WO2014092089A1 - Power semiconductor device, rectifier device, and power source device - Google Patents

Power semiconductor device, rectifier device, and power source device Download PDF

Info

Publication number
WO2014092089A1
WO2014092089A1 PCT/JP2013/083109 JP2013083109W WO2014092089A1 WO 2014092089 A1 WO2014092089 A1 WO 2014092089A1 JP 2013083109 W JP2013083109 W JP 2013083109W WO 2014092089 A1 WO2014092089 A1 WO 2014092089A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
main surface
semiconductor device
layer
type
Prior art date
Application number
PCT/JP2013/083109
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 恩田
耕一 石川
翼 武田
Original Assignee
株式会社 日立パワーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立パワーデバイス filed Critical 株式会社 日立パワーデバイス
Publication of WO2014092089A1 publication Critical patent/WO2014092089A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a power semiconductor device used in the field of power electronics, and a rectifier and a power supply device using the power semiconductor device.
  • An alternator mounted on a vehicle such as a passenger car uses a rectifier (AC-DC converter) that uses a power semiconductor device (such as a rectifier diode) to convert the alternating current generated by a generator rotated by the power of the engine into direct current. Convert to current.
  • AC-DC converter rectifier
  • a power semiconductor device such as a rectifier diode
  • a power semiconductor device for a vehicle is used for a long time in a harsh temperature environment, and a high-temperature environment and a low-temperature (room temperature) environment are repeated. Impact is a big problem. In particular, improving the thermal fatigue life of a bonding layer (such as a solder bonding layer) between electronic members and the peeling life of an insulating protective film that insulates and protects a semiconductor chip have become practical issues.
  • a bonding layer such as a solder bonding layer
  • a power semiconductor device such as a rectifier diode has a structure in which a semiconductor chip having a rectifying function is sandwiched and held between a base electrode and a lead electrode. Bonded with bonding material.
  • a semiconductor chip and each electrode are bonded with a bonding material via a thermal relaxation body whose linear expansion coefficient has an intermediate value between the linear expansion coefficient of each electrode and that of the semiconductor chip.
  • Patent Document 2 discloses a power semiconductor device having a structure in which a mesa-type semiconductor chip is sandwiched between a base electrode and a lead electrode and bonded to each electrode via a bonding material such as solder.
  • the sealing resin having a value within a specific range in which the linear expansion coefficient includes the linear expansion coefficient of the base electrode in the middle is used as the sealing resin for sealing the heat semiconductor device, the thermal fatigue life of the power semiconductor device is reduced. It has been shown to improve.
  • Patent Document 2 shows that in many cases, peeling or cracking is observed in the sealing resin when the appearance of a test object having a short life in a thermal fatigue life test of a power semiconductor device is inspected.
  • peeling or cracking occurs in the sealing resin, it is considered that moisture or impurity atoms enter from there and peel off the bonding layer such as solder or short-circuit the pn junction in the semiconductor chip.
  • the bonding layer such as solder or short-circuit the pn junction in the semiconductor chip.
  • a mesa type is used as a semiconductor chip, a pn junction is exposed on the side surface of the end of the semiconductor chip, so that moisture or solder metal atoms enter the part. Then, dielectric breakdown occurs at the pn junction.
  • an insulating protective film is further formed between the side surface of the end portion of the semiconductor chip and the sealing resin.
  • the sealing resin is peeled off or cracked, the pn junction portion of the semiconductor chip is protected by the insulating protective film, so that the function as the power semiconductor device is not lost immediately.
  • the insulation protective film is peeled off after that, the dielectric breakdown of the pn junction portion is reached and the function as a power semiconductor device is lost.
  • the relation between the peeling of the insulating protective film and the thermal fatigue life has not been sufficiently considered.
  • an object of the present invention is to provide a power semiconductor device capable of improving the thermal fatigue life, and a rectifier and a DC power supply device using the power semiconductor device. .
  • a power semiconductor device includes a semiconductor chip in which a second conductive type impurity diffusion layer is formed on a first main surface of a semiconductor substrate made of a first conductive type semiconductor layer, and a flat holding surface on the top. And holding the semiconductor chip with the first main surface facing down on the holding surface, and the impurity diffusion layer of the second conductivity type formed on the first main surface is conductive.
  • a base electrode body bonded to the holding surface via a bonding material and a first conductive type semiconductor layer constituting a second main surface that is a main surface opposite to the first main surface are electrically conductive
  • a boundary between the first conductive type semiconductor layer and the second conductive type impurity diffusion layer The pn junction portion to be formed is formed at a position closer to the first main surface than the second main surface, and insulation is provided between the peripheral portion of the semiconductor chip and the sealing resin body.
  • a protective film is formed.
  • the rectifier according to the present invention includes a diode bridge circuit formed by combining a plurality of series connection circuits of upper potential side diode elements and lower potential side diode elements, and the upper potential side diode element is a p substrate.
  • a positive electrode element is used, and an n-substrate negative electrode element is used as the lower potential side diode element.
  • the p-substrate type positive electrode element in the power semiconductor device is such that the first conductivity type semiconductor layer is a p-type semiconductor layer and the second conductivity type impurity diffusion layer is an n-type impurity diffusion layer.
  • the n-substrate type negative electrode element in the power semiconductor device is such that the first conductivity type semiconductor layer is an n-type semiconductor layer and the second conductivity type impurity diffusion layer is a p-type impurity diffusion layer.
  • the power supply device is characterized by including a rotary generator and the rectifier.
  • the present invention it is possible to provide a power semiconductor device having an improved thermal fatigue life, and a rectifier and a DC power supply device using the power semiconductor device.
  • FIG. 1 is a diagram schematically showing an example of the structure of a power semiconductor device 100 according to an embodiment of the present invention.
  • the left half of the center line shown in FIG. 1 is a front view of the appearance of the power semiconductor device 100, and the right half of the figure schematically shows the cross-sectional structure of the power semiconductor device 100.
  • FIG. 1 is a diagram schematically showing an example of the structure of a power semiconductor device 100 according to an embodiment of the present invention.
  • the left half of the center line shown in FIG. 1 is a front view of the appearance of the power semiconductor device 100
  • the right half of the figure schematically shows the cross-sectional structure of the power semiconductor device 100.
  • a semiconductor chip 10 having a rectifying function is sandwiched between a lead electrode body 20 and a base electrode body 30 made of a good conductor such as copper, and solder or the like. Are joined via the joining materials 40 and 41.
  • the semiconductor chip 10 is a mesa rectifier diode.
  • the base electrode body 30 is a basic structure of the power semiconductor device 100, and a pedestal portion 31 on which the semiconductor chip 10 is mounted and a groove portion 32 surrounding the pedestal portion 31 are formed on the upper surface portion thereof.
  • the upper surface of the pedestal portion 31 is a flat surface, and one main surface of the semiconductor chip 10 is bonded to the flat surface via a bonding material 41. Further, the lead electrode body 20 is bonded to the other main surface of the semiconductor chip 10 via a bonding material 40.
  • the sealing resin body 60 is formed of an epoxy resin or the like, seals the semiconductor chip 10 sandwiched between the base electrode body 30 and the lead electrode body 20, and also connects the lead electrode body 20 to the base electrode body 30. It plays the role of fixing. That is, the side wall of the groove portion 32 of the base electrode body 30 on the side of the pedestal portion 31 is formed so that the pedestal portion 31 overhangs, and the epoxy resin is cured after being poured into the groove portion 32.
  • the stop resin body 60 has a structure that does not come off the base electrode body 30.
  • a relatively soft thin film made of a polyimide resin or the like is formed between the peripheral edge of the semiconductor chip 10 and between the bonding materials 40 and 41 and the sealing resin body 60.
  • An insulating protective film 50 is formed. The insulating protective film 50 prevents the pn junction exposed on the side surface of the end portion of the mesa-type semiconductor chip 10 from intrusion of moisture and impurity atoms, and thermal stress generated between the semiconductor chip 10 and the sealing resin body 60. Plays a role in mitigating.
  • FIG. 2A is a diagram showing an example of the structure of the semiconductor chip 10 and its peripheral portion in the power semiconductor device 100 using the p substrate type positive element as the semiconductor chip 10
  • FIG. 2B shows the p substrate type negative element
  • FIG. 2C is a diagram showing an example of the structure of the semiconductor chip 10 and its peripheral portion in the power semiconductor device 100 used as the semiconductor chip 10
  • FIG. 2D is a diagram illustrating an example of the structure of the semiconductor chip 10a and its peripheral portion, and FIG.
  • FIG. 2D is a diagram illustrating an example of the structure of the semiconductor chip 10a and the peripheral portion thereof in the power semiconductor device 100 using the n-substrate negative electrode element as the semiconductor chip 10a. It is. Note that the semiconductor chip 10 and the peripheral edge thereof in the power semiconductor device 100 refer to a portion corresponding to a region A indicated by a broken-line rectangle in FIG. Each of FIGS. 2A to 2D is attached with a diagram showing a vertical structure of the semiconductor chips 10 and 10a, particularly in order to clarify the position of the pn junction portion 13.
  • the positive electrode element is a rectifier diode (power semiconductor device 100) using the lead electrode body 20 of the power semiconductor device 100 as an anode (anode) and the base electrode pair 30 as a cathode (cathode).
  • the negative electrode element refers to a rectifier diode (power semiconductor device 100) that uses the lead electrode body 20 of the power semiconductor device 100 as a cathode (cathode) and the base electrode body 30 as an anode (anode).
  • the names of the p substrate type and the n substrate type are based on the conductivity types of the substrates of the semiconductor chips 10 and 10a used in each rectifier diode (power semiconductor device 100).
  • n-type impurity diffusion layer 12 (n + layer).
  • the p-type semiconductor layer 11 refers to a portion where a high-concentration n-type impurity is not diffused in the p-type semiconductor substrate.
  • the main surface on the p-type semiconductor layer 11 side (the main surface opposite to the main surface on which the n-type impurity diffusion layer 12 is formed) has adhesion between the p-type semiconductor layer 11 and the metal layer.
  • p-type impurities are diffused at a high concentration, and a high-concentration p-type impurity diffusion layer (p + layer) is formed.
  • this high-concentration p-type impurity diffusion layer (p + layer) is also referred to as a p-type semiconductor layer 11.
  • a pn junction 13 is formed at the boundary between the p-type semiconductor layer 11 and the n-type impurity diffusion layer 12 inside the semiconductor chip 10 as described above.
  • the position of the pn junction 13, in other words, the diffusion depth of the n-type impurity diffusion layer 12 is appropriately about 10 to 35% of the entire thickness of the semiconductor chip 10.
  • the position of the pn junction 13 in such a range is a result of considering the reverse breakdown voltage required for the semiconductor chip 10 as a rectifier diode, the impurity concentration of the p-type semiconductor layer 11 and the n-type impurity diffusion layer 12, and the like. It was obtained based on.
  • nickel or nickel is formed on the outside of the high-concentration n-type impurity diffusion layer 12 (n + layer) and the outside of the high-concentration p-type impurity diffusion layer (p + layer) of the semiconductor chip 10, for example.
  • a metal layer made of an alloy or the like is formed (not shown). Therefore, the n-type impurity diffusion layer 12 (n + layer) and the p-type semiconductor layer 11 are electrically connected to the lead electrode body 20 or the base electrode body 30 by bonding the metal layer to the bonding materials 40 and 41. Connected.
  • the lead electrode body 20 is used as an anode (anode)
  • the n type impurity diffusion layer 12 is It arrange
  • the lead electrode body 20 is used as a cathode (cathode). Therefore, when the semiconductor chip 10 is formed of a p-type semiconductor substrate, the n-type impurity diffusion layer 12 is used. Is disposed on the upper surface side and is bonded to the bonding material 40 on the lead electrode body 20 side.
  • the insulating protective film 50 is formed on the side surface of the end portion of the semiconductor chip 10, and the sealing resin body 60 is formed on the outer side thereof. Therefore, the pn junction 13 exposed on the side surface of the end is protected from intrusion of moisture and impurity atoms by the insulating protective film 50, and the dielectric breakdown is prevented.
  • the thermal fatigue life is a period until the function of the power semiconductor device 100 is lost when the power semiconductor device 100 is repeatedly exposed to a high temperature environment and a low temperature environment, and is often estimated based on results of an acceleration test or the like. Is done.
  • the lead electrode body 20 as an anode or a cathode between the p-substrate positive electrode element and the p-substrate negative electrode element, there is no significant difference in the function as a rectifier diode.
  • the n-type impurity diffusion layer 12 is bonded to the base electrode body 30 side or the lead electrode body 20 side, there is a difference in thermal fatigue life between the two.
  • the thermal fatigue life differs is that the position of the pn junction 13 in the semiconductor chip 10 is different between the p-substrate positive electrode element and the p-substrate negative electrode element.
  • the pn junction 13 is formed at a position close to the base electrode body 30 as shown in FIG. 2A.
  • the pn junction 13 is formed at a position close to the lead electrode body 20 as shown in FIG. 2B.
  • the position where the pn junction 13 is formed in the semiconductor chip 10 is closer to the lead electrode body 20 in the case of the p substrate type negative element than in the case of the p substrate type positive element, in other words, in the upper position. Is done.
  • the insulating protective film 50 formed in contact with the side surface of the end portion of the semiconductor chip 10 is thinner in the upper part (on the lead electrode body 20 side) and lower in the lower part (the base electrode body 30). Side) thicker.
  • the environmental temperature fluctuates repeatedly it is known that peeling and cracking are more likely to occur as the insulating protective film 50 is thinner, and peeling and cracking are less likely to occur as the thickness is thicker (for reasons described later, FIG. 4).
  • the thickness of the insulating protective film 50 at the position of the pn junction 13 of the p substrate type positive element is thicker than the thickness of the insulating protective film 50 at the position of the pn junction 13 of the p substrate type negative element.
  • the p-type positive electrode element is less likely to be peeled off or cracked in the insulating protective film 50.
  • the pn junction part 13 breaks down due to moisture or impurity atoms entering the peeling or cracked part, and the function of the rectifier diode Is lost, it is determined that the life of the power semiconductor device 100 has expired.
  • the thickness of the insulating protective film 50 at the position of the pn junction 13 is greater in the p-substrate type positive element as shown in FIGS. 2A and 2B. Since it is thicker than the substrate-type negative electrode element, it can be seen that peeling and cracking are less likely to occur and the thermal fatigue life is prolonged. Therefore, in this embodiment, it is assumed that the p substrate type negative electrode element as shown in FIG. 2B is not used and the p substrate type positive electrode element as shown in FIG. 2A is used.
  • a silicon wafer doped with p-type impurities such as phosphorus
  • p-type impurities such as phosphorus
  • a high-concentration p-type impurity diffusion layer 12a p + layer
  • p-type impurities such as boron
  • the n-type semiconductor layer 11 refers to a portion where a high-concentration p-type impurity is not diffused in the n-type semiconductor substrate.
  • the main surface on the n-type semiconductor layer 11 side (the main surface opposite to the main surface on which the p-type impurity diffusion layer 12a is formed) has adhesion between the n-type semiconductor layer 11a and the metal layer.
  • n-type impurities are diffused at a high concentration, and a high-concentration n-type impurity diffusion layer (n + layer) is formed.
  • the high-concentration n-type impurity diffusion layer (n + layer) is also referred to as an n-type semiconductor layer 11a.
  • the structure of the semiconductor chip 10a as described above is substantially the same as the structure of the semiconductor chip 10 shown in FIGS. 2A and 2B in which p and n are interchanged. Therefore, the description of FIGS. 2A and 2B can be applied to FIGS. 2C and 2D only by replacing p and n, positive and negative, and positive and negative in the explanatory text. Description of FIG. 2D is omitted.
  • the thickness of the insulating protective film 50 at the position of the pn junction 13 is larger in the case of the n-substrate type negative electrode element. It is thicker than in the case of an n-substrate type positive electrode element. Therefore, in the case of the n-substrate type negative electrode element, the insulating protective film 50 is less likely to be peeled off or cracked, so that the thermal fatigue life is longer. Therefore, in this embodiment, the n-substrate type positive electrode element as shown in FIG. 2C is not used, and the n-substrate type negative electrode element as shown in FIG. 2D is used.
  • FIG. 3A is a diagram showing an example of the structure of a p-type positive electrode semiconductor chip 10 used in the power semiconductor device 100 according to the present embodiment and the peripheral portion thereof, and FIG. 3B is used for the power semiconductor device 100 according to the present embodiment. It is the figure which showed the example of the structure of the semiconductor chip 10a of an n board
  • a p-substrate type positive element as shown in FIG. 3A is used, and when the semiconductor chip 10a is configured with an n-type semiconductor substrate.
  • an n-substrate negative electrode element as shown in FIG. 3B.
  • FIGS. 2A and 2D are the same as FIGS. 2A and 2D, respectively, but in both cases, the position of the pn junction 13 is higher than the main surface of the semiconductor chips 10 and 10a on the lead electrode body 20 side. It should be noted that it is close to the main surface on the base electrode pair 30 side.
  • FIG. 4 is a diagram for explaining the relationship between the thickness of the insulating protective film 50 formed on the side surface of the end portion of the semiconductor chip 10 and the shear stress or the thermal fatigue life.
  • peeling and cracking are more likely to occur as the insulating protective film 50 is thinner, and peeling and cracking are less likely to occur as the thickness is thicker. It is shown that the thermal fatigue life becomes longer when is located on the lower side than on the upper side of the semiconductor chip 10.
  • the semiconductor chip 10 and the lead electrode body 20 are It will be in the state mounted on 30 (refer FIG. 1).
  • a liquid polyimide resin is applied to the outer peripheral portions of the bonding materials 40 and 41 and the semiconductor chip 10 and cured to form the insulating protective film 50.
  • the liquid polyimide resin has a considerable viscosity, but when applied, it hangs down due to gravity. Therefore, the thickness of the insulating protective film 50 formed by curing the polyimide resin gradually increases from the top to the bottom.
  • the positions represented by the circled circles 1 to 5 are respectively the position of the upper end portion of the semiconductor chip 10 (circled circle 1) and the pn junction formed on the upper side of the semiconductor chip 10. 13 (circled circle 2), the position of the central portion of the semiconductor chip 10 (circled circle 3), the position of the pn junction 13 formed on the lower side of the semiconductor chip 10 (circled circle 4), the lower end of the semiconductor chip 10
  • the thickness of the insulating protective film 50 is the thinnest at the position of the circle 1 and gradually becomes thicker at the positions of the circle 2, the circle 3, and the circle 4. It is thickest at position 5.
  • the shear stress ⁇ generated in the insulating protective film 50 due to the difference in linear expansion coefficient between the semiconductor chip 10 and the sealing resin body 60 causes the insulating protective film 50 on the sealing resin body 60 side in the high temperature environment and the low temperature environment.
  • the displacement amount is represented by ⁇ 1
  • the displacement amount of the insulating protective film 50 on the semiconductor chip 10 side is represented by ⁇ 2
  • the thickness of the insulating protective film 50 is represented by ⁇ .
  • the shear stress ⁇ increases as the thickness ⁇ of the insulating protective film 50 decreases, the high temperature environment and the low temperature environment are repeated with respect to the power semiconductor device 100, that is, the semiconductor chip 10 and the sealing resin body 60.
  • the insulating protective film 50 is more likely to be peeled off or cracked as it is thinner.
  • peeling or cracking is most likely to occur at the upper end portion (the position of the circle 1) of the semiconductor chip 10, and peeling or Cracks are less likely to occur. That is, peeling and cracking of the insulating protective film 50 first occurs near the upper end (position of the circled circle 1) of the semiconductor chip 10, and the peeling and cracking often take a form that gradually spreads downward.
  • the rectifying function of the semiconductor chip 10 is lost immediately and does not cause a failure.
  • the peeling or cracking of the insulating protective film 50 reaches the position where the pn junction 13 is in contact (the position of the circled circle 2 or the circled circle 4), from which moisture or impurity atoms enter the pn junction 13 and the pn junction is formed.
  • the rectifying function of the semiconductor chip 10 is lost and a failure occurs.
  • the pn junction portion 13 is formed at the position of the circled circle 2, the pn junction is broken down and the rectifying function of the semiconductor chip 10 is lost when it is formed at the position of the circled circle 4. It can be said that the period until failure, that is, the thermal fatigue life becomes longer. That is, when the semiconductor chip 10 is formed of a p-type semiconductor substrate (see FIGS. 2A and 2B), the p-substrate positive element has a longer thermal fatigue life than the p-substrate negative element, and the semiconductor chip When 10a is formed of an n-type semiconductor substrate (see FIGS. 2C and 2D), it can be seen that the n-substrate negative electrode element has a longer thermal fatigue life than the n-substrate positive electrode element.
  • FIG. 5 is a diagram showing the relationship between the position in the thickness direction from the upper end in the semiconductor chip 10 and the shear stress and thermal fatigue life generated in the insulating protective film 50 at the position in the thickness direction.
  • the horizontal axis of the graph on the right represents the relative value of the shear stress generated in the insulating protective film 50
  • the vertical axis represents the position in the thickness direction from the upper end (position of the circled circle 1) of the semiconductor chip 10. This is expressed as a relative ratio to the thickness of the entire semiconductor chip 10.
  • the relative value of the shear stress refers to the shear stress received by the insulating protective film 50 at each position when the shear stress received by the insulating protective film 50 at the upper end of the semiconductor chip 10 (the position of the circled circle 1) is 100. Is the relative value of.
  • the cross-sectional structure diagram of the insulating protective film 50 shown on the left side of FIG. 5 schematically shows the relationship between the thickness of the insulating protective film 50 and the position in the thickness direction in the semiconductor chip 10.
  • the pn junction 13 is formed on the upper side (the position of the circled circle 2), and the formation position is about 10% to 35% of the entire thickness.
  • the relative value of the shear stress is about 32 to 40.
  • the pn junction portion 13 is formed on the lower side (the position of the circled circle 4) and the formation position is about 65% to 90% of the total thickness, the relative value of the shear stress is It is about 27-30.
  • the thermal fatigue life of the power semiconductor device 100 is such that the pn junction 13 is formed on the lower side (the position of the circled circle 4), and the formation position is about 65% to 90% of the total thickness. , About 100 to 90 (relative value).
  • the pn junction portion 13 is formed on the upper side (position of the circled circle 2) and the formation position is a position of about 10% to 35% of the total thickness, the thermal fatigue life is 30 to 50%. (Relative value).
  • the pn junction part 13 is provided on the lower side of the semiconductor chip 10 (position of 65% to 90% of the semiconductor chip thickness), the lower side (position of 10% to 35% of the semiconductor chip thickness).
  • the life until peeling is reached, that is, the thermal fatigue life of the power semiconductor device 100 is improved by 2 to 3 times.
  • FIG. 6 is a graph showing the relationship between the minimum film thickness of the insulating protective film 50 and the shear adhesive strength between the silicon-insulating protective film 50
  • FIG. 7 shows the minimum film thickness of the insulating protective film 50 and the power semiconductor device 100. It is the graph which showed the relationship with a thermal fatigue life.
  • the horizontal axis of the graph in FIG. 6 represents the relative value (logarithmic scale) of the minimum film thickness of the insulating protective film 50
  • the vertical axis of the graph represents the relative value of the shear adhesive strength between the silicon and the insulating protective film 50.
  • the horizontal axis of the graph in FIG. 7 represents the relative value (logarithmic scale) of the minimum film thickness of the insulating protective film 50
  • the vertical axis of the graph represents the thermal fatigue life of the power semiconductor device 100.
  • the minimum film thickness of the insulating protective film 50 means the thickness of the insulating protective film 50 at the upper end (position of the circled circle 1) of the semiconductor chip 10.
  • the minimum film thickness of the insulating protective film 50, the shear adhesive strength between the silicon and the insulating protective film 50 (strength when the insulating protective film 50 is peeled off from the semiconductor chip 10), and the thermal fatigue of the power semiconductor device 100 It can be seen that there is a strong correlation with the lifetime.
  • the relative value of the minimum film thickness of the insulating protective film 50 when the relative value of the minimum film thickness of the insulating protective film 50 is 100%, the relative value of the thermal fatigue life of the power semiconductor device 100 is 100%, but the minimum film thickness is 10%. When it becomes 1 / (relative value is 10), the relative value of thermal fatigue life falls to about 80%. When the minimum film thickness is 1/100 (relative value is 1%), the relative value of the thermal fatigue life is reduced to about 10%.
  • FIG. 8 is a diagram showing an example of the configuration of the power supply device 200 that supplies the alternating current generated by the rotary generator 80 by direct current conversion by the rectifier 70.
  • the power supply device 200 includes a rotary generator 80, a rectifier 70, a regulator 90, a battery 92, and the like.
  • a so-called alternator mounted on a vehicle such as an engine-driven passenger car often has a configuration similar to that of the power supply device 200.
  • the rotary generator 80 includes a stator coil 81 and a rotor coil 82, and the rotor coil 82 is driven and rotated by a vehicle engine or the like.
  • a current flows through the rotor coil 82, for example, a three-phase alternating current is generated by the stator coil 81.
  • the rectifier 70 rectifies the alternating current generated by the stator coil 81, supplies the direct current to the electric load 93 such as in the vehicle, and charges the battery 92 with the surplus current.
  • upper potential side diode elements 72, 73, 74 belonging to the upper potential side diode element group 71 are connected in series to lower potential side diode elements 76, 77, 78 belonging to the lower potential side diode element group 75, respectively. Configured.
  • the sets (72, 76), (73, 77) and (74, 78) of the upper and lower diode elements connected in series constitute a so-called diode bridge circuit via the stator coil 81. To do.
  • a p-substrate type positive electrode element in which the substrate of the semiconductor chip 10 is made of the p-type semiconductor layer 11 is used as the higher-potential-side diode elements 72, 73, and 74.
  • the lower potential side diode elements 76, 77, 78 n substrate type negative electrode elements (see FIG. 3B) in which the substrate of the semiconductor chip 10a is formed of the n type semiconductor layer 11a are used.
  • the series connection circuit of the upper potential side diode element 72 and the lower potential side diode element 76 is obtained by connecting the lead electrode body 20 of the p substrate type positive electrode element and the lead electrode body 20 of the n substrate type negative electrode element. Realized. A series connection circuit of the upper potential side diode element 73 and the lower potential side diode element 77 and a series connection circuit of the upper potential side diode element 74 and the lower potential side diode element 78 are also realized in the same manner.
  • each set of the lead electrode bodies 20 includes three stators. Connected to each of the coils 81. Furthermore, the base electrode bodies 30 of the n-substrate type negative electrode elements are collectively grounded, and the base electrode bodies 30 of the p-substrate type positive electrode elements are collectively connected to the electric load 93.
  • the rectifying device 70 configured as described above uses a p-substrate positive electrode element and an n-substrate negative electrode element having a structure capable of improving the thermal fatigue life.
  • the fatigue life can also be improved.
  • the upper potential side diode elements 72, 73, 74 are aligned with the p substrate type positive element, and the lower potential side diode elements 76, 77, 78 are aligned with the n substrate type negative element. . Therefore, the rectifying device 70 has stabilized rectifying characteristics, improved operational reliability, and can reduce variations in the thermal fatigue life of the rectifying device 70.
  • the power supply device 200 including the rectifying device 70 can also have a long thermal fatigue life and can reduce variations. Furthermore, since the rectification characteristics and reliability of the rectifier 70 are improved, the stability and reliability of the operation of the power supply apparatus 200 can be improved.
  • the stator coil 81 generates a three-phase alternating current, but may generate a two-phase alternating current or a six-phase alternating current.
  • the rectifier 70 is provided with two or six series connection circuits of upper-potential-side diode elements and lower-potential-side diode elements, and these constitute a diode bridge circuit.
  • FIG. 9A is a diagram schematically showing an example of the structure of a power semiconductor device 100b configured using a planar semiconductor chip 10b
  • FIG. 9B shows the structure of the semiconductor chip 10b and its peripheral portion in the power semiconductor device 100b. It is the figure which showed the example. 9A is almost the same as the structure of the semiconductor chip 10 shown in FIG. 1 except that the semiconductor chip 10b is not a mesa type but a planar type as shown in FIG. 9B. The same. Therefore, hereinafter, in the description of FIGS. 9A and 9B, the same components as those in FIG. 1 are denoted by the same reference numerals, overlapping description will be omitted, and only different portions will be described.
  • a region B surrounded by a broken-line rectangle is an enlarged view of the structure of the region B surrounded by the broken line in the power semiconductor device 100b shown in FIG. 9A.
  • the pn junction 13 is not exposed on the side surface of the end of the semiconductor chip 10b, but on the p type or n type semiconductor substrate. On the other hand, it is exposed to the same main surface as the main surface (in FIG. 9B, the lower main surface of the semiconductor chip 10b) subjected to vapor phase diffusion of n-type or p-type impurities.
  • An insulating film 14 such as silicon oxide is formed on the surface of the pn junction 13 exposed on the main surface during the manufacturing process of the semiconductor chip 10b. Accordingly, the pn junction 13 is protected by the insulating film 14.
  • the insulating protective film 50 relieves the thermal stress generated in the semiconductor chip 10b, and the gap between the semiconductor chip 10b and the sealing resin body 60 in which the solder of the bonding materials 40 and 41 is plastically flowed. It is formed for the purpose of suppressing intrusion.
  • p board type positive electrode elements or n board type negative electrode elements as shown in Drawing 3A and Drawing 3B shall be used as semiconductor chip 10b which constitutes power semiconductor device 100b.
  • the pn junction 13 is located at a position close to the main surface facing the base electrode body 30, and the n-type or p-type high-concentration impurity diffusion layer 12b is The semiconductor chip 10b is exposed on the lower main surface.
  • an insulating film 14 is formed on the peripheral portion of the main surface, and the pn junction 13 exposed on the main surface is also covered with the insulating film 14.
  • the n-type or p-type high-concentration impurity diffusion layer 12b of the semiconductor chip 10b is bonded to the base electrode body 30 by a bonding material 41 such as solder. At this time, since the bonding material 41 does not adhere to the portion of the semiconductor chip 10b where the insulating film 14 is formed, a bowl-shaped cavity is formed between the semiconductor chip 10b and the base electrode body 30. . Thereafter, an insulating protective film 50 is formed in the cavity.
  • the insulating protective film 50 even if the insulating protective film 50 is peeled or cracked due to thermal fatigue and the bonding material 40 on the upper part of the semiconductor chip 10b reaches the lower part of the semiconductor chip 10b due to plastic flow or the like, the insulating protective film 50 on that part of the insulating chip 50b. If it does not peel off, it will not reach the lower bonding material 41.
  • the n-type or p-type high-concentration impurity diffusion layer 12b is exposed on the upper main surface of the semiconductor chip 10b (that is, n as shown in FIGS. 2B and 2C).
  • the insulating protective film 50 due to long-term thermal fatigue
  • the upper bonding material 40 reaches the lower bonding material 41 due to plastic flow or the like
  • the bowl-shaped cavity is formed. Since it is not formed, the upper bonding material 40 and the lower bonding material 41 are likely to be short-circuited.
  • the thermal fatigue life can be improved by using the p substrate type positive electrode element or the n substrate type negative electrode element as the semiconductor chip 10b constituting the power semiconductor device 100b.
  • p substrate type positive elements are used as the upper potential side diode elements 72, 73, 74, and n substrate type negative elements are used as the lower potential side diode elements 76, 77, 78.
  • a pn junction diode is formed by forming an n-type or p-type high-concentration impurity diffusion layer on a p-type or n-type semiconductor substrate.
  • a Schottky diode has a Schottky barrier on a p-type or n-type semiconductor substrate. The metal which has is joined. A junction between the semiconductor substrate and the metal having a Schottky barrier is called a Schottky junction and corresponds to the pn junction 13 in the description of the above embodiment.
  • the n-type or p-type high-concentration impurity diffusion layers 12, 12a, 12b are read as a metal having a Schottky barrier, and the pn junction 13 is In other words, the description can be applied to the Schottky diode in almost the same manner.
  • examples of the metal having a Schottky barrier with respect to the n-type semiconductor substrate include Al, Au, W, and Pt.
  • examples of the metal having a Schottky barrier with respect to the p-type semiconductor substrate include In and Zn.
  • the present invention is not limited to the embodiment described above, and includes various modifications.
  • the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with a part of the configuration of another embodiment, and further, a part or all of the configuration of the other embodiment is added to the configuration of the certain embodiment. Is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Rectifiers (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This power semiconductor device is configured using a semiconductor chip (10) of a p-substrate positive electrode element or an n-substrate negative electrode element, but in the case of a semiconductor chip (10) of a p-substrate positive electrode element, the primary surface of the semiconductor chip (10), at the side closer to a p-n junction (13) is joined to the top surface of a base electrode body (30) with a joining material (41) therebetween, and a lead electrode body (20) is joined to the top of the other primary surface of the semiconductor chip (10) with a joining material (40) therebetween. Also, an insulating protective film (50) is formed at the end lateral surfaces of the semiconductor chip (10), and furthermore, a sealing resin body (60) is formed to the outside thereof.

Description

パワー半導体装置、整流装置および電源装置Power semiconductor device, rectifier device and power supply device
 本発明は、パワーエレクトロニクス分野で用いられるパワー半導体装置、ならびに、そのパワー半導体装置を用いた整流装置および電源装置に関する。 The present invention relates to a power semiconductor device used in the field of power electronics, and a rectifier and a power supply device using the power semiconductor device.
 乗用車などの車両に搭載されているオルタネータは、エンジンの力で回転させた発電機で発電した交流電流を、パワー半導体装置(整流ダイオードなど)を用いた整流装置(交流-直流変換装置)により直流電流に変換する。このような車両用のパワー半導体装置に対しては、近年のカーエレクトロニクスの発展やアイドリングストップ車の普及に伴い、大電流化、高耐熱化、高信頼化などの要求が強まってきている。 An alternator mounted on a vehicle such as a passenger car uses a rectifier (AC-DC converter) that uses a power semiconductor device (such as a rectifier diode) to convert the alternating current generated by a generator rotated by the power of the engine into direct current. Convert to current. With respect to such power semiconductor devices for vehicles, demands for higher current, higher heat resistance, higher reliability, and the like have increased with the recent development of car electronics and the spread of idling stop vehicles.
 車両用のパワー半導体装置は、過酷な温度環境下で長時間用いられ、しかも、高温環境と低温(常温)環境が繰り返されることから、その環境下で受ける熱ストレスや熱疲労が素子寿命に及ぼす影響が大きな問題となっている。とくに、電子部材同士の接合層(はんだ接合層など)の熱疲労寿命や半導体チップを絶縁保護する絶縁保護膜の剥離寿命を向上させることが現実の具体的な課題となっている。 A power semiconductor device for a vehicle is used for a long time in a harsh temperature environment, and a high-temperature environment and a low-temperature (room temperature) environment are repeated. Impact is a big problem. In particular, improving the thermal fatigue life of a bonding layer (such as a solder bonding layer) between electronic members and the peeling life of an insulating protective film that insulates and protects a semiconductor chip have become practical issues.
 一般に、整流ダイオードなどのパワー半導体装置は、整流機能を有する半導体チップがベース電極とリード電極との間に挟まれて保持される構造をしており、半導体チップとそれぞれの電極は、ハンダなどの接合材で接合される。特許文献1には、線膨張係数が各電極の線膨張係数と半導体チップの線膨張係数の中間の値を有するような熱緩和体を介して、半導体チップとそれぞれの電極とを接合材で接合することにより、接合層の熱疲労寿命を向上させる技術が開示されている。 In general, a power semiconductor device such as a rectifier diode has a structure in which a semiconductor chip having a rectifying function is sandwiched and held between a base electrode and a lead electrode. Bonded with bonding material. In Patent Document 1, a semiconductor chip and each electrode are bonded with a bonding material via a thermal relaxation body whose linear expansion coefficient has an intermediate value between the linear expansion coefficient of each electrode and that of the semiconductor chip. Thus, a technique for improving the thermal fatigue life of the bonding layer is disclosed.
 また、特許文献2には、メサ型の半導体チップがベース電極とリード電極とに挟まれ、ハンダなどの接合材を介してそれぞれの電極に接合された構造を有するパワー半導体装置において、その半導体チップを封止する封止樹脂として、線膨張係数がベース電極の線膨張係数をその中間に含む特定の範囲の値を有する封止樹脂を使用した場合には、当該パワー半導体装置の熱疲労寿命が向上することが示されている。 Patent Document 2 discloses a power semiconductor device having a structure in which a mesa-type semiconductor chip is sandwiched between a base electrode and a lead electrode and bonded to each electrode via a bonding material such as solder. When the sealing resin having a value within a specific range in which the linear expansion coefficient includes the linear expansion coefficient of the base electrode in the middle is used as the sealing resin for sealing the heat semiconductor device, the thermal fatigue life of the power semiconductor device is reduced. It has been shown to improve.
特開2008-042084号公報JP 2008-042084 A 特開2010-199369号公報JP 2010-199369 A
 特許文献2には、パワー半導体装置の熱疲労寿命試験で寿命が短かった被試験体について外観を検査すると、多くの場合、封止樹脂に剥離や亀裂が観察されることが示されている。一般に、封止樹脂に剥離や亀裂が生じた場合、そこから水分や不純物原子が侵入し、ハンダなどの接合層を剥離させたり、半導体チップ内のpn接合部を短絡させたりすることが考えられる。とくに、特許文献2の例の場合、半導体チップとしてメサ型が用いられているため、半導体チップの端部側面にpn接合部が露出しているので、その部分に水分やハンダの金属原子が侵入すると、pn接合部に絶縁破壊が生じる。 Patent Document 2 shows that in many cases, peeling or cracking is observed in the sealing resin when the appearance of a test object having a short life in a thermal fatigue life test of a power semiconductor device is inspected. In general, when peeling or cracking occurs in the sealing resin, it is considered that moisture or impurity atoms enter from there and peel off the bonding layer such as solder or short-circuit the pn junction in the semiconductor chip. . In particular, in the case of the example of Patent Document 2, since a mesa type is used as a semiconductor chip, a pn junction is exposed on the side surface of the end of the semiconductor chip, so that moisture or solder metal atoms enter the part. Then, dielectric breakdown occurs at the pn junction.
 そこで、一般には、また、特許文献2にも記載されているように、半導体チップの端部側面と封止樹脂との間には、絶縁保護膜がさらに形成されている。その場合には、封止樹脂の剥離や亀裂が生じても、半導体チップのpn接合部は、絶縁保護膜で保護されるので、パワー半導体装置としての機能が直ちに失われることはない。しかしながら、その後、絶縁保護膜にも剥離が生じた場合には、pn接合部の絶縁破壊に到り、パワー半導体装置としての機能も失われる。従来は、このような絶縁保護膜の剥離と熱疲労寿命との関係については、十分には考慮されていなかった。 Therefore, generally, as described in Patent Document 2, an insulating protective film is further formed between the side surface of the end portion of the semiconductor chip and the sealing resin. In that case, even if the sealing resin is peeled off or cracked, the pn junction portion of the semiconductor chip is protected by the insulating protective film, so that the function as the power semiconductor device is not lost immediately. However, if the insulation protective film is peeled off after that, the dielectric breakdown of the pn junction portion is reached and the function as a power semiconductor device is lost. Conventionally, the relation between the peeling of the insulating protective film and the thermal fatigue life has not been sufficiently considered.
 以上の従来技術の現状に鑑み、本発明の目的は、熱疲労寿命を向上させることが可能なパワー半導体装置、ならびに、そのパワー半導体装置を用いた整流装置および直流電源装置を提供することにある。 In view of the above-described state of the prior art, an object of the present invention is to provide a power semiconductor device capable of improving the thermal fatigue life, and a rectifier and a DC power supply device using the power semiconductor device. .
課題を解決しようとする手段Means to solve the problem
 本発明に係るパワー半導体装置は、第1導電型の半導体層からなる半導体基板の第1の主面に第2導電型の不純物拡散層が形成された半導体チップと、上部に平坦な保持面を有し、前記第1の主面を下に向けた前記半導体チップを前記保持面上に保持するとともに、前記第1の主面に形成された前記第2導電型の不純物拡散層が導電性の接合材を介して前記保持面に接合されるベース電極体と、前記第1の主面の反対側の主面である第2の主面を構成する前記第1導電型の半導体層に、導電性の接合材を介して接合されるリード電極体と、前記ベース電極体と前記リード電極体との間に挟まれた前記半導体チップを封止する封止樹脂体と、を備え、前記半導体チップ内の前記第1導電型の半導体層と前記第2導電型の不純物拡散層との境界に形成されるpn接合部は、前記第2の主面よりも前記第1の主面に近い位置に形成されており、前記半導体チップの周縁部と前記封止樹脂体との間には、絶縁保護膜が形成されていることを特徴とする。 A power semiconductor device according to the present invention includes a semiconductor chip in which a second conductive type impurity diffusion layer is formed on a first main surface of a semiconductor substrate made of a first conductive type semiconductor layer, and a flat holding surface on the top. And holding the semiconductor chip with the first main surface facing down on the holding surface, and the impurity diffusion layer of the second conductivity type formed on the first main surface is conductive. A base electrode body bonded to the holding surface via a bonding material and a first conductive type semiconductor layer constituting a second main surface that is a main surface opposite to the first main surface are electrically conductive A lead electrode body bonded via a conductive bonding material, and a sealing resin body for sealing the semiconductor chip sandwiched between the base electrode body and the lead electrode body, A boundary between the first conductive type semiconductor layer and the second conductive type impurity diffusion layer The pn junction portion to be formed is formed at a position closer to the first main surface than the second main surface, and insulation is provided between the peripheral portion of the semiconductor chip and the sealing resin body. A protective film is formed.
 また、本発明に係る整流装置は、上位電位側ダイオード素子および下位電位側ダイオード素子の直列接続回路が複数個組み合わされてなるダイオードブリッジ回路含んで構成され、前記上位電位側ダイオード素子として、p基板型正極素子を用い、前記下位電位側ダイオード素子として、n基板型負極素子を用いてなることを特徴とする。
 ここで、p基板型正極素子とは、前記パワー半導体装置において、前記第1導電型の半導体層がp型半導体層で、前記第2導電型の不純物拡散層がn型不純物拡散層であるものをいい、n基板型負極素子とは、前記パワー半導体装置において、前記第1導電型の半導体層がn型半導体層で、前記第2導電型の不純物拡散層がp型不純物拡散層であるものをいう。
The rectifier according to the present invention includes a diode bridge circuit formed by combining a plurality of series connection circuits of upper potential side diode elements and lower potential side diode elements, and the upper potential side diode element is a p substrate. A positive electrode element is used, and an n-substrate negative electrode element is used as the lower potential side diode element.
Here, the p-substrate type positive electrode element in the power semiconductor device is such that the first conductivity type semiconductor layer is a p-type semiconductor layer and the second conductivity type impurity diffusion layer is an n-type impurity diffusion layer. The n-substrate type negative electrode element in the power semiconductor device is such that the first conductivity type semiconductor layer is an n-type semiconductor layer and the second conductivity type impurity diffusion layer is a p-type impurity diffusion layer. Say.
 また、本発明に係る電源装置は、回転発電機と、前記の整流装置と、を含んでなることを特徴とする。 Moreover, the power supply device according to the present invention is characterized by including a rotary generator and the rectifier.
 本発明によれば、熱疲労寿命が向上したパワー半導体装置、ならびに、そのパワー半導体装置を用いた整流装置および直流電源装置を提供することができる。 According to the present invention, it is possible to provide a power semiconductor device having an improved thermal fatigue life, and a rectifier and a DC power supply device using the power semiconductor device.
本発明の実施形態に係るパワー半導体装置の構造の例を示した図である。It is the figure which showed the example of the structure of the power semiconductor device which concerns on embodiment of this invention. p基板型正極素子を半導体チップとして用いたパワー半導体装置における半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip and its peripheral part in the power semiconductor device which used the p board | substrate type | mold positive electrode element as a semiconductor chip. p基板型負極素子を半導体チップとして用いたパワー半導体装置における半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip and its peripheral part in the power semiconductor device which used the p board | substrate type negative electrode element as a semiconductor chip. n基板型正極素子を半導体チップとして用いたパワー半導体装置における半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip and its peripheral part in the power semiconductor device which used the n board | substrate type positive electrode element as a semiconductor chip. n基板型負極素子を半導体チップとして用いたパワー半導体装置における半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip in the power semiconductor device which used the n board | substrate type negative electrode element as a semiconductor chip, and its peripheral part. 本発明の実施形態におけるパワー半導体装置に用いるp基板型正極素子の半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip of the p board | substrate type | mold positive electrode element used for the power semiconductor device in embodiment of this invention, and its peripheral part. 本発明の実施形態におけるパワー半導体装置に用いるn基板型負極素子の半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip of the n board | substrate type negative electrode element used for the power semiconductor device in embodiment of this invention, and its peripheral part. 半導体チップ端部側面に形成される絶縁保護膜の厚みと剪断応力または熱疲労寿命との関係を説明するための図である。It is a figure for demonstrating the relationship between the thickness of the insulating protective film formed in a semiconductor chip edge part side surface, and a shear stress or a thermal fatigue life. 半導体チップ内における上端部からの厚み方向位置と、その厚み方向位置における絶縁保護膜に生じる剪断応力および熱疲労寿命の関係を示した図である。It is the figure which showed the relationship of the shear stress and thermal fatigue life which arise in the thickness direction position from the upper end part in a semiconductor chip, and the insulation protective film in the thickness direction position. 絶縁保護膜の最小膜厚とシリコン-絶縁保護膜間の剪断接着強度との関係を示したグラフである。5 is a graph showing the relationship between the minimum thickness of an insulating protective film and the shear adhesive strength between the silicon and the insulating protective film. 絶縁保護膜の最小膜厚とパワー半導体装置の熱疲労寿命との関係を示したグラフである。It is the graph which showed the relationship between the minimum film thickness of an insulating protective film, and the thermal fatigue life of a power semiconductor device. 回転発電機で発電する交流電流を整流装置で直流変換して供給する電源装置の構成の例を示した図である。It is the figure which showed the example of the structure of the power supply device which supplies the alternating current generated with a rotary generator by direct-current-converting with a rectifier. プレーナ型の半導体チップを用いて構成したパワー半導体装置の構造の例を模式的に示した図である。It is the figure which showed typically the example of the structure of the power semiconductor device comprised using the planar type semiconductor chip. 図9Aに示したパワー半導体装置における半導体チップおよびその周縁部の構造の例を示した図である。It is the figure which showed the example of the structure of the semiconductor chip and its peripheral part in the power semiconductor device shown to FIG. 9A.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施形態に係るパワー半導体装置100の構造の例を模式的に示した図である。ここで、図1に示した中心線より左半分の図は、パワー半導体装置100の外観の正面図を示した図であり、右半分の図は、パワー半導体装置100の断面構造を模式的に示した図である。 FIG. 1 is a diagram schematically showing an example of the structure of a power semiconductor device 100 according to an embodiment of the present invention. Here, the left half of the center line shown in FIG. 1 is a front view of the appearance of the power semiconductor device 100, and the right half of the figure schematically shows the cross-sectional structure of the power semiconductor device 100. FIG.
 図1に示すように、本実施形態に係るパワー半導体装置100は、整流機能を有する半導体チップ10が、銅などの良導体からなるリード電極体20およびベース電極体30のそれぞれに挟まれ、ハンダなどの接合材40,41を介して接合されて構成される。ここで、半導体チップ10は、メサ型の整流ダイオードであるとする。 As shown in FIG. 1, in the power semiconductor device 100 according to the present embodiment, a semiconductor chip 10 having a rectifying function is sandwiched between a lead electrode body 20 and a base electrode body 30 made of a good conductor such as copper, and solder or the like. Are joined via the joining materials 40 and 41. Here, it is assumed that the semiconductor chip 10 is a mesa rectifier diode.
 ベース電極体30は、パワー半導体装置100の基礎構造体であり、その上面部には、半導体チップ10を搭載する台座部31と、その台座部31を取り囲む溝部32が形成されている。台座部31の上面は平坦面であり、その平坦面には接合材41を介して半導体チップ10の一方の主面が接合される。さらに、半導体チップ10の他方の主面には、接合材40を介してリード電極体20が接合される。 The base electrode body 30 is a basic structure of the power semiconductor device 100, and a pedestal portion 31 on which the semiconductor chip 10 is mounted and a groove portion 32 surrounding the pedestal portion 31 are formed on the upper surface portion thereof. The upper surface of the pedestal portion 31 is a flat surface, and one main surface of the semiconductor chip 10 is bonded to the flat surface via a bonding material 41. Further, the lead electrode body 20 is bonded to the other main surface of the semiconductor chip 10 via a bonding material 40.
 また、封止樹脂体60は、エポキシ系樹脂などによって形成され、ベース電極体30とリード電極体20とに挟まれた半導体チップ10を封止するとともに、リード電極体20をベース電極体30に固定する役割を果たす。すなわち、ベース電極体30の溝部32の台座部31側の側壁は、台座部31がオーバハングするように形成されており、エポキシ系樹脂は、溝部32にも流し込まれた後に硬化されるので、封止樹脂体60は、ベース電極体30から抜けない構造となる。 The sealing resin body 60 is formed of an epoxy resin or the like, seals the semiconductor chip 10 sandwiched between the base electrode body 30 and the lead electrode body 20, and also connects the lead electrode body 20 to the base electrode body 30. It plays the role of fixing. That is, the side wall of the groove portion 32 of the base electrode body 30 on the side of the pedestal portion 31 is formed so that the pedestal portion 31 overhangs, and the epoxy resin is cured after being poured into the groove portion 32. The stop resin body 60 has a structure that does not come off the base electrode body 30.
 また、封止樹脂体60が形成される前には、半導体チップ10の周縁端部および接合材40,41と封止樹脂体60との間には、ポリイミド系樹脂などからなる比較的軟らかい薄膜状の絶縁保護膜50が形成される。絶縁保護膜50は、メサ型の半導体チップ10の端部側面に露出するpn接合部を水分や不純物原子の浸入から防止するとともに、半導体チップ10と封止樹脂体60との間に生じる熱応力を緩和する役割を果たす。 Further, before the sealing resin body 60 is formed, a relatively soft thin film made of a polyimide resin or the like is formed between the peripheral edge of the semiconductor chip 10 and between the bonding materials 40 and 41 and the sealing resin body 60. An insulating protective film 50 is formed. The insulating protective film 50 prevents the pn junction exposed on the side surface of the end portion of the mesa-type semiconductor chip 10 from intrusion of moisture and impurity atoms, and thermal stress generated between the semiconductor chip 10 and the sealing resin body 60. Plays a role in mitigating.
 次に、図2A~図2Dを参照して、半導体チップ10,10aにおける半導体基板の導電型および不純物拡散層の配置の相違に基づくパワー半導体装置100の分類の例について説明する。
 ここで、図2Aは、p基板型正極素子を半導体チップ10として用いたパワー半導体装置100における半導体チップ10およびその周縁部の構造の例を示した図、図2Bは、p基板型負極素子を半導体チップ10として用いたパワー半導体装置100における半導体チップ10およびその周縁部の構造の例を示した図、図2Cは、n基板型正極素子を半導体チップ10aとして用いたパワー半導体装置100における半導体チップ10aおよびその周縁部の構造の例を示した図、図2Dは、n基板型負極素子を半導体チップ10aとして用いたパワー半導体装置100における半導体チップ10aおよびその周縁部の構造の例を示した図である。なお、パワー半導体装置100における半導体チップ10およびその周縁部とは、図1の中に破線の長方形で示された領域Aに対応する部分をいう。また、図2A~図2Dのそれぞれには、とくにpn接合部13の位置を明確化する意味で、半導体チップ10,10aの縦構造を示す図が付されている。
Next, an example of classification of the power semiconductor device 100 based on the difference in the conductivity type of the semiconductor substrate and the arrangement of the impurity diffusion layers in the semiconductor chips 10 and 10a will be described with reference to FIGS. 2A to 2D.
Here, FIG. 2A is a diagram showing an example of the structure of the semiconductor chip 10 and its peripheral portion in the power semiconductor device 100 using the p substrate type positive element as the semiconductor chip 10, and FIG. 2B shows the p substrate type negative element. FIG. 2C is a diagram showing an example of the structure of the semiconductor chip 10 and its peripheral portion in the power semiconductor device 100 used as the semiconductor chip 10, and FIG. FIG. 2D is a diagram illustrating an example of the structure of the semiconductor chip 10a and its peripheral portion, and FIG. 2D is a diagram illustrating an example of the structure of the semiconductor chip 10a and the peripheral portion thereof in the power semiconductor device 100 using the n-substrate negative electrode element as the semiconductor chip 10a. It is. Note that the semiconductor chip 10 and the peripheral edge thereof in the power semiconductor device 100 refer to a portion corresponding to a region A indicated by a broken-line rectangle in FIG. Each of FIGS. 2A to 2D is attached with a diagram showing a vertical structure of the semiconductor chips 10 and 10a, particularly in order to clarify the position of the pn junction portion 13.
 以上の図2A~図2Dにおいて、正極素子とは、パワー半導体装置100のリード電極体20をアノード(陽極)として用い、ベース電極対30をカソード(陰極)として用いる整流ダイオード(パワー半導体装置100)をいう。また、負極素子とは、パワー半導体装置100のリード電極体20をカソード(陰極)として用い、ベース電極体30をアノード(陽極)として用いる整流ダイオード(パワー半導体装置100)をいう。
 また、p基板型およびn基板型の呼称は、それぞれの整流ダイオード(パワー半導体装置100)の中で用いられる半導体チップ10,10aの基板の導電型に基づく。
2A to 2D, the positive electrode element is a rectifier diode (power semiconductor device 100) using the lead electrode body 20 of the power semiconductor device 100 as an anode (anode) and the base electrode pair 30 as a cathode (cathode). Say. The negative electrode element refers to a rectifier diode (power semiconductor device 100) that uses the lead electrode body 20 of the power semiconductor device 100 as a cathode (cathode) and the base electrode body 30 as an anode (anode).
The names of the p substrate type and the n substrate type are based on the conductivity types of the substrates of the semiconductor chips 10 and 10a used in each rectifier diode (power semiconductor device 100).
 図2A、図2Bに示すように、半導体チップ10をp型半導体基板で構成する場合には、そのp型半導体基板としてp型不純物(ボロンなど)がドープされたシリコンウェハを用いる。そして、その一方の主面にn型不純物(リン、ヒ素、アンチモンなど)を高濃度に拡散することにより、高濃度のn型の不純物拡散層12(n層)を形成する。 As shown in FIGS. 2A and 2B, when the semiconductor chip 10 is formed of a p-type semiconductor substrate, a silicon wafer doped with p-type impurities (such as boron) is used as the p-type semiconductor substrate. Then, an n-type impurity (phosphorus, arsenic, antimony, etc.) is diffused at a high concentration on one main surface thereof, thereby forming a high-concentration n-type impurity diffusion layer 12 (n + layer).
 ここで、p型の半導体層11とは、p型半導体基板で高濃度のn型不純物が拡散されなかった部分をいう。そして、p型の半導体層11側の主面(n型の不純物拡散層12が形成された主面と反対側の主面)には、p型の半導体層11と金属層との接着性を向上させるために、p型不純物が高濃度に拡散され、高濃度のp型の不純物拡散層(p層)が形成される。本明細書では、この高濃度のp型の不純物拡散層(p層)も含めて、p型の半導体層11という。 Here, the p-type semiconductor layer 11 refers to a portion where a high-concentration n-type impurity is not diffused in the p-type semiconductor substrate. The main surface on the p-type semiconductor layer 11 side (the main surface opposite to the main surface on which the n-type impurity diffusion layer 12 is formed) has adhesion between the p-type semiconductor layer 11 and the metal layer. In order to improve, p-type impurities are diffused at a high concentration, and a high-concentration p-type impurity diffusion layer (p + layer) is formed. In this specification, this high-concentration p-type impurity diffusion layer (p + layer) is also referred to as a p-type semiconductor layer 11.
 以上のような半導体チップ10の内部のp型の半導体層11とn型の不純物拡散層12との境界にはpn接合部13が形成される。pn接合部13の位置、言い換えれば、n型の不純物拡散層12の拡散の深さは、半導体チップ10全体の厚みの10~35%になる程度が適切である。このような範囲のpn接合部13の位置は、整流ダイオードとしての半導体チップ10に求められる逆耐圧電圧や、p型の半導体層11やn型の不純物拡散層12の不純物濃度などを考慮した結果に基づき得られたものである。 A pn junction 13 is formed at the boundary between the p-type semiconductor layer 11 and the n-type impurity diffusion layer 12 inside the semiconductor chip 10 as described above. The position of the pn junction 13, in other words, the diffusion depth of the n-type impurity diffusion layer 12 is appropriately about 10 to 35% of the entire thickness of the semiconductor chip 10. The position of the pn junction 13 in such a range is a result of considering the reverse breakdown voltage required for the semiconductor chip 10 as a rectifier diode, the impurity concentration of the p-type semiconductor layer 11 and the n-type impurity diffusion layer 12, and the like. It was obtained based on.
 また、半導体チップ10の高濃度のn型の不純物拡散層12(n層)の外側および高濃度のp型の不純物拡散層(p層)の外側のそれぞれには、例えば、ニッケルやニッケル合金などからなる金属層が形成される(図示省略)。従って、n型の不純物拡散層12(n層)やp型の半導体層11は、その金属層が接合材40,41に接合されることにより、リード電極体20またはベース電極体30に電気的に接続される。 In addition, for example, nickel or nickel is formed on the outside of the high-concentration n-type impurity diffusion layer 12 (n + layer) and the outside of the high-concentration p-type impurity diffusion layer (p + layer) of the semiconductor chip 10, for example. A metal layer made of an alloy or the like is formed (not shown). Therefore, the n-type impurity diffusion layer 12 (n + layer) and the p-type semiconductor layer 11 are electrically connected to the lead electrode body 20 or the base electrode body 30 by bonding the metal layer to the bonding materials 40 and 41. Connected.
 図2Aのp基板型正極素子では、リード電極体20がアノード(陽極)として用いられるので、半導体チップ10がp型の半導体基板で構成される場合には、n型の不純物拡散層12は、下面側に配置されて、ベース電極体30側の接合材41に接合される。また、図2Bのp基板型負極素子では、リード電極体20がカソード(陰極)として用いられるので、半導体チップ10がp型の半導体基板で構成される場合には、n型の不純物拡散層12は、上面側に配置されて、リード電極体20側の接合材40に接合される。 In the p substrate type positive electrode element of FIG. 2A, since the lead electrode body 20 is used as an anode (anode), when the semiconductor chip 10 is formed of a p type semiconductor substrate, the n type impurity diffusion layer 12 is It arrange | positions at the lower surface side and is joined to the joining material 41 by the side of the base electrode body 30. FIG. 2B, the lead electrode body 20 is used as a cathode (cathode). Therefore, when the semiconductor chip 10 is formed of a p-type semiconductor substrate, the n-type impurity diffusion layer 12 is used. Is disposed on the upper surface side and is bonded to the bonding material 40 on the lead electrode body 20 side.
 そして、そのいずれの場合にも、半導体チップ10の端部の側面には、絶縁保護膜50が形成され、さらに、その外側に封止樹脂体60が形成されている。従って、その端部の側面に露出するpn接合部13は、その絶縁保護膜50により水分や不純物原子の侵入から保護され、その絶縁破壊が防止される。 In either case, the insulating protective film 50 is formed on the side surface of the end portion of the semiconductor chip 10, and the sealing resin body 60 is formed on the outer side thereof. Therefore, the pn junction 13 exposed on the side surface of the end is protected from intrusion of moisture and impurity atoms by the insulating protective film 50, and the dielectric breakdown is prevented.
 ここで、p基板型正極素子(図2A参照)とp基板型負極素子(図2B参照)とにおける熱疲労寿命の相違について検討しておく。熱疲労寿命とは、パワー半導体装置100が高温環境と低温環境とに繰り返し曝された場合に、パワー半導体装置100の機能が失われるまでの期間をいい、しばしば、加速試験などの結果に基づき推定される。 Here, the difference in the thermal fatigue life between the p-substrate positive electrode element (see FIG. 2A) and the p-substrate negative electrode element (see FIG. 2B) will be examined. The thermal fatigue life is a period until the function of the power semiconductor device 100 is lost when the power semiconductor device 100 is repeatedly exposed to a high temperature environment and a low temperature environment, and is often estimated based on results of an acceleration test or the like. Is done.
 ところで、p基板型正極素子とp基板型負極素子とでは、リード電極体20をアノードとして用いるか、または、カソードとして用いるかの相違があるものの、整流ダイオードとしての機能には大きな相違はない。しかしながら、n型の不純物拡散層12がベース電極体30側に接合されるか、または、リード電極体20側に接合されるかにより、両者の間では、熱疲労寿命に相違が生じる。 Incidentally, although there is a difference between using the lead electrode body 20 as an anode or a cathode between the p-substrate positive electrode element and the p-substrate negative electrode element, there is no significant difference in the function as a rectifier diode. However, depending on whether the n-type impurity diffusion layer 12 is bonded to the base electrode body 30 side or the lead electrode body 20 side, there is a difference in thermal fatigue life between the two.
 熱疲労寿命に相違が生じる理由は、p基板型正極素子とp基板型負極素子とでは、半導体チップ10におけるpn接合部13の位置が異なることに由来する。p基板型正極素子の場合、図2Aに示すように、pn接合部13は、ベース電極体30に近い位置に形成される。一方、p基板型正極素子の場合、図2Bに示すように、pn接合部13は、リード電極体20に近い位置に形成される。すなわち、半導体チップ10においてpn接合部13が形成される位置は、p基板型負極素子の場合のほうがp基板型正極素子の場合よりもリード電極体20に近い位置、言い換えれば、上部位置に形成される。 The reason why the thermal fatigue life differs is that the position of the pn junction 13 in the semiconductor chip 10 is different between the p-substrate positive electrode element and the p-substrate negative electrode element. In the case of a p-substrate positive electrode element, the pn junction 13 is formed at a position close to the base electrode body 30 as shown in FIG. 2A. On the other hand, in the case of a p-substrate positive electrode element, the pn junction 13 is formed at a position close to the lead electrode body 20 as shown in FIG. 2B. That is, the position where the pn junction 13 is formed in the semiconductor chip 10 is closer to the lead electrode body 20 in the case of the p substrate type negative element than in the case of the p substrate type positive element, in other words, in the upper position. Is done.
 また、図2A、図2Bに示すように、半導体チップ10の端部側面に接して形成される絶縁保護膜50の厚みは、上部(リード電極体20側)ほど薄く、下部(ベース電極体30側)ほど厚い。一般に、環境温度が繰り返し変動する場合、絶縁保護膜50の厚みが薄いほど剥離や亀裂が生じやすく、厚みが厚いほど剥離や亀裂が生じにくいことが知られている(理由については、後で図4を用いて説明する)。すなわち、p基板型正極素子のpn接合部13位置における絶縁保護膜50の厚みは、p基板型負極素子のpn接合部13位置における絶縁保護膜50の厚みよりも厚いので、pn接合部13位置で比較すると、p基板型正極素子のほうが絶縁保護膜50に剥離や亀裂が生じにくいことが分かる。 As shown in FIGS. 2A and 2B, the insulating protective film 50 formed in contact with the side surface of the end portion of the semiconductor chip 10 is thinner in the upper part (on the lead electrode body 20 side) and lower in the lower part (the base electrode body 30). Side) thicker. Generally, when the environmental temperature fluctuates repeatedly, it is known that peeling and cracking are more likely to occur as the insulating protective film 50 is thinner, and peeling and cracking are less likely to occur as the thickness is thicker (for reasons described later, FIG. 4). That is, the thickness of the insulating protective film 50 at the position of the pn junction 13 of the p substrate type positive element is thicker than the thickness of the insulating protective film 50 at the position of the pn junction 13 of the p substrate type negative element. In comparison, it can be understood that the p-type positive electrode element is less likely to be peeled off or cracked in the insulating protective film 50.
 pn接合部13に接する部分の絶縁保護膜50に剥離や亀裂が生じた場合、その剥離や亀裂部分に水分や不純物原子が侵入することにより、pn接合部13が絶縁破壊し、整流ダイオードの機能が失われると、パワー半導体装置100の寿命が尽きたと判断される。 When peeling or cracking occurs in the insulating protective film 50 in the part in contact with the pn junction part 13, the pn junction part 13 breaks down due to moisture or impurity atoms entering the peeling or cracked part, and the function of the rectifier diode Is lost, it is determined that the life of the power semiconductor device 100 has expired.
 よって、半導体チップ10をp型半導体基板で構成した場合には、pn接合部13の位置における絶縁保護膜50の厚みは、図2A、図2Bに示すように、p基板型正極素子のほうがp基板型負極素子よりも厚いので、剥離や亀裂が生じにくく、熱疲労寿命が長くなることが分かる。そこで、本実施形態では、図2Bのようなp基板型負極素子は使用せず、図2Aのようなp基板型正極素子を使用するものとする。 Therefore, when the semiconductor chip 10 is composed of a p-type semiconductor substrate, the thickness of the insulating protective film 50 at the position of the pn junction 13 is greater in the p-substrate type positive element as shown in FIGS. 2A and 2B. Since it is thicker than the substrate-type negative electrode element, it can be seen that peeling and cracking are less likely to occur and the thermal fatigue life is prolonged. Therefore, in this embodiment, it is assumed that the p substrate type negative electrode element as shown in FIG. 2B is not used and the p substrate type positive electrode element as shown in FIG. 2A is used.
 次に、図2C、図2Dに示すように、半導体チップ10aをn型半導体基板で構成する場合には、そのn型半導体基板としてp型不純物(リンなど)がドープされたシリコンウェハを用いる。そして、その一方の主面にp型不純物(ボロンなど)を高濃度に拡散することにより、高濃度のp型の不純物拡散層12a(p層)を形成する。 Next, as shown in FIGS. 2C and 2D, when the semiconductor chip 10a is formed of an n-type semiconductor substrate, a silicon wafer doped with p-type impurities (such as phosphorus) is used as the n-type semiconductor substrate. Then, a high-concentration p-type impurity diffusion layer 12a (p + layer) is formed by diffusing p-type impurities (such as boron) at a high concentration on one main surface.
 ここで、n型の半導体層11とは、n型半導体基板で高濃度のp型不純物が拡散されなかった部分をいう。そして、n型の半導体層11側の主面(p型の不純物拡散層12aが形成された主面と反対側の主面)には、n型の半導体層11aと金属層との接着性を向上させるために、n型不純物が高濃度に拡散され、高濃度のn型の不純物拡散層(n層)が形成される。本明細書では、この高濃度のn型の不純物拡散層(n層)も含めて、n型の半導体層11aという。 Here, the n-type semiconductor layer 11 refers to a portion where a high-concentration p-type impurity is not diffused in the n-type semiconductor substrate. The main surface on the n-type semiconductor layer 11 side (the main surface opposite to the main surface on which the p-type impurity diffusion layer 12a is formed) has adhesion between the n-type semiconductor layer 11a and the metal layer. In order to improve, n-type impurities are diffused at a high concentration, and a high-concentration n-type impurity diffusion layer (n + layer) is formed. In this specification, the high-concentration n-type impurity diffusion layer (n + layer) is also referred to as an n-type semiconductor layer 11a.
 以上のような半導体チップ10aの構造は、図2A、図2Bに示した半導体チップ10の構造において、pとnとを入れ替えたものと実質的に同じである。従って、図2A、図2Bの説明は、その説明文中で、pとn、陽と陰および正と負をそれぞれ入れ替えるだけで、図2C、図2Dにも適用することができるので、図2C、図2Dについての説明を省略する。 The structure of the semiconductor chip 10a as described above is substantially the same as the structure of the semiconductor chip 10 shown in FIGS. 2A and 2B in which p and n are interchanged. Therefore, the description of FIGS. 2A and 2B can be applied to FIGS. 2C and 2D only by replacing p and n, positive and negative, and positive and negative in the explanatory text. Description of FIG. 2D is omitted.
 以上、図2C、図2Dに示すように、半導体チップ10aをn型半導体基板で構成した場合には、pn接合部13の位置における絶縁保護膜50の厚みは、n基板型負極素子の場合ほうがn基板型正極素子の場合よりも厚い。従って、n基板型負極素子の場合ほうが、絶縁保護膜50の剥離や亀裂が生じにくいので、その熱疲労寿命は長くなる。そこで、本実施形態では、図2Cのようなn基板型正極素子は使用せず、図2Dのようなn基板型負極素子を使用するものとする。 As described above, as shown in FIGS. 2C and 2D, when the semiconductor chip 10a is formed of an n-type semiconductor substrate, the thickness of the insulating protective film 50 at the position of the pn junction 13 is larger in the case of the n-substrate type negative electrode element. It is thicker than in the case of an n-substrate type positive electrode element. Therefore, in the case of the n-substrate type negative electrode element, the insulating protective film 50 is less likely to be peeled off or cracked, so that the thermal fatigue life is longer. Therefore, in this embodiment, the n-substrate type positive electrode element as shown in FIG. 2C is not used, and the n-substrate type negative electrode element as shown in FIG. 2D is used.
 図3Aは、本実施形態におけるパワー半導体装置100に用いるp基板型正極素子の半導体チップ10およびその周縁部の構造の例を示した図、図3Bは、本実施形態におけるパワー半導体装置100に用いるn基板型負極素子の半導体チップ10aおよびその周縁部の構造の例を示した図である。本実施形態では、半導体チップ10をp型半導体基板で構成した場合には、図3Aに示すようなp基板型正極素子を使用し、また、半導体チップ10aをn型半導体基板で構成した場合には、図3Bに示すようなn基板型負極素子を使用する。 FIG. 3A is a diagram showing an example of the structure of a p-type positive electrode semiconductor chip 10 used in the power semiconductor device 100 according to the present embodiment and the peripheral portion thereof, and FIG. 3B is used for the power semiconductor device 100 according to the present embodiment. It is the figure which showed the example of the structure of the semiconductor chip 10a of an n board | substrate type negative electrode element, and its peripheral part. In the present embodiment, when the semiconductor chip 10 is configured with a p-type semiconductor substrate, a p-substrate type positive element as shown in FIG. 3A is used, and when the semiconductor chip 10a is configured with an n-type semiconductor substrate. Uses an n-substrate negative electrode element as shown in FIG. 3B.
 なお、図3Aおよび図3Bは、それぞれ図2Aおよび図2Dと同じものであるが、その両方において、pn接合部13の位置が、半導体チップ10,10aのリード電極体20側の主面よりもベース電極対30側の主面に近いことに注意すべきである。 3A and 3B are the same as FIGS. 2A and 2D, respectively, but in both cases, the position of the pn junction 13 is higher than the main surface of the semiconductor chips 10 and 10a on the lead electrode body 20 side. It should be noted that it is close to the main surface on the base electrode pair 30 side.
 図4は、半導体チップ10の端部側面に形成される絶縁保護膜50の厚みと剪断応力または熱疲労寿命との関係を説明するための図である。ここでは、図4を用いて、まず、絶縁保護膜50の厚みが薄いほど剥離や亀裂が生じやすく、厚みが厚いほど剥離や亀裂が生じにくいことについて説明し、その結果として、pn接合部13が半導体チップ10の上部側にあるよりも下部側にあるほうが、熱疲労寿命が長くなることを示す。 FIG. 4 is a diagram for explaining the relationship between the thickness of the insulating protective film 50 formed on the side surface of the end portion of the semiconductor chip 10 and the shear stress or the thermal fatigue life. Here, with reference to FIG. 4, first, it will be explained that peeling and cracking are more likely to occur as the insulating protective film 50 is thinner, and peeling and cracking are less likely to occur as the thickness is thicker. It is shown that the thermal fatigue life becomes longer when is located on the lower side than on the upper side of the semiconductor chip 10.
 パワー半導体装置100の製造過程において、半導体チップ10がベース電極体30およびリード電極体20にそれぞれ接合材40,41を介して接合されたとき、半導体チップ10およびリード電極体20は、ベース電極体30の上に搭載された状態になる(図1参照)。この状態で、接合材40,41および半導体チップ10の外周部に液状のポリイミド系樹脂が塗布され、硬化されて絶縁保護膜50が形成される。液状のポリイミド系樹脂は、かなりの粘性を有するが、塗布されると重力により下方に垂れる。そのため、そのポリイミド系樹脂が硬化されて形成される絶縁保護膜50の厚みは、上部から下方へ行くほど次第に厚くなる。 In the manufacturing process of the power semiconductor device 100, when the semiconductor chip 10 is bonded to the base electrode body 30 and the lead electrode body 20 via bonding materials 40 and 41, respectively, the semiconductor chip 10 and the lead electrode body 20 are It will be in the state mounted on 30 (refer FIG. 1). In this state, a liquid polyimide resin is applied to the outer peripheral portions of the bonding materials 40 and 41 and the semiconductor chip 10 and cured to form the insulating protective film 50. The liquid polyimide resin has a considerable viscosity, but when applied, it hangs down due to gravity. Therefore, the thickness of the insulating protective film 50 formed by curing the polyimide resin gradually increases from the top to the bottom.
 従って、図4に示すように、丸囲み1~丸囲み5が表す位置を、それぞれ、半導体チップ10の上端部の位置(丸囲み1)、半導体チップ10の上部側に形成されるpn接合部13の位置(丸囲み2)、半導体チップ10の中央部の位置(丸囲み3)、半導体チップ10の下部側に形成されるpn接合部13の位置(丸囲み4)、半導体チップ10の下端部の位置(丸囲み5)とすれば、絶縁保護膜50の厚みは、丸囲み1の位置で最も薄く、丸囲み2、丸囲み3、丸囲み4の各位置で次第に厚くなり、丸囲み5の位置で最も厚くなる。 Therefore, as shown in FIG. 4, the positions represented by the circled circles 1 to 5 are respectively the position of the upper end portion of the semiconductor chip 10 (circled circle 1) and the pn junction formed on the upper side of the semiconductor chip 10. 13 (circled circle 2), the position of the central portion of the semiconductor chip 10 (circled circle 3), the position of the pn junction 13 formed on the lower side of the semiconductor chip 10 (circled circle 4), the lower end of the semiconductor chip 10 In this case, the thickness of the insulating protective film 50 is the thinnest at the position of the circle 1 and gradually becomes thicker at the positions of the circle 2, the circle 3, and the circle 4. It is thickest at position 5.
 一方、半導体チップ10と封止樹脂体60との線膨張係数の差によって絶縁保護膜50に生じる剪断応力γは、高温環境時と低温環境時における封止樹脂体60側の絶縁保護膜50の変位量をδ1、半導体チップ10側の絶縁保護膜50の変位量をδ2、絶縁保護膜50の厚みをτで表すと、
 γ=k・(δ1-δ2)/τ  (k:比例定数)
なる関係式を用いて求めることができる。
On the other hand, the shear stress γ generated in the insulating protective film 50 due to the difference in linear expansion coefficient between the semiconductor chip 10 and the sealing resin body 60 causes the insulating protective film 50 on the sealing resin body 60 side in the high temperature environment and the low temperature environment. When the displacement amount is represented by δ1, the displacement amount of the insulating protective film 50 on the semiconductor chip 10 side is represented by δ2, and the thickness of the insulating protective film 50 is represented by τ.
γ = k · (δ1-δ2) / τ (k: proportional constant)
Can be obtained using the following relational expression.
 すなわち、剪断応力γは、絶縁保護膜50の厚みτが薄くなるほど増大するので、パワー半導体装置100、すなわち、半導体チップ10および封止樹脂体60に対し、高温環境と低温環境が繰り返されるような温度環境ストレスが加えられると、絶縁保護膜50は、薄いほど剥離や亀裂が生じやすくなる。 That is, since the shear stress γ increases as the thickness τ of the insulating protective film 50 decreases, the high temperature environment and the low temperature environment are repeated with respect to the power semiconductor device 100, that is, the semiconductor chip 10 and the sealing resin body 60. When temperature environmental stress is applied, the insulating protective film 50 is more likely to be peeled off or cracked as it is thinner.
 従って、半導体チップ10の端部の側面に形成された絶縁保護膜50においては、その半導体チップ10の上端部(丸囲み1の位置)で剥離や亀裂が最も生じやすく、下方に行くほど剥離や亀裂が生じにくい。つまり、絶縁保護膜50の剥離や亀裂は、まず、半導体チップ10の上端部(丸囲み1の位置)近傍で生じ、その剥離や亀裂が次第に下方に広がっていく形態をとることが多い。 Therefore, in the insulating protective film 50 formed on the side surface of the end portion of the semiconductor chip 10, peeling or cracking is most likely to occur at the upper end portion (the position of the circle 1) of the semiconductor chip 10, and peeling or Cracks are less likely to occur. That is, peeling and cracking of the insulating protective film 50 first occurs near the upper end (position of the circled circle 1) of the semiconductor chip 10, and the peeling and cracking often take a form that gradually spreads downward.
 なお、半導体チップ10の上端部(丸囲み1の位置)近傍などに絶縁保護膜50の剥離や亀裂が生じても、直ちに半導体チップ10の整流機能が失われ、故障に到るわけではない。絶縁保護膜50の剥離や亀裂がpn接合部13に接する位置(丸囲み2または丸囲み4の位置)に到達し、そこから水分や不純物原子がpn接合部13に侵入して、pn接合が絶縁破壊されたとき、半導体チップ10の整流機能が失われ、故障に到る。 It should be noted that even if the insulating protective film 50 is peeled off or cracked in the vicinity of the upper end portion (the position of the circled circle 1) of the semiconductor chip 10, the rectifying function of the semiconductor chip 10 is lost immediately and does not cause a failure. The peeling or cracking of the insulating protective film 50 reaches the position where the pn junction 13 is in contact (the position of the circled circle 2 or the circled circle 4), from which moisture or impurity atoms enter the pn junction 13 and the pn junction is formed. When the dielectric breakdown occurs, the rectifying function of the semiconductor chip 10 is lost and a failure occurs.
 従って、pn接合部13が丸囲み2の位置に形成される場合よりも、丸囲み4の位置に形成される場合のほうが、pn接合が絶縁破壊され、半導体チップ10の整流機能が失われ、故障に到るまでの期間、すなわち、熱疲労寿命は長くなるといえる。つまり、半導体チップ10をp型半導体基板で構成した場合には(図2A、図2B参照)、p基板型正極素子のほうがp基板型負極素子よりも熱疲労寿命が長くなり、また、半導体チップ10aをn型半導体基板で構成した場合には(図2C、図2D参照)、n基板型負極素子のほうがn基板型正極素子よりも熱疲労寿命が長くなることが分かる。 Accordingly, when the pn junction portion 13 is formed at the position of the circled circle 2, the pn junction is broken down and the rectifying function of the semiconductor chip 10 is lost when it is formed at the position of the circled circle 4. It can be said that the period until failure, that is, the thermal fatigue life becomes longer. That is, when the semiconductor chip 10 is formed of a p-type semiconductor substrate (see FIGS. 2A and 2B), the p-substrate positive element has a longer thermal fatigue life than the p-substrate negative element, and the semiconductor chip When 10a is formed of an n-type semiconductor substrate (see FIGS. 2C and 2D), it can be seen that the n-substrate negative electrode element has a longer thermal fatigue life than the n-substrate positive electrode element.
 図5は、半導体チップ10内における上端部からの厚み方向位置と、その厚み方向位置における絶縁保護膜50に生じる剪断応力および熱疲労寿命の関係を示した図である。図5において、右側のグラフの横軸は、絶縁保護膜50に生じる剪断応力の相対値を表し、縦軸は、半導体チップ10の上端部(丸囲み1の位置)からの厚み方向位置を、半導体チップ10全体の厚みに対する相対比率で表したものである。 FIG. 5 is a diagram showing the relationship between the position in the thickness direction from the upper end in the semiconductor chip 10 and the shear stress and thermal fatigue life generated in the insulating protective film 50 at the position in the thickness direction. In FIG. 5, the horizontal axis of the graph on the right represents the relative value of the shear stress generated in the insulating protective film 50, and the vertical axis represents the position in the thickness direction from the upper end (position of the circled circle 1) of the semiconductor chip 10. This is expressed as a relative ratio to the thickness of the entire semiconductor chip 10.
 ここで、剪断応力の相対値とは、半導体チップ10の上端部(丸囲み1の位置)における絶縁保護膜50が受ける剪断応力を100とした場合、各位置における絶縁保護膜50が受ける剪断応力の相対値である。また、図5の左側に示されている絶縁保護膜50の断面構造図は、絶縁保護膜50の厚みと半導体チップ10内の厚み方向の位置との関係を概略的に図示したものである。 Here, the relative value of the shear stress refers to the shear stress received by the insulating protective film 50 at each position when the shear stress received by the insulating protective film 50 at the upper end of the semiconductor chip 10 (the position of the circled circle 1) is 100. Is the relative value of. Further, the cross-sectional structure diagram of the insulating protective film 50 shown on the left side of FIG. 5 schematically shows the relationship between the thickness of the insulating protective film 50 and the position in the thickness direction in the semiconductor chip 10.
 図5に示した剪断応力カーブによれば、pn接合部13が上部側(丸囲み2の位置)に形成され、その形成位置が、全体の厚みの10%~35%程度の位置である場合には、剪断応力の相対値は、32~40程度である。また、pn接合部13が下部側(丸囲み4の位置)に形成され、その形成位置が、全体の厚みの65%~90%程度の位置である場合には、剪断応力の相対値は、27~30程度である。 According to the shear stress curve shown in FIG. 5, the pn junction 13 is formed on the upper side (the position of the circled circle 2), and the formation position is about 10% to 35% of the entire thickness. The relative value of the shear stress is about 32 to 40. Further, when the pn junction portion 13 is formed on the lower side (the position of the circled circle 4) and the formation position is about 65% to 90% of the total thickness, the relative value of the shear stress is It is about 27-30.
 このとき、パワー半導体装置100の熱疲労寿命は、pn接合部13が下部側(丸囲み4の位置)に形成され、その形成位置が全体の厚みの65%~90%程度の位置である場合、100~90(相対値)程度となる。それに対し、pn接合部13が上部側(丸囲み2の位置)に形成され、その形成位置が全体の厚みの10%~35%程度の位置である場合、その熱疲労寿命は、30~50(相対値)程度となる。なお、これらは、加速試験などにより実験的、経験的に得られた結果である。 At this time, the thermal fatigue life of the power semiconductor device 100 is such that the pn junction 13 is formed on the lower side (the position of the circled circle 4), and the formation position is about 65% to 90% of the total thickness. , About 100 to 90 (relative value). On the other hand, when the pn junction portion 13 is formed on the upper side (position of the circled circle 2) and the formation position is a position of about 10% to 35% of the total thickness, the thermal fatigue life is 30 to 50%. (Relative value). These are results obtained experimentally and empirically by an accelerated test or the like.
 以上の結果によれば、pn接合部13を半導体チップ10の下部側(半導体チップ厚みの65%~90%の位置)に設けると、下部側(半導体チップ厚みの10%~35%の位置)に設けるよりも、剥離に到るまでの寿命、つまり、パワー半導体装置100の熱疲労寿命が2~3倍向上することになる。 According to the above results, when the pn junction part 13 is provided on the lower side of the semiconductor chip 10 (position of 65% to 90% of the semiconductor chip thickness), the lower side (position of 10% to 35% of the semiconductor chip thickness). The life until peeling is reached, that is, the thermal fatigue life of the power semiconductor device 100 is improved by 2 to 3 times.
 図6は、絶縁保護膜50の最小膜厚とシリコン-絶縁保護膜50間の剪断接着強度との関係を示したグラフ、図7は、絶縁保護膜50の最小膜厚とパワー半導体装置100の熱疲労寿命との関係を示したグラフである。 FIG. 6 is a graph showing the relationship between the minimum film thickness of the insulating protective film 50 and the shear adhesive strength between the silicon-insulating protective film 50, and FIG. 7 shows the minimum film thickness of the insulating protective film 50 and the power semiconductor device 100. It is the graph which showed the relationship with a thermal fatigue life.
 ここで、図6におけるグラフの横軸は、絶縁保護膜50の最小膜厚の相対値(対数目盛)を表し、グラフの縦軸は、シリコン-絶縁保護膜50間の剪断接着強度の相対値を表している。また、図7におけるグラフの横軸は、絶縁保護膜50の最小膜厚の相対値(対数目盛)を表し、グラフの縦軸は、パワー半導体装置100の熱疲労寿命を表している。
 なお、絶縁保護膜50の最小膜厚とは、半導体チップ10の上端部(丸囲み1の位置)における絶縁保護膜50の厚みを意味する。
Here, the horizontal axis of the graph in FIG. 6 represents the relative value (logarithmic scale) of the minimum film thickness of the insulating protective film 50, and the vertical axis of the graph represents the relative value of the shear adhesive strength between the silicon and the insulating protective film 50. Represents. Further, the horizontal axis of the graph in FIG. 7 represents the relative value (logarithmic scale) of the minimum film thickness of the insulating protective film 50, and the vertical axis of the graph represents the thermal fatigue life of the power semiconductor device 100.
The minimum film thickness of the insulating protective film 50 means the thickness of the insulating protective film 50 at the upper end (position of the circled circle 1) of the semiconductor chip 10.
 図6および図7に示したグラフは、いずれも、加速試験などにより実験的、経験的に得られたものである。ここで、図6および図7のグラフを比較すると、シリコン-絶縁保護膜50間の剪断接着強度およびパワー半導体装置100の熱疲労寿命は、絶縁保護膜50の最小膜厚に対して、極めて類似した依存特性を有していることが分かる。 6 and 7 are both experimentally and empirically obtained by an acceleration test or the like. Here, comparing the graphs of FIG. 6 and FIG. 7, the shear adhesive strength between the silicon-insulating protective film 50 and the thermal fatigue life of the power semiconductor device 100 are very similar to the minimum film thickness of the insulating protective film 50. It can be seen that it has the dependency characteristic.
 すなわち、絶縁保護膜50の最小膜厚と、シリコン-絶縁保護膜50間の剪断接着強度(絶縁保護膜50が半導体チップ10からの剥離されるときの強度)と、パワー半導体装置100の熱疲労寿命との間には、強い相関があることがわかる。 That is, the minimum film thickness of the insulating protective film 50, the shear adhesive strength between the silicon and the insulating protective film 50 (strength when the insulating protective film 50 is peeled off from the semiconductor chip 10), and the thermal fatigue of the power semiconductor device 100 It can be seen that there is a strong correlation with the lifetime.
 ちなみに、図7によれば、絶縁保護膜50の最小膜厚の相対値が100%であるときには、パワー半導体装置100の熱疲労寿命の相対値は、100%であるが、最小膜厚が10分の1(相対値が10)になると、熱疲労寿命の相対値は、80%程度まで低下する。また、最小膜厚が100分の1(相対値が1%)になると、熱疲労寿命の相対値は、10%程度まで低下する。 Incidentally, according to FIG. 7, when the relative value of the minimum film thickness of the insulating protective film 50 is 100%, the relative value of the thermal fatigue life of the power semiconductor device 100 is 100%, but the minimum film thickness is 10%. When it becomes 1 / (relative value is 10), the relative value of thermal fatigue life falls to about 80%. When the minimum film thickness is 1/100 (relative value is 1%), the relative value of the thermal fatigue life is reduced to about 10%.
 図8は、回転発電機80で発電する交流電流を整流装置70で直流変換して供給する電源装置200の構成の例を示した図である。図8に示すように、電源装置200は、回転発電機80、整流装置70、レギュレータ90、バッテリ92などを含んで構成される。なお、エンジン駆動の乗用車などの車両に搭載されている、いわゆるオルタネータは、この電源装置200と同様の構成を有していることが多い。 FIG. 8 is a diagram showing an example of the configuration of the power supply device 200 that supplies the alternating current generated by the rotary generator 80 by direct current conversion by the rectifier 70. As shown in FIG. 8, the power supply device 200 includes a rotary generator 80, a rectifier 70, a regulator 90, a battery 92, and the like. A so-called alternator mounted on a vehicle such as an engine-driven passenger car often has a configuration similar to that of the power supply device 200.
 回転発電機80は、ステータコイル81とロータコイル82を含んで構成され、ロータコイル82は、車両のエンジンなどによって駆動され、回転する。そして、キーSW91がオンされてロータコイル82に電流が流されると、ステータコイル81により、例えば3相の交流電流が発電される。 The rotary generator 80 includes a stator coil 81 and a rotor coil 82, and the rotor coil 82 is driven and rotated by a vehicle engine or the like. When the key SW 91 is turned on and a current flows through the rotor coil 82, for example, a three-phase alternating current is generated by the stator coil 81.
 整流装置70は、ステータコイル81により発電される交流電流を整流し、車両内などの電気負荷93に直流電流を供給するとともに、余剰の電流によりバッテリ92を充電する。整流装置70は、上位電位側ダイオード素子群71に属する上位電位側ダイオード素子72,73,74が、それぞれ、下位電位側ダイオード素子群75に属する下位電位側ダイオード素子76,77,78に直列接続されて構成される。 The rectifier 70 rectifies the alternating current generated by the stator coil 81, supplies the direct current to the electric load 93 such as in the vehicle, and charges the battery 92 with the surplus current. In the rectifier 70, upper potential side diode elements 72, 73, 74 belonging to the upper potential side diode element group 71 are connected in series to lower potential side diode elements 76, 77, 78 belonging to the lower potential side diode element group 75, respectively. Configured.
 このとき、それぞれ直列接続された上位側および下位側のダイオード素子の組(72,76)、(73,77)、(74,78)は、ステータコイル81を介して、いわゆるダイオードブリッジ回路を構成する。 At this time, the sets (72, 76), (73, 77) and (74, 78) of the upper and lower diode elements connected in series constitute a so-called diode bridge circuit via the stator coil 81. To do.
 本実施形態の場合、上位電位側ダイオード素子72,73,74として、半導体チップ10の基板がp型半導体層11からなるp基板型正極素子(図3A参照)を用いる。また、下位電位側ダイオード素子76,77,78として、半導体チップ10aの基板がn型半導体層11aからなるn基板型負極素子(図3B参照)を用いる。 In the case of the present embodiment, a p-substrate type positive electrode element (see FIG. 3A) in which the substrate of the semiconductor chip 10 is made of the p-type semiconductor layer 11 is used as the higher-potential- side diode elements 72, 73, and 74. Further, as the lower potential side diode elements 76, 77, 78, n substrate type negative electrode elements (see FIG. 3B) in which the substrate of the semiconductor chip 10a is formed of the n type semiconductor layer 11a are used.
 ここで、上位電位側ダイオード素子72と下位電位側ダイオード素子76との直列接続回路は、p基板型正極素子のリード電極体20とn基板型負極素子のリード電極体20とを接続することにより実現される。また、上位電位側ダイオード素子73と下位電位側ダイオード素子77との直列接続回路および上位電位側ダイオード素子74と下位電位側ダイオード素子78との直列接続回路も、それぞれ同様にして実現される。 Here, the series connection circuit of the upper potential side diode element 72 and the lower potential side diode element 76 is obtained by connecting the lead electrode body 20 of the p substrate type positive electrode element and the lead electrode body 20 of the n substrate type negative electrode element. Realized. A series connection circuit of the upper potential side diode element 73 and the lower potential side diode element 77 and a series connection circuit of the upper potential side diode element 74 and the lower potential side diode element 78 are also realized in the same manner.
 以上のようにして、リード電極体20同士が互いに接続されたp基板型正極素子およびn基板型負極素子の組が3組構成されるが、それぞれの組のリード電極体20は、3つのステータコイル81のそれぞれに接続される。さらに、各n基板型負極素子のベース電極体30は、まとめて接地され、また、各p基板型正極素子のベース電極体30は、まとめて電気負荷93に接続される。 As described above, three sets of the p substrate type positive electrode element and the n substrate type negative electrode element in which the lead electrode bodies 20 are connected to each other are configured, and each set of the lead electrode bodies 20 includes three stators. Connected to each of the coils 81. Furthermore, the base electrode bodies 30 of the n-substrate type negative electrode elements are collectively grounded, and the base electrode bodies 30 of the p-substrate type positive electrode elements are collectively connected to the electric load 93.
 以上のように構成された整流装置70には、熱疲労寿命の向上させることが可能な構造を有するp基板型正極素子およびn基板型負極素子が用いられているので、整流装置70自体の熱疲労寿命も向上させることができる。また、整流装置70では、上位電位側ダイオード素子72,73,74は、p基板型正極素子に揃えられ、下位電位側ダイオード素子76,77,78は、n基板型負極素子に揃えられている。従って、整流装置70は、その整流特性が安定化され、動作の信頼性が向上し、さらには、整流装置70の熱疲労寿命のばらつきも低減することができる。 The rectifying device 70 configured as described above uses a p-substrate positive electrode element and an n-substrate negative electrode element having a structure capable of improving the thermal fatigue life. The fatigue life can also be improved. In the rectifier 70, the upper potential side diode elements 72, 73, 74 are aligned with the p substrate type positive element, and the lower potential side diode elements 76, 77, 78 are aligned with the n substrate type negative element. . Therefore, the rectifying device 70 has stabilized rectifying characteristics, improved operational reliability, and can reduce variations in the thermal fatigue life of the rectifying device 70.
 その結果として、整流装置70を含んで構成される電源装置200についても、熱疲労寿命を長くすることができるとともに、そのばらつきを低減することができる。さらには、整流装置70の整流特性や信頼性が向上することから、電源装置200の動作の安定性や信頼性を向上させることができる。 As a result, the power supply device 200 including the rectifying device 70 can also have a long thermal fatigue life and can reduce variations. Furthermore, since the rectification characteristics and reliability of the rectifier 70 are improved, the stability and reliability of the operation of the power supply apparatus 200 can be improved.
 なお、図8の説明では、ステータコイル81は、3相の交流電流を発生するとしたが、2相の交流電流や6相の交流電流を発生するとしてもよい。その場合には、整流装置70は、上位電位側ダイオード素子と下位電位側ダイオード素子との直列接続回路が、2組または6組設けられ、それらにより、ダイオードブリッジ回路が構成される。 In the description of FIG. 8, the stator coil 81 generates a three-phase alternating current, but may generate a two-phase alternating current or a six-phase alternating current. In that case, the rectifier 70 is provided with two or six series connection circuits of upper-potential-side diode elements and lower-potential-side diode elements, and these constitute a diode bridge circuit.
(実施形態の変形例)
 図9Aは、プレーナ型の半導体チップ10bを用いて構成したパワー半導体装置100bの構造の例を模式的に示した図、図9Bは、パワー半導体装置100bにおける半導体チップ10bおよびその周縁部の構造の例を示した図である。
 なお、図9Aに示したパワー半導体装置100bの構造は、半導体チップ10bがメサ型ではなく図9Bに示すようなプレーナ型であることを除き、ほとんどが図1に示した半導体チップ10の構造と同じである。従って、以下、図9Aおよび図9Bの説明では、図1と同じ構成要素には同じ符号を付し、重複する説明を省略し、相違する部分についてのみ説明する。
(Modification of the embodiment)
FIG. 9A is a diagram schematically showing an example of the structure of a power semiconductor device 100b configured using a planar semiconductor chip 10b, and FIG. 9B shows the structure of the semiconductor chip 10b and its peripheral portion in the power semiconductor device 100b. It is the figure which showed the example.
9A is almost the same as the structure of the semiconductor chip 10 shown in FIG. 1 except that the semiconductor chip 10b is not a mesa type but a planar type as shown in FIG. 9B. The same. Therefore, hereinafter, in the description of FIGS. 9A and 9B, the same components as those in FIG. 1 are denoted by the same reference numerals, overlapping description will be omitted, and only different portions will be described.
 図9Bにおいて、破線の四角形で囲まれた領域Bは、図9Aに示したパワー半導体装置100bのうち破線で囲った領域Bの部分の構造を拡大して示したものである。図9Bの領域Bの中に示すように、プレーナ型の半導体チップ10bの場合、pn接合部13は、半導体チップ10bの端部側面に露出するのではなく、p型またはn型の半導体基板に対し、n型またはp型の不純物の気相拡散を施した主面(図9Bでは、半導体チップ10bの下側の主面)と同じ主面に露出する。そして、その主面に露出したpn接合部13の表面には、半導体チップ10bの製造工程の中で酸化シリコンなどの絶縁膜14が形成される。従って、pn接合部13は、絶縁膜14によって保護される。 9B, a region B surrounded by a broken-line rectangle is an enlarged view of the structure of the region B surrounded by the broken line in the power semiconductor device 100b shown in FIG. 9A. As shown in the region B of FIG. 9B, in the case of the planar type semiconductor chip 10b, the pn junction 13 is not exposed on the side surface of the end of the semiconductor chip 10b, but on the p type or n type semiconductor substrate. On the other hand, it is exposed to the same main surface as the main surface (in FIG. 9B, the lower main surface of the semiconductor chip 10b) subjected to vapor phase diffusion of n-type or p-type impurities. An insulating film 14 such as silicon oxide is formed on the surface of the pn junction 13 exposed on the main surface during the manufacturing process of the semiconductor chip 10b. Accordingly, the pn junction 13 is protected by the insulating film 14.
 このような絶縁膜14は、半導体チップ10b表面に直接に形成された良好な絶縁膜であるため、その剥離防止を目的にpn接合部13をさらに絶縁保護膜50で覆う必要はない。そこで、本変形例では、絶縁保護膜50は、半導体チップ10bに発生する熱応力を緩和するとともに、接合材40,41のハンダなどが塑性流動した半導体チップ10bと封止樹脂体60の隙間などに侵入するのを抑制することを目的に形成されるものとする。 Since such an insulating film 14 is a good insulating film formed directly on the surface of the semiconductor chip 10b, it is not necessary to further cover the pn junction 13 with the insulating protective film 50 for the purpose of preventing the peeling. Therefore, in this modification, the insulating protective film 50 relieves the thermal stress generated in the semiconductor chip 10b, and the gap between the semiconductor chip 10b and the sealing resin body 60 in which the solder of the bonding materials 40 and 41 is plastically flowed. It is formed for the purpose of suppressing intrusion.
 そして、本変形例でも、パワー半導体装置100bを構成する半導体チップ10bとして、図3Aおよび図3Bに示したようなp基板型正極素子またはn基板型負極素子を使用するものとする。この場合、図9Bの領域Bに示すように、pn接合部13は、ベース電極体30に対向する主面側に近い位置に位置し、n型またはp型の高濃度の不純物拡散層12bは、半導体チップ10bの下側の主面に露出する。このとき、その主面の周縁部には絶縁膜14が形成されており、当該主面に露出するpn接合部13も絶縁膜14で覆われている。 And also in this modification, p board type positive electrode elements or n board type negative electrode elements as shown in Drawing 3A and Drawing 3B shall be used as semiconductor chip 10b which constitutes power semiconductor device 100b. In this case, as shown in region B of FIG. 9B, the pn junction 13 is located at a position close to the main surface facing the base electrode body 30, and the n-type or p-type high-concentration impurity diffusion layer 12b is The semiconductor chip 10b is exposed on the lower main surface. At this time, an insulating film 14 is formed on the peripheral portion of the main surface, and the pn junction 13 exposed on the main surface is also covered with the insulating film 14.
 そして、半導体チップ10bのn型またはp型の高濃度の不純物拡散層12bは、ハンダなどの接合材41によりベース電極体30に接合される。このとき、半導体チップ10bの周縁部の絶縁膜14が形成された部分には、接合材41が付着しないので、半導体チップ10bとベース電極体30との間に庇状の空洞部が形成される。その後、その空洞部には、絶縁保護膜50が形成される。 The n-type or p-type high-concentration impurity diffusion layer 12b of the semiconductor chip 10b is bonded to the base electrode body 30 by a bonding material 41 such as solder. At this time, since the bonding material 41 does not adhere to the portion of the semiconductor chip 10b where the insulating film 14 is formed, a bowl-shaped cavity is formed between the semiconductor chip 10b and the base electrode body 30. . Thereafter, an insulating protective film 50 is formed in the cavity.
 従って、熱疲労により絶縁保護膜50に剥離や亀裂が生じ、半導体チップ10bの上部の接合材40が塑性流動などによって半導体チップ10bの下部まで到達したとしても、その庇の部分の絶縁保護膜50が剥離しなければ、下部の接合材41に到達することはない。 Therefore, even if the insulating protective film 50 is peeled or cracked due to thermal fatigue and the bonding material 40 on the upper part of the semiconductor chip 10b reaches the lower part of the semiconductor chip 10b due to plastic flow or the like, the insulating protective film 50 on that part of the insulating chip 50b. If it does not peel off, it will not reach the lower bonding material 41.
 一方、ここでは図示を省略するが、n型またはp型の高濃度の不純物拡散層12bが半導体チップ10bの上側の主面に露出する場合(すなわち、図2Bおよび図2Cに示したようなn基板型正極素子およびp基板型負極素子の場合)には、半導体チップ10bとベース電極体30との間には、庇状の空洞部は形成されない。従って、長期間の熱疲労により、絶縁保護膜50に剥離が生じた場合には、上部の接合材40が塑性流動などにより下部の接合材41に到達した場合には、庇状の空洞部が形成されない分、上部の接合材40と下部の接合材41とが短絡する可能性が大きいことになる。 On the other hand, although not shown here, the n-type or p-type high-concentration impurity diffusion layer 12b is exposed on the upper main surface of the semiconductor chip 10b (that is, n as shown in FIGS. 2B and 2C). In the case of a substrate-type positive electrode element and a p-substrate type negative electrode element), no bowl-shaped cavity is formed between the semiconductor chip 10b and the base electrode body 30. Therefore, when peeling occurs in the insulating protective film 50 due to long-term thermal fatigue, when the upper bonding material 40 reaches the lower bonding material 41 due to plastic flow or the like, the bowl-shaped cavity is formed. Since it is not formed, the upper bonding material 40 and the lower bonding material 41 are likely to be short-circuited.
 よって、本変形例でも、パワー半導体装置100bを構成する半導体チップ10bとしてp基板型正極素子またはn基板型負極素子を使用することにより、その熱疲労寿命を向上させることができる。 Therefore, also in this modification, the thermal fatigue life can be improved by using the p substrate type positive electrode element or the n substrate type negative electrode element as the semiconductor chip 10b constituting the power semiconductor device 100b.
 さらに、図8に示した整流装置70において、上位電位側ダイオード素子72,73,74としてp基板型正極素子を用い、下位電位側ダイオード素子76,77,78としてn基板型負極素子を用いることにより、整流装置70や電源装置200の熱疲労寿命を向上させることができ、さらには、その動作の安定性や信頼性を向上させることができる。 Further, in the rectifier 70 shown in FIG. 8, p substrate type positive elements are used as the upper potential side diode elements 72, 73, 74, and n substrate type negative elements are used as the lower potential side diode elements 76, 77, 78. As a result, the thermal fatigue life of the rectifying device 70 and the power supply device 200 can be improved, and further, the stability and reliability of the operation can be improved.
(その他の実施形態)
 以上に説明した実施形態およびその変形例は、pn接合を有する通常のダイオードだけでなく、ショットキダイオードに対しても、ほとんど同様に適用することができる。pn接合ダイオードは、p型またはn型の半導体基板にn型またはp型の高濃度の不純物拡散層を形成したものであるが、ショットキダイオードは、p型またはn型の半導体基板にショットキ障壁を有する金属を接合したものである。半導体基板とショットキ障壁を有する金属との接合部は、ショットキ接合部と呼ばれ、前記実施形態の説明におけるpn接合部13に相当する。
(Other embodiments)
The above-described embodiment and its modifications can be applied almost equally to not only a normal diode having a pn junction but also a Schottky diode. A pn junction diode is formed by forming an n-type or p-type high-concentration impurity diffusion layer on a p-type or n-type semiconductor substrate. A Schottky diode has a Schottky barrier on a p-type or n-type semiconductor substrate. The metal which has is joined. A junction between the semiconductor substrate and the metal having a Schottky barrier is called a Schottky junction and corresponds to the pn junction 13 in the description of the above embodiment.
 従って、以上に説明した実施形態およびその変形例の説明において、n型またはp型の高濃度の不純物拡散層12,12a,12bを、ショットキ障壁を有する金属として読み替え、さらに、pn接合部13を、ショットキ接合部と読み替えれば、その説明は、ショットキダイオードに対してもほとんど同様に適用することができる。 Therefore, in the above-described embodiment and the modifications thereof, the n-type or p-type high-concentration impurity diffusion layers 12, 12a, 12b are read as a metal having a Schottky barrier, and the pn junction 13 is In other words, the description can be applied to the Schottky diode in almost the same manner.
 ここで、n型の半導体基板に対しショットキ障壁を有する金属としては、Al,Au,W,Ptなどがある。また、p型の半導体基板に対しショットキ障壁を有する金属としては、In,Znなどがある。 Here, examples of the metal having a Schottky barrier with respect to the n-type semiconductor substrate include Al, Au, W, and Pt. Examples of the metal having a Schottky barrier with respect to the p-type semiconductor substrate include In and Zn.
 よって、整流機能を有する半導体チップとして、pn接合ダイオードの代わりにショットキダイオードを用いたとしても、ここまでに説明した実施形態の効果と同様の効果を得ることができる。 Therefore, even if a Schottky diode is used instead of the pn junction diode as the semiconductor chip having a rectifying function, the same effects as those of the embodiments described so far can be obtained.
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を加えることも可能である。 Note that the present invention is not limited to the embodiment described above, and includes various modifications. For example, the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with a part of the configuration of another embodiment, and further, a part or all of the configuration of the other embodiment is added to the configuration of the certain embodiment. Is also possible.
  10,10b     半導体チップ
  11,11a     半導体層
  12,12a,12b 不純物拡散層
  13  pn接合部
  20  リード電極体
  30  ベース電極体
  31  台座部
  32  溝部
  40,41  接合材
  50  絶縁保護膜
  60  封止樹脂体
  70  整流装置
  71  上位電位側ダイオード素子群
  72,73,74 上位電位側ダイオード素子
  75  下位電位側ダイオード素子群
  76,77,78 下位電位側ダイオード素子
  80  回転発電機
  81  ステータコイル
  82  ロータコイル
  90  レギュレータ
  91  キーSW
  92  バッテリ
  93  電気負荷
  100 パワー半導体装置(整流ダイオード)
  200 電源装置
DESCRIPTION OF SYMBOLS 10, 10b Semiconductor chip 11, 11a Semiconductor layer 12, 12a, 12b Impurity diffusion layer 13 pn junction part 20 Lead electrode body 30 Base electrode body 31 Base part 32 Groove part 40, 41 Joining material 50 Insulating protective film 60 Sealing resin body 70 Rectifier 71 Upper potential side diode element group 72, 73, 74 Upper potential side diode element 75 Lower potential side diode element group 76, 77, 78 Lower potential side diode element 80 Rotary generator 81 Stator coil 82 Rotor coil 90 Regulator 91 Key SW
92 Battery 93 Electric load 100 Power semiconductor device (rectifier diode)
200 Power supply

Claims (12)

  1.  第1導電型の半導体層からなる半導体基板の第1の主面に第2導電型の不純物拡散層が形成された半導体チップと、
     上部に平坦な保持面を有し、前記第1の主面を下に向けた前記半導体チップを前記保持面上に保持するとともに、前記第1の主面に形成された前記第2導電型の不純物拡散層が導電性の接合材を介して前記保持面に接合されるベース電極体と、
     前記第1の主面の反対側の主面である第2の主面を構成する前記第1導電型の半導体層に、導電性の接合材を介して接合されるリード電極体と、
     前記ベース電極体と前記リード電極体との間に挟まれた前記半導体チップを封止する封止樹脂体と
    を備え、
     前記半導体チップ内の前記第1導電型の半導体層と前記第2導電型の不純物拡散層との境界に形成されるpn接合部は、前記第2の主面よりも前記第1の主面に近い位置に形成されており、
     前記半導体チップの周縁部と前記封止樹脂体との間には、絶縁保護膜が形成されている
    ことを特徴とするパワー半導体装置。
    A semiconductor chip in which a second conductivity type impurity diffusion layer is formed on a first main surface of a semiconductor substrate made of a first conductivity type semiconductor layer;
    The semiconductor chip having a flat holding surface at the top and holding the first main surface facing downward is held on the holding surface, and the second conductivity type formed on the first main surface A base electrode body in which the impurity diffusion layer is bonded to the holding surface via a conductive bonding material;
    A lead electrode body bonded to the first conductive type semiconductor layer constituting the second main surface, which is the main surface opposite to the first main surface, via a conductive bonding material;
    A sealing resin body for sealing the semiconductor chip sandwiched between the base electrode body and the lead electrode body;
    A pn junction formed at a boundary between the first conductive type semiconductor layer and the second conductive type impurity diffusion layer in the semiconductor chip is located on the first main surface rather than the second main surface. It is formed in a close position,
    An insulating protective film is formed between a peripheral edge of the semiconductor chip and the sealing resin body.
  2.  前記半導体チップの周縁部側面に形成される前記絶縁保護膜の厚みは、前記第2の主面側で薄く、前記第1の主面側に近付くほど厚くなる
    ことを特徴とする請求項1に記載のパワー半導体装置。
    The thickness of the insulating protective film formed on the side surface of the peripheral portion of the semiconductor chip is thin on the second main surface side, and becomes thicker as it approaches the first main surface side. The power semiconductor device described.
  3.  前記第1導電型の半導体層は、p型半導体層であり、前記第2導電型の不純物拡散層は、n型不純物拡散層である
    ことを特徴とする請求項1に記載のパワー半導体装置。
    2. The power semiconductor device according to claim 1, wherein the first conductivity type semiconductor layer is a p-type semiconductor layer, and the second conductivity type impurity diffusion layer is an n-type impurity diffusion layer.
  4.  前記第1導電型の半導体層は、n型半導体層であり、前記第2導電型の不純物拡散層は、p型不純物拡散層である
    ことを特徴とする請求項1に記載のパワー半導体装置。
    2. The power semiconductor device according to claim 1, wherein the first conductivity type semiconductor layer is an n-type semiconductor layer, and the second conductivity type impurity diffusion layer is a p-type impurity diffusion layer.
  5.  上位電位側ダイオード素子および下位電位側ダイオード素子の直列接続回路が複数個組み合わされてなるダイオードブリッジ回路含んで構成され、
     前記上位電位側ダイオード素子として、請求項3に記載のパワー半導体装置を用い、前記下位電位側ダイオード素子として、請求項4に記載のパワー半導体装置を用いてなる
    ことを特徴とする整流装置。
    A diode bridge circuit comprising a combination of a plurality of series connection circuits of upper potential side diode elements and lower potential side diode elements,
    A rectifier using the power semiconductor device according to claim 3 as the upper potential side diode element and using the power semiconductor device according to claim 4 as the lower potential side diode element.
  6.  回転発電機と、請求項5に記載の整流装置とを含んでなる
    ことを特徴とする電源装置。
    A power supply device comprising: a rotary generator; and the rectifier according to claim 5.
  7.  導電性を有する半導体層からなる半導体基板の第1の主面側に、前記半導体層に対しショットキ障壁を有する金属層が形成された半導体チップと、
     上部に平坦な保持面を有し、前記第1の主面を下に向けた前記半導体チップを前記保持面上に保持するとともに、前記第1の主面に形成された前記金属層が導電性の接合材を介して前記保持面に接合されるベース電極体と、
     前記第1の主面の反対側の主面である第2の主面を構成する前記半導体層に、導電性の接合材を介して接合されるリード電極体と、
     前記ベース電極体と前記リード電極体との間に挟まれた前記半導体チップを封止する封止樹脂体と
    を備え、
     前記半導体チップ内の前記半導体層と前記金属層との境界に形成されるショットキ接合部は、前記第2の主面よりも前記第1の主面に近い位置に形成されており、
     前記半導体チップの周縁部と前記封止樹脂体との間には、絶縁保護膜が形成されている
    ことを特徴とするパワー半導体装置。
    A semiconductor chip in which a metal layer having a Schottky barrier with respect to the semiconductor layer is formed on a first main surface side of a semiconductor substrate made of a conductive semiconductor layer;
    The semiconductor chip having a flat holding surface at the top, holding the semiconductor chip with the first main surface facing down on the holding surface, and the metal layer formed on the first main surface being conductive A base electrode body bonded to the holding surface via the bonding material of
    A lead electrode body bonded to the semiconductor layer constituting the second main surface, which is the main surface opposite to the first main surface, via a conductive bonding material;
    A sealing resin body for sealing the semiconductor chip sandwiched between the base electrode body and the lead electrode body;
    The Schottky junction formed at the boundary between the semiconductor layer and the metal layer in the semiconductor chip is formed at a position closer to the first main surface than the second main surface,
    An insulating protective film is formed between a peripheral edge of the semiconductor chip and the sealing resin body.
  8.  前記半導体チップの周縁部側面に形成される前記絶縁保護膜の厚みは、前記第2の主面側で薄く、前記第1の主面側に近付くほど厚くなる
    ことを特徴とする請求項7に記載のパワー半導体装置。
    The thickness of the insulating protective film formed on the side surface of the peripheral portion of the semiconductor chip is thin on the second main surface side, and becomes thicker as it approaches the first main surface side. The power semiconductor device described.
  9.  前記半導体層は、p型半導体層である
    ことを特徴とする請求項7に記載のパワー半導体装置。
    The power semiconductor device according to claim 7, wherein the semiconductor layer is a p-type semiconductor layer.
  10.  前記半導体層は、n型半導体層である
    ことを特徴とする請求項7に記載のパワー半導体装置。
    The power semiconductor device according to claim 7, wherein the semiconductor layer is an n-type semiconductor layer.
  11.  上位電位側ダイオード素子および下位電位側ダイオード素子の直列接続回路が複数個組み合わされてなるダイオードブリッジ回路含んで構成され、
     前記上位電位側ダイオード素子として、請求項9に記載のパワー半導体装置を用い、前記下位電位側ダイオード素子として、請求項10に記載のパワー半導体装置を用いてなる
    ことを特徴とする整流装置。
    A diode bridge circuit comprising a combination of a plurality of series connection circuits of upper potential side diode elements and lower potential side diode elements,
    A rectifier using the power semiconductor device according to claim 9 as the upper potential side diode element and using the power semiconductor device according to claim 10 as the lower potential side diode element.
  12.  回転発電機と、請求項11に記載の整流装置とを含んでなる
    ことを特徴とする電源装置。
    A power supply device comprising: a rotary generator; and the rectifier according to claim 11.
PCT/JP2013/083109 2012-12-11 2013-12-10 Power semiconductor device, rectifier device, and power source device WO2014092089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012270550A JP6006628B2 (en) 2012-12-11 2012-12-11 Power semiconductor device, rectifier device and power supply device
JP2012-270550 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014092089A1 true WO2014092089A1 (en) 2014-06-19

Family

ID=50934377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083109 WO2014092089A1 (en) 2012-12-11 2013-12-10 Power semiconductor device, rectifier device, and power source device

Country Status (3)

Country Link
JP (1) JP6006628B2 (en)
TW (1) TWI528567B (en)
WO (1) WO2014092089A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817727A (en) * 2019-03-20 2019-05-28 山东省半导体研究所 The alkali washing process of diode and circle OJ chip with round OJ chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263108B2 (en) * 2014-09-11 2018-01-17 株式会社日立製作所 Semiconductor device, alternator and power conversion device using the same
JP7087495B2 (en) * 2018-03-16 2022-06-21 株式会社デンソー A power semiconductor device, a rotary electric machine equipped with the power semiconductor device, and a method for manufacturing the power semiconductor device.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150954A (en) * 1986-12-16 1988-06-23 Toshiba Corp Bridge type semiconductor device
JPH08204066A (en) * 1995-01-20 1996-08-09 Fuji Electric Co Ltd Semiconductor device
JPH1167759A (en) * 1997-08-25 1999-03-09 Hitachi Ltd Manufacture of semiconductor substrate with high breakdown voltage
JP2002190553A (en) * 2000-12-21 2002-07-05 Toshiba Components Co Ltd Resin-sealed semiconductor element and manufacturing method therefor
JP2002261230A (en) * 2001-02-28 2002-09-13 Nippon Inter Electronics Corp Fully molded semiconductor device and lead frame used for the same
JP2012152087A (en) * 2011-01-21 2012-08-09 Mitsubishi Electric Corp Power supply system for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129141U (en) * 1984-02-03 1985-08-30 新電元工業株式会社 semiconductor equipment
JPH03105957A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Semiconductor integrated circuit device
JP2001127074A (en) * 1999-10-29 2001-05-11 Hitachi Ltd Semiconductor device and full-wave rectificaton device using the same
JP4195398B2 (en) * 2004-01-29 2008-12-10 関西電力株式会社 Semiconductor device and power device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150954A (en) * 1986-12-16 1988-06-23 Toshiba Corp Bridge type semiconductor device
JPH08204066A (en) * 1995-01-20 1996-08-09 Fuji Electric Co Ltd Semiconductor device
JPH1167759A (en) * 1997-08-25 1999-03-09 Hitachi Ltd Manufacture of semiconductor substrate with high breakdown voltage
JP2002190553A (en) * 2000-12-21 2002-07-05 Toshiba Components Co Ltd Resin-sealed semiconductor element and manufacturing method therefor
JP2002261230A (en) * 2001-02-28 2002-09-13 Nippon Inter Electronics Corp Fully molded semiconductor device and lead frame used for the same
JP2012152087A (en) * 2011-01-21 2012-08-09 Mitsubishi Electric Corp Power supply system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817727A (en) * 2019-03-20 2019-05-28 山东省半导体研究所 The alkali washing process of diode and circle OJ chip with round OJ chip
CN109817727B (en) * 2019-03-20 2024-04-30 山东省半导体研究所 Diode with round OJ chip and alkaline washing process of round OJ chip

Also Published As

Publication number Publication date
JP6006628B2 (en) 2016-10-12
TW201444100A (en) 2014-11-16
TWI528567B (en) 2016-04-01
JP2014116511A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US9831145B2 (en) Semiconductor device, and alternator and power converter using the semiconductor device
US10319849B2 (en) Semiconductor device, and alternator and power conversion device which use same
US10304761B2 (en) Semiconductor device and alternator using same
WO2017073233A1 (en) Power semiconductor device
JPWO2019049400A1 (en) Power module, manufacturing method thereof, and power conversion device
EP3573107A1 (en) Semiconductor device and power conversion apparatus
JP6006628B2 (en) Power semiconductor device, rectifier device and power supply device
US20190080979A1 (en) Semiconductor device
KR101862424B1 (en) Rectifier arrangement having schottky diodes
CN109390328B (en) Semiconductor device and alternator using the same
US20210391299A1 (en) Semiconductor device, method for manufacturing semiconductor device, and power conversion device
TWI710138B (en) Power device for rectifier
JP6988518B2 (en) Rectifier and rotary machine
WO2015104808A1 (en) Power semiconductor device and power conversion device
WO2021079735A1 (en) Semiconductor device, rectifying element using same, and alternator
KR100910244B1 (en) Vehicle alternator
JP5020271B2 (en) Semiconductor test apparatus and semiconductor test method
US9842836B2 (en) Diode
US11777419B2 (en) Semiconductor device, semiconductor device manufacturing method, and power converter
JP7452040B2 (en) Semiconductor device and semiconductor device manufacturing method
WO2022168410A1 (en) Power semiconductor device
JP2011234614A (en) Rectifier bridge circuit
TWM569108U (en) Rectifying power device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863057

Country of ref document: EP

Kind code of ref document: A1