WO2014091127A1 - Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe. - Google Patents

Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe. Download PDF

Info

Publication number
WO2014091127A1
WO2014091127A1 PCT/FR2013/052991 FR2013052991W WO2014091127A1 WO 2014091127 A1 WO2014091127 A1 WO 2014091127A1 FR 2013052991 W FR2013052991 W FR 2013052991W WO 2014091127 A1 WO2014091127 A1 WO 2014091127A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
membrane
hydrogenated
combustion
Prior art date
Application number
PCT/FR2013/052991
Other languages
English (en)
Inventor
Jean-Philippe Goudon
Pierre Yvart
Fabrice MANTELET
Frédéric LESAGE
Original Assignee
Herakles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herakles filed Critical Herakles
Priority to CA2894471A priority Critical patent/CA2894471A1/fr
Priority to US14/651,717 priority patent/US9624102B2/en
Priority to KR1020157018581A priority patent/KR20150093824A/ko
Priority to EP13818261.3A priority patent/EP2931653A1/fr
Publication of WO2014091127A1 publication Critical patent/WO2014091127A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a pyrotechnic process for providing hydrogen of very high purity. Said method is advantageously used to power fuel cells, portable or onboard. The present invention also relates to a device suitable for implementing said method.
  • the invention is particularly applicable in the context of the hydrogen supply of low and medium power (1 to 100 watts) fuel cells, used in the aeronautical and military fields, such as those equipping the drones and those equipping the infantrymen .
  • the electrical powers targeted in this context are about ten times greater than the powers consumed by portable electrical appliances, such as mobile phones.
  • the scope of the invention can be extended to onboard fuel cells of higher power, a few tens of kilowatts, used, for example, for the supply of aeronautical emergency power generators.
  • Fuel cells are alternative sources of electrical energy that provide a response to new energy and environmental requirements. Fuel cells have a potential energy density on board at least 4 times higher than that of lithium batteries. They do not release greenhouse gases.
  • Another developed route is based on the use of pyrotechnic solid materials generating hydrogen by combustion. It makes it possible to overcome the problem of permanent storage of fluid (liquid or gaseous). She is particularly interesting in that said materials have a high stability in storage conditions and great simplicity of use.
  • Such pyrotechnic solid materials generating hydrogen have in particular been described in patent applications EP 1 249 427, EP 1 405 823, EP 1 405 824, EP 1 496 035 and EP 2 265 545. They are in the form of blocks. , pellets, discs or grains. Their composition generally contains a hydrogenated reducing component of inorganic hydride, borazane or polymeric type of aminoborane (polyaminoborane) and an inorganic oxidizing component. Their combustion generates, with a good yield ( ⁇ 11 to 13% theoretical mass, ie ⁇ 70 mole / kg), hydrogen. Their combustion temperature ( ⁇ 800 K, depending on the formulations), not excessive (see below), is high enough that the reaction is self-sustaining after ignition. The self-sustaining combustion of these materials is favored by the pressurization in the combustion chamber. Such materials produce hydrogenated gas with a high hydrogen content, containing at least 70% by volume of hydrogen.
  • the gases supplying a fuel cell must be free, or at least contain extremely low levels, of species, such as CO, NH 3 , (3 ⁇ 4 and H 2 S, capable of poisoning the catalyst of said battery. must also be at suitable temperatures (less than 473 K, ideally less than 350 K so far, to spare the battery membrane) and at low overpressures (ideally a few millibars up to 5 bar) compared to the Finally, the particle content of said gases must be very low.
  • the composition of pyrotechnic solid materials hydrogen generators is in principle optimized to generate the least possible such gaseous species poisons for (the catalyst) the battery (in any case, the gases hydrogenated products produced by these materials are always likely to contain, at low rates, poison species for the cell and it is appropriate to purify them to deliver to said cell a hydrogen of purity greater than 99.9% by volume, to guarantee its life) and to burn at a moderate temperature (it is always desirable to lower the temperature of the hydrogenated gases produced by the combustion of these materials at a temperature of about 800 K (see above), to deliver to the cell hydrogen at a temperature below 473 K, ideally less than 350 K).
  • the hydrogenated gases produced by the combustion of said materials are also conveniently filtered to trap the solid particles they carry (particles that have not been retained in the gangue resulting from the combustion).
  • the filters used for trapping said solid particles comprise, for example, an arrangement of one or more corrugated metal grids or an arrangement of metallic elements having pores (of a few millimeters to a few nanometers in diameter).
  • the patent application FR 2 906 805 describes a method for providing non-pressurized hydrogen which is in the way specified above. Said method comprises the combustion, at high pressure, of at least one solid pyrotechnic charge in at least one combustion chamber, said combustion generating hydrogen and the flow rate of said hydrogen generated in at least one tank of larger volume. This document does not really address the technical problem of purification of generated hydrogen. Nor does it address the technical problem of managing the temperature of said generated hydrogen.
  • the Applicant proposes therefore a high-performance solution, based on the combustion of at least one pyrotechnic solid charge generating hydrogenated gas (hydrogenated gas already containing a substantial level of hydrogen), then the purification, by a metal membrane of hydrogen separation, of at least a portion of the hydrogenated gas generated (generally hydrogenated gas generated), to obtain hydrogen of very high purity; said hydrogen of very high purity particularly suitable for supplying a fuel cell.
  • Said solution is analyzed in terms of method and device.
  • the present invention therefore relates to a method for providing hydrogen of very high purity. Said method comprises:
  • the combustion of the at least one pyrotechnic charge is triggered, per se known, by the user system as soon as the operational energy requirement appears. It generates, in a manner known per se, within the (each) combustion chamber containing the (a) pyrotechnic charge, hydrogenated gas, hot ( ⁇ 800 K, see above) at high pressure (the operating pressure the at least one combustion chamber is generally between 10 6 Pa and 10 7 Pa (between 10 and 100 bar)).
  • Several pyrotechnic charges (identical or not, generally identical), each arranged in a combustion chamber, can be ignited simultaneously or sequentially according to the hydrogen demand.
  • the pyrotechnic charge (s) used are suitable for generating a hydrogenated gas containing at least 70% by volume of hydrogen. This text gives further details on such loads.
  • the hydrogenated gas generated is delivered, hot, under pressure (generally at a pressure less than or equal to 10 bar, more generally at a pressure of a few bars), when leaving the combustion chamber in which it has been generated, hot, at high pressure.
  • pressure generally at a pressure less than or equal to 10 bar, more generally at a pressure of a few bars
  • the person skilled in the art knows how to adjust the area of the delivery orifice (or even the delivery ports, if the combustion chamber concerned has more than one) of the gas to regulate the pressure and the rate of delivery of said gas.
  • At least a part of the pyrotechnically generated hydrogen gas, under pressure, is brought into contact (passed through) with a metal membrane for separating hydrogen (membrane hot, activated) for its purification.
  • a metal membrane for separating hydrogen (membrane hot, activated) for its purification.
  • the hydrogenated gas delivered has passed through such a membrane, regardless of the exact arrangement of the combustion chamber (s) (in operation) present and membrane (s) present ( s).
  • a single combustion chamber delivers in a single membrane or in several membranes arranged in parallel, that n combustion chambers are connected to a single membrane or that each of the n chambers is connected to a membrane. ..
  • a membrane has been mentioned but it is easy to understand that it is not possible to exclude from the scope of the invention a purification carried out successively on at least two membranes arranged in series.
  • at least part of the hydrogenated gas recovered from the combustion chamber (s) is purified by passage through (at least) a membrane.
  • the metal separation membrane It has been reported that at least a portion of the pyrotechnically generated hydrogen gas is thus purified. In general, all the hydrogenated gas generated is thus purified but it can not be excluded from the scope of the present invention that part of the pyrotechnically generated hydrogen gas is not oriented for purification towards the metal membrane but used at another end (for other purposes).
  • the membrane is supplied with hydrogenated gas (generated pyrotechnically) under pressure and containing at least 70% by volume of hydrogen. It delivers this hydrogenated gas, not pressurized because of the pressure drop that it undergoes within said membrane, and containing at least 99.99% by volume of hydrogen. It thus makes it possible to substantially rid the said hydrogenated gas of gaseous species, other than hydrogen, which are present therein. In particular, it makes it possible to rid it of poisonous species for a fuel cell. It therefore also makes it possible to lower the pressure of said hydrogenated gas.
  • the hydrogenated gas obtained at the exit of said membrane is therefore the hydrogen of very high purity not pressurized desired. It is perfect for fuel cell power supply.
  • the metal membrane for separating hydrogen (used, in the context of the implementation of the process of the invention, for purifying hydrogenated gas produced pyrotechnically, immediately after its production) is of the type described in the art. prior. It is preferably a palladium membrane or an alloy including palladium.
  • the method of the invention comprises feeding the metal separation membrane with hydrogenated gas produced under pressure, which of course is favorable to the permeation of said gas through said membrane.
  • it is therefore a pressurized gas that feeds the metal separation membrane.
  • the pressure of the gas generated during the first step of the process is thus used for the implementation of the second step of said process.
  • the temperature parameter of the gas to be purified it is possible to specify the following. Given the current technologies of metal membrane hydrogen separation, technologies undoubtedly called to evolve, it is preferable to inject into the hot membrane hydrogen gas at a temperature not too high, typically less than 473 K (200 ° C) (the operation of the membranes is currently optimal hot with "cold” gases). Since the pyrotechnically produced gas is at about 800 K ( ⁇ 527 ° C), it is recommended to cool it before it enters the membrane.
  • the gas is passed through (at least) a membrane heated to a temperature above 250 ° C., advantageously a temperature between 300 and 600 ° C.
  • the heating of the membrane can be carried out according to conventional methods, for example by means of an electrical resistance. It is also conceivable to heat the membrane with the hot hydrogen gas produced by the combustion of the at least one pyrotechnic charge. This heating mode is not, in the current state of the membrane technologies (whose filtration operation is optimal hot with injection of hydrogen gas "cold"), really recommended.
  • the heat produced by the combustion of the at least one pyrotechnic charge is partly used to carry out the purification, ie to continuously heat the metal separation membrane.
  • Heat transfer conveniently takes place by thermal conductivity, a conductive heat exchanger then connecting the combustion chamber (s) with the metal membrane.
  • Said heat exchanger, thermal bridge can exist in different forms, more or less materialized.
  • It may consist of the air filling the spaces (advantageously confined and minimized) between said combustion chamber (s) and said membrane or preferably of a material (solid) arranged in said spaces, material (such as a metal in the form of beads, filings or particles) which advantageously has a high thermal conductivity (typically 50 W / mK (for steel) to 380 W / mK (for copper)).
  • material such as a metal in the form of beads, filings or particles
  • a high thermal conductivity typically 50 W / mK (for steel) to 380 W / mK (for copper)
  • the hydrogenated gas produced hot, mentioned above a combustion temperature of about 800 K
  • the hydrogenated gas produced is cooled before its purification (it is understood that the at least part of the hydrogenated gas generated hot to be purified can thus be cooled and that generally all of said gas is thus cooled).
  • Such cooling is appropriate with reference to the passage through the metal membrane (see above) and the subsequent use of said gas, purified (for example to supply a fuel cell).
  • the hydrogenated gas produced may in particular be cooled (at least partially or completely) by being circulated with heat exchange (its circulation pipe then acting as a heat exchanger), before coming into contact with the metal separation membrane.
  • heat exchange its circulation pipe then acting as a heat exchanger
  • the heat thus transferred from the hot hydrogen gas is returned (in part) to the metal membrane.
  • part of the heat carried by the produced (hot) hydrogen gas can be used to heat the metal membrane.
  • the purification of the hydrogenated gas can thus be implemented with optimal use of the calories generated during combustion.
  • the method of the invention comprising the combustion and purification steps specified above is therefore advantageously implemented with recovery of part of the amount of heat generated during combustion to carry out the purification; it is very advantageously implemented with recovery of a part of the quantity of heat generated during combustion to carry out the purification and with cooling of the hydrogenated gas produced, a part of the quantity of heat extracted during said cooling being itself also recovered to implement the purification.
  • the heat of the hydrogenated gas produced is in fact also heat generated during combustion.
  • the distinction made above is with reference to the location of the heat exchanges 1) at the level of the at least one combustion chamber, 2) at the level of the circulation, excluding the chamber of combustion. combustion, hydrogenated gas delivered.
  • the at least part of the hydrogenated gas produced (generally all of it) intended to be purified, is further advantageously filtered before coming into contact with the metal separation membrane, in order to be rid (at least in part) of the solid particles it contains (combustion residues of the pyrotechnic charge entrained, not trapped in the combustion gangue). Filtration can be implemented conventionally (see introduction to this text). Assuming that at least a portion of the hydrogenated gas produced is also cooled before purification, it is advantageously filtered and then cooled.
  • the temperature of the purified gas must not be excessive in view of the use made of it. It has been stated above that, in order to supply a fuel cell, the temperature of the gas must not exceed 473 K.
  • start-up phase of the process of the invention (with a cold membrane), the following can be indicated.
  • the membrane must undergo a "preheating" phase ensuring its temperature conditioning.
  • hydrogenated gas produced by the combustion of at least one solid pyrotechnic charge generating hydrogenated gas is injected hot (without cooling) into the membrane and ensures its preheating.
  • the hot hydrogenated gas produced (at least in part, generally in all) is advantageously cooled before being brought into contact with the membrane raised to its operating temperature (see above). above that the functioning of the membranes is optimal when hot with "cold" gases).
  • the hydrogenated gas produced (at least in part, generally in all) can in particular be circulated in a pipe with heat exchange (its circulation pipe then acting as heat exchanger) , before coming into contact with the metal separation membrane.
  • this first start-up variant it may be considered that the method self-initializes.
  • an additional (preheating) pyrotechnic charge is used to supply the necessary calories (at least a part of them) to the temperature setting of the membrane, before the passage of hydrogenated gas in said membrane during the implementation of the method.
  • the preheating of the membrane can then be achieved either by direct thermal transfer (between the pyrotechnic combustion preheating charge, more precisely the combustion chamber containing it and the membrane) or by indirect thermal transfer via the gases generated by the combustion of the charge.
  • pyrotechnic preheating circulated in a heat exchanger "in contact with" the membrane).
  • the pyrotechnic preheating charge advantageously consists of a solid propellant charge.
  • the solid propellant involved is not necessarily a generator of a gas consisting essentially of hydrogen.
  • a standard composite solid propellant may be suitable.
  • the heat produced by the combustion of the at least one pyrotechnic charge can also be partly used to preheat the membrane. metallic separation.
  • Said loadings may consist of loadings of the prior art, consisting of at least one product of conventional type, ie of the block, disc, pellet, grain type ... with a composition of: oxidizing component (s) type (s) ) Inorganic (s) + Hydrogenated Reducing Component (s) (see Introduction to this text).
  • the at least one pyrotechnic charge used for the implementation of the method of the invention is selected to pyrotechnically generate a hydrogenated gas containing at least 70% by volume of hydrogen. It is indeed from such a hydrogenated gas that purification on membrane generates the hydrogen of very high purity desired.
  • the pyrotechnic charges consist of at least one pyrotechnic product containing, for at least 96% of its mass, at least one inorganic oxidizing component and at least one hydrogenated reducing component selected inorganic hydrides, borazane and polyaminoboranes.
  • the at least one inorganic oxidizing component (generally only one inorganic oxidizing component is present but the presence of at least two in a mixture can not be excluded) and the at least one specific hydrogenated reducing component (generally a single hydrogenated reducing component as identified above is present but the presence of at least two in a mixture can not be excluded) therefore represent at least 96% by weight (or even at least 98% by weight, or even 100% by weight) of the mass of the pyrotechnic product (s) ( s) advantageously used (s) to generate, according to the invention, the combustion gases.
  • the optional 100% supplement is generally composed of additives, such as process auxiliaries, stability, desensitization with static electricity (such as Si0 2 ) and / or ballistic, combustion modifiers. The presence of impurities is not excluded.
  • the at least one inorganic hydride that may be present in the composition of the pyrotechnic products used is advantageously a borohydride, very advantageously an alkaline or alkaline earth borohydride.
  • said at least one inorganic hydride is selected from sodium borohydride, lithium or magnesium.
  • Pyrotechnic products used in the method of the invention therefore preferably contain in their composition, such as organic hydride, NaBH 4, LiBH 4 or Mg (BH 4) 2.
  • the at least one hydrogenated reducing compound preferably consists of borazane or a polymer of aminoborane (a polyaminoborane).
  • borazane is the only hydrogenated reducing compound present in the composition of the pyrotechnic products used.
  • perchlorates (it very advantageously consists of ammonium perchlorate),
  • dinitroamides (“dinitramides”) (it very advantageously consists of ammonium dinitroamidure), nitrates (it very advantageously consists of strontium nitrate), and
  • metal oxides (it advantageously consists of iron oxide (Fe 2 O 3 ), vanadium oxide (V 2 Os), aluminum oxide (Al 2 O 3 ), titanium oxide; (Ti0 2 ), manganese oxide
  • the pyrotechnic products (constituting the pyrotechnic charges) used in the process of the invention therefore very advantageously contain NH 4 ClO 4 , NH 4 N (NO 2 ) 2 , Sr (NO 3) 2 or Fe 2 O 3.
  • the pyrotechnic product (s) used preferably contains in its (their) composition:
  • inorganic oxidant from 20 to 60% by weight of at least one inorganic oxidant (generally of such an inorganic oxidant).
  • inorganic oxidant from 25 to 45% by weight of at least one inorganic oxidant (generally of such an inorganic oxidant).
  • said pyrotechnic product (s) it is generally also very advantageous for said pyrotechnic product (s) to contain (s) more than 50% by weight of hydrogenated reducing component (s). , even more advantageous that said (s) product (s) pyrotechnic (s) contains (s) more than 70% by weight of hydrogenated reducing component (s). It has been understood that the said hydrogenated reducing component (s) present constitute (s) the hydrogen reserve.
  • the at least one pyrotechnic charge used for the generation of hydrogenated gases consists of at least one pyrotechnic product (generally several) in the form of grains, pellets, disks or blocks. These grains, pellets and blocks have any shape, for example spherical, ovoid or cylindrical. Grain generally a mass of a few milligrams, pellets a mass of a few tenths of grams to a few grams, discs of a few tens of grams to a few hundred grams and blocks of a hundred grams to a few kilograms.
  • said at least one pyrotechnic charge used generally contains several pyrotechnic products (although the use of a single product, such as a block, is not excluded). In such a context, all the products constituting said at least one load do not necessarily have the same composition (or the same shape). However, they are all generators of hydrogenated gas within the meaning of the invention.
  • the ignition device generally consists of an igniter, in connection with the user system, via a sealed passage supporting the operating pressure, and possibly at least one ignition relay charge.
  • the igniter is triggered by mechanical stress (for example by means of a piezoelectric relay or a primer striker), in order to avoid any unnecessary consumption of electrical energy for trigger the system.
  • mechanical stress for example by means of a piezoelectric relay or a primer striker
  • the method of the invention is particularly suitable for supplying, in very pure hydrogen, portable or on-board fuel cells.
  • the hydrogen of very high purity delivered out of the metal membrane of hydrogen separation associated with the at least one combustion chamber, is ideal for such use.
  • the invention can actually be analyzed as a process for supplying very high purity hydrogen of a fuel cell; said method comprising the pyrotechnic process for providing hydrogen of very high purity, as described above (including high pressure combustion and then purification on metal membrane for hydrogen separation of at least a portion (generally all) hydrogenated gas produced) followed by delivery of said high purity hydrogen to said fuel cell. It should be noted, however, that the very high purity hydrogen obtained on demand by the process of the invention can quite well be used in other contexts.
  • the present invention relates to a pyrotechnic device for providing (on demand) hydrogen of very high purity.
  • Said device is suitable for implementing the method described above, is in fact suitable for an advantageous implementation variant thereof (advantageous with reference to heat exchange). It typically includes:
  • At least one combustion chamber provided with at least one delivery orifice that is suitable for the arrangement and the high-pressure combustion, within it, of a solid pyrotechnic charge generating hydrogenated gas and for the delivery of hot hydrogenated gas, under pressure, via said at least one delivery port;
  • At least one metal membrane for separating hydrogen suitable for the purification of hydrogenated gas, having an inlet face and an outlet face; said metal membrane for separating hydrogen being arranged in a reservoir so that a void volume is formed in said reservoir upstream of its inlet face;
  • said combustion chamber (s) and metallic membrane (s) for hydrogen separation being placed in communication via at least one pipe so that hydrogenated gas delivered from the combustion chamber (s) is directed to at least one metal membrane for separating hydrogen and being arranged in a heat-insulated enclosure; said delivery means being adapted to ensure the delivery of gas, purified within the said (s) membrane (s) metal (s) for separation of hydrogen, out of said lagged enclosure.
  • the device of the invention is generally designed to direct all the hydrogenated gas generated towards the at least one metal membrane for separating hydrogen, but, as indicated above, it can not be ruled out that it contains means, arranged between the said minus a combustion chamber and said at least one metal membrane for separating hydrogen to derive a portion of said generated hydrogen gas.
  • each metallic hydrogen separation membrane is arranged in a reservoir (the device comprising a membrane in its reservoir can be described as a purification chamber), so that an empty volume is provided in said reservoir upstream of the inlet face of said membrane (of each membrane).
  • This empty volume is intended for the storage of species (CO, H 2 O, NH 3, etc.) separated from hydrogen by said membrane (in operation).
  • the inlet face of a membrane is obviously that intended to receive the hydrogenated gas under pressure to be purified and the exit face that by which the purified hydrogenated gas unpressurized (containing more than 99.99% hydrogen) is issued.
  • the combustion chamber (s) and metal membrane (s) separating the device of the invention are arranged in a heat-insulated enclosure, the means for delivering the purified gas delivering said gas out of said lagged enclosure.
  • This arrangement is appropriate to confine the various constituent elements of the device and aims to best preserve the heat of combustion and to ensure at least heat transfer: heat of the combustion chambers and hot gas transport pipes to the (the) membranes (s).
  • the lagged enclosure contains a material providing a thermal bridge between said at least one combustion chamber (+ at least one tubing present) and said at least one metal separation membrane; said material being advantageously of high thermal conductivity (see above).
  • air is (at least) likely to provide such a thermal bridge but a material with higher thermal conductivity, such as a metal (in the form of beads, chips or particles) is certainly more efficient .
  • the device of the invention is also likely to comprise gas cooling means, currently pyrotechnically generated hydrogen gas (at least a part thereof), thus arranged downstream of the at least one combustion chamber of the device.
  • Said cooling means are arranged upstream of the at least one metal separation membrane. They aim to protect the said at least one membrane from the excessive heat of the combustion gases. They protect in the same way any upstream device using hydrogenated gas of very high purity.
  • the cooling means of the hydrogenated gas generated pyrotechnically consist of at least a portion of at least one tubulure putting in communication at least one combustion chamber and at least one metal separation membrane; said at least one portion snaking around said at least one metal separation membrane. Any tubing circulating hot gases generated, snaking around a metal separation membrane, is thus able to perform the function of heat exchanger.
  • any pipe can theoretically provide some cooling of the hot gas circulating in it ... that the heat exchanger explained above is not necessarily present in a material providing a thermal bridge between the at least one combustion chamber and the at least one membrane ...
  • Said at least one combustion chamber is per se known. It generally consists of a mechanical assembly containing an ignition device or initiation module (such a module advantageously triggers ignition by mechanical biasing, and such a module therefore advantageously comprises a piezoelectric relay or a primer striker ( see above)), a device for maintaining the main pyrotechnic charge (whose various constituent elements (the presence of a single block is however expressly provided for) may be loose or arranged, so as to limit the bulk ) and possibly a pyrotechnic pellet ignition relay.
  • an ignition device or initiation module such a module advantageously triggers ignition by mechanical biasing, and such a module therefore advantageously comprises a piezoelectric relay or a primer striker ( see above)
  • a device for maintaining the main pyrotechnic charge whose various constituent elements (the presence of a single block is however expressly provided for) may be loose or arranged, so as to limit the bulk ) and possibly a pyrotechnic pellet ignition relay.
  • the loading (which can therefore be monoblock) is generally maintained in a basket, so that the combustion residues are retained in said basket (they constitute a gangue).
  • said loading consists of several elements, they are stabilized within said basket. This limits and the size and the mechanical stresses of said elements in response to the vibrations of the system.
  • Said at least one combustion chamber comprises at least one delivery orifice for the delivery (under pressure) of the gases generated within it (at high pressure).
  • Said at least one metal membrane for separating hydrogen from the device of the invention is known per se. It consists, as indicated above, advantageously in a palladium membrane or an alloy containing palladium.
  • the device of the invention may also contain gas filtration means, currently hydrogenated gas generated pyrotechnically (at least a part thereof), able to rid said gas of at least a portion of the solid combustion residues it contains, arranged downstream of the at least one combustion chamber and upstream of the at least one metal separation membrane, advantageously arranged upstream of the cooling means when such means are present.
  • gas filtration means may for example comprise, as indicated in the introduction to this text, an arrangement of one or more corrugated metal grids or an arrangement of metal elements having pores (from a few millimeters to a few nanometers in diameter).
  • the means for delivering the purified gas generally comprise essentially a conventional pipe. They are advantageously suitable for delivering said gas to the user system.
  • Said user system advantageously consists of at least one fuel cell.
  • the device of the invention as described above, is therefore advantageously arranged upstream of at least one fuel cell.
  • the device of the invention (at least one device of the invention) is advantageously integrated into the structure of a system, in particular a portable or embedded system, for example an airborne system. It can thus be integrated into the structure of an airborne vehicle, for example the fuselage or wings of such a machine.
  • the device 100 shown diagrammatically in said FIG. 1 comprises an insulated envelope 1 enclosing four annular combustion chambers 3a, 3b, 3c, 3d each containing a pyrotechnic charge generating hydrogenated gas 4a, 4b, 4c, 4d, and each provided with an orifice 5a, 5b, 5c, 5d opening into a pipe 6.
  • Said four annular combustion chambers 3a, 3b, 3c, 3d are arranged in contact with a material of high thermal conductivity 2, for example iron filings, so too enclosed in the said insulated jacket 1.
  • the tubing 6 is connected to a particle filter 7, and then winds (in its part 6, within the high thermal conductivity material 2, to connect to a tank 8 containing a hydrogen separation membrane 9 (the inlet face of said membrane 9 is referenced 9a, its outlet face 9b), at its distal end with respect to its connection with the tubing 6, the reservoir 8 is provided with a pipe 10 in communication with a fuel cell 11.
  • the reservoir 8 has an empty volume 8 'on the side of its connection with the tubing 6, which serves to store the gaseous residues separated from the hydrogen by the membrane 9.
  • Each combustion chamber 4a, 4b, 4c, 4d contains an initiation module 12 of its pyrotechnic charge 4a, 4b, 4c, 4d.
  • This device 100 is specified below.
  • One (several) of the 4 hydrogen generating pyrotechnic charges 4a, 4b, 4c, 4d included in the combustion chambers 3a, 3b, 3c, 3d is (are) lit (simultaneously or sequentially) by means of its ( their) initiation module 12.
  • the combustion of the said charge (s) generates, in the combustion chamber (s) that closes (s), hydrogen gas G0 hot at a high pressure (2 to 3.10 6 Pa (20 to 30 bar), for example).
  • Part of the heat of combustion produced in the combustion chamber (s) is absorbed by the high-conductivity material 2.
  • the hot hydrogen gas at high pressure G0 is delivered via the orifice (s) of delivery 5a, 5b, 5c, 5d.
  • the cooling implemented is optimized to the extent that said gas G1 is circulated around the membrane 9 (more precisely of the reservoir 7 enclosing it), within the material with high thermal conductivity 2. Said high conductivity material 2 therefore transfers heat from the chamber (s) (s) ) of combustion having worked and tubing 6 (gas G1)) to the hydrogen separation membrane 9, which heats up accordingly. The temperature rise of the membrane 9 is thus simultaneous with the production of the hydrogenated gases and favors the efficiency of separation of the hydrogen by said membrane 9.
  • the hot hydrogenated gas G1 after having snaked in the tubing 6, penetrates in the tank 8 (by the empty volume 8 and in contact with the separation membrane 9 (with its inlet face 9a) .
  • the hydrogen is separated by the membrane 9 from the other gaseous species (present in a very small amount) It emerges from said membrane 9 by the outlet face 9b thereof and is delivered downstream, at a purity higher than 99.99%, to the fuel cell 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

La présente invention a pour objet un procédé pyrotechnique de mise à disposition d'hydrogène de très grande pureté (G) ainsi qu'un dispositif (100) convenant à la mise en oeuvre dudit procédé. Ledit procédé comprend; la combustion d'au moins un chargement pyrotechnique solide générateur de gaz hydrogéné (4a, 4b, 4c, 4d) pour la production d'un gaz hydrogéné (G1), chaud, sous pression, renfermant au moins 70 % en volume d'hydrogène; et la purification d'au moins une partie dudit gaz hydrogéné sous pression (G1), par passage au travers d'une membrane métallique de séparation de l'hydrogène (9) maintenue à une température supérieure à 250°C, avantageusement entre 300 et 600°C, pour obtenir, au sortir de ladite membrane (9), un gaz hydrogéné (G) renfermant au moins 99,99 % en volume d'hydrogène.

Description

Procédé pyrotechnique de mise à disposition d'hydrogène de très grande pureté et dispositif associé
La présente invention a pour objet un procédé pyrotechnique de mise à disposition d'hydrogène de très grande pureté. Ledit procédé est avantageusement mis en œuvre pour alimenter des piles à combustible, portables ou embarquées. La présente invention a également pour objet un dispositif convenant à la mise en œuvre dudit procédé.
L'invention trouve tout particulièrement application dans le contexte de l'alimentation en hydrogène de piles à combustible de faible et moyenne puissances (1 à 100 watts), utilisées dans les domaines aéronautiques et militaires, telles celles équipant les drones et celles équipant les fantassins. Les puissances électriques visées dans ce contexte sont environ dix fois supérieures aux puissances consommées par les appareils électriques portables, tels que les téléphones portables. Le domaine d'application de l'invention peut être étendu à des piles à combustible embarquées de plus forte puissance, de quelques dizaines de kilowatts, utilisées, par exemple, pour l'alimentation de générateurs électriques de secours aéronautique.
Les piles à combustible sont des sources d'énergie électrique alternatives apportant une réponse aux nouvelles exigences énergétiques et environnementales. Les piles à combustible présentent un potentiel de densité énergétique embarquée au moins 4 fois supérieur à celui des batteries au lithium. Elles ne rejettent pas de gaz à effet de serre.
La production d'hydrogène pour alimenter en fuel des piles à combustible est donc un problème technique d'actualité, objet de nombreuses recherches.
Il a déjà été décrit des procédés de production d'hydrogène par craquage d'hydrocarbures, par thermolyse (décomposition thermique en absence d'oxydant) d'hydrures et par hydrolyse d'hydrures.
Une autre voie développée est basée sur l'utilisation de matériaux solides pyrotechniques générateurs d'hydrogène par combustion. Elle permet de s'affranchir du problème de stockage permanent de fluide (liquide ou gazeux). Elle est particulièrement intéressante dans la mesure où lesdits matériaux présentent une grande stabilité en conditions de stockage et une grande simplicité d'emploi.
De tels matériaux solides pyrotechniques générateurs d'hydrogène ont notamment été décrits dans les demandes brevet EP 1 249 427, EP 1 405 823, EP 1 405 824, EP 1 496 035 et EP 2 265 545. Ils se présentent sous la forme de blocs, de pastilles, de disques ou de grains. Leur composition renferme généralement un composant réducteur hydrogéné de type hydrure inorganique, borazane ou polymère de l'aminoborane (polyaminoborane) et un composant oxydant inorganique. Leur combustion génère, avec un bon rendement (~ 11 à 13 % théorique en masse, soit ~ 70 mole/kg), de l'hydrogène. Leur température de combustion (~ 800 K, selon les formulations), non excessive (voir plus loin), est suffisamment élevée pour que la réaction soit auto-entretenue après l'allumage. La combustion auto-entretenue de ces matériaux est favorisée par la mise en pression dans la chambre de combustion. De tels matériaux produisent du gaz hydrogéné, à forte teneur en hydrogène, renfermant au moins 70 % en volume d'hydrogène.
Les gaz alimentant une pile à combustible doivent être exempts, ou pour le moins renfermer des taux extrêmement faibles, d'espèces, telles CO, NH3, (¾ et H2S, susceptibles d'empoisonner le catalyseur de ladite pile. Lesdits gaz doivent aussi être à des températures adéquates (inférieures à 473 K, idéalement inférieures à 350 K à ce jour, pour ménager la membrane de la pile) et à des surpressions faibles (idéalement de quelques millibars jusqu'à 5 bars) par rapport à la pression ambiante (atmosphérique). Enfin, le taux de particules desdits gaz doit être très faible.
En référence à un tel cahier des charges, la composition des matériaux solides pyrotechniques générateurs d'hydrogène est en principe optimisée pour générer le moins possible de telles espèces gazeuses poisons pour (le catalyseur de) la pile (en tout état de cause, les gaz hydrogénés produits par ces matériaux sont toujours susceptibles de contenir, à faible taux, des espèces poisons pour la pile et il est opportun de les purifier pour délivrer à ladite pile un hydrogène de pureté supérieure à 99,9 % en volume, afin de garantir sa durée de vie) et pour brûler à une température modérée (il est toujours souhaitable d'abaisser la température des gaz hydrogénés, produits par la combustion de ces matériaux à une température d'environ 800 K (voir ci-dessus), pour délivrer à la pile un hydrogène à une température inférieure à 473 K, idéalement inférieure à 350 K). Les gaz hydrogénés produits par la combustion desdits matériaux sont aussi opportunément filtrés pour piéger les particules solides qu'ils véhiculent (particules qui n'ont pas été retenues dans la gangue résultant de la combustion). Les filtres utilisés pour le piégeage desdites particules solides comprennent par exemple un agencement d'une ou plusieurs grilles métalliques ondulées ou un agencement d'éléments métalliques présentant des pores (de quelques millimètres à quelques nanomètres de diamètre).
La demande de brevet FR 2 906 805 décrit un procédé de mise à disposition d'hydrogène non pressurisé qui s'inscrit dans la voie précisée ci-dessus. Ledit procédé comprend la combustion, à haute pression, d'au moins un chargement pyrotechnique solide dans au moins une chambre de combustion, ladite combustion générant de l'hydrogène et le débit dudit hydrogène généré dans au moins un réservoir de plus grand volume. Ce document n'aborde pas vraiment le problème technique de la purification de l'hydrogène généré. Il n'aborde pas non plus le problème technique de la gestion de la température dudit hydrogène généré.
Par ailleurs, l'homme du métier connaît des dispositifs de purification (filtration sélective) de gaz hydrogénés, renfermant des membranes métalliques de séparation de l'hydrogène, composées par exemple de palladium ou d'un alliage métallique contenant du palladium. A ce propos, on peut se référer à l'enseignement de « Palladium-based alloy membranes for séparation of high purity hydrogen from hydrogen containing gas mixture », dans Platinum métal rev., 2011, 55, (1), 3-12, à l'enseignement de « Hydrogen, 3. Purification » dans Ullmann's Encyclopedia of Industrial Chemistry, Vol. 18, p. 309-333, (2011-10-15), à l'enseignement de la demande de brevet WO 2006/067156, ou à celui de la demande de brevet FR 2 790 751. L'efficacité de ces membranes est optimale lorsqu'elles sont à des températures voisines de 300-600°C (lesdites membranes sont alors activées) et que le gaz hydrogéné est apporté sous pression (ce qui permet la perméation de l'hydrogène au travers desdites membranes), typiquement de quelques bars à 50 bars, par rapport à la pression de délivrance (~ pression atmosphérique) de l'hydrogène purifié (au sortir desdites membranes). Dans ces conditions, l'hydrogène délivré par la membrane atteint des puretés de 99,999%. Ces conditions de fonctionnement (en température et en pression) sont aisément gérables lors de la production d'hydrogène en milieu industriel par craquage d'hydrocarbures mais la mise en œuvre de tels craquages nécessiteraient des architectures complexes sur des systèmes portables ou embarqués. De surcroit, le craquage d'hydrocarbures (tout comme la thermolyse d'un hydrure) sont des opérations consommatrices d'énergie. Par ailleurs, dans un contexte de génération d'hydrogène par hydrolyse d'un hydrure, le chauffage de la membrane est le plus souvent réalisé au moyen de résistances électriques, ce qui est aussi pénalisant sur le plan énergétique. Le procédé décrit dans la demande US 2007/0084879, qui associe une génération d'hydrogène par hydrolyse ou thermolyse d'un hydrure et une purification dudit hydrogène généré par passage au travers d'une membrane de type membrane de palladium (d'autres types de membranes étant cités), ne parait ainsi guère intéressant du point de vue énergétique.
L'utilisation de membranes métalliques de séparation d'hydrogène, quoique conduisant à de l'hydrogène de grande pureté, reste donc toujours contraignante en raison des conditions de fonctionnement desdites membranes en température et en pression. A la connaissance des inventeurs, cette utilisation n'a jamais été associée directement à la production pyrotechnique de gaz hydrogéné. Les inventeurs préconisent une telle association, particulièrement intéressante en référence au problème technique résumé ci-après : la mise à disposition d'hydrogène de très grande pureté, dans des conditions avantageuses du point de vue énergétique (la combustion (en amont) d'un chargement pyrotechnique ne nécessitant guère d'énergie et générant par contre (en aval) un gaz chaud sous pression. Cette pression est évidemment opportune (voir ci-après) et, en référence au paramètre température, la mise en œuvre du procédé de l'invention peut être optimisée (voir les variantes avantageuses de mise en œuvre du procédé de l'invention précisées ci-après)), et du point de vue simplicité et encombrement du dispositif associé, parfaitement adapté à des systèmes portables ou embarqués.
En référence au problème technique de la mise à disposition (à la demande) d'hydrogène de très grande pureté (dans des conditions de mise en œuvre particulièrement intéressantes), la Demanderesse propose donc une solution performante, basée sur la combustion d'au moins un chargement solide pyrotechnique générateur de gaz hydrogéné (gaz hydrogéné renfermant déjà un taux substantiel d'hydrogène), puis la purification, par une membrane métallique de séparation de l'hydrogène, d'au moins une partie du gaz hydrogéné généré (généralement du gaz hydrogéné généré), pour obtenir de l'hydrogène de très grande pureté ; ledit hydrogène de très grande pureté convenant notamment pour alimenter une pile à combustible. Ladite solution s'analyse en termes de procédé et de dispositif.
Selon son premier objet, la présente invention concerne donc un procédé de mise à disposition d'hydrogène de très grande pureté. Ledit procédé comprend :
- la combustion d'au moins un chargement pyrotechnique solide générateur de gaz hydrogéné pour la production d'un gaz hydrogéné, chaud, sous pression, renfermant au moins 70 % en volume d'hydrogène ; et
- la purification d'au moins une partie dudit gaz hydrogéné sous pression, par passage au travers d'une membrane métallique de séparation de l'hydrogène maintenue à une température supérieure à 250°C, avantageusement entre 300 et 600°C, pour obtenir, au sortir de ladite membrane, un gaz hydrogéné, renfermant au moins 99,99 % en volume d'hydrogène.
La combustion du au moins un chargement pyrotechnique est déclenchée, de façon per se connue, par le système utilisateur dès l'apparition du besoin opérationnel en énergie. Elle génère, de façon connue per se, au sein de la(chaque) chambre de combustion renfermant le(un) chargement pyrotechnique, du gaz hydrogéné, chaud (~ 800 K, voir ci-dessus) à haute pression (la pression de fonctionnement de la au moins une chambre de combustion est généralement entre 106 Pa et 107 Pa (entre 10 et 100 bars)). Plusieurs chargements pyrotechniques (identiques ou non, généralement identiques), agencés chacun dans une chambre de combustion, peuvent être allumés simultanément ou séquentiellement selon la demande en hydrogène. Le(s) chargement(s) pyrotechnique(s) utilisé(s) convient(conviennent) pour générer un gaz hydrogéné renfermant au moins 70 % en volume d'hydrogène. On donne plus avant dans le présent texte des précisions sur de tels chargements. Le gaz hydrogéné généré est délivré, chaud, sous pression (généralement, à une pression inférieure ou égale à 10 bars, plus généralement à une pression de quelques bars), au sortir de la chambre de combustion dans laquelle il a été généré, chaud, à haute pression. L'homme du métier sait régler la superficie de l'orifice de délivrance (voire des orifices de délivrance, si la chambre de combustion concernée en possède plusieurs) du gaz pour régler la pression et le débit de délivrance dudit gaz.
Dans le cadre de la mise en œuvre du procédé de l'invention, au moins une partie du gaz hydrogéné généré pyrotechniquement, sous pression, est mise au contact (passée au travers) d'une membrane métallique de séparation de l'hydrogène (membrane chaude, activée) pour sa purification. Il convient de comprendre qu'au moins une partie du gaz hydrogéné délivré est passée au travers d'une telle membrane, quel que soit l'agencement exact des chambre(s) de combustion (en fonctionnement) présentes et membrane(s) présente(s). Ainsi, il est notamment possible qu'une unique chambre de combustion débite dans une unique membrane ou dans plusieurs membranes agencées en parallèle, que n chambres de combustion soient reliées à une unique membrane ou que chacune des n chambres soit reliée à une membrane.... On a par ailleurs mentionné « une » membrane mais on comprend aisément qu'il ne saurait être exclu du cadre de l'invention une purification mise en œuvre successivement sur au moins deux membranes agencées en série. En tout état de cause, dans le cadre du procédé de l'invention, au moins une partie du gaz hydrogéné récupéré au sortir de la(des) chambre(s) de combustion est purifiée par passage au travers d'(au moins) une membrane. Pour la simplification de la description du procédé de l'invention, on parle ci-après de la membrane métallique de séparation. On a indiqué qu'au moins une partie du gaz hydrogéné généré pyrotechniquement est ainsi purifiée. En général, la totalité du gaz hydrogéné généré est ainsi purifiée mais il ne saurait être exclu du cadre de la présente l'invention qu'une partie du gaz hydrogéné généré pyrotechniquement ne soit pas orientée pour purification vers la membrane métallique mais utilisée à une autre fin (à d'autres fins).
La membrane est alimentée en gaz hydrogéné (généré pyrotechniquement) sous pression et renfermant au moins 70 % en volume d'hydrogène. Elle débite ce gaz hydrogéné, non pressurisé du fait de la perte de charge qu'il subit au sein de ladite membrane, et renfermant au moins 99,99 % en volume d'hydrogène. Elle permet donc de débarrasser substantiellement ledit gaz hydrogéné des espèces gazeuses, autres que l'hydrogène, qui sont présentes en son sein. Elle permet notamment de le débarrasser des espèces poisons pour une pile à combustible. Elle permet donc également d'abaisser la pression dudit gaz hydrogéné. Le gaz hydrogéné obtenu au sortir de ladite membrane est donc l'hydrogène de très grande pureté non pressurisé recherché. Il convient parfaitement pour l'alimentation de piles à combustible.
La membrane métallique de séparation de l'hydrogène (utilisée, dans le cadre de la mise en œuvre du procédé de l'invention, pour purifier du gaz hydrogéné produit pyrotechniquement, immédiatement après sa production) est du type de celles décrites dans l'art antérieur. Il s'agit préférentiellement d'une membrane en palladium ou en un alliage incluant du palladium.
On a compris que le procédé de l'invention comprend une alimentation de la membrane métallique de séparation par du gaz hydrogéné produit sous pression, ce qui bien évidemment est favorable à la perméation dudit gaz au travers de ladite membrane. Quelle que soit la variante exacte de mise en œuvre du procédé de l'invention, c'est donc un gaz sous pression qui alimente la membrane métallique de séparation. La pression du gaz généré lors de la première étape du procédé est ainsi utilisée pour la mise en œuvre de la seconde étape dudit procédé.
En référence au paramètre température du gaz à purifier, on peut préciser ce qui suit. Compte tenu des technologies actuelles de membrane métallique de séparation de l'hydrogène, technologies appelées sans nul doute à évoluer, il est préférable d'injecter dans la membrane chaude du gaz hydrogéné à une température pas trop élevée, typiquement inférieure à 473 K (200°C) (le fonctionnement des membranes est à ce jour optimal à chaud avec des gaz « froids »). Le gaz produit pyrotechniquement l'étant à environ 800 K (~ 527 °C), il est donc recommandé de le refroidir avant son passage dans la membrane.
Pour la mise en œuvre de la purification du gaz hydrogéné sous pression, dans le cadre du procédé de l'invention, le gaz est passé au travers d'(au moins) une membrane portée à une température supérieure à 250°C, avantageusement à une température entre 300 et 600 °C. Le chauffage de la membrane, pour son maintien à une température adéquate, peut être réalisé selon des procédés conventionnels, par exemple au moyen d'une résistance électrique. On peut aussi concevoir un chauffage de la membrane par le gaz hydrogéné chaud produit par la combustion du au moins un chargement pyrotechnique. Ce mode de chauffage n'est pas, dans l'état actuel des technologies des membranes (dont le fonctionnement de filtration est optimal à chaud avec injection de gaz hydrogéné « froid »), réellement préconisé. Dans le cadre de la mise en uvre de variantes avantageuses du procédé de l'invention (voir ci-après), il y a, pour assurer au moins en partie ce chauffage, transfert de calories générées par la combustion du au moins un chargement pyrotechnique et/ou prélevées sur les produits gazeux générés par la combustion du au moins un chargement pyrotechnique, à la membrane métallique de séparation. Ceci permet d'éviter, tout au moins de minimiser, l'apport de chaleur nécessaire au moyen d'un système consommateur d'énergie (telle une résistance électrique) pour maintenir ladite membrane à une température où elle est efficace, voire très efficace.
Ainsi :
- selon une variante avantageuse de mise en oeuvre du procédé de l'invention (génération pyrotechnique de gaz hydrogéné puis purification d'au moins une partie de celui-ci), la chaleur produite par la combustion du au moins un chargement pyrotechnique est en partie utilisée pour mettre en oeuvre la purification, i.e. pour chauffer en continu la membrane métallique de séparation. Le transfert de chaleur a opportunément lieu par conductivité thermique, un échangeur de chaleur conductif reliant alors la(les) chambre(s) de combustion avec la membrane métallique. Ledit échangeur de chaleur, faisant pont thermique, peut exister sous différentes formes, plus ou moins matérialisées. Il peut consister en l'air remplissant les espaces (avantageusement confinés et minimisés) entre la(les)dite(s) chambre(s) de combustion et ladite membrane ou de préférence en un matériau (solide) aménagé dans lesdits espaces, matériau (tel un métal se présentant sous la forme de billes, de limailles ou de particules) qui a avantageusement une forte conductivité thermique (de typiquement 50 W/m.K (pour l'acier) à 380 W/m.K (pour le cuivre)). On comprend d'ores et déjà que le procédé de l'invention est avantageusement mis en œuvre avec optimisation d'un tel transfert de la chaleur de combustion vers la membrane de filtration (optimisation au niveau des distances en cause, des contacts réalisés et de la conductivité thermique du matériau utilisé pour matérialiser le pont thermique) ;
- selon une autre variante avantageuse de mise en œuvre du procédé de l'invention incluant un chauffage en continu de la membrane, indépendante de la précédente (utilisation d'une partie de la chaleur de combustion générée au niveau de la(des) chambre(s) de combustion, lors de la mise en œuvre de la purification) mais qui se cumule avantageusement avec celle-ci, le gaz hydrogéné produit (chaud ; on a mentionné ci-dessus une température de combustion d'environ 800 K) est refroidi avant sa purification (on comprend que la au moins une partie du gaz hydrogéné généré chaud destinée à être purifiée peut ainsi être refroidie et que généralement la totalité dudit gaz est ainsi refroidie). Un tel refroidissement est opportun en référence au passage au travers de la membrane métallique (voir ci-dessus) et à l'utilisation ultérieure dudit gaz, purifié (pour alimenter par exemple une pile à combustible). Le gaz hydrogéné produit peut notamment être refroidi (au moins en partie ou en totalité) en étant mis en circulation avec échange thermique (sa tubulure de circulation faisant alors office d'échangeur thermique), avant de rentrer au contact de la membrane métallique de séparation. De façon très avantageuse, la chaleur ainsi transférée du gaz hydrogéné chaud est restituée (en partie) à la membrane métallique. Ainsi, en sus d'une partie de la chaleur de combustion, une partie de la chaleur véhiculée par le gaz hydrogéné produit (chaud) peut être utilisée pour chauffer la membrane métallique. La purification du gaz hydrogéné peut ainsi être mise en œuvre avec utilisation optimale des calories générées à la combustion.
Le procédé de l'invention comprenant les étapes de combustion et de purification précisées ci-dessus est donc avantageusement mis en œuvre avec récupération d'une partie de la quantité de chaleur générée à la combustion pour mettre en œuvre la purification ; il est très avantageusement mis en œuvre avec récupération d'une partie de la quantité de chaleur générée à la combustion pour mettre en œuvre la purification et avec refroidissement du gaz hydrogéné produit, une partie de la quantité de chaleur extraite lors dudit refroidissement étant elle- aussi récupérée pour mettre en œuvre la purification. Notons incidemment ici que la chaleur du gaz hydrogéné produit est en fait aussi de la chaleur générée à la combustion. Le distinguo opéré ci-dessus (en référence à la récupération des calories) l'est en référence à la localisation des échanges thermiques 1) au niveau de la au moins une chambre de combustion, 2) au niveau de la circulation, hors chambre de combustion, du gaz hydrogéné délivré.
Dans le cadre de la mise en œuvre du procédé de l'invention, la au moins une partie du gaz hydrogéné produit (généralement la totalité de celui-ci) destinée à être purifiée, est, en outre, avantageusement filtrée avant de rentrer en contact avec la membrane métallique de séparation, afin d'être débarrassée (au moins en partie) des particules solides qu'elle renferme (résidus de combustion du chargement pyrotechnique entraînés, non piégés dans la gangue de combustion). La filtration peut être mise en œuvre de façon conventionnelle (voir l'introduction du présent texte). Dans l'hypothèse où au moins une partie du gaz hydrogéné produit est également refroidie avant sa purification, elle est avantageusement filtrée puis refroidie.
Le procédé de l'invention, tel que décrit ci-dessus, comprend donc, avantageusement, les 4 étapes successives ci-après :
- production (pyrotechnique) de gaz hydrogéné chaud sous pression,
filtration d'au moins une partie dudit gaz hydrogéné chaud sous pression,
refroidissement de ladite au moins une partie dudit gaz hydrogéné chaud sous pression filtrée, et
purification de ladite au moins une partie dudit gaz hydrogéné chaud sous pression filtrée refroidie ;
mises en œuvre, de préférence, avec récupération d'une partie de la quantité de chaleur générée à la combustion pour mettre en œuvre la purification ;
mises en œuvre, de façon encore plus préférée, avec récupération d'une partie de la quantité de chaleur générée à la combustion et d'une partie de la quantité de chaleur extraite lors du refroidissement pour mettre en œuvre la purification. Ces 4 étapes successives sont généralement mises en œuvre avec filtration, refroidissement et purification de tout le gaz hydrogéné produit pyrotechniquement.
En référence au paramètre température du gaz purifié, on peut de manière générale, préciser ce qui suit. La température du gaz purifié ne doit pas être excessive au vu de l'utilisation qu'il est fait de celui-ci. On a précisé ci-dessus que, pour alimenter une pile à combustible, la température du gaz ne doit pas excéder 473 K.
En référence à la phase de démarrage (de mise en route) du procédé de l'invention (avec une membrane froide), on peut indiquer ce qui suit.
La membrane doit subir une phase de « préchauffage » assurant son conditionnement en température.
Dans un contexte d'utilisation de moyens de chauffage type résistance électrique, aucun problème ne se pose. Dans d'autres contextes, on peut notamment procéder comme suit.
Selon une première variante de mise en route du procédé de l'invention, du gaz hydrogéné produit par la combustion d'au moins un chargement pyrotechnique solide générateur de gaz hydrogéné est injecté chaud (sans refroidissement) dans la membrane et assure son préchauffage. Une fois la membrane ainsi préchauffée (rendue opérationnelle), le gaz hydrogéné chaud produit (au moins en partie, généralement en totalité) est avantageusement refroidi avant d'être mis en contact avec la membrane portée à sa température de fonctionnement (on a vu ci-dessus que le fonctionnement des membranes est optimal à chaud avec des gaz « froids »). Pour son refroidissement (comme indiqué ci-dessus), le gaz hydrogéné produit (au moins en partie, généralement en totalité) peut notamment être mis en circulation dans une tubulure avec échange thermique (sa tubulure de circulation faisant alors office d'échangeur thermique), avant de rentrer au contact de la membrane métallique de séparation. Selon cette première variante de mise en route, on peut considérer que le procédé s'auto-initialise.
Selon une seconde variante de mise en route du procédé de l'invention, un chargement pyrotechnique (supplémentaire) dit de préchauffage est utilisé pour apporter les calories nécessaires (au moins une partie d'entre elles) à la mise en température de la membrane, avant le passage de gaz hydrogéné dans ladite membrane lors de la mise en œuvre du procédé. Le préchauffage de la membrane peut alors être réalisé soit par transfert thermique direct (entre le chargement pyrotechnique de préchauffage en combustion, plus exactement la chambre de combustion le renfermant et la membrane) soit par transfert thermique indirect via les gaz générés par la combustion du chargement pyrotechnique de préchauffage mis en circulation dans un échangeur thermique « au contact de » la membrane). Le chargement pyrotechnique de préchauffage consiste avantageusement en un chargement de propergol solide. Le propergol solide en cause n'est pas nécessairement générateur d'un gaz essentiellement constitué d'hydrogène. Un propergol solide standard de type composite peut convenir. Dans le cadre de cette seconde variante de mise en route du procédé, en sus de la chaleur produite par la combustion du chargement de préchauffage, la chaleur produite par la combustion du au moins un chargement pyrotechnique peut aussi être en partie utilisée pour préchauffer la membrane métallique de séparation.
On se propose maintenant de donner des précisions sur les chargements pyrotechniques convenant à la mise en œuvre du procédé de l'invention.
Lesdits chargements peuvent consister en des chargements de l'art antérieur, constitués d'au moins un produit de type conventionnel, i.e. de type bloc, disque, pastille, grain... avec une composition de type : composant(s) oxydant(s) inorganique(s) + composant(s) réducteur(s) hydrogéné(s) (voir l'introduction du présent texte). En tout état de cause, le au moins un chargement pyrotechnique utilisé pour la mise en œuvre du procédé de l'invention est sélectionné pour générer pyrotechniquement un gaz hydrogéné renfermant au moins 70 % en volume d'hydrogène. C'est en effet à partir d'un tel gaz hydrogéné que la purification sur membrane génère l'hydrogène de très grande pureté recherché.
Conviennent notamment pour la mise en œuvre du procédé de l'invention, les chargements pyrotechniques constitués d'au moins un produit pyrotechnique renfermant, pour au moins 96 % de sa masse, au moins un composant oxydant inorganique et au moins un composant réducteur hydrogéné choisi parmi les hydrures inorganiques, le borazane et les polyaminoboranes. Le au moins un composant oxydant inorganique (généralement un unique composant oxydant inorganique est présent mais la présence d'au moins deux en mélange ne saurait être exclue) et le au moins un composant réducteur hydrogéné spécifique (généralement un unique composant réducteur hydrogéné tel qu'identifié ci-dessus est présent mais la présence d'au moins deux en mélange ne saurait être exclue) représentent donc au moins 96 % en masse (voire au moins 98 % en masse, voire 100 % en masse) de la masse du(des) produit(s) pyrotechnique(s) avantageusement utilisé(s) pour générer, selon l'invention, les gaz de combustion. L'éventuel complément à 100 % est en général constitué d'additifs, type auxiliaires de procédé, de stabilité, de désensibilisation à l'électricité statique (tel Si02) et/ou modificateurs de balistique, de combustion. La présence d'impuretés n'est pas exclue.
En référence audit au moins un composant réducteur hydrogéné, on peut, de façon nullement limitative, préciser ce qui suit. 1) Le au moins un hydrure inorganique susceptible d'être présent dans la composition des produits pyrotechniques utilisés est avantageusement un borohydrure, très avantageusement un borohydrure alcalin ou alcalino-terreux. De préférence, ledit au moins un hydrure inorganique est choisi parmi le borohydrure de sodium, de lithium ou de magnésium. Les produits pyrotechniques utilisés dans le procédé de l'invention renferment donc de préférence dans leur composition, comme hydrure organique, NaBH4, LiBH4 ou Mg(BH4)2.
2) Le au moins un composé réducteur hydrogéné consiste toutefois préférentiellement en le borazane ou un polymère de l'aminoborane (un polyaminoborane). De façon particulièrement préférée, le borazane est l'unique composé réducteur hydrogéné présent dans la composition des produits pyrotechniques utilisés.
En référence audit au moins un composant oxydant inorganique, on peut, de façon nullement limitative, préciser ce qui suit.
II est avantageusement choisi parmi ceux utilisés selon l'art antérieur dans le domaine technique des piles à combustible ; i.e. parmi :
- les perchlorates (il consiste très avantageusement en le perchlorate d'ammonium),
- les dinitroamidures (« dinitramides ») (il consiste très avantageusement en le dinitroamidure d'ammonium), - les nitrates (il consiste très avantageusement en le nitrate de strontium), et
- les oxydes métalliques (il consiste avantageusement en l'oxyde de fer (Fe203), l'oxyde de vanadium (V2Os), l'oxyde d'aluminium (AI2O3), l'oxyde de titane (Ti02), l'oxyde de manganèse
(Mn02), de préférence en l'oxyde de fer (Fe2Û3)).
Les produits pyrotechniques (constituants les chargements pyrotechniques) utilisés dans le procédé de l'invention renferment donc très avantageusement NH4CI04, NH4N(N02)2, Sr(NÛ3)2 ou Fe2Û3.
Dans le cadre de cette variante, le(s) produit(s) pyrotechnique(s) utilisé(s) renferme(nt) de préférence dans sa(leur) composition :
- de 40 à 80 % en masse d'au moins un composant réducteur hydrogéné tel qu'identifié ci-dessus (généralement d'un tel composant réducteur hydrogéné), et
- de 20 à 60 % en masse d'au moins un oxydant inorganique (généralement d'un tel oxydant inorganique).
Ils renferment, de façon particulièrement préférée :
- de 55 à 75 % en masse d'au moins un composant réducteur hydrogéné tel qu'identifié ci-dessus (généralement d'un tel composant réducteur hydrogéné), et
- de 25 à 45 % en masse d'au moins un oxydant inorganique (généralement d'un tel oxydant inorganique).
Il est, de manière générale, également très avantageux que le(s)dit(s) produit(s) pyrotechnique(s) renferme(nt) plus de 50% en masse de composant(s) réducteur(s) hydrogéné(s), encore plus avantageux que le(s)dit(s) produit(s) pyrotechnique(s) renferme(nt) plus de 70% en masse de composant(s) réducteur(s) hydrogéné(s). On a compris que le(s)dit(s) composant(s) réducteur(s) hydrogéné(s) présent(s) constitue(nt) la réserve d'hydrogène.
On rappelle ici, à toutes fins utiles, que ledit au moins un chargement pyrotechnique utilisé pour la génération des gaz hydrogénés est constitué d'au moins un produit pyrotechnique (généralement plusieurs) se présentant sous la forme de grains, de pastilles, de disques ou de blocs. Ces grains, pastilles et blocs ont une forme quelconque, par exemple sphérique, ovoïde ou cylindrique. Les grains ont généralement une masse de quelques milligrammes, les pastilles une masse de quelques dixièmes de grammes à quelques grammes, les disques de quelques dizaines de grammes à quelques centaines de grammes et les blocs d'une centaine de grammes à quelques kilogrammes.
Les procédés d'obtention de ces produits pyrotechniques solides sont des procédés connus, décrits notamment dans les demandes de brevet EP identifiées en page 2 du présent texte.
On a compris que ledit au moins un chargement pyrotechnique utilisé renferme généralement plusieurs produits pyrotechniques (bien que l'utilisation d'un unique produit, tel un bloc, ne soit nullement exclue). Dans un tel contexte, tous les produits constituant ledit au moins un chargement ne présentent pas forcément la même composition (ni la même forme). Ils sont toutefois tous générateurs de gaz hydrogéné au sens de l'invention.
Ledit au moins un chargement pyrotechnique brûle suite à son allumage. Le dispositif d'allumage est généralement constitué d'un allumeur, en liaison avec le système utilisateur, par l'intermédiaire d'un passage étanche supportant la pression de fonctionnement, et éventuellement d'au moins une charge relais d'allumage. Avantageusement, lorsque le système utilisateur le permet, l'allumeur est déclenché par sollicitation mécanique (par exemple au moyen d'un relais piézo-électrique ou d'un percuteur à amorce), afin d'éviter toute consommation superflue d'énergie électrique pour déclencher le système. Ainsi, le procédé de l'invention est-il avantageusement enclenché par sollicitation mécanique.
Au vu des propos ci-dessus, on comprend que le procédé de l'invention convient tout particulièrement à l'alimentation, en hydrogène de très grande pureté, de piles à combustible, portables ou embarquées. L'hydrogène de très grande pureté délivré au sortir de la membrane métallique de séparation de l'hydrogène associée à la au moins une chambre de combustion, convient parfaitement à une telle utilisation.
L'invention peut en fait tout à fait s'analyser comme un procédé d'alimentation en hydrogène de très grande pureté d'une pile à combustible ; ledit procédé comprenant le procédé pyrotechnique de mise à disposition d'hydrogène de très grande pureté, tel que décrit ci-dessus (incluant une combustion haute pression puis une purification sur membrane métallique de séparation d'hydrogène d'au moins une partie (généralement de la totalité) du gaz hydrogéné produit) suivi de la délivrance dudit hydrogène de grande pureté à ladite pile à combustible. On doit toutefois incidemment noter que l'hydrogène de très grande pureté, obtenu à la demande par le procédé de l'invention peut tout à fait être utilisé dans d'autres contextes.
Selon son deuxième objet, la présente invention concerne un dispositif pyrotechnique de mise à disposition (à la demande) d'hydrogène de très grande pureté. Ledit dispositif convient à la mise en œuvre du procédé décrit ci-dessus, convient en fait à une variante de mise en œuvre avantageuse de celui-ci (avantageuse en référence aux échanges thermiques). Il comprend de façon caractéristique :
- au moins une chambre de combustion munie d'au moins un orifice de délivrance convenant à l'agencement et à la combustion à haute pression, en son sein, d'un chargement pyrotechnique solide générateur de gaz hydrogéné ainsi qu'à la délivrance de gaz hydrogéné chaud, sous pression, via ledit au moins un orifice de délivrance ;
- au moins une membrane métallique de séparation de l'hydrogène, convenant à la purification de gaz hydrogéné, présentant une face d'entrée et une face de sortie ; ladite membrane métallique de séparation de l'hydrogène étant agencée dans un réservoir de sorte qu'un volume vide soit ménagé dans ledit réservoir en amont de sa face d'entrée ; et
- des moyens de délivrance du gaz purifié ;
lesdites chambre(s) de combustion et membrane(s) métallique(s) de séparation de l'hydrogène étant mises en communication via au moins une tubulure de sorte que du gaz hydrogéné délivré de la(desdites) chambre(s) de combustion soit dirigé vers au moins une membrane métallique de séparation de l'hydrogène et étant agencées au sein d'une enceinte calorifugée ; lesdits moyens de délivrance étant aptes à assurer la délivrance de gaz, purifié au sein de la(des)dite(s) membrane(s) métallique(s) de séparation de l'hydrogène, hors de ladite enceinte calorifugée.
Le dispositif de l'invention est généralement conçu pour diriger la totalité du gaz hydrogéné généré vers la au moins une membrane métallique de séparation de l'hydrogène mais, comme indiqué ci-dessus, il ne saurait être exclu qu'il renferme des moyens, agencés entre ladite au moins une chambre de combustion et ladite au moins une membrane métallique de séparation de l'hydrogène, pour dériver une partie dudit gaz hydrogéné généré.
On a déjà compris, à la considération de ce qui précède, que de nombreux agencements des chambre(s) de combustion et membrane(s) présentes sont possibles, étant entendu que le gaz de très grande pureté à délivrer doit être purifié par passage au travers d'au moins une membrane. Notons que l'utilisation d'une unique membrane en association avec au moins une chambre de combustion est préconisée et que l'agencement ci-après : au moins une chambre de combustion annulaire disposée autour d'une membrane métallique de séparation de l'hydrogène, est particulièrement préféré (notamment en référence au transfert de la chaleur de combustion à la membrane).
On comprend par ailleurs que la(chaque) membrane métallique de séparation de l'hydrogène est agencée dans un réservoir (on peut qualifier de chambre de purification le dispositif comprenant une membrane dans son réservoir), de sorte qu'un volume vide soit ménagé dans ledit réservoir en amont de la face d'entrée de ladite membrane (de chaque membrane). Ce volume vide est prévu pour le stockage des espèces (CO, H2O, NH3...) séparées de l'hydrogène par ladite membrane (en fonctionnement). La face d'entrée d'une membrane est bien évidemment celle destinée à recevoir le gaz hydrogéné sous pression à purifier et la face de sortie celle par laquelle le gaz hydrogéné purifié non pressurisé (renfermant plus de 99,99 % d'hydrogène) est délivré.
De façon caractéristique, les chambre(s) de combustion et membrane(s) métallique(s) de séparation du dispositif de l'invention (chambre(s) et membrane(s) mises en communication) sont disposées dans une enceinte calorifugée, les moyens de délivrance du gaz purifié délivrant ledit gaz hors de ladite enceinte calorifugée. Cet agencement est opportun pour confiner les différents éléments constitutifs du dispositif et vise à conserver au mieux la chaleur de combustion et à assurer a minima les transferts thermiques : chaleur des chambres de combustion et des tubulures de transport du gaz chaud vers la(les) membranes(s).
Pour une optimisation desdits transferts de chaleur, on préconise : que l'enceinte calorifugée renferme un matériau assurant un pont thermique entre ladite au moins une chambre de combustion (+ la au moins une tubulure présente) et ladite au moins une membrane métallique de séparation ; ledit matériau étant avantageusement à forte conductivité thermique (voir ci-dessus). On a vu que l'air est {a minima) susceptible d'assurer un tel pont thermique mais qu'un matériau à plus forte conductivité thermique, tel un métal (sous forme de billes, de limaille ou de particules) est assurément plus performant. On préconise en fait de « remplir » ladite enceinte calorifugée par un matériau à forte conductivité thermique. La chaleur de combustion est ainsi « confinée » dans l'enceinte calorifugée et son transfert à la au moins une membrane peut être optimisée.
Le dispositif de l'invention est par ailleurs susceptible de comprendre des moyens de refroidissement de gaz, présentement du gaz hydrogéné généré pyrotechniquement (d'au moins une partie de celui-ci), agencés donc en aval de la au moins une chambre de combustion du dispositif. Lesdits moyens de refroidissement sont agencés en amont de la au moins une membrane métallique de séparation. Ils visent à protéger ladite au moins une membrane de la chaleur excessive des gaz de combustion. Ils protègent de la même façon tout dispositif amont utilisant le gaz hydrogéné de très grande pureté.
On a vu, dans le cadre du procédé, que des calories prélevées lors de ce refroidissement, sont avantageusement transférées à la au moins une membrane présente. Ainsi, selon un mode de réalisation avantageux, les moyens de refroidissement du gaz hydrogéné généré pyrotechniquement consistent en au moins une partie d'au moins une tubulure mettant en communication au moins une chambre de combustion et au moins une membrane métallique de séparation ; ladite au moins une partie serpentant autour de ladite au moins membrane métallique de séparation. Toute tubulure de circulation des gaz chauds générés, serpentant autour d'une membrane métallique de séparation, est ainsi apte à assurer la fonction d'échangeur thermique.
Notons qu'agencée au sein d'un matériau, a fortiori à forte conductivité thermique, toute tubulure peut en théorie assurer un certain refroidissement des gaz chaud circulant en son sein... que l'échangeur thermique explicité ci-dessus n'est pas forcément présent au sein d'un matériau assurant un pont thermique entre la au moins une chambre de combustion et la au moins une membrane... On comprend toutefois que pour être en mesure d'assurer un transfert de chaleur maximum à la au moins une membrane présente (et pour ainsi augmenter son efficacité), on cumule avantageusement, au sein de l'enceinte calorifugée, la présence d'un matériau assurant le pont thermique précisé ci-dessus (matériau présentant avantageusement une forte conductivité thermique) et celle d'un échangeur thermique (constitué d'au moins une partie de tubulure de circulation du gaz chaud entre au moins une chambre de combustion et au moins une membrane) autour de ladite au moins une membrane.
Pour ce qui concerne l'agencement de ladite au moins une chambre de combustion, on peut, de façon nullement limitative, indiquer ce qui suit. Ladite au moins une chambre de combustion est per se connue. Elle est généralement constituée d'un ensemble mécanique contenant un dispositif d'allumage ou module d'initiation (un tel module déclenche avantageusement l'allumage par sollicitation mécanique. Un tel module comprend donc avantageusement un relais piézo-électrique ou un percuteur à amorce (voir ci-dessus)), d'un dispositif de maintien du chargement pyrotechnique principal (dont les différents éléments constitutifs (la présence d'un unique bloc est toutefois expressément prévue) peuvent être en vrac ou arrangés, de façon à limiter l'encombrement) et éventuellement d'une pastille pyrotechnique relais d'allumage. Le chargement (qui peut donc être monobloc) est généralement maintenu dans un panier, de sorte que les résidus de combustion se trouvent retenus dans ledit panier (ils y constituent une gangue). Lorsque ledit chargement consiste en plusieurs éléments, ceux-ci se trouvent stabilisés au sein dudit panier. On limite ainsi et l'encombrement et les sollicitations mécaniques desdits éléments en réponse aux vibrations du système. Ladite au moins une chambre de combustion comporte au moins un orifice de délivrance pour la délivrance (sous pression) des gaz générés en son sein (à haute pression).
Ladite au moins une membrane métallique de séparation de l'hydrogène du dispositif de l'invention est per se connue. Elle consiste, comme indiqué ci-dessus, avantageusement, en une membrane en palladium ou en un alliage renfermant du palladium.
Le dispositif de l'invention peut également renfermer des moyens de filtration de gaz, présentement du gaz hydrogéné généré pyrotechniquement (d'au moins une partie de celui-ci), aptes à débarrasser ledit gaz d'au moins une partie des résidus solides de combustion qu'il renferme, agencés en aval de la au moins une chambre de combustion et en amont de la au moins une membrane métallique de séparation, avantageusement agencés en amont des moyens de refroidissement lorsque de tels moyens sont présents. De tels moyens de filtration peuvent par exemple comprendre, comme indiqué dans l'introduction du présent texte, un agencement d'une ou plusieurs grilles métalliques ondulées ou un agencement d'éléments métalliques présentant des pores (de quelques millimètres à quelques nanomètres de diamètre).
Les moyens de délivrance du gaz purifié comprennent généralement essentiellement une canalisation classique. Ils conviennent avantageusement pour délivrer ledit gaz au système utilisateur. Ledit système utilisateur, comme indiqué ci-dessus, consiste avantageusement en au moins une pile à combustible. Ainsi, le dispositif de l'invention, tel que décrit ci-dessus, est donc avantageusement agencé en amont d'au moins une pile à combustible.
Le dispositif de l'invention (au moins un dispositif de l'invention) est avantageusement intégré dans la structure d'un système, notamment d'un système portable ou embarqué, par exemple d'un système aéroporté. Il peut ainsi être intégré dans la structure d'un engin aéroporté, par exemple le fuselage ou les ailes d'un tel engin.
On se propose maintenant d'illustrer l'invention, de façon nullement limitative, par la figure annexée (figure 1). Ladite figure, unique, schématise en coupe un dispositif de l'invention (selon un mode de réalisation préféré) convenant à la mise en œuvre du procédé de l'invention (selon une variante de mise en œuvre préférée).
Le dispositif 100 schématisé sur ladite figure 1 comprend une enveloppe calorifugée 1 renfermant quatre chambres de combustion 3a, 3b, 3c, 3d annulaires contenant chacune un chargement pyrotechnique générateur de gaz hydrogéné 4a, 4b, 4c, 4d, et munies chacune d'un orifice de délivrance 5a, 5b, 5c, 5d débouchant dans une tubulure 6. Lesdites quatre chambres de combustion 3a, 3b, 3c, 3d annulaires sont agencées au contact d'un matériau à forte conductivité thermique 2, par exemple de la limaille de fer, lui aussi donc renfermé dans ladite enveloppe calorifugée 1. La tubulure 6 est connectée à un filtre à particules 7, puis serpente (en sa partie 6 , au sein du matériau à forte conductivité thermique 2, pour se connecter à un réservoir 8 contenant une membrane de séparation de l'hydrogène 9 (la face d'entrée de ladite membrane 9 est référencée 9a, sa face de sortie 9b). A son extrémité distale par rapport à sa connexion avec la tubulure 6, le réservoir 8 est muni d'une canalisation 10 en communication avec une pile à combustible 11.
Le réservoir 8 présente un volume vide 8' du côté de sa connexion avec la tubulure 6, qui sert à stocker les résidus gazeux séparés de l'hydrogène par la membrane 9.
Chaque chambre de combustion 4a, 4b, 4c, 4d renferme un module d'initiation 12 de son chargement pyrotechnique 4a, 4b, 4c, 4d.
Le fonctionnement de ce dispositif 100 est précisé ci-après. Un(plusieurs) des 4 chargements pyrotechniques générateurs d'hydrogène 4a, 4b, 4c, 4d inclus dans les chambres de combustion 3a, 3b, 3c, 3d est(sont) allumé(s) (simultanément ou séquentiellement) au moyen de son(leur) module d'initiation 12. La combustion du(des)dit(s) chargement(s) génère, dans la(les) chambre(s) de combustion qui le(s) referme(nt), du gaz hydrogéné G0 chaud, à une forte pression (2 à 3.106 Pa (20 à 30 bars), par exemple). Une partie de la chaleur de combustion produite dans la(les) chambre(s) de combustion est absorbée par le matériau à forte conductivité 2. Le gaz hydrogéné chaud à forte pression G0 est délivré via l'(les) orifice(s) de délivrance 5a, 5b, 5c, 5d. Il est véhiculé, sous pression (à une pression moindre (que la pression indiquée ci-dessus, pression de fonctionnement de la(des) chambre(s) de combustion en fonctionnement), généralement de quelques bars à une dizaine de bars) dans la tubulure 6. Ledit gaz délivré sous pression est référencé Gl sous la figure 1. Il échange aussi de la chaleur avec le matériau à forte conductivité thermique 2. Il est débarrassé (au moins en partie) des résidus solides de combustion qu'il renferme (résidus solides non piégés dans la gangue résultant de la combustion qui demeure dans la(les) chambre(s) de combustion ayant fonctionnée(s)) par passage au travers du filtre à particules II est injecté, refroidi, encore sous pression, dans le réservoir 8 contenant la membrane de séparation métallique 9. Le refroidissement mis en oeuvre est optimisé dans la mesure où ledit gaz Gl est mis en circulation autour de la membrane 9 (plus précisément du réservoir 7 la renfermant), au sein du matériau à forte conductivité thermique 2. Ledit matériau à forte conductivité 2 transfère donc de la chaleur, provenant de la(des) chambre(s) de combustion ayant fonctionné et de la tubulure 6 (du gaz Gl)) à la membrane de séparation de l'hydrogène 9, qui s'échauffe en conséquence. L'élévation de température de la membrane 9 est ainsi simultanée à la production des gaz hydrogénés et favorable à l'efficacité de séparation de l'hydrogène par ladite membrane 9. Le gaz hydrogéné chaud Gl, après avoir serpenté dans la tubulure 6, pénètre dans le réservoir 8 (par le volume vide 8 et entre en contact avec la membrane de séparation 9 (avec sa face d'entrée 9a). L'hydrogène est séparé par la membrane 9 des autres espèces gazeuses (présentes en quantité très faible). Il ressort de ladite membrane 9 par la face de sortie 9b de celle-ci et est délivré en aval, à une pureté supérieure à 99,99 %, à la pile à combustible 11.

Claims

REVENDICATIONS
1. Procédé pyrotechnique de mise à disposition d'hydrogène de très grande pureté (G), caractérisé en ce qu'il comprend :
- la combustion d'au moins un chargement pyrotechnique solide générateur de gaz hydrogéné (4a, 4b, 4c, 4d) pour la production d'un gaz hydrogéné (Gl), chaud, sous pression, renfermant au moins 70 % en volume d'hydrogène ; et
- la purification d'au moins une partie dudit gaz hydrogéné sous pression (Gl), par passage au travers d'une membrane métallique de séparation de l'hydrogène (9) maintenue à une température supérieure à 250°C, avantageusement entre 300 et 600°C , pour obtenir, au sortir de ladite membrane (9), un gaz hydrogéné (G) renfermant au moins 99,99 % en volume d'hydrogène.
2. Procédé selon la revendication 1, caractérisé en ce qu'une partie de la quantité de chaleur produite par la combustion dudit au moins un chargement pyrotechnique solide générateur de gaz hydrogéné (4a, 4b, 4c, 4d) est utilisée pour chauffer ladite membrane métallique de séparation (9).
3. Procédé selon la revendication 2, caractérisé en ce que ladite partie de la quantité de chaleur produite par la combustion dudit au moins un chargement pyrotechnique solide générateur de gaz hydrogéné (4a, 4b, 4c, 4d) est transférée à ladite membrane métallique de séparation (9) via un matériau (2), faisant office de pont thermique, avantageusement à forte conductivité thermique.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre le refroidissement d'au moins une partie dudit gaz hydrogéné produit (Gl), avant sa purification.
5. Procédé selon la revendication 4, caractérisé en ce qu'une partie de la quantité de chaleur extraite lors dudit refroidissement est utilisée pour chauffer ladite membrane métallique de séparation (9).
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend en outre la filtration d'au moins une partie dudit gaz hydrogéné produit (Gl) pour la débarrasser au moins en partie des résidus solides de combustion qu'elle renferme, ladite filtration étant mise en œuvre en amont de sa purification.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend, successivement, la production dudit gaz hydrogéné (Gl), la filtration d'au moins une partie dudit gaz hydrogéné (Gl) pour la débarrasser au moins en partie des résidus solides de combustion qu'elle renferme, le refroidissement de ladite au moins une partie dudit gaz hydrogéné (Gl) filtrée et la purification de ladite au moins une partie du gaz hydrogéné (Gl) filtrée et refroidie.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit au moins un chargement pyrotechnique solide générateur de gaz hydrogéné (4a, 4b, 4c, 4d) est un chargement pyrotechnique constitué d'au moins un produit pyrotechnique renfermant, pour au moins 96 % de sa masse, au moins un composant oxydant inorganique et au moins un composant réducteur hydrogéné choisi parmi les hydrures inorganiques, le borazane et les polyaminoboranes.
9. Procédé selon la revendication 8, caractérisé en ce que ledit au moins un composant réducteur hydrogéné choisi parmi les hydrures inorganiques est choisi parmi les borohydrures inorganiques, avantageusement les borohydrures alcalins et alcali no-terreux, très avantageusement les borohydrures de sodium, de lithium et de magnésium.
10. Procédé selon la revendication 8, caractérisé en ce que ledit au moins un composant réducteur hydrogéné est choisi parmi le borazane et les polyaminoboranes ; en ce que ledit au moins un composant réducteur hydrogéné consiste avantageusement en le borazane.
11. Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que ledit au moins un composant oxydant inorganique est choisi parmi les perchlorates, les dinitroamidures, les nitrates et les oxydes métalliques ; avantageusement parmi le perchlorate d'ammonium, le dinitroamidure d'ammonium, le nitrate de strontium et l'oxyde de fer.
12. Procédé selon l'une quelconque des revendications 8 à 11, caractérisé en ce que ledit au moins un produit pyrotechnique renferme :
- de 40 à 80 % en masse dudit au moins un composant réducteur hydrogéné (généralement d'un tel composant réducteur hydrogéné), et - de 20 à 60 % en masse dudit au moins un composant oxydant inorganique (généralement d'un tel composant oxydant inorganique) ;
en ce que ledit au moins un produit pyrotechnique renferme avantageusement :
- de 55 à 75 % en masse dudit au moins un composant réducteur hydrogéné (généralement d'un tel composant réducteur hydrogéné), et
- de 25 à 45 % en masse dudit au moins un composant oxydant inorganique (généralement d'un tel composant oxydant inorganique).
13. Procédé selon l'une quelconque des revendications 8 à 12, caractérisé en ce que ledit au moins un produit pyrotechnique renferme plus de 50 %, avantageusement plus de 70 %, en masse dudit au moins un composant réducteur hydrogéné.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il est mis en œuvre pour l'alimentation d'au moins une pile à combustible (11).
15. Dispositif pyrotechnique (100) de mise à disposition d'hydrogène de très grande pureté (G), convenant à la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend :
- au moins une chambre de combustion (3a, 3b, 3c, 3d) munie d'au moins un orifice de délivrance (5a, 5b, 5c, 5d) convenant à l'agencement et à la combustion à haute pression, en son sein, d'un chargement pyrotechnique solide générateur de gaz hydrogéné (4a, 4b, 4c, 4d), ainsi qu'à la délivrance de gaz hydrogéné chaud, sous pression, (Gl) via ledit au moins un orifice de délivrance (5a, 5b, 5c, 5d) ;
- au moins une membrane métallique de séparation de l'hydrogène (9), convenant à la purification de gaz hydrogéné, présentant une face d'entrée (9a) et une face de sortie (9b) ; ladite membrane métallique de séparation d'hydrogène (9) étant agencée dans un réservoir (8) de sorte qu'un volume vide (80 soit ménagé dans ledit réservoir (8) en amont de sa face d'entrée (9a) ;
- des moyens de délivrance du gaz purifié (10) ; lesdites chambre(s) de combustion (3a, 3b, 3c, 3d) et membrane(s) métallique(s) de séparation de l'hydrogène (9) étant mises en communication via au moins une tubulure (6) de sorte que du gaz hydrogéné délivré de la (desdites) chambre(s) de combustion (3a, 3b, 3c, 3d) soit dirigé vers au moins une membrane métallique de séparation de l'hydrogène (9) et étant agencées au sein d'une enceinte calorifugée (1) ; lesdits moyens de délivrance (10) étant aptes à assurer la délivrance de gaz, purifié au sein de la(des)dite(s) membrane(s) métallique(s) de séparation de l'hydrogène (9), hors de ladite enceinte calorifugée (1).
16. Dispositif (100) selon la revendication 15, caractérisé en ce qu'il comprend au moins une chambre de combustion annulaire (3a, 3b, 3c, 3d) agencée autour d'au moins une membrane métallique de séparation (9).
17. Dispositif (100) selon la revendication 15 ou 16, caractérisé en ce que ladite enceinte calorifugée (1) renferme un matériau (2) assurant un pont thermique entre lesdites chambre(s) de combustion (3a, 3b, 3c, 3d) et membrane(s) métallique(s) de séparation (9) ; ledit matériau (2) étant avantageusement à forte conductivité thermique.
18. Dispositif (100) selon l'une quelconque des revendications 15 à 17, caractérisé en ce qu'il comprend en outre des moyens de refroidissement du gaz (Gl), agencés en aval de la au moins une chambre de combustion (3a, 3b, 3c, 3d) et en amont de la au moins une membrane métallique de séparation (9).
19. Dispositif (100) selon la revendication 18, caractérisé en ce que lesdits moyens consistent en au moins une partie (6') de la au moins une tubulure (6) mettant en communication la au moins une chambre de combustion (3a, 3b, 3c, 3d) et la au moins une membrane métallique de séparation (9) ; ladite partie (6') serpentant autour de ladite au moins une membrane métallique de séparation (9).
20. Dispositif (100) selon l'une quelconque des revendications
15 à 19, caractérisé en ce que ladite au moins une membrane métallique de séparation (9) est une membrane en palladium ou en un alliage renfermant du palladium.
21. Dispositif (100) selon l'une quelconque des revendications 15 à 20, caractérisé en ce qu'il renferme en outre des moyens de filtration (7) du gaz (Gl), aptes à le débarrasser d'au moins une partie des résidus solides de combustion qu'il renferme, agencés en aval de la au moins une chambre de combustion (3a, 3b, 3c, 3d) et en amont de la au moins une membrane métallique de séparation (9), avantageusement agencés en amont des moyens de refroidissement (7) lorsque de tels moyens (7) sont présents.
22. Dispositif (100) selon l'une quelconque des revendications 15 à 21, caractérisé en ce qu'il agencé en amont d'au moins une pile à combustible (11).
PCT/FR2013/052991 2012-12-12 2013-12-09 Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe. WO2014091127A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2894471A CA2894471A1 (fr) 2012-12-12 2013-12-09 Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe
US14/651,717 US9624102B2 (en) 2012-12-12 2013-12-09 Pyrotechnic process for providing very high purety hydrogen and associated device
KR1020157018581A KR20150093824A (ko) 2012-12-12 2013-12-09 매우 높은 순도의 수소를 제공하기 위한 발연 프로세스 및 관련 장치
EP13818261.3A EP2931653A1 (fr) 2012-12-12 2013-12-09 Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1261946 2012-12-12
FR1261946A FR2999167B1 (fr) 2012-12-12 2012-12-12 Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe

Publications (1)

Publication Number Publication Date
WO2014091127A1 true WO2014091127A1 (fr) 2014-06-19

Family

ID=48128448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052991 WO2014091127A1 (fr) 2012-12-12 2013-12-09 Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe.

Country Status (6)

Country Link
US (1) US9624102B2 (fr)
EP (1) EP2931653A1 (fr)
KR (1) KR20150093824A (fr)
CA (1) CA2894471A1 (fr)
FR (1) FR2999167B1 (fr)
WO (1) WO2014091127A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027459B1 (fr) 2014-10-21 2019-06-21 Snecma Procede de production d'electricite par une pile a combustible ; dispositif associe

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790751A1 (fr) 1999-03-09 2000-09-15 Agency Ind Science Techn Membrane en alliage amorphe de ni pour la separation/ dissociation d'hydrogene, procede de preparation et procede d'activation de celle-ci
EP1249427A1 (fr) 2001-04-10 2002-10-16 Snpe Compositions solides génératices d'hydrogène par combustion comprenant un borohydrure alcalin et un sel d'ammonium
EP1405824A2 (fr) 2002-10-04 2004-04-07 Snpe Compositions solides génératrices d'hydrogène par combustion comprenant un borohydrure alcalin ou alcalino-terreux et sel oxydant à base de perchlorate d'ammonium, alcalin ou alcalino-terreux
EP1405823A2 (fr) 2002-10-04 2004-04-07 Snpe Compositions solides génératrices d'hydrogène par combustion comprenant un borohydrure alcalin ou alcalino-terreux et du nitrate de strontium Sr(NO3)2.
EP1496035A2 (fr) 2003-07-10 2005-01-12 SNPE Matériaux Energétiques Compositions solides génératrices d'hydrogène par combustion comprenant un borohydrure de magnésium et un oxydant de la famille des dinitramines
WO2006067156A1 (fr) 2004-12-20 2006-06-29 Electricite De France Membrane de filtration de gaz moleculaires tels que l'hydrogene et son procede de preparation
US20070065689A1 (en) * 2005-09-16 2007-03-22 Edlund David J Thermally primed hydrogen-producing fuel cell system
US20070084879A1 (en) 2005-09-30 2007-04-19 Mclean Gerard F Hydrogen supplies and related methods
FR2906805A1 (fr) 2006-10-09 2008-04-11 Snpe Materiaux Energetiques Sa Procede de pyrotechnique de mise a disposition, a la demande d'hydrogene non pressurise et dispositif associe
FR2930245A1 (fr) * 2008-04-16 2009-10-23 Snpe Materiaux Energetiques Sa Composes solides generateurs d'hydrogene par combustion auto-entretenue comprenant un polyaminoborane et au moins un oxydant inorganique ; procede de generation d'hydrogene.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790751A1 (fr) 1999-03-09 2000-09-15 Agency Ind Science Techn Membrane en alliage amorphe de ni pour la separation/ dissociation d'hydrogene, procede de preparation et procede d'activation de celle-ci
EP1249427A1 (fr) 2001-04-10 2002-10-16 Snpe Compositions solides génératices d'hydrogène par combustion comprenant un borohydrure alcalin et un sel d'ammonium
EP1405824A2 (fr) 2002-10-04 2004-04-07 Snpe Compositions solides génératrices d'hydrogène par combustion comprenant un borohydrure alcalin ou alcalino-terreux et sel oxydant à base de perchlorate d'ammonium, alcalin ou alcalino-terreux
EP1405823A2 (fr) 2002-10-04 2004-04-07 Snpe Compositions solides génératrices d'hydrogène par combustion comprenant un borohydrure alcalin ou alcalino-terreux et du nitrate de strontium Sr(NO3)2.
EP1496035A2 (fr) 2003-07-10 2005-01-12 SNPE Matériaux Energétiques Compositions solides génératrices d'hydrogène par combustion comprenant un borohydrure de magnésium et un oxydant de la famille des dinitramines
WO2006067156A1 (fr) 2004-12-20 2006-06-29 Electricite De France Membrane de filtration de gaz moleculaires tels que l'hydrogene et son procede de preparation
US20070065689A1 (en) * 2005-09-16 2007-03-22 Edlund David J Thermally primed hydrogen-producing fuel cell system
US20070084879A1 (en) 2005-09-30 2007-04-19 Mclean Gerard F Hydrogen supplies and related methods
FR2906805A1 (fr) 2006-10-09 2008-04-11 Snpe Materiaux Energetiques Sa Procede de pyrotechnique de mise a disposition, a la demande d'hydrogene non pressurise et dispositif associe
FR2930245A1 (fr) * 2008-04-16 2009-10-23 Snpe Materiaux Energetiques Sa Composes solides generateurs d'hydrogene par combustion auto-entretenue comprenant un polyaminoborane et au moins un oxydant inorganique ; procede de generation d'hydrogene.
EP2265545A1 (fr) 2008-04-16 2010-12-29 SNPE Matériaux Energétiques Composes solides, generateurs d'hydrogene par combustion auto-entretenue, comprenant du borazane et/ou du polyaminoborane et au moins un oxydant inorganique; procede de generation d'hydrogene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Palladium-based alloy membranes for séparation of high purity hydrogen from hydrogen containing gas mixture", PLATINUM METAL REV., vol. 55, no. 1, 2011, pages 3 - 12
"Ullmann's Encyclopedia of Industrial Chemistry", 15 October 2011, WILEY-VCH VERLAG GMBH & CO. KGAA, Weinheim, Germany, ISBN: 978-3-52-730673-2, article PETER HÄUSSINGER ET AL: "Hydrogen, 3. Purification", XP055070696, DOI: 10.1002/14356007.o13_o04 *
"Ullmann's Encyclopedia of Industrial Chemistry", vol. 18, 15 October 2011, article "Hydrogen, 3. Purification", pages: 309 - 333

Also Published As

Publication number Publication date
FR2999167B1 (fr) 2014-12-26
EP2931653A1 (fr) 2015-10-21
US20150321909A1 (en) 2015-11-12
FR2999167A1 (fr) 2014-06-13
US9624102B2 (en) 2017-04-18
CA2894471A1 (fr) 2014-06-19
KR20150093824A (ko) 2015-08-18

Similar Documents

Publication Publication Date Title
EP2906895B1 (fr) Procede de realisation d'un echangeur de chaleur contenant un materiau a changement de phase, echangeur obtenu et utilisations aux hautes temperatures
EP2891624A1 (fr) Reservoir adiabatique d'hydrure metallique
CA2724227C (fr) Procede de fabrication d'un reservoir d'hydrogene a hydrures metalliques
EP2499088B1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques
FR2999169A1 (fr) Procede pyrotechnique de mise a disposition d'hydrogene faiblement pressurise et a une temperature inferieure a 200°c et dispositif associe
FR2906805A1 (fr) Procede de pyrotechnique de mise a disposition, a la demande d'hydrogene non pressurise et dispositif associe
EP3090199A1 (fr) Systeme de stockage reversible d'h2 avec reservoir contenant des hydrures metalliques, a equilibrage de pression
EP2931653A1 (fr) Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe.
EP3210253B1 (fr) Procédé de production d'électricite par une pile a combustible et dispositif associé
WO2015032587A1 (fr) Regeneration d'un piege pour impuretes dans l'hydrogene utilisant la chaleur en sortie d'un reservoir a hydrures
WO2014091128A1 (fr) Procede pyrotechnique de mise a disposition d'hydrogene de tres grande purete et dispositif associe
FR3003092A1 (fr) Procede et dispositif d'alimentation d'une pile a combustible
FR3008969A1 (fr) Procede de generation d'hydrogene par combustion auto-entretenue ou par decomposition d'un produit solide et dispositif
FR2993319A1 (fr) Procede d'alimentation d'un moteur de missile en un ergol stockable
EP2607338A1 (fr) Procédé de génération de gaz de combustion à partir d'un matériau solide précurseur d'oxygène et d'un matériau réducteur solide dissociés et dispositif associé
EP4175016A1 (fr) Procédé d'inertage d'accumulateurs électrochimiques, notamment métal-ion, par immersion initiale dans une solution de chlorure de calcium à basse température, puis court-circuitage électrique en vue de leur broyage
WO2022189759A1 (fr) Stockage et production du di-hydrogene par une suspension de particules d'hydrures de metal dans des alliages de metaux alcalins liquides
FR3002977A1 (fr) Procede de fonctionnement d'une machine thermique ditherme a cycle ouvert avec les gaz de combustion d'au moins un chargement pyrotechnique solide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013818261

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2894471

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14651717

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157018581

Country of ref document: KR

Kind code of ref document: A