WO2014091886A1 - Substrate processing apparatus and method for adjusting pressure inside processing vessel - Google Patents

Substrate processing apparatus and method for adjusting pressure inside processing vessel Download PDF

Info

Publication number
WO2014091886A1
WO2014091886A1 PCT/JP2013/081108 JP2013081108W WO2014091886A1 WO 2014091886 A1 WO2014091886 A1 WO 2014091886A1 JP 2013081108 W JP2013081108 W JP 2013081108W WO 2014091886 A1 WO2014091886 A1 WO 2014091886A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
processing
gas
pyrolyzer
container
Prior art date
Application number
PCT/JP2013/081108
Other languages
French (fr)
Japanese (ja)
Inventor
末木 英人
久 松井
昌平 仙波
博章 内田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2014091886A1 publication Critical patent/WO2014091886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps

Definitions

  • the present invention relates to a substrate processing apparatus and a pressure adjusting method in a processing container.
  • FPD flat panel displays
  • LCD liquid crystal display devices
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • substrates such as glass substrates and semiconductor wafers.
  • a film forming process for forming a predetermined film using a method is performed.
  • a film is formed on the substrate using a processing gas such as an organic metal (MO) gas or a silane-based gas, and the unreacted gas after the film forming is a heating device provided in the exhaust gas pipe. It is discharged after it is pyrolyzed and rendered harmless.
  • a processing gas such as an organic metal (MO) gas or a silane-based gas
  • pressure adjustment in the processing chamber is conventionally performed by changing the exhaust conductance with a valve or the like provided in the exhaust pipe (for example, Patent Document 1).
  • the present invention provides a substrate processing apparatus and a processing container capable of adjusting the pressure in the processing container without being affected by the adhesion of the deposit in the substrate processing using the processing gas for generating the deposit such as a film forming process. It is an object to provide an internal pressure adjusting method.
  • a substrate processing apparatus that performs processing on a substrate using a processing gas that generates a deposit, the processing container containing a substrate, and the processing gas being transferred to the processing container.
  • a processing gas supply mechanism for supplying gas to the processing vessel, an exhaust passage having one end connected to the processing vessel, an exhaust pump for exhausting the inside of the processing vessel connected to the other end of the exhaust passage, and an exhaust passage
  • a pyrolyzer for thermally decomposing the thermally decomposable sedimentary gas in the exhaust gas discharged from the processing container, and a pressure in the processing container provided in the pyrolyzer are adjusted. Therefore, there is provided a substrate processing apparatus comprising exhaust conductance adjusting means for adjusting exhaust conductance of the exhaust passage.
  • the exhaust conductance adjusting means is preferably provided in a heating region in the pyrolyzer.
  • the exhaust conductance adjusting means may be disposed in an exhaust passage in the pyrolyzer and have one or a plurality of baffle plates that define an exhaust gas passage region.
  • the exhaust conductance can be adjusted by at least one of the position, size and shape of the exhaust gas passage region by the baffle plate, the number of baffle plates and the arrangement position.
  • the exhaust conductance adjusting means may be configured such that the exhaust conductance is variable.
  • the exhaust conductance adjusting means has one or a plurality of baffle plates that are disposed in the exhaust passage in the pyrolyzer and that defines an exhaust gas passage region, and the position and size of the exhaust gas passage region by the baffle plate. Further, at least one of the shape, the number of the baffle plates, and the arrangement position may be variable.
  • a member for adjusting the exhaust conductance does not exist between the processing vessel and the pyrolyzer.
  • the processing container may contain a plurality of substrates and be capable of processing the plurality of substrates collectively.
  • the treatment can be a film formation treatment by a CVD method or an ALD method.
  • examples of the depositable gas that can be thermally decomposed include an unreacted processing gas.
  • a processing container that accommodates a substrate, a processing gas supply mechanism that supplies a processing gas that generates deposits to the processing container, and an exhaust passage that has one end connected to the processing container.
  • an exhaust pump for exhausting the inside of the processing vessel connected to the other end of the exhaust passage, and a deposition property capable of being thermally decomposed in the exhaust gas exhausted from the processing vessel provided in the exhaust passage.
  • a substrate processing apparatus comprising a pyrolyzer for thermally decomposing a gas, a pressure in the processing container for adjusting the pressure of the processing container, the exhaust conductance being adjusted in the pyrolyzer,
  • a method for adjusting the pressure in a processing container characterized by adjusting the pressure in the processing container.
  • the adjustment of the exhaust conductance in the pyrolyzer can be performed by one or a plurality of baffle plates arranged in an exhaust passage in the pyrolyzer and defining an exhaust gas passage region.
  • the exhaust conductance can be adjusted by at least one of the position, size and shape of the exhaust gas passage region by the baffle plate, the number of baffle plates and the arrangement position.
  • An example of the thermally decomposable deposition gas is an unreacted processing gas.
  • the exhaust conductance adjusting means for adjusting the exhaust conductance of the exhaust passage in order to adjust the pressure in the processing vessel is used for thermally decomposing a depositable gas such as an unreacted process gas. Since it is provided in the pyrolyzer, the deposit is essentially not attached to the exhaust conductance adjusting means. For this reason, the defect of the process by depositing does not arise, and the period of a maintenance can be lengthened.
  • FIG. 1 It is sectional drawing which shows the substrate processing apparatus which concerns on one Embodiment of this invention. It is a cross-sectional view of the pyrolyzer used for the substrate processing apparatus which concerns on one Embodiment of this invention. It is a figure which shows an example of the baffle board used as an exhaust conductance adjustment means. It is a figure which shows the other example of the baffle board used as an exhaust conductance adjustment means. It is a figure which shows an example of the baffle plate which made exhaust conductance variable. It is a figure which shows the other example of the baffle board which made exhaust conductance variable. It is a figure which shows the further another example of the baffle plate which made exhaust conductance variable. It is a figure for demonstrating the adjustment example of the exhaust conductance in the conventional substrate processing apparatus.
  • FIG. 1 is a cross-sectional view showing a substrate processing apparatus according to an embodiment of the present invention.
  • a batch-type film forming apparatus that performs film forming processing by an ALD method on a plurality of substrates will be described as an example of the substrate processing apparatus.
  • the substrate processing apparatus 100 includes a processing container 1 that houses a plurality of substrates S, a processing gas supply mechanism 2 that supplies a processing gas for film formation to the processing container 1, and a processing container 1.
  • One end is connected to the exhaust passage 3 for exhausting the exhaust gas discharged from the processing vessel 1, the vacuum pump 4 for exhausting the processing vessel 1 connected to the other end of the exhaust passage 3, and the exhaust passage 3.
  • a pyrolyzer 5 for thermally decomposing unreacted process gas in the exhaust gas discharged from the processing vessel 1, a baffle plate 6 as exhaust conductance adjusting means provided in the pyrolyzer 5, and a substrate
  • a control unit 7 having a microprocessor (computer) for controlling each component of the processing apparatus 100.
  • the exhaust gas in addition to the unreacted processing gas, if the reaction product generated in the film forming process is a gas, the reaction product is also included in this.
  • the processing container 1 accommodates a plurality of (four in the example of FIG. 1) substrates S and is divided into processing chambers 11 for accommodating the substrates S.
  • Each processing chamber 11 is provided with a susceptor 12 on which a substrate S having a built-in heater is placed.
  • the processing gas supply mechanism 2 includes a processing gas supply source 21 and a pipe group 22 that supplies the processing gas from the processing gas supply source 21 to each processing chamber 11 of the processing container 1.
  • the processing gas supply mechanism 2 is configured to be able to supply the first processing gas, the second processing gas, and the purge gas, and alternately supplies the first processing gas and the second processing gas with the purge gas interposed therebetween.
  • a predetermined film is formed by ALD supplied to the processing container 1.
  • the flow rate of each gas can be controlled by a flow rate controller (not shown) such as a mass flow controller.
  • a metal alkoxide such as tetraethoxysilane (TEOS), a metal carbonyl such as Ni (CO) 4 , a trimethyl compound such as tetramethylaluminum (TMAl) or tetramethylgallium (TMGa), etc.
  • An organic metal compound gas can be used, and a reactive gas such as H 2 O, ozone, or H 2 can be used as the second processing gas.
  • a reactive gas such as H 2 O, ozone, or H 2 can be used as the second processing gas.
  • the purge gas can be used, for example, Ar gas, an inert gas such as N 2 gas.
  • the processing gas supply system to each processing chamber 11 is illustrated as one system for simplicity. However, when the first processing gas and the second processing gas are supplied to each processing chamber 11. Since each processing gas requires a processing gas supply system, there are at least two processing gas supply systems to each processing chamber 11.
  • the exhaust passage 3 is provided inside an individual exhaust pipe 31 having one end connected to each processing chamber 11 of the processing container 1 and a collective exhaust pipe 32 in which the individual exhaust pipes 31 are gathered.
  • the pyrolyzer 5 is connected in the middle of the collective exhaust pipe 32, and the exhaust passage 3 is also formed inside the pyrolyzer 5.
  • An opening / closing valve 33 is provided on the upstream side of the pyrolyzer 5 in the collective exhaust pipe 32.
  • the pyrolyzer 5 has a cylindrical main body container 51 connected to the collective exhaust pipe 32 and closed at both ends. Is provided with a cylindrical inner wall 52 that divides into a first space 51a having a central columnar shape and a second space 51b outside the first space 51a. The first space 51 a and the second space 51 b are connected by a notch 52 a at the upper end of the inner wall 52.
  • the lower end surface of the main body container 51 is provided with a first connection portion 53a having an opening in the first space 51a, and the outer periphery of the main body container 51 has a second connection portion 53b as desired in the second space 51b.
  • the first connection portion 53 a and the second connection portion 53 b are connected to the collective exhaust pipe 32. Therefore, the first space 51 a and the second space 51 b function as a part of the exhaust passage 3.
  • a heater 54 extending downward from the upper end of the main body container 51 is inserted into the first space 51a.
  • the heater 54 When the heater 54 is energized, the inside of the first space 51a is heated and flows therethrough. The reaction process gas is pyrolyzed. Therefore, the inside of the first space 51a becomes a heating region.
  • the inside of the main body container 51 By heating the inside of the main body container 51 by the heater 54, the inside of the main body container 51 is brought to a temperature at which, for example, 300 ° C. or higher processing gas can be decomposed.
  • baffle plates 6 serving as exhaust conductance adjusting means are provided in the first space 51a that is the heating region of the pyrolyzer 5.
  • the baffle plate 6 adjusts the exhaust conductance of the exhaust passage 3 in order to adjust the pressure in the processing container 1. That is, in general, in substrate processing in a processing container, when exhausting the processing container with a vacuum pump through the exhaust passage while flowing a processing gas or the like into the processing container, conductance adjustment is performed in the exhaust passage.
  • the pressure in the processing vessel is adjusted by adjusting the conductance of the exhaust passage by installing a valve or the like.
  • the exhaust conductance adjustment for adjusting the pressure in the processing container 1 is performed by the baffle plate 6 provided as an exhaust conductance adjusting means in the pyrolyzer 5.
  • the baffle plate 6 is inserted into the exhaust passage 3 as a resistance against exhaust, and as shown in FIG. 3, for example, an exhaust gas passage region 6a is defined at the center thereof. As shown in FIG. 4, the exhaust gas passage region 6 a may be formed between the baffle plate 6 and the inner wall 52.
  • the conductance of the exhaust passage 3 is adjusted by adjusting at least one of the position, size, shape, number of baffle plates 6 and arrangement position of the exhaust gas passage region 6a. It becomes possible to adjust. For example, by preparing various baffle plates 6 and selecting and attaching them appropriately, the position, size, and shape of the exhaust gas passage region 6a by the baffle plate 6 can be adjusted. Further, for example, by preparing a plurality of mounting ports for the baffle plate 6 and mounting the baffle plate 6 on a part of them, the number of baffle plates 6 and the arrangement position thereof can be adjusted. . Further, the exhaust conductance can be adjusted by changing the relative position of the exhaust gas passage region 6a defined by each baffle plate 6 by changing the direction of the plurality of baffle plates 6 or the like.
  • the exhaust conductance variable by attaching an appropriate actuator to the baffle plate 6.
  • an appropriate actuator for example, as shown in FIG. 5, by making a plurality of baffle plates 6 movable along the longitudinal direction of the first space 51a by an actuator 61, these positions are adjusted to make the exhaust conductance variable. Can do.
  • the baffle plate 6 can be moved in a direction orthogonal to the longitudinal direction of the first space 51 a by the actuator 62, so that the exhaust gas passage region 6 a formed between the baffle plate 6 and the inner wall 52 is formed. The size and position can be adjusted. Furthermore, as shown in FIG.
  • the size of the exhaust gas passage region 6a at the center of the baffle plate 6 can be made variable by making the baffle plate 6 an iris diaphragm structure and changing the opening degree by the actuator 63. Furthermore, the number of the baffle plates 6 can be made variable by allowing the baffle plates 6 to be moved into and out of the first space 51a by an actuator. Furthermore, a plurality of baffle plates 6 can be rotated by an actuator, or the relative position of the exhaust gas passage region 6a defined by each baffle plate 6 can be made variable.
  • a gate valve (not shown) is opened, and a substrate S is carried into each processing chamber 11 from a loading / unloading port (not shown) by a transfer device (not shown) and placed on the susceptor 12.
  • the processing chamber 1 is hermetically sealed by closing the gate valve, and a predetermined gas is allowed to flow from the processing gas supply mechanism 2 into the processing chamber 1 and is exhausted by the vacuum pump 4 while adjusting the exhaust conductance.
  • the inside of 1 is adjusted to a predetermined pressure.
  • the first processing gas and the second processing gas are alternately supplied from the processing gas supply mechanism 2 to the processing container 1 with the purge gas interposed therebetween, and a predetermined film is formed in each processing chamber of the processing container 1 by the ALD method.
  • a film is formed on the substrate S in 11.
  • a pressure adjusting valve (regulator) 71 is provided in the individual exhaust pipe 31, and a pressure control valve (APC) 72 is provided in the collective exhaust pipe 32. Adjustment was performed to adjust the pressure in the processing container 1. However, since deposits (depots) are formed in the processing container, piping, etc. in the film forming process, the pressure adjustment in the processing container 1 is controlled by a pressure adjusting valve (regulator) 71 or a pressure control valve (APC) as in the conventional case.
  • the variable valves such as 72 are used, when these valves are throttled to reduce the conductance, deposits (depots) adhere to them, causing a flow error or a malfunction of the valve due to valve malfunction. End up. For this reason, the maintenance cycle for removing this is shortened.
  • a baffle plate 6 is provided in the pyrolyzer 5 as exhaust conductance adjusting means.
  • the exhaust conductance in the pyrolyzer 5 can be adjusted, the conductance of the whole exhaust can be reduced, and as a result, the pressure in the processing container 1 can be adjusted.
  • a pressure adjustment valve (regulator) and a pressure control valve are not required, and there is no inconvenience due to deposits (depots) adhering to them.
  • deposits (depots) do not adhere to the exhaust conductance adjusting means. For this reason, the malfunction of the process by deposit (depot) adhesion does not arise, and the period of a maintenance can be prolonged.
  • the pressure in the processing container 1 can be appropriately changed during the processing.
  • the present invention is not limited to the above embodiment and can be variously modified.
  • the baffle plate is provided as the exhaust conductance adjusting means, but the present invention is not limited to this.
  • the exhaust conductance may be adjusted by changing the area of the exhaust passage itself of the pyrolyzer.
  • region directly heated with the heater in the pyrolyzer was shown, if process gas can be decomposed
  • the pyrolyzer in the above embodiment is merely an example, and may have other structures such as a single pipe structure in which a heater is provided outside a pipe having an exhaust passage.
  • a batch processing apparatus that processes a plurality of substrates at the same time has been described as an example, but it is needless to say that even a single wafer type apparatus can be applied.
  • film formation by the ALD method has been described as an example of the substrate processing.
  • film formation by a normal CVD method may be used, and processing performed on the substrate using a processing gas that generates deposits. So long as the process is other than film formation.
  • the unreacted processing gas is shown.
  • the present invention is applied in the same manner when the reaction product contained in the exhaust gas is a depositable gas that can be thermally decomposed. The same is true for the embodiment of the present invention only by replacing the unreacted processing gas of this embodiment with a reaction product.
  • the present invention is applied to the exhaust gas in which the unreacted processing gas and the deposition reaction product are mixed. That is, the present invention can be applied to all pyrolyzable depositing gases contained in exhaust gas.
  • the substrate of the present invention is not particularly limited due to the nature of the invention.
  • the substrate can be applied to a glass substrate or a semiconductor substrate of a flat panel display (FPD) such as a liquid crystal display (LCD), and various other types. It can be applied to other substrates.
  • FPD flat panel display
  • LCD liquid crystal display

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A substrate processing apparatus (100), which performs processing on substrates using a processing gas that generates a deposition substance, is equipped with: a processing vessel (1) that accommodates substrates; a processing gas supply mechanism (2) that supplies processing gas to the processing vessel; an exhaust passage (3), one end of which is connected to the processing vessel (1); an exhaust pump (4) that is connected to the other end of the exhaust passage (3), and evacuates the inside of the processing vessel (1); a thermal decomposition machine (5) that is disposed in the exhaust passage (3), and thermally decomposes unreacted processing gas discharged from the processing vessel (1); and baffle plates (6) that are disposed inside the thermal decomposition machine, and adjust the exhaust conductance of the exhaust passage (3) in order to adjust the pressure inside the processing vessel (1).

Description

基板処理装置および処理容器内圧力調整方法Substrate processing apparatus and pressure adjusting method in processing container
 本発明は、基板処理装置および処理容器内圧力調整方法に関する。 The present invention relates to a substrate processing apparatus and a pressure adjusting method in a processing container.
 液晶表示装置(LCD)等のフラットパネルディスプレイ(FPD)の製造工程や半導体デバイスの製造工程においては、ガラス基板や半導体ウエハ等の基板に、CVD(Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法を用いて所定の膜を成膜する成膜処理が行われる。このような成膜処理においては、有機金属(MO)ガス、シラン系ガス等の処理ガスを用いて基板に膜を形成し、成膜後の未反応ガスは、排ガス配管に設けられた加熱装置により熱分解して無害化された後に排出される。 In the manufacturing process of flat panel displays (FPD) such as liquid crystal display devices (LCD) and the manufacturing process of semiconductor devices, CVD (Chemical Vapor Deposition) method or ALD (Atomic Layer Deposition) is applied to substrates such as glass substrates and semiconductor wafers. A film forming process for forming a predetermined film using a method is performed. In such a film forming process, a film is formed on the substrate using a processing gas such as an organic metal (MO) gas or a silane-based gas, and the unreacted gas after the film forming is a heating device provided in the exhaust gas pipe. It is discharged after it is pyrolyzed and rendered harmless.
 このような成膜処理を行う成膜装置において、処理室内の圧力調整は、従来、排気配管に設けられたバルブ等で排気コンダクタンスを変化させることにより行われている(例えば特許文献1)。 In a film forming apparatus that performs such a film forming process, pressure adjustment in the processing chamber is conventionally performed by changing the exhaust conductance with a valve or the like provided in the exhaust pipe (for example, Patent Document 1).
特開平02-198137号公報Japanese Patent Laid-Open No. 02-198137
 しかしながら、成膜処理においては、未反応の処理ガスや時には反応生成物によって、処理容器や配管等に堆積物(デポ)が形成されやすく、処理室内の圧力調整をバルブ等で排気コンダクタンスを変化させることにより行うと、コンダクタンスを絞ったバルブ等に堆積物(デポ)が付着し、処理の不具合の要因となってしまう。このため、これを除去するためのメンテナンスの周期が短くなってしまう。メンテナンスの際には、多くの場合配管やバルブ等の内部を大気開放するが、成膜処理に用いられる処理ガスには危険なものも多く、なるべくメンテナンスの機会を減らすことが望ましい。また、処理装置の稼働率の観点からもメンテナンスの機会を減らすことが望ましい。 However, in the film formation process, deposits (depots) are likely to be formed in the processing vessel or piping due to unreacted processing gas and sometimes reaction products, and the pressure conductance in the processing chamber is changed by a valve or the like. If this is done, deposits (depots) adhere to a valve or the like with reduced conductance, causing a problem in processing. For this reason, the maintenance cycle for removing this is shortened. In the case of maintenance, in many cases, the inside of piping, valves, and the like is opened to the atmosphere, but there are many dangerous processing gases used for the film forming process, and it is desirable to reduce maintenance opportunities as much as possible. It is also desirable to reduce maintenance opportunities from the viewpoint of the operating rate of the processing apparatus.
 よって、本発明は、成膜処理等の堆積物を生成する処理ガスによる基板処理において、堆積物の付着の影響を受けずに処理容器内の圧力を調整することができる基板処理装置および処理容器内圧力調整方法を提供することを課題とする。 Therefore, the present invention provides a substrate processing apparatus and a processing container capable of adjusting the pressure in the processing container without being affected by the adhesion of the deposit in the substrate processing using the processing gas for generating the deposit such as a film forming process. It is an object to provide an internal pressure adjusting method.
 すなわち、本発明の第1の観点によれば、堆積物を生成する処理ガスを用いて基板に処理を施す基板処理装置であって、基板を収容する処理容器と、前記処理ガスを前記処理容器に供給する処理ガス供給機構と、前記処理容器に一端が接続された排気通路と、前記排気通路の他端に接続された、前記処理容器内を排気するための排気ポンプと、前記排気通路に設けられた、前記処理容器から排出された排ガス中の熱分解可能な堆積性ガスを熱分解するための熱分解機と、前記熱分解機内に設けられた、前記処理容器内の圧力を調整するために前記排気通路の排気コンダクタンスを調整する排気コンダクタンス調整手段とを具備することを特徴とする基板処理装置が提供される。 That is, according to the first aspect of the present invention, there is provided a substrate processing apparatus that performs processing on a substrate using a processing gas that generates a deposit, the processing container containing a substrate, and the processing gas being transferred to the processing container. A processing gas supply mechanism for supplying gas to the processing vessel, an exhaust passage having one end connected to the processing vessel, an exhaust pump for exhausting the inside of the processing vessel connected to the other end of the exhaust passage, and an exhaust passage A pyrolyzer for thermally decomposing the thermally decomposable sedimentary gas in the exhaust gas discharged from the processing container, and a pressure in the processing container provided in the pyrolyzer are adjusted. Therefore, there is provided a substrate processing apparatus comprising exhaust conductance adjusting means for adjusting exhaust conductance of the exhaust passage.
 上記第1の観点において、前記排気コンダクタンス調整手段は、前記熱分解機内の加熱領域に設けられていることが好ましい。 In the first aspect, the exhaust conductance adjusting means is preferably provided in a heating region in the pyrolyzer.
 前記排気コンダクタンス調整手段は、前記熱分解機内の排気通路に配置され、排ガス通過領域を規定する一または複数のバッフル板を有するものとすることができる。この場合に、前記バッフル板による排ガス通過領域の位置、大きさ、形状、前記バッフル板の枚数および配置位置の少なくとも一つによって排気コンダクタンスを調整することができる。 The exhaust conductance adjusting means may be disposed in an exhaust passage in the pyrolyzer and have one or a plurality of baffle plates that define an exhaust gas passage region. In this case, the exhaust conductance can be adjusted by at least one of the position, size and shape of the exhaust gas passage region by the baffle plate, the number of baffle plates and the arrangement position.
 前記排気コンダクタンス調整手段は、排気コンダクタンスが可変である構成とすることができる。この場合に、前記排気コンダクタンス調整手段は、前記熱分解機内の排気通路に配置され、排ガス通過領域を規定する一または複数のバッフル板を有し、前記バッフル板による排ガス通過領域の位置、大きさ、形状、前記バッフル板の枚数および配置位置の少なくとも一つが可変であるものとすることができる。 The exhaust conductance adjusting means may be configured such that the exhaust conductance is variable. In this case, the exhaust conductance adjusting means has one or a plurality of baffle plates that are disposed in the exhaust passage in the pyrolyzer and that defines an exhaust gas passage region, and the position and size of the exhaust gas passage region by the baffle plate. Further, at least one of the shape, the number of the baffle plates, and the arrangement position may be variable.
 前記排気通路は、前記処理容器から前記熱分解機に至るまでの間に排気コンダクタンスを調整する部材が存在しないことが好ましい。 In the exhaust passage, it is preferable that a member for adjusting the exhaust conductance does not exist between the processing vessel and the pyrolyzer.
 前記処理容器は、複数の基板を収容し、これら複数の基板を一括して処理することが可能であるものとすることができる。また、前記の処理としては、CVD法またはALD法による成膜処理とすることができる。また、前記熱分解可能な堆積性ガスとしては、未反応の処理ガスを挙げることができる。 The processing container may contain a plurality of substrates and be capable of processing the plurality of substrates collectively. In addition, the treatment can be a film formation treatment by a CVD method or an ALD method. Further, examples of the depositable gas that can be thermally decomposed include an unreacted processing gas.
 本発明の第2の観点によれば、基板を収容する処理容器と、堆積物を生成する処理ガスを前記処理容器に供給する処理ガス供給機構と、前記処理容器に一端が接続された排気通路と、前記排気通路の他端に接続された、前記処理容器内を排気するための排気ポンプと、前記排気通路に設けられた、前記処理容器から排出され、排ガス中の熱分解可能な堆積性ガスを熱分解するための熱分解機とを具備する基板処理装置において前記処理容器の圧力を調整する処理容器内圧力調整方法であって、前記熱分解機内で排気コンダクタンスを調整することにより、前記処理容器内の圧力を調整することを特徴とする処理容器内圧力調整方法が提供される。 According to a second aspect of the present invention, a processing container that accommodates a substrate, a processing gas supply mechanism that supplies a processing gas that generates deposits to the processing container, and an exhaust passage that has one end connected to the processing container. And an exhaust pump for exhausting the inside of the processing vessel connected to the other end of the exhaust passage, and a deposition property capable of being thermally decomposed in the exhaust gas exhausted from the processing vessel provided in the exhaust passage. In a substrate processing apparatus comprising a pyrolyzer for thermally decomposing a gas, a pressure in the processing container for adjusting the pressure of the processing container, the exhaust conductance being adjusted in the pyrolyzer, There is provided a method for adjusting the pressure in a processing container, characterized by adjusting the pressure in the processing container.
 上記第2の観点において、前記熱分解機内での排気コンダクタンスの調整は、前記熱分解機内の排気通路に配置され、排ガス通過領域を規定する一または複数のバッフル板により行うことができる。この場合に、前記バッフル板による排ガス通過領域の位置、大きさ、形状、前記バッフル板の枚数および配置位置の少なくとも一つによって排気コンダクタンスを調整することができる。また、前記熱分解可能な堆積性ガスとして、未反応の処理ガスを挙げることができる。 In the second aspect, the adjustment of the exhaust conductance in the pyrolyzer can be performed by one or a plurality of baffle plates arranged in an exhaust passage in the pyrolyzer and defining an exhaust gas passage region. In this case, the exhaust conductance can be adjusted by at least one of the position, size and shape of the exhaust gas passage region by the baffle plate, the number of baffle plates and the arrangement position. An example of the thermally decomposable deposition gas is an unreacted processing gas.
 本発明によれば、処理容器内の圧力を調整するために排気通路の排気コンダクタンスを調整する排気コンダクタンス調整手段を、未反応の処理ガスなどの熱分解可能な堆積性ガスを熱分解するための熱分解機内に設けたので、本質的に排気コンダクタンス調整手段に堆積物は付着しない。このため、堆積物が付着することによる処理の不具合が生じず、メンテナンスの周期を長期化することができる。 According to the present invention, the exhaust conductance adjusting means for adjusting the exhaust conductance of the exhaust passage in order to adjust the pressure in the processing vessel is used for thermally decomposing a depositable gas such as an unreacted process gas. Since it is provided in the pyrolyzer, the deposit is essentially not attached to the exhaust conductance adjusting means. For this reason, the defect of the process by depositing does not arise, and the period of a maintenance can be lengthened.
本発明の一実施形態に係る基板処理装置を示す断面図である。It is sectional drawing which shows the substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板処理装置に用いられる熱分解機の横断面図である。It is a cross-sectional view of the pyrolyzer used for the substrate processing apparatus which concerns on one Embodiment of this invention. 排気コンダクタンス調整手段として用いられるバッフル板の一例を示す図である。It is a figure which shows an example of the baffle board used as an exhaust conductance adjustment means. 排気コンダクタンス調整手段として用いられるバッフル板の他の例を示す図である。It is a figure which shows the other example of the baffle board used as an exhaust conductance adjustment means. 排気コンダクタンスを可変にしたバッフル板の一例を示す図である。It is a figure which shows an example of the baffle plate which made exhaust conductance variable. 排気コンダクタンスを可変にしたバッフル板の他の例を示す図である。It is a figure which shows the other example of the baffle board which made exhaust conductance variable. 排気コンダクタンスを可変にしたバッフル板のさらに他の例を示す図である。It is a figure which shows the further another example of the baffle plate which made exhaust conductance variable. 従来の基板処理装置における排気コンダクタンスの調整例を説明するための図である。It is a figure for demonstrating the adjustment example of the exhaust conductance in the conventional substrate processing apparatus.
 以下、添付図面を参照して、本発明の実施形態について説明する。
 図1は本発明の一実施形態に係る基板処理装置を示す断面図である。本実施形態では、基板処理装置として複数の基板に対してALD法による成膜処理を行うバッチ式成膜装置を例にとって説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a substrate processing apparatus according to an embodiment of the present invention. In this embodiment, a batch-type film forming apparatus that performs film forming processing by an ALD method on a plurality of substrates will be described as an example of the substrate processing apparatus.
 図1に示すように、基板処理装置100は、複数の基板Sを収容する処理容器1と、処理容器1に成膜のための処理ガスを供給する処理ガス供給機構2と、処理容器1に一端が接続され、処理容器1から排出された排ガスを排気する排気通路3と、排気通路3の他端に接続された処理容器1を排気するための真空ポンプ4と、排気通路3に設けられた、処理容器1から排出された排ガス中の未反応の処理ガスを熱分解するための熱分解機5と、熱分解機5内に設けられた排気コンダクタンス調整手段としてのバッフル板6と、基板処理装置100の各構成部を制御するためのマイクロプロセッサ(コンピュータ)を有する制御部7とを備えている。なお、排ガス中には、未反応の処理ガスの他、成膜処理において発生した反応生成物が気体であれば、反応生成物もこれに含まれる。 As shown in FIG. 1, the substrate processing apparatus 100 includes a processing container 1 that houses a plurality of substrates S, a processing gas supply mechanism 2 that supplies a processing gas for film formation to the processing container 1, and a processing container 1. One end is connected to the exhaust passage 3 for exhausting the exhaust gas discharged from the processing vessel 1, the vacuum pump 4 for exhausting the processing vessel 1 connected to the other end of the exhaust passage 3, and the exhaust passage 3. Furthermore, a pyrolyzer 5 for thermally decomposing unreacted process gas in the exhaust gas discharged from the processing vessel 1, a baffle plate 6 as exhaust conductance adjusting means provided in the pyrolyzer 5, and a substrate And a control unit 7 having a microprocessor (computer) for controlling each component of the processing apparatus 100. In addition, in the exhaust gas, in addition to the unreacted processing gas, if the reaction product generated in the film forming process is a gas, the reaction product is also included in this.
 処理容器1は、複数枚(図1の例では4枚)の基板Sを収容するようになっており、各基板Sを収容する処理室11に別れている。各処理室11には、ヒーターが内蔵された基板Sを載置するサセプタ12が設けられている。 The processing container 1 accommodates a plurality of (four in the example of FIG. 1) substrates S and is divided into processing chambers 11 for accommodating the substrates S. Each processing chamber 11 is provided with a susceptor 12 on which a substrate S having a built-in heater is placed.
 処理ガス供給機構2は、処理ガス供給源21と、処理ガス供給源21から処理容器1の各処理室11へ処理ガスを供給する配管群22とを有している。処理ガス供給機構2は、第1の処理ガスと第2の処理ガスとパージガスとを供給できるように構成されており、第1の処理ガスと第2の処理ガスとをパージガスを挟んで交互に処理容器1に供給してALDにより所定の膜を成膜するようになっている。各ガスはマスフローコントローラ等の流量制御器(図示せず)により流量制御可能となっている。例えば、第1の処理ガスとしてテトラエトキシシラン(TEOS)のような金属アルコキシド、Ni(CO)のような金属カルボニル、テトラメチルアルミニウム(TMAl)やテトラメチルガリウム(TMGa)のようなトリメチル化合物等の有機金属化合物ガスを用いることができ、第2の処理ガスとしてHO、オゾン、H等の反応性ガスを用いることができる。また、パージガスとしては、例えばArガス、Nガス等の不活性ガスを用いることができる。なお、図1においては簡単のため各処理室11への処理ガス供給系を1系統として図示しているが、各処理室11へ第1の処理ガスと第2の処理ガスを供給する場合にはそれぞれの処理ガスについて処理ガス供給系が必要となるため、各処理室11への処理ガス供給系は少なくとも2系統存在する。 The processing gas supply mechanism 2 includes a processing gas supply source 21 and a pipe group 22 that supplies the processing gas from the processing gas supply source 21 to each processing chamber 11 of the processing container 1. The processing gas supply mechanism 2 is configured to be able to supply the first processing gas, the second processing gas, and the purge gas, and alternately supplies the first processing gas and the second processing gas with the purge gas interposed therebetween. A predetermined film is formed by ALD supplied to the processing container 1. The flow rate of each gas can be controlled by a flow rate controller (not shown) such as a mass flow controller. For example, as the first processing gas, a metal alkoxide such as tetraethoxysilane (TEOS), a metal carbonyl such as Ni (CO) 4 , a trimethyl compound such as tetramethylaluminum (TMAl) or tetramethylgallium (TMGa), etc. An organic metal compound gas can be used, and a reactive gas such as H 2 O, ozone, or H 2 can be used as the second processing gas. As the purge gas, can be used, for example, Ar gas, an inert gas such as N 2 gas. In FIG. 1, the processing gas supply system to each processing chamber 11 is illustrated as one system for simplicity. However, when the first processing gas and the second processing gas are supplied to each processing chamber 11. Since each processing gas requires a processing gas supply system, there are at least two processing gas supply systems to each processing chamber 11.
 排気通路3は、処理容器1の各処理室11に一端が接続された個別排気管31と個別排気管31が集合した集合排気管32との内部に設けられている。また、熱分解機5は集合排気管32の途中に接続されており、熱分解機5の内部にも排気通路3が形成されている。集合排気管32の熱分解機5の上流側には開閉バルブ33が設けられている。 The exhaust passage 3 is provided inside an individual exhaust pipe 31 having one end connected to each processing chamber 11 of the processing container 1 and a collective exhaust pipe 32 in which the individual exhaust pipes 31 are gathered. The pyrolyzer 5 is connected in the middle of the collective exhaust pipe 32, and the exhaust passage 3 is also formed inside the pyrolyzer 5. An opening / closing valve 33 is provided on the upstream side of the pyrolyzer 5 in the collective exhaust pipe 32.
 熱分解機5は、図1および図2の横断面図に示すように、集合排気管32に接続された、両端が塞がれた円筒状をなす本体容器51を有し、本体容器51内には、中央の円柱状をなす第1の空間51aとその外側の第2の空間51bとに区画する円筒状の内部壁52が設けられている。第1の空間51aと第2の空間51bとは内部壁52の上端部の切り欠き部52aで繋がっている。本体容器51の下端面には第1の空間51aが開口した第1の接続部53aが設けられ、本体容器51の外周部には第2の空間51bに望むように第2の接続部53bが設けられ、これら第1の接続部53aおよび第2の接続部53bが集合排気管32に接続されている。したがって、第1の空間51aおよび第2の空間51bは排気通路3の一部として機能する。 As shown in the cross-sectional views of FIGS. 1 and 2, the pyrolyzer 5 has a cylindrical main body container 51 connected to the collective exhaust pipe 32 and closed at both ends. Is provided with a cylindrical inner wall 52 that divides into a first space 51a having a central columnar shape and a second space 51b outside the first space 51a. The first space 51 a and the second space 51 b are connected by a notch 52 a at the upper end of the inner wall 52. The lower end surface of the main body container 51 is provided with a first connection portion 53a having an opening in the first space 51a, and the outer periphery of the main body container 51 has a second connection portion 53b as desired in the second space 51b. The first connection portion 53 a and the second connection portion 53 b are connected to the collective exhaust pipe 32. Therefore, the first space 51 a and the second space 51 b function as a part of the exhaust passage 3.
 第1の空間51a内には本体容器51の上端から下方に延びるヒーター54が挿入されており、ヒーター54に通電することにより、第1の空間51a内が加熱されてその中を通流する未反応の処理ガスを熱分解するようになっている。したがって、第1の空間51a内が加熱領域となる。ヒーター54により本体容器51内が加熱されることにより、本体容器51内が例えば300℃以上の処理ガスを分解可能な温度にされる。 A heater 54 extending downward from the upper end of the main body container 51 is inserted into the first space 51a. When the heater 54 is energized, the inside of the first space 51a is heated and flows therethrough. The reaction process gas is pyrolyzed. Therefore, the inside of the first space 51a becomes a heating region. By heating the inside of the main body container 51 by the heater 54, the inside of the main body container 51 is brought to a temperature at which, for example, 300 ° C. or higher processing gas can be decomposed.
 排気コンダクタンス調整手段としてのバッフル板6は、熱分解機5の加熱領域である第1の空間51a内に一枚または複数枚(図1の例では3枚)設けられている。バッフル板6は、処理容器1内の圧力を調整するために、排気通路3の排気コンダクタンスを調整する。すなわち、一般的に、処理容器内での基板処理においては、処理ガス等を処理容器内に流しつつ排気通路を介して真空ポンプで処理容器内を排気する際に、排気通路にコンダクタンス調整用のバルブを設置するなどして排気通路のコンダクタンスを調整して処理容器内の圧力を調整する。しかし、本実施形態では、このような処理容器1内の圧力調整をするための排気コンダクタンス調整を、熱分解機5内に排気コンダクタンス調整手段として設けたバッフル板6によって行う。 One or a plurality of (three in the example of FIG. 1) baffle plates 6 serving as exhaust conductance adjusting means are provided in the first space 51a that is the heating region of the pyrolyzer 5. The baffle plate 6 adjusts the exhaust conductance of the exhaust passage 3 in order to adjust the pressure in the processing container 1. That is, in general, in substrate processing in a processing container, when exhausting the processing container with a vacuum pump through the exhaust passage while flowing a processing gas or the like into the processing container, conductance adjustment is performed in the exhaust passage. The pressure in the processing vessel is adjusted by adjusting the conductance of the exhaust passage by installing a valve or the like. However, in this embodiment, the exhaust conductance adjustment for adjusting the pressure in the processing container 1 is performed by the baffle plate 6 provided as an exhaust conductance adjusting means in the pyrolyzer 5.
 バッフル板6は、排気通路3内に排気に対する抵抗として挿入され、図3に示すように、例えばその中央部に排ガス通過領域6aが規定されている。図4に示すように、排ガス通過領域6aがバッフル板6と内部壁52との間に形成されていてもよい。 The baffle plate 6 is inserted into the exhaust passage 3 as a resistance against exhaust, and as shown in FIG. 3, for example, an exhaust gas passage region 6a is defined at the center thereof. As shown in FIG. 4, the exhaust gas passage region 6 a may be formed between the baffle plate 6 and the inner wall 52.
 バッフル板6を着脱可能に設けることにより、バッフル板6による排ガス通過領域6aの位置、大きさ、形状、バッフル板6の枚数および配置位置の少なくとも一つを調整して、排気通路3のコンダクタンスを調整することが可能となる。例えば、種々のバッフル板6を用意しておき、これらから適宜選択して装着することにより、バッフル板6による排ガス通過領域6aの位置、大きさ、形状を調整することができる。また、例えば、バッフル板6の装着ポートを複数用意しておき、それらのうちの一部にバッフル板6を装着するようにすることにより、バッフル板6の枚数および配置位置を調整することができる。さらに、複数のバッフル板6の向きを変える等により、各バッフル板6が規定する排ガス通過領域6aの相対位置を変化させて排気コンダクタンスを調整することもできる。 By providing the baffle plate 6 so as to be detachable, the conductance of the exhaust passage 3 is adjusted by adjusting at least one of the position, size, shape, number of baffle plates 6 and arrangement position of the exhaust gas passage region 6a. It becomes possible to adjust. For example, by preparing various baffle plates 6 and selecting and attaching them appropriately, the position, size, and shape of the exhaust gas passage region 6a by the baffle plate 6 can be adjusted. Further, for example, by preparing a plurality of mounting ports for the baffle plate 6 and mounting the baffle plate 6 on a part of them, the number of baffle plates 6 and the arrangement position thereof can be adjusted. . Further, the exhaust conductance can be adjusted by changing the relative position of the exhaust gas passage region 6a defined by each baffle plate 6 by changing the direction of the plurality of baffle plates 6 or the like.
 また、バッフル板6に適宜のアクチュエータを取り付けて、排気コンダクタンスを可変にすることも可能である。例えば、図5に示すように、複数のバッフル板6をアクチュエータ61により第1の空間51aの長手方向に沿って移動可能とすることによって、これらの位置を調整して排気コンダクタンスを可変とすることができる。また、図6に示すようにバッフル板6をアクチュエータ62により第1の空間51aの長手方向に直交する方向に移動可能として、バッフル板6と内部壁52の間に形成される排ガス通過領域6aの大きさや位置を調整することができる。さらに、図7に示すように、バッフル板6を虹彩絞り構造としてアクチュエータ63により開度を可変としてバッフル板6中心部の排ガス通過領域6aの大きさを可変とすることができる。さらにまた、バッフル板6をアクチュエータにより第1の空間51aに対して出没可能または着脱可能として、バッフル板6の枚数を可変とすることもできる。さらにまた、複数のバッフル板6をアクチュエータにより回転させるようにしたり、各バッフル板6が規定する排ガス通過領域6aの相対位置を可変にすることもできる。 It is also possible to make the exhaust conductance variable by attaching an appropriate actuator to the baffle plate 6. For example, as shown in FIG. 5, by making a plurality of baffle plates 6 movable along the longitudinal direction of the first space 51a by an actuator 61, these positions are adjusted to make the exhaust conductance variable. Can do. Further, as shown in FIG. 6, the baffle plate 6 can be moved in a direction orthogonal to the longitudinal direction of the first space 51 a by the actuator 62, so that the exhaust gas passage region 6 a formed between the baffle plate 6 and the inner wall 52 is formed. The size and position can be adjusted. Furthermore, as shown in FIG. 7, the size of the exhaust gas passage region 6a at the center of the baffle plate 6 can be made variable by making the baffle plate 6 an iris diaphragm structure and changing the opening degree by the actuator 63. Furthermore, the number of the baffle plates 6 can be made variable by allowing the baffle plates 6 to be moved into and out of the first space 51a by an actuator. Furthermore, a plurality of baffle plates 6 can be rotated by an actuator, or the relative position of the exhaust gas passage region 6a defined by each baffle plate 6 can be made variable.
 次に、以上のように構成された基板処理装置100における処理動作について説明する。以下の処理動作は制御部7の制御のもとに行われる。 Next, processing operations in the substrate processing apparatus 100 configured as described above will be described. The following processing operations are performed under the control of the control unit 7.
 最初に、ゲートバルブ(図示せず)を開放して、搬入出口(図示せず)から搬送装置(図示せず)により基板Sを各処理室11に搬入し、サセプタ12上に載置する。次いでゲートバルブを閉じて処理容器1内を密閉状態とし、処理ガス供給機構2から所定のガスを処理容器1内に流し、排気コンダクタンスを調整しつつ、真空ポンプ4により排気することにより、処理容器1内を所定の圧力に調整するようになっている。そして、処理ガス供給機構2から、第1の処理ガスと第2の処理ガスとをパージガスを挟んで交互に処理容器1に供給して、ALD法により所定の膜を処理容器1の各処理室11内の基板S上に成膜する。 First, a gate valve (not shown) is opened, and a substrate S is carried into each processing chamber 11 from a loading / unloading port (not shown) by a transfer device (not shown) and placed on the susceptor 12. Next, the processing chamber 1 is hermetically sealed by closing the gate valve, and a predetermined gas is allowed to flow from the processing gas supply mechanism 2 into the processing chamber 1 and is exhausted by the vacuum pump 4 while adjusting the exhaust conductance. The inside of 1 is adjusted to a predetermined pressure. Then, the first processing gas and the second processing gas are alternately supplied from the processing gas supply mechanism 2 to the processing container 1 with the purge gas interposed therebetween, and a predetermined film is formed in each processing chamber of the processing container 1 by the ALD method. A film is formed on the substrate S in 11.
 従来の基板処理装置においては、図8に示すように、個別排気管31に圧力調整バルブ(レギュレータ)71を設け、集合排気管32に圧力制御バルブ(APC)72を設け、これらにより排気コンダクタンスの調整を行って、処理容器1内の圧力を調整していた。しかし、成膜処理においては堆積物(デポ)が処理容器や配管等に形成されるため、処理容器1内の圧力調整を従来のように圧力調整バルブ(レギュレータ)71や圧力制御バルブ(APC)72のような可変バルブで行うと、これらバルブを絞ってコンダクタンスを低下させた際に、これらに堆積物(デポ)が付着し、流量の誤差や、バルブの動作不良等による処理の不具合の要因となってしまう。このため、これを除去するためのメンテナンスの周期が短くなってしまう。 In the conventional substrate processing apparatus, as shown in FIG. 8, a pressure adjusting valve (regulator) 71 is provided in the individual exhaust pipe 31, and a pressure control valve (APC) 72 is provided in the collective exhaust pipe 32. Adjustment was performed to adjust the pressure in the processing container 1. However, since deposits (depots) are formed in the processing container, piping, etc. in the film forming process, the pressure adjustment in the processing container 1 is controlled by a pressure adjusting valve (regulator) 71 or a pressure control valve (APC) as in the conventional case. When the variable valves such as 72 are used, when these valves are throttled to reduce the conductance, deposits (depots) adhere to them, causing a flow error or a malfunction of the valve due to valve malfunction. End up. For this reason, the maintenance cycle for removing this is shortened.
 そこで、本実施形態では、熱分解機5内に排気コンダクタンス調整手段としてのバッフル板6を設ける。これにより、熱分解機5における排気コンダクタンスを調整し、排気全体のコンダクタンスを落とし、結果として処理容器1内の圧力を調整することができる。このため、圧力調整バルブ(レギュレータ)や圧力制御バルブが不要となり、これらに堆積物(デポ)が付着することによる不都合が生じない。また、熱分解機5はヒーター54により内部が加熱されて未反応の処理ガスを分解するものであるため、本質的に排気コンダクタンス調整手段に堆積物(デポ)は付着しない。このため、堆積物(デポ)が付着することによる処理の不具合が生じず、メンテナンスの周期を長期化することができる。 Therefore, in this embodiment, a baffle plate 6 is provided in the pyrolyzer 5 as exhaust conductance adjusting means. Thereby, the exhaust conductance in the pyrolyzer 5 can be adjusted, the conductance of the whole exhaust can be reduced, and as a result, the pressure in the processing container 1 can be adjusted. For this reason, a pressure adjustment valve (regulator) and a pressure control valve are not required, and there is no inconvenience due to deposits (depots) adhering to them. Further, since the inside of the pyrolyzer 5 is heated by the heater 54 to decompose the unreacted processing gas, deposits (depots) do not adhere to the exhaust conductance adjusting means. For this reason, the malfunction of the process by deposit (depot) adhesion does not arise, and the period of a maintenance can be prolonged.
 また、アクチュエータ等を設けてバッフル板6を適宜移動させてコンダクタンスを可変にすることにより、処理中に処理容器1内の圧力を適切に変更することができる。 Further, by providing an actuator or the like and appropriately moving the baffle plate 6 to make the conductance variable, the pressure in the processing container 1 can be appropriately changed during the processing.
 なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、排気コンダクタンス調整手段としてバッフル板を設けたが、これに限るものではない。熱分解機の排気通路自体の面積を変化させて排気コンダクタンスを調整するもの等であってもよい。 It should be noted that the present invention is not limited to the above embodiment and can be variously modified. For example, in the above embodiment, the baffle plate is provided as the exhaust conductance adjusting means, but the present invention is not limited to this. For example, the exhaust conductance may be adjusted by changing the area of the exhaust passage itself of the pyrolyzer.
 また、排気コンダクタンス調整手段としてのバッフル板を、熱分解機においてヒーターにより直接加熱されている加熱領域である第1の空間に設けた例を示したが、処理ガスを分解することができれば、このような加熱領域ではない第2の空間に設けてもよい。また、上記実施形態における熱分解機は例示に過ぎず、排気通路を有する配管の外側にヒーターを設けた一重管構造のもの等、他の構造であってもよい。 Moreover, although the example which provided the baffle plate as an exhaust conductance adjustment means in the 1st space which is a heating area | region directly heated with the heater in the pyrolyzer was shown, if process gas can be decomposed | disassembled, this You may provide in the 2nd space which is not such a heating area | region. The pyrolyzer in the above embodiment is merely an example, and may have other structures such as a single pipe structure in which a heater is provided outside a pipe having an exhaust passage.
 さらに、上記実施形態では、複数の基板を同時に処理するバッチ処理装置を例にとって示したが、枚葉式の装置であっても適用できることはいうまでもない。また、上記実施形態では基板処理としてALD法による成膜を例にとって説明したが、通常のCVD法による成膜であってもよく、また、堆積物を生成する処理ガスを用いて基板に施す処理であれば成膜以外の他の処理であってもよい。 Furthermore, in the above embodiment, a batch processing apparatus that processes a plurality of substrates at the same time has been described as an example, but it is needless to say that even a single wafer type apparatus can be applied. In the above embodiment, film formation by the ALD method has been described as an example of the substrate processing. However, film formation by a normal CVD method may be used, and processing performed on the substrate using a processing gas that generates deposits. So long as the process is other than film formation.
 さらに、上記実施形態では、未反応の処理ガスについて示したが、排ガス中に含まれる反応生成物が熱分解可能な堆積性のガスである場合にも全く同様にして本発明が適用され、その場合の実施形態についても本実施形態の未反応の処理ガスを反応生成物に置き換えるだけで全く同様となる。言うまでもなく、未反応の処理ガスと堆積性の反応生成物が混在する排ガスであっても全く同様に本発明が適用される。すなわち、本発明は、排ガス中に含まれる熱分解可能な堆積性ガス全般について適用することができる。 Further, in the above embodiment, the unreacted processing gas is shown. However, the present invention is applied in the same manner when the reaction product contained in the exhaust gas is a depositable gas that can be thermally decomposed. The same is true for the embodiment of the present invention only by replacing the unreacted processing gas of this embodiment with a reaction product. Needless to say, the present invention is applied to the exhaust gas in which the unreacted processing gas and the deposition reaction product are mixed. That is, the present invention can be applied to all pyrolyzable depositing gases contained in exhaust gas.
 さらに、本発明は発明の性質上、基板は特に限定されるものではなく、例えば液晶表示装置(LCD)等のフラットパネルディスプレイ(FPD)のガラス基板や半導体基板に適用可能な他、その他の種々の基板に適用可能である。 Furthermore, the substrate of the present invention is not particularly limited due to the nature of the invention. For example, the substrate can be applied to a glass substrate or a semiconductor substrate of a flat panel display (FPD) such as a liquid crystal display (LCD), and various other types. It can be applied to other substrates.
 1;処理容器、2;処理ガス供給機構、3;排気通路、4;真空ポンプ、5;熱分解機、6;バッフル板(排気コンダクタンス調整手段)、6a;排ガス通過領域、7;制御部、11;処理室、12;サセプタ、21;処理ガス供給源、22;配管群、31;個別排気管、32;集合排気管、33;開閉バルブ、51;本体容器、52;内部壁、51a;第1の空間、51b;第2の空間、54;ヒーター、61,62,63;アクチュエータ、100;基板処理装置、S;基板 DESCRIPTION OF SYMBOLS 1; Processing container, 2; Processing gas supply mechanism, 3; Exhaust passage, 4; Vacuum pump, 5; Pyrolysis machine, 6; Baffle plate (exhaust conductance adjustment means), 6a; 11; processing chamber, 12; susceptor, 21; processing gas supply source, 22; piping group, 31; individual exhaust pipe, 32; collective exhaust pipe, 33; open / close valve, 51; main body container, 52; 1st space, 51b; 2nd space, 54; heater, 61, 62, 63; actuator, 100; substrate processing apparatus, S; substrate

Claims (14)

  1.  堆積物を生成する処理ガスを用いて基板に処理を施す基板処理装置であって、
     基板を収容する処理容器と、
     前記処理ガスを前記処理容器に供給する処理ガス供給機構と、
     前記処理容器に一端が接続された排気通路と、
     前記排気通路の他端に接続された、前記処理容器内を排気するための排気ポンプと、
     前記排気通路に設けられた、前記処理容器から排出された排ガス中の熱分解可能な堆積性ガスを熱分解するための熱分解機と、
     前記熱分解機内に設けられた、前記処理容器内の圧力を調整するために前記排気通路の排気コンダクタンスを調整する排気コンダクタンス調整手段と
    を具備することを特徴とする基板処理装置。
    A substrate processing apparatus for processing a substrate using a processing gas for generating a deposit,
    A processing container for containing a substrate;
    A processing gas supply mechanism for supplying the processing gas to the processing container;
    An exhaust passage having one end connected to the processing vessel;
    An exhaust pump connected to the other end of the exhaust passage for exhausting the inside of the processing vessel;
    A pyrolyzer provided in the exhaust passage for thermally decomposing thermally decomposable sedimentary gas in the exhaust gas discharged from the processing container;
    A substrate processing apparatus comprising: an exhaust conductance adjusting means provided in the pyrolyzer for adjusting an exhaust conductance of the exhaust passage in order to adjust a pressure in the processing container.
  2.  前記排気コンダクタンス調整手段は、前記熱分解機内の加熱領域に設けられていることを特徴とする請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the exhaust conductance adjusting means is provided in a heating region in the pyrolyzer.
  3.  前記排気コンダクタンス調整手段は、前記熱分解機内の排気通路に配置され、排ガス通過領域を規定する一または複数のバッフル板を有することを特徴とする請求項1または請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the exhaust conductance adjusting means includes one or a plurality of baffle plates that are disposed in an exhaust passage in the pyrolyzer and that define an exhaust gas passage region. .
  4.  前記排気コンダクタンス調整手段は、前記バッフル板による排ガス通過領域の位置、大きさ、形状、前記バッフル板の枚数および配置位置の少なくとも一つによって排気コンダクタンスを調整することを特徴とする請求項3に記載の基板処理装置。 The exhaust conductance adjusting means adjusts the exhaust conductance according to at least one of a position, a size, a shape, a number of the baffle plates, and an arrangement position of an exhaust gas passage region by the baffle plate. Substrate processing equipment.
  5.  前記排気コンダクタンス調整手段は、排気コンダクタンスが可変であることを特徴とする請求項1または請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the exhaust conductance adjusting means has a variable exhaust conductance.
  6.  前記排気コンダクタンス調整手段は、前記熱分解機内の排気通路に配置され、排ガス通過領域を規定する一または複数のバッフル板を有し、前記バッフル板による排ガス通過領域の位置、大きさ、形状、前記バッフル板の枚数および配置位置の少なくとも一つが可変であることを特徴とする請求項5に記載の基板処理装置。 The exhaust conductance adjusting means is disposed in an exhaust passage in the pyrolyzer and has one or a plurality of baffle plates that define an exhaust gas passage region, and the position, size, shape, and the like of the exhaust gas passage region by the baffle plate, 6. The substrate processing apparatus according to claim 5, wherein at least one of the number of baffle plates and the arrangement position is variable.
  7.  前記排気通路は、前記処理容器から前記熱分解機に至るまでの間に排気コンダクタンスを調整する部材が存在しないことを特徴とする請求項1または請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein a member for adjusting an exhaust conductance does not exist in the exhaust passage from the processing vessel to the pyrolyzer.
  8.  前記処理容器は、複数の基板を収容し、これら複数の基板を一括して処理することが可能であることを特徴とする請求項1または請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the processing container accommodates a plurality of substrates and can process the plurality of substrates collectively.
  9.  前記の処理は、CVD法またはALD法による成膜処理であることを特徴とする請求項1または請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the process is a film forming process by a CVD method or an ALD method.
  10.  前記熱分解可能な堆積性ガスは、未反応の処理ガスであることを特徴とする請求項1または請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the thermally decomposable deposition gas is an unreacted processing gas.
  11.  基板を収容する処理容器と、堆積物を生成する処理ガスを前記処理容器に供給する処理ガス供給機構と、前記処理容器に一端が接続された排気通路と、前記排気通路の他端に接続された、前記処理容器内を排気するための排気ポンプと、前記排気通路に設けられた、前記処理容器から排出された、排ガス中の熱分解可能な堆積性ガスを熱分解するための熱分解機とを具備する基板処理装置において前記処理容器の圧力を調整する処理容器内圧力調整方法であって、
     前記熱分解機内で排気コンダクタンスを調整することにより、前記処理容器内の圧力を調整することを特徴とする処理容器内圧力調整方法。
    A processing container for containing a substrate; a processing gas supply mechanism for supplying a processing gas for generating deposits to the processing container; an exhaust passage having one end connected to the processing container; and an other end of the exhaust passage. In addition, an exhaust pump for exhausting the inside of the processing container, and a pyrolyzer for thermally decomposing thermally decomposable sedimentary gas in the exhaust gas discharged from the processing container, provided in the exhaust passage A process container pressure adjusting method for adjusting the pressure of the process container in a substrate processing apparatus comprising:
    A method for adjusting a pressure in a processing container, wherein the pressure in the processing container is adjusted by adjusting an exhaust conductance in the pyrolyzer.
  12.  前記熱分解機内での排気コンダクタンスの調整は、前記熱分解機内の排気通路に配置され、排ガス通過領域を規定する一または複数のバッフル板により行われることを特徴とする請求項11に記載の処理容器内圧力調整方法。 The process according to claim 11, wherein the adjustment of the exhaust conductance in the pyrolyzer is performed by one or a plurality of baffle plates arranged in an exhaust passage in the pyrolyzer and defining an exhaust gas passage region. Container pressure adjustment method.
  13.  前記バッフル板による排ガス通過領域の位置、大きさ、形状、前記バッフル板の枚数および配置位置の少なくとも一つによって排気コンダクタンスを調整することを特徴とする請求項12に記載の処理容器内圧力調整方法。 The method for adjusting the pressure in the processing vessel according to claim 12, wherein the exhaust conductance is adjusted according to at least one of a position, a size, a shape of the exhaust gas passage area by the baffle plate, a number of the baffle plates, and an arrangement position. .
  14.  前記熱分解可能な堆積性ガスは、未反応の処理ガスであることを特徴とする請求項11から請求項13のいずれか1項に記載の処理容器内圧力調整方法。 The process container pressure adjusting method according to any one of claims 11 to 13, wherein the thermally decomposable deposition gas is an unreacted process gas.
PCT/JP2013/081108 2012-12-11 2013-11-19 Substrate processing apparatus and method for adjusting pressure inside processing vessel WO2014091886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-270017 2012-12-11
JP2012270017A JP2014116484A (en) 2012-12-11 2012-12-11 Substrate processing apparatus and processing container internal pressure adjustment method

Publications (1)

Publication Number Publication Date
WO2014091886A1 true WO2014091886A1 (en) 2014-06-19

Family

ID=50934181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081108 WO2014091886A1 (en) 2012-12-11 2013-11-19 Substrate processing apparatus and method for adjusting pressure inside processing vessel

Country Status (3)

Country Link
JP (1) JP2014116484A (en)
TW (1) TW201439362A (en)
WO (1) WO2014091886A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101682154B1 (en) * 2015-04-14 2016-12-02 주식회사 유진테크 Substrate Processing Apparatus
KR102477302B1 (en) 2015-10-05 2022-12-13 주성엔지니어링(주) Substrate treatment apparatus having exhaust gas cracker and exhaust gas treatment method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176807A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Device and method for manufacturing semiconductor device, and cleaning method
JP2005054221A (en) * 2003-08-01 2005-03-03 Tokyo Electron Ltd Reaction chamber, high-temperature trap, and treatment device
WO2005117083A1 (en) * 2004-05-27 2005-12-08 Tokyo Electron Limited Substrate processing apparatus
JP2006116367A (en) * 2004-10-19 2006-05-11 Japan Eco-Science Corp Exhaust gas treatment system
JP2008238039A (en) * 2007-03-27 2008-10-09 Hugle Electronics Inc Heating apparatus and process-gas treatment system
JP2010073978A (en) * 2008-09-19 2010-04-02 Hitachi Kokusai Electric Inc Method for processing substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176807A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Device and method for manufacturing semiconductor device, and cleaning method
JP2005054221A (en) * 2003-08-01 2005-03-03 Tokyo Electron Ltd Reaction chamber, high-temperature trap, and treatment device
WO2005117083A1 (en) * 2004-05-27 2005-12-08 Tokyo Electron Limited Substrate processing apparatus
JP2006116367A (en) * 2004-10-19 2006-05-11 Japan Eco-Science Corp Exhaust gas treatment system
JP2008238039A (en) * 2007-03-27 2008-10-09 Hugle Electronics Inc Heating apparatus and process-gas treatment system
JP2010073978A (en) * 2008-09-19 2010-04-02 Hitachi Kokusai Electric Inc Method for processing substrate

Also Published As

Publication number Publication date
TW201439362A (en) 2014-10-16
JP2014116484A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
CN105483648B (en) Variable conductance gas distribution apparatus and method
TWI612178B (en) Film forming device
US11208722B2 (en) Vapor flow control apparatus for atomic layer deposition
US7648578B1 (en) Substrate processing apparatus, and method for manufacturing semiconductor device
US9068261B2 (en) Atomic layer deposition apparatus and thin film forming method
EP2408002A1 (en) Atomic layer deposition apparatus
EP2465972B1 (en) Method and system for thin film deposition
KR101787825B1 (en) Film forming apparatus and film forming method
CN106062246B (en) Protection of the interior of hollow bodies with ALD coatings
JP2012222024A (en) Substrate processing device and semiconductor device manufacturing method
JP2015173226A (en) Vacuum deposition apparatus and deposition method using this apparatus
WO2020028062A1 (en) Methods and apparatus for ald processes
JP2012175055A (en) Atomic layer deposition device
JP7369166B2 (en) Thin film encapsulation processing system and process kit
WO2014091886A1 (en) Substrate processing apparatus and method for adjusting pressure inside processing vessel
TWI807192B (en) Gas introduction structure, heat treatment device, and gas supply method
KR102167479B1 (en) Removal method and processing method
KR20180120593A (en) Substrate processing apparatus, exhaust pipe coating method and substrate processing method
WO2013027096A1 (en) Direct liquid injection for halide vapor phase epitaxy systems and methods
JP5021688B2 (en) Atomic layer growth equipment
JP2012184482A (en) Vacuum film forming apparatus and film forming method
WO2021145077A1 (en) Film forming method, film forming device, and method for manufacturing semiconductor device
KR20150133670A (en) Apparatus and method for processing substrate
JP2007049046A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863440

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863440

Country of ref document: EP

Kind code of ref document: A1