【0001】
【発明の属する技術分野】
本発明は、廃棄処分される家畜の肉,骨,内臓,脳の如き体組織、これら体組織を原料とする肉骨粉、残飯のような生ゴミ類、家畜排泄物等の有機質固形廃棄物の処理方法及び処理装置に関する。
【0002】
【従来技術とその課題】
近年、食の欧米化によって日本国内における食肉需要が拡大し、これに伴って肉製造過程で生じる骨、内蔵、脳神経を含む屑肉は、半乾燥粉末化された肉骨粉として飼料や肥料に利用されてきた。しかしながら、現在においては、伝達性海綿脳症(TSE:Transmissible Sponbmporm Encephalopathies)という病気に属する、所謂狂牛病と称される牛海綿脳症(BSE:Bovine Sponbmporm Encephalopathies) の発生により、日本国内では上記屑肉を肉骨粉として飼料や肥料に利用できないばかりか、その廃棄も容易ではなくなっている。
【0003】
牛海綿脳症は、その名のとおりに牛の脳組織がスポンジ状に変化する遅発性且つ悪性の中枢神経系の病気であり、長期潜伏期間を経て発症し、神経過敏、攻撃性、沈鬱性等の精神的症状から、泌乳量の減少、体重の減少、異常姿勢、協調運動失調、麻痺、起立不能等の身体的症状が現れて死に至るものである。しかも、その病原体は、遺伝子DNAやRNAを持たない異常プリオンと呼ばれる蛋白質であるため、他の感染症の細菌やウィルスのような病原体に対して確立されている感染防止や治療の手段が全く無効である上、感染牛肉に含まれる極微量を摂取するだけで、牛のみならず種を越えて羊、鹿、人間にも感染し、牛同様に脳組織のスポンジ状変化を伴って死に至る病になることが判明しているが、世界的に汚染が拡大している現状である。
【0004】
ところが、このような異常プリオンは、通常の消毒、調理レベルの加熱、紫外線や放射線の照射等によっても活性が失われず、生物学的にも分解されにくく、土に埋めても長期間分解されずに残るという極めて厄介な物質であり、その病原性を喪失させるには300℃以上での長時間の加熱が必要とされ、オートクレーブによる加圧下でも失活には3気圧で136℃以上の加熱を30分以上継続する必要がある。このため、感染屑肉や肉骨粉の処理は極めて困難であり、既に製造されて使用禁止になった大量の肉骨粉の殆どが貯蔵されたままである上、食肉製造過程から継続的に大量発生する屑肉は、日本だけでも年間40万トンにのぼるが、その処理が全く追いつかない状況に陥っている。
【0005】
現在、屑肉や肉骨粉の処理方法として、厚生労働省及び農林水産省が認可しているのは、粉体の拡散を防止しながら屑肉や肉骨粉を高温燃焼させて焼却する方法である。また、数多な研究機関でも、異常プリオンを分解させる手段として、生物学的分解法、化学的分解法、高周波加熱法、接炎燃焼法等、種々の処理方法が検討されている。
【0006】
しかしながら、前記の高温燃焼にて完全分解する方法では、完全分解に至るのに大量の化石燃料を消費する上、完全に高温燃焼させるための装置が高価になり、処理コストが非常に高く付くという難点がある。一方、生物学的分解法は、極めて大規模な分解槽を必要として設備コストが高く付くと共に、分解に長時間を要して処理能率が悪く、且つ分解菌の維持管理にも多大な手間がかかるという問題がある。また、化学的分解法は、苛性ソーダーによって異常プリオンのポリペプチド結合を切断したり、次亜塩素酸ナトリウムによる分解を行うものであるが、極めて多量の薬剤溶液が必要になり、しかも大量の廃液処理という新たな問題が派生する上、屑肉等の組織内部にまで薬剤が浸透せずに分解不完全になる恐れが多分にあり、確実な処理法とは言えない。
【0007】
更に、高周波加熱法や接炎燃焼法では、600℃で加熱処理しても異常プリオンの病原性が失われないという報告があり(非特許文献1)、有効性に疑問がある。すなわち、高周波加熱法の場合、被処理物中に含まれる水分子の酸素−水素結合の伸縮振動に高周波の振動数を共鳴させて発熱させるため、高周波が水を多く含む部位に集中して必然的に加熱の偏りを生じる上に水分の蒸発後には加熱作用が働かず、しかも加熱時間も短いことから、被処理物全体が設定温度まで上がらず、処理後に灰化したように見えても水分が気化蒸発しただけの蛋白質を含む組織が残るものと想定される。また、接炎燃焼法では、接炎部の組織が粉末状になって空気対流で舞い上がって不完全分解の要因になると共に、水分蒸発の気化熱によって被処理物の温度上昇が妨げられ、組織蛋白質の温度が接炎温度にまで達せずに未分解で残り易くなると考えられる。
【0008】
【非特許文献1】
東京都衛生局生活環境部 食品保険課インターネット情報サービス『食品衛生の窓』…平成13年度第1回食品技術講習会 講演要旨「プリオンとプリオン病について」(小野寺 節)
インターネット<URL:http://www.kenkou.metro.tokyo.jp/shokuhin/>
【0009】
一方、やはり食の欧米化に伴って都市近郊では畜産業が発展し、必然的に家畜排泄物の排出量も増大しているが、現状では根本的な処理は行われておらず、殆どが垂れ流しの状態か、汚染水の浄化を行う程度であるため、周辺土壌の汚染、河川への流入による水質汚濁や富栄養化、その河川水が流入する海湾の富栄養化による有害プランクトンの大量発生、畜舎自体の飼育環境の悪化、悪臭の拡散による周辺環境の悪化等、多くの問題が生起している。
【0010】
また、増大の一途を辿る都市ゴミは分別回収による再生資源化も進展しつつあるが、生ゴミについては現状では専らゴミ処理場での焼却処理に頼っている。しかるに、水分含量の多い生ゴミは灰化燃焼させるのに大量の化石燃料を消費するため、これによる処理コストの増大が地方自治体の大きな負担になっている。なお、生ゴミの生物学的分解については、肥料化したり、発酵分解に伴うガスの燃料化や発電まで可能な段階にあり、家庭や事業所で使う小型の分解装置も実用化しているが、自治体等で収集した大量の生ゴミを処理するには大規模な生物分解槽が必要になり、膨大な設備費がかかる上、分解処理に長時間を要することになる。
【0011】
本発明は、上述の情況に鑑み、前記の屑肉や肉骨粉を始めとする有機質固形廃棄物の処理方法として、該廃棄物に含まれる異常プリオン等の病原体を確実に熱分解して完全に失活でき、しかも簡素な装置構成により、大量の化石燃料を用いることなく低コストで高能率の処理を行える上、しかも処理生成物が安全で且つ非常に有用な再生資源となるという画期的な処理方法と、この処理方法に好ましく適用でき、且つ外界への有害物質の排出を確実に防止できると共に、熱エネルギーの高度な循環利用を行える処理装置とを提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る有機質固形廃棄物の処理方法は、図面の参照符号を付して示せば、内底部(内側底板25a)に複数の空気導入孔36…を有する略密閉式の炉本体1内に、下部に炉内空間10に連通する排気導入口51…を備えて上部が炉外への排気路(排気管部52)に繋がる加熱排気筒50が配置した自燃式炭化炉1を用い、この炭化炉1の炉本体20内に乾燥処理した有機質固形廃棄物(屑肉M,家畜骨B,家畜糞F,生ゴミG)を助燃用木質チップTと共に装填し、炉本体20の底部から着火し、以降は加熱排気筒50内を通る燃焼排ガスG1 の熱気による当該加熱排気筒50の赤熱を伴って前記有機質固形廃棄物M,B,F、G及び助燃用木質チップTを酸素不足状態で自発燃焼させることにより、該有機質固形廃棄物M,B,F、Gを助燃用木質チップTと共に熱分解して炭化することを特徴としている。
【0013】
また、請求項2の発明は、上記請求項1の有機質固形廃棄物の処理方法において、前記炭化炉1の加熱排気筒50から排出される燃焼排ガスG1 をガス再燃焼炉2内に導いて再燃焼させることを特徴としている。そして、請求項3の発明は、この請求項2の有機質固形廃棄物の処理方法において、前記ガス再燃焼炉2から排出される高温排ガスG2 との熱交換によって導入外気A0 を昇温させ、得られる加熱空気A1 を冷却して含有水分の結露によって除湿乾燥し、この乾燥空気A2 によって前記有機質固形廃棄物M,B,F、Gの乾燥処理を行うものとしている。
【0014】
更に、請求項4の発明は、上記請求項1〜3のいずれかの有機質固形廃棄物の処理方法において、炉本体20内への空気導入量の調整により、炉内温度が300℃以上で5時間以上継続すると共に900℃以上となる過程を経るように設定する構成としている。
【0015】
請求項5の発明は、上記請求項1〜4のいずれかの処理方法において、前記有機質固形廃棄物が家畜の体組織を主体とするもの(屑肉M,家畜骨B)であるものとしている。また、請求項6の発明は、上記請求項2〜4のいずれかの処理方法において、前記有機質固形廃棄物が家畜排泄物(家畜糞F)の造粒物であり、その造粒前の家畜排泄物Fを前記ガス再燃焼炉2からの高温排ガスG2 によって熱風乾燥する前処理を行うものとしている。更に請求項7の発明は、上記請求項1〜4のいずれかの処理方法において、前記有機質固形廃棄物が生ゴミGであり、この生ゴミGを前記助燃用木質チップTとの混合状態で前記炭化炉1の炉本体20内へ装填するものとしている。
【0016】
一方、請求項8の発明に係る有機質固形廃棄物の処理装置は、内底部(内側底板25a)に複数の空気導入孔36…を有する略密閉式の炉本体20内に、下部に炉内空間10に連通する排気導入口51…を備えて上部が炉外への排気路(排気管部2)に繋がる加熱排気筒50が配置し、底部を着火部(着火室26)として装填された有機質固形廃棄物M,B,F、Gを助燃用木質チップTと共に自発燃焼させて炭化する自燃式炭化炉1と、該炭化炉1の加熱排気筒50から排出される燃焼排ガスG1 を再燃焼させるガス再燃焼炉2と、該ガス再燃焼炉2から排出される高温排ガスG2 と導入外気A0 とを熱交換させる熱交換部(熱交換ジャケット2c)と、該熱交換部2cより導出される加熱空気A1 を水冷して結露による除湿を行う冷却装置3と、前記炭化炉1への装填前の有機質固形廃棄物M,B,F、Gを前記冷却装置3にて除湿された乾燥空気A2 によって乾燥処理する除湿乾燥器4とを備えるものとしている。
【0017】
【発明の実施の形態】
以下、本発明に係る有機質固形廃棄物の処理方法及び処理装置について、図面を参照して具体的に説明する。図1〜図4は第一〜第四実施形態の各々処理方法のフローチャート、図5〜8は該処理方法に使用する自然式炭化炉の構成例を示す。
【0018】
図1のフローチャートは、本発明の処理方法を屑肉Mの処理に適用した第一実施形態を示し、図中の1は自然式炭化炉、2はガス再燃焼炉、3は冷却装置、4は除湿乾燥器、5は温水器、6a,6bは送気経路に介在するファンである。
【0019】
この第一実施形態では、処理対象の屑肉Mは、まず除湿乾燥器4内である程度まで水分を除かれた上で、助燃用木質チップTと共に自然式炭化炉1内に装填し、当該炭化炉1内で自発燃焼により炭化させる。しかして、自然式炭化炉1内での自発燃焼に伴って発生する燃焼排ガスG1 はファン6aを介してガス再燃焼炉2内へ送られ、このガス再燃焼炉2内で除湿乾燥器4から送られてくる空気A3 と合流し、ガスバーナー2aを用いた再燃焼によって更に昇温して排煙筒2bへ排出されるが、該排煙筒2bを通過する際に外側に設けた熱交換ジャケット2c内に導入される空気A0 と熱交換し、ある程度降温した高温排ガスG2 となって温水器5へ送られ、この温水器5内で更に水と熱交換して冷却された上で、当該温水器5の出口に設けた排気口5aより外部へ放出される。
【0020】
また、熱交換ジャケット2c内に導入された空気A0 は、当該ジャケット2c内の螺旋状に形成された通気路を通る過程で前記熱交換によって昇温し、加熱空気A1 として冷却装置3へ送られ、該冷却装置3の結露室3a内でクーリングタワー3bを介して循環供給される冷却水と熱交換し、含有水分の結露によって除湿乾燥され、乾燥空気A2 としてファン6bを介して除湿乾燥器4へ送られ、該乾燥器4内の屑肉Mを乾燥させる機能を果たす。そして、屑肉Mより移行した水分を含む空気A3 は、除湿乾燥器4内よりガス再燃焼炉2へ送られ、前記のように炭化炉1からの燃焼排ガスG1 と合流して再燃焼される。
【0021】
ここで、自燃式炭化炉1は、図7に示すように、有底縦円筒状に形成されて上端開口部を材料出入口21とする炉本体20と、この炉本体20の材料出入口21を封鎖する開閉蓋40と、炉本体20内の中心部に立設された金属製の加熱排気筒50とから構成されている。
【0022】
炉本体20は、周壁部20aが内外金属板22a,22b間に断熱材23を装填した二重壁構造をなしており、その前面側には図6に示すように内外に透通する複数個の熱電対挿入孔24…が上下方向に沿って所定間隔置きに設けられている。なお、これら熱電対挿入孔24…は栓(図示省略)によって閉塞できるようになっている。また、炉本体20の底部20bには、金属製の上部底板25aと下部底板25bとの間に着火室26が構成され、この着火室26から下方へ突出した短円筒状の中継室26aと、該中継室26aより前方へ延出する着火熱源導入筒27とが設けられると共に、着火室26の側方に開口する外気吸入口28を有している。そして、図6に示すように、外気吸入口28には一端側を外部に開放した外気吸入管29が接続され、この外気吸入管29の途中に流量制御弁30が介在している。
【0023】
しかして、図5及び図6に示すように、炉本体20の左右両側には台形状の支持フレーム32a,32bが立設されており、両支持フレーム32a,32bの上端に設けた軸受33a,33bに、炉本体20のやや下部寄り位置の左右両側に突設された枢軸31a,31bを枢支させることにより、両支持フレーム32a,32bに炉本体20が図5の実線で示す直立姿勢と同仮想線で示す転倒姿勢とに転換可能に支持されている。なお、34は軸受33b側のギヤボックス35より突出する姿勢変換用ハンドルであり、その回転操作によって該ギヤボックス35内のウォーム減速ギヤ機構(図示省略)を介して炉本体20を起倒回動させるようになっている。
【0024】
加熱排気筒50は、炉本体20内において、下端を上部底板25a上に載置した状態で、閉鎖した上端が当該炉本体20の材料出入口21近傍に達する高さに設定され、下部の周囲に多数の孔からなる排気導入口51を有すると共に、上端近傍から後方へ水平に延設された排気管部52が炉本体20の周壁部20aを貫通して後方外部へ突出している。しかして、排気管部52の外部側にはレバー付き開閉弁53が介装されると共に、その外端にはガス再燃焼炉2(図1参照)に繋がるフレキシブル配管54がワンタッチクランプ継手55を介して接続されている。
【0025】
また、炉本体20の上部底板25aには、図8に拡大して示すように、加熱排気筒50の周囲に配置して当該加熱排気筒50の位置ずれを防止する位置決め突片36…と、当該加熱排気筒50の中央部を除く領域に、相互に適当な間隔を置いて配置した多数の空気流入孔37…が穿設されると共に、各空気流入孔36の上側に閉塞防止用の山形カバー片37aが溶接にて固着されている。更に、図8のA−A線方向の構造を矢印方向に取り出して示すように、着火熱源導入筒27の入口27a側には上下をガイド溝とするダンパー保持部27aが設けてあり、このダンパー保持部27aに連通孔37a付きのダンパー38が左右移動自在に嵌装されており、その連通孔38aが着火熱源導入筒27の入口27bに合致する開放状態から図の仮想線で示すようにダンパー38を押し込むことにより、当該入口27bを遮断できるようになっている。
【0026】
開閉蓋40は、炉本体20とは別体として、金属製の表裏板40a,40b間に断熱材41を介装した円形厚板状に形成されている。しかして、炉本体20の後方には左右一対の支柱42a,42bが立設されており、両支柱42a,42bの上部間にわたされた枢軸43に左右一対の逆へ字形の取付けアーム44,44が中間部で固設され、両取付けアーム44,44の前端に開閉蓋40が取り付けられると共に、両取付けアーム44,44の後端側に角柱状のバランスウエイト45が固設されている。また、右側の支柱42bの上端には枢軸43の軸受部をなすギヤボックス45が設けてあり、該ギヤボックス45より突出する蓋開閉用ハンドル46の回転操作により、該ギヤボックス45内のウォーム減速ギヤ機構(図示省略)を介して枢軸43が両取付けアーム44,44と一体に回動し、もって開閉蓋40が図5の実線で示す閉鎖姿勢と同仮想線で示す開放姿勢とに転換するように構成されている。
【0027】
しかして、炉本体20の材料出入口21の周縁には一定間隔置きに複数個のハンドル式クランプ具39…が起倒回動自在に枢着される一方、開閉蓋40の外周部には各クランプ具39に対応する溝付き突片46が突設されており、該開閉蓋40を材料出入口21に被せた状態で、各クランプ具39の軸部39aを溝付き突片46の溝部(図示省略)に係入し、ハンドル部39bを回して締め付けることにより、該開閉蓋40が材料出入口21に圧着して密閉状態になるように設定されている。なお、図5〜図7では、図面の錯綜を避けるためにクランプ具39の1個又は2個のみを図示している。
【0028】
第一実施形態の屑肉Mの処理においては、既述のように除湿乾燥器4での乾燥処理を経た屑肉Mを助燃用木質チップTと共に自然式炭化炉1の炉本体20内に装填するが、この装填に際し、図7に示すように、最下部に木質チップTの層を形成し、その上に屑肉Mを充填し、更に最上部に木質チップTの層を形成するのがよい。これは、最下部に燃え易い木質チップTの層が存在することによって着火から自発燃焼への過程がスムーズに進むことと、この最下部と最上部の木質チップTの層が加熱初期段階の低温時に生じ易い屑肉成分の飛散を防ぐカバーとして機能することによる。
【0029】
使用する助燃用木質チップTとしては、木や竹の間伐材、剪定の切り枝、製材工程や加工工程から出る端材や残材、建築に伴う木屑、木や竹を使用した製品の廃棄物や家屋解体等で生じる廃材の如き様々な不要材、更にはナッツ類の殻のような堅果殻等を使用できる。また、木質チップTの大きさや形態にも特に制約はなく、大きさが不揃いでも支障はないが、余りに大き過ぎては装填物層内での通気経路が不均等になり、逆にあまりに小さ過ぎては相互の間隙が小さくなり、共に熱気の下方から上方への伝播を阻害するため、最長部が1〜20cm程度のもの、特に棒片状のものが推奨される。
【0030】
屑肉Mと木質チップTの使用比率は、特に制約はないが、一般的にはM:Tの重量比で1/1〜5/1程度であり、また着火から自発燃焼に至る過程を円滑に進める上で、炉内空間の最下層を構成する木質チップTが屑肉Mに対して5〜30容量%程度となる範囲に設定するのがよい。
【0031】
かくして屑肉Mを助燃用木質チップTと共に自然式炭化炉1内に装填後、図7に示すように、着火熱源導入筒27の入口27aを開放し、ガスバーナー60の火炎等の着火熱源を導入筒27に導入する。これにより、着火熱源の燃焼ガスと熱せられた空気とが混合状態で中継室26aを経て着火室26内に充満し、更に内側底板25aの空気導入孔37…より炉内空間10へ侵入し、もって最下部の木質チップT…が着火し、その自発燃焼による熱分解が開始される。しかして、着火熱源導入筒27の入口27aは、最下部の木質チップT…が自発燃焼を始めた時点でダンパー38によって閉鎖する。
【0032】
上記自発燃焼の開始に伴い、発生する高温の燃焼ガスが木質チップT…間の隙間を通って上昇して熱気を下から上へ伝播させると共に、該燃焼ガスの一部は排気導入口51…より加熱排気筒50内に吸い込まれ、この吸い込まれる燃焼ガスの熱気と周囲の木質チップT…の自発燃焼による熱気とで当該排気筒50の下部が内外両側から熱せられて赤熱する。そして更に自発燃焼が拡がるにしたがって、増加する燃焼ガスの熱気と蓄熱によって当排気筒50の赤熱部分が次第に上方へ拡大してゆき、遂には加熱排気筒50全体が赤熱状態になる。これにより、屑肉M…は、下方から上昇してくる熱気と、赤熱した加熱排気筒50から周囲へ放射される熱気とで加熱され、堆積層の下部側と中央側の両方から熱分解し始め、更に自燃温度に達して自発燃焼し、この自発燃焼・熱分解の領域が拡がるに伴い、加熱排気筒50が流入する燃焼ガスの増加によって更に高温化して周囲への熱放射を増し、その相乗効果で熱分解反応の進行と自発燃焼領域の拡大が速められ、やがて炉内空間10全体が均一な高温状態になり、装填した屑肉M及び木質チップTの全てが熱分解する。
【0033】
この炭化処理においては、加熱排気筒50からの燃焼排ガスG1 の排出に伴い、着火室26内に外気吸入口28より外気が吸入されるが、この外気吸入量を外気吸入管29の途中に設けた流量制御弁30にて制限することにより、炉内空間10を酸素不足状態に維持する。これにより、屑肉M及び木質チップTは、不完全燃焼によって炭素成分が殆ど燃焼しない状態で熱分解を継続し、もって最終的に内部まで完全に炭化することになる。一方、加熱排気筒50から排出される燃焼排ガスG1 は、既述のようにガス再燃焼炉2に送って再燃焼させるから、ガス中に微量の有機物が付随していても完全に分解されることになる。
【0034】
また、炭化炉1の炉内温度や該炭化炉1からの燃焼排ガスG1 の温度を温度センサー等で計測し、この計測温度に応じて流量制御弁30の開閉及び開度調整を行うことにより、炉内温度を調整できる。しかして、この流量制御弁30の開閉及び開度調整は、予め得た試験データに基づいて設定した処理温度条件を制御機構にインプットし、温度センサー等による計測温度に応じて自動制御するように構成すればよい。
【0035】
この第一実施形態の屑肉Mの処理では、炭化炉1の炉内温度は、300℃以上で5時間以上継続すると共に、900℃以上となる過程を経るように設定するのがよい。すなわち、牛海綿脳症(BSE)の病原体である異常プリオンは、300℃以上の温度で徐々に変性あるいは分解する性質があり、長時間の加熱で病原性を失うと共に、700〜900℃の高熱では完全に熱分解されるから、屑肉M中に存在していても上記温度設定によって炭化処理後の炭化物中に残る可能性を完璧に排除できる。なお、処理対象の屑肉Mと助燃チップTの性状や配合比率等により、流量制御弁30を一定開度で放置した状態でも炉内温度履歴が上記条件を満足する場合も多々ある。
【0036】
炭化炉1内での自発燃焼が終息すれば、クランプ具39…を外し、図5の仮想線で示すように、開閉蓋40を開放した上で、炭化炉1を前方へ倒し、内部の炭化処理物を掻き出して適当な容器や袋に収容する。
【0037】
得られた炭化処理物は、元の木質チップT及び屑肉Mの形態を保ったままで完全に炭化している。そして、屑肉Mの炭化物は、骨由来の燐酸カルシウムを主成分とする形状を保った骨炭、肉由来の炭、骨髄骨梁由来の三次元炭素ウイスカーとで構成されている。また木質チップTの炭化物は、炭素含有率が略100%の木炭あるいは竹炭である。
【0038】
なお、前記の骨炭は、極めて強靱な多孔性物質であり、元素分析及び蛍光X線分析によると、燐酸カルシウム成分を50%程度、炭素を10%程度含んでいる。また、屑肉Mの炭化物は、蛋白質微量分析の結果から、骨炭を含めて完全に熱分解されており、蛋白質を含有していないことが証明されている。
【0039】
このような処理方法では、屑肉Mを木質チップTと共に自発燃焼によって炭化させるため、処理開始時の着火熱源とガス再燃焼炉2の熱源として極少量の燃料を消費するだけであり、しかも完全に灰化燃焼させることなく炭素成分の殆どが残る形になる。従って、この処理方法によれば、従来における化石燃料を用いた屑肉の焼却処理に比較して、エネルギー消費が非常に少なくて済み、極めて低コストで処理を行える上、二酸化炭素の排出量も格段に低減されるから、環境への負荷が僅少であり、京都議定書で批准された二酸化炭素排出量規制にも見合うことになる。
【0040】
また、炭化処理物は、その内部まで蛋白質を含めて有機物が全く存在しない状態に炭化しており、元の屑肉中に異常プリオンや他の病原体が存在していても完全に熱分解されて残留する懸念は皆無であるから、屑肉M由来の炭化物を木質チップT由来の木炭や竹炭と共に安全な炭材として、例えば土壌改良材、吸湿材、水質浄化材等の多用途に再利用することが可能である。特に、骨髄骨梁由来の三次元炭素ウイスカーは、三次元網目構造であって且つ三次元的な等方性電気伝導を示すという特異な炭素繊維であることが判明しており、元来は生体組織に基づく構造であることから在来の科学技術では合成不可能であるが、本処理方法の普及によって大量供給が可能になるため、電気化学分野等での今後の応用が期待される。
【0041】
更に、第一実施形態の処理方法では、ガス再燃焼炉2から出る高温排ガスG2 の熱を利用して導入外気A0 を加熱し、得られた加熱空気A1 を冷却して除湿乾燥し、この乾燥空気A2 にて炭化処理前の屑肉Mを乾燥処理することから、この乾燥処理のための熱源が不要となる上、炭化炉1へ装填する屑肉Mの水分含有量の減少により、炭化処理時の水の気化熱による温度低下作用が小さくなる上、屑肉M…が表面の乾燥によって互いに密着しにくくなり、屑肉M…相互間に熱気を通す間隙ができ易く、それだけ処理効率が向上して速やかに炭化が進む。また、前記導入外気A0 との熱交換後の高温排ガスG2 を温水器5に通した上で外部へ放出することにより、その熱を更に温水製造にも使い、もって処理方法全体を通して熱エネルギーを極限に近く有効利用する形になっている。
【0042】
一方、乾燥処理に利用した空気は屑肉Mから出た臭気を含むことになり、特に屑肉Mに腐敗を生じている場合には強烈な悪臭成分と共に腐敗菌や黴胞子等も混じる可能性があるが、除湿乾燥器4から出る空気A3 をガス再燃焼炉2へ導入して炭化炉1からの燃焼排ガスG1 と一緒に再燃焼させるから、臭気や菌類も完全に分解され、温水器5を経て外部へ放出されるガスは無臭で有害成分も含まないものとなる。なお、ガス再燃焼炉2の炉内温度は、微量有機物を完全に熱分解する上で、800〜1000℃程度に設定するのがよい。
【0043】
〔処理例〕
図1のフローチャートで示す装置構成において、図5〜図8に示す構造で容量300Lの炭化炉1を使用し、骨付きの屑肉の処理を行った。この処理では、助燃用木質チップとして長さ1〜10cm,幅1〜3cmの竹間伐材チップを用い、まず屑肉Mの100Kgを除湿乾燥器4内に装填する一方、炭化炉1には竹間伐材チップのみを100Kg装填し、その自発燃焼による昇温後の炉内温度を450℃前後に設定して竹炭の製造を行い、この時に稼働させたガス再燃焼炉2(炉内温度は約800℃に固定)から出る高温排ガスG2 と導入外気A0 との熱交換、冷却装置3での除湿乾燥にて得られる乾燥空気A2 (温度70〜80℃,湿度1〜2%)を除湿乾燥器4へ送り、前記屑肉Mを乾燥処理した。
【0044】
次に、前記炭化炉1の着火から15時間後に生成した竹炭を取り出し、この炭化炉1内に、除湿乾燥器4から取り出した骨付き屑肉85Kg(全量…乾燥減量15Kg)と上記同様の竹間伐材チップ50kgとを、竹間伐材チップは全量を半分に分けて最下層と最上層を構成する形で装填し、炭化処理を行った。なお、この処理では積極的な炉内温度調整を行わずに流量調整弁30を一定開度で放置し、熱電対挿入孔24に熱電対を挿入して屑肉層上面位置における温度を継続して測定した。なお、ガス再燃焼炉2は炉内温度約800℃で固定し、前記同様の熱交換、除湿乾燥にて得られる乾燥空気A2 を除湿乾燥器4へ送って次の処理に用いる骨付き屑肉の乾燥に供した。
【0045】
上記炭化処理の着火から15時間後に炭化炉1の開閉蓋40を開いたところ、自発燃焼は終息していた。そして、該炭化炉1を前方へ倒して炭化処理物を取り出したところ、屑肉及び竹間伐材チップは元の形状を保ったままで全て内部まで完全に炭化していた。しかして、処理中に測定した屑肉層上面位置の温度は、図9に示すように、着火後30分程度で約975℃の最高温度に達したのち、着火後1時間程度で約550℃まで下がるが、以降は10数時間にわたって350℃以上に保たれており、元の屑肉中に異常プリオンや他の病原体が含まれていても完全に分解されて病原性を喪失していることが明らかである。
【0046】
取り出した炭化処理物より屑肉由来の炭化物を選別してX線マイクロアナライザー分析を行ったところ、検出元素はC,Fe,Ca,P,Kであった。また、この炭化物における骨由来の表面平滑部と割った内部(肉部)について、走査電子顕微鏡写真(75倍)を撮影したところ、表面平滑部は図10(A)、内部は同図(B)に示す状態であった。更に、この炭化物について、蛋白質微量分析を行ったところ、蛋白質は検出されなかった。
【0047】
図2のフローチャートは、本発明の処理方法を家畜骨Bの処理に適用した第二実施形態を示す。図中の1は自然式炭化炉、2はガス再燃焼炉、3は冷却装置、4は除湿乾燥器、5は温水器、6a,6bは送気経路に介在するファンであり、これらは前記第一実施形態と共通であるが、除湿乾燥器4の上方にロール破砕機7が配置すると共に、該除湿乾燥器4には下部にベルトコンベヤ4aが付設されている。また、炭化炉1は、前記第一実施形態において図5〜図8を用いて説明したものと同じである。
【0048】
この第二実施形態では、処理対象の家畜骨Bは、まずロール破砕機7にて適度の大きさに破砕して下方の除湿乾燥器4内に投入し、この除湿乾燥器4内である程度まで水分を除いた上でベルトコンベヤ4aを介して炭化炉1内へ投下する。このとき、助燃用木質チップTも同時に炭化炉1内へ投入し、両者B,Tを当該炭化炉1内で自発燃焼により炭化させる。しかして、排ガス及び空気の流れは前記の第一実施形態と同様であり、炭化炉1からの燃焼排ガスG1 はガス再燃焼炉2内へ送られ、除湿乾燥器4から送られてくる空気A3 と共に再燃焼されて排煙筒2bへ排出されるが、該排煙筒2bを通過する際に熱交換ジャケット2c内に導入される空気A0 と熱交換した上で高温排ガスG2 として温水器5へ送られ、水と熱交換して冷却された上で排気口5aより外部へ放出される。また、熱交換ジャケット2c内での熱交換によって昇温した加熱空気A1 は、冷却装置3へ送られて含有水分の結露によって除湿乾燥され、乾燥空気A2 として除湿乾燥器4へ送られ、該乾燥器4内の家畜骨Bの乾燥を担った上でガス再燃焼炉2へ送られて再燃焼される。
【0049】
この家畜骨Bの処理では、炭化炉1の炉本体20内への家畜骨B及び木質チップTの装填に際し、着火から自発燃焼への過程をスムーズに進行させ、また加熱初期段階の成分飛散を防ぐために、前記第一実施形態と同様に最下部と最上部に木質チップTのみの層を形成することが推奨されるが、家畜骨Bには付随する可燃成分が少ないため、中間部についても家畜骨Bと木質チップTとが混ざった状態にすることが望ましい。また、助燃用木質チップTには前記の第一実施形態と同様のものを使用できるが、家畜骨Bの可燃成分が少ないため、家畜骨Bと木質チップTの使用比率は、B/Tの重量比で0.5/1〜2/1程度と、屑肉Mの場合よりも木質チップTを多めすることが推奨される。
【0050】
炭化処理自体は前記第一実施形態と同様であり、炭化炉1の着火熱源導入筒27内にガスバーナー60の火炎等の着火熱源を導入し、最下部の木質チップT…を着火させ、その自発燃焼が始まった時点で着火熱源導入筒27の入口27aを閉鎖し、流量制御弁30の調整によって炉内を適度の酸素不足状態に設定すればよい。しかして、自発燃焼に伴って発生する高温の燃焼ガスの熱気によって加熱排気筒50が下部より次第に赤熱してゆき、家畜骨B及び木質チップTは、下方から上昇してくる熱気と、赤熱した加熱排気筒50から周囲へ放射される熱気とで加熱されて下部側と中央側の両側から熱分解し始め、更に自燃温度に達して自発燃焼し、やがて炉内空間10全体が均一な高温状態になり、装填した家畜骨B及び木質チップTの全てが内部まで完全に熱分解して炭化物となる。一方、加熱排気筒50から排出される燃焼排ガスG1 は、既述のようにガス再燃焼炉2に送って再燃焼させるから、ガス中に微量の有機物が付随していても完全に分解されることになる。
【0051】
炭化炉1の炉内温度は、既述のように流量制御弁30の開閉及び開度調整によって調整できるが、この第二実施形態の家畜骨Mの処理でも異常プリオンその他の病原体による病原性を完全に喪失させるために、前記第一実施形態と同様に、300℃以上で5時間以上継続すると共に、900℃以上となる過程を経るように設定することが望ましい。
【0052】
しかして、自発燃焼が終息して炭化炉1から取り出される炭化処理物は、元の家畜骨B及び木質チップTの形態を保ったままで完全に炭化している。そして、家畜骨Bの炭化物である骨炭は、極めて強靱な多孔性物質であり、既述の屑肉Bにおける骨部分と同様に、燐酸カルシウム成分を50%程度、炭素を10%程度含んでいるが、有機成分が完全に熱分解されており、蛋白質微量分析によって蛋白質を含有していことが証明されている。
【0053】
図3のフローチャートは、本発明の処理方法を牛糞や馬糞等の家畜糞Fの処理に適用した第三実施形態を示す。図中の1は自然式炭化炉、2A及び2Bはガス再燃焼炉、3は冷却装置、4は除湿乾燥器、5は温水器、6a,6bは送気経路に介在するファン、8は搬送リフト、9は一次熱風乾燥機、11は定量供給機、12は造粒機、13はパドル式混合機である。しかして、炭化炉1は前記第一及び第二実施形態で用いたものと同じであり、この炭化炉1に隣接するガス再燃焼炉2Aも前記第一及び第二実施形態におけるガス再燃焼炉2と同様であるが、これとは別にガス再燃焼炉2Bを備え、また除湿乾燥器4の下部にはスクリューコンベヤ4bが付設されている。
【0054】
この第三実施形態では、処理対象の家畜糞Fは、まず搬送リフト8にて一次熱風乾燥機9に送り、この熱風乾燥機9内である程度まで水分を除いた上で定量供給機11に投入し、該定量供給機11より造粒機12へ所定の送り速度で定量供給し、この造粒機12より所要の大きさの粒状として押し出して除湿乾燥器4に収容する。そして、この除湿乾燥器4で所定時間保持して更に水分を除いた粒状の家畜糞Fは、スクリューコンベヤ4bを介してパドル式混合機13内に投入し、同じく該混合機13内に投入した助燃用木質チップTと攪拌混合し、この混合物の状態で炭化炉1内に装填し、自発燃焼により炭化処理する。
【0055】
炭化処理に伴って炭化炉1から発生する燃焼排ガスG1 は、ガス再燃焼炉2A内へ送られ、ガスバーナー2aを用いた再燃焼によって更に昇温して排煙筒2bへ排出されるが、該排煙筒2bを通過する際に外側の熱交換ジャケット2c内に導入される空気A0 と熱交換し、ある程度降温した高温排ガスG2 となって一次熱風乾燥機9内へ送られ、この乾燥機9内の家畜糞Fの熱風乾燥に供される。更に、この熱風乾燥を経て家畜糞Fから発生した悪臭及び水分を含むガスG3 は、除湿乾燥器4から送られて来る空気A3 と合流してガス再燃焼炉2Bへ送られ、ガスバーナー2aによる再燃焼を経て温水器5へ送られ、水との熱交換で冷却された上で、当該温水器5の出口に設けた排気口5aより外部へ放出される。一方、熱交換ジャケット2cでの熱交換を経た加熱空気A1 は、冷却装置3へ送られて除湿乾燥され、乾燥空気A2 として除湿乾燥器4へ送られ、該乾燥器4内の粒状の家畜糞Fを乾燥させたのち、家畜糞Fより移行した水分を含む空気A3 として前記のガスG4 に合流してガス再燃焼炉2Bへ送られる。
【0056】
ところで、家畜糞Fの炭化処理においては、家畜糞Fが元の状態のままでは、水分を多量に含むことに加え、炭化炉1へ装填した際に全体が密着状態になるため、自発燃焼によって炭化させることは殆ど不可能である。しかるに、この処理方法では、家畜糞Fを造粒した上で乾燥処理し、更に木質チップTと混合した状態で炭化炉1内に装填するから、粒状の家畜糞F…の相互間ならびに家畜糞F…と木質チップT…との間に熱気を通す間隙が確保されると共に、家畜糞F自体の水分減少と燃え易い木質チップTの混在により、効率よく自発燃焼を進行させて炭化することが可能となる。また、この処理方法では、元の家畜糞Fを一次熱風乾燥機9においてガス再燃焼炉2Aからの高温排ガスG2 よって予め熱風乾燥させることにより、造粒機12での造粒を容易にしている。
【0057】
なお、この第三実施形態の炭化処理においても、着火から自発燃焼への過程をスムーズに進行させる上で、前記粒状の家畜糞Fと助燃用木質チップTとの混合物とは別に、同様の木質チップTを用いて最下部に当該木質チップTのみの層を形成し、その上に前記混合物を装填することが推奨される。しかして、家畜糞Fと木質チップTの使用比率は、一般的にF/Tの重量比で1/1〜5/1程度とすればよい。
【0058】
炭化炉1の炉内温度は、家畜糞Fでは前記屑肉Mや家畜骨Bのような異常プリオンの問題がないため、300℃以上で5時間以上継続すればよいが、必要とあらば900℃以上となる過程を経るように設定してもよい。また、ガス再燃焼炉2A,2Bの炉内温度は800〜1000℃程度に設定すればよい。
【0059】
この第三実施形態の処理方法では、自発燃焼が終息して炭化炉1から取り出される炭化処理物は、木質チップTが炭化した木炭あるいは竹炭と、粒状の家畜糞Fが炭化した炭粒とからなるが、共に内部まで完全に熱分解していて有機物を全く含まず且つ無臭であるため、土壌改良材等として有効利用できる。また、炭化炉1での自発燃焼による熱と再燃焼炉2Aでの再燃焼による熱を利用して該家畜糞Fの一次熱風乾燥と造粒後の乾燥とを行うことから、消費燃料は炭化炉1の着火熱源とガス再燃焼炉2A,2Bの熱源としての極少量で済み、もって家畜糞Fを極めて低コストで効率よく浄化できる。しかも、一次熱風乾燥機9から出るガスG3 と除湿乾燥器4から出る空気A3 には家畜糞Fの強烈な悪臭が含まれるが、その悪臭成分は再燃焼炉2Bでの再燃焼によって熱分解されるため、最終的に温水器5の排気口5aより外部へ放出されるガスも無臭化し、周辺へ悪臭が放散する懸念もない。従って、この処理方法は、家畜排泄物の根本的な処理手段として充分にコスト的に見合う上、処理施設及び周辺環境を衛生的に保持できる。
【0060】
図4のフローチャートは、本発明の処理方法を生ゴミの処理に適用した第四実施形態を示す。図中の1は自然式炭化炉、2はガス再燃焼炉、3は冷却装置、4は下部にベルトコンベヤ4aを付設した除湿乾燥器、5は温水器、6a,6bは送気経路に介在するファン、13はパドル式混合機である。しかして、炭化炉1は前記第一〜第三実施形態で用いたものと同じである。
【0061】
この第四実施形態では、処理対象の生ゴミGは、まずパドル式混合機によって助燃用木質チップTと攪拌混合し、この混合物の状態で除湿乾燥器4に投入し、該乾燥器4内である程度まで水分を除いた上でベルトコンベヤ4aを介して炭化炉1内へ装填し、自発燃焼により炭化処理する。この炭化炉1からの燃焼排ガスG1 はガス再燃焼炉2内へ送られ、再燃焼されて排煙筒2bへ排出されるが、該排煙筒2bを通過する際に熱交換ジャケット2c内に導入される空気A0 と熱交換した上で高温排ガスG2 として温水器5へ送られ、水と熱交換して冷却された上で排気口5aより外部へ放出される。また、熱交換ジャケット2c内での熱交換によって昇温した加熱空気A1 は、冷却装置3へ送られて含有水分の結露によって除湿乾燥され、乾燥空気A2 として除湿乾燥器4へ送られ、生ゴミGと木質チップTとの混合物の乾燥を担った上で、該混合物から移行した水分を含む空気A3 となって乾燥器4から出るが、その一部が外部へ放出されると共に、残りは新たに導入される空気A0 に合流して熱交換ジャケット2c内へ還流される。
【0062】
この第四実施形態では、処理対象の生ゴミGに多量の水分が含まれるが、炭化炉1には燃え易い木質チップTと予め混合状態として、且つ除湿乾燥器4にてある程度まで水分を除去した上で炭化炉1内に装填するから、効率よく自発燃焼を進行させて炭化することが可能である。しかして、この場合の炭化処理でも、着火から自発燃焼への過程をスムーズに進行させる上で、前記粒状の家畜糞Fと助燃用木質チップTとの混合物とは別に、同様の木質チップTを用いて最下部に当該木質チップTのみの層を形成し、その上に前記混合物を装填することが推奨される。しかして、生ゴミGと木質チップTの使用比率は、一般的にG/Tの重量比で1/1〜5/1程度とすればよい。
【0063】
炭化炉1の炉内温度は、家畜糞Fの場合と同様に300℃以上で5時間以上継続すればよいが、必要とあらば900℃以上となる過程を経るように設定してもよい。特に、生ゴミG中に塩化ビフィルム等の塩素含有成分が混入している可能性がある場合は、ダイオキシン類の生成を防止する上で、炉内温度が900℃に達する過程を経るように設定することが望ましい。また、ガス再燃焼炉2の炉内温度についても、一般的には600〜1000℃程度でよいが、前記のように生ゴミG中に塩素含有成分が混入している可能性がある場合は、ダイオキシン類の確実に分解させるために900℃以上に設定するのがよい。
【0064】
この第四実施形態の炭化処理において、自発燃焼が終息して炭化炉1から取り出される炭化処理物は、木質チップTが炭化した木炭あるいは竹炭と、生ゴミGの形態を残す炭とからなるが、共に内部まで完全に熱分解していて有機物を全く含まず且つ無臭であるため、土壌改良材、吸湿材、水質浄化材等の多用途に再利用することが可能である。しかして、この処理方法では、生ゴミGを自発燃焼によって炭素成分が殆ど残る形で炭化させ、しかも炭化炉1での自発燃焼による熱と再燃焼炉2での再燃焼による熱を利用して予備乾燥を行うようにしているから、従来のゴミ焼却のように完全に灰化燃焼させるのに比較し、燃料消費が格段に少なくて済み、極めて低コストで処理を行える上、炭化炉1及びガス再燃焼炉2の炉内温度を900℃以上といった高温に設定することも容易であるため、生ゴミG中に他の雑多な混入成分が存在する場合でも、排ガスに伴って有毒成分や環境ホルモン成分等が放散されるのを確実に防止できる。
【0065】
なお、前述した第一〜第四実施形態では、排ガスを外部へ放出する前に温水器5に通して温水を製造するようにしているが、排ガスの熱は種々の材料の乾燥、保温、加熱等の温水製造以外の様々な熱エネルギーを使う用途に利用できる。また、処理対象とする有機質固形廃棄物としては、例示した屑肉M、家畜骨B、家畜糞F、生ゴミGに限らず、プラスチック類や繊維材のような非生体組織に属するものも包含されるが、この処理方法及び処理装置は、特に動植物の生体組織や排泄物を主体とする固形廃棄物の処理に最適であり、例示はしなかったが家畜の体組織を原料とする肉骨粉の処理にも非常に有用である。なお、本発明でいう有機質固形廃棄物とは、助燃用木質チップとする木材や竹材のような本来の炭原料である木質材料を除くものである。
【0066】
しかして、本発明の処理装置は、第一〜第四実施形態として例示したように、構成的に非常に簡素であるため、必要とする処理量に対応した小型化ならびに大型化が容易である上、設備コストも安くて済み、また処理対象とする有機質固形廃棄物の性状に応じ、乾燥処理から炭化処理に至る前の準備段階での粉砕、混合、熱風乾燥、造粒等の種々の適当な前処理手段を付加して処理効率や作業能率を向上できると共に、処理にて発生する熱を様々な形で有効利用できる。
【0067】
しかして、炭化炉については、図5〜図8で例示した構造以外に種々設計変更可能である。すなわち、例示した起倒回動可能な枢支構造では処理後の炭化処理物の取り出しが容易になるが、例えば、固定式にして下部に炭化処理物の取出し口を設けたり、クレーン等で吊り上げて傾倒あるいは逆転させて炭化処理物を取り出すような構成としてもよい。また、炭化炉の炉本体内に配設する加熱排気筒は、複数本に設定してもよいし、その上端からの排気経路を二重筒状とした当該加熱排気筒の内管部で構成したり、上端から折り返して炉本体の底部側に向かう管路で構成することも可能である。更に、ガス再燃焼炉から排出される高温排ガスと導入外気との熱交換部は、当該高温排ガスの外部への放出に至る煙道の任意の位置に設ける得ると共に、煙道の略全長にわたって熱交換部を構成してもよい。
【0068】
【発明の効果】
請求項1の発明によれば、屑肉や肉骨粉を始めとする有機質固形廃棄物の処理方法として、特定構造の自燃式炭化炉を用い、この炭化炉の炉本体内に乾燥処理した有機質固形廃棄物を助燃用木質チップと共に装填し、炉本体の底部から着火した以降は炉本体内に配設した加熱排気筒の赤熱を伴って酸素不足状態で自発燃焼させることにより、該有機質固形廃棄物を助燃用木質チップと共に熱分解して炭化するようにしているから、処理後の炭化処理物は内部まで完全に炭化して有機物を全く含まない状態となり、該廃棄物が家畜の体組織であって異常プリオン等の病原体を含有していても完全に熱分解して確実に無害化でき、また家畜排泄物や生ゴミのような汚物も完全に浄化でき、しかも簡素な装置構成により、大量の化石燃料を用いることなく極めて低コストで高能率の処理を行え、従来の灰化燃焼させる完全焼却のような大気中への大量の炭酸ガス放出を回避できる上、処理生成物が炭材として安全で且つ非常に有用な再生資源となるという画期的な処理方法が提供される。
【0069】
請求項2の発明によれば、上記の有機質固形廃棄物の処理方法において、前記炭化炉の加熱排気筒から排出される燃焼排ガスをガス再燃焼炉内に導いて再燃焼させることから、該燃焼排ガスに微量有機物が付随していても再燃焼によって完全に熱分解でき、もって病原体成分、有毒成分、環境ホルモンのような有害成分、悪臭成分等が排ガスに伴って外部へ放出されるのを確実に阻止できる。
【0070】
請求項3の発明によれば、上記の有機質固形廃棄物の処理方法において、前記ガス再燃焼炉から排出される高温排ガスとの熱交換によって導入外気を昇温させ、得られる加熱空気を冷却して含有水分の結露によって除湿乾燥し、この乾燥空気によって前記有機質固形廃棄物の乾燥処理を行うようにしているから、処理対象である廃棄物の水分減少によって炭化処理効率が向上することに加え、乾燥処理用としての各別な熱源を必要とせず、それだけエネルギー消費を少なくして処理コストを低減できる。
【0071】
請求項4の発明によれば、上記の有機質固形廃棄物の処理方法において、前記炭化炉における炉本体内への空気導入量の調整により、炉内温度が300℃以上で5時間以上継続すると共に900℃以上となる過程を経るように設定することから、該廃棄物中に含まれる異常プリオン等の病原体を炭化処理過程で完全に熱分解して完璧に無害化できる。
【0072】
請求項5の発明によれば、上記の有機質固形廃棄物の処理方法において、前記有機質固形廃棄物が家畜の体組織を主体とするものであり、病死や病気の疑いで処分された家畜の肉、骨、内臓等の体組織、使用禁止になって保管されている肉骨粉、更には食肉製造過程から継続的に大量発生する骨や内臓を含む屑肉等を、低コストで効率よく炭化処理して、且つ完全に無害化できる。
【0073】
請求項6の発明によれば、上記の有機質固形廃棄物の処理方法において、前記有機質固形廃棄物が家畜排泄物の造粒物であり、その造粒前の家畜排泄物を前記ガス再燃焼炉からの高温排ガスによって熱風乾燥する前処理を行うことから、本来は性状的に炭化処理困難な処理対象であるにも関わらず、効率よく自発燃焼させて完全に熱分解し、もって無臭で衛生的に問題がない上に土壌改良材等としても有用な炭材に転化でき、しかも前処理の熱風乾燥にガス再燃焼炉からの高温排ガスを利用するから、処理全体のエネルギー効率が向上する。
【0074】
請求項7の発明によれば、上記の有機質固形廃棄物の処理方法において、前記有機質固形廃棄物が生ゴミであり、この生ゴミを前記助燃用木質チップとの混合状態で前記炭化炉の炉本体内へ装填することから、非処理物が含有水分の多い生ゴミであるにも関わらず、効率よく自発燃焼を進行させて炭化することが可能であり、しかも従来のゴミ焼却のように完全に灰化燃焼させるのに比較し、燃料消費が格段に少なくて済み、極めて低コストで処理を行える。
【0075】
請求項8の発明によれば、有機質固形廃棄物の処理装置として、上記の処理方法に好適に適用して低コストで能率よく処理を行える上、外界への有害物質の排出を確実に防止できると共に、熱エネルギーを高度に循環利用でき、しかも構成的に非常に簡素であるため、必要とする処理量に対応した小型化ならびに大型化が容易である上、設備コストも安くて済むものが提供される。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る有機質固形廃棄物の処理方法を示すフローチャートである。
【図2】本発明の第二実施形態に係る有機質固形廃棄物の処理方法を示すフローチャートである。
【図3】本発明の第三実施形態に係る有機質固形廃棄物の処理方法を示すフローチャートである。
【図4】本発明の第四実施形態に係る有機質固形廃棄物の処理方法を示すフローチャートである。
【図5】本発明の処理方法及び処理装置に用いる炭化炉の側面図である。
【図6】同炭化炉の正面図である。
【図7】同炭化炉の縦断側面図である。
【図8】同炭化炉の下部の拡大縦断側面図である。
【図9】本発明の処理例における同炭化炉の炉内温度と処理時間との関係を示す相関図である。
【図10】同処理例で処理対象とした屑肉の炭化物の走査顕微鏡写真図であり、(A)は表面平滑部、(B)は割った内部を示す。
【符号の説明】
1 炭化炉
2 ガス再燃焼炉
2A,2B ガス再燃焼炉
2a ガスバーナー
2b 排気筒(熱交換部)
2c 熱交換ジャケット(熱交換部)
3 冷却装置
3a 結露室
3b クーリングタワー
4 除湿乾燥器
5 温水器
5a 排気口
6a,6b ファン
7 ロール破砕機
8 搬送リフト
9 一次熱風乾燥機
10 炉内空間
11 定量供給機
12 造粒機
13 バドル式混合機
20 炉本体
25a 内側底板(内底部)
26 着火室(着火部)
36 空気導入孔
40 開閉蓋
50 加熱排気筒
51 排気導入口
52 排気管部(排気路)
A0 導入空気
A1 加熱空気
A2 乾燥空気
A3 除湿乾燥器から出た空気
G1 燃焼排ガス
G2 高温排ガス
G3 一次熱風乾燥機から出た排ガス
M 屑肉(家畜の体組織)
B 家畜骨(家畜の体組織)
F 家畜糞(排泄物)
G 生ゴミ
T 助燃用木質チップ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the disposal of bodily tissues such as meat, bones, internal organs, and brain of domestic animals, meat-and-bone meal, garbage such as garbage, livestock excrement, etc. The present invention relates to a processing method and a processing apparatus.
[0002]
[Prior art and its problems]
In recent years, the demand for meat in Japan has expanded due to the westernization of food, and as a result, waste meat including bones, internal organs and cranial nerves generated during the meat manufacturing process is used as feed and fertilizer as semi-dry powdered meat-and-bone meal. It has been. However, at present, the above-mentioned flesh occurs in Japan in the bovine sponge encephalopathy (BSE), which belongs to the disease called transmissible sponge encephalopathies (TSE: Transmissible Sponbform Encephalopathies) and is called so-called mad cow disease. Not only can it be used as feed and fertilizer as meat-and-bone meal, but also its disposal is not easy.
[0003]
Bovine spongiform encephalopathy, as its name suggests, is a late-onset, malignant central nervous system disease in which the bovine brain tissue changes sponge-like, develops after a long incubation period, is irritable, aggressive, and depressed. From such mental symptoms, physical symptoms such as reduced milk yield, weight loss, abnormal posture, ataxia, paralysis, and inability to stand up appear, leading to death. Moreover, since the pathogen is a protein called abnormal prion that does not have genetic DNA or RNA, established infection prevention and treatment measures against pathogens such as bacteria and viruses of other infectious diseases are completely ineffective. In addition, by ingesting only a very small amount of infected beef, not only cattle but also species, sheep, deer, and humans can be infected, resulting in death with sponge-like changes in brain tissue like cattle. It is known that pollution is spreading worldwide.
[0004]
However, such abnormal prions do not lose their activity by ordinary disinfection, heating at the cooking level, irradiation of ultraviolet rays or radiation, are not easily degraded biologically, and are not decomposed for a long time when buried in soil. It is a very troublesome substance that remains in the soil, and it requires long-time heating at 300 ° C or more to lose its pathogenicity. To deactivate even under pressure by an autoclave, heating at 3 atm and 136 ° C or more is required. It is necessary to continue for 30 minutes or more. For this reason, it is extremely difficult to treat infectious waste meat and meat-and-bone meal, and most of the large quantities of meat-and-bone meal that have already been produced and whose use has been banned remain stored and are continuously generated in large quantities from the meat production process. In Japan alone, the amount of waste meat amounts to 400,000 tons per year, but the situation has fallen short of its disposal.
[0005]
At present, the Ministry of Health, Labor and Welfare and the Ministry of Agriculture, Forestry and Fisheries have approved a method of treating waste meat and meat-and-bone meal by incinerating waste meat and meat-and-bone meal at a high temperature while preventing the diffusion of the powder. Also, various research institutes are examining various treatment methods as means for decomposing abnormal prions, such as a biological decomposition method, a chemical decomposition method, a high-frequency heating method, and a flame contact combustion method.
[0006]
However, in the method of completely decomposing by the above-mentioned high-temperature combustion, a large amount of fossil fuel is consumed to reach the complete decomposition, and a device for completely performing high-temperature combustion becomes expensive, so that the processing cost is extremely high. There are difficulties. On the other hand, the biological decomposition method requires an extremely large-scale decomposition tank and requires high equipment costs, requires a long time for decomposition, has a low treatment efficiency, and requires a great deal of labor to maintain and control the decomposition bacteria. There is such a problem. In the chemical decomposition method, the polypeptide bond of abnormal prion is cleaved by caustic soda or decomposed by sodium hypochlorite, but an extremely large amount of drug solution is required, and a large amount of waste liquid is used. In addition to a new problem of treatment, there is a possibility that the drug does not penetrate into tissues such as waste meat and the decomposition is incomplete, so that it is not a reliable treatment method.
[0007]
Furthermore, in the high frequency heating method and the flame contact combustion method, there is a report that the pathogenicity of abnormal prions is not lost even if the heat treatment is performed at 600 ° C. (Non-Patent Document 1), and its effectiveness is questionable. That is, in the case of the high-frequency heating method, heat is generated by resonating the high-frequency frequency with the stretching vibration of the oxygen-hydrogen bond of the water molecule contained in the object to be processed, so that the high-frequency wave is inevitably concentrated on a portion containing a lot of water. In addition to the uneven heating, the heating action does not work after the evaporation of water, and the heating time is short. It is assumed that a tissue containing only protein which has just evaporated and evaporated remains. In addition, in the flame contact combustion method, the structure of the flame contact portion becomes powdery and soars by air convection, causing incomplete decomposition, and the heat of vaporization of water evaporation prevents the temperature rise of the object to be treated. It is considered that the temperature of the protein does not reach the flame contact temperature but remains undecomposed and tends to remain.
[0008]
[Non-patent document 1]
Internet Information Service "Food Sanitation Window", Food Insurance Division, Living Environment Department, Tokyo Metropolitan Government Bureau ... 2001 First Food Technology Workshop Lecture Summary "About Prions and Prion Diseases" (Section Onodera)
Internet <URL: http: // www. Kenkou. metro. tokyo. jp / shokuhin / >>
[0009]
On the other hand, the livestock industry has been developed in the suburbs near the city with the westernization of food, and the emission of livestock excrement has inevitably increased. Due to the state of runoff or the degree of purification of contaminated water, contamination of surrounding soil, water pollution and eutrophication due to inflow into rivers, and massive generation of harmful plankton due to eutrophication of sea bays into which river water flows Many problems have arisen, such as the deterioration of the breeding environment of the livestock barn itself, and the deterioration of the surrounding environment due to the spread of odors.
[0010]
In addition, while the increasing amount of urban garbage is being recycled as resources by sorting and collecting it, at present, garbage only relies on incineration at garbage disposal sites. However, garbage with a high moisture content consumes a large amount of fossil fuel for incineration and burning, and the increase in disposal costs due to this causes a heavy burden on local governments. The biological decomposition of garbage is at a stage where it can be turned into fertilizer, gas fuel and power generation associated with fermentation decomposition, and small-scale decomposition equipment used in homes and businesses has been put into practical use. In order to process a large amount of garbage collected by a local government or the like, a large-scale biodegradation tank is required, which requires enormous equipment costs and requires a long time for the decomposition process.
[0011]
In view of the above situation, the present invention provides a method for treating organic solid waste such as the above-mentioned waste meat and meat-and-bone meal, by completely thermally decomposing pathogens such as abnormal prions contained in the waste and completely removing the pathogen. Innovative and simple equipment configuration enables low-cost, high-efficiency processing without using a large amount of fossil fuels, and the processed product becomes a safe and very useful recycle resource. It is an object of the present invention to provide a simple processing method and a processing apparatus which can be preferably applied to the processing method, can surely prevent the discharge of harmful substances to the outside world, and can use a high degree of circulating use of heat energy.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating organic solid waste according to claim 1 of the present invention is provided with a plurality of air introduction holes 36 in an inner bottom portion (inner bottom plate 25a) by referring to the drawings. , A heating exhaust pipe 50 having an exhaust introduction port 51 at the lower portion communicating with the furnace space 10 and an upper portion connected to an exhaust path (exhaust pipe 52) to the outside of the furnace. Is used to burn the organic solid waste (waste meat M, livestock bone B, livestock dung F, garbage G) dried in the furnace main body 20 of the carbonization furnace 1 using wood chips for combustion. T, and is ignited from the bottom of the furnace body 20, and thereafter, the flue gas G 1 The organic solid wastes M, B, F, G and the wood chips T for combustion are spontaneously burned in a state of lack of oxygen by the red heat of the heating exhaust stack 50 due to the hot air, so that the organic solid wastes M, B , F and G are thermally decomposed and carbonized together with the wood chips T for combustion.
[0013]
The invention of claim 2 is directed to the method for treating organic solid waste according to claim 1, wherein the combustion exhaust gas G discharged from the heating exhaust pipe 50 of the carbonization furnace 1 is used. 1 Is introduced into the gas reburning furnace 2 and reburned. According to a third aspect of the present invention, in the method for treating organic solid waste according to the second aspect, the high-temperature exhaust gas G discharged from the gas reburning furnace 2 is used. 2 Outside air A by heat exchange with 0 And heated air A obtained 1 Is cooled and dehumidified and dried by dew condensation of the contained water. 2 Thus, the organic solid waste M, B, F, and G are dried.
[0014]
Further, the invention according to claim 4 is the method for treating organic solid waste according to any one of claims 1 to 3, wherein the amount of air introduced into the furnace main body 20 is adjusted so that the furnace temperature is not less than 300 ° C and 5 ° C. It is configured to continue for more than an hour and to go through a process of reaching 900 ° C. or more.
[0015]
According to a fifth aspect of the present invention, in the treatment method according to any one of the first to fourth aspects, the organic solid waste is mainly composed of body tissues of livestock (meat meat M, livestock bone B). . According to a sixth aspect of the present invention, in the processing method according to any one of the second to fourth aspects, the organic solid waste is a granulated livestock excrement (livestock dung F), and the livestock before the granulation is processed. The excrement F is converted into the high temperature exhaust gas G from the gas reburning furnace 2. 2 Pre-drying by hot air. Further, in the invention according to claim 7, in the treatment method according to any one of claims 1 to 4, the organic solid waste is garbage G, and the garbage G is mixed with the wood chips T for combustion. It is to be loaded into the furnace body 20 of the carbonization furnace 1.
[0016]
On the other hand, the apparatus for treating organic solid waste according to the invention of claim 8 comprises a substantially closed furnace main body 20 having a plurality of air introduction holes 36 in an inner bottom (inner bottom plate 25a) and a lower furnace space in a lower part. A heating exhaust pipe 50 is provided, which has an exhaust introduction port 51 communicating with the exhaust pipe 10 and has an upper part connected to an exhaust path (exhaust pipe part 2) to the outside of the furnace, and an organic substance charged at the bottom part as an ignition part (ignition chamber 26). A self-combustion type carbonizing furnace 1 which spontaneously combusts and solidifies solid wastes M, B, F and G together with a wood chip T for combustion, and a combustion exhaust gas G discharged from a heating exhaust pipe 50 of the carbonizing furnace 1 1 Reburning furnace 2 for reburning gas, and high-temperature exhaust gas G discharged from the gas reburning furnace 2 2 And introduction outside air A 0 Exchange section (heat exchange jacket 2c) for exchanging heat with air, and heated air A derived from the heat exchange section 2c. 1 Device 3 for dehumidifying by dew condensation by water cooling, and dry air A dehumidified by the cooling device 3 for the organic solid wastes M, B, F, and G before being loaded into the carbonization furnace 1. 2 And a dehumidifying dryer 4 for performing a drying process.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method and an apparatus for treating organic solid waste according to the present invention will be specifically described with reference to the drawings. 1 to 4 show flowcharts of the respective processing methods of the first to fourth embodiments, and FIGS. 5 to 8 show examples of the configuration of a natural carbonization furnace used in the processing methods.
[0018]
The flowchart of FIG. 1 shows a first embodiment in which the processing method of the present invention is applied to the processing of waste meat M, in which 1 is a natural carbonization furnace, 2 is a gas reburning furnace, 3 is a cooling device, Denotes a dehumidifier / dryer, 5 denotes a water heater, and 6a and 6b denote fans interposed in the air supply path.
[0019]
In this first embodiment, the waste meat M to be treated is firstly dewatered to some extent in the dehumidifier / dryer 4 and then loaded into the natural carbonization furnace 1 together with the wood chips T for combustion. Carbonization is performed in the furnace 1 by spontaneous combustion. Thus, the flue gas G generated by the spontaneous combustion in the natural type carbonizing furnace 1 1 Is sent into the gas reburning furnace 2 through the fan 6a, and the air A sent from the dehumidifying dryer 4 in the gas reburning furnace 2 3 And the temperature is further increased by re-combustion using the gas burner 2a and discharged to the smoke exhaust tube 2b. When the air passes through the smoke exhaust tube 2b, the air introduced into the heat exchange jacket 2c provided outside is discharged. A 0 High-temperature exhaust gas G that exchanges heat with 2 The water is then sent to the water heater 5, further cooled by exchanging heat with water in the water heater 5, and discharged to the outside through an exhaust port 5 a provided at the outlet of the water heater 5.
[0020]
The air A introduced into the heat exchange jacket 2c 0 Is heated by the heat exchange in the course of passing through the spirally formed air passage in the jacket 2c, and the heated air A 1 The cooling air is sent to the cooling device 3 and exchanges heat with the cooling water circulated and supplied through the cooling tower 3b in the condensation chamber 3a of the cooling device 3; 2 Is sent to the dehumidifying dryer 4 via the fan 6b, and performs a function of drying the waste meat M in the dryer 4. Then, the air A containing the water transferred from the waste meat M 3 Is sent from the dehumidifying dryer 4 to the gas reburning furnace 2, and the flue gas G from the carbonizing furnace 1 is 1 And is recombusted.
[0021]
Here, as shown in FIG. 7, the self-combustion type carbonizing furnace 1 is formed in a vertical cylindrical shape with a bottom and has a material opening 21 at an upper end opening, and the material opening 21 of the furnace body 20 is closed. An opening / closing lid 40 is provided, and a metal heating exhaust pipe 50 is provided upright at the center of the furnace body 20.
[0022]
The furnace main body 20 has a double wall structure in which a peripheral wall portion 20a is provided with a heat insulating material 23 between inner and outer metal plates 22a and 22b. Are provided at predetermined intervals along the vertical direction. The thermocouple insertion holes 24 can be closed by plugs (not shown). An ignition chamber 26 is formed on the bottom 20b of the furnace body 20 between a metal upper bottom plate 25a and a lower bottom plate 25b, and a short cylindrical relay chamber 26a protruding downward from the ignition chamber 26; An ignition heat source introducing cylinder 27 extending forward from the relay chamber 26a is provided, and has an outside air suction port 28 opened to the side of the ignition chamber 26. As shown in FIG. 6, an outside air suction pipe 29 having one end open to the outside is connected to the outside air suction port 28, and a flow control valve 30 is interposed in the middle of the outside air suction pipe 29.
[0023]
As shown in FIGS. 5 and 6, trapezoidal support frames 32a and 32b are provided upright on both left and right sides of the furnace body 20, and bearings 33a and 33a provided on the upper ends of the support frames 32a and 32b are provided. By pivoting the pivots 31a, 31b projecting on the left and right sides of the furnace body 20 at a position slightly lower than the furnace body 33b, the furnace body 20 is set upright on both the support frames 32a, 32b as shown by the solid line in FIG. It is supported so as to be convertible to the falling posture shown by the virtual line. Numeral 34 denotes a posture changing handle protruding from the gear box 35 on the bearing 33b side, and the furnace body 20 is turned upside down through a worm reduction gear mechanism (not shown) in the gear box 35 by a rotation operation thereof. It is made to let.
[0024]
The heating exhaust pipe 50 has a lower end set on the upper bottom plate 25 a in the furnace main body 20, and a closed upper end is set to a height reaching the vicinity of the material port 21 of the furnace main body 20. An exhaust pipe 51 having a large number of holes and extending horizontally from the vicinity of the upper end to the rear penetrates the peripheral wall portion 20a of the furnace body 20 and protrudes to the rear. Thus, an on-off valve 53 with a lever is interposed on the outer side of the exhaust pipe section 52, and a flexible pipe 54 connected to the gas reburning furnace 2 (see FIG. 1) has a one-touch clamp joint 55 at the outer end thereof. Connected through.
[0025]
In addition, as shown in an enlarged view in FIG. 8, positioning protruding pieces 36 arranged around the heating exhaust pipe 50 to prevent the heating exhaust pipe 50 from being displaced, on the upper bottom plate 25 a of the furnace body 20, A large number of air inflow holes 37 arranged at an appropriate distance from each other are formed in a region excluding the central portion of the heating and exhausting cylinder 50, and a chevron for preventing blockage is formed above each of the air inflow holes 36. The cover piece 37a is fixed by welding. Further, as shown in the direction of the arrow AA in FIG. 8, a damper holding portion 27 a having upper and lower guide grooves is provided at the inlet 27 a side of the ignition heat source introducing cylinder 27. A damper 38 having a communication hole 37a is fitted to the holding portion 27a so as to be movable left and right, and the damper 38 is opened from the open state where the communication hole 38a matches the inlet 27b of the ignition heat source introduction cylinder 27 as shown by a virtual line in the figure. By pushing in 38, the entrance 27b can be shut off.
[0026]
The opening / closing lid 40 is formed separately from the furnace main body 20 in a circular thick plate shape in which a heat insulating material 41 is interposed between metal front and back plates 40a and 40b. A pair of right and left columns 42a and 42b are provided upright at the rear of the furnace body 20, and a pair of right and left inverted V-shaped mounting arms 44 and 44 are provided on a pivot 43 provided between upper portions of both columns 42a and 42b. An opening / closing lid 40 is attached to the front ends of the mounting arms 44, 44, and a prismatic balance weight 45 is fixed to the rear ends of the mounting arms 44, 44. A gear box 45 forming a bearing of the pivot 43 is provided at the upper end of the right column 42b, and the worm reduction in the gear box 45 is performed by rotating a cover opening / closing handle 46 protruding from the gear box 45. The pivot 43 rotates integrally with the two mounting arms 44, 44 via a gear mechanism (not shown), whereby the opening / closing lid 40 is switched between the closed position shown by the solid line in FIG. 5 and the open position shown by the imaginary line. It is configured as follows.
[0027]
A plurality of handle-type clamps 39 are pivotally mounted on the periphery of the material entrance 21 of the furnace body 20 at predetermined intervals so as to be vertically rotatable. A grooved projection 46 corresponding to the tool 39 is protrudingly provided. With the opening / closing lid 40 covering the material entrance 21, the shaft 39 a of each clamp tool 39 is fitted to the groove of the grooved projection 46 (not shown). ), And by turning and tightening the handle portion 39b, the opening / closing lid 40 is set to be pressed against the material port 21 to be in a sealed state. In FIGS. 5 to 7, only one or two of the clamps 39 are shown to avoid complicating the drawings.
[0028]
In the processing of the waste meat M of the first embodiment, the waste meat M that has been dried by the dehumidifying dryer 4 is loaded together with the wood chips T for combustion into the furnace body 20 of the natural carbonization furnace 1 as described above. However, at the time of this loading, as shown in FIG. 7, a layer of the wood chips T is formed at the lowermost part, a waste M is filled thereon, and a layer of the wood chips T is further formed at the uppermost part. Good. This is because the presence of the layer of flammable wood chips T at the bottom allows the process from ignition to spontaneous combustion to proceed smoothly, and that the layers of wood chips T at the bottom and top are at low temperatures in the initial heating stage. This is because it functions as a cover for preventing scattering of the waste meat components that are easily generated.
[0029]
The wood chips T for combustion to be used include thinned wood and bamboo, thinned pruning trees, offcuts and remnants from sawmilling and processing processes, wood chips from construction, and waste products from wood and bamboo. Various kinds of unnecessary materials such as waste materials generated in home demolition and house demolition, and nut shells such as nut shells can be used. There is no particular limitation on the size and form of the wood chips T. Even if the sizes are not uniform, there is no problem. However, if the size is too large, the ventilation path in the load layer becomes uneven, and conversely, it is too small. In this case, the gap between them becomes small, and the propagation of hot air from below to above is inhibited.
[0030]
The usage ratio of the waste meat M and the wood chips T is not particularly limited, but is generally about 1/1 to 5/1 in terms of the weight ratio of M: T, and the process from ignition to spontaneous combustion is smooth. It is preferable that the wood chips T constituting the lowermost layer of the furnace space are set to a range of about 5 to 30% by volume with respect to the waste meat M.
[0031]
After the waste meat M is thus loaded into the natural carbonization furnace 1 together with the wood chips T for combustion, the inlet 27a of the ignition heat source introduction cylinder 27 is opened, and the ignition heat source such as the flame of the gas burner 60 is opened as shown in FIG. It is introduced into the introduction cylinder 27. As a result, the combustion gas of the ignition heat source and the heated air fill the ignition chamber 26 via the relay chamber 26a in a mixed state, and further enter the furnace space 10 through the air introduction holes 37 of the inner bottom plate 25a. Thus, the lowermost wood chips T are ignited, and thermal decomposition by their spontaneous combustion is started. Thus, the inlet 27a of the ignition heat source introducing cylinder 27 is closed by the damper 38 when the lowermost wood chips T start spontaneous combustion.
[0032]
Along with the start of the spontaneous combustion, the generated high-temperature combustion gas rises through the gap between the wood chips T and propagates the hot air from below to above, and a part of the combustion gas is discharged into the exhaust inlets 51. The lower portion of the exhaust tube 50 is heated from both inside and outside by the hot air of the sucked combustion gas and the hot air generated by the spontaneous combustion of the surrounding wood chips T. Then, as the spontaneous combustion further spreads, the reddish portion of the exhaust stack 50 gradually expands upward due to the increased hot air and heat storage of the combustion gas, and finally the entire heated exhaust stack 50 becomes a red hot state. As a result, the waste meat M is heated by the hot air rising from below and the hot air radiated from the heated exhaust pipe 50 to the surroundings, and is thermally decomposed from both the lower side and the center side of the deposition layer. At first, the temperature reaches the spontaneous combustion temperature and spontaneously burns, and as the region of the spontaneous combustion and thermal decomposition expands, the heating exhaust pipe 50 further increases in temperature due to an increase in the amount of combustion gas flowing therein, thereby increasing heat radiation to the surroundings. The progress of the thermal decomposition reaction and the expansion of the spontaneous combustion region are accelerated by the synergistic effect, so that the entire furnace space 10 eventually becomes a uniform high temperature state, and all of the loaded waste M and wood chips T are thermally decomposed.
[0033]
In this carbonization process, the combustion exhaust gas G from the heated exhaust stack 50 1 The outside air is sucked into the ignition chamber 26 from the outside air suction port 28 along with the discharge of the air, and the amount of the outside air sucked is restricted by a flow control valve 30 provided in the middle of the outside air suction pipe 29, thereby the furnace space is reduced. Maintain 10 in an oxygen deficient state. As a result, the waste meat M and the wood chips T continue to be thermally decomposed in a state in which the carbon component hardly burns due to incomplete combustion, and eventually carbonize completely inside. On the other hand, the combustion exhaust gas G discharged from the heating stack 50 1 Is sent to the gas reburning furnace 2 and recombusted as described above, so that even if a small amount of organic matter is contained in the gas, it is completely decomposed.
[0034]
Further, the temperature in the furnace of the carbonization furnace 1 and the combustion exhaust gas G 1 Is measured by a temperature sensor or the like, and the temperature inside the furnace can be adjusted by opening and closing and adjusting the opening degree of the flow control valve 30 according to the measured temperature. The opening and closing of the flow control valve 30 and the adjustment of the opening thereof are performed in such a manner that a processing temperature condition set based on test data obtained in advance is input to a control mechanism, and is automatically controlled in accordance with a temperature measured by a temperature sensor or the like. What is necessary is just to comprise.
[0035]
In the processing of the waste meat M of the first embodiment, it is preferable that the furnace temperature of the carbonization furnace 1 be set to be 300 ° C. or more, continue for 5 hours or more, and go through a process of 900 ° C. or more. That is, abnormal prions, which are pathogens of bovine spongiform encephalopathy (BSE), have the property of gradually denaturing or decomposing at temperatures of 300 ° C. or higher, lose their pathogenicity by prolonged heating, and at high temperatures of 700 to 900 ° C. Since it is completely thermally decomposed, the possibility of remaining in the carbide after the carbonization treatment can be completely eliminated by the above-mentioned temperature setting even if it exists in the waste meat M. In some cases, the furnace temperature history satisfies the above conditions even in a state where the flow control valve 30 is left at a constant opening degree, depending on the properties, the mixing ratio, and the like of the waste meat M to be treated and the auxiliary chips T.
[0036]
When the spontaneous combustion in the carbonization furnace 1 ends, the clamps 39 are removed, and as shown by the phantom line in FIG. 5, the opening / closing lid 40 is opened, and the carbonization furnace 1 is tilted forward to carbonize the inside. The processed material is scraped and stored in an appropriate container or bag.
[0037]
The obtained carbonized product is completely carbonized while maintaining the original woody chips T and waste meat M. The carbide of the waste meat M is composed of bone char whose shape is mainly composed of bone-derived calcium phosphate, charcoal derived from meat, and three-dimensional carbon whiskers derived from bone marrow trabecular bone. The carbide of the wood chips T is charcoal or bamboo charcoal having a carbon content of about 100%.
[0038]
The above-mentioned bone charcoal is an extremely tough porous substance, and contains about 50% of a calcium phosphate component and about 10% of carbon according to elemental analysis and X-ray fluorescence analysis. Further, the results of the protein microanalysis show that the charcoal of the waste meat M has been completely thermally decomposed, including bone charcoal, and has been proved to contain no protein.
[0039]
In such a processing method, since the waste M is carbonized by the spontaneous combustion together with the wood chips T, only a very small amount of fuel is consumed as the ignition heat source at the start of the processing and the heat source of the gas reburning furnace 2, and furthermore, complete. Most of the carbon component remains without being ashed and burned. Therefore, according to this treatment method, compared with the conventional incineration of waste meat using fossil fuel, the energy consumption is extremely small, the treatment can be performed at extremely low cost, and the carbon dioxide emission is also reduced. Since it will be significantly reduced, the impact on the environment will be negligible, and will meet the carbon dioxide emission regulations ratified by the Kyoto Protocol.
[0040]
In addition, the carbonized product is carbonized so that no organic matter including protein is present in the inside, and even if abnormal prions and other pathogens are present in the original waste meat, it is completely thermally decomposed. Since there is no fear of remaining, the charcoal derived from the waste meat M is reused together with the charcoal or bamboo charcoal derived from the wood chips T as a safe carbonaceous material for various uses such as a soil improvement material, a hygroscopic material, and a water purification material. It is possible. In particular, three-dimensional carbon whiskers derived from bone marrow trabeculae have been found to be a unique carbon fiber having a three-dimensional network structure and exhibiting three-dimensional isotropic electrical conduction. Although it cannot be synthesized by conventional science and technology due to its structure based on tissue, it can be supplied in large quantities due to the spread of this treatment method, and its future application in the electrochemical field etc. is expected.
[0041]
Furthermore, in the processing method of the first embodiment, the high-temperature exhaust gas G 2 Outside air A using the heat of 0 And heated air A obtained 1 Is cooled and dehumidified and dried. 2 Since the waste M before the carbonization treatment is dried at, a heat source for the drying treatment is not required, and the moisture content of the waste M charged into the carbonization furnace 1 is reduced, so that the waste water during the carbonization treatment is reduced. In addition to reducing the effect of lowering the temperature due to the heat of vaporization of the water, the waste meat M becomes difficult to adhere to each other due to the drying of the surface, and a gap through which hot air passes is easily formed between the waste meat M, thereby improving the processing efficiency. Carbonization proceeds quickly. In addition, the introduced outside air A 0 -Temperature exhaust gas G after heat exchange with 2 Is discharged to the outside after passing through the water heater 5, so that the heat is further used for the production of hot water, so that the heat energy can be effectively used as close as possible throughout the treatment method.
[0042]
On the other hand, the air used for the drying treatment contains odors emitted from the waste meat M. In particular, when the waste meat M is putrefactive, there is a possibility that putrefactive bacteria, mold spores, etc. may be mixed together with a strong malodorous component. There is air A coming out of the dehumidifying dryer 4 3 Into the gas reburning furnace 2 and the flue gas G from the carbonization furnace 1 1 As a result, the odor and fungi are completely decomposed, and the gas released to the outside via the water heater 5 is odorless and contains no harmful components. Note that the furnace temperature of the gas reburning furnace 2 is preferably set to about 800 to 1000 ° C. in order to completely thermally decompose trace organic substances.
[0043]
[Processing example]
In the apparatus configuration shown in the flow chart of FIG. 1, a carbonization furnace 1 having a structure shown in FIGS. In this treatment, bamboo thinned wood chips having a length of 1 to 10 cm and a width of 1 to 3 cm are used as wood chips for combustion. First, 100 kg of the waste meat M is loaded into the dehumidifying dryer 4, while the carbonizing furnace 1 is filled with bamboo. 100 kg of only the thinned wood chips were loaded, the furnace temperature after heating by spontaneous combustion was set at about 450 ° C. to produce bamboo charcoal, and the gas reburning furnace 2 (furnace temperature about High-temperature exhaust gas G from (fixed at 800 ° C) 2 And introduction outside air A 0 Air obtained by heat exchange with water and dehumidifying and drying in the cooling device 3 2 (Temperature: 70 to 80 ° C., Humidity: 1 to 2%) was sent to the dehumidifier / dryer 4 to dry the waste meat M.
[0044]
Next, bamboo charcoal produced 15 hours after the ignition of the carbonization furnace 1 was taken out, and 85 Kg of bone-equipped meat removed from the dehumidifying dryer 4 (total amount ... 15 kg of drying loss) taken out of the bamboo charcoal in the carbonization furnace 1. 50 kg of thinned wood chips were loaded in such a manner that the total amount of bamboo thinned wood chips was divided in half to form the lowermost layer and the uppermost layer, and carbonized. In this process, the temperature control valve 30 was left at a constant opening without actively controlling the furnace temperature, and a thermocouple was inserted into the thermocouple insertion hole 24 to maintain the temperature at the upper position of the waste layer. Measured. The gas reburning furnace 2 was fixed at a furnace temperature of about 800 ° C., and dried air A obtained by the same heat exchange and dehumidification drying as described above. 2 Was sent to the dehumidifier / dryer 4 and was used for drying the waste meat with bone used in the next treatment.
[0045]
When the opening / closing lid 40 of the carbonization furnace 1 was opened 15 hours after the ignition of the carbonization treatment, the spontaneous combustion was terminated. Then, when the carbonization furnace 1 was tilted forward and the carbonized product was taken out, all of the waste meat and the thinned bamboo-thinned wood were completely carbonized to the inside while maintaining the original shape. As shown in FIG. 9, the temperature at the top of the waste layer measured during the treatment reaches the maximum temperature of about 975 ° C. in about 30 minutes after ignition, and then reaches about 550 ° C. in about 1 hour after ignition. After that, it is kept at 350 ° C or higher for more than 10 hours, and even if abnormal prions and other pathogens are contained in the original meat, it is completely degraded and loses its pathogenicity Is evident.
[0046]
X-ray microanalyzer analysis was performed by selecting carbides derived from the waste meat from the removed carbonized products, and the detected elements were C, Fe, Ca, P, and K. Further, a scanning electron micrograph (magnification: 75) of the inside (meat part) of the carbide divided from the bone-derived surface smooth portion was taken, and the surface smooth portion was shown in FIG. ). Further, when a trace amount analysis of the protein was performed on this carbide, no protein was detected.
[0047]
The flowchart of FIG. 2 shows a second embodiment in which the processing method of the present invention is applied to the processing of livestock bone B. In the figure, 1 is a natural carbonization furnace, 2 is a gas reburning furnace, 3 is a cooling device, 4 is a dehumidifier / dryer, 5 is a water heater, and 6a and 6b are fans interposed in an air supply path. In common with the first embodiment, a roll crusher 7 is disposed above the dehumidifying dryer 4, and a belt conveyor 4a is attached to the lower part of the dehumidifying dryer 4. The carbonization furnace 1 is the same as that described in the first embodiment with reference to FIGS.
[0048]
In the second embodiment, the livestock bone B to be treated is first crushed to an appropriate size by the roll crusher 7 and put into the lower dehumidifying dryer 4 to a certain extent in the dehumidifying dryer 4. After removing the water, it is dropped into the carbonizing furnace 1 via the belt conveyor 4a. At this time, the wood chips T for auxiliary combustion are also charged into the carbonization furnace 1 at the same time, and both B and T are carbonized in the carbonization furnace 1 by spontaneous combustion. The flow of the exhaust gas and the air is the same as in the first embodiment, and the combustion exhaust gas G 1 Is sent into the gas reburning furnace 2 and the air A sent from the dehumidifying dryer 4 3 And is discharged to the smoke stack 2b, and the air A introduced into the heat exchange jacket 2c when passing through the smoke stack 2b. 0 High-temperature exhaust gas G after heat exchange with 2 And is cooled by exchanging heat with water before being discharged to the outside through an exhaust port 5a. Further, the heated air A heated by the heat exchange in the heat exchange jacket 2c. 1 Is sent to the cooling device 3 to be dehumidified and dried by dew condensation of the contained water, and the dry air A 2 Is sent to the dehumidifying dryer 4, and after drying the livestock bone B in the dryer 4, it is sent to the gas reburning furnace 2 and reburned.
[0049]
In the processing of the livestock bone B, when the livestock bone B and the wood chips T are loaded into the furnace main body 20 of the carbonization furnace 1, the process from ignition to spontaneous combustion proceeds smoothly, and component scattering in the initial stage of heating is prevented. In order to prevent this, it is recommended to form a layer of only the wood chips T at the lowermost and uppermost portions as in the first embodiment. However, since the livestock bone B has a small amount of flammable components, the intermediate portion is also required. It is desirable that the livestock bone B and the wood chips T are mixed. In addition, the same wood chips T as the first embodiment can be used as the wood chips T for assisting combustion. However, since the flammable component of the livestock bone B is small, the usage ratio of the livestock bone B and the wood chip T is B / T. It is recommended that the weight of the wood chips T be larger than that of the waste meat M, which is about 0.5 / 1 to 2/1 in weight ratio.
[0050]
The carbonization process itself is the same as in the first embodiment. An ignition heat source such as a flame of the gas burner 60 is introduced into the ignition heat source introduction cylinder 27 of the carbonization furnace 1 to ignite the lowermost wood chips T. At the time when the spontaneous combustion starts, the inlet 27a of the ignition heat source introducing cylinder 27 may be closed, and the inside of the furnace may be set to a moderate oxygen deficiency state by adjusting the flow control valve 30. Thus, the heated exhaust pipe 50 gradually glows red from the lower portion due to the hot air of the high-temperature combustion gas generated by the spontaneous combustion, and the livestock bone B and the wood chips T glow with the hot air rising from below. It is heated by the hot air radiated from the heating exhaust pipe 50 to the surroundings, starts to be thermally decomposed from both the lower side and the center side, further reaches the self-combustion temperature, spontaneously burns, and eventually the entire furnace space 10 has a uniform high temperature state. , And all of the loaded livestock bone B and wood chips T are completely pyrolyzed to the inside to become carbide. On the other hand, the combustion exhaust gas G discharged from the heating stack 50 1 Is sent to the gas reburning furnace 2 and recombusted as described above, so that even if a small amount of organic matter is contained in the gas, it is completely decomposed.
[0051]
The furnace temperature of the carbonizing furnace 1 can be adjusted by opening and closing the flow control valve 30 and adjusting the opening degree as described above. However, even in the processing of the livestock bone M of the second embodiment, the pathogenicity caused by abnormal prions and other pathogens is reduced. In order to complete the loss, it is preferable that the temperature is maintained at 300 ° C. or more for 5 hours or more and a process of 900 ° C. or more is performed, as in the first embodiment.
[0052]
Thus, the carbonized product taken out of the carbonization furnace 1 after the spontaneous combustion has been terminated is completely carbonized while maintaining the original form of the livestock bone B and the wood chips T. Bone charcoal, which is a carbide of livestock bone B, is an extremely tough porous substance, and contains about 50% of a calcium phosphate component and about 10% of carbon similarly to the bone portion of the above-mentioned waste meat B. However, it has been proved that the organic component has been completely thermally decomposed and contains protein by protein microanalysis.
[0053]
The flowchart of FIG. 3 shows a third embodiment in which the processing method of the present invention is applied to the processing of livestock dung F such as cow dung and horse dung. In the figure, 1 is a natural carbonization furnace, 2A and 2B are gas reburning furnaces, 3 is a cooling device, 4 is a dehumidifier / dryer, 5 is a water heater, 6a and 6b are fans interposed in an air supply path, and 8 is a carrier. A lift, 9 is a primary hot-air dryer, 11 is a quantitative feeder, 12 is a granulator, and 13 is a paddle type mixer. The carbonization furnace 1 is the same as that used in the first and second embodiments, and the gas reburning furnace 2A adjacent to the carbonization furnace 1 is also the gas reburning furnace in the first and second embodiments. 2, except that a gas reburning furnace 2B is provided, and a screw conveyor 4b is provided below the dehumidifying dryer 4.
[0054]
In the third embodiment, the livestock dung F to be treated is first sent to the primary hot-air dryer 9 by the transport lift 8, and after being removed to some extent in the hot-air dryer 9, is fed into the fixed-quantity feeder 11. Then, the fixed amount feeder 11 supplies a fixed amount to the granulator 12 at a predetermined feed rate, and extrudes the granules from the granulator 12 into granules of a required size and stores the granules in the dehumidifying dryer 4. Then, the granular livestock dung F, which was kept in the dehumidifying dryer 4 for a predetermined time to further remove the water, was charged into the paddle type mixer 13 via the screw conveyor 4b, and was also charged into the mixer 13 similarly. The mixture is stirred and mixed with the wood chips T for combustion support, loaded into the carbonization furnace 1 in the state of this mixture, and carbonized by spontaneous combustion.
[0055]
Combustion exhaust gas G generated from the carbonization furnace 1 during the carbonization process 1 Is sent into the gas reburning furnace 2A, is further heated by the reburning using the gas burner 2a, and is discharged to the smoke stack 2b. When passing through the smoke stack 2b, the outer heat exchange jacket 2c Air A introduced into 0 High-temperature exhaust gas G that exchanges heat with 2 Then, it is sent into the primary hot-air dryer 9 and is subjected to hot-air drying of the livestock dung F in the dryer 9. Further, the gas G containing the foul odor and moisture generated from the livestock dung F through the hot air drying 3 Is the air A sent from the dehumidifying dryer 4 3 Is sent to the gas reburning furnace 2B, sent to the water heater 5 after reburning by the gas burner 2a, cooled by heat exchange with water, and then exhausted at the outlet of the water heater 5 It is released to the outside through the mouth 5a. On the other hand, the heated air A that has undergone heat exchange in the heat exchange jacket 2c 1 Is sent to the cooling device 3 to be dehumidified and dried. 2 After drying the granular livestock dung F in the dryer 4, the air A containing the water transferred from the livestock dung F 3 The above gas G 4 And sent to the gas reburning furnace 2B.
[0056]
By the way, in the carbonization treatment of the livestock dung F, if the livestock dung F is in the original state, in addition to containing a large amount of water, the whole becomes in a close contact state when loaded into the carbonization furnace 1, so that the spontaneous combustion causes It is almost impossible to carbonize. However, in this treatment method, the livestock dung F is granulated, dried, and further loaded into the carbonization furnace 1 in a state of being mixed with the wood chips T. A gap for passing hot air is secured between the wood chips T and the wood chips T. In addition, the reduction of the water content of the livestock dung F itself and the mixture of the flammable wood chips T make it possible to efficiently promote spontaneous combustion and carbonize. It becomes possible. Further, in this processing method, the original livestock dung F is converted into the high-temperature exhaust gas G from the gas reburning furnace 2A in the primary hot air dryer 9. 2 Therefore, granulation by the granulator 12 is facilitated by previously drying with hot air.
[0057]
In the carbonization process of the third embodiment, in order to smoothly progress the process from ignition to spontaneous combustion, apart from the mixture of the particulate livestock dung F and the wood chips T for combustion, the same woody material is used. It is recommended that a layer of only the woody chips T be formed at the bottom using the chips T and the mixture is loaded thereon. Thus, the use ratio between the livestock dung F and the wood chips T may generally be about 1/1 to 5/1 in terms of the weight ratio of F / T.
[0058]
The temperature in the furnace of the carbonization furnace 1 may be maintained at 300 ° C. or more for 5 hours or more because the livestock dung F has no problem of abnormal prions such as the waste meat M and the livestock bone B. The temperature may be set to be higher than or equal to ° C. The temperature inside the gas reburning furnaces 2A and 2B may be set to about 800 to 1000 ° C.
[0059]
In the treatment method of the third embodiment, the spontaneous combustion is terminated and the carbonized product taken out of the carbonizing furnace 1 is made of charcoal or bamboo charcoal with the wood chips T carbonized and charcoal particles with the granular livestock dung F carbonized. However, both are completely thermally decomposed to the inside, contain no organic matter, and are odorless, so that they can be effectively used as soil improvement materials and the like. In addition, since the livestock dung F is subjected to primary hot air drying and drying after granulation using heat from spontaneous combustion in the carbonizing furnace 1 and heat from reburning in the reburning furnace 2A, fuel consumed is carbonized. Only a very small amount is required as the ignition heat source of the furnace 1 and the heat source of the gas reburning furnaces 2A and 2B, so that the livestock dung F can be efficiently purified at extremely low cost. Moreover, the gas G from the primary hot air dryer 9 3 And air A coming out of the dehumidifying dryer 4 3 Contains an intense foul odor of the livestock dung F, and since the foul odor component is thermally decomposed by reburning in the reburning furnace 2B, the gas finally discharged to the outside from the exhaust port 5a of the water heater 5 Is also odorless, and there is no concern that odors will be released to the surrounding area. Therefore, this treatment method is sufficiently cost-effective as a fundamental treatment means for livestock excrement, and can maintain the treatment facility and the surrounding environment in a sanitary manner.
[0060]
The flowchart of FIG. 4 shows a fourth embodiment in which the processing method of the present invention is applied to the processing of garbage. In the figure, 1 is a natural carbonization furnace, 2 is a gas reburning furnace, 3 is a cooling device, 4 is a dehumidifier / dryer with a belt conveyor 4a attached to the lower part, 5 is a water heater, and 6a and 6b are interposed in the air supply path. The fan 13 is a paddle type mixer. The carbonization furnace 1 is the same as that used in the first to third embodiments.
[0061]
In the fourth embodiment, the garbage G to be treated is first stirred and mixed with the wood chips T for combustion by a paddle type mixer, and the mixture is put into the dehumidifying dryer 4 in the state of the mixture. After removing water to a certain extent, it is charged into the carbonization furnace 1 via the belt conveyor 4a and carbonized by spontaneous combustion. Combustion exhaust gas G from this carbonization furnace 1 1 Is sent to the gas reburning furnace 2 where it is reburned and discharged to the smoke stack 2b. The air A introduced into the heat exchange jacket 2c when passing through the smoke stack 2b 0 High-temperature exhaust gas G after heat exchange with 2 And is cooled by exchanging heat with water before being discharged to the outside through an exhaust port 5a. Further, the heated air A heated by the heat exchange in the heat exchange jacket 2c. 1 Is sent to the cooling device 3 to be dehumidified and dried by dew condensation of the contained water, and the dry air A 2 Is sent to the dehumidifying dryer 4 to dry the mixture of the garbage G and the wood chips T, and then the air A containing the moisture transferred from the mixture. 3 As a result, a part of the air A is discharged to the outside and the rest is newly introduced air A. 0 And is returned to the heat exchange jacket 2c.
[0062]
In the fourth embodiment, although a large amount of water is contained in the garbage G to be treated, the carbonizing furnace 1 is preliminarily mixed with the flammable wood chips T, and the dehumidifying dryer 4 removes water to some extent. After that, it is charged into the carbonization furnace 1, so that it is possible to efficiently promote the spontaneous combustion and carbonize. Thus, even in the carbonization treatment in this case, in order to smoothly progress the process from ignition to spontaneous combustion, apart from the mixture of the granular livestock dung F and the wood chips T for combustion, the same wood chips T are used. It is recommended that a layer of only the wood chips T be formed at the lowermost portion, and the mixture is loaded thereon. However, the usage ratio between the garbage G and the wood chips T may generally be about 1/1 to 5/1 by weight of G / T.
[0063]
The temperature in the furnace of the carbonization furnace 1 may be 300 ° C. or more and continue for 5 hours or more as in the case of the livestock dung F, but may be set to go through a process of 900 ° C. or more if necessary. In particular, if there is a possibility that chlorine-containing components such as vinyl chloride film may be mixed in the garbage G, in order to prevent the generation of dioxins, the furnace temperature must be set to 900 ° C. It is desirable to do. Also, the temperature inside the gas reburning furnace 2 may be generally about 600 to 1000 ° C., but if there is a possibility that a chlorine-containing component may be mixed in the garbage G as described above, The temperature is preferably set to 900 ° C. or higher in order to surely decompose dioxins.
[0064]
In the carbonization process of the fourth embodiment, the carbonized product taken out of the carbonization furnace 1 after the spontaneous combustion is terminated is made of charcoal or bamboo charcoal obtained by carbonizing the wood chips T, and charcoal leaving the garbage G form. Since both of them are completely thermally decomposed to the inside and contain no organic matter and are odorless, they can be reused for various uses such as a soil conditioner, a moisture absorbent, and a water purification material. Thus, in this treatment method, the garbage G is carbonized by spontaneous combustion in a form in which almost all of the carbon component remains, and furthermore, heat generated by the spontaneous combustion in the carbonizing furnace 1 and heat generated by the reburning in the reburning furnace 2 are used. Since the pre-drying is performed, the fuel consumption is significantly reduced and the processing can be performed at extremely low cost, and the carbonization furnace 1 and Since it is easy to set the furnace temperature of the gas reburning furnace 2 to a high temperature such as 900 ° C. or higher, even when other miscellaneous mixed components are present in the garbage G, toxic components and environmental Hormonal components and the like can be reliably prevented from being emitted.
[0065]
In the first to fourth embodiments described above, hot water is produced by passing the exhaust gas through the water heater 5 before discharging the exhaust gas to the outside. However, the heat of the exhaust gas is used to dry, keep warm, and heat various materials. It can be used for applications that use various thermal energies other than hot water production. Further, the organic solid waste to be treated is not limited to the waste meat M, livestock bone B, livestock dung F, and garbage G, but also includes those belonging to non-living tissues such as plastics and fiber materials. However, this processing method and processing apparatus are particularly suitable for processing solid waste mainly composed of living tissues and excrement of animals and plants, and although not illustrated, meat-and-bone meal made from body tissues of livestock has not been exemplified. It is also very useful for processing. The organic solid waste referred to in the present invention excludes a woody material that is an original charcoal raw material such as wood or bamboo as a wood chip for combustion support.
[0066]
However, since the processing apparatus of the present invention is very simple in configuration as exemplified in the first to fourth embodiments, it is easy to reduce the size and the size of the processing apparatus according to the required processing amount. In addition, the equipment cost is low, and depending on the properties of the organic solid waste to be treated, various suitable methods such as pulverization, mixing, hot air drying, granulation, etc. in the preparation stage before drying treatment to carbonization treatment are performed. The processing efficiency and work efficiency can be improved by adding a pretreatment means, and the heat generated in the processing can be effectively used in various forms.
[0067]
The design of the carbonization furnace can be changed in various ways besides the structure illustrated in FIGS. That is, in the illustrated pivotable pivot structure, it is easy to take out the carbonized material after the treatment, but for example, a fixed type is provided with an outlet for the carbonized material at the lower portion, or the material is lifted by a crane or the like. It is also possible to adopt a configuration in which the carbonized product is taken out by inclining or reversing it. Further, the number of heating exhaust pipes provided in the furnace body of the carbonization furnace may be set to a plurality of pipes, and the heating exhaust pipe is constituted by an inner pipe portion of the heating exhaust pipe having a double cylindrical exhaust path from the upper end thereof. Alternatively, it is also possible to configure a pipeline that is turned from the upper end to the bottom side of the furnace main body. Further, the heat exchange section between the high-temperature exhaust gas discharged from the gas reburning furnace and the introduced outside air may be provided at an arbitrary position in the flue that leads to the release of the high-temperature exhaust gas to the outside, and the heat exchange section extends over substantially the entire length of the flue. An exchange unit may be configured.
[0068]
【The invention's effect】
According to the invention of claim 1, as a method of treating organic solid waste such as waste meat and meat-and-bone meal, a self-burning carbonization furnace having a specific structure is used, and an organic solid waste which is dried in the furnace body of the carbonization furnace is used. After the waste is loaded together with the wood chips for combustion and ignited from the bottom of the furnace body, the organic solid waste is spontaneously burned in an oxygen-deficient state with red heat of a heating exhaust pipe arranged in the furnace body. Is carbonized by pyrolysis together with the wood chips for combustion, so that the carbonized product after treatment is completely carbonized to the inside and contains no organic matter, and the waste is the body tissue of livestock. Even if it contains pathogens such as abnormal prions, it can be completely decomposed by thermal decomposition and reliably rendered harmless.Furthermore, filth such as animal excrement and garbage can be completely purified. Use fossil fuels High efficiency at very low cost, avoiding large amounts of carbon dioxide emission to the atmosphere like conventional incineration by incineration and burning, and the processed product is safe and very useful as carbonaceous material An epoch-making processing method that becomes an important recycle resource is provided.
[0069]
According to the second aspect of the present invention, in the method for treating organic solid waste, the combustion exhaust gas discharged from the heating stack of the carbonization furnace is guided into the gas reburning furnace to be reburned. Even if trace amounts of organic matter are included in the exhaust gas, it can be completely thermally decomposed by reburning, ensuring that pathogen components, toxic components, harmful components such as environmental hormones, and odor components are released to the outside with the exhaust gas. Can be stopped.
[0070]
According to the third aspect of the present invention, in the method for treating organic solid waste, the temperature of the introduced outside air is increased by heat exchange with the high-temperature exhaust gas discharged from the gas reburning furnace, and the obtained heated air is cooled. Dehumidification drying by dew condensation of the contained water, since the drying process of the organic solid waste is performed by this dry air, in addition to improving the carbonization treatment efficiency by reducing the water content of the waste to be treated, Since a separate heat source for the drying treatment is not required, the energy consumption can be reduced and the treatment cost can be reduced.
[0071]
According to the invention of claim 4, in the above-mentioned method for treating organic solid waste, by adjusting the amount of air introduced into the furnace main body in the carbonization furnace, the furnace temperature is maintained at 300 ° C. or more and continues for 5 hours or more. Since the temperature is set to be higher than 900 ° C., pathogens such as abnormal prions contained in the waste can be completely decomposed by thermal decomposition in the carbonization process, and can be completely rendered harmless.
[0072]
According to the invention of claim 5, in the above method for treating organic solid waste, the organic solid waste is mainly composed of body tissues of livestock, and the meat of livestock disposed of on suspicion of sickness or death Low cost and efficient carbonization of bone, internal organs and other body tissues, meat-and-bone meal stored forbidden use, and waste meat including bones and internal organs continuously generated in large quantities during the meat manufacturing process And complete detoxification.
[0073]
According to the invention of claim 6, in the method for treating organic solid waste, the organic solid waste is granulated livestock excreta, and the livestock excreta before granulation is converted into the gas reburning furnace. Pre-treatment of hot air drying with high-temperature exhaust gas from the garbage can be efficiently spontaneously combusted and completely thermally decomposed, even though it is originally an object that is difficult to carbonize. In addition, it can be converted into a useful carbonaceous material as a soil conditioner and the like, and the high-temperature exhaust gas from the gas reburning furnace is used for hot air drying in the pretreatment, thereby improving the energy efficiency of the entire treatment.
[0074]
According to the invention of claim 7, in the method for treating organic solid waste, the organic solid waste is garbage, and the garbage is mixed with the wood chips for combustion in the furnace of the carbonization furnace. Since it is loaded into the main body, it is possible to efficiently promote spontaneous combustion and carbonize even though the non-processed material is garbage with a high moisture content, and it is completely complete like conventional garbage incineration. Compared to burning incinerated fuel, fuel consumption is significantly reduced, and processing can be performed at extremely low cost.
[0075]
According to the invention of claim 8, as an organic solid waste processing apparatus, it can be applied to the above-mentioned processing method, can perform processing efficiently at low cost, and can reliably prevent discharge of harmful substances to the outside world. At the same time, heat energy can be highly circulated and used, and the structure is very simple, so it is easy to reduce the size and size of the equipment to meet the required processing amount, and the equipment cost can be reduced. Is done.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for treating organic solid waste according to a first embodiment of the present invention.
FIG. 2 is a flowchart illustrating a method for treating organic solid waste according to a second embodiment of the present invention.
FIG. 3 is a flowchart illustrating a method for treating organic solid waste according to a third embodiment of the present invention.
FIG. 4 is a flowchart showing a method for treating organic solid waste according to a fourth embodiment of the present invention.
FIG. 5 is a side view of a carbonization furnace used in the processing method and the processing apparatus of the present invention.
FIG. 6 is a front view of the carbonization furnace.
FIG. 7 is a vertical side view of the carbonization furnace.
FIG. 8 is an enlarged vertical sectional side view of a lower portion of the carbonization furnace.
FIG. 9 is a correlation diagram showing the relationship between the in-furnace temperature of the carbonization furnace and the processing time in the processing example of the present invention.
FIG. 10 is a scanning micrograph of a carbide of waste meat treated in the same processing example, (A) showing a smooth surface portion, and (B) showing a broken interior.
[Explanation of symbols]
1 Carbonization furnace
2 Gas reburning furnace
2A, 2B gas reburning furnace
2a Gas burner
2b Exhaust stack (heat exchange section)
2c Heat exchange jacket (heat exchange part)
3 Cooling device
3a Dew condensation room
3b Cooling tower
4 Dehumidifying dryer
5 water heater
5a Exhaust port
6a, 6b fan
7 Roll crusher
8 Transport lift
9 Primary hot air dryer
10 Furnace space
11 Metering machine
12 Granulator
13 Buddle type mixer
20 Furnace body
25a Inner bottom plate (inner bottom)
26 Ignition chamber (ignition section)
36 Air inlet
40 Open / close lid
50 heating exhaust
51 Exhaust inlet
52 Exhaust pipe (exhaust passage)
A 0 Inlet air
A 1 Heated air
A 2 Dry air
A 3 Air from the dehumidifying dryer
G 1 Combustion exhaust gas
G 2 High temperature exhaust gas
G 3 Exhaust gas from primary hot air dryer
M waste meat (body tissue of livestock)
B Livestock bones (body organization of livestock)
F Livestock droppings (excrement)
G garbage
T Wood chips for combustion support