Kind code of ref document: A1