WO2014090079A1 - 交流永磁排水泵 - Google Patents

交流永磁排水泵 Download PDF

Info

Publication number
WO2014090079A1
WO2014090079A1 PCT/CN2013/087730 CN2013087730W WO2014090079A1 WO 2014090079 A1 WO2014090079 A1 WO 2014090079A1 CN 2013087730 W CN2013087730 W CN 2013087730W WO 2014090079 A1 WO2014090079 A1 WO 2014090079A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting
pump body
rib
pump
sleeve
Prior art date
Application number
PCT/CN2013/087730
Other languages
English (en)
French (fr)
Inventor
王红标
李昌建
徐飞
Original Assignee
江门市地尔汉宇电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门市地尔汉宇电器股份有限公司 filed Critical 江门市地尔汉宇电器股份有限公司
Priority to CN201380063978.6A priority Critical patent/CN104854349B/zh
Publication of WO2014090079A1 publication Critical patent/WO2014090079A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/118Structural association with clutches, brakes, gears, pulleys or mechanical starters with starting devices
    • H02K7/1185Structural association with clutches, brakes, gears, pulleys or mechanical starters with starting devices with a mechanical one-way direction control, i.e. with means for reversing the direction of rotation of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to the technical field of liquid pumps, and in particular to an alternating current permanent magnet drainage pump.
  • U-type AC permanent magnet synchronous motors are often used in drain pumps, so such drain pumps are also often referred to as AC permanent magnet drain pumps.
  • This type of drain pump is mainly used in washing machines and dishwashers. Due to the difficulty of low-pressure starting, the drain pump limits the efficiency of electromagnetic utilization and makes the overall efficiency of the product low.
  • the cost pressure of this product has also been increasingly prominent, and noise and vibration problems need to be continuously improved.
  • the pump includes a cylindrical rotor barrel 9', and the core assembly is placed in the inner cavity of the rotor barrel.
  • the rotor barrel is usually made of plastic and has a thickness of lmm. Due to the presence of the rotor barrel, the air gap between the stator core and the rotor core is increased.
  • 1a and 1b show an alternating current permanent magnet drainage pump used in the prior art, which puts the prepared coil V into a plastic mold for injection molding to form a coil plastic seal 5', and performs an injection molding process on the coil 7'.
  • the process of injection molding the stator coil is the same as the patent of the Chinese invention patent No. 200710143209.3 and the invention titled "Drainage Pump Permanent Magnet Synchronous Motor".
  • the stator core 8' is assembled. In the coil molding 5', then by fitting the concave arc portion of the stator core 8' through its concave arc surface to the outer circular surface of the wall of the rotor seat 17' of the pump body 10', The coil plastic seal 5' is integrated with the pump body 10' by the snap 18'.
  • the AC permanent magnet drain pump described above has the following disadvantages: First, since the stator core 8' is fitted over the outer wall of the rotor seat 17', a rotor seat is provided between the stator core 8' and the core 15'. The wall of 17' is separated (usually the rotor seat 17' has a thickness of at least 1 mm due to the strength requirement), thus increasing the distance between the inner circular arc surface of the stator core 8' to the core 15' of the rotor (at least 1.5mm), that is, The magnetic circuit has a large air gap, so the magnetic resistance is large and the electromagnetic efficiency is low.
  • stator core 8' between the stator core 8' and the rotor seat 17', between the stator core and the coil plastic seal 5', and the coil plastic seal 5' There is a gap between the pump body 10' and the pump body 10', so that noise is generated between the components during operation.
  • the heat dissipation of the stator core 8' depends only on the air radiation and the rotor seat to the pump body 10'. Heat conduction is performed, so heat dissipation is poor.
  • the object of the present invention is to overcome the deficiencies in the prior art described above and to provide an alternating current permanent magnet drainage pump which reduces the magnetic gap between the stator core and the core of the rotor assembly and improves the electromagnetic efficiency of the product.
  • Reduce the structural size of the pump body reduce the manufacturing cost of the drain pump, reduce the vibration and noise of the product, improve the heat dissipation performance, and improve the starting force at the start of the motor to make the start smooth.
  • an AC permanent magnet drainage pump capable of reducing vibration noise includes a pump cover and a pump body, and further includes a magnetic core, a rotating shaft, a stator core and a coil, and the coil is wound around the coil.
  • the stator core is mounted on the coil
  • the pump body is a housing integrally formed around the assembled coil, the coil bobbin and the stator core, the housing defining an opening at the top and extending from the opening
  • the core receiving space for accommodating the magnetic core to the center of the pump body, and the top opening of the core accommodating space is provided with a supporting structure for supporting the rotating shaft bearing.
  • a stator assembly including a coil and a stator core, and a rotor assembly including a rotating shaft and a magnetic core disposed on the rotating shaft are disposed within the pump body; the rotor assembly further includes a sleeve fixed to the rotating shaft and disposed on the outer wall of the sleeve At least one limiting rib; a rotor seat for supporting the rotor assembly is disposed in the pump body, and a magnetic core accommodating space is enclosed by an inner surface of the rotor seat; a concave arc portion of the stator core is embedded in the rotor seat).
  • the pump body includes a first pump body portion that seals at least the stator coil and a second pump body portion for mounting the rotor assembly, and the first pump body portion and the second pump body portion are integrally connected.
  • the rotor seat and the second pump body are integrally formed, and an outer edge of the second pump body is provided with a connecting portion for connecting the pump cover.
  • the stator coil is disposed in the first pump body portion, and the concave arc portion of the stator core protrudes from the first pump body portion.
  • the rotor seat is a cylinder body with one end open, and the inner circular arc surface of the cylinder body and the inner circular arc surface of the inner concave arc portion of the embedded stator core together form a magnetic core accommodating space for accommodating the magnetic core.
  • an inner circular arc surface of the concave arc portion of the stator core is disposed as an inner circle of the cylinder Part of the arc surface.
  • At least a portion of the inner circular arc surface of the concave arc portion of the stator core protrudes from the inner surface of the rotor seat in the axial direction.
  • a portion of the inner circular arc surface of the concave arc portion of the stator core and the inner surface of the rotor seat enclose a magnetic core accommodating space for accommodating the magnetic core.
  • the entire inner circular arc surface of the concave arc portion of the stator core and the inner surface of the rotor seat enclose a magnetic core accommodating space for accommodating the magnetic core.
  • stator core other than the inner arc surface of the concave arc portion is surrounded by the pump body seal.
  • the rotor assembly further includes: an activation sleeve fixedly connected to one end of the magnetic core, the inner wall of which is provided with at least one starting rib, the starting rib does not interfere with the limiting rib, and the starting sleeve is made of a non-magnetic material production.
  • the starting rib and the limiting rib are in contact with each other through the damper body, and the gap between the starting rib and the limiting rib has a gap, so that the starting rib is in contact with the damper and contacts the limiting rib before starting.
  • the maximum idling angle is at least 220°, so that when starting, the starting ribs can be rotated through at least 220° and then contacted by the damper and push the limit ribs.
  • the first pump body portion and the second pump body portion are formed by one injection molding or overmolding.
  • the magnetic core has a rotational gap between the concave arc portion of the stator core.
  • the rotational gap is 0.5 mm.
  • a water-cooling chamber is formed in the second pump body portion around the outer wall of the rotor seat and having one end open.
  • a gland is arranged between the pump cover and the pump body for closing one end of the opening of the water-cooling chamber.
  • the stator core is subjected to passivation and electrophoresis.
  • the closed end of the rotor seat is provided with a bearing housing.
  • the starting mechanism is disposed at an end of the magnetic core away from the impeller or an end of the magnetic core close to the impeller.
  • the starting mechanism is disposed at an end of the magnetic core away from the impeller.
  • the two starting ribs divide the inner cavity of the starting sleeve into first and second regions, the first damper body is disposed in the first region, and the second damper body is disposed in the second region; the starting rib and the limit position There is anti-interference gap between the ribs, so that one of the starting ribs can rotate through one of the two limiting ribs, and the other The movable rib can be rotated through the other of the two limit ribs.
  • the two side walls of the starting rib respectively have a first concave curved surface
  • the two side walls of the limiting rib respectively have a second concave curved surface
  • the first concave curved surface and the first concave curved surface A concave curved surface is provided for mating with the first shock absorbing body and the second shock absorbing body.
  • first concave curved surface and the second concave curved surface have the same radius of curvature; wherein the first concave curved surface and the corresponding second concave curved surface form a first reduction in accommodation The non-closed space of the shock body and the second shock absorber.
  • first shock absorbing body and the second shock absorbing body are cylindrical or spherical bodies having the same structure, and the radius thereof is smaller than the radius of curvature of the first concave curved surface.
  • the interference preventing gap is formed between the inner wall of the starting rib and the outer wall of the limiting rib.
  • the distance between the outer wall of the tubular body of the sleeve and the inner wall of the starting rib is smaller than the diameter of the first and second damper bodies, and the distance between the inner wall of the starting sleeve and the outer wall of the limiting rib is smaller than that of the first and second damper bodies. diameter.
  • the two limiting ribs are two outwardly projecting portions symmetrically disposed on the outer wall of the tubular body of the sleeve.
  • the two actuating ribs are two projections symmetrically disposed on the inner wall of the boot sleeve and projecting inwardly in the radial direction of the boot sleeve.
  • the inner wall of the starting sleeve is provided with a starting rib
  • the outer wall of the sleeve is provided with a limiting rib
  • a shock absorbing body is arranged in the cavity between the starting rib and the limiting rib, and the starting rib and the limiting rib are Interference-free clearance.
  • An interference preventing gap is formed between the inner wall of the starting rib and the outer wall of the limiting rib.
  • the cavity formed between the starting rib and the limiting rib is an integral fan-shaped cavity, and the shock absorbing body is located in the fan-shaped cavity.
  • the shock absorbing body is a fan-shaped body, and the outer fan-shaped wall radius of the shock absorbing body is larger than the inner wall radius of the starting rib, and the inner fan-shaped wall radius of the shock absorbing body is smaller than the outer wall radius of the limiting rib.
  • the distance between the outer wall of the tubular body of the sleeve and the inner wall of the actuating rib is less than the difference between the inner and outer sector wall radii of the first damper.
  • the height of the starting ribs and the damper body is not greater than the height of the limit ribs.
  • the outer end ring of the tubular body of the sleeve is provided with a platform projecting outwardly, and the bottom end of the platform is connected to the top end of the limiting rib.
  • the limiting rib is disposed on the outer wall of the tubular body of the sleeve, and is integrally formed with the tubular body and the platform.
  • the starting ribs are integrally formed with the starting sleeve.
  • the boot sleeve is made of plastic material.
  • the pump body includes an outer casing formed around an outer contour of the assembled coil and the stator core, and an inner casing as a core accommodating space at a center of the inner cavity of the outer casing, the stator core being u
  • the stator core has two arms extending from the inner casing wall to the two sides of the core, and a rotating gap is left between the U-shaped stator core and the core. Since there is no rotor barrel separation between the U-shaped stator core and the core, the gap between the stator core and the core can be made smaller.
  • the AC permanent magnet drainage pump capable of reducing vibration noise further comprises a stainless steel rotor cylinder, the stainless steel rotor cylinder inner cavity is provided with a magnetic core, and the stainless steel rotor cylinder is disposed in the magnetic core accommodating space, wherein the stator core is U
  • the stator core has its arms folded on both sides of the stainless steel rotor barrel. Since the thickness of the stainless steel can be made thin, when a stainless steel rotor cylinder is used, the gap between the stator core and the core is thus reduced.
  • the pump body further includes a water-cooling chamber for accommodating the cooling water, and of course, the water-cooling chamber is not required, and the water-cooling chamber is formed by an outer space formed by the outer contour of the portion where the two arms of the U-shaped stator core interfere with the magnetic core. .
  • the water cooling chamber is closely attached to the stator core, and the heat generated by the stator core during operation is quickly transmitted to the cooling liquid in the water cooling chamber to achieve the purpose of cooling the heat of the motor, thereby effectively reducing the temperature rise of the water pump motor.
  • the shaft bearing is sealingly connected to the support structure of the shaft bearing through the bearing seal ring.
  • the pump cover is assembled with the pump body and seals the joint with a sealing ring to prevent water in the pump cover from flowing into the pump body.
  • the pump body is a bottom-closed housing that is integrally molded into a plastic shape.
  • the bottom of the pump body is open, closed by a rear cover and closed by a sealing ring.
  • the AC permanent magnet drain pump of the present invention has the following outstanding advantages:
  • the invention adopts a pump body in which the stator assembly and the rotor assembly are disposed, thereby simplifying the structure of the pump body, reducing the structural size of the pump body, and facilitating product assembly and maintenance;
  • the first pump body portion and the second pump body portion are formed by injection molding the stator coil and the stator core by a plastic sealing mold, thereby avoiding pump resonance and reducing noise, and is advantageous for
  • the stator core is dissipated by heat conduction of the pump body, thereby improving heat dissipation efficiency;
  • the present invention is embedded in the rotor seat of the second pump body by the concave arc portion of the stator core, so that the inner arc surface of the cylinder is common with the inner arc surface of the concave arc portion of the stator core Forming the inner cavity accommodating the rotor assembly, there is no isolation between the stator core and the core with a wall seat having a wall thickness of at least 1 mm, thereby reducing the magnetic path air gap between the stator core and the core of the rotor assembly, Reduced magnetic resistance and improved electromagnetic efficiency, Compared with the existing structure of the drainage pump, a smaller amount of silicon steel sheet, enameled wire and a shorter magnetic core can achieve the same performance and reduce the production cost of the drainage pump;
  • the concave arc portion of the stator core of the present invention is embedded in the rotor seat of the second pump body portion, so that the stator core can be in contact with the liquid in the rotor seat, which facilitates rapid heat generation when the stator core is operated. Disperse
  • the portion of the stator core of the present invention other than the concave arc portion is surrounded by the first pump body portion and the second pump body portion, thereby avoiding the occurrence of water leakage of the rotor seat;
  • the outer ring of the rotor seat of the invention is provided with a water-cooling chamber, and the heat generated by the stator core can be quickly transmitted to the liquid in the water-cooling chamber during operation, thereby accelerating the heat dissipation of the stator core and prolonging the life of the drainage pump;
  • the stator core of the present invention can be effectively prevented from rusting by the passivation and electrophoresis, and the stator coil is surrounded by the first pump body portion, thereby preventing the stator coil from contacting the air;
  • the starter sleeve of the present invention is made of a non-magnetic material, which reduces the production cost, and a shock absorber body is arranged between the starter rib in the start sleeve and the limit rib of the sleeve, and the shock absorber and the limit rib are passed through the shock absorber.
  • Body contact so the force surface is large, the impact force of the starting rib on the limiting rib is small, the damping effect is good, the working noise of the drainage pump is small, the starting is more stable, and the service life of the starting mechanism is long;
  • the starting sleeve, the sleeve and the shock absorbing body of the starting mechanism of the invention are disposed at an end away from the impeller, so that the magnetic core is close to the impeller, and the stator core is also close to the impeller, thereby optimizing the structure of the pump body:
  • the starting mechanism is not set in the impeller, not only the length of the blade of the impeller can be increased, but also the area of the impeller is increased, which also facilitates the installation and manufacture of the impeller.
  • the stator core is close to the impeller, the structure of the entire pump is made. More compact.
  • FIG. 1 is a schematic structural view of a pump casing of a conventional U-type AC permanent magnet synchronous motor
  • Figure la is a schematic structural view of an AC permanent magnet drain pump having a rotor seat 17' in the prior art;
  • Figure lb is a cross-sectional view taken along line E-E of Figure la;
  • FIG. 2 is a three-dimensional cross-sectional view showing the internal structure of the embodiment 1 of the alternating current permanent magnet drain pump of the present invention
  • Figure 3 is a cross-sectional view showing the structure of the embodiment 1 of the alternating current permanent magnet drain pump of the present invention
  • Figure 3a is a cross-sectional view taken along the line M-M of the alternating current permanent magnet drainage pump shown in Figure 3;
  • Figure 4 is a three-dimensional cross-sectional view showing the internal structure of the embodiment 2 of the alternating current permanent magnet drain pump of the present invention
  • Figure 5 is a cross-sectional view showing the structure of an embodiment 2 of an alternating current permanent magnet drain pump of the present invention
  • Figure 6 is a perspective view of Embodiment 3 of the alternating current permanent magnet drain pump of the present invention.
  • Figure 7 is a left side view of the alternating current permanent magnet drainage pump shown in Figure 6;
  • Figure 8 is a partial cross-sectional view of the alternating current permanent magnet drain pump shown in Figure 6;
  • Figure 9 is a cross-sectional view taken along line A-A of the alternating current permanent magnet drain pump shown in Figure 6;
  • Figure 10 is a cross-sectional view taken along line B-B of the alternating current permanent magnet drainage pump shown in Figure 7;
  • Figure 11 is a schematic structural view of a rotor assembly of the present invention.
  • FIG. 12 is a schematic structural view of a stator core in an alternating current permanent magnet drainage pump according to the present invention.
  • Figure 13 is a first perspective view showing the relationship between the concave arc portion of the stator core and the inner arc surface of the rotor seat in Embodiment 3 of the present invention
  • Figure 14 is a schematic view showing the second positional relationship between the concave arc portion of the stator core and the inner arc surface of the rotor seat in Embodiment 3 of the present invention
  • Figure 15 is an exploded view of the first type of actuating mechanism of the alternating current permanent magnet drain pump rotor assembly of the present invention
  • Figure 16 is a cross-sectional view of the rotor assembly of Figure 15 after assembly
  • Figure 17 (a), (b) is a schematic view of the start-up process of the starter sleeve of the present invention
  • Figure 18 (a), (b), (c) is a schematic view of the start-up sleeve counter-rotation rotation starting process of the present invention
  • Figure 19 is an exploded view of the second starting mechanism of the AC permanent-gold drain pump rotor assembly of the present invention; a cross-sectional view of the starting mechanism shown in FIG. 19;
  • Figure 21 is a schematic view showing the structure of the magnetic core in the starting mechanism shown in Figure 20 in an idling state
  • Figure 22 is a schematic view showing the structure of the starting mechanism shown in Figure 20 in a counterclockwise motion state.
  • the AC permanent magnet drainage pump of the present invention includes a pump body 10, a pump cover 1, an impeller 2, a stator core 8, a coil 7, a magnetic core 15, a rotating shaft 11, Rotary shaft bearing 12, gland 3.
  • the coil 7 is wound around the bobbin, and the arms of the U-shaped stator core 8 pass through the coil 7.
  • the assembled coil, the skeleton and the stator core are integrally molded together to form a pump body 10 having a bottom closed top opening, and the injection molded pump body 10 includes an outer casing formed around the assembled coil and the outer contour of the stator core.
  • the body and the inner cylinder as a core accommodating space at the center of the inner cavity of the outer casing.
  • the arms of the U-shaped stator core protrude from the inner wall of the inner cylinder.
  • the inner cylinder is open at the top of the pump body, and its opening is provided with a support structure for supporting the shaft bearing.
  • the core assembly is inserted into the core housing space 10.1 from the top of the pump body.
  • the shaft 11 extends through the shaft hole of the core 15 and extends from the pump body to the pump cover.
  • the upper end of the rotating shaft 11 is fixedly connected with the impeller 2 and drives the impeller 2 to rotate synchronously.
  • the magnetic core accommodating space 10.1 is sealed at the bottom, and is axially opened along the rotating shaft 11, and penetrates with the space where the arms of the stator core 8 are located.
  • the arms of the U-shaped stator core 8 are sandwiched from the axial opening on both sides of the core. There is no need to provide a rotor barrel separation between the stator core 8 and the core 15, so the gap between the two can be small.
  • An impeller 2 is disposed in the pump cover 1, and the pump cover 1 and the pump body 10 are assembled to each other to form a complete pump casing.
  • the pump body 10 is further provided with a water-cooling chamber 13 in which at least part of the cavity wall of the water-cooling chamber is formed around a portion where the U-shaped stator core interferes with the magnetic core, and the water-cooling chamber opening is upward, and is sealed by the gland 3 , does not communicate with the core housing space 10.1.
  • the water-cooling chamber 13 is closely attached to the stator core 8, and the heat generated by the stator core 8 during operation is quickly transmitted to the coolant in the water-cooling chamber 13, thereby achieving the purpose of cooling and cooling the motor.
  • an embodiment in which the water-cooling chamber is not provided may be employed on the pump body 10.
  • the gland 3 of the water-cooling chamber can also be opened. As shown in Fig. 2, the water in the water-cooling chamber can flow with the water in the pump chamber. When the sealing ring at the shaft bearing wears, the water in the water-cooling chamber can reach the pump chamber. , then enter the core accommodation space. The water-cooled chamber gland can prevent large debris from entering the water-cooling chamber.
  • the top of the inner cylinder is provided with a shaft bearing 12, and the shaft bearing 12 passes through the bearing seal 5 and the core
  • the top opening of the accommodating space is sealedly connected, and the bearing seal 5 prevents water in the pump cover from flowing into the pump body therethrough.
  • the rotor seat cover 17b also serves as a bearing bracket for the spindle bearing 12.
  • connection position of the pump cover 1 and the pump body 10 is provided with a first sealing ring 6 to prevent leakage of the pump chamber in which the impeller operates.
  • the pump body 10 includes a first pump body portion 10a that seals at least the stator coil and a second pump body portion 10b that houses the rotor assembly 20.
  • the second pump body portion 10b is provided with a magnetic body.
  • the core accommodates the rotor seat 17 of the space 10.1.
  • the rotor seat 17 is used for assembling and supporting the rotor assembly 20 (including the magnetic core 15, the rotating shaft 11), and a water-cooling chamber 13 formed around the outer wall of the rotor seat 17 and having one end open.
  • the pump body 10 of the present embodiment can be obtained by a one-shot injection molding method or a secondary injection molding method.
  • the following is an example of a method of obtaining the pump body 10 by secondary injection molding.
  • the first injection molding is first used.
  • the processing method obtains the first pump body portion 10a of the pump body 10, and then obtains the second pump body integrally connected to the first pump body portion 10a by the second injection molding process on the basis of the first pump body portion 10a. Part 10b.
  • the pre-formed coil 7 is injection-molded by a plastic mold and a plastic material to form a first pump body portion 10a, which surrounds and seals the coil 7, so that among the components constituting the coil 7, except for a part of the plug-in terminal The components are completely isolated from the outside air, thereby preventing the components constituting the coil 7 from coming into contact with the air.
  • a part of the stator core 8 (structure shown in FIG. 12) is assembled in an assembled manner in the coil 7 which has been surrounded and sealed by the first pump body portion 10a, and the concave arc portion 81 of the stator core 8 is extended. Out of the first pump body 10a.
  • the second pump body portion 10b of the present embodiment is formed by injection molding using a molding die on the basis of the first pump body portion 10a, and is integrally coupled to the first pump body portion 10a, and protrudes from the first pump body.
  • the concave arc portion 81 of the stator core 8 other than the portion 10a is fitted into the second pump body portion 10b, and the second pump body portion 10b has a rotor seat 17 that fits and supports the rotor assembly and a pump for connecting the outer edge
  • the water-cooling chamber 13 of the present embodiment is open at the end for holding the coolant, and the open end of the water-cooling chamber 13 is on the same side as the open end of the rotor holder 17.
  • a gland 3 for covering the open end of the water-cooling chamber 13 is provided between the pump cover 1 and the second pump body portion 10b, and the gland is provided with a hole for communicating the water-cooling chamber and the pump chamber.
  • a rotor seat gland 17b for sealing one end of the opening of the rotor seat 17 is provided between the rotor seat 17 and the pump cover 1.
  • the concave arc portion 81 of the stator core 8 is embedded in the rotor seat 17, and the water-cooling chamber 13 is annularly disposed on the outer wall of the rotor seat 17, the heat generated by the stator core 8 during operation can be quickly transferred to the water-cooling chamber 13. of The coolant is used to achieve the purpose of cooling and cooling the drain pump.
  • the AC permanent magnet drain pump using the stainless steel rotor barrel 9 of the present invention comprises a pump body 10, a pump cover 1, a rear cover 14, an impeller 2, a gland 3, and a molded coil 7
  • the pump body 10 is formed around the outer contour of the assembled coil 7, the stator core 8, and the magnetic core 15, forming an upper and lower opening housing, the top of which is assembled with the pump cover 1 and seals the joint with the first sealing ring 6,
  • the bottom is closed by a rear cover 14.
  • the pump body 10 after injection molding includes an outer casing formed around the outer contour of the assembled coil and the stator core, and an inner cylinder as a core accommodating space at the center of the outer casing.
  • the inner cylinder is an upper and a lower opening, and a laterally open non-enclosed space, which penetrates the space where the stator core is located.
  • the top opening of the inner cylinder is provided with a support structure for supporting the shaft bearing.
  • the shaft 11 extends through the shaft hole of the core 15 and extends from the pump body to the pump cover.
  • the upper end of the rotating shaft is fixedly connected with the impeller and drives the impeller to rotate synchronously.
  • a rotor cylinder 9 is closed in the inner cavity, and a magnetic core 15 is disposed in the rotor cylinder.
  • the rotor barrel 9 has a stainless steel cylinder 9.1 having a length greater than the height of the core and a rubber plug 9.2 for closing the stainless steel cylinder 9.1.
  • the rubber plug has a bearing mounting hole for assembling a rear rotary bearing mounted on the bottom of the rotating shaft, and the second sealing ring 4 is sealed between the rubber plug and the rotor cylinder.
  • the U-shaped stator core 8 extends through the coil 7 to both sides of the rotor barrel 9, and the magnetic core accommodating space and the space of the U-shaped stator core arms are interpenetrated. Since the stator core and the core are only separated by a very thin stainless steel cylinder 9.1, the gap between the two is greatly reduced.
  • the pump body 10 is further provided with a water-cooling chamber 13 which is formed at least part of the cavity wall around the portion where the U-shaped stator core interferes with the magnetic core, and the water-cooling chamber opening is upward, and is sealed by the gland 3, Does not communicate with the core housing space.
  • the water-cooling chamber is closely attached to the stator core, and the heat generated by the stator core during operation is quickly transmitted to the coolant in the water-cooling chamber to achieve the purpose of cooling and cooling the motor.
  • an embodiment in which the water-cooling chamber is not provided can also be used on the pump body.
  • the inner cylinder is provided at its top opening with a rotary bearing 12 through which the rotary bearing 12 is sealingly connected to the top opening of the inner cylindrical space.
  • Bearing seal 5 Prevents water from the pump cover from flowing into the pump body.
  • the gland 3 also serves as a bearing bracket for the rotary bearing 12.
  • the first sealing ring 6 is disposed at the connection position of the pump cover 1 and the pump body 10 to prevent water from entering the pump body, or to prevent The pump chamber of the impeller is leaking.
  • Figs. 6, 7, 8, 9, and 10 the structure of the embodiment 3 of the alternating current permanent magnet drain pump of the present invention is shown.
  • the AC permanent magnet drain pump of the present invention comprises: a pump body 10, a pump cover connected to the pump body 1, an impeller 2 disposed in the pump cover 1, a rotor assembly and a stator assembly disposed in the pump body 10, and the stator assembly has The coil 7 and the stator core 8, the rotor assembly has a magnetic core 15 and a rotating shaft 11.
  • the pump body 10 includes at least a first pump body portion 10a that surrounds the coil 7 and a second pump body portion 10b for mounting the rotor assembly 20, and the first pump body portion 10a and the second pump body portion 10b are integrally connected. .
  • a rotor seat 17 for fitting and supporting the rotor assembly is disposed in the second pump body portion 10b.
  • the concave arc portion 81 of the stator core 8 is embedded in the rotor seat 17, and the rotor seat 17 has a cylindrical shape with one end open, so that the inner portion
  • the inner circular arc surface 81a of the concave arc portion 81 is a part of the inner arc surface 17a of the rotor base 17, and the inner circular arc surface 17a of the rotor seat and the inner circular arc surface 81a of the embedded concave circular arc portion 81 are formed together.
  • the cavity that is, the core accommodating space 10.1, is used for assembling and supporting a rotor assembly including a magnetic core and a rotating shaft.
  • the side edge of the second pump body portion 10b forms a connecting portion 18 to which the connecting portion 18 is attached.
  • the magnetic path between the outer surface of the magnetic core 15 and the inner circular arc surface 81a of the stator core 8 The gap is equal to the distance b between the outer surface of the magnetic core 15 and the inner circular arc surface 17a of the rotor base 17 (as shown in FIG. 14); when the inner circular arc surface 81a of the stator core 8 protrudes in the axial direction When the inner circular arc surface 17a of the rotor base 17 is formed, the magnetic path air gap is smaller than the distance b (as shown in Fig. 13).
  • a part of the inner circular arc surface 81a of the stator core 8 is a part of the inner arc surface 17a of the rotor seat 17, and means that a part of the inner circular arc surface 81a (such as the end portion) may be used by the second pump body portion. It is closed, and the remaining portion of the inner circular arc surface 81a is exposed and made part of the arcuate surface 17a in the rotor seat 17.
  • the gap between the outer surface of the core 15 of the rotor assembly and the inner circular arc surface 81a of the stator core 8 is greatly reduced, that is, the core 15 in the stator core 8 and the rotor assembly is minimized.
  • the magnetic gap between the magnetic circuits reduces the magnetic resistance and greatly improves the electromagnetic efficiency.
  • the drainage pump of the present invention reduces the number of silicon steel sheets by 1/3 compared with the drainage pump of the prior structure, so the length of the magnetic core is reduced by 1/3, and the amount of enameled wire constituting the coil is also reduced accordingly. , thereby effectively reducing the manufacturing cost of the drain pump.
  • the stator core 8 is U-shaped, and has a pair of projecting arms 82 and a pair of concave arc portions 81 respectively at the ends of the pair of projecting arms 82, and two concave arc portions 81.
  • the inner circular arc surface 81a encloses a cavity that accommodates the magnetic core 15.
  • the stator core 8 and the coil 7 are subjected to one injection molding treatment using a plastic mold and a plastic material to form an integral first pump body portion 10a and a second pump body portion 10b.
  • the plastic material is a BMC material.
  • the coil 7 is made of a skeleton, an enameled wire, a plug-in type terminal, a thermal protector, and an insulating tape, and the U-shaped stator core 8 is subjected to passivation and electrophoresis; then, the arms of the stator core 8 are 82 penetrates through the coil 7, so that the stator core 8 includes the concave arc portion 81 protruding out of the coil 7; finally, the coil 7 and the stator core 8 are placed in a plastic mold for injection molding to form a package online.
  • the ring 7 and the pump body 10 including the first pump body portion and the second pump body portion outside the stator core 8.
  • the first pump body portion 10a surrounds and seals the portion of the coil 7 and the stator core 8 located inside the coil 7, that is, the first pump body portion surrounds and seals the components constituting the coil 7 (except for the plug-in terminal portion) It is isolated from the outside air, and the portion of the stator core 8 located inside the coil and the end opposite to the concave arc portion 81 are also sealed by the first pump body portion 10a and isolated from the outside air.
  • the concave arc portion 81 of the stator core 8 extending outside the coil 7 is fitted into the second pump body portion 10b, and the rotor seat 17 of the second pump body portion 10b has a cylindrical shape with one end open, and the inner circumference of the rotor seat
  • the arc surface and the inner circular arc surface of the concave arc portion 81 together form an inner cavity for accommodating the rotor assembly, and the concave arc portion 81 of the stator core 8 encloses a concave portion in which the rotor assembly can be accommodated
  • the axis L of the cavity (shown in Figure 12) coincides with the centerline of the rotor seat 17 of the second pump body.
  • the outer surface of the core 15 of the rotor assembly and the stator iron can be made by forming the inner circular arc surface 81a of the concave arc portion 81 of the stator core 8 and the inner arc surface 17a of the rotor base 17 to form the inner cavity of the rotor assembly.
  • the air gap a between the inner circular arc surfaces 81a of the core 8 is minimized, thereby greatly reducing the magnetic resistance and improving the electromagnetic efficiency.
  • the first pump body portion 10a of the pump body 10 of the plastic coil is obtained by first injection molding on the coil, and then assembled in the first pump body portion 10a.
  • the sub-core 8 obtains the second pump body portion 10b integrally connected to the first pump body portion 10a by the second injection molding based on the first pump body portion 10a and the stator core 8.
  • the first pump body portion 10a in the pump body 10 is made of BMC material
  • the second pump body portion 10b is made of a thermoplastic material that is easy to mold, such as PP material, but Made of BMC material.
  • the first pump body portion 10a in the pump body 10 at least plastically seals the coil 7, that is, the coil is used by the first pump by injection molding.
  • the body 10a is surrounded by a seal, so that the coil 7 is integrated with the first pump body portion 10a, which not only reduces product resonance and product noise, but also facilitates heat dissipation.
  • the first pump body portion 10a can be formed by injection molding a pre-formed coil 7 by using a plastic mold and a plastic material, which surrounds and seals the coil 7, so that among the components constituting the coil 7, except for the partial plug-in terminal The remaining components are completely isolated from the outside air, thereby preventing the components constituting the coil 7 from being isolated from the outside to avoid contact with the air.
  • the stator core 8 is inserted into the coil 7 that has been surrounded and sealed by the first pump body portion 10a by assembly, and the concave arc portion 81 of the stator core 8 protrudes from the first pump body portion 10a. .
  • the first pump body portion 10a may be formed by injection molding a prefabricated coil 7 and a stator core 8 in which a part of the stator body 7 is mounted in the stator ring 7 by means of a plastic mold and a plastic material. After the coil 7 is formed, a part of the stator core 8 is mounted in the coil 7, and the concave arc portion 81 of one end of the pair of projecting arms of the stator core 8 is extended outside the coil 7, and then utilized.
  • the mold and the plastic material are injection-molded to the coil 7 and a stator core 8 in which a part thereof is mounted in the coil 7, so that a portion of the coil 7 and the stator core 8 disposed in the coil 7 is surrounded by the first pump body portion 10a.
  • the concave arc portion 81 on the pair of projecting arms of the stator core 8 protrudes beyond the first pump body portion 10a. At this time, among the components constituting the coil 7, the remaining components other than the partial plug-in terminal are completely isolated from the outside air, thereby preventing the components constituting the coil 7 from coming into contact with the air, and the stator core installed in the coil 7
  • the portion 8 is also surrounded by the first pump body portion 10a and sealed from the coil 7 to be completely isolated from the outside air.
  • the second pump body portion 10b is formed by injection molding using a plastic sealing die on the basis of the first pump body portion 10a to which the stator core 8 and the wrapping coil 7 are attached, and is integrally connected to the first pump body portion 10a.
  • the second pump body portion 10b seals the stator core 8 except for the inner arc surface of the concave arc portion 81, and embeds the concave arc portion 81 extending outside the first pump body portion 10a.
  • the second pump body portion 10b has a rotor seat 17 and a connecting portion 18, and the rotor seat 17 has a cylindrical shape with one end open, has an inner cavity for fitting and supporting the rotor assembly, and the connecting portion 18 is located at the side edge of the second pump body portion 10b. , used to connect the pump cover 1.
  • the concave arc portion 81 of the stator core 8 is fitted into the rotor seat 17, and a part of the inner arc surface 81a or all the inner arc surface 81a of the concave arc portion 81 becomes a part of the arc surface 17a of the rotor seat 17, Together, they form an internal cavity that houses the rotor assembly.
  • a part of the inner circular arc surface 81a of the concave circular arc portion 81 may protrude toward the inner circular arc surface 17a of the rotor seat 17 toward the axial direction (as shown in FIG. 13) or may be flush with the inner circular arc surface 17a of the rotor seat 17. (As shown in Figure 14).
  • a bearing housing 19 is provided at one end of the rotor seat 17, and the rotor assembly is inserted into the rotor seat 17 from one end of the opening of the rotor base 17, so that the magnetic core 15 is located at two inner circles of the concave arc portion 81 of the stator core 8.
  • the portion of the cavity enclosed by the arc surface 81a is also installed.
  • a gland 3 is installed between the second pump body portion 7 and the pump cover 1, and a first sealing ring 6 is disposed between the pump cover 1 and the gland 3, as shown in FIG.
  • a gland sealing ring 3a is disposed between the gland 3 and the pump body 10.
  • Bearings 12a are respectively mounted on the two ends of the rotating shaft 11, and the bearing 12a is connected to the gland 3 through the rotating shaft sealing ring 5.
  • the bearing 12b is supported in the bearing housing 19 of the rotor base 17, and the bearing 12a and the bearing 12b together form a support for the rotating shaft 11. Thereby avoiding radial and axial sway of the shaft during operation.
  • the rotating shaft 11 is provided with a starting mechanism 21 for driving the rotating shaft 11 to rotate with the magnetic core 15, which is disposed at one end of the magnetic core 15 away from the impeller 2 or one end of the magnetic core 15 close to the impeller 2. Only the starting mechanism 21 is disposed on the magnetic core. 15 away from the end of the impeller 2.
  • the magnetic core 15 is disposed in the concave arc portion 81 of the stator core 8, and has a rotation gap (ie, a magnetic circuit air gap) between the outer surface of the core 15 and the inner circular arc surface of the concave arc portion 81.
  • the rotation gap is 0.5 mm.
  • the inner circular arc surface of the concave arc portion 81 is composed of two circular arc surfaces having different radii, and the rotational gap refers to a gap formed between the circular arc surface having a small radius and the outer surface of the magnetic core 15 (for example) Figure 13 and Figure 14).
  • the inner arc surface of the concave arc portion 81 of the stator core 8 is used as a part of the arc surface of the rotor base 17, and the magnetic path air gap between the core 15 and the stator core is reduced, thereby reducing the magnetic Resistance, improve electromagnetic efficiency.
  • the coil 7 When the coil 7 is energized by alternating current, the coil 7 generates an alternating magnetic field through the stator core 8, driving the magnetic core 15 in the rotor assembly to rotate in the forward or reverse direction, and the magnetic core 15 is set on the rotating shaft 11, and the magnetic core 15 is forward. Or in the reverse rotation, the rotation of the rotating shaft 11 is driven by the starting mechanism 21, and the rotating shaft 11 is fixedly mounted on the rotation of the impeller 2. Turning to the center, therefore, when the rotating shaft 11 rotates, the impeller 2 can be driven to rotate in the forward or reverse direction, thereby realizing the function of drainage.
  • the starting mechanism of the embodiment includes: a boot sleeve 93b fixedly mounted at the end of the magnetic core 15; the boot sleeve 93b is made of a non-magnetic material, thereby saving the production cost of the magnetic core; and being fixedly mounted on the rotating shaft
  • the sleeve 93a on the 11 is placed in the boot sleeve 93b; and the boot sleeve 93b and the sleeve 93a are in contact with each other through the damper body.
  • the sleeve 93a is disposed in the boot sleeve 93b, and the outer wall is provided with limiting ribs 93a', 93a" ; the inner wall of the boot sleeve 93b is provided with the starting ribs 93b', 93b"; the starting rib and the limit The ribs are in contact with each other by the damper bodies 93c, 93c'. Due to the formation of an anti-interference gap between the starting rib and the limiting rib (as shown in Figures 18 (b) and 21), the maximum angle of idling that can be obtained by the starting rib before pushing the limiting rib through the damper is activated at startup. At least 220°.
  • the starting angle of the starting rib before the pushing of the limiting rib through the damper body is at least 220°.
  • the inner wall of the starting sleeve 93b of the first type of starting mechanism is provided with two starting ribs 93b', 93b'', and the outer wall of the sleeve 93a is provided with two limiting ribs 93a'93a"
  • a first shock absorbing body 93c is disposed between the starting rib 93b' and the limiting rib 93a'
  • a second shock absorbing body is disposed between the starting rib 93b" and the limiting rib 93a''93c'
  • the distance between the end face of the starting rib 93b' and the starting rib 93b" is greater than the distance between the limiting rib 93a' and the limiting rib 93a" end face from the axis, so that the starting rib 93b' and the limit Between the ribs 93a', between the starting ribs 93b' and the limiting ribs 93a", between the starting
  • the anti-interference gap functions, if the first damper 93c or the second damper is not blocked, the starting rib 93b' or the starting rib 93b can be respectively rotated through the limit.
  • the starter sleeve 93b is rotated counterclockwise from the position shown in Fig. 17(b) to the position of Fig. 18(a), and then, between the starter rib 93b' and the limit rib 93a" With anti-interference clearance, the starting rib 93b' can be rotated counterclockwise through the limiting rib 93a" (see Fig.
  • the starting rib 93b drives the sleeve 93a to rotate counterclockwise, thereby driving the rotating shaft 11 to drive the impeller to rotate counterclockwise.
  • the starting rib 93b' and the starting rib 93b" are rotated from the position of Fig. 17 (b) to the position of Fig. 18 (c), and the rotation stroke can reach 220 °. Therefore, the starting torque generated is greatly increased, which is advantageous for the starting mechanism to start the impeller rotation.
  • a rear cover 93e is attached to one end of the magnetic core 15 away from the impeller 2, and a seal ring 93d is disposed between the sleeve 93a and the rear cover 93e, and between the start sleeve 93b and the sleeve 93a. 93 d,.
  • the alternating magnetic field generated by the stator coil 7 drives the magnetic core 15 to rotate through the stator core 8, and the starting sleeve 93b rotates with the magnetic core 15, and the starting rib 93b' of the starting sleeve 93b passes.
  • the second damper body 93c' is in contact with the limiting rib 93a' of the sleeve 93a (as shown in Fig. 18(c)), and the starting rib 93b' of the inner wall of the sleeve 93b is passed through the first damper body 93c and the sleeve 93a.
  • the limiting rib 93a' is in contact (as shown in FIG.
  • the starting sleeve 93b is formed by fixing the plastic material to one end of the magnetic core 15 by using the magnetic core 15 as an insert, and the starting sleeve 93b has a receiving cavity for arranging the sleeve 93a.
  • the inner wall of the starting sleeve 93b is symmetrically provided with a starting rib 93b' and a starting rib 93b'' protruding toward the axial direction thereof, and the two side walls of the starting rib 93b' and the starting rib 93b'' respectively have a first concave Curved surface.
  • the sleeve 93a has a tubular body and limiting ribs 93a', 93a', a limiting rib 93a' and a limiting rib 93a', which are two outwardly protruding portions symmetrically disposed on the outer wall of the tubular body, and the limiting rib 93a
  • the two side walls of the 'and the limiting rib 93a' respectively have a second concave curved surface.
  • the radius of curvature and the starting of the second concave curved surface The first concave curved surface of the rib 93b' and the starting rib 93b'' has the same radius of curvature.
  • the outer wall radius of the limiting ribs 93a', 93a'' is slightly smaller than the inner wall radius of the starting ribs 93b', 93b'', so that the outer walls of the limiting ribs 93a', 93a'' and the starting ribs 93b', 93b' An interference preventing gap is formed between the inner walls of the ', so that the limiting ribs 93a', 93a'' and the starting ribs 93b', 93b'' can be relatively rotated without colliding together.
  • the first damper body 93c and the second damper body 93c' adopt the same structural cylinder or
  • the sphere is made of a plastic material, such as rubber, and during processing, the first shock absorber 93c and the second shock absorber 93c' may have a solid structure or a hollow structure.
  • the radius of the first damper body 93c and the second damper body 93c' is smaller than the radius of curvature of the first concave curved surface and the second concave curved surface, when the first concave curved surface is opposite thereto
  • the first shock absorbing body 93c or the second shock absorbing body 93c' disposed therein may be respectively curved with the first concave curved shape
  • the surface and the second concave curved surface are matched with each other, so that the shock absorbing body can be prevented from being stuck, and the shock absorbing body and the limiting rib can be deformed to have a certain deformation and enhance the buffering effect.
  • the first damper body 93c and the second damper body 93c' are in an unfixed form in the first space and the second space, and are free to roll or slide in the first space and the second space, and
  • the first damper body 93c and the second damper body 93c' are distributed in a straight line, that is, the first damper body 93c and the second damper body 93c' are symmetrically distributed on both sides of the rotating shaft 11.
  • the maximum distance between the outer wall of the tubular body of the sleeve 93a and the inner wall of the starting rib 93b' or the starting rib 93b'' is smaller than the diameters of the first damper body 93c and the second damper body 93c', so that the starting rib 93b
  • the first damper body 93c and the second damper body 93c' are pressed, and the starting rib 93b' and the limiting rib 93a'
  • the starting rib 93b'' does not collide with the limiting rib 93a", so that the sleeve 93a does not directly collide or rub against the starting sleeve 93b, that is, the sleeve 93a does not directly collide or rub against the core 15.
  • the height of the starting rib 93b', the starting rib 93b', and the first damper body 93c and the second damper body 93c' in the axial direction of the rotating shaft 11 is not larger than the limiting ribs 93a', 93a''
  • the tubular body of the sleeve 93a, the platform 93a''' and the limiting ribs 93a', 93a'' are integrally formed structures obtained by injection molding using a plastic material.
  • the starter ribs 93b', 93b' and the starter sleeve 93b are also an integrally formed structure obtained by a plastic material processing by an injection molding process.
  • the lines connecting the symmetrical centers of the first damper body 93c and the second damper body 93c' respectively disposed in the first space and the second space pass through the axis of the rotating shaft 11, that is, the first damper body 93c and The second damper body 93c' is centered on the axis of the rotating shaft 11, and the phase angles are different by 180°.
  • the stator coil 7 generates an alternating magnetic field acting on the stator core, and the core 15 is driven by the stator core 8 to rotate around the core 15
  • the axis of the rotating shaft 11 rotates clockwise
  • the starting sleeve 93b fixed to the magnetic core 15 rotates clockwise with the magnetic core 15, and the starting rib 93b' and the starting rib 93b'' of the starting sleeve 93b respectively push the first minus
  • the vibration body 93c and the second damper body 93c' contact the limiting rib 93a' and the limiting rib 93a", thereby pushing the sleeve 93a fixed to the rotating shaft to rotate clockwise, and the sleeve driving the rotating shaft 11 along with the clockwise
  • the direction is rotated, which in turn drives the impeller 2 fixedly coupled to the rotating shaft 11 to rotate in the clockwise direction.
  • the magnetic core 15 rotates counterclockwise about the axis of the rotary shaft 11, and the start sleeve 93b fixed to the magnetic core 15 rotates counterclockwise with the magnetic core 15.
  • the starting rib 93b' and the starting rib 93b'' on the starting sleeve 93b are rotated from the position of Fig. 18(a) to In the position shown in Fig. 18 (b), since the starter rib 93b' and the stopper rib 93a'' have a gap, and there is a gap between the starter rib 93b'' and the stopper rib 93a', the starter rib 93b' can be rotated.
  • the limiting rib 93a", the starting rib 93b" can be rotated through the limiting rib 93a', and respectively pushes the second damper body 93c' and the first damper body 93c counterclockwise by a certain angle to make the starting rib 93b' and start
  • the rib 93b'' is in contact with the limiting rib 93a' and the limiting rib 93a' through the second damper body 93c' and the first damper body 93c, respectively (as shown in Fig.
  • the sleeve 93a drives the rotating shaft 11 fixedly connected thereto to rotate in the counterclockwise direction, thereby driving the impeller 2 fixed to one end of the rotating shaft 11 to rotate counterclockwise.
  • the starting sleeve 93b is divided by the starting rib 93b' and the starting rib 93b'' in the circumferential direction to form two substantially semicircular regions, that is, the first region A and the second region. B, the first damper body 93c can only move in the first area A, and the second damper body 93c' can only move in the second area B.
  • the maximum angle at which the magnetic core 15 can idling is 220°.
  • the starting mechanism of the invention when the magnetic core rotates, the starting rib contacts the limiting rib by the damper body to drive the sleeve to rotate, and the rotation of the sleeve drives the rotation of the rotating shaft fixedly mounted with the impeller to drive the impeller to rotate. Therefore, the AC permanent magnet drainage pump of the present invention can obtain a large starting torque and a smoother starting; in particular, the shock absorber is in line contact with the limiting rib and the starting rib, and the friction between each other is sliding friction. Therefore, the damping is small; the two shock absorbers are cylindrical and symmetrically distributed in the starting sleeve and work at the same time, so the rotor assembly has good dynamic balance, small eccentric force and long service life.
  • the starting rib can be 270° after being idling and then contacted by the damper and pushes the limiting rib.
  • the starting mechanism has a starting sleeve 93b on the inner wall of the starting sleeve 93b, and a limiting rib 93a' is provided on the outer wall of the sleeve 93a, as shown in Fig. 20, in the starting sleeve 93b and In the cavity between the bushings 93a, a shock absorbing body 93c arranged in the circumferential direction is disposed between the starting rib 93b' and the limiting rib 93a', and the anti-interference is provided between the starting rib 93b' and the limiting rib 93a'.
  • the gap (as shown in Fig. 21), the damper body 93c is rotatable in the circumferential direction by the pushing of the urging rib 93b'.
  • a rear cover 93e is attached to one end of the magnetic core 15 away from the impeller 2, and seal rings 93d, 93d' are disposed between the sleeve 93a and the rear cover 93e, and between the start sleeve 93b and the sleeve 93a, respectively, and A plurality of lubricating ribs 93f are disposed on the inner wall of the damper body 93c' to reduce the damper body and the outer wall of the sleeve and the boot sleeve The contact area of the wall, thereby reducing friction.
  • the alternating magnetic field generated by the stator coil 7 drives the magnetic core 15 to rotate through the stator core 8, and the starting sleeve 93b rotates simultaneously with the magnetic core 15, and the inner wall of the starting sleeve 93b is activated.
  • the rib 93b' is in contact with the limiting rib 93a' of the outer wall of the sleeve 93a, and is rotated by the limiting rib 93a' to drive the sleeve 93a.
  • the rotating shaft 11 Since the sleeve 93a is fixedly coupled with the rotating shaft 11, the rotating shaft 11 is correspondingly rotated, and the impeller 2 is fixed to one end of the rotating shaft 11, so that the impeller 2 rotates with the rotation of the rotating shaft 11, so that the AC permanent magnet drain pump realizes the function of draining.
  • the starting sleeve 93b fixes the plastic material to one end of the magnetic core 15 by using the magnetic core 15 as an insert, and the starting sleeve 93b has a receiving cavity for arranging the sleeve 93a, and the starting sleeve 93b
  • the inner wall is provided with a starting rib 93b' which protrudes toward the axial direction of the start sleeve 93b, and the starter rib 93b' is a sector.
  • the sleeve 93a has a tubular body and a limiting rib 93a'.
  • the limiting rib 93a' is a fan-shaped body that protrudes outward from the tubular body.
  • the scallop has the same center of curvature as the segment constituting the starting rib 93b'. And the center of curvature is located on the axis of the rotating shaft 11.
  • the outer wall radius of the limiting rib 93a' is slightly smaller than the inner wall radius of the starting rib 93b', so that the starting sleeve 93b rotates counterclockwise to rotate the starting rib 93b' to the limit shown in Fig. 21.
  • the two sides of the starting rib 93b' of the starting sleeve are divided into two fan-shaped spaces by the limiting ribs 93a', that is, two sides are formed between the limiting ribs 93a' and the opposite side walls of the starting ribs 93b'.
  • the damper body 93c is a fan-shaped structure similar in shape to the scalloped cavity, and is made of a plastic material such as rubber, and the damper body 93c may have a solid structure or a hollow structure during processing.
  • the damper body 93c is a substantially segment-shaped body having a central angle of 90°, and the centers of curvature of the inner and outer sector walls are located on the axis of the rotating shaft 11.
  • the outer fan-shaped wall radius of the shock absorbing body 93c is larger than the inner wall radius of the starting rib 93b', and the inner fan-shaped wall radius of the damper body 93c is smaller than the outer wall radius of the limiting rib 93a', so that the inner fan-shaped wall and the sleeve of the damper body 93c
  • the outer wall of the tubular body is clearance-fitted, and the outer fan-shaped wall of the damper body 93c forms a clearance fit with the inner wall of the starter rib 93b' of the starter sleeve 93b, and the two of the damper body 93c
  • the side walls may be in contact with the two side walls of the starting rib 93b' and the two side walls of the limiting rib 93a', respectively
  • the maximum distance between the outer wall of the tubular body of the sleeve 93a and the inner wall of the starting rib 93b' is smaller than the thickness of the shock absorbing body 93c, that is, the difference between the inner and outer fan-shaped wall radii, so that the starting rib 93b' is close to the limiting rib 93a'
  • the shock absorbing body 93c is pressed, the starting rib 93b' does not collide with the limiting rib 93a' itself, so that the sleeve 93a does not directly collide or rub against the starting sleeve 93b, thereby reducing the AC permanent magnet drainage.
  • the height of the starting rib 93b' and the damper body 93c in the axial direction of the rotating shaft 11 is not greater than the height of the limiting rib 93a' in the axial direction, and in order to prevent the damper body 93c from coming off the sector cavity, as shown in the figure
  • the outer wall ring of the tubular body of the sleeve 93a is provided with an outwardly projecting platform, and the bottom end of the platform is connected to the top end of the limiting rib 93a', thereby blocking the shock absorbing body 93c in the fan-shaped cavity.
  • the tubular body of the sleeve 93a, the platform and the limiting rib 93a' are integrally formed structures obtained by a plastic material processing by an injection molding process. Further, the starting rib 93b' and the starter sleeve 93b are also an integrally formed structure obtained by a plastic material processing by an injection molding process.
  • the opposite side of the limiting rib 93a' and the starting rib 93b' form two. a fan-shaped cavity
  • the damper body 93c is located in a fan-shaped cavity on the upper side thereof, at this time, one side wall of the damper body 93c abuts against one side wall of the actuating rib 93b', and the other side wall of the damper body 93c
  • One side wall of the limiting rib 93a' abuts.
  • the stator coil 7 generates an alternating magnetic field, and if the alternating magnetic field is driven by the stator core 8 to drive the magnetic core 15 to rotate clockwise around the axis of the rotating shaft 11, the starting sleeve 93b fixed to the magnetic core 15 rises with the magnetic core 15.
  • a side wall of the starting rib 93b' on the starting sleeve 93b contacts and pushes the damper body 93c to rotate against a side wall of the limiting rib 93a', if due to the starting stroke Small, the starting resistance is too large to push the sleeve to rotate the impeller through the shaft.
  • the magnetic core 15 rotates counterclockwise under the action of the magnetic field, and drives the boot sleeve 93b fixedly connected thereto to rotate counterclockwise about the axis of the rotating shaft 11, first reaching the position shown in FIG. 21, due to the start.
  • the starting rib 93b' rotates
  • the other side wall of the starting rib 93b' is brought into contact with the other side wall of the damper 93c by the limiting rib 93a; when the starting rib 93b' continues to rotate in the counterclockwise direction, the starting rib 93b' pushes the damper
  • the 93c is rotated counterclockwise about the axis of the rotary shaft 11 until one side wall of the damper body 93c abuts against the other side wall of the stopper rib 93a' as shown in FIG.
  • the counterclockwise starting process has a large no-load process (refers to the process from the counterclockwise rotation until the one side wall of the damper body 93c abuts against the other side wall of the limiting rib 93a').
  • the magnetic core 15 of the present invention drives the rotating shaft 11 to rotate
  • the magnetic core 15 can be rotated at a maximum angle of 270°.
  • the starting rib 93b' is rotated from the position of Fig. 20 to the position of Fig. 22, and the idle running stroke reaches 270°.
  • the increase of the no-load rotary stroke will cause the impeller load to be coupled when the rotational speed reaches a large value.
  • the torque at the large rotational speed also has a large value, and a large value has been formed.
  • the inertia kinetic energy is rotated, that is, it is beneficial for the starting mechanism to start the impeller rotation.
  • the starting mechanism having the above structure, when the magnetic core rotates, pushes the shock absorbing body through the starting rib, and then pushes the limiting rib through the damper body to drive the sleeve to rotate, thereby rotating the rotating shaft, thereby driving the impeller to rotate, thereby making the present invention
  • the AC permanent magnet drainage pump has the advantages of large starting torque and smooth starting, and the sealing ring can seal the grease in the starting sleeve, and a plurality of lubricating ribs are arranged on the inner wall of the damping body to avoid long working time of the rotor assembly.
  • the shock absorber is lost in lubrication and is damaged, so the service life is long; the shock absorber has a fan-shaped structure, and the force is more evenly distributed, so the starting noise is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种交流永磁排水泵,包括泵体(10)、泵盖(1)、叶轮(2)、定子组件和转子组件,其中定子组件包括定子线圈(7)和定子铁芯(8),转子组件包括转轴(11)、穿设于转轴上的磁芯(15)、固定在转轴上的轴套(93a)以及设于轴套外壁的至少一个限位筋。在泵体(10)内安装定子组件和转子组件。泵体(10)内设有用于支撑转子组件的转子座(17),且定子铁芯(8)的内凹圆弧部嵌入转子座(17)内。转子组件还包括启动机构,用于在磁芯转动时驱动转轴转动,其具有固定安装在磁芯一端的启动套(93b),启动套(93b)由非磁性材料制成。该交流永磁排水泵的优点在于,定子铁芯与磁芯之间的磁路气隙小,产品使用效率高,结构尺寸小,工作时噪音低,散热性能好,启动机构启动力矩大,启动平稳。

Description

技术领域
本发明涉及液体泵技术领域, 尤其涉及一种交流永磁排水泵。
背景技术
目前, U型交流永磁同步电机常应用于排水泵, 因此这种排水泵也往往称为 交流永磁排水泵。这种排水泵主要应用于洗衣机、洗碗机上。 由于这种排水泵具 有低压启动困难的特点, 从而限制了电磁利用效率, 使产品的整体效率低下。另 一方面,近年来, 随着生产厂家的增多、市场竞争的加剧、客户要求的不断提高, 此产品的成本压力也在不断凸显, 噪音与振动问题也需要不断改善。
现有的 U 型交流永磁排水泵在运作过程中, 线圈与定子铁芯之间会存在振 动、互相碰撞,从而产生噪音。另一方面, 由于定子铁芯与转子之间存在转子筒, 转子筒本身的厚度及与定子铁芯和转子之间所要求的合理间隙均会造成定子铁 芯与转子之间距离的增加,增加了气隙,影响了工作效率,也增大了泵体的尺寸, 这对于微型泵来说, 是不可忽略的影响。 如图 1所示, 为现有的 U型交流永磁同步电机的泵壳结构, 从图中可见该泵 包括一圆筒状的转子筒 9',磁芯组件放置于转子筒内腔。转子筒通常采用塑料制 成, 厚度达到 lmm。 由于转子筒的存在, 增加了定子铁芯与转子磁芯之间的气 隙。 图 la、 图 lb示出了现有技术中采用的交流永磁排水泵, 其将制作好的线圈 V 装入塑封模具进行注塑处理以形成线圈塑封 5 ', 对线圈 7' 进行注塑处理的 过程与中国发明专利中的专利号为 200710143209.3、发明名称为"排水泵永磁同 步电机"的专利中对定子线圈进行注塑处理的过程相同,在形成线圈塑封 5 '后, 将定子铁芯 8' 装配在线圈塑封 5 ' 内, 然后通过将定子铁芯 8' 的内凹圆弧部 通过其内凹圆弧面套装在泵体 10' 的转子座 17' 的壁的外圆弧面上, 而使线圈 塑封 5 ' 通过卡扣 18' 与泵体 10' 配合成一体。
但是, 上述的交流永磁排水泵还具有如下的缺点: 第一, 由于定子铁芯 8' 套装在转子座 17' 的外壁上, 使得定子铁芯 8' 与磁芯 15 ' 之间有转子座 17' 的壁相隔(通常转子座 17' 由于强度的要求, 其厚度至少为 lmm), 因此增大了 定子铁芯 8' 的内圆弧面至转子的磁芯 15 ' 之间的距离 (至少为 1.5mm), 即导 致磁路气隙较大, 因此磁阻较大, 电磁效率较低; 第二, 定子铁芯 8 ' 和转子座 17' 之间、 定子铁芯和线圈塑封 5 ' 之间以及线圈塑封 5 ' 和泵体 10' 之间都有 间隙, 因此工作时, 各零部件之间会由于振动而产生噪音; 第三, 定子铁芯 8 ' 的散热仅仅依靠空气辐射和向泵体 10' 的转子座进行热传导, 因此散热能力较 差。
发明内容
本发明的目的在于克服上述现有技术中存在的不足,提供一种交流永磁排水 泵, 其减小定子铁芯与转子组件的磁芯之间的磁路气隙, 提高产品的电磁效率, 减小泵体的结构尺寸, 降低排水泵的制造成本, 降低产品的震动和噪音, 提高散 热性能, 此外, 提高电机启动时的启动力, 使启动平稳。
为实现本发明的上述目的, 本发明的一种可减小振动噪音的交流永磁排水 泵,包括泵盖、 泵体, 还包括磁芯、 转轴、 定子铁芯及线圈, 线圈绕制于线圈骨 架, 定子铁芯装配于线圈, 其中所述泵体为围绕装配后的线圈、 线圈骨架及定 子铁芯的轮廓一体注塑形成的壳体, 所述壳体限定出一开口于顶部并从开口延 伸至泵体中心的用于容置磁芯的磁芯容置空间, 磁芯容置空间的顶部开口设置 有用于支撑转轴轴承的支承结构。
特别是, 包括线圈和定子铁芯的定子组件以及包括转轴、 设于转轴上的磁 芯的转子组件安置在泵体之内;转子组件还包括固定在转轴上的轴套以及设于轴 套外壁的至少一个限位筋; 泵体内设有用于支撑所述转子组件的转子座,磁芯容 置空间由转子座的内表面围成; 定子铁芯的内凹圆弧部嵌入转子座) 内。
其中, 所述泵体包括至少密封定子线圈的第一泵体部和用于安装转子组件 的第二泵体部, 且第一泵体部与第二泵体部连接为一体。
其中, 所述转子座与所述第二泵体部为一体结构, 且所述第二泵体部的外 缘设有用于连接所述泵盖的连接部。
其中, 所述定子线圈安置在所述第一泵体部内, 所述定子铁芯的内凹圆弧 部伸出于第一泵体部。
其中, 所述转子座为一端开口的筒体, 筒体的内圆弧表面与嵌入的定子铁 芯的内凹圆弧部的内圆弧表面共同围成容纳磁芯的磁芯容纳空间。
其中, 所述定子铁芯的内凹圆弧部的内圆弧表面被设置成所述筒体的内圆 弧表面的一部分。
优选的, 所述定子铁芯的内凹圆弧部的内圆弧表面的至少部分向轴心方向 凸出所述转子座的内表面。
优选的, 所述定子铁芯的内凹圆弧部的部分内圆弧表面与转子座内表面共 同围成容纳所述磁芯的磁芯容纳空间。
优选的, 所述定子铁芯的内凹圆弧部的整个内圆弧表面与与转子座内表面 共同围成容纳所述磁芯的磁芯容纳空间。
特别是, 所述定子铁芯的除内凹圆弧部的内圆弧表面以外的部分被所述泵 体密封包围。
其中, 所述转子组件还包括: 固定连接所述磁芯一端的启动套, 其内壁设 有至少一个启动筋,所述启动筋与所述限位筋不干涉,所述启动套由非磁性材料 制成。
特别是,所述启动筋与限位筋之间通过减震体接触, 启动筋和限位筋之间具 有间隙, 该间隙使得启动时, 启动筋在接触减震体接触并推动限位筋前最大的空 转角度至少是 220° , 使得启动时, 启动筋可至少转过 220° 后通过减震体接触 并推动限位筋。
优选的, 所述第一泵体部和所述第二泵体部为一次注塑成型或二次注塑成 型。
优选的, 磁芯与定子铁芯的内凹圆弧部之间具有转动间隙。
优选的, 转动间隙为 0.5mm。
此外, 第二泵体部内还设有环绕于转子座外壁且一端开口的水冷腔。 相应的, 泵盖和泵体之间安装一压盖, 用于将水冷腔的开口一端封闭。 优选的, 定子铁芯经过钝化和电泳处理。
特别是, 转子座封闭的一端设有轴承座。
其中, 启动机构安置在磁芯远离叶轮的一端或磁芯靠近叶轮的一端。 优选的, 启动机构安置在磁芯远离叶轮的一端。
优选的, 两个启动筋将启动套的内腔分成第一和第二区域, 第一区域内安 置有第一减震体,第二区域内安置有第二减震体; 启动筋与限位筋之间具有防干 涉间隙, 以便其中一个启动筋能够转过两个限位筋中的一个限位筋, 而另一个启 动筋能够转过两个限位筋中的另一个限位筋。
其中, 启动筋的两个侧壁分别具有第一内凹弧形面, 所述限位筋的两个侧 壁分别具有第二内凹弧形面,所述第一内凹弧形面和第一内凹弧形面用于与所述 第一减震体和第二减震体配合。
其中, 第一内凹弧形面和第二内凹弧形面的曲率半径相同; 其中, 第一内 凹弧形面和与其相应的第二内凹弧形面之间形成容置第一减震体和第二减震体 的非闭合空间。
特别是, 第一减震体和第二减震体为结构相同的圆柱体或球体, 其半径小 于第一内凹弧形面的曲率半径。
特别是, 防干涉间隙形成于启动筋的内壁和限位筋的外壁之间。
特别是, 轴套的管状主体外壁与启动筋内壁之间的距离小于第一、 第二减 震体的直径,并且启动套内壁与限位筋外壁的距离小于第一、第二减震体的直径。
特别是, 两个限位筋为对称设于轴套的管状主体外壁的两个向外凸出部。 特别是, 两个启动筋为对称设于启动套的内壁且沿启动套的径向向内凸出 的两个凸出部。 优选的, 启动套内壁设有一个启动筋, 轴套外壁设有一个限位筋, 在启动 筋与限位筋之间的空腔里安置有减震体, 启动筋与限位筋之间具有防干涉的间 隙。
启动筋内壁与限位筋外壁之间形成防干涉间隙。
特别是, 当启动筋内壁与限位筋外壁之间形成防干涉间隙时, 启动筋和限 位筋之间形成的空腔为一体扇形腔, 减震体位于扇形腔内。
特别是, 减震体为扇形体, 且减震体的外扇形壁半径大于启动筋的内壁半 径, 减震体的内扇形壁半径小于限位筋外壁半径。
特别是, 轴套的管状主体外壁与启动筋内壁之间的距离小于第一减震体的 内、 外扇形壁半径之差。
特别是, 启动筋和减震体的高度不大于限位筋的高度。
特别是, 轴套的管状主体外端环设有向外凸出的平台, 平台的底端与限位 筋的顶端相连。
特别是, 限位筋设于轴套的管状主体外壁, 且与管状主体、 平台一体成型。 特别是, 启动筋与启动套一体成型。 特别是, 启动套由塑胶原料制得。
特别是,所述泵体包括围绕装配后的线圈及定子铁芯的外轮廓而成形的外壳 体及位于外壳体内腔中心的作为磁芯容置空间的内壳体, 所述定子铁芯为 u形 定子铁芯, 其双臂贯穿出内壳体壳壁夹置于磁芯两侧, U形定子铁芯双臂与磁芯 之间留有转动间隙。 由于 U形定子铁芯与磁芯之间无转子筒分隔, 从而可以把 定子铁芯与磁芯之间的间隙做得更小。
所述可减小振动噪音的交流永磁排水泵还包括一不锈钢转子筒, 不锈钢转 子筒内腔安置磁芯, 不锈钢转子筒安置于所述磁芯容置空间内, 所述定子铁芯 为 U型定子铁芯, 其双臂夹置于不锈钢转子筒两侧。 由于不锈钢的厚度可以做 得很薄, 当采用不锈钢转子筒时, 定子铁芯与磁芯之间的间隙因而减小。
所述泵体还包括一用于容置冷却水的水冷腔, 当然也可以不要水冷腔,水冷 腔基于 U型定子铁芯两臂与磁芯相干涉之部位的外轮廓而成形的环状空间。 水 冷腔紧贴于定子铁芯外,对工作中定子铁芯产生的热量迅速传至水冷腔中的冷却 液, 达到对电机散热降温的目的, 有效降低了水泵电机的温升。
所述转轴轴承通过轴承密封圈与转轴轴承的支承结构密封连接。
所述泵盖与泵体装配在一起并以密封圈密封连接部位, 防止泵盖内的水流 入泵体中。
所述泵体为一体注成塑成形的底部封闭的壳体。
所述泵体底部敞开, 通过一后盖封闭并采用密封圈封闭连接。
与现有技术相比, 本发明的交流永磁排水泵具有如下突出的优点:
1 )本发明采用将定子组件和转子组件安置其内的泵体, 因此简化了泵体的 结构, 减小了泵体的结构尺寸, 且便于产品装配与维修;
2)本发明的泵体中, 第一泵体部和第二泵体部为利用塑封模具对定子线圈 和定子铁芯进行注塑处理所形成, 因此避免了泵体共振并降低噪音, 并且有利于 定子铁芯通过泵体热传导进行散热, 提高了散热效率;
3 )本发明通过定子铁芯的内凹圆弧部嵌入到第二泵体部的转子座内, 使筒 体的内圆弧表面与定子铁芯的内凹圆弧部的内圆弧表面共同构成容纳转子组件 的内腔, 定子铁芯和磁芯之间没有了壁厚至少为 lmm的转子座的隔离, 因此减 小了定子铁芯与转子组件的磁芯之间的磁路气隙, 减小了磁阻, 提高电磁效率, 相对于现有结构的排水泵,采用更少量的硅钢片、漆包线和较短的磁芯即可达到 相同的使用性能, 降低了排水泵的生产成本;
4)本发明的定子铁芯的内凹圆弧部嵌入到第二泵体部的转子座内, 因此定 子铁芯可与转子座内的液体接触, 利于将定子铁芯工作时产生的热量快速散去;
5 )本发明的定子铁芯的除了内凹圆弧部以外的部分被第一泵体部和第二泵 体部所包围, 因此避免了转子座漏水现象的发生;
6)本发明的转子座外环设有水冷腔, 工作过程中定子铁芯产生的热量可以 迅速传给水冷腔中的液体, 加快定子铁芯散热, 延长排水泵的寿命;
7) 本发明的定子铁芯经过钝化和电泳处理, 可以有效防止定子铁芯生锈, 而定子线圈被第一泵体部包围, 因此可以防止定子线圈接触空气;
8)本发明的启动套由非磁性材料制成, 降低生产成本, 且启动套内的启动 筋与轴套的限位筋之间安置有减震体, 启动筋与限位筋间通过减震体接触, 因此 受力面大, 启动筋对限位筋的冲击力小, 减震效果好, 排水泵的工作噪声小, 使 启动更加平稳, 启动机构的使用寿命长;
9)本发明的磁芯转动时, 由于启动套的启动筋和轴套的限位筋之间防干涉 间隙的设计, 在启动过程中, 启动筋的空载转动行程达到了 220° 以上, 甚至达 到 270° , 以至于在启动机构耦合叶轮时的启动力矩大大增加, 有利于启动机构 启动叶轮旋转, 启动更平稳, 转子组件使用寿命长;
10) 本发明的启动机构的启动套、 轴套和减震体安置于远离叶轮的一端, 可以使磁芯靠近叶轮, 定子铁芯也就靠近叶轮, 优化了泵体的结构: 一方面, 由 于启动机构不设置在叶轮内, 不但叶轮的叶片的长度可以增大, 叶轮拍水的面积 增大, 也便于叶轮的安装和制造; 另一方面, 由于定子铁芯靠近叶轮, 使整个泵 的结构比较紧凑。
下面结合附图对本发明进行详细说明。
附图说明
图 1是现有的 U型交流永磁同步电机的泵壳结构示意图;
图 la为现有技术中具有转子座 17' 的交流永磁排水泵的结构示意图; 图 lb为图 la所示的 E-E向剖视图;
图 2为本发明交流永磁排水泵实施例 1内部结构三维剖视图; 图 3是本发明交流永磁排水泵的实施例 1结构剖面图;
图 3a是图 3所示交流永磁排水泵的 M-M向剖视图;
图 4是本发明交流永磁排水泵的实施例 2内部结构三维剖视图;
图 5是本发明交流永磁排水泵的实施例 2结构剖视图;
图 6为本发明交流永磁排水泵实施例 3的透视图;
图 7为图 6所示交流永磁排水泵的左侧视图;
图 8为图 6所示的交流永磁排水泵的局部剖视图;
图 9为图 6所示的交流永磁排水泵的 A-A向剖视图;
图 10为图 7所示的交流永磁排水泵的 B-B向剖视图;
图 11为本发明的转子组件的结构示意图;
图 12为本发明交流永磁排水泵中的定子铁芯的结构示意图;
图 13为本发明实施例 3中定子铁芯的内凹圆弧部与转子座的部分内圆弧表 面之间的第一种位置关系示意图;
图 14为本发明实施例 3中定子铁芯的内凹圆弧部与转子座的部分内圆弧表 面之间的第二种位置关系示意图;
图 15为本发明交流永磁排水泵转子组件的第一种启动机构的爆炸视图; 图 16为图 15所示转子组件装配后的剖视图;
图 17 ( a)、 (b) 为本发明启动套顺时针旋转启动过程的示意图;
图 18 ( a)、 (b)、 ( c) 为本发明启动套逆时针旋转启动过程的示意图; 图 19为本发明交流永磁排水泵转子组件的第二种启动机构的爆炸视图; 图 20为图 19所示启动机构的剖视图;
图 21为图 20所示启动机构中的磁芯处于空转状态的结构示意图; 图 22为图 20所示启动机构处于逆时针运动状态的结构示意图。
附图标记说明: 1-泵盖; 2-叶轮; 3-压盖; 3a-压盖密封圈; 4-第二密封圈; 5-轴承密封圈; 6-第一密封圈; 7-线圈; 8-定子铁芯; 9-转子筒; 9.1-不锈钢筒体; 9.2-橡胶堵头; 10-泵体; 10.1-磁芯容置空间; 10a-第一泵体; 10b-第二泵体; 11- 转轴; 12-转轴轴承; 12a、 12b-轴承; 13-水冷腔; 14-后盖; 15-磁芯; 16-塑封; 17-转子座; 17a-内圆弧表面; 17b-转子座压盖; 18-连接部; 19-轴承座; 20-转子 组件; 21-启动机构; 81-内凹圆弧部; 81a-内圆弧表面; 82-伸出臂。 93a-轴套; 93b-启动套; 93c 、 93c' -减振体; 93a'、 93a" -限位筋; 93b'、 93b' ' -启动筋; 5, -线圈塑封; 6 ' -转子座压盖; 93d、 93d , -密封圈; 93e- 后盖; 93f-润滑筋; 93a' " -平台; A-第一区域; B-第二区域。
-泵盖; 5 ' -线圈塑封; 7 ' -线圈; 8 ' -定子铁芯; 9' -转子筒; 10' -泵 体; 11, -转轴; 15 ' -磁芯; 17' -转子座; 18'-卡扣。
具体实施方式
实施例 1
如图 2~3所示,为本发明的取消转子筒的交流永磁排水泵,其包括泵体 10、 泵盖 1、 叶轮 2、 定子铁芯 8、 线圈 7、 磁芯 15、 转轴 11、 转轴轴承 12、 压盖 3。
线圈 7绕制于线圈骨架上, U型定子铁芯 8的双臂贯穿过线圈 7。把装配好 的线圈、 骨架及定子铁芯一体注塑在一起, 形成底部封闭顶部开口的泵体 10, 注塑成形后的泵体 10包括围绕装配后的线圈及定子铁芯的外轮廓而成形的外壳 体及位于外壳内腔中心的作为磁芯容置空间的内筒。 U型定子铁芯的双臂突出于 内筒内壁。内筒开口于泵体顶部,且其开口设置有用于支承转轴轴承的支承结构。
磁芯组件从泵体顶部插入磁芯容置空间 10.1中, 转轴 11贯穿磁芯 15的轴 孔, 从泵体延伸至泵盖。转轴 11上端与叶轮 2固定连接并带动叶轮 2同步转动。 在本例中, 磁芯容置空间 10.1底部密封, 沿转轴 11轴向开口, 与定子铁芯 8双 臂所处空间贯通。 U型定子铁芯 8的双臂从所述轴向开口夹置于磁芯两侧。定子 铁芯 8与磁芯 15之间不需要设置转子筒分隔, 因此两者间的间隙可以很小。
泵盖 1内设置有叶轮 2, 泵盖 1与泵体 10互相装配形成完整的泵壳。 在本 例中, 泵体 10还设置有水冷腔 13, 水冷腔的至少部分腔壁围绕于 U型定子铁芯 与磁芯相干涉之部位而成形, 水冷腔开口向上, 由压盖 3所密封, 不与磁芯容置 空间 10.1连通。 水冷腔 13紧贴于定子铁芯 8外, 将工作中定子铁芯 8产生的热 量迅速传递至水冷腔 13中的冷却液, 达到电机散热降温的目的。 当然, 泵体 10 上也可采用不设置水冷腔的实施方式。
水冷腔的压盖 3上也可开孔, 如图 2所示, 使水冷腔的水可以和泵腔里的 水流动, 当转轴轴承处的密封圈磨损后, 水冷腔的水可以到泵腔, 再进入到磁芯 容置空间。 水冷腔压盖可起到防止大的杂物进入到水冷腔的作用。
内筒顶部开口设置有转轴轴承 12, 转轴轴承 12通过轴承密封圈 5与磁芯 容置空间的顶部开口密封连接,轴承密封圈 5防止泵盖内的水经由此处流入泵体 中。 转子座压盖 17b同时也充当转轴轴承 12的轴承支架。
泵盖 1与泵体 10的连接位设置有第一密封圈 6, 以防止叶轮工作的泵腔漏 水。
如图 2、 3、 3a所示, 泵体 10包括至少密封包围定子线圈的第一泵体部 10a 和安置转子组件 20的第二泵体部 10b, 第二泵体部 10b内设有形成磁芯容置空 间 10.1的转子座 17, 转子座 17用于套装和支撑转子组件 20 (包括磁芯 15、 转 轴 11 ), 环绕于转子座 17外壁形成且一端开口的水冷腔 13。
本实施例的泵体 10可以采用一次注塑成型方法或二次注塑成型方法获得, 下面以经过二次注塑成型获得泵体 10的方法为例,在制作泵体 10时, 首先采用 第一次注塑处理的方法获得泵体 10 的第一泵体部 10a, 然后在第一泵体部 10a 的基础上采用第二次注塑处理的方法获得与第一泵体部 10a连接为一体的第二 泵体部 10b。
其中,利用塑封模具和塑胶原料对预制好的线圈 7进行注塑处理而形成第一 泵体部 10a, 其将线圈 7包围且密封, 使得构成线圈 7的元件中, 除了部分插接 式接线端子的元件都与外界空气完全隔离,从而避免了构成线圈 7的各元件接触 空气。 用组装的方式将定子铁芯 8 (结构如图 12所示) 的一部分安装在已被第 一泵体部 10a包围且密封的线圈 7中, 且定子铁芯 8的内凹圆弧部 81伸出于第 一泵体部 10a。
本实施例的第二泵体部 10b在第一泵体部 10a的基础上利用塑封模具进行注 塑处理形成, 使其与第一泵体部 10a连接为一体, 并使伸出于第一泵体部 10a之 外的定子铁芯 8的内凹圆弧部 81嵌入第二泵体部 10b, 第二泵体部 10b具有套 装并支撑转子组件的转子座 17和设于外缘的用于连接泵盖 1的连接部 18。
本实施例的水冷腔 13—端开口, 用于盛装冷却液, 且水冷腔 13的开口端与 转子座 17开口端位于同侧。 相应地, 在泵盖 1和第二泵体部 10b之间设有用于 盖住水冷腔 13的开口端的压盖 3, 压盖上有孔, 使水冷腔和泵腔相通。 在转子 座 17与泵盖 1之间设置有用于将转子座 17的开口一端密封的转子座压盖 17b。 由于定子铁芯 8的内凹圆弧部 81嵌入转子座 17内, 而水冷腔 13环设于转子座 17的外壁, 因此定子铁芯 8在工作中产生的热量可以迅速传递给水冷腔 13中的 冷却液, 从而达到使排水泵散热降温的目的。
实施例 2
如图 4~5所示, 为本发明的采用不锈钢转子筒 9的交流永磁排水泵, 其包 括泵体 10、 泵盖 1、 后盖 14、 叶轮 2、 压盖 3、 塑封后的线圈 7、 定子铁芯 8、 转子筒 9、 转轴 11、 转轴承 12、 磁芯 15等。
泵盖 1内设置有叶轮 2。 泵体 10围绕装配后线圈 7、 定子铁芯 8、 磁芯 15 的外轮廓成形, 形成一上下开口的壳体, 其顶部与泵盖 1装配连接并以第一密封 圈 6密封连接部位, 其底部由后盖 14所封闭。注塑成形后的泵体 10包括围绕装 配后的线圈及定子铁芯的外轮廓而成形的外壳体及位于外壳体中心的作为磁芯 容置空间的内筒。 内筒为上、 下开口、 侧向敞开的非围合空间, 与定子铁芯所处 空间贯通。 内筒的顶部开口设置有用于支承转轴轴承的支承结构。 转轴 11贯穿 磁芯 15的轴孔, 从泵体延伸至泵盖。 转轴上端与叶轮固定连接并带动叶轮同步 转动。
内腔腔内设置有一底部封闭的转子筒 9, 转子筒内安置有磁芯 15。 转子筒 9 具有长度大于所述磁芯高度的不锈钢筒体 9.1及用于封闭不锈钢筒体 9.1的橡胶 堵头 9.2。 橡胶堵头具有用于装配安装于转轴底部的后转动轴承的轴承安装孔, 橡胶堵头与转子筒之间采用第二密封圈 4密封。 U型定子铁芯 8双臂贯穿过线圈 7延伸至转子筒 9两侧, 磁芯容置空间与 U型定子铁芯双臂所处空间相互贯通。 由于定子铁芯与磁芯之间只是通过很薄的不锈钢筒体 9.1分隔, 大大减小了两者 间的间隙。
在本例中, 泵体 10还设置有水冷腔 13, 水冷腔至少部分腔壁围绕于 U型 定子铁芯与磁芯相干涉之部位而成形, 水冷腔开口向上, 由压盖 3所密封, 不与 磁芯容置空间连通。水冷腔紧贴于定子铁芯外,将工作中定子铁芯产生的热量迅 速传递至水冷腔中的冷却液, 达到对电机散热降温的目的。 当然, 泵体上也可采 用不设置水冷腔的实施方式。
内筒在其顶部开口设置有转轴承 12, 转轴承 12通过轴承密封圈 5与内筒置 空间的顶部开口密封连接。 轴承密封圈 5防止泵盖内的水经由此处流入泵体中。 压盖 3同时也充当转轴承 12的轴承支架。
泵盖 1与泵体 10的连接位设置有第一密封圈 6, 以防止泵体内入水, 或防 止叶轮工作的泵腔漏水。
实施例 3
如图 6、 7、 8、 9、 10所示, 图中示出了本发明交流永磁排水泵实施例 3的 结构。
本发明的交流永磁排水泵包括: 泵体 10、 与泵体 10连接的泵盖 1、 安置在 泵盖 1 中的叶轮 2、 安置在泵体 10内的转子组件和定子组件, 定子组件具有线 圈 7和定子铁芯 8, 转子组件具有磁芯 15和转轴 11。
其中,泵体 10包括至少密封包围线圈 7的第一泵体部 10a和用于安装转子 组件 20的第二泵体部 10b, 且第一泵体部 10a与第二泵体部 10b连接为一体。
第二泵体部 10b内设有用来套装和支撑转子组件的转子座 17, 定子铁芯 8 的内凹圆弧部 81嵌于转子座 17内, 转子座 17为一端开口的筒形, 使得内凹圆 弧部 81的内圆弧表面 81a作为转子座 17内圆弧表面 17a的一部分,转子座的内 圆弧表面 17a与嵌入的内凹圆弧部 81的内圆弧表面 81a共同形成容纳内腔, 即 磁芯容置空间 10.1, 用于套装和支撑包括磁芯和转轴的转子组件。 第二泵体部 10b侧缘形成连接部 18, 连接部 18连接泵盖 1。
当定子铁芯 8的部分或整个内圆弧表面 81a为转子座 17内圆弧表面 17a的 一部分时, 磁芯 15的外表面与定子铁芯 8的内圆弧表面 81a之间的磁路气隙, 等于磁芯 15的外表面与转子座 17的内圆弧表面 17a之间的距离 b (如图 14所 示);当定子铁芯 8的内圆弧表面 81a向轴心方向凸出于转子座 17的内圆弧表面 17a时, 磁路气隙小于距离 b (如图 13所示)。
需要说明的是, 定子铁芯 8的部分内圆弧表面 81a为转子座 17内圆弧表面 17a的一部分, 是指内圆弧表面 81a的一部分 (比如末端部分) 可能被第二泵体 部所封闭,而内圆弧表面 81a其余部分露出并使其成为转子座 17内圆弧表面 17a 的一部分。
这样, 就使得转子组件的磁芯 15的外表面与定子铁芯 8的内圆弧表面 81a 之间的间隙大大减小, 即最大程度减小了定子铁芯 8与转子组件中的磁芯 15之 间的磁路气隙, 使得磁阻减小, 大大提高了电磁效率。
特别是, 由于定子铁芯 8的内圆弧表面 81a与转子组件的磁芯 15的外表面 之间的间隙得以最大程度减小,有效提高电磁效率, 因此在实现同样的启动力矩 或达到相同使用性能的情况下,本发明排水泵相比现有结构的排水泵,采用的硅 钢片数量降低 1/3, 因此磁芯的长度减少 1/3, 构成线圈的漆包线量也相应减少, 从而有效降低了排水泵的制造成本。
如图 12所示, 定子铁芯 8呈 U型, 其具有一对伸出臂 82和分别位于一对 伸出臂 82—端的一对内凹圆弧部 81, 两个内凹圆弧部 81的内圆弧表面 81a围 成容纳磁芯 15的空腔。
当采用一次注塑成型方法制得泵体 10时,利用塑封模具和塑胶材料对定子 铁芯 8和线圈 7进行一次注塑处理, 形成一体的第一泵体部 10a和第二泵体部 10b。 优选的, 塑胶材料为 BMC材料。
首先, 采用骨架、 漆包线、 插接式接线端子、 热保护器和绝缘胶纸制作线 圈 7, 并将 U型的定子铁芯 8采用钝化和电泳处理; 接着, 将定子铁芯 8的双臂 82贯穿过线圈 7, 使定子铁芯 8的包含内凹圆弧部 81的伸出在线圈 7之外; 最 后, 将线圈 7和定子铁芯 8放入塑封模具进行一次注塑处理, 形成包裹在线圈 7 和定子铁芯 8外面的包括第一泵体部和第二泵体部的泵体 10。
其中, 第一泵体部 10a包围且密封线圈 7和定子铁芯 8位于线圈 7之内的 部分,即第一泵体部包围、密封构成线圈 7的元件(除了插接式接线端子的部分), 使其与外界空气隔离, 定子铁芯 8位于线圈内的部分以及与内凹圆弧部 81相对 的端部也被第一泵体部 10a包围密封且与外界空气隔离。
伸出在线圈 7外的定子铁芯 8的内凹圆弧部 81嵌入第二泵体部 10b内,第 二泵体部 10b的转子座 17为一端开口的筒形, 该转子座的内圆弧表面与内凹圆 弧部 81的内圆弧表面共同形成容纳转子组件的内腔, 并且, 定子铁芯 8的内凹 圆弧部 81所围成的、可将转子组件容纳其中的内凹空腔的轴线 L (如图 12所示) 和第二泵体部的转子座 17的中心线相重合。
通过使定子铁芯 8的内凹圆弧部 81的内圆弧表面 81a与转子座 17内圆弧 表面 17a共同形成容纳转子组件的内腔, 可使转子组件的磁芯 15外表面与定子 铁芯 8的内圆弧表面 81a之间的气隙 a最大程度减小, 从而大大减小磁阻、提高 电磁效率。
当采用二次注塑成型的方法制造泵体 10时,首先采用在线圈上第一次注塑 以获得塑封线圈的泵体 10的第一泵体部 10a, 然后在第一泵体部 10a组装上定 子铁芯 8, 以第一泵体部 10a和定子铁芯 8为基础采用第二次注塑获得与第一泵 体部 10a连接为一体的第二泵体部 10b。
当采用二次注塑成型的方法制得泵体 10时, 泵体 10中的第一泵体部 10a 采用 BMC材料, 第二泵体部 10b采用易于成型的热塑性材料, 如 PP材料, 但 也可采用 BMC材料制得。
在制造泵体 10的过程中,不论是采用一次注塑成型还是二次注塑成型的方 法, 泵体 10中的第一泵体部 10a至少塑封线圈 7, 即通过注塑成型方法使线圈 被第一泵体部 10a所包围密封, 这样, 使得线圈 7与第一泵体部 10a成一体, 不 但降低了产品共振和产品噪音, 并且有利于散热。
其中, 第一泵体部 10a可以利用塑封模具和塑胶原料对预制好的线圈 7进 行注塑处理而形成, 其将线圈 7包围且密封, 使得构成线圈 7的元件中, 除了部 分插接式接线端子以外的其余元件都与外界空气完全隔离,从而避免了构成线圈 7的各元件与外界隔离而避免与空气接触。用组装的方式将定子铁芯 8插装在已 被第一泵体部 10a包围且密封的线圈 7中, 且使定子铁芯 8的内凹圆弧部 81伸 出于第一泵体部 10a。
或者, 第一泵体部 10a还可以利用塑封模具和塑胶原料对预制好的线圈 7 和其一部分安装在定子装圈 7内的定子铁芯 8进行注塑处理所形成。其中, 制作 好线圈 7后,将定子铁芯 8的一部分安装在线圈 7内, 并使得定子铁芯 8的一对 伸出臂一端的内凹圆弧部 81伸出于线圈 7外, 再利用塑封模具和塑胶原料对线 圈 7和其一部分安装在线圈 7内的定子铁芯 8进行注塑处理,使得线圈 7和定子 铁芯 8的安置在线圈 7内的一部分被第一泵体部 10a所包围,而定子铁芯 8的一 对伸出臂上的内凹圆弧部 81伸出于第一泵体部 10a之外。 此时, 构成线圈 7的 元件中, 除了部分插接式接线端子以外的其余元件与外界空气完全隔离, 从而避 免了构成线圈 7的各元件接触空气, 并且, 安装在线圈 7内的定子铁芯 8部分也 与线圈 7—起被第一泵体部 10a所包围且密封而与外界空气完全隔离。
第二泵体部 10b为在安装有定子铁芯 8和包裹线圈 7的第一泵体部 10a的 基础上、 利用塑封模具进行注塑处理所形成, 其与第一泵体部 10a连接为一体。
第二泵体部 10b将定子铁芯 8除内凹圆弧部 81的内圆弧表面以外的部分密 封包围,使伸出于第一泵体部 10a之外的内凹圆弧部 81嵌入第二泵体部 10b内。 第二泵体部 10b具有转子座 17和连接部 18, 转子座 17为一端开口的筒形, 具 有内腔, 用于套装并支撑转子组件, 连接部 18位于第二泵体部 10b的侧缘, 用 于连接泵盖 1。
定子铁芯 8的内凹圆弧部 81嵌入到转子座 17内, 内凹圆弧部 81的一部分 内圆弧表面 81a或全部内圆弧表面 81a成为转子座 17内圆弧表面 17a的一部分, 共同构成容纳转子组件的内腔。 内凹圆弧部 81的一部分内圆弧表面 81a可向着 轴心方向突出于转子座 17的内圆弧表面 17a (如图 13所示), 或者与转子座 17 的内圆弧表面 17a相平 (如图 14所示)。
在转子座 17封闭的一端设有轴承座 19, 转子组件从转子座 17开口的一端 插入转子座 17内, 使磁芯 15位于由定子铁芯 8的内凹圆弧部 81的两个内圆弧 表面 81a所围成的空腔部分。 此外, 第二泵体部 7与泵盖 1之间安装有压盖 3, 且为保证密封性能, 如图 8所示, 在泵盖 1与压盖 3之间安置有第一密封圈 6, 在压盖 3与泵体 10之间安置有压盖密封圈 3a。
转轴 11的两端分别安装有轴承,轴承 12a通过转轴密封圈 5与压盖 3连接, 轴承 12b支承在转子座 17的轴承座 19内,轴承 12a和轴承 12b—起形成对转轴 11的支撑, 从而避免转轴在工作过程中产生径向和轴向的晃动。
转轴 11上设驱动转轴 11随磁芯 15转动的启动机构 21, 其安置在磁芯 15 远离叶轮 2的一端或磁芯 15靠近叶轮 2的一端,图中仅示出启动机构 21安置在 磁芯 15远离叶轮 2的一端。
其中, 磁芯 15安置在定子铁芯 8的内凹圆弧部 81内, 且磁芯 15外表面与 内凹圆弧部 81的内圆弧面之间具有转动间隙(即磁路气隙)。优选的, 所述转动 间隙为 0.5mm。通常, 内凹圆弧部 81的内圆弧面由半径不同的两段圆弧面构成, 转动间隙指的是半径较小的圆弧面与磁芯 15的外表面之间形成的间隙 (如图 13、 图 14所示)。采用定子铁芯 8的内凹圆弧部 81的内圆弧表面作为转子座 17内圆 弧表面的一部分, 减小了磁芯 15与定子铁芯之间的磁路气隙, 从而减小磁阻、 提高电磁效率。
当线圈 7被通以交流电时,线圈 7产生交变磁场通过定子铁芯 8,驱动转子 组件中的磁芯 15正向或反向转动, 而磁芯 15套装于转轴 11, 磁芯 15正向或反 向转动时, 通过启动机构 21驱动转轴 11转动, 转轴 11固定安装在叶轮 2的旋 转中心, 因此转轴 11转动时可带动叶轮 2随其正向或反向转动, 从而实现排水 的功能。
如图 15、 19所示, 本实施例的启动机构包括: 固定安装在磁芯 15—端的 启动套 93b, 启动套 93b由非磁性材料制成, 从而节约磁芯的生产成本; 固定安 装在转轴 11上的轴套 93a, 其安置于启动套 93b内; 并且, 启动套 93b和轴套 93a之间通过减震体接触。
如图 16、 20所示,轴套 93a安置于启动套 93b内,其外壁设有限位筋 93a'、 93a"; 在启动套 93b 内壁设有启动筋 93b'、 93b"; 启动筋与限位筋之间通过减 震体 93c、 93c'接触。由于启动筋和限位筋之间形成防干涉的间隙(如图 18 (b)、 21所示), 使得启动时, 启动筋在通过减震体推动限位筋之前可以获得的空转的 最大角度至少是 220° 。
具体的, 若转子组件 20采用如图 15-图 18所示的第一种启动机构, 其启动 时, 启动筋在通过减震体推动限位筋之前可以获得的空转的最大角度至少是 220° , 从而使得轴套 93a和与轴套 93a固定连接的转轴 11转动, 进而驱动与转 轴 11固定连接的叶轮 2旋转。
其中, 如图 15、 16所示, 第一种启动机构的启动套 93b内壁设有两个启动 筋 93b'、 93 b' ', 轴套 93a外壁设有两个限位筋 93a' 93a" (图 16中示出); 在启动筋 93b' 与限位筋 93a' 之间装有第一减震体 93c, 在启动筋 93b" 与限 位筋 93a' ' 之间装有第二减震体 93c' ; 并且, 启动筋 93b ' 和启动筋 93b"的端 面离轴心的距离大于限位筋 93a' 和限位筋 93a" 端面离轴心的距离, 使得, 在 启动筋 93b' 与限位筋 93a' 之间、 启动筋 93b' 与限位筋 93a"之间、 启动筋 93b' ' 与限位筋 93a' 之间、 启动筋 93b' ' 与限位筋 93a' ' 之间, 沿径向能够 形成一定间隙, 即防干涉间隙。 该防干涉间隙的作用在于, 若没有第一减震体 93c或第二减震体阻挡时, 启动筋 93b' 或启动筋 93b"可以分别转动通过限位 筋 93a' 或限位筋 93a' '。
如图 17 ( a)、 (b)所示, 启动套 93b顺时针方向启动时, 启动筋 93b' 可沿 顺时针方向转动, 最终通过第一减震体 93c接触限位筋 93a' 的一侧; 而启动筋 93b"也沿顺时针方向转动, 最终通过第二减震体 93c'接触限位筋 93a"的一侧。 这样, 如果电机的输出力矩小于启动力矩, 在交变磁场的作用下, 由于启动筋 93b'、 93b"的启动阻力比较大, 其会沿图 18所示的逆时针方向转动, 以驱动轴 套 93a逆时针旋转。 下面参照图 18说明随后的过程。
如图 18所示, 首先, 启动套 93b由图 17 (b ) 所示的位置沿逆时针方向转 动到图 18(a)的位置, 接着, 由于启动筋 93b' 和限位筋 93a"之间具有防干涉 间隙, 因此, 启动筋 93b' 可沿逆时针方向不受干涉地转过限位筋 93a" (见图 18 (b)所示), 而启动筋 93b"与限位筋 93a' 之间也有防干涉间隙, 因此启动 筋 93b"也可沿逆时针方向转过限位筋 93a' ; 最后, 启动筋 93b' 通过第二减 震体 93c' 接触限位筋 93a' 的另一侧, 而启动筋 93b"通过第一减震体 93c接 触限位筋 93a"的另一侧, 到达如图 18 ( c)所示的位置。 这样, 启动套 93b就 带动轴套 93a逆时针旋转, 从而驱动转轴 11带动叶轮逆时针转动。
按照图 18 ( a) - ( c) 所示的过程, 使得启动筋 93b' 和启动筋 93b" 由图 17 (b) 的位置转动到图 18 ( c) 的位置, 转动行程可达到 220° , 因此产生的 启动力矩大大增大, 有利于启动机构启动叶轮旋转。
此外, 如图 15所示, 在磁芯 15远离叶轮 2的一端安装有后盖 93e, 在轴套 93a与后盖 93e之间、启动套 93b与轴套 93a之间分别安置有密封圈 93d、93 d,。
当定子线圈 7被通以交流电时, 定子线圈 7产生的交变磁场通过定子铁芯 8 驱动磁芯 15转动, 启动套 93b随磁芯 15—起转动, 启动套 93b的启动筋 93b' 会通过第二减震体 93c' 与轴套 93a的限位筋 93a' 接触 (如图 18 ( c) 所示), 启动套 93b内壁的启动筋 93b',通过第一减震体 93c与轴套 93a的限位筋 93a', 接触 (如图 18 ( c) 所示), 从而通过限位筋 93a'、 93a' ' 驱动轴套 93a转动, 由于轴套 93a与转轴 11固定连接, 因此转轴 11相应的进行转动, 带动固定在转 轴 11一端的叶轮 2转动, 从而使交流永磁排水泵通过叶轮实现排水功能。
具体的, 启动套 93b是以磁芯 15为嵌件、 采用注塑处理的方法将塑胶原料 固定在磁芯 15的一端而形成的, 启动套 93b具有用于安置轴套 93a的容置腔, 在启动套 93b的内壁对称设有朝着其轴心方向凸出的启动筋 93b '、启动筋 93b ' ', 并且启动筋 93b'、 启动筋 93b' ' 的两个侧壁分别具有第一内凹弧形面。
轴套 93a具有管状主体和限位筋 93a'、 93a',, 限位筋 93a'和限位筋 93a', 为对称设于管状主体外壁的两个向外凸出部, 且限位筋 93a' 和限位筋 93a" 的 两个侧壁分别具有第二内凹弧形面。优选的,第二内凹弧形面的曲率半径和启动 筋 93b'、 启动筋 93b' ' 的第一内凹弧形面的曲率半径相同。
优选的, 限位筋 93a'、 93a' ' 的外壁半径略小于启动筋 93b'、 93b' ' 的内 壁半径, 因此在限位筋 93a'、 93a' ' 的外壁与启动筋 93b'、 93b' ' 的内壁之间 形成防干涉间隙, 使得限位筋 93a'、 93a' ' 和启动筋 93b'、 93b' ' 可以相对旋 转且不会碰撞在一起。
如图 17 (b)所示,启动筋 93b'的第一内凹弧形面和与其相对的限位筋 93a' 的第二内凹弧形面之间, 围成非闭合的第一空间; 启动筋 93b' ' 的第一内凹弧 形面和与其相对的限位筋 93a" 的第二内凹弧形面之间, 围成非闭合的第二空 间。 其中, 在第一空间内安置有第一减震体 93c, 在第二空间内安置有第二减震 体 93c'。 在本发明中, 第一减震体 93c和第二减震体 93c' 采用结构完全相同的 圆柱体或球体, 其采用塑性材料制得, 如橡胶, 且在加工时, 第一减震体 93c和 第二减震体 93c' 可以采用实心结构, 也可以采用空心结构。
优选的,第一减震体 93c和第二减震体 93c' 的半径小于第一内凹弧形面和 第二内凹弧形面的曲率半径,当第一内凹弧形面和与其相对应的第二内凹弧形面 构成第一空间或第二空间时, 可使安置于其内的第一减震体 93c 或第二减震体 93c' 分别与所述第一内凹弧形面和第二内凹弧形面间隙配合, 这样减震体可以 不被卡住, 而且便于减震体与限位筋碰撞接触时有一定的变形而增强缓冲作用。 优选的, 第一减震体 93c和第二减震体 93c' 在所述第一空间和第二空间内采用 不固定的形式, 可在第一空间和第二空间内自由滚动或滑动, 并且, 第一减震体 93c和第二减震体 93c' 呈一字型分布, 即第一减震体 93c和第二减震体 93c' 对 称分布在所述转轴 11的两侧。
其中, 轴套 93a的管状主体外壁与启动筋 93b ' 或启动筋 93b' ' 的内壁之 间的最大距离小于第一减震体 93c和第二减震体 93c' 的直径, 从而使得启动筋 93b \ 启动筋 93b' ' 与限位筋 93a'、 93a' ' 分别靠近时, 使得第一减震体 93c 和第二减震体 93c' 受到挤压, 而启动筋 93b ' 与限位筋 93a'、 启动筋 93b' ' 与 限位筋 93a" 本身不会发生碰撞, 因此使得轴套 93a不会与启动套 93b直接碰 撞或磨擦, 即不会使得轴套 93a与磁芯 15直接碰撞或磨擦, 从而减小了交流永 磁排水泵启动时轴套 93a与第一减震体 93c和第二减震体 93c' 之间、 第一减震 体 93c与启动套 93b和磁芯 15之间、 第二减震体 93c' 与启动套 93b和磁芯 15 之间的拍打噪声, 使交流永磁排水泵工作时振动更小, 更安静。
在设计时,启动筋 93b'、启动筋 93b',和第一减震体 93c、第二减震体 93c' 的沿转轴 11的轴线方向的高度不大于限位筋 93a'、 93a' '的沿轴线方向的高度, 并且为了避免第一减震体 93c和第二减震体 93c'脱离所述第一空间和第二空间, 如图 67 所示, 在轴套 93a 的管状主体一端环设有由轴心向外延伸的圆形平台 93a' ' ', 平台 93a' " 的底端与限位筋 93a'、 93a" 的顶端分别固定连接, 从而 将第一减震体 93c和第二减震体 93c'分别被封堵在所述第一空间和第二空间内。 在制造时, 轴套 93a的管状主体、 平台 93a' ' ' 和限位筋 93a'、 93a' ' 为采用塑 胶原料通过注塑处理的方法所获得的一体成型的结构。并且,启动筋 93b'、 93b', 与启动套 93b也为采用塑胶原料通过注塑处理的方法所获得的一体成型的结构。
下面结合图 16-18描述本发明的第一种启动机构的工作原理。
如图 16所示, 当限位筋 93a' 靠近与其对应的启动筋 93b' 时, 所述限位筋 93a' 和启动筋 93b' 相对一侧的第一内凹弧形面和第二内凹弧形面位于同一圆 周, 且围合成非闭合的第一空间。 此时, 限位筋 93a" 和启动筋 93 b" 相互靠 近, 且限位筋 93a' ' 和启动筋 93 b' ' 相对一侧的第一内凹弧形面和第二内凹弧 形面也位于同一圆周, 围合成非闭合的第二空间。此时, 分别安置于第一空间和 第二空间内的第一减震体 93c和第二减震体 93c'的对称中心的连线穿过转轴 11 的轴线, 即第一减震体 93c和第二减震体 93c' 以转轴 11的轴线为中心, 相位角 相差 180° 。
如图 17 ( a)、 (b) 所示, 为使启动机构由图 16所示位置顺时针转动, 定子 线圈 7产生交变磁场作用于定子铁芯, 通过定子铁芯 8驱动磁芯 15绕着转轴 11 的轴线进行顺时针方向转动,固定在磁芯 15上的启动套 93b随着磁芯 15顺时针 方向转动, 启动套 93b的启动筋 93b'、 启动筋 93b' ' 分别推动第一减震体 93c 和第二减震体 93c'接触限位筋 93a'和限位筋 93a", 从而推动套装固定于转轴 的轴套 93a顺时针方向转动, 轴套带动转轴 11随其一起沿顺时针方向转动, 进 而带动与转轴 11固定连接的叶轮 2沿顺时针方向转动。
如图 18所示, 在交变磁场作用下, 磁芯 15绕着转轴 11的轴线进行逆时针 方向转动, 固定在磁芯 15上的启动套 93b随着磁芯 15逆时针方向转动。
启动套 93b上的启动筋 93b'、 启动筋 93b' ' 由图 18 ( a) 的位置转动到如 图 18 (b) 所示的位置时, 由于启动筋 93b' 和限位筋 93a' ' 具有间隙、 启动筋 93b' ' 和限位筋 93a' 之间具有间隙, 因此启动筋 93b' 可转过限位筋 93a", 启 动筋 93b " 可转过限位筋 93a', 并分别推动第二减震体 93c' 和第一减震体 93c 逆时针转动一定角度后, 使启动筋 93b' 和启动筋 93b' ' 通过第二减震体 93c' 和第一减震体 93c分别与限位筋 93a'和限位筋 93a',接触(如图 18 ( c)所示), 由此推动轴套 93a转动, 轴套 93a则带动与其固定连接的转轴 11沿逆时针方向 转动, 进而带动固定于转轴 11一端的叶轮 2逆时针转动。
如图 17和图 18所示,实际上,启动套 93b内由启动筋 93b '和启动筋 93b' ' 沿圆周方向分隔形成了两个大致半圆形区域, 即第一区域 A和第二区域 B, 第 一减震体 93c只能在第一区域 A活动, 而第二减震体 93c' 只能在第二区域 B 活动。
优选的, 本发明的磁芯 15驱动转轴 11转动时, 磁芯 15可空转的最大角度 为 220° 。
本发明的启动机构,在磁芯转动时, 启动筋借助减震体接触限位筋以驱动轴 套转动,轴套的转动带动固定安装有叶轮的转轴转动,进而带动叶轮转动。因此, 本发明的交流永磁排水泵的能够获得的启动力矩大, 启动更平稳; 特别是, 减震 体与限位筋和启动筋之间为线接触, 相互之间的摩擦为滑动摩擦, 因此阻尼小; 两个减震体为圆柱形且在启动套内呈对称分布并同时工作,因此转子组件的动平 衡好, 偏心力小, 使用寿命长。
如图 19-22所示, 图中示出本实施例的第二种启动机构的结构, 启动筋可空 转 270° 后通过减震体接触并推动限位筋。
如图 19、20、21所示,该启动机构具有启动套 93b内壁设有一个启动筋 93b', 轴套 93a外壁设有一个限位筋 93a', 如图 20所示, 在启动套 93b和轴套 93a之 间的空腔内, 在启动筋 93b' 与限位筋 93a' 之间安置有沿圆周方向布置的减震 体 93c, 启动筋 93b' 与限位筋 93a' 之间具有防干涉间隙 (如图 21所示), 减 震体 93c可在启动筋 93b'的推动下沿圆周方向转动。
此外,在磁芯 15远离叶轮 2的一端安装有后盖 93e,在轴套 93a与后盖 93e 之间、 启动套 93b与轴套 93a之间分别安置有密封圈 93d、 93 d', 并且, 在减震 体 93c' 的内壁上设有多个润滑筋 93f, 可以减少减震体与轴套外壁和启动套内 壁的接触面积, 从而减少摩擦力。
当定子线圈 7被通以交流电时, 定子线圈 7产生的交变磁场通过定子铁芯 8 驱动磁芯 15转动, 启动套 93b在磁芯 15 的作用下随其同时转动, 启动套 93b 内壁的启动筋 93b' 会与轴套 93a外壁的限位筋 93a' 接触, 并通过限位筋 93a' 驱动轴套 93a转动, 由于轴套 93a与转轴 11固定连接, 因此转轴 11相应的进行 转动, 而叶轮 2固定在转轴 11的一端, 因此叶轮 2随着转轴 11的转动而转动, 从而使交流永磁排水泵实现排水的功能。
具体的, 启动套 93b是以磁芯 15为嵌件、采用注塑处理的方法将塑胶原料 固定在磁芯 15的一端, 启动套 93b具有用于安置轴套 93a的容置腔, 在启动套 93b的内壁设有朝着启动套 93b的轴心方向凸出的一个启动筋 93b',且该启动筋 93b' 为扇形体。
轴套 93a具有管状主体和限位筋 93a', 限位筋 93a' 为由管状主体向外凸 出的扇形体, 优选的, 该扇形体与构成启动筋 93b' 的扇形体具有相同的曲率中 心, 且该曲率中心位于转轴 11的轴线上。
特别是, 如图 21所示, 限位筋 93a' 的外壁半径略小于启动筋 93b' 的内 壁半径, 因此在启动套 93b逆时针旋转, 使启动筋 93b' 旋转到图 21所示的与 限位筋 93a' 相重合的位置, 则由于限位筋 93a' 的外壁与启动筋 93b' 的内壁 之间具有防干涉的间隙, 使得限位筋 93a' 和启动筋 93b' 可以相对旋转且不会 碰撞在一起, 即在该转动过程中不会相互干涉。
如图 20所示, 由限位筋 93a' 将启动套的启动筋 93b'两侧分隔成两个扇形 空间, 即在限位筋 93a' 和启动筋 93b' 的相对侧壁之间形成两个扇形腔, 此时 减震体 93c安置于其中一个扇形腔内。减震体 93c为与扇形腔形状相似的扇形结 构, 其采用塑性材料制得, 如橡胶, 且在加工时,减震体 93c可以采用实心结构, 也可以采用空心结构。
优选的, 减震体 93c为圆心角为 90° 的大致扇形体, 其内、 外扇形壁的曲 率中心均位于转轴 11 的轴线上。 减震体 93c的外扇形壁半径大于启动筋 93b' 的内壁半径, 减震体 93c的内扇形壁半径小于限位筋 93a' 的外壁半径, 从而使 得减震体 93c的内扇形壁与轴套的管状主体的外壁间隙配合,减震体 93c的外扇 形壁与启动套 93b的启动筋 93b' 之外的内壁形成间隙配合, 而减震体 93c的两 个侧壁可以分别与启动筋 93b' 的两个侧壁和限位筋 93a' 的两个侧壁相接触。 并且, 减震体 93c在所述扇形腔内自由转动。
其中,轴套 93a的管状主体外壁与启动筋 93b' 内壁之间的最大距离小于减 震体 93c的厚度即内、 外扇形壁半径之差, 从而使得启动筋 93b ' 与限位筋 93a' 靠近时, 使减震体 93c受到挤压, 而启动筋 93b' 与限位筋 93a' 本身不会碰撞, 使得轴套 93a不会与启动套 93b直接碰撞或磨擦,从而减小了交流永磁排水泵启 动时轴套 93a与减震体 93c、减震体 93c与启动套 93b和磁芯 15之间的拍打噪声, 使交流永磁排水泵工作时振动更小, 更安静。
在设计时, 启动筋 93b' 和减震体 93c的沿转轴 11轴线方向的高度不大于 限位筋 93a' 的沿轴线方向的高度, 并且为了避免减震体 93c脱离所述扇形腔, 如图 7所示, 在轴套 93a的管状主体外壁环设有向外凸出的平台, 平台的底端与 限位筋 93a' 的顶端相连, 从而将减震体 93c封堵在所述扇形腔内。
在制造时, 轴套 93a的管状主体、 平台和限位筋 93a' 为采用塑胶原料通 过注塑处理的方法所获得的一体成型的结构。 并且, 启动筋 93b' 与启动套 93b 也为采用塑胶原料通过注塑处理的方法所获得的一体成型的结构。
下面结合图 20-图 22描述本发明的启动机构的工作原理。
如图 20所示, 当限位筋 93a' 和启动筋 93b' 沿圆周方向相互错开时, 处于 图 20所示的位置,限位筋 93a'和启动筋 93b'相对的侧壁之间形成两个扇形腔, 减震体 93c位于其中上侧的一个扇形腔内, 此时, 减震体 93c的一个侧壁与启动 筋 93b' 的一个侧壁相抵, 减震体 93c的另一个侧壁与限位筋 93a' 的一个侧壁 相抵。
此时, 定子线圈 7产生交变磁场, 若交变磁场通过定子铁芯 8驱动磁芯 15 绕着转轴 11的轴线顺时针方向转动, 与磁芯 15固定的启动套 93b随磁芯 15— 起绕着转轴 11的轴线顺时针方向转动, 启动套 93b 上的启动筋 93b' 的一个侧 壁接触并推动减震体 93c转动并抵靠限位筋 93a' 的一侧壁, 若由于启动行程过 小, 启动阻力过大而不足以推动轴套通过转轴带动叶轮转动。
这时, 磁芯 15在磁场作用下, 就会逆时针旋转, 带动与其固定连接的启动 套 93b绕着转轴 11的轴线进行逆时针方向的转动,首先到达如图 21所示的位置, 由于启动筋 93b' 和限位筋 93a' 之间具有防干涉间隙, 因此启动筋 93b' 旋转 通过限位筋 93a, 而使启动筋 93b' 的另一个侧壁与减震体 93c的另一个侧壁接 触; 当启动筋 93b' 继续沿逆时针方向转动时, 启动筋 93b' 推动减震体 93c绕 着转轴 11的轴线沿逆时针方向转动,直到减震体 93c的一个侧壁抵在限位筋 93a' 的另一个侧壁上, 如图 22所示。 显然, 该逆时针的启动过程具有较大的空载过 程 (指自逆时针转动开始至减震体 93c的一个侧壁抵在限位筋 93a' 的另一个侧 壁上为止的过程) 转动角度。
在图 22所示的位置, 启动套推动减震体 93c随之继续逆时针方向转动, 通 过减震体 93c推动限位筋 93a' 转动, 使得轴套 93a进行逆时针方向转动, 轴套 93a通过与其固定连接的转轴 11, 带动固定在转轴 11一端的叶轮 2沿着逆时针 方向转动。
优选的, 本发明的磁芯 15驱动转轴 11转动时, 磁芯 15可以转动的最大角 度为 270° 。
因此, 按照图 20-22所示的过程启动, 使得启动筋 93b ' 由图 20的位置转动 到图 22的位置, 空载转动行程达到了 270° 。 空载转动行程的增大将导致转速 达到较大值时才耦合叶轮负载, 按照该类电动机的转速 转矩机械特性, 此 较大转速时的转矩也具有较大值, 且已形成较大的转动惯量动能, 即此时有利 于启动机构启动叶轮旋转。
具有上述结构的启动机构, 在磁芯转动时, 通过启动筋推动减震体, 再通过 减震体推动限位筋的方法, 驱动轴套转动, 从而使得转轴转动, 进而带动叶轮转 动, 使得本发明的交流永磁排水泵的启动力矩大, 启动更平稳; 而密封圈可对启 动套内的油脂起密封作用, 并且在减震体的内壁设有多个润滑筋, 避免转子组件 工作时间长使减震体失去润滑而损坏, 因此使用寿命长; 减震体采用扇形结构, 其受力更匀称, 因此启动噪音小。
尽管上文对本发明作了详细说明,但本发明不限于此,本技术领域的技术人 员可以根据本发明的原理进行修改, 因此, 凡按照本发明的原理进行的各种修改 都应当理解为落入本发明的保护范围。

Claims

权利要求书
1、 一种可减小振动噪音的交流永磁排水泵, 包括泵盖(1) 、 泵体(10), 还包括磁芯 (15) 、 转轴 (11) 、 定子铁芯 (8) 及线圈 (7) , 线圈 (7) 绕制 于线圈骨架, 定子铁芯 (8) 装配于线圈 (7) , 其特征在于- 所述泵体(10)为围绕装配后的线圈 (7) 、 线圈骨架及定子铁芯 (8) 的轮 廓一体注塑形成的壳体, 所述壳体限定出一开口于顶部并从开口延伸至泵体中 心的用于容置磁芯 (15) 的磁芯容置空间 (10.1) , 磁芯容置空间的顶部开口设 置有用于支撑转轴轴承的支承结构。
2、 如权利要求 1所述的交流永磁排水泵, 其特征在于:
包括所述线圈 (7) 和定子铁芯 (8) 的定子组件以及包括所述转轴 (11) 和设于转轴(11)上绕其旋转的磁芯(15)的转子组件(20)安置在所述泵体(10) 之内, 定子组件对磁芯 (15) 产生交变磁场以驱动其绕转轴 (11) 旋转;
所述转子组件还包括固定在转轴上的轴套 (93a) 以及设于轴套 (93a) 外 壁的至少一个限位筋, 转子组件通过驱动轴套 (93a) 转动带动转轴 (11) 进行 转动;
所述泵体(10) 内设有用于支撑所述转子组件的转子座 (17), 所述磁芯容 置空间 (10.1) 由所述转子座的内表面围成;
所述定子铁芯 (8) 的内凹圆弧部 (81) 嵌入所述转子座 (17) 内。
3、 根据权利要求 2所述的交流永磁排水泵, 其特征在于, 所述泵体 (10) 包括至少密封线圈 (7) 的第一泵体部 (10a)和用于安装转子组件 (20) 的第二 泵体部 (10b), 且第一泵体部 (10a) 与第二泵体部 (10b) 连接为一体。
4、根据权利要求 2所述的交流永磁排水泵, 其特征在于, 所述转子座(17) 设置在所述第二泵体部 (10b) 内并与其为一体结构, 且所述第二泵体部 (10b) 的外缘设有用于连接所述泵盖 (1) 的连接部 (18)。
5、 根据权利要求 2所述的交流永磁排水泵, 其特征在于, 所述线圈 (7) 安置在所述第一泵体部 (10a) 内, 所述定子铁芯 (8) 的内凹圆弧部 (81)伸出 于第一泵体部。
6、根据权利要求 2所述的交流永磁排水泵, 其特征在于, 所述转子座(61) 为一端开口的筒体,筒体的内圆弧表面与嵌入的定子铁芯(8)的内凹圆弧部(81) 的内圆弧表面 (81a) 共同围成容纳所述磁芯的磁芯容置空间。
7、根据权利要求 6所述的交流永磁排水泵,其特征在于,所述定子铁芯(8 ) 的内凹圆弧部(81 )的内圆弧表面被设置成所述转子座(17)的内表面的一部分。
8、根据权利要求 6所述的交流永磁排水泵,其特征在于,所述定子铁芯(8 ) 的内凹圆弧部 (81 ) 的至少部分内圆弧表面 (81a) 向轴心方向凸出所述转子座
( 17) 的内表面 (17a)。
9、根据权利要求 2所述的交流永磁排水泵,其特征在于,所述转子组件 (20) 还包括: 固定连接所述磁芯(15 )—端的启动套(93b), 其内壁设有至少一个启 动筋, 所述启动筋与所述限位筋不干涉, 所述启动套由非磁性材料制成。
10、根据权利要求 9所述的交流永磁排水泵, 其特征在于, 所述启动筋与限 位筋之间通过减震体接触, 启动筋和限位筋之间具有间隙, 该间隙使得启动时, 启动筋在接触减震体接触并推动限位筋前的最大空转角度至少是 220° 。
PCT/CN2013/087730 2012-12-12 2013-11-22 交流永磁排水泵 WO2014090079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380063978.6A CN104854349B (zh) 2012-12-12 2013-11-22 交流永磁排水泵

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201220684710 2012-12-12
CN201220684710.7 2012-12-12
CN201310415792 2013-09-12
CN201310415792.4 2013-09-12

Publications (1)

Publication Number Publication Date
WO2014090079A1 true WO2014090079A1 (zh) 2014-06-19

Family

ID=50933763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087730 WO2014090079A1 (zh) 2012-12-12 2013-11-22 交流永磁排水泵

Country Status (2)

Country Link
CN (1) CN104854349B (zh)
WO (1) WO2014090079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176926A4 (en) * 2014-07-28 2018-07-11 Jangmen Idear Hanyu Electrical Joint-Stock Co. Ltd. Permanent magnet synchronous electric motor and preparation method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107489628B (zh) * 2017-08-26 2019-02-05 大连碧蓝节能环保科技有限公司 水环式排水泵
US11382484B2 (en) 2020-01-23 2022-07-12 Haier Us Appliance Solutions, Inc. Dishwashing appliance and electric motor for a fluid pump with a thermal-protection assembly
CN116792342A (zh) * 2023-08-24 2023-09-22 广东赛普电器制造有限公司 一种水循环式高效降温的水泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503083A1 (en) * 2003-07-30 2005-02-02 Industrie Saleri Italo S.p.a. An electric pump for cooling circuits
CN101054978A (zh) * 2006-04-10 2007-10-17 日本电产三协株式会社 泵装置、马达及使用该马达的电动设备
CN101102068A (zh) * 2007-08-08 2008-01-09 江门市汉宇电器有限公司 排水泵永磁同步电机
JP2008008187A (ja) * 2006-06-29 2008-01-17 Aisin Seiki Co Ltd 電動ポンプ
CN101408228A (zh) * 2008-09-11 2009-04-15 江门市汉宇电器有限公司 永磁同步电机的转子和工作构件之间的传动装置
CN102223011A (zh) * 2011-06-08 2011-10-19 江门市地尔汉宇电器股份有限公司 水冷式永磁转子电机及排水泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503083A1 (en) * 2003-07-30 2005-02-02 Industrie Saleri Italo S.p.a. An electric pump for cooling circuits
CN101054978A (zh) * 2006-04-10 2007-10-17 日本电产三协株式会社 泵装置、马达及使用该马达的电动设备
JP2008008187A (ja) * 2006-06-29 2008-01-17 Aisin Seiki Co Ltd 電動ポンプ
CN101102068A (zh) * 2007-08-08 2008-01-09 江门市汉宇电器有限公司 排水泵永磁同步电机
CN101408228A (zh) * 2008-09-11 2009-04-15 江门市汉宇电器有限公司 永磁同步电机的转子和工作构件之间的传动装置
CN102223011A (zh) * 2011-06-08 2011-10-19 江门市地尔汉宇电器股份有限公司 水冷式永磁转子电机及排水泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176926A4 (en) * 2014-07-28 2018-07-11 Jangmen Idear Hanyu Electrical Joint-Stock Co. Ltd. Permanent magnet synchronous electric motor and preparation method therefor

Also Published As

Publication number Publication date
CN104854349B (zh) 2017-07-28
CN104854349A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2014090078A1 (zh) 交流永磁排水泵
CN102758780B (zh) 离心风扇
WO2014090079A1 (zh) 交流永磁排水泵
CA2167356A1 (en) Startup device for the rotor of a permanent-magnet synchronous motor
JP2013249740A (ja) 電動圧縮機
MXPA05004774A (es) Bomba accionada electricamente.
ES2872574T3 (es) Bomba de líquido, motor y manguito de árbol del mismo
WO2022142998A1 (zh) 电动机和清洁设备
JP4665334B2 (ja) 電動式油圧ポンプ
JP2013106512A (ja) コギングトルク低減型キャンドモータ
US20050260088A1 (en) Electrically driven pump and domestic appliance having the pump
KR20130138505A (ko) 워터 펌프
CN203604215U (zh) 交流永磁排水泵
CN110331556B (zh) 外筒组件、洗衣机
TW202203555A (zh) 風扇馬達
JP2000303986A (ja) 一体型モータポンプ
AU2021202910B2 (en) Fan motor
TWI407018B (zh) Flat miniature pump
KR101244083B1 (ko) 전동식 워터 펌프
CN203500034U (zh) 交流永磁排水泵的启动机构
US10995759B2 (en) Water pump
CN204851667U (zh) 无轴密封循环泵
CN203500035U (zh) 交流永磁排水泵的启动机构
CN220060021U (zh) 一种水泵及应用该水泵的洗碗机
EP4269802A1 (en) Condensate drain pump with reduced noise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862513

Country of ref document: EP

Kind code of ref document: A1