WO2014091542A1 - Laminated body for battery outer housing - Google Patents

Laminated body for battery outer housing Download PDF

Info

Publication number
WO2014091542A1
WO2014091542A1 PCT/JP2012/081977 JP2012081977W WO2014091542A1 WO 2014091542 A1 WO2014091542 A1 WO 2014091542A1 JP 2012081977 W JP2012081977 W JP 2012081977W WO 2014091542 A1 WO2014091542 A1 WO 2014091542A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
aluminum foil
laminated
polyolefin
Prior art date
Application number
PCT/JP2012/081977
Other languages
French (fr)
Japanese (ja)
Inventor
宏和 飯塚
邦浩 武井
康宏 金田
智子 堀
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Priority to PCT/JP2012/081977 priority Critical patent/WO2014091542A1/en
Publication of WO2014091542A1 publication Critical patent/WO2014091542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminate for battery exterior used as an exterior material for secondary batteries such as lithium ion batteries and electric double layer capacitors (hereinafter referred to as capacitors).
  • the outer container for storing lithium-ion batteries used in electric vehicles, etc. is a flat bag made by using a laminated body for battery exteriors in which an aluminum foil and a resin film are laminated, or drawn or stretched. A molded container is used to reduce the thickness and weight. As demand grows, the cost of the battery body has become a key point, and battery exterior laminates that are laminated with aluminum foil and resin films that are cheaper than metal containers and have high sealing productivity are attracting attention.
  • the electrolyte solution of a lithium ion battery has the property of being sensitive to moisture and light.
  • a base material layer made of polyamide or polyester and an aluminum foil are laminated on the exterior material for a lithium ion battery, and a polyolefin resin film having a high heat sealability is further laminated on the inside using a heat adhesive resin. It is laminated by the method.
  • the battery exterior laminate is superior in waterproofness and light-shielding property to the dry laminate method using a urethane adhesive, which is a conventional film laminate method, and is used.
  • a mounting container 30 as shown in FIG. 3A is used. That is, a tray-like shape having a recess 31 is formed in advance by using a laminate for battery exterior by drawing or the like, and accessories such as a lithium ion battery (not shown) and an electrode 36 are attached to the recess 31 of the tray.
  • the lid member 33 made of a battery exterior laminate is stacked from above to wrap the battery, and the flange portion 32 of the tray and the four side edges 34 of the lid member 33 are heat-sealed. To seal.
  • the storage container 35 created by the method of placing the battery in the concave portion 31 of the tray the battery can be stored from above, so that the productivity is high.
  • the depth of the tray (hereinafter, the tray depth is sometimes referred to as “throttle”) is 5 to 5 for a conventional small lithium ion battery. It is about 6 mm.
  • the tray depth is sometimes referred to as “throttle”
  • storage containers for large batteries have been demanded more than ever for applications such as for electric vehicles.
  • a deeper drawing tray has to be formed, which increases technical difficulties.
  • the electrolytic solution is decomposed by moisture and strong acid is generated.
  • strong acid generated from the inside of the battery exterior laminate may permeate, and as a result, the aluminum foil may corrode with strong acid and deteriorate.
  • the electrolyte leaks and the battery performance is deteriorated, and the lithium ion battery is ignited.
  • Patent Document 1 describes that the surface of the aluminum foil is subjected to chromate treatment to form a coating film, which has corrosion resistance. Measures to improve are disclosed. However, since the chromate treatment uses chromium, which is a heavy metal, it is problematic from the viewpoint of environmental measures, and chemical conversion treatments other than the chromate treatment are less effective in improving the corrosion resistance.
  • a polyolefin resin film (polyolefin sealant) that has high electrolytic solution resistance and high heat sealability is laminated on one surface of an aluminum foil by thermal lamination using a heat-adhesive resin.
  • an ionomer resin, an EAA resin and a maleic anhydride-modified polyolefin resin are extruded and laminated with a polyolefin sealant by sand lamination, or on the surface where the polyolefin sealant is bonded to the aluminum foil.
  • Examples include a method in which a heat-adhesive resin is multilayered and heat-laminated, and a method in which a heat-adhesive polyolefin dispersion is coated on an aluminum foil and a polyolefin sealant is heat-laminated.
  • the present invention has been made in view of the above circumstances, and the decrease in the laminate strength and delamination between the aluminum foil and the innermost layer due to the deterioration of the electrolyte of the lithium ion battery is reduced, and the high yield is achieved. It aims at providing the laminated body for battery exterior which can manufacture an exterior container by low cost.
  • the present invention introduces a polar group into a base material layer, an aluminum foil, a polypropylene resin, a polyethylene resin, and a polyolefin in a laminate for battery exterior in which an aluminum foil and a resin layer are sequentially laminated.
  • an innermost layer consisting of at least one polyolefin sealant layer selected from the group of resins consisting of polyolefin resins, wherein the polyolefin sealant layer is a single layer or a multilayer, and the polyolefin sealant layer
  • a polyolefin sealant layer containing a heat-adhesive polyolefin resin having an epoxy group is laminated on the interface side with the aluminum foil, and a polyamide resin film layer having a thickness of 10 to 50 ⁇ m as the base material layer on the outer surface of the aluminum foil
  • a laminated body for battery exterior that is a laminated film in which is laminated.
  • the present invention provides a battery exterior laminate in which an aluminum foil and a resin layer are sequentially laminated, and a polar group is formed on at least a base material layer having a polyamide resin film layer, an aluminum foil, a polypropylene resin, a polyethylene resin, and a polyolefin.
  • an innermost layer composed of at least one polyolefin sealant layer selected from the group of resins composed of the introduced polyolefin-based resin, and the polyolefin sealant layer is a single layer or a multilayer, and at least of the aluminum foil
  • a thin film coating layer made of a water-soluble resin or a copolymer resin thereof is laminated on the innermost layer side surface, and contains a thermal adhesive polyolefin resin having an epoxy group on the interface side with the aluminum foil of the polyolefin sealant layer
  • a polyolefin sealant layer is laminated to the aluminum foil and the front And a polyolefin sealant layer to provide a battery exterior laminate which is heat-laminated.
  • the innermost layer side surface of the aluminum foil is laminated with a coating type thin film coating layer made of a water-soluble resin or a copolymer resin thereof, and the thin film coating layer is cross-linked.
  • a coating type thin film coating layer made of a water-soluble resin or a copolymer resin thereof, and the thin film coating layer is cross-linked.
  • the thin film coating layer contains a substance that improves water resistance, moisture resistance and heat resistance and further passivates the surface of aluminum by the crosslinking.
  • the tensile breaking elongation of the laminate measured by the measuring method specified in JIS K7127 is 50% or more in both the MD direction and the TD direction.
  • a polyamide resin film as the outermost layer of the outer packaging material of the battery outer laminate in order to suppress heat resistance, water resistance and whitening phenomenon of the outer packaging material due to leakage of the electrolyte during production.
  • the thin film coating layer has a structure in which water resistance is achieved by crosslinking or amorphization using heat treatment or the like, and moisture permeation from the end face is suppressed.
  • the base material layer and the aluminum foil are bonded with a coating type adhesive such as a urethane-based adhesive.
  • the polyolefin sealant layer becomes a single layer or a multilayer, the thermal adhesiveness having an epoxy group on the aluminum foil interface side It is a polyolefin sealant innermost layer containing a polyolefin resin, and is preferably bonded by heat lamination, and the heat lamination processing speed is preferably 50 m / min or more.
  • the thickness of the innermost layer is 20 ⁇ m or more and 150 ⁇ m or less, and the adhesive strength between the aluminum foil and the innermost layer is measured by a measurement method defined by the peeling measurement method A defined in JIS C6471. It is preferable that it is 10 N / inch or more. This is because the pressure resistance strength of the seat seal portion is maintained, and the thinner the sealant on the end face, the slower the moisture penetration. N / inch corresponds to N / 25.4 mm.
  • the innermost layer composed of a polyolefin sealant layer is laminated via a thin film coating layer laminated on at least one surface of an aluminum foil or without a thin film coating layer, and the polyolefin sealant layer Is a single layer or multiple layers.
  • the polyolefin sealant layer containing a heat-adhesive polyolefin resin having an epoxy group is laminated on the surface of the polyolefin sealant layer on the interface side with the aluminum foil, the adhesive strength between the aluminum foil and the innermost layer composed of the polyolefin sealant layer Is very strong, and after laminating, when it is stored in an oven set in a temperature range from room temperature to 100 ° C., the adhesive strength is significantly increased. For this reason, it is possible to provide an epoch-making exterior body production method that has sufficient performance as a battery exterior material, further reduces production costs, and can reduce costs.
  • the innermost layer is a polypropylene resin, a polyethylene resin, or a resin group comprising a polyolefin resin in which a polar group is introduced into a polyolefin.
  • the base material layer is a layer obtained by laminating at least an aluminum foil and a polyamide resin film by a dry laminating method using a urethane-based adhesive, and when a polyamide resin film having a thickness of 10 to 50 ⁇ m is used, it is drawn. Even in this case, pinholes and delamination do not occur.
  • a storage container for a lithium ion battery manufactured using the laminate for battery exterior according to the present invention will be described as an example, and will be described with reference to FIGS.
  • a battery exterior container 20 created using the battery exterior laminate of the present invention folds the battery exterior laminate 10 to enclose a lithium ion battery 17 and an electrode 18, and further includes a battery.
  • the three side edge portions 19 of the exterior container 20 are heat-sealed to form a bag.
  • the electrode lead wire member 18 is pulled out from the battery outer container 20 as shown in FIG. 3A and 3B show the storage method in the battery storage container of the lithium ion battery manufactured using the electrode lead wire member 18 according to the present invention.
  • the battery outer laminate 10 includes a base material layer 11, an aluminum foil 12, and an innermost layer 13, which are sequentially laminated, and the base material layer 11 and the aluminum foil 12 have an adhesive layer 15.
  • the aluminum foil 12 and the innermost layer 13 are bonded without using an adhesive layer.
  • a thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is laminated on at least one surface of the aluminum foil 12.
  • the thin film coating layer 14 includes a substance that crosslinks the thin film coating layer made of a water-soluble resin or a copolymer resin thereof to improve water resistance, moisture resistance, and heat resistance, and further passivates the aluminum surface. Yes.
  • this laminated body 10 for battery exteriors is measured by the measuring method prescribed
  • the tensile elongation at break is the tensile elongation at break obtained when measured at a tensile speed of 50 mm / min according to JIS K7127. If the tensile strength at break of the laminate for battery exterior 10 is 50% or more in both the MD direction and the TD direction, the corner portion may be sufficiently stretched and broken even when the laminate for battery exterior 10 is folded. There is no pinhole because there is no.
  • the base material layer 11 and the aluminum foil 12 are bonded via a urethane adhesive layer 15, and the resin group of the aluminum foil 12, a polypropylene resin, a polyethylene resin, and a polyolefin resin in which a polar group is introduced into polyolefin.
  • a polyolefin sealant layer containing a heat-adhesive polyolefin resin having an epoxy group is laminated on the aluminum foil interface side surface of the polyolefin sealant layer of the innermost layer 13 comprising at least one polyolefin sealant layer selected from the inside. Therefore, it can be bonded by heat lamination.
  • the adhesive strength between the aluminum foil 12 and the innermost layer 13 made of at least one polyolefin sealant layer selected from the resin group consisting of the polyolefin resin in which a polar group is introduced into the polypropylene resin, polyethylene resin, and polyolefin is used. , Measured by the measurement method defined in JIS C6471, and is 10 N / inch or more.
  • the base material layer 11 is not particularly limited as long as it has high mechanical strength.
  • a biaxially stretched polyamide resin film ONy
  • a polyethylene terephthalate (PET) resin film is further laminated on the biaxially stretched polyamide resin film (ONy).
  • the total thickness of the base material layer 11 is preferably 18 to 60 ⁇ m, the thickness of the polyamide resin film is 10 to 50 ⁇ m, and the thickness of the polyethylene terephthalate (PET) resin film is 3 to 16 ⁇ m. Further preferred.
  • the battery outer laminate of the present invention uses a polyethylene terephthalate (PET) resin film as the outermost layer, so that heat resistance, water resistance, and productivity during heat sealing are high. Even if the electrolytic solution adheres to the terephthalate (PET) resin film, the whitening phenomenon does not occur, and if wiped off, the product quality is not affected.
  • PET polyethylene terephthalate
  • the drawability is good and it is possible to prevent delamination between the base material and the aluminum foil in the heat sealing process during bag making.
  • the aluminum foil 12 is an external insulating layer for providing the battery outer container with waterproofness and light shielding properties. Although it does not restrict
  • the water-soluble resin is a resin containing a hydroxyl group, and specifically, a resin obtained by saponifying a polymer of a vinyl ester monomer or a copolymer thereof.
  • the vinyl ester monomers include fatty acid vinyl esters such as vinyl formate, vinyl acetate, and vinyl butyrate, and aromatic vinyl esters such as vinyl benzoate.
  • the thin film coating layer 14 preferably contains an aluminum passivating agent made of a metal fluoride or a derivative thereof.
  • a metal fluoride or a derivative thereof is a substance containing F 2 ⁇ ions that form a passive aluminum fluoride, such as chromium fluoride, iron fluoride, zirconium fluoride, fluorinated zirconate compound, hafnium fluoride. And fluorides such as fluorinated titanic acid compounds.
  • Commercially available products include non-polar polyolefins manufactured by Mitsubishi Chemical, which have polar groups introduced to give adhesion to different materials (trade names: MODIC, Modic), polyamide, EVOH, polyester, metal, polyolefin Can be glued with etc.
  • the thin film coating layer 14 is preferably a chromate treatment solution, among which a metal fluoride or a derivative thereof is used to crosslink a thin film coating layer mainly composed of a hydroxyl group-containing resin or a copolymer resin thereof.
  • a method that includes a material that passivates the surface is desirable. However, even if a metal fluoride or a derivative thereof is not included, the corrosion resistance of the coating layer is improved.
  • the thin film coating layer 14 is preferably water-resistant by crosslinking or amorphization by heat treatment.
  • the pressure resistance of the battery exterior laminate is high. Lithium ion battery from the edge because the pressure resistance can be maintained even if the thickness of at least one polyolefin sealant layer selected from the group consisting of resin and polyolefin resin in which polar groups are introduced into polyolefin is reduced. Moisture penetration into the interior is reduced, and deterioration of the electrolyte of the lithium ion battery over time is reduced, so that the battery product life is extended.
  • the thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is laminated on at least one surface of the aluminum foil 12, the aluminum foil 12, the innermost layer 13, When heat laminating, the interlayer adhesion strength is very strong. Therefore, when the tray is formed by drawing or stretch forming using the battery exterior laminate, it is possible to prevent the generation of pinholes and the peeling between the base material layer 11 and the aluminum foil 12. As a result, the occurrence of defects during molding of the storage container is reduced.
  • the resin having a skeleton of polyvinyl alcohol containing hydroxyl groups or a copolymer resin thereof has a low free volume. Since the gas barrier property is high, hydrofluoric acid does not diffuse outside along the innermost layer 13 that also serves as a sealant layer. In addition, even if a small amount of hydrofluoric acid comes into contact with the aluminum surface, the aluminum foil is not attacked by passivation, the interlayer adhesion strength between the aluminum foil and the sealant layer is maintained, the pressure resistance strength retention is increased, and the battery performance is also improved. Does not deteriorate.
  • the thickness of the aluminum foil 12 is 20 to 100 ⁇ m.
  • a thickness of the aluminum foil 12 of 30 to 60 ⁇ m is preferable because sufficient waterproofness and light shielding properties are exhibited and processability is good.
  • the thickness of the thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is preferably from 0.1 to 5 ⁇ m, and more preferably from 0.5 to 1 ⁇ m, the performance of wettability and adhesive strength is increased.
  • the innermost layer 13 composed of at least one polyolefin sealant layer selected from the group consisting of a polypropylene resin, a polyethylene resin, and a polyolefin resin in which a polar group is introduced into a polyolefin is a layer mainly containing a polypropylene resin and a polyethylene resin.
  • the innermost layer 13 composed of at least one polyolefin sealant layer selected from the group consisting of polypropylene resin, polyethylene resin, and polyolefin resin in which a polar group is introduced into polyolefin is a layer in contact with the lithium ion battery is as follows.
  • the polypropylene resin or polyethylene resin is excellent in corrosion resistance to the electrolyte solution of the lithium ion battery and has good heat sealability.
  • the heat sealing property is the stability of the seal at a high temperature.
  • the polyolefin resin introduced with the polar group used in the innermost layer 13 is a polypropylene resin having a polar group introduced into polypropylene.
  • at least a polymer obtained by modifying a part of the polypropylene molecule with an epoxy group may be used alone, or the epoxy group may be modified to a part of the molecule on the side of the interface with the innermost aluminum foil.
  • the polypropylene resin may be a homopolymer or a copolymer with ethylene, and the copolymer type may be a random copolymer or a block copolymer.
  • the innermost layer 13 mainly contains a polyethylene resin (not having a polar group introduced), at least as a polyolefin resin introduced with a polar group used for the innermost layer 13, a polyethylene having a polar group introduced into polyethylene is used.
  • Type resin is preferable, and epoxy-modified polyethylene is preferable.
  • a multilayer structure may be used as long as there is polyethylene in which an epoxy group is modified to a part of the molecule on the surface on the interface side with the innermost aluminum foil.
  • the thickness of the innermost layer 13 composed of at least one polyolefin sealant layer selected from the group consisting of polypropylene resin, polyethylene resin, and polyolefin resin in which a polar group is introduced into polyolefin is 20 to 150 ⁇ m. preferable.
  • the innermost layer 13 mainly includes a polypropylene resin or a polypropylene resin into which a polar group is introduced, the corrosion resistance and heat sealability with respect to the electrolytic solution, and a sufficient pressure resistance can be obtained without excessively increasing the thickness to 150 ⁇ m or more. It is preferable because the strength can be maintained.
  • such an innermost layer 13 is a very effective method because it can prevent deterioration of nonaqueous batteries and capacitors by preventing moisture from entering from a heat-sealed cross section.
  • the adhesive layer 15 is a layer that adheres the base material layer 11 and the aluminum foil 12.
  • the adhesive contained in the adhesive layer 15 is not particularly limited as long as the base material layer 11 and the aluminum foil 12 can be bonded, and examples thereof include an epoxy adhesive and a urethane adhesive.
  • the adhesive layer 15 consists of an epoxy-type adhesive agent, a urethane type adhesive agent, etc.
  • the adhesive bond layer 15 can be normally laminated
  • the thickness of the adhesive layer 15 is preferably 3 to 16 ⁇ m.
  • the thickness of the adhesive layer 15 is 2 to 10 ⁇ m because the base material layer 11 and the aluminum foil 12 are bonded with a sufficiently high adhesive force, and the battery exterior laminate 10 is formed by drawing or stretching. In addition, adhesion at the ridge line portion and the deformed portion is maintained, and the base material layer 11 and the aluminum foil 12 do not delaminate.
  • Adhesion with the innermost layer 13 composed of at least one polyolefin sealant layer selected from the inside is that the polyolefin sealant layer is a single layer or a multilayer, and an epoxy group is formed on the interface side surface with the aluminum foil of the innermost layer. Since the modified polyolefin is partly included, it can be bonded by a heat laminating method.
  • the thin film coating layer 14 laminated on the innermost layer side surface of the aluminum foil 12 preferably uses a water-soluble resin containing a hydroxyl group.
  • the polyolefin containing an epoxy group has particularly high adhesive strength and less heat, the thin film coating layer 14 and the innermost layer 13 of the aluminum foil 12 can be bonded by extrusion lamination or heat lamination. .
  • the aluminum foil 12 or its thin film coating layer 14 and the innermost layer 13 can be laminated without an adhesive layer therebetween. Thermal lamination without an adhesive or anchor coating agent is preferred.
  • the tensile breaking elongation of the battery outer laminate 10 used is 50% or more in both the MD direction and the TD direction.
  • the corner portion C is sufficiently stretched, so that it is not broken and no pinhole is generated.
  • the adhesive force between the base material layer 11 and the aluminum foil 12 is sufficiently high and does not yield to the stress during stretching, peeling can be prevented.
  • Measurement method of tensile elongation at break of laminate Measured by the measurement method defined in JIS K7127 “Plastics—Test method of tensile properties—Part 3: Test conditions of film and sheet”.
  • Measurement method of adhesive strength between aluminum foil and innermost layer Measured by peeling measurement method A (90 ° direction peeling) defined in JIS C6471 “Test method for copper-clad laminate for flexible printed wiring board”.
  • ⁇ Measurement method of pinhole rupture rate 50 draw-molded products were formed by cold forming with a predetermined depth within a range of 6 to 10 mm in depth of 50 ⁇ 50 mm in the battery exterior laminate, and visually The presence or absence of pinholes was confirmed.
  • Number of occurrences of delamination during heat sealing 50 draw-formed products by cold forming with a predetermined depth within a range of 50 mm ⁇ 50 mm in depth and 8 mm in depth are formed into a battery exterior laminate, and after heat sealing, 60 The sample was left in a constant temperature and humidity open at 90 ° C. for 48 hours, and then visually checked for the presence of delamination between the base material layer and the aluminum foil.
  • Measurement method of electrolyte strength retention rate Using the produced laminate for battery exterior, a 50 ⁇ 50 mm (heat seal width is 5 mm) bag was made into a four-sided bag, and LiPF 6 was contained at 1 mol / liter in it.
  • a base material layer was prepared by laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 ⁇ m and a stretched polyamide resin film having a thickness of 25 ⁇ m by dry lamination using a urethane adhesive layer having a thickness of 4 ⁇ m.
  • PET polyethylene terephthalate
  • This base material layer and an aluminum foil having a thickness of 40 ⁇ m were laminated via an adhesive layer (thickness: 3 ⁇ m) made of a urethane-based adhesive (containing an epoxy-based adhesive).
  • amorphous polymer having a hydroxyl group-containing polyvinyl alcohol skeleton manufactured by Nippon Synthetic Chemical Co., Ltd., trade name: G polymer resin
  • chromium fluoride (III) An aqueous solution in which 2% by weight was dissolved was applied so that the thickness after drying was 0.5 ⁇ m, a thin film coating layer was laminated, and further heated in an oven at 200 ° C. for crosslinking reaction.
  • each 50 ⁇ m thick epoxy group-modified polyethylene product name; manufactured by Sumitomo Chemical Co., Ltd .; Bond First
  • LLDPE low density polyethylene
  • the polyethylene sealant thus obtained was heat-laminated at a processing speed of 50 m / min and laminated in order to form the innermost layer.
  • the battery outer laminate 10 of Example 1 was produced.
  • the laminate for battery exterior was stored in a hot air oven at 50 ° C. for 48 hours. Test pieces were taken from the battery outer laminate 10 of Example 1 and measured for the tensile breaking elongation in the MD direction and the TD direction.
  • Example 2 A stretched polyamide resin film having a thickness of 25 ⁇ m and an aluminum foil having a thickness of 40 ⁇ m were laminated via an adhesive layer (thickness 3 ⁇ m) made of a urethane adhesive (containing an epoxy adhesive). Moreover, 1% by weight of an amorphous polymer having a polyvinyl alcohol skeleton having a hydroxyl group on the innermost surface of the aluminum foil (trade name: G polymer resin, manufactured by Nippon Synthetic Chemical Co., Ltd.) and chromium fluoride (III) An aqueous solution in which 2% by weight was dissolved was applied so that the thickness after drying was 0.5 ⁇ m, a thin film coating layer was laminated, and further heated in an oven at 200 ° C.
  • a single-layer polyolefin sealant film containing an epoxy group-modified polypropylene having a thickness of 50 ⁇ m [maleic anhydride-modified polypropylene resin (product name / Admer resin, manufactured by Mitsui Chemicals, Inc.)
  • a 1.5 wt% blend compound of a hydroxyl group-containing epoxy compound (Mitsubishi Chemical Co., Ltd., product name / Epicoat 1001) was reacted with the maleic anhydride functional group of the polypropylene resin to produce a polypropylene resin into which an epoxy group was introduced.
  • Example 1 Using a film-forming machine, use a film formed to a thickness of 100 ⁇ m] was obtained in the same manner as in Example 1 except that the laminate 10 for battery exterior was obtained in the same manner as in Example 1 except that the film was thermally laminated at a processing speed of 80 m / min. , Tensile elongation at break, number of delamination during heat sealing, and adhesive strength between aluminum foil and innermost layer was measured. The results are shown in Table 1.
  • a base material layer was prepared by dry laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 ⁇ m and a stretched polyamide resin film having a thickness of 25 ⁇ m with a urethane-based adhesive.
  • PET polyethylene terephthalate
  • This base material layer and an aluminum foil having a thickness of 40 ⁇ m were laminated via an adhesive layer (thickness: 4 ⁇ m) made of a urethane-based adhesive (containing an epoxy-based adhesive).
  • the battery exterior laminate 10 of Comparative Example 1 was obtained in the same manner as in Example 1, and the tensile elongation at break and heat sealing were as follows. The number of delamination occurrences and the adhesive strength between the aluminum foil and the innermost layer were measured. The results are shown in Table 1.
  • Example 3 A base material layer was prepared by dry laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 ⁇ m and a stretched polyamide resin film having a thickness of 25 ⁇ m with a urethane-based adhesive.
  • PET polyethylene terephthalate
  • This base material layer and an aluminum foil having a thickness of 40 ⁇ m were laminated via an adhesive layer (thickness: 4 ⁇ m) made of a urethane-based adhesive (containing an epoxy-based adhesive).
  • a base material layer was prepared by dry laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 ⁇ m and a stretched polyamide resin film having a thickness of 25 ⁇ m with a urethane-based adhesive.
  • PET polyethylene terephthalate
  • This base material layer and an aluminum foil having a thickness of 40 ⁇ m were laminated via an adhesive layer (thickness: 4 ⁇ m) made of a urethane-based adhesive (containing an epoxy-based adhesive).
  • a laminated body 10 for battery exterior of Comparative Example 2 was obtained in the same manner as in Example 1 except that maleic anhydride-modified polyethylene resin was extruded and laminated at a processing speed of 50 m / min and a polyethylene sealant for boil was sanded. The tensile breaking elongation, the number of delamination during heat sealing, and the adhesive strength between the aluminum foil and the innermost layer were measured. The results are shown in Table 1.
  • Examples 1 to 3 were prepared by dissolving 3% by weight of an amorphous polymer having a hydroxyl group-containing polyvinyl alcohol skeleton (G polymer resin manufactured by Nippon Synthetic Chemical Co., Ltd.) and 1% by weight of chromium (III) fluoride. Since the aqueous solution is applied and the thin film coating layer is laminated, the adhesive strength between the aluminum foil and the innermost layer is 10 N / inch or more. That is, the tensile elongation at break exceeded 50% in both the MD and TD directions, and the frequency of delamination during heat sealing became zero. In addition, the electrolyte strength retention was measured using the battery outer laminates of Examples 1 to 3.
  • G polymer resin manufactured by Nippon Synthetic Chemical Co., Ltd. 1% by weight of chromium (III) fluoride. Since the aqueous solution is applied and the thin film coating layer is laminated, the adhesive strength between the aluminum foil and the innermost layer is 10 N / inch or more. That is,
  • the test results show that the electrolyte solution strength retention in the battery exterior laminate of Example 1 is 82%, and the electrolyte solution strength retention in the battery exterior laminate of Example 2 is 84%.
  • the electrolyte solution strength retention in the laminate for battery exterior was 80%.
  • Examples 1 to 3 were also corrosion resistant to the electrolyte solution of the lithium battery.
  • the adhesive strength between the aluminum foil and the innermost layer sealant is a dry laminate using a urethane adhesive
  • the thermal adhesive strength is sufficient and the interlayer strength is 10 N / inch or more.
  • aluminum foil and a sealant film were laminated with a urethane adhesive, delamination occurred after the electrolytic solution treatment.
  • Example 4 An aluminum laminate film was prepared by laminating a polyamide resin film layer having a thickness of 25 ⁇ m on an aluminum foil via a urethane adhesive layer applied at 3 g / m 2 . On the surface of the aluminum laminate film where the aluminum foil is exposed, 1% by weight of an amorphous polymer having a polyvinyl alcohol skeleton having a hydroxyl group (manufactured by Nippon Synthetic Chemical Co., Ltd., trade name: G polymer resin) is used.
  • G polymer resin amorphous polymer having a polyvinyl alcohol skeleton having a hydroxyl group
  • Example 5 Except for changing the thickness of the innermost polyethylene layer to 30 ⁇ m, the battery exterior laminate 10 of Example 5 was obtained in the same manner as in Example 4 to obtain the adhesive strength between the aluminum foil and the innermost layer, during heat sealing. The number of delamination occurrence and the pinhole fracture occurrence rate were measured. The results are shown in Table 2.
  • a base material layer was prepared by laminating a polyethylene terephthalate (PET) resin film having a thickness of 12 ⁇ m and a polyamide resin film layer having a thickness of 25 ⁇ m via a urethane adhesive layer applied at 3 g / m 2 . .
  • PET polyethylene terephthalate
  • This base material layer and the aluminum foil were laminated via a urethane adhesive layer 3 ⁇ m containing an epoxy adhesive.
  • a non-crystalline polymer (product name: G polymer resin, manufactured by Nippon Synthetic Chemical Co., Ltd.) having a skeleton of polyvinyl alcohol having a hydroxyl group on the surface of the aluminum foil opposite to the adhesive surface with the adhesive layer is 1
  • An aqueous solution in which 2% by weight of chromium (III) fluoride is dissolved is applied so that the thickness after drying is 0.5 ⁇ m, and an acid-modified polypropylene heat sealant is applied thereon to 3 g / m. was coated with 2, followed in the polypropylene layer 40 ⁇ m composed of four-layer structure that is thermally laminated at 50 m / min processing speed, to obtain a battery exterior laminate 10 of Comparative example 3.
  • a test piece was taken from the battery outer laminate 10 of Comparative Example 3, and the adhesive strength between the aluminum foil and the innermost layer was measured.
  • the 8 mm deep drawing was performed 50 times, the number of occurrences of pinhole breakage was measured, and the pinhole breakage occurrence rate was obtained.
  • drawing with a depth of 8 mm was performed 50 times, and the number of occurrences of delamination during heat sealing was measured. The results are shown in Table 2.
  • a possible battery exterior laminate can be provided at low cost.
  • SYMBOLS 10 Laminate for battery exterior, 11 ... Base material layer (polyethylene terephthalate (PET) resin film / polyamide resin film), 12 ... Aluminum foil, 13 ... Innermost layer, 14 ... Thin film coating layer, 15 ... Adhesive layer, 17 DESCRIPTION OF SYMBOLS ... Lithium ion battery, 18 ... Electrode, 19 ... Side edge part, 20 ... Battery outer container, 30 ... Battery mounting container, 35 ... Battery storage container.
  • PET polyethylene terephthalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

This laminated body for a battery outer housing is a laminated film in which: a base material layer (11), an aluminum foil (12), and an innermost layer (13) comprising a polyolefin sealant layer are laminated in that order, the polyolefin sealant layer being a single layer or multiple layers; a polyolefin sealant layer containing a thermal-adhesion polyolefin resin having an epoxy group is laminated on the side of the polyolefin sealant layer that is a boundary face with the aluminum foil; and a polyamide resin film layer having a thickness of 10-50 µm is laminated on the outer face of the aluminum foil as a base material layer. Also, a thin-film coating layer (14) comprising a water-soluble resin or a copolymer resin thereof is laminated on at least the innermost layer face of the aluminum foil (12).

Description

電池外装用積層体Battery exterior laminate
 本発明は、リチウムイオン電池などの2次電池や電気二重層キャパシタ(以下、キャパシタと呼ぶ)の、外装材に使用される電池外装用積層体に関する。 The present invention relates to a laminate for battery exterior used as an exterior material for secondary batteries such as lithium ion batteries and electric double layer capacitors (hereinafter referred to as capacitors).
 近年、世界的な環境問題の高まりと共に、電気自動車の普及や、風力発電・太陽光発電などの自然エネルギーの有効活用が課題となっている。それに伴って、これらの技術分野では、電気エネルギーを貯蔵するための蓄電池として、リチウムイオン電池などの2次電池やキャパシタが注目されている。また、電気自動車などに使用されるリチウムイオン電池を収納する外装容器には、アルミ箔と樹脂フィルムを積層した電池外装用積層体を使用して作成した平袋や、絞り成形または張出成形による成形容器が使用されて薄型軽量化が図られている。これは、需要が拡大するにつれて、電池本体のコストがポイントとなり、金属容器より安く、封緘の生産性が高いアルミ箔と樹脂フィルムを積層した電池外装用積層体が注目されており、更なる低コスト化が課題となってきている。
 ところで、リチウムイオン電池の電解液は水分や光に弱いという性質を有している。そのため、リチウムイオン電池用の外装材料には、ポリアミドやポリエステルからなる基材層とアルミ箔とが積層され、更に内側にはヒートシール性の高いポリオレフィン樹脂フィルムが熱接着性樹脂を利用した熱ラミネート方式で積層されている。これにより従来のフィルム積層体の方式であるウレタン系接着剤によるドライラミネート方式より、防水性や遮光性に優れた電池外装用積層体となり、使用されている。
In recent years, with the growing global environmental problems, the diffusion of electric vehicles and the effective use of natural energy such as wind power generation and solar power generation have become issues. Accordingly, in these technical fields, secondary batteries such as lithium ion batteries and capacitors have attracted attention as storage batteries for storing electrical energy. In addition, the outer container for storing lithium-ion batteries used in electric vehicles, etc., is a flat bag made by using a laminated body for battery exteriors in which an aluminum foil and a resin film are laminated, or drawn or stretched. A molded container is used to reduce the thickness and weight. As demand grows, the cost of the battery body has become a key point, and battery exterior laminates that are laminated with aluminum foil and resin films that are cheaper than metal containers and have high sealing productivity are attracting attention. Costing has become an issue.
By the way, the electrolyte solution of a lithium ion battery has the property of being sensitive to moisture and light. For this reason, a base material layer made of polyamide or polyester and an aluminum foil are laminated on the exterior material for a lithium ion battery, and a polyolefin resin film having a high heat sealability is further laminated on the inside using a heat adhesive resin. It is laminated by the method. As a result, the battery exterior laminate is superior in waterproofness and light-shielding property to the dry laminate method using a urethane adhesive, which is a conventional film laminate method, and is used.
 このような電池外装用積層体を用いて作成された収納容器に、リチウムイオン電池を収納するには、例えば、図3Aに示すような載置容器30を用いる。すなわち、あらかじめ電池外装用積層体を用いて、凹部31を有するトレー状の形状を絞り成形などにより成形し、そのトレーの凹部31にリチウムイオン電池(図示せず)および電極36などの付属品を収納する。次いで、図3Bに示すように、電池外装用積層体からなる蓋材33を上から重ねて電池を包み、トレーのフランジ部32と蓋材33の四方の側縁部34をヒートシールして電池を密閉する。このようなトレーの凹部31に電池を載置する方法により作成された収納容器35では、上から電池を収納できるため、生産性が高い。 In order to store a lithium ion battery in a storage container created using such a battery exterior laminate, for example, a mounting container 30 as shown in FIG. 3A is used. That is, a tray-like shape having a recess 31 is formed in advance by using a laminate for battery exterior by drawing or the like, and accessories such as a lithium ion battery (not shown) and an electrode 36 are attached to the recess 31 of the tray. Store. Next, as shown in FIG. 3B, the lid member 33 made of a battery exterior laminate is stacked from above to wrap the battery, and the flange portion 32 of the tray and the four side edges 34 of the lid member 33 are heat-sealed. To seal. In the storage container 35 created by the method of placing the battery in the concave portion 31 of the tray, the battery can be stored from above, so that the productivity is high.
 上述した図3Aに示したリチウムイオン電池の載置容器30において、トレーの深さ(以下、トレーの深さを「絞り」ということがある)は、従来、小型のリチウムイオン電池においては5~6mm程度である。ところが、近年では、電気自動車用などの用途では、これまでより大型電池用の収納容器が求められている。大型電池用の収納容器を製造するには、より深い絞りのトレーを成形しなければならなくなり技術的な困難さが増している。
 また、リチウムイオン電池の内部に水分が侵入した場合、電解液が水分で分解して、強酸が発生する。この場合、電池外装用積層体の内側から発生した強酸が浸透し、その結果としてアルミ箔が強酸で腐食して劣化する可能性がある。その結果、電解液の液漏れが発生し、電池性能が低下するだけでなく、リチウムイオン電池が発火する可能性がある。
In the lithium ion battery mounting container 30 shown in FIG. 3A described above, the depth of the tray (hereinafter, the tray depth is sometimes referred to as “throttle”) is 5 to 5 for a conventional small lithium ion battery. It is about 6 mm. However, in recent years, storage containers for large batteries have been demanded more than ever for applications such as for electric vehicles. In order to manufacture a storage container for a large battery, a deeper drawing tray has to be formed, which increases technical difficulties.
In addition, when moisture penetrates into the lithium ion battery, the electrolytic solution is decomposed by moisture and strong acid is generated. In this case, strong acid generated from the inside of the battery exterior laminate may permeate, and as a result, the aluminum foil may corrode with strong acid and deteriorate. As a result, there is a possibility that the electrolyte leaks and the battery performance is deteriorated, and the lithium ion battery is ignited.
特開2000-357494号公報JP 2000-357494 A
 上記の電池外装用積層体を構成するアルミ箔が強酸で腐食するのを防止する対策として、特許文献1には、アルミ箔の表面にクロメート処理を施すことにより被膜を形成し、耐腐食性を向上させる対策が開示されている。しかしながら、クロメート処理は重金属であるクロムを使用することから環境対策の点から問題であり、また、クロメート処理以外の化成処理では耐腐食性を向上させる効果が低い。 As a measure for preventing the aluminum foil constituting the battery exterior laminate from being corroded by a strong acid, Patent Document 1 describes that the surface of the aluminum foil is subjected to chromate treatment to form a coating film, which has corrosion resistance. Measures to improve are disclosed. However, since the chromate treatment uses chromium, which is a heavy metal, it is problematic from the viewpoint of environmental measures, and chemical conversion treatments other than the chromate treatment are less effective in improving the corrosion resistance.
 また、電池外装用積層体では、アルミ箔の片面に、耐電解液性が高いと共にヒートシール性の高いポリオレフィン樹脂フィルム(ポリオレフィンシーラント)が、熱接着性樹脂を用いて熱ラミネートにより積層されている。アルミ箔にポリオレフィンシーラントを積層する方法としては、アイオノマー樹脂、EAA樹脂及び無水マレイン酸変性ポリオレフィン樹脂を押出しラミネートでポリオレフィンシーラントとサンドラミネートする方法や、ポリオレフィンシーラントをアルミ箔と接着させる面に、上記の熱接着性樹脂を多層化して、それを熱ラミネートする方法、及び熱接着性のポリオレフィンディスパージョンをアルミ箔にコーティングしてポリオレフィンシーラントを熱ラミネートする方法、等が挙げられる。
 更に、従来のアルミラミネートフィルムで深絞りに成形すると、アルミラミネートフィルムを折り重ねた際に、コーナ部Cが引き伸ばされ、ついには伸びの限界に達し、破断してピンホールや破れが発生することがある。よって、アルミ箔と基材層との接着力が引き延ばしの際の応力に屈して剥離することがある。このような成形時の不良が発生するため、リチウムイオン電池などの収納容器の生産効率は低い。
Moreover, in the battery exterior laminate, a polyolefin resin film (polyolefin sealant) that has high electrolytic solution resistance and high heat sealability is laminated on one surface of an aluminum foil by thermal lamination using a heat-adhesive resin. . As a method of laminating a polyolefin sealant on an aluminum foil, an ionomer resin, an EAA resin and a maleic anhydride-modified polyolefin resin are extruded and laminated with a polyolefin sealant by sand lamination, or on the surface where the polyolefin sealant is bonded to the aluminum foil, Examples include a method in which a heat-adhesive resin is multilayered and heat-laminated, and a method in which a heat-adhesive polyolefin dispersion is coated on an aluminum foil and a polyolefin sealant is heat-laminated.
Furthermore, when deep-drawing with a conventional aluminum laminate film, when the aluminum laminate film is folded, the corner portion C is stretched and eventually reaches the limit of elongation, and it breaks and pinholes and tears occur. There is. Therefore, the adhesive force between the aluminum foil and the base material layer may be bent due to the stress at the time of stretching. Since such molding defects occur, the production efficiency of storage containers such as lithium ion batteries is low.
 本発明は、上記事情を鑑みて行われたものであり、リチウムイオン電池の電解液の劣化による、アルミ箔と最内層とのラミネート強度の低下や層間剥離の発生が低減され、しかも、高い歩留まりで外装容器を製造することが可能な電池外装用積層体を低コストで提供することを目的とする。 The present invention has been made in view of the above circumstances, and the decrease in the laminate strength and delamination between the aluminum foil and the innermost layer due to the deterioration of the electrolyte of the lithium ion battery is reduced, and the high yield is achieved. It aims at providing the laminated body for battery exterior which can manufacture an exterior container by low cost.
 上記の課題を解決するため、本発明は、アルミ箔及び樹脂層を順に積層した電池外装用の積層体において、基材層と、アルミ箔と、ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層とが順に積層され、前記ポリオレフィンシーラント層が単層又は多層であって、前記ポリオレフィンシーラント層の前記アルミ箔との界面側に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント層が積層され、前記アルミ箔の外面に、前記基材層として、厚みが10~50μmのポリアミド樹脂フィルム層が積層された積層フィルムである電池外装用積層体を提供する。 In order to solve the above-mentioned problems, the present invention introduces a polar group into a base material layer, an aluminum foil, a polypropylene resin, a polyethylene resin, and a polyolefin in a laminate for battery exterior in which an aluminum foil and a resin layer are sequentially laminated. And an innermost layer consisting of at least one polyolefin sealant layer selected from the group of resins consisting of polyolefin resins, wherein the polyolefin sealant layer is a single layer or a multilayer, and the polyolefin sealant layer A polyolefin sealant layer containing a heat-adhesive polyolefin resin having an epoxy group is laminated on the interface side with the aluminum foil, and a polyamide resin film layer having a thickness of 10 to 50 μm as the base material layer on the outer surface of the aluminum foil A laminated body for battery exterior that is a laminated film in which is laminated.
 また、本発明は、アルミ箔及び樹脂層を順に積層した電池外装用の積層体において、少なくともポリアミド樹脂フィルム層を有する基材層と、アルミ箔と、ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層とが順に積層され、前記ポリオレフィンシーラント層が単層又は多層であって、前記アルミ箔の少なくとも最内層側の面には、水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層が積層され、前記ポリオレフィンシーラント層の前記アルミ箔との界面側に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント層が積層され、前記アルミ箔と、前記ポリオレフィンシーラント層とが熱ラミネートされた電池外装用積層体を提供する。
 これにより、アルミ箔とポリオレフィンシーラント層との熱ラミネート加工速度が、50m/分以上でも十分な接着を有する積層体となり、早くても30m/分の加工速度で無いと接着強度が十分に得る事が出来ない従来の熱ラミネート法に対して、コスト面で大きなメリットを有する。
Further, the present invention provides a battery exterior laminate in which an aluminum foil and a resin layer are sequentially laminated, and a polar group is formed on at least a base material layer having a polyamide resin film layer, an aluminum foil, a polypropylene resin, a polyethylene resin, and a polyolefin. And an innermost layer composed of at least one polyolefin sealant layer selected from the group of resins composed of the introduced polyolefin-based resin, and the polyolefin sealant layer is a single layer or a multilayer, and at least of the aluminum foil A thin film coating layer made of a water-soluble resin or a copolymer resin thereof is laminated on the innermost layer side surface, and contains a thermal adhesive polyolefin resin having an epoxy group on the interface side with the aluminum foil of the polyolefin sealant layer A polyolefin sealant layer is laminated to the aluminum foil and the front And a polyolefin sealant layer to provide a battery exterior laminate which is heat-laminated.
As a result, a laminate having sufficient adhesion can be obtained even when the heat laminating speed of the aluminum foil and the polyolefin sealant layer is 50 m / min or more, and sufficient adhesive strength can be obtained unless the processing speed is 30 m / min at the earliest. Compared to the conventional thermal laminating method that cannot be used, there is a great cost advantage.
 また、前記アルミ箔の少なくとも最内層側の面には、水溶性樹脂又はその共重合樹脂からなる塗布型のクロメート処理用の薄膜コーティング層が積層され、前記薄膜コーティング層が架橋されていることが好ましい。さらに、この薄膜コーティング層が、この架橋により、耐水性、防湿性、耐熱性を上げ、更にアルミニウムの表面を不動態化する物質を含むことが好ましい。 Further, at least the innermost layer side surface of the aluminum foil is laminated with a coating type thin film coating layer made of a water-soluble resin or a copolymer resin thereof, and the thin film coating layer is cross-linked. preferable. Furthermore, it is preferable that the thin film coating layer contains a substance that improves water resistance, moisture resistance and heat resistance and further passivates the surface of aluminum by the crosslinking.
 また、JIS K7127に規定された測定方法により測定した、前記積層体の引張破断伸度がMD方向、TD方向のいずれも50%以上であることが好ましい。 Also, it is preferable that the tensile breaking elongation of the laminate measured by the measuring method specified in JIS K7127 is 50% or more in both the MD direction and the TD direction.
 特に、大型電池において、耐熱性、耐水性および製造時の電解液の漏れによる外装材の白化現象を抑えるために、電池外装用積層体の外装材の最外層にポリアミド樹脂フィルムを用いることが望ましい。この場合、絞り成形によるピンホールが発生しないように、アルミ箔の外側に少なくとも、ポリアミド樹脂フィルム層を使用することが望ましい。 In particular, in large batteries, it is desirable to use a polyamide resin film as the outermost layer of the outer packaging material of the battery outer laminate in order to suppress heat resistance, water resistance and whitening phenomenon of the outer packaging material due to leakage of the electrolyte during production. . In this case, it is desirable to use at least a polyamide resin film layer on the outer side of the aluminum foil so that pinholes due to drawing are not generated.
 更に、前記薄膜コーティング層を、熱処理などを用い、架橋または非晶化することにより耐水化し、端面からの水分の浸入を抑えた構成とすることが望ましい。
 また、前記基材層と、前記アルミ箔とは、ウレタン系接着剤などの塗布型接着剤で接着させることが望ましい。また、表面に塗布型クロメート処理を塗布された前記アルミ箔と前記最内層のポリオレフィンシーラント層とは、そのポリオレフィンシーラント層が単層又は多層となり、アルミ箔界面側に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント最内層となっており、熱ラミネートにより接着され、その熱ラミネート加工速度が50m/分以上であることが好ましい。
Furthermore, it is desirable that the thin film coating layer has a structure in which water resistance is achieved by crosslinking or amorphization using heat treatment or the like, and moisture permeation from the end face is suppressed.
Moreover, it is desirable that the base material layer and the aluminum foil are bonded with a coating type adhesive such as a urethane-based adhesive. In addition, the aluminum foil coated with a coating type chromate treatment on the surface and the polyolefin sealant layer of the innermost layer, the polyolefin sealant layer becomes a single layer or a multilayer, the thermal adhesiveness having an epoxy group on the aluminum foil interface side It is a polyolefin sealant innermost layer containing a polyolefin resin, and is preferably bonded by heat lamination, and the heat lamination processing speed is preferably 50 m / min or more.
 また、前記最内層の厚みが、20μm以上150μm以下であり、前記アルミ箔と前記最内層との接着強度が、JIS C6471に規定された引き剥がし測定方法Aにより規定された測定方法により測定して、10N/inch以上であることが好ましい。これは、シートシール部の耐圧強度が保持されるとともに、端面のシーラントが薄いほうが、水分の浸入が遅くなるからである。
 なお、N/inchは、N/25.4mmに相当する。
Moreover, the thickness of the innermost layer is 20 μm or more and 150 μm or less, and the adhesive strength between the aluminum foil and the innermost layer is measured by a measurement method defined by the peeling measurement method A defined in JIS C6471. It is preferable that it is 10 N / inch or more. This is because the pressure resistance strength of the seat seal portion is maintained, and the thinner the sealant on the end face, the slower the moisture penetration.
N / inch corresponds to N / 25.4 mm.
 本発明の電池外装用積層体では、アルミ箔の少なくとも片面に積層された薄膜コーティング層を介して、または薄膜コーティング層を介しないで、ポリオレフィンシーラント層からなる最内層が積層され、そのポリオレフィンシーラント層が単層又は多層となっている。ポリオレフィンシーラント層のアルミ箔との界面側の面に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント層が積層されているため、アルミ箔とポリオレフィンシーラント層からなる最内層との接着強度が非常に強く、しかもラミネートした後に、室温から100℃までの温度範囲に設定されたオーブンに保管すると接着強度が大幅に上昇する。この為、電池用外装材としての性能を十分に有し、更に生産コストも大幅に削減され、低コスト化できる画期的な外装体の生産方法を提供できる。
 また、本発明の電池外装用積層体を用いて、絞り成形や張出成形によりトレーを成形した際に、ピンホールの発生が防止されると共に、基材層とアルミ箔との剥離を防止できる。そのため、収納容器の成形の際の不良発生が減少する。
 また、同様の理由により、本発明の電池外装用積層体は、耐圧強度が高いので、最内層であるポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層の厚みを薄くしても耐圧強度が保持できる為、エッジ部分からリチウムイオン電池内部への水分の浸入が少なくなり、リチウムイオン電池の電解液の経時劣化が減少するので電池の製品寿命が長くなる。
 また、基材層が、少なくとも、アルミ箔とポリアミド樹脂フィルムとを、ウレタン系接着剤を用いてドライラミネート工法でラミネートした層であり、厚みが10~50μmのポリアミド樹脂フィルムを使用すると、絞り成形した場合においても、ピンホールやデラミが発生しない。
In the laminated body for battery exterior of the present invention, the innermost layer composed of a polyolefin sealant layer is laminated via a thin film coating layer laminated on at least one surface of an aluminum foil or without a thin film coating layer, and the polyolefin sealant layer Is a single layer or multiple layers. Since the polyolefin sealant layer containing a heat-adhesive polyolefin resin having an epoxy group is laminated on the surface of the polyolefin sealant layer on the interface side with the aluminum foil, the adhesive strength between the aluminum foil and the innermost layer composed of the polyolefin sealant layer Is very strong, and after laminating, when it is stored in an oven set in a temperature range from room temperature to 100 ° C., the adhesive strength is significantly increased. For this reason, it is possible to provide an epoch-making exterior body production method that has sufficient performance as a battery exterior material, further reduces production costs, and can reduce costs.
Moreover, when a tray is formed by drawing or stretch forming using the laminated body for battery exterior of the present invention, generation of pinholes can be prevented and peeling between the base material layer and the aluminum foil can be prevented. . Therefore, the occurrence of defects during molding of the storage container is reduced.
For the same reason, since the laminate for battery exterior of the present invention has high pressure resistance, the innermost layer is a polypropylene resin, a polyethylene resin, or a resin group comprising a polyolefin resin in which a polar group is introduced into a polyolefin. Even if the thickness of the selected at least one polyolefin sealant layer is reduced, the pressure strength can be maintained, so that the penetration of moisture from the edge portion into the lithium ion battery is reduced, and the electrolyte of the lithium ion battery is deteriorated over time. This reduces the battery life.
The base material layer is a layer obtained by laminating at least an aluminum foil and a polyamide resin film by a dry laminating method using a urethane-based adhesive, and when a polyamide resin film having a thickness of 10 to 50 μm is used, it is drawn. Even in this case, pinholes and delamination do not occur.
本発明に係わる電池用外装積層体を用いて作成した、電池用の収納容器の一例を示す斜視図である。It is a perspective view which shows an example of the storage container for batteries created using the battery exterior laminated body concerning this invention. 本発明に係わる電池用外装積層体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the battery exterior laminated body concerning this invention. リチウムイオン電池を収納容器に収める工程を示す斜視図である。It is a perspective view which shows the process of accommodating a lithium ion battery in a storage container. リチウムイオン電池を収納容器に収める工程を示す斜視図である。It is a perspective view which shows the process of accommodating a lithium ion battery in a storage container.
 本発明に係わる電池外装用積層体を用いて製造した、リチウムイオン電池用の収納容器を例に取り上げ、図1および図2を参照しながら説明する。
 図1に示すように、本発明の電池外装用積層体を用いて作成した電池外装用容器20は、電池外装用積層体10を折り重ねてリチウムイオン電池17および電極18を内包し、さらに電池外装用容器20の三方の側縁部19をヒートシールして袋状に製袋される。電極リード線部材18は、図1の様に電池用外装容器20から引き出されている。なお、本発明に係わる電極リード線部材18を用いて製造したリチウムイオン電池の電池用収納容器における収納方法は、図3A及びBに示した。
A storage container for a lithium ion battery manufactured using the laminate for battery exterior according to the present invention will be described as an example, and will be described with reference to FIGS.
As shown in FIG. 1, a battery exterior container 20 created using the battery exterior laminate of the present invention folds the battery exterior laminate 10 to enclose a lithium ion battery 17 and an electrode 18, and further includes a battery. The three side edge portions 19 of the exterior container 20 are heat-sealed to form a bag. The electrode lead wire member 18 is pulled out from the battery outer container 20 as shown in FIG. 3A and 3B show the storage method in the battery storage container of the lithium ion battery manufactured using the electrode lead wire member 18 according to the present invention.
 電池外装用積層体10は、図2に示すように、基材層11と、アルミ箔12と、最内層13とが、順に積層され、基材層11とアルミ箔12とは接着剤層15を介して接着され、アルミ箔12と最内層13との間は、接着剤層を介しないで接着されている。
 また、アルミ箔12の少なくとも片面は、水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層14が積層される。また、薄膜コーティング層14には水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層を架橋して耐水性、防湿性、耐熱性を上げ、更にアルミニウムの表面を不動態化する物質が含まれている。
 また、この電池外装用積層体10は、JIS K7127に規定された測定方法により測定して、前記積層体の引張破断伸度が50%以上である。
 ここで、引張破断伸度とは、JIS K7127に準拠し、引張速度50mm/分で測定した際に求められた引張破断伸度である。電池外装用積層体10の引張破断伸度がMD方向、TD方向のいずれも50%以上であると、電池外装用積層体10を折り重ねてもコーナ部が十分に引き伸ばされ、破断することがないので、ピンホールが発生しない。
 また、基材層11とアルミ箔12とは、ウレタン系接着剤層15を介して接着され、アルミ箔12とポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層13のポリオレフィンシーラント層のアルミ箔の界面側の面に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント層が積層されている為、熱ラミネートで接着できる。
 また、アルミ箔12と前記ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層13との接着強度が、JIS C6471に規定された測定方法により測定して、10N/inch以上である。
As shown in FIG. 2, the battery outer laminate 10 includes a base material layer 11, an aluminum foil 12, and an innermost layer 13, which are sequentially laminated, and the base material layer 11 and the aluminum foil 12 have an adhesive layer 15. The aluminum foil 12 and the innermost layer 13 are bonded without using an adhesive layer.
Further, a thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is laminated on at least one surface of the aluminum foil 12. Further, the thin film coating layer 14 includes a substance that crosslinks the thin film coating layer made of a water-soluble resin or a copolymer resin thereof to improve water resistance, moisture resistance, and heat resistance, and further passivates the aluminum surface. Yes.
Moreover, this laminated body 10 for battery exteriors is measured by the measuring method prescribed | regulated to JISK7127, and the tensile fracture elongation of the said laminated body is 50% or more.
Here, the tensile elongation at break is the tensile elongation at break obtained when measured at a tensile speed of 50 mm / min according to JIS K7127. If the tensile strength at break of the laminate for battery exterior 10 is 50% or more in both the MD direction and the TD direction, the corner portion may be sufficiently stretched and broken even when the laminate for battery exterior 10 is folded. There is no pinhole because there is no.
In addition, the base material layer 11 and the aluminum foil 12 are bonded via a urethane adhesive layer 15, and the resin group of the aluminum foil 12, a polypropylene resin, a polyethylene resin, and a polyolefin resin in which a polar group is introduced into polyolefin. A polyolefin sealant layer containing a heat-adhesive polyolefin resin having an epoxy group is laminated on the aluminum foil interface side surface of the polyolefin sealant layer of the innermost layer 13 comprising at least one polyolefin sealant layer selected from the inside. Therefore, it can be bonded by heat lamination.
Further, the adhesive strength between the aluminum foil 12 and the innermost layer 13 made of at least one polyolefin sealant layer selected from the resin group consisting of the polyolefin resin in which a polar group is introduced into the polypropylene resin, polyethylene resin, and polyolefin is used. , Measured by the measurement method defined in JIS C6471, and is 10 N / inch or more.
 基材層11は、高い機械的強度を有していれば特に制限されず、例えば、少なくとも、二軸延伸ポリアミド樹脂フィルム(ONy)が使用され、また、基材層11が2層であれば、二軸延伸ポリアミド樹脂フィルム(ONy)の上にさらにポリエチレンテレフタレート(PET)樹脂フィルムが積層される。
 基材層11の厚さは、全体で18~60μmであることが好ましく、ポリアミド樹脂フィルムの厚みが10~50μmであること、ポリエチレンテレフタレート(PET)樹脂フィルムの厚みが3~16μmであることがさらに好ましい。
 また本発明の電池外装用積層体は、最外層にポリエチレンテレフタレート(PET)樹脂フィルムを使用することで、耐熱性や耐水性、及びヒートシール時の生産性が高く、仮に生産時に最外層のポリエチレンテレフタレート(PET)樹脂フィルムに電解液が付着しても白化現象が起こらず、拭き取れば製品品質に影響が無いなどの優れた効果がある。
 厚みが3~16μmのポリエチレンテレフタレート(PET)樹脂フィルムを使用すると、絞り成形性が良く、製袋時のヒートシール工程において、基材とアルミ箔との間がデラミするのを防止できる。
The base material layer 11 is not particularly limited as long as it has high mechanical strength. For example, at least a biaxially stretched polyamide resin film (ONy) is used, and if the base material layer 11 is two layers, A polyethylene terephthalate (PET) resin film is further laminated on the biaxially stretched polyamide resin film (ONy).
The total thickness of the base material layer 11 is preferably 18 to 60 μm, the thickness of the polyamide resin film is 10 to 50 μm, and the thickness of the polyethylene terephthalate (PET) resin film is 3 to 16 μm. Further preferred.
In addition, the battery outer laminate of the present invention uses a polyethylene terephthalate (PET) resin film as the outermost layer, so that heat resistance, water resistance, and productivity during heat sealing are high. Even if the electrolytic solution adheres to the terephthalate (PET) resin film, the whitening phenomenon does not occur, and if wiped off, the product quality is not affected.
When a polyethylene terephthalate (PET) resin film having a thickness of 3 to 16 μm is used, the drawability is good and it is possible to prevent delamination between the base material and the aluminum foil in the heat sealing process during bag making.
 アルミ箔12は、電池用外装容器に防水性および遮光性を持たせるための外部との絶縁層である。使用されるアルミ箔12としては特に制限されないが、少なくとも電池側の内面を水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層14が積層されてなることが好ましい。
 水溶性樹脂とは、水酸基を含有した樹脂であって、具体的には、ビニルエステル系モノマーの重合体又はその共重合体をケン化して得られる樹脂である。ビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、酪酸ビニル等の脂肪酸ビニルエステルや、安息香酸ビニル等の芳香族ビニルエステルが挙げられる。共重合させる他のモノマーとしては、エチレン、プロピレン、α-オレフィン類、アクリル酸、メタクリル酸、無水マレイン酸等の不飽和酸類、塩化ビニルや塩化ビニリデン等のハロゲン化ビニル類などが挙げられる。市販品としては、日本合成化学(株)製のGポリマー樹脂(商品名)が挙げられる。
 また、薄膜コーティング層14にはフッ化金属又はその誘導体からなるアルミニウムの不働態化剤を含有することが好ましい。フッ化金属又はその誘導体は、不動態であるアルミニウムのフッ化物を形成するFイオンを含む物質であり、例えばフッ化クロム、フッ化鉄、フッ化ジルコニウム、フッ化ジルコニウム酸化合物、フッ化ハフニウム、フッ化チタン酸化合物、等のフッ化物が挙げられる。市販品としては、三菱化学製の無極性のポリオレフィンに極性基を導入し、異種材料との接着性を付与した材料(商品名:MODIC,モデッィク)があり、ポリアミド、EVOH、ポリエステル、金属、ポリオレフィン等と接着できる。
 薄膜コーティング層14には、クロメート処理液が望ましく、その中でもフッ化金属又はその誘導体からなり、水酸基を含有する樹脂又はその共重合樹脂を主成分とする薄膜コーティング層を架橋させ、且つ、アルミニウムの表面を不動態化する物質が含有される方法が望ましい。但し、フッ化金属又はその誘導体が含まれていなくても、コーティング層の耐食性は向上する。薄膜コーティング層14は、熱処理により、架橋または非晶化することにより耐水化されていることが好ましい。
The aluminum foil 12 is an external insulating layer for providing the battery outer container with waterproofness and light shielding properties. Although it does not restrict | limit especially as the aluminum foil 12 used, It is preferable that the thin film coating layer 14 which consists of water-soluble resin or its copolymer resin is laminated | stacked at least on the inner surface by the side of a battery.
The water-soluble resin is a resin containing a hydroxyl group, and specifically, a resin obtained by saponifying a polymer of a vinyl ester monomer or a copolymer thereof. Examples of the vinyl ester monomers include fatty acid vinyl esters such as vinyl formate, vinyl acetate, and vinyl butyrate, and aromatic vinyl esters such as vinyl benzoate. Examples of other monomers to be copolymerized include ethylene, propylene, α-olefins, unsaturated acids such as acrylic acid, methacrylic acid, and maleic anhydride, and vinyl halides such as vinyl chloride and vinylidene chloride. As a commercial item, Nippon Synthetic Chemical Co., Ltd. G polymer resin (brand name) is mentioned.
The thin film coating layer 14 preferably contains an aluminum passivating agent made of a metal fluoride or a derivative thereof. A metal fluoride or a derivative thereof is a substance containing F 2 ions that form a passive aluminum fluoride, such as chromium fluoride, iron fluoride, zirconium fluoride, fluorinated zirconate compound, hafnium fluoride. And fluorides such as fluorinated titanic acid compounds. Commercially available products include non-polar polyolefins manufactured by Mitsubishi Chemical, which have polar groups introduced to give adhesion to different materials (trade names: MODIC, Modic), polyamide, EVOH, polyester, metal, polyolefin Can be glued with etc.
The thin film coating layer 14 is preferably a chromate treatment solution, among which a metal fluoride or a derivative thereof is used to crosslink a thin film coating layer mainly composed of a hydroxyl group-containing resin or a copolymer resin thereof. A method that includes a material that passivates the surface is desirable. However, even if a metal fluoride or a derivative thereof is not included, the corrosion resistance of the coating layer is improved. The thin film coating layer 14 is preferably water-resistant by crosslinking or amorphization by heat treatment.
 アルミ箔12の少なくとも片面に、水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層14が積層されていると、電池外装用積層体の耐圧強度が高いので、最内層13であるポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層の厚みを薄くしても、耐圧強度が保持できる為、エッジ部分からリチウムイオン電池内部への水分の浸入が少なくなり、リチウムイオン電池の電解液の経時劣化が減少するので電池の製品寿命が長くなる。
 また、本発明の電池外装用積層体によれば、アルミ箔12の少なくとも片面に水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層14を積層しているため、アルミ箔12と最内層13とを熱ラミネートした際には、層間接着強度が非常に強い。そのため、電池外装用積層体を用いて絞り成形や張出成形によりトレーを成形した際に、ピンホールの発生が防止されると共に、基材層11とアルミ箔12との剥離を防止できる。その結果、収納容器の成形の際の不良発生が減少する。
 更に、微量の水分が、電池内部に浸入し、電解液が分解することによりフッ酸が発生したとしても、水酸基が含有したポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂は、フリーボリュームが少なくガスバリヤ性が高いため、フッ酸がシーラント層ともなる最内層13に沿って、外部へ拡散することはない。また、微量のフッ酸がアルミ面に接触しても、不動態化によりアルミ箔が侵されず、アルミ箔とシーラント層との層間接着強度が保たれ、耐圧強度保持が高くなり、電池性能も劣化しない。
When the thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is laminated on at least one surface of the aluminum foil 12, the pressure resistance of the battery exterior laminate is high. Lithium ion battery from the edge because the pressure resistance can be maintained even if the thickness of at least one polyolefin sealant layer selected from the group consisting of resin and polyolefin resin in which polar groups are introduced into polyolefin is reduced. Moisture penetration into the interior is reduced, and deterioration of the electrolyte of the lithium ion battery over time is reduced, so that the battery product life is extended.
Further, according to the laminate for battery exterior of the present invention, since the thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is laminated on at least one surface of the aluminum foil 12, the aluminum foil 12, the innermost layer 13, When heat laminating, the interlayer adhesion strength is very strong. Therefore, when the tray is formed by drawing or stretch forming using the battery exterior laminate, it is possible to prevent the generation of pinholes and the peeling between the base material layer 11 and the aluminum foil 12. As a result, the occurrence of defects during molding of the storage container is reduced.
Furthermore, even if a small amount of moisture enters the battery and hydrofluoric acid is generated due to decomposition of the electrolytic solution, the resin having a skeleton of polyvinyl alcohol containing hydroxyl groups or a copolymer resin thereof has a low free volume. Since the gas barrier property is high, hydrofluoric acid does not diffuse outside along the innermost layer 13 that also serves as a sealant layer. In addition, even if a small amount of hydrofluoric acid comes into contact with the aluminum surface, the aluminum foil is not attacked by passivation, the interlayer adhesion strength between the aluminum foil and the sealant layer is maintained, the pressure resistance strength retention is increased, and the battery performance is also improved. Does not deteriorate.
 アルミ箔12の厚さは20~100μmである。アルミ箔12の厚さが30~60μmであると、十分な防水性および遮光性が発現するとともに、加工性も良好であるので好ましい。水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層14の厚みは、0.1~5μmが望ましく、更に望ましくは0.5~1μmmの厚みであると湿性や接着強度の性能が増加する。 The thickness of the aluminum foil 12 is 20 to 100 μm. A thickness of the aluminum foil 12 of 30 to 60 μm is preferable because sufficient waterproofness and light shielding properties are exhibited and processability is good. The thickness of the thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof is preferably from 0.1 to 5 μm, and more preferably from 0.5 to 1 μm, the performance of wettability and adhesive strength is increased.
 ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層13は、ポリプロピレン樹脂、ポリエチレン樹脂を主として含む層であって、電池外装用積層体10を用いて製袋した際に最内側になり、リチウムイオン電池と接する層である。ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層13をリチウムイオン電池と接する層にする理由は、ポリプロピレン樹脂又はポリエチレン樹脂がリチウムイオン電池の電解液に対する耐食性に優れ、かつヒートシール性が良好であるためである。ここで、ヒートシール性とは、高温におけるシールの安定性のことである。
 最内層13がポリプロピレン樹脂(極性基を導入していないもの)を主として含む場合、最内層13に使用される極性基を導入したポリオレフィン系樹脂としては、ポリプロピレンに極性基を導入したポリプロピレン系樹脂が好ましく、少なくてもポリプロピレンの分子の一部をエポキシ基に変性した重合体単独であってもよいし、さらに最内層のアルミ箔との界面側の面に、エポキシ基を分子の一部に変性したポリプロピレンが積層されているのが好ましい。またそのポリプロピレン樹脂は、ホモポリマーでも、エチレンとの共重合体でも良く、共重合タイプとしては、ランダム共重合体でもよいし、ブロック共重合体でもよい。最内層13がポリエチレン樹脂(極性基を導入していないもの)を主として含む場合、少なくても最内層13に使用される極性基を導入したポリオレフィン系樹脂としては、ポリエチレンに極性基を導入したポリエチレン系樹脂が好ましく、エポキシ基変性したポリエチレンが望ましい。但し、最内層のアルミ箔との界面側の面にエポキシ基を分子の一部に変性したポリエチレンがあれば、多層構造でも構わない。
 ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層13の厚みとしては、20~150μmであることが好ましい。ポリプロピレン樹脂又は極性基を導入したポリプロピレン系樹脂を主として含む最内層13であると、厚みを150μm以上とするなどの過剰に厚くしなくても、電解液に対する耐食性およびヒートシール性、さらに十分な耐圧強度を保つことができるので、好ましい。
 特に、このような最内層13とすることは、ヒートシールした断面からの水分の浸入を防止することにより、非水系電池やキャパシタの劣化を防止できるため、非常に有効な方法である。
The innermost layer 13 composed of at least one polyolefin sealant layer selected from the group consisting of a polypropylene resin, a polyethylene resin, and a polyolefin resin in which a polar group is introduced into a polyolefin is a layer mainly containing a polypropylene resin and a polyethylene resin. Thus, when the bag is made using the battery exterior laminate 10, the innermost layer is in contact with the lithium ion battery. The reason why the innermost layer 13 composed of at least one polyolefin sealant layer selected from the group consisting of polypropylene resin, polyethylene resin, and polyolefin resin in which a polar group is introduced into polyolefin is a layer in contact with the lithium ion battery is as follows. This is because the polypropylene resin or polyethylene resin is excellent in corrosion resistance to the electrolyte solution of the lithium ion battery and has good heat sealability. Here, the heat sealing property is the stability of the seal at a high temperature.
When the innermost layer 13 mainly contains a polypropylene resin (not having a polar group introduced), the polyolefin resin introduced with the polar group used in the innermost layer 13 is a polypropylene resin having a polar group introduced into polypropylene. Preferably, at least a polymer obtained by modifying a part of the polypropylene molecule with an epoxy group may be used alone, or the epoxy group may be modified to a part of the molecule on the side of the interface with the innermost aluminum foil. It is preferable that laminated polypropylene is laminated. The polypropylene resin may be a homopolymer or a copolymer with ethylene, and the copolymer type may be a random copolymer or a block copolymer. When the innermost layer 13 mainly contains a polyethylene resin (not having a polar group introduced), at least as a polyolefin resin introduced with a polar group used for the innermost layer 13, a polyethylene having a polar group introduced into polyethylene is used. Type resin is preferable, and epoxy-modified polyethylene is preferable. However, a multilayer structure may be used as long as there is polyethylene in which an epoxy group is modified to a part of the molecule on the surface on the interface side with the innermost aluminum foil.
The thickness of the innermost layer 13 composed of at least one polyolefin sealant layer selected from the group consisting of polypropylene resin, polyethylene resin, and polyolefin resin in which a polar group is introduced into polyolefin is 20 to 150 μm. preferable. When the innermost layer 13 mainly includes a polypropylene resin or a polypropylene resin into which a polar group is introduced, the corrosion resistance and heat sealability with respect to the electrolytic solution, and a sufficient pressure resistance can be obtained without excessively increasing the thickness to 150 μm or more. It is preferable because the strength can be maintained.
In particular, such an innermost layer 13 is a very effective method because it can prevent deterioration of nonaqueous batteries and capacitors by preventing moisture from entering from a heat-sealed cross section.
 接着剤層15は、基材層11とアルミ箔12とを接着する層である。接着剤層15に含まれる接着剤としては、基材層11とアルミ箔12とを接着できれば特に制限されないが、例えば、エポキシ系接着剤、ウレタン系接着剤などが挙げられる。中でも、接着剤層15が、エポキシ系接着剤、ウレタン系接着剤などからなる場合、通常、ドライラミネートにより基材層11又はアルミ箔12に接着剤層15を積層することができる。
 接着剤層15の厚みは、3~16μmであることが好ましい。接着剤層15の厚みが2~10μmであると、基材層11とアルミ箔12とを十分高い接着力で接着させるのでさらに好ましく、電池外装用積層体10を絞り成形または張出成形しても、稜線部や変形部での接着が維持され、基材層11とアルミ箔12とが層間剥離しない。
The adhesive layer 15 is a layer that adheres the base material layer 11 and the aluminum foil 12. The adhesive contained in the adhesive layer 15 is not particularly limited as long as the base material layer 11 and the aluminum foil 12 can be bonded, and examples thereof include an epoxy adhesive and a urethane adhesive. Especially, when the adhesive layer 15 consists of an epoxy-type adhesive agent, a urethane type adhesive agent, etc., the adhesive bond layer 15 can be normally laminated | stacked on the base material layer 11 or the aluminum foil 12 by dry lamination.
The thickness of the adhesive layer 15 is preferably 3 to 16 μm. It is more preferable that the thickness of the adhesive layer 15 is 2 to 10 μm because the base material layer 11 and the aluminum foil 12 are bonded with a sufficiently high adhesive force, and the battery exterior laminate 10 is formed by drawing or stretching. In addition, adhesion at the ridge line portion and the deformed portion is maintained, and the base material layer 11 and the aluminum foil 12 do not delaminate.
 アルミ箔12の最内層側の面に積層された水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層14と、ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層13との接着は、ポリオレフィンシーラント層が単層又は多層であり、最内層のアルミ箔との界面側の面に、エポキシ基を分子の一部に変性したポリオレフィンを有するので、熱ラミネート方式で接着することができる。この方法であれば、リチウムイオン電池の電解液が接着剤の接着強度を低下させない。
 また、アルミ箔12の最内層側の面に積層された薄膜コーティング層14は、水酸基を含有する水溶性樹脂を使用するのが好ましい。この場合、エポキシ基を含有するポリオレフィンは特に接着強度が高く、しかも熱量が少なくてよいので、押出ラミネートや熱ラミネートにより、アルミ箔12の薄膜コーティング層14と最内層13とを接着させることができる。この場合、アルミ箔12またはその薄膜コーティング層14と最内層13とを、その間に接着剤層を介しないで、積層させることもできる。接着剤やアンカーコート剤を介しない熱ラミネートが好ましい。
A thin film coating layer 14 made of a water-soluble resin or a copolymer resin thereof laminated on the innermost layer side of the aluminum foil 12, and a resin group made of a polyolefin resin in which a polar group is introduced into a polypropylene resin, a polyethylene resin, or a polyolefin. Adhesion with the innermost layer 13 composed of at least one polyolefin sealant layer selected from the inside is that the polyolefin sealant layer is a single layer or a multilayer, and an epoxy group is formed on the interface side surface with the aluminum foil of the innermost layer. Since the modified polyolefin is partly included, it can be bonded by a heat laminating method. If it is this method, the electrolyte solution of a lithium ion battery will not reduce the adhesive strength of an adhesive agent.
The thin film coating layer 14 laminated on the innermost layer side surface of the aluminum foil 12 preferably uses a water-soluble resin containing a hydroxyl group. In this case, since the polyolefin containing an epoxy group has particularly high adhesive strength and less heat, the thin film coating layer 14 and the innermost layer 13 of the aluminum foil 12 can be bonded by extrusion lamination or heat lamination. . In this case, the aluminum foil 12 or its thin film coating layer 14 and the innermost layer 13 can be laminated without an adhesive layer therebetween. Thermal lamination without an adhesive or anchor coating agent is preferred.
 本発明の電池外装用積層体10を用いた電池用外装容器20では、使用している電池外装用積層体10の引張破断伸度がMD方向、TD方向のいずれも50%以上であるため、電池外装用積層体10を絞り成形や張出成形によりトレーを成形した際、コーナ部Cが十分に引き伸ばされるため、破断することがなく、ピンホールは発生しない。また、基材層11とアルミ箔12との接着力が十分に高く、引き伸ばしの際の応力に屈することがないので、剥離を防止できる。 In the battery outer container 20 using the battery outer laminate 10 of the present invention, since the tensile breaking elongation of the battery outer laminate 10 used is 50% or more in both the MD direction and the TD direction, When the tray for the battery exterior laminate 10 is formed by drawing or stretch forming, the corner portion C is sufficiently stretched, so that it is not broken and no pinhole is generated. Moreover, since the adhesive force between the base material layer 11 and the aluminum foil 12 is sufficiently high and does not yield to the stress during stretching, peeling can be prevented.
(測定方法)
・積層体の引張破断伸度の測定方法:JIS K7127「プラスチック-引張特性の試験方法-第3部:フィルム及びシートの試験条件」に規定された測定方法により測定した。
・アルミ箔と最内層との接着強度の測定方法:JIS C6471「フレキシブルプリント配線板用銅張積層板試験方法」に規定された引き剥がし測定方法A(90°方向引き剥がし)により測定した。
・ピンホール破断発生率の測定方法:電池外装用積層体を50×50mmサイズで深さ6ないし10mmの範囲内の所定の深さの冷間成形による絞り成形品を50個成形し、目視によりピンホールの有無を確認した。
・ヒートシール時のデラミ発生数:電池外装用積層体を50×50mmサイズで深さ8mmの範囲内の所定の深さの冷間成形による絞り成形品を50個成形し、ヒートシール後に、60℃×90RH%の恒温恒湿度オープンに48時間放置して、その後、目視により、基材層とアルミ箔とのデラミの有無を確認した。
・電解液強度保持率の測定方法:作製した電池外装用積層体を用いて、50×50mm(ヒートシール幅が5mm)の4方袋に製袋して、その中にLiPFを1mol/リットル添加したプロピレンカーボネート(PC)/ジエチルカーボネート(DEC)電解液に純水を0.5wt%添加して、それを2cc計量し、充填して包装した。この4方袋を60℃のオーブンに100時間保管後、アルミ箔とポリプロピレン(PP)樹脂フィルムとの層間接着強度(k2)を測定した。
 ここで、事前に測定しておいた、電解液に暴露する前のアルミ箔とポリプロピレン(PP)樹脂フィルムとの層間接着強度(k1)と、電解液に暴露した後の層間接着強度(k2)との比率を電解液強度保持率K=(k2/k1)×100(%)とした。
(測定装置)
・引張破断伸度及び接着強度の測定装置には、メーカ名:島津製作所、型式:AUTOGRAPH AGS‐100A引張試験装置を用いた。 
(Measuring method)
Measurement method of tensile elongation at break of laminate: Measured by the measurement method defined in JIS K7127 “Plastics—Test method of tensile properties—Part 3: Test conditions of film and sheet”.
Measurement method of adhesive strength between aluminum foil and innermost layer: Measured by peeling measurement method A (90 ° direction peeling) defined in JIS C6471 “Test method for copper-clad laminate for flexible printed wiring board”.
・ Measurement method of pinhole rupture rate: 50 draw-molded products were formed by cold forming with a predetermined depth within a range of 6 to 10 mm in depth of 50 × 50 mm in the battery exterior laminate, and visually The presence or absence of pinholes was confirmed.
Number of occurrences of delamination during heat sealing: 50 draw-formed products by cold forming with a predetermined depth within a range of 50 mm × 50 mm in depth and 8 mm in depth are formed into a battery exterior laminate, and after heat sealing, 60 The sample was left in a constant temperature and humidity open at 90 ° C. for 48 hours, and then visually checked for the presence of delamination between the base material layer and the aluminum foil.
Measurement method of electrolyte strength retention rate: Using the produced laminate for battery exterior, a 50 × 50 mm (heat seal width is 5 mm) bag was made into a four-sided bag, and LiPF 6 was contained at 1 mol / liter in it. 0.5 wt% of pure water was added to the added propylene carbonate (PC) / diethyl carbonate (DEC) electrolytic solution, and 2 cc of it was weighed, filled and packaged. The four-sided bag was stored in an oven at 60 ° C. for 100 hours, and then the interlayer adhesion strength (k2) between the aluminum foil and the polypropylene (PP) resin film was measured.
Here, the interlayer adhesion strength (k1) between the aluminum foil and the polypropylene (PP) resin film before being exposed to the electrolytic solution and the interlayer adhesive strength (k2) after being exposed to the electrolytic solution, which were measured in advance. The electrolyte solution strength retention ratio K = (k2 / k1) × 100 (%).
(measuring device)
-As a measuring device for tensile elongation at break and adhesive strength, a manufacturer name: Shimadzu Corporation, model: AUTOGRAPH AGS-100A tensile tester was used.
(実施例1)
 厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、厚みが4μmのウレタン系接着剤層を用いてドライラミネートにより積層させた基材層を用意した。この基材層と、厚みが40μmのアルミ箔とを(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み3μm)を介して積層した。
 このアルミ箔の最内層面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、乾燥後の厚みが0.5μmとなるように塗布し、薄膜コーティング層を積層し、更に200℃のオーブンにて加熱し架橋反応させた。
 さらに、アルミ箔に積層した薄膜コーティング層の上に、各々の厚みが50μmのエポキシ基変性ポリエチレン(品名;住友化学(株)製;ボンドファースト)とLLDPEを共押出により製膜して2層にしたポリエチレンシーラントとを、50m/分の加工速度で熱ラミネート加工して、順に積層して最内層を形成し、実施例1の電池外装用積層体10を作製した。更に接着強度を上げる為に、この電池外装用積層体を50℃の熱風オーブンに48時間保管した。
 この実施例1の電池外装用積層体10から試験片を採取し、MD方向およびTD方向の引張破断伸度を測定した。また、この電池外装用積層体10を用いて、深さ8mmの絞り成形を50回行って、ヒートシール時のデラミ発生数を測定した。また、この実施例1の電池外装用積層体10からアルミ箔と最内層との接着強度の測定用の試験片を採取し、アルミ箔と最内層との接着強度を測定した。それらの結果を表1に示す。
(Example 1)
A base material layer was prepared by laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 μm and a stretched polyamide resin film having a thickness of 25 μm by dry lamination using a urethane adhesive layer having a thickness of 4 μm. This base material layer and an aluminum foil having a thickness of 40 μm were laminated via an adhesive layer (thickness: 3 μm) made of a urethane-based adhesive (containing an epoxy-based adhesive).
On the innermost surface of the aluminum foil, 1% by weight of an amorphous polymer having a hydroxyl group-containing polyvinyl alcohol skeleton (manufactured by Nippon Synthetic Chemical Co., Ltd., trade name: G polymer resin) and chromium fluoride (III) An aqueous solution in which 2% by weight was dissolved was applied so that the thickness after drying was 0.5 μm, a thin film coating layer was laminated, and further heated in an oven at 200 ° C. for crosslinking reaction.
Furthermore, on the thin film coating layer laminated on the aluminum foil, each 50 μm thick epoxy group-modified polyethylene (product name; manufactured by Sumitomo Chemical Co., Ltd .; Bond First) and LLDPE are formed into two layers by coextrusion. The polyethylene sealant thus obtained was heat-laminated at a processing speed of 50 m / min and laminated in order to form the innermost layer. Thus, the battery outer laminate 10 of Example 1 was produced. In order to further increase the adhesive strength, the laminate for battery exterior was stored in a hot air oven at 50 ° C. for 48 hours.
Test pieces were taken from the battery outer laminate 10 of Example 1 and measured for the tensile breaking elongation in the MD direction and the TD direction. Moreover, using this laminated body 10 for battery exteriors, drawing with a depth of 8 mm was performed 50 times, and the number of delamination during heat sealing was measured. In addition, a test piece for measuring the adhesive strength between the aluminum foil and the innermost layer was collected from the battery outer laminate 10 of Example 1, and the adhesive strength between the aluminum foil and the innermost layer was measured. The results are shown in Table 1.
(実施例2)
 厚みが25μmの延伸ポリアミド樹脂フィルムと、厚みが40μmのアルミ箔とを(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み3μm)を介して積層した。また、アルミ箔の最内層面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、乾燥後の厚みが0.5μmとなるように塗布し、薄膜コーティング層を積層し、更に200℃のオーブンにて加熱し架橋反応させた。
 さらに、アルミ箔に積層した薄膜コーティング層の上に、厚みが50μmのエポキシ基変性ポリプロピレンを含む単層のポリオレフィンシーラントフィルム〔無水マレイン酸変性ポリプロピレン樹脂(三井化学(株)製、品名/アドマー樹脂)に、水酸基含有エポキシ化合物(三菱化学製、品名/エピコート1001)を1.5wt%ブレンドコンパウンドして、ポリプロピレン樹脂の無水マレイン酸官能基に反応させてエポキシ基を導入したポリプロピレン樹脂を作製した後、フィルム製膜機にて、100μmに製膜したフィルムを使用〕を80m/分の加工速度で熱ラミネートした以外は実施例1と同様にして、実施例2の電池外装用積層体10を得て、引張破断伸度、ヒートシール時のデラミ発生数およびアルミ箔と最内層との接着強度を測定した。それらの結果を表1に示す。
(Example 2)
A stretched polyamide resin film having a thickness of 25 μm and an aluminum foil having a thickness of 40 μm were laminated via an adhesive layer (thickness 3 μm) made of a urethane adhesive (containing an epoxy adhesive). Moreover, 1% by weight of an amorphous polymer having a polyvinyl alcohol skeleton having a hydroxyl group on the innermost surface of the aluminum foil (trade name: G polymer resin, manufactured by Nippon Synthetic Chemical Co., Ltd.) and chromium fluoride (III) An aqueous solution in which 2% by weight was dissolved was applied so that the thickness after drying was 0.5 μm, a thin film coating layer was laminated, and further heated in an oven at 200 ° C. to cause a crosslinking reaction.
Furthermore, on the thin film coating layer laminated on the aluminum foil, a single-layer polyolefin sealant film containing an epoxy group-modified polypropylene having a thickness of 50 μm [maleic anhydride-modified polypropylene resin (product name / Admer resin, manufactured by Mitsui Chemicals, Inc.) In addition, a 1.5 wt% blend compound of a hydroxyl group-containing epoxy compound (Mitsubishi Chemical Co., Ltd., product name / Epicoat 1001) was reacted with the maleic anhydride functional group of the polypropylene resin to produce a polypropylene resin into which an epoxy group was introduced. Using a film-forming machine, use a film formed to a thickness of 100 μm] was obtained in the same manner as in Example 1 except that the laminate 10 for battery exterior was obtained in the same manner as in Example 1 except that the film was thermally laminated at a processing speed of 80 m / min. , Tensile elongation at break, number of delamination during heat sealing, and adhesive strength between aluminum foil and innermost layer Was measured. The results are shown in Table 1.
(比較例1)
 厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、ウレタン系接着剤でドライラミネートした基材層を用意した。この基材層と厚みが40μmのアルミ箔とを(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み4μm)を介して積層した。それを同様に、ウレタン接着剤でポリエチレンシーラントフィルムをドライラミネートした以外は、実施例1と同様にして、比較例1の電池外装用積層体10を得て、引張破断伸度、ヒートシール時のデラミ発生数およびアルミ箔と最内層との接着強度を測定した。それらの結果を表1に示す。
(Comparative Example 1)
A base material layer was prepared by dry laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 μm and a stretched polyamide resin film having a thickness of 25 μm with a urethane-based adhesive. This base material layer and an aluminum foil having a thickness of 40 μm were laminated via an adhesive layer (thickness: 4 μm) made of a urethane-based adhesive (containing an epoxy-based adhesive). Similarly, except that the polyethylene sealant film was dry laminated with a urethane adhesive, the battery exterior laminate 10 of Comparative Example 1 was obtained in the same manner as in Example 1, and the tensile elongation at break and heat sealing were as follows. The number of delamination occurrences and the adhesive strength between the aluminum foil and the innermost layer were measured. The results are shown in Table 1.
(実施例3)
 厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、ウレタン系接着剤でドライラミネートした基材層を用意した。この基材層と厚みが40μmのアルミ箔とを(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み4μm)を介して積層した。それにエポキシ基変性ポリエチレン樹脂(住友化学(株)製、商品名:ボンドファースト)を押出しラミネート方式で押出し、ボイル用ポリエチレンシーラントを50m/分の加工速度でサンドラミした以外は、実施例1と同様にして、比較例2の電池外装用積層体10を得て、引張破断伸度、ヒートシール時のデラミ発生数およびアルミ箔と最内層との接着強度を測定した。それらの結果を表1に示す。
(Example 3)
A base material layer was prepared by dry laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 μm and a stretched polyamide resin film having a thickness of 25 μm with a urethane-based adhesive. This base material layer and an aluminum foil having a thickness of 40 μm were laminated via an adhesive layer (thickness: 4 μm) made of a urethane-based adhesive (containing an epoxy-based adhesive). An epoxy group-modified polyethylene resin (manufactured by Sumitomo Chemical Co., Ltd., trade name: Bond First) was extruded by an extrusion laminating method, and a polyethylene sealant for boil was sand-laminated at a processing speed of 50 m / min. Thus, the battery outer laminate 10 of Comparative Example 2 was obtained, and the tensile elongation at break, the number of delamination during heat sealing, and the adhesive strength between the aluminum foil and the innermost layer were measured. The results are shown in Table 1.
(比較例2)
 厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、ウレタン系接着剤でドライラミネートした基材層を用意した。この基材層と厚みが40μmのアルミ箔とを(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み4μm)を介して積層した。それに無水マレイン酸変性ポリエチレン樹脂を押出し50m/分の加工速度で押出ラミネートし、ボイル用ポリエチレンシーラントをサンドラミした以外は、実施例1と同様にして、比較例2の電池外装用積層体10を得て、引張破断伸度、ヒートシール時のデラミ発生数およびアルミ箔と最内層との接着強度を測定した。それらの結果を表1に示す。
(Comparative Example 2)
A base material layer was prepared by dry laminating a stretched polyethylene terephthalate (PET) resin film having a thickness of 12 μm and a stretched polyamide resin film having a thickness of 25 μm with a urethane-based adhesive. This base material layer and an aluminum foil having a thickness of 40 μm were laminated via an adhesive layer (thickness: 4 μm) made of a urethane-based adhesive (containing an epoxy-based adhesive). A laminated body 10 for battery exterior of Comparative Example 2 was obtained in the same manner as in Example 1 except that maleic anhydride-modified polyethylene resin was extruded and laminated at a processing speed of 50 m / min and a polyethylene sealant for boil was sanded. The tensile breaking elongation, the number of delamination during heat sealing, and the adhesive strength between the aluminum foil and the innermost layer were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3は、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製Gポリマー樹脂)を3重量%と、フッ化クロム(III)を1重量%とを溶かした水溶液を塗布し、薄膜コーティング層を積層してあることから、アルミ箔と最内層との接着強度が10N/inch以上である。すなわち、引張破断伸度がMD方向、TD方向のいずれも50%を超えており、ヒートシール時のデラミ発生の頻度がゼロになった。
 また、実施例1~3の電池外装用積層体を用いて、電解液強度保持率を測定した。試験結果は、実施例1の電池外装用積層体における電解液強度保持率が82%であり、実施例2の電池外装用積層体における電解液強度保持率が84%であり、実施例3の電池外装用積層体における電解液強度保持率が80%であった。つまり、実施例1~3は、リチウム電池の電解液に対しても耐食性があった。
 一方、比較例1の電池外装用積層体では、アルミ箔と最内層シーラントとの接着強度がウレタン接着剤によるドライラミネートである為、熱接着強度は十分で、層間強度が10N/inch以上であったが、アルミ箔とシーラントフィルムとをウレタン接着剤でラミネートした為、電解液処理後において、デラミが発生した。
 また、比較例2の電池外装用積層体では、アルミ箔と最内層の接着強度が、加工速度を30m/分以上で加工すると、層間接着強度が10N/inch以下であり、接着強度が足らず、加工速度を下げなければならず、コスト的にメリットが無い事がわかった。また、無水マレイン酸変性ポリオレフィンでの熱ラミネートである為、加工速度が低い条件で、接着強度を10N/inchにしたサンプルでは、絞り成形時及び電解液処理後でも品質上の問題は無かった。
Examples 1 to 3 were prepared by dissolving 3% by weight of an amorphous polymer having a hydroxyl group-containing polyvinyl alcohol skeleton (G polymer resin manufactured by Nippon Synthetic Chemical Co., Ltd.) and 1% by weight of chromium (III) fluoride. Since the aqueous solution is applied and the thin film coating layer is laminated, the adhesive strength between the aluminum foil and the innermost layer is 10 N / inch or more. That is, the tensile elongation at break exceeded 50% in both the MD and TD directions, and the frequency of delamination during heat sealing became zero.
In addition, the electrolyte strength retention was measured using the battery outer laminates of Examples 1 to 3. The test results show that the electrolyte solution strength retention in the battery exterior laminate of Example 1 is 82%, and the electrolyte solution strength retention in the battery exterior laminate of Example 2 is 84%. The electrolyte solution strength retention in the laminate for battery exterior was 80%. In other words, Examples 1 to 3 were also corrosion resistant to the electrolyte solution of the lithium battery.
On the other hand, in the laminate for battery exterior of Comparative Example 1, since the adhesive strength between the aluminum foil and the innermost layer sealant is a dry laminate using a urethane adhesive, the thermal adhesive strength is sufficient and the interlayer strength is 10 N / inch or more. However, since aluminum foil and a sealant film were laminated with a urethane adhesive, delamination occurred after the electrolytic solution treatment.
Further, in the battery exterior laminate of Comparative Example 2, when the adhesive strength between the aluminum foil and the innermost layer was processed at a processing speed of 30 m / min or more, the interlayer adhesive strength was 10 N / inch or less, and the adhesive strength was insufficient. It was found that the machining speed had to be reduced and there was no cost advantage. In addition, since it is a thermal laminate made of maleic anhydride-modified polyolefin, there was no problem in quality even at the time of drawing molding and after electrolytic solution treatment in a sample with an adhesive strength of 10 N / inch under conditions of low processing speed.
(実施例4)
 厚みが25μmのポリアミド樹脂フィルム層が、3g/mで塗布されたウレタン系接着剤層を介してアルミ箔に積層してなるアルミラミネートフィルムを用意した。このアルミラミネートフィルムのアルミ箔が表出された面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、乾燥後の厚みが0.5μmとなるように塗布し、その上にエポキシ基変性ポリエチレンフィルム(住友化学(株)製、商品名:ボンドファースト樹脂を、フィルム製膜機で50μmの厚みに製膜したフィルムを使用)を60m/分の加工速度で熱ラミネートして、それを60℃の熱風オープンに48時間保管し作成された3層構成からなる、実施例4の電池外装用積層体10を作製した。
 この実施例4の電池外装用積層体10から試験片を採取し、アルミ箔と最内層との接着強度を測定した。また、この実施例4の電池外装用積層体10を用いて、深さ8mmの絞り成形を50回行って、ピンホール破断の発生数を計測し、ピンホール破断発生率を求めた。また、この実施例4の電池外装用積層体10を用いて、深さ8mmの絞り成形を50回行って、ヒートシール時のデラミ発生数を測定した。それらの結果を表2に示す。
Example 4
An aluminum laminate film was prepared by laminating a polyamide resin film layer having a thickness of 25 μm on an aluminum foil via a urethane adhesive layer applied at 3 g / m 2 . On the surface of the aluminum laminate film where the aluminum foil is exposed, 1% by weight of an amorphous polymer having a polyvinyl alcohol skeleton having a hydroxyl group (manufactured by Nippon Synthetic Chemical Co., Ltd., trade name: G polymer resin) is used. An aqueous solution in which 2% by weight of chromium (III) fluoride was dissolved was applied so that the thickness after drying was 0.5 μm, and an epoxy group-modified polyethylene film (manufactured by Sumitomo Chemical Co., Ltd., trade name: 3) Created by heat laminating a bond first resin with a film forming machine to a thickness of 50 μm) at a processing speed of 60 m / min and storing it in a hot air open at 60 ° C. for 48 hours. The laminated body 10 for battery exteriors of Example 4 which consists of layer structure was produced.
A test piece was taken from the battery outer laminate 10 of Example 4 and the adhesive strength between the aluminum foil and the innermost layer was measured. In addition, using the laminated body 10 for battery exterior of this Example 4, drawing with a depth of 8 mm was performed 50 times, the number of occurrences of pinhole breakage was measured, and the pinhole breakage occurrence rate was obtained. Further, using the laminated body 10 for battery exterior of Example 4, drawing with a depth of 8 mm was performed 50 times, and the number of occurrences of delamination during heat sealing was measured. The results are shown in Table 2.
(実施例5)
 最内層のポリエチレン層の厚みを30μmにした以外は、実施例4と同様にして、実施例5の電池外装用積層体10を得て、アルミ箔と最内層との接着強度、ヒートシール時のデラミ発生数およびピンホール破断発生率を測定した。それらの結果を表2に示す。
(Example 5)
Except for changing the thickness of the innermost polyethylene layer to 30 μm, the battery exterior laminate 10 of Example 5 was obtained in the same manner as in Example 4 to obtain the adhesive strength between the aluminum foil and the innermost layer, during heat sealing. The number of delamination occurrence and the pinhole fracture occurrence rate were measured. The results are shown in Table 2.
(比較例3)
 厚みが12μmのポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmのポリアミド樹脂フィルム層とが、3g/mで塗布されたウレタン系接着剤層を介して積層してなる基材層を用意した。この基材層と、アルミ箔とを、エポキシ系接着剤を含有するウレタン系接着剤層3μmを介して積層した。このアルミ箔の、接着剤層との接着面とは反対側の面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、乾燥後の厚みが0.5μmとなるように塗布し、その上に酸変性ポリプロピレン系ヒートシール剤を3g/mで塗布し、その後にポリプロピレン層40μmを50m/分の加工速度で熱ラミネートされた4層構成からなる、比較例3の電池外装用積層体10を得た。
 この比較例3の電池外装用積層体10から試験片を採取し、アルミ箔と最内層との接着強度を測定した。また、この比較例3の電池外装用積層体10を用いて、深さ8mmの絞り成形を50回行って、ピンホール破断の発生数を計測し、ピンホール破断発生率を求めた。また、この比較例3の電池外装用積層体10を用いて、深さ8mmの絞り成形を50回行って、ヒートシール時のデラミ発生数を測定した。それらの結果を表2に示す。
(Comparative Example 3)
A base material layer was prepared by laminating a polyethylene terephthalate (PET) resin film having a thickness of 12 μm and a polyamide resin film layer having a thickness of 25 μm via a urethane adhesive layer applied at 3 g / m 2 . . This base material layer and the aluminum foil were laminated via a urethane adhesive layer 3 μm containing an epoxy adhesive. A non-crystalline polymer (product name: G polymer resin, manufactured by Nippon Synthetic Chemical Co., Ltd.) having a skeleton of polyvinyl alcohol having a hydroxyl group on the surface of the aluminum foil opposite to the adhesive surface with the adhesive layer is 1 An aqueous solution in which 2% by weight of chromium (III) fluoride is dissolved is applied so that the thickness after drying is 0.5 μm, and an acid-modified polypropylene heat sealant is applied thereon to 3 g / m. was coated with 2, followed in the polypropylene layer 40μm composed of four-layer structure that is thermally laminated at 50 m / min processing speed, to obtain a battery exterior laminate 10 of Comparative example 3.
A test piece was taken from the battery outer laminate 10 of Comparative Example 3, and the adhesive strength between the aluminum foil and the innermost layer was measured. In addition, using the battery outer laminate 10 of Comparative Example 3, the 8 mm deep drawing was performed 50 times, the number of occurrences of pinhole breakage was measured, and the pinhole breakage occurrence rate was obtained. In addition, using the laminated body 10 for battery exterior of Comparative Example 3, drawing with a depth of 8 mm was performed 50 times, and the number of occurrences of delamination during heat sealing was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例4および実施例5は、アルミ箔とシーラント(最内層)との接着強度が高いので、引張破断伸度が高く、電解液強度保持率の測定値は省略するが、実施例1,2と同様に耐電解液性が優れており、更に耐圧強度も十分であり、ピンホール破断発生もなかった。
 一方、比較例3では、シーラント層とアルミ箔との界面に酸変性ポリプロピレン系ヒートシール剤を使用した為、加工速度が50m/分以上の場合、アルミ箔と最内層との接着強度が十分でなかった。
In Examples 4 and 5, since the adhesive strength between the aluminum foil and the sealant (innermost layer) is high, the tensile elongation at break is high, and the measured value of the electrolyte strength retention is omitted. In the same manner as above, the electrolytic solution resistance was excellent, the pressure resistance was sufficient, and no pinhole fracture occurred.
On the other hand, in Comparative Example 3, since an acid-modified polypropylene heat sealant was used at the interface between the sealant layer and the aluminum foil, when the processing speed was 50 m / min or more, the adhesive strength between the aluminum foil and the innermost layer was sufficient. There wasn't.
リチウムイオン電池の電解液の劣化による、アルミ箔と最内層とのラミネート強度の低下や層間剥離の発生が低減された電池外装用積層体であり、しかも、高い歩留まりで外装容器を製造することが可能な電池外装用積層体を低コストで提供することができる。 It is a laminated body for battery exterior in which the decrease in the laminate strength between the aluminum foil and the innermost layer and the occurrence of delamination due to the deterioration of the electrolyte of the lithium ion battery are reduced, and it is possible to produce an exterior container with a high yield. A possible battery exterior laminate can be provided at low cost.
10…電池外装用積層体、11…基材層(ポリエチレンテレフタレート(PET)樹脂フィルム/ポリアミド樹脂フィルム)、12…アルミ箔、13…最内層、14…薄膜コーティング層、15…接着剤層、17…リチウムイオン電池、18…電極、19…側縁部、20…電池用外装容器、30…電池用載置容器、35…電池用収納容器。 DESCRIPTION OF SYMBOLS 10 ... Laminate for battery exterior, 11 ... Base material layer (polyethylene terephthalate (PET) resin film / polyamide resin film), 12 ... Aluminum foil, 13 ... Innermost layer, 14 ... Thin film coating layer, 15 ... Adhesive layer, 17 DESCRIPTION OF SYMBOLS ... Lithium ion battery, 18 ... Electrode, 19 ... Side edge part, 20 ... Battery outer container, 30 ... Battery mounting container, 35 ... Battery storage container.

Claims (7)

  1.  アルミ箔及び樹脂層を順に積層してなる電池外装用の積層体において、基材層と、アルミ箔と、ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層とが順に積層され、前記ポリオレフィンシーラント層が単層又は多層であって、前記ポリオレフィンシーラント層の前記アルミ箔との界面側に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント層が積層され、前記アルミ箔の外面に、前記基材層として、厚みが10~50μmのポリアミド樹脂フィルム層が積層された積層フィルムである電池外装用積層体。 In a laminated body for battery exteriors, in which an aluminum foil and a resin layer are laminated in order, in a resin group consisting of a base material layer, an aluminum foil, a polypropylene resin, a polyethylene resin, and a polyolefin resin in which a polar group is introduced into a polyolefin And an innermost layer composed of at least one polyolefin sealant layer selected from the above, wherein the polyolefin sealant layer is a single layer or a multilayer, and an epoxy group is provided on the interface side of the polyolefin sealant layer with the aluminum foil. A battery exterior comprising a laminated film in which a polyolefin sealant layer containing a heat-adhesive polyolefin resin having a thickness is laminated, and a polyamide resin film layer having a thickness of 10 to 50 μm is laminated on the outer surface of the aluminum foil as the base material layer Laminated body.
  2.  アルミ箔及び樹脂層を順に積層してなる電池外装用の積層体において、少なくともポリアミド樹脂フィルム層を有する基材層と、アルミ箔と、ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィンに極性基を導入したポリオレフィン系樹脂からなる樹脂群の中から選択された少なくとも1種のポリオレフィンシーラント層からなる最内層とが順に積層され、前記ポリオレフィンシーラント層が単層又は多層であって、前記アルミ箔の少なくとも最内層側の面には、水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層が積層され、前記ポリオレフィンシーラント層の前記アルミ箔との界面側に、エポキシ基を有する熱接着性ポリオレフィン樹脂を含有するポリオレフィンシーラント層が積層され、前記アルミ箔と、前記ポリオレフィンシーラント層とが熱ラミネートされた電池外装用積層体。 In a battery exterior laminate comprising an aluminum foil and a resin layer laminated in order, a base material layer having at least a polyamide resin film layer, an aluminum foil, a polypropylene resin, a polyethylene resin, and a polyolefin system in which a polar group is introduced into a polyolefin And an innermost layer composed of at least one polyolefin sealant layer selected from a resin group consisting of a resin, and the polyolefin sealant layer is a single layer or a multilayer, on at least the innermost layer side of the aluminum foil. A thin film coating layer made of a water-soluble resin or a copolymer resin thereof is laminated on the surface, and a polyolefin sealant layer containing a thermal adhesive polyolefin resin having an epoxy group on the interface side of the polyolefin sealant layer with the aluminum foil Are laminated, and the aluminum foil and the polyolefin Inshiranto layer and heat laminated battery outer laminate for.
  3.  前記アルミ箔の少なくとも最内層側の面に、水溶性樹脂又はその共重合樹脂からなる塗布型のクロメート処理用の薄膜コーティング層が積層され、前記薄膜コーティング層が架橋されている請求項1または2に記載の電池外装用積層体。 3. The coating type thin film coating layer for chromate treatment made of a water-soluble resin or a copolymer resin thereof is laminated on at least the innermost layer side surface of the aluminum foil, and the thin film coating layer is crosslinked. The laminated body for battery exteriors described in 1.
  4.  JIS K7127に規定された測定方法により測定して、前記積層体の引張破断伸度がMD方向、TD方向のいずれも50%以上である請求項1または2に記載の電池外装用積層体。 3. The laminate for battery exterior according to claim 1, wherein the laminate has a tensile breaking elongation of 50% or more in both the MD direction and the TD direction as measured by a measurement method defined in JIS K7127.
  5.  前記アルミ箔の少なくとも最内層側の面には、水溶性樹脂又はその共重合樹脂からなる薄膜コーティング層が積層され、前記薄膜コーティング層が、架橋または非晶化することにより耐水性化されている請求項1または2に記載の電池外装用積層体。 A thin film coating layer made of a water-soluble resin or a copolymer resin thereof is laminated on at least the innermost layer side of the aluminum foil, and the thin film coating layer is water-resistant by being cross-linked or amorphous. The laminated body for battery exteriors of Claim 1 or 2.
  6.  前記基材層と、前記アルミ箔とは、ウレタン系接着剤を介して接着されている請求項1または2に記載の電池外装用積層体。 The laminate for battery exterior according to claim 1 or 2, wherein the base material layer and the aluminum foil are bonded via a urethane-based adhesive.
  7.  前記最内層の厚みが、20~150μmであり、かつ、前記アルミ箔と前記最内層との接着強度が、JIS C6471に規定された引き剥がし測定方法Aにより測定して、10N/inch以上である請求項1または2に記載の電池外装用積層体。 The innermost layer has a thickness of 20 to 150 μm, and the adhesive strength between the aluminum foil and the innermost layer is 10 N / inch or more as measured by the peeling measurement method A defined in JIS C6471. The laminated body for battery exteriors of Claim 1 or 2.
PCT/JP2012/081977 2012-12-10 2012-12-10 Laminated body for battery outer housing WO2014091542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081977 WO2014091542A1 (en) 2012-12-10 2012-12-10 Laminated body for battery outer housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081977 WO2014091542A1 (en) 2012-12-10 2012-12-10 Laminated body for battery outer housing

Publications (1)

Publication Number Publication Date
WO2014091542A1 true WO2014091542A1 (en) 2014-06-19

Family

ID=50933871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081977 WO2014091542A1 (en) 2012-12-10 2012-12-10 Laminated body for battery outer housing

Country Status (1)

Country Link
WO (1) WO2014091542A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057181A (en) * 1999-06-10 2001-02-27 Toyo Aluminium Kk Aluminum foil for battery wrapping material and battery wrapping material using the same
JP2007095654A (en) * 2006-03-23 2007-04-12 Dainippon Printing Co Ltd Lithium ion battery
JP2010086831A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Packing material for electrochemical cell
JP2012033393A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
WO2012063764A1 (en) * 2010-11-11 2012-05-18 藤森工業株式会社 Process for producing sealing film, and sealing film
JP2013012469A (en) * 2011-05-31 2013-01-17 Fujimori Kogyo Co Ltd Laminate for battery exterior package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057181A (en) * 1999-06-10 2001-02-27 Toyo Aluminium Kk Aluminum foil for battery wrapping material and battery wrapping material using the same
JP2007095654A (en) * 2006-03-23 2007-04-12 Dainippon Printing Co Ltd Lithium ion battery
JP2010086831A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Packing material for electrochemical cell
JP2012033393A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
WO2012063764A1 (en) * 2010-11-11 2012-05-18 藤森工業株式会社 Process for producing sealing film, and sealing film
JP2013012469A (en) * 2011-05-31 2013-01-17 Fujimori Kogyo Co Ltd Laminate for battery exterior package

Similar Documents

Publication Publication Date Title
JP6188009B2 (en) Battery exterior laminate
JP5538121B2 (en) Battery exterior laminate
JP5988695B2 (en) Battery exterior laminate
JP5830585B2 (en) Battery exterior laminate
JP2012033394A (en) Laminate for battery exterior package
JP6420424B2 (en) Battery exterior laminate
KR101274519B1 (en) Electrode lead for nonaqueous cell
KR102100628B1 (en) Electrode lead wire member for nonaqueous battery
JP6738164B2 (en) Exterior material for power storage device and power storage device
JP4922544B2 (en) Method for producing battery case packaging material
JP2013012468A (en) Electrode lead wire member for nonaqueous battery
JP5876552B2 (en) Battery exterior laminate
JP5856693B2 (en) Electrode lead wire member for non-aqueous battery
JP6583985B2 (en) Method for manufacturing electrode lead wire member and electrode lead wire member
JP6096540B2 (en) Manufacturing method of laminated body for battery exterior
JP6722739B2 (en) Method for manufacturing laminated body for battery exterior
JP6422195B2 (en) Bonding method between aluminum foil and sealant film
JP6252591B2 (en) Laminate
WO2014091542A1 (en) Laminated body for battery outer housing
US20220271373A1 (en) Aluminum pouch film for secondary battery, and manufacturing method therefor
JP6647349B2 (en) Method of manufacturing electrode lead wire member for non-aqueous battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP