WO2014089775A1 - 随机接入方法、用户设备、基站及系统 - Google Patents
随机接入方法、用户设备、基站及系统 Download PDFInfo
- Publication number
- WO2014089775A1 WO2014089775A1 PCT/CN2012/086436 CN2012086436W WO2014089775A1 WO 2014089775 A1 WO2014089775 A1 WO 2014089775A1 CN 2012086436 W CN2012086436 W CN 2012086436W WO 2014089775 A1 WO2014089775 A1 WO 2014089775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequences
- sequence
- time domain
- signal
- random access
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000012545 processing Methods 0.000 claims description 50
- 238000013507 mapping Methods 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims 2
- 238000005070 sampling Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 21
- 230000000875 corresponding effect Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 8
- 230000026676 system process Effects 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L23/00—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
- H04L23/02—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
Definitions
- Random access method user equipment, base station and system
- the present invention relates to communication technologies, and in particular, to a random access method, a user equipment, a base station, and a system. Background technique
- the random access channel is mainly used for initial access of user equipment (User Equipment, UE for short), and does not carry any user data.
- the signal transmitted by the UE on the RACH channel is a Preamble Sequence.
- a predetermined 3GPP TS 36.211 protocol the preamble sequence comprising a cyclic prefix (Cyclic Prefix, referred to as CP) of a length of 7 ⁇ sE Q and a length of the access sequence (Sequence, of SEQ abbreviated) two portions of 1
- the access sequence is usually a Zadoff-Chu sequence (referred to as a ZC sequence).
- the protocol also specifies several different formats of preamble sequences, each of which corresponds to a respective 7 ⁇ and 7 ⁇ to match different cell radii.
- the base station can sample the signal once after the normal RACH signal sampling time, and correlate the two samples with the local ZC sequence. As shown in Figure 2, this ensures a complete periodic signal and can implement any possible Round Trip Delay (RTD) in the cell.
- RTD Round Trip Delay
- the user equipment User Equipment, UE for short
- the user equipment needs to acquire two ZC sequences, perform a series of processing on the two ZC sequences, and send them to the base station one after another.
- the base station identifies the frequency offset of the RTD and the UE uplink signal according to the two ZC sequences. ⁇ l , resulting in a complete random access delay of at least 2 times the sequence transmission time, such as the ZC sequence with format number 3 as an example, sending a ZC sequence occupying 3 milliseconds (ms), sending two ZC sequences For 6ms, the random access delay is at least 6ms.
- the embodiments of the present invention provide a random access method, a user equipment, a base station, and a system, which are used to solve the problem of large random access delay in a super-far hyper-high speed scenario in the prior art.
- an embodiment of the present invention provides a random access method, including:
- the performing, by using the two access sequences in a time domain, to generate a random access signal includes:
- the performing, by using the two access sequences in a frequency domain, to generate a random access signal includes:
- the two access sequences are two ZC sequences, and the two ZC sequences are The value of du is different.
- an embodiment of the present invention provides a random access method, including:
- a random access signal that is sent by using a random access channel, where the random access signal is generated by the UE superimposing two access sequences in a time domain or a frequency domain, where the two accesses are generated. Different sequences;
- the two access sequences are two ZC sequences, and the du values of the two ZC sequences are different.
- the processing the random access signal is processed, to obtain a time domain of the two access sequences Characteristic parameters and frequency domain characteristic parameters, including:
- the du value of the first local ZC sequence is less than the du value of the second local ZC sequence.
- the determining the round-trip propagation according to the time domain characteristic parameter and the frequency domain characteristic parameter of the two access sequences include:
- the delay RTD and the frequency offset of the uplink signal of the UE include:
- an embodiment of the present invention provides a UE, including:
- An obtaining module configured to acquire two access sequences, where the two access sequences are different;
- a generating module configured to superimpose the two access sequences in a time domain or a frequency domain to generate a random Access signal
- a sending module configured to send the random access signal to the base station by using a random access channel.
- the generating module is specifically configured to:
- the generating module is specifically configured to:
- the two access sequences are two ZC sequences, and the two ZC sequences are The value of du is different.
- an embodiment of the present invention provides a base station, including:
- a receiving module configured to receive a random access signal that is sent by the UE by using a random access channel, where the random access signal is generated by the UE superimposing two access sequences in a time domain or a frequency domain, where the two Different access sequences;
- a processing module configured to process the random access signal to obtain a time domain characteristic parameter and a frequency domain characteristic parameter of the two access sequences
- an estimation module configured to estimate a round-trip propagation delay RTD and a frequency offset of the UE uplink signal according to time domain characteristic parameters and frequency domain characteristic parameters of the two access sequences.
- the two access sequences are two ZC sequences, and the du values of the two ZC sequences are different.
- the processing module is specifically configured to:
- the estimating module is specifically configured to:
- the estimating module is specifically configured to:
- the fifth aspect the embodiment of the present invention provides a random access system, including: the UE according to the third aspect, and the base station according to the fourth aspect.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two connections in parallel in the time domain or the frequency domain by using a random access channel to send to the base station.
- the incoming sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- Figure 1 is a schematic diagram of the format of a general preamble sequence
- FIG. 2 is a schematic diagram of a conventional base station sampling signal
- FIG. 3 is a schematic flowchart of a random access method according to Embodiment 1 of the present invention
- FIG. 4 is a schematic flowchart of a random access method according to Embodiment 2 of the present invention
- FIG. 6 is a schematic diagram of an application of the embodiment shown in FIG. 5;
- FIG. 3 is a schematic structural diagram of a UE 600 according to Embodiment 4 of the present invention.
- FIG. 8 is a schematic structural diagram of a base station 700 according to Embodiment 5 of the present invention.
- FIG. 9 is a schematic diagram of an application of the embodiment shown in FIG. 8;
- FIG. 10 is a schematic structural diagram of a base station 800 according to Embodiment 6 of the present invention.
- FIG. 1 is a schematic structural diagram of a random access system 900 according to Embodiment 7 of the present invention
- FIG. 12 is a schematic diagram of a time required to complete a random access normally
- FIG. 13 is a schematic diagram of time required to complete a random access according to an embodiment of the present invention.
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
- the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- FIG. 3 is a schematic flowchart diagram of a random access method according to Embodiment 1 of the present invention. As shown in Figure 3, the method includes:
- the UE acquires two access sequences.
- the two access sequences may be obtained from a system message block broadcast by the base station.
- the base station broadcasts a System Information Block (SIB) to the UE, where the SIB carries the configured RACH parameters, and the RACH parameters include the initial The initial access power, the selected two access sequences, the sequence relationship of the two access sequences, and the like.
- SIB System Information Block
- the base station notifies the UE of two access sequence groups through a broadcast channel, each access sequence group includes multiple access sequences, and the UE selects one access sequence from each access sequence group.
- the base station may also notify the UE of multiple access sequence pairs by using a broadcast channel, where each access sequence pair includes two access sequences, and the UE selects one access sequence pair from multiple access sequence pairs.
- the UE and the base station can both know the RACH parameters in a pre-configured manner. Accordingly, the UE can obtain two access sequences from local configuration parameters.
- two access sequences are two ZC sequences, and the du values of the two ZC sequences are different.
- the du value refers to a cyclic shift corresponding to a Doppler shift obtained based on the Doppler shift.
- the difference of the du values of the two ZC sequences is determined by the maximum frequency offset allowed by the system for the multiple of the access channel subcarrier bandwidth, specifically, the maximum frequency offset allowed in the system is determined by the multiple of the access channel subcarrier bandwidth.
- the du value of one ZC sequence is at least greater than the product of the above multiple and the value of another ZC sequence du.
- the two access sequences are superposed in the time domain to generate a random access signal, including:
- DFT Discrete Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- the two access sequences are superimposed in the frequency domain to generate a random access signal, including: performing DFT on the two access sequences to generate a first frequency corresponding to the two access sequences respectively a domain signal and a second frequency domain signal;
- the first frequency domain signal and the second frequency domain signal are superimposed, and then resource mapping, IDFT, and radio frequency processing are sequentially performed to generate the random access signal.
- the foregoing resource mapping refers to mapping a frequency domain signal to a RACH resource, which is also referred to as a RACH resource mapping.
- 303. Send the random access signal to the base station by using the RACH.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two connections in parallel in the time domain or the frequency domain by using a random access channel to send to the base station.
- the incoming sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing.
- the complexity and reduced cell handover delay since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- FIG. 4 is a schematic flowchart diagram of a random access method according to Embodiment 2 of the present invention. As shown in Figure 4, the method includes:
- 401 Receive a random access signal that is sent by the UE by using the RACH, where the random access signal is generated by the UE superimposing two access sequences in a time domain or a frequency domain, where the two access sequences are different.
- the base station receives a random access signal sent by the UE through the RACH.
- the two access sequences are two ZC sequences, and the du values of the two ZC sequences are different.
- the time domain characteristic parameter of the access sequence includes a multipath delay, that is, a delay of multiple air interface paths
- the frequency domain characteristic parameter of the access sequence includes a frequency offset
- the time domain characteristic parameter and the frequency domain characteristic parameter of the access sequence may be represented by an output power delay profile (PDP) associated with the access sequence.
- PDP output power delay profile
- 402 can include:
- the superposition sequence is correlated with the second local access sequence and IDFT, and the time domain characteristic parameter and the frequency domain characteristic parameter of the second access sequence in the two access sequences are obtained.
- the time domain characteristic parameter of the first access sequence or the second access sequence may be obtained correspondingly, and further, the related sequence is performed.
- IDFT the frequency domain characteristic parameter of the first access sequence or the second access sequence may be obtained.
- the two access sequences sent by the UE are two ZC sequences
- the two local access sequences of the base station are two local ZC sequences
- the du values of the two local ZC sequences are different.
- the following is an example in which the du value of the first local ZC sequence is smaller than the du value of the second local ZC, and the du value of the first ZC sequence is smaller than the du value of the second ZC.
- 403 can include:
- 403 can include:
- the base station estimates the RTD range by the time domain characteristic parameter of the first ZC sequence, i.e., the multipath delay of the first ZC sequence. And according to the estimated RTD range, combining the multipath delay of the second ZC sequence, that is, the multipath delay of the second ZC sequence, finding a delay point of overlapping of the first ZC sequence and the second ZC sequence, and overlapping time The extension is used as the estimated RTD. Further, the base station finds the offset window where the peak is located on the output PDP related to the second ZC sequence by using the estimated RTD range or the estimated RTD, and estimates the frequency offset of the uplink signal of the UE.
- the base station finds the offset window where the peak is located on the output PDP related to the second ZC sequence by using the estimated RTD range or the estimated RTD, and estimates the frequency offset of the uplink signal of the UE.
- the base station cyclically shifts the output PDP related to the second ZC sequence by using a lower limit of the estimated RTD range or a value smaller than the RTD, and finds an offset window of one or two maximum peaks, and estimates the frequency of the uplink signal of the UE. Partial.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two access sequences to the base station through the random access channel, and sends the two in parallel in the time domain or the frequency domain.
- the access sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing.
- the complexity and reduced cell handover delay since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
- FIG. 5 is a schematic structural diagram of a UE 500 according to Embodiment 3 of the present invention. As shown in FIG. 5, the UE 500 includes:
- the obtaining module 51 is configured to acquire two access sequences, where the two access sequences are different.
- the generating module 52 is configured to superimpose the two access sequences in a time domain or a frequency domain to generate a random access signal. ;
- the sending module 53 is configured to send the random access signal to the base station by using the RACH.
- the generating module 52 is specifically configured to:
- the two access sequences are respectively generated, and the first time domain signal and the second time domain signal respectively corresponding to the two access sequences are generated;
- the generating module 52 is specifically configured to:
- the first frequency domain signal and the second frequency domain signal are superimposed, and then resource mapping, IDFT, and radio frequency processing are sequentially performed to generate the random access signal.
- the two access sequences are two ZC sequences, and the du values of the two ZC sequences are Different.
- FIG. 6 is a schematic diagram of an application of the embodiment shown in FIG. 5.
- the first time domain signal and the second time domain are generated after performing DFT, RACH resource mapping, and IDFT on the two ZC sequences, that is, the first ZC sequence and the second ZC sequence, respectively.
- the signal is superimposed on the first time domain signal and the second time domain signal, and then transmitted on the antenna after being processed by radio frequency.
- a specific implementation of this embodiment refers to a random access method provided by Embodiment 1 of the present invention.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two connections in parallel in the time domain or the frequency domain by using a random access channel to send to the base station.
- the incoming sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing.
- the complexity and reduced cell handover delay since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- FIG. 7 is a schematic structural diagram of a UE 600 according to Embodiment 4 of the present invention. As shown in Figure ,,
- the UE 600 generally includes at least one processor 610, such as a Central Processing Unit (CPU), a Digital Signal Processor (DSP), at least one port 620, a memory 630, and at least one communication bus 640.
- Communication bus 640 is used to implement connection communication between these devices.
- the processor 610 is configured to execute an executable module, such as a computer program, stored in the memory 630; optionally, the UE 600 can include a user interface 650 including, but not limited to, a display, a keyboard, and a pointing device, such as a mouse, a trackball ( Trackball ), touch panel or touch screen.
- the memory 630 may include a random access memory (RAM), and may also include a non-volatile memory such as at least one disk storage.
- memory 630 stores the following elements, executable modules or data structures, or a subset thereof, or their extension set:
- the operating system 632 includes various system programs for implementing various basic services and processing hardware-based tasks;
- the application module 634 includes various applications for implementing various application services.
- the application module 634 includes but is not limited to the acquisition module 51, the generation module 52, and the transmission module. 53.
- each module in the application module 634 refer to the corresponding module in the UE 500, and details are not described herein.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two connections in parallel in the time domain or the frequency domain by using a random access channel to send to the base station.
- the incoming sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing.
- the complexity and reduced cell handover delay since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- FIG. 8 is a schematic structural diagram of a base station 700 according to Embodiment 5 of the present invention. As shown in FIG. 8, the base station 700 includes:
- the receiving module 71 is configured to receive a random access signal that is sent by the UE by using a random access channel, where the random access signal is generated by the UE superimposing two access sequences in a time domain or a frequency domain, where The two access sequences are different;
- the processing module 72 is configured to process the random access signal to obtain time domain characteristic parameters and frequency domain characteristic parameters of the two access sequences.
- the estimating module 73 is configured to estimate a frequency offset of the RTD and the uplink signal of the UE according to the time domain characteristic parameter and the frequency domain characteristic parameter of the two access sequences.
- the two access sequences are two ZC sequences, and the du values of the two ZC sequences are different.
- processing module 72 is specifically configured to:
- the du value of the first local ZC sequence is smaller than the du value of the second local ZC sequence.
- the estimating module 73 is specifically configured to:
- the estimating module 73 is specifically configured to:
- Figure 9 is a schematic view of an application of the embodiment shown in Figure 8.
- the random access signal sent by the UE is received from the RACH channel, and after the DFT and the subcarrier are extracted, the first local ZC sequence and the second local ZC sequence are respectively associated with the random access signal.
- Correlating with the first local ZC sequence obtaining a first ZC sequence in the frequency domain, performing IDFT on the first ZC sequence in the frequency domain, obtaining a first ZC sequence in the time domain, and performing sequence detection on the first ZC sequence in the time domain, RTD range; in addition, after the second local ZC sequence is correlated, the second ZC sequence in the frequency domain is obtained, and the second ZC sequence in the frequency domain is IDFT, and the second ZC sequence in the time domain is obtained, and the RTD range is combined with the time domain.
- the sequence detection is performed by the ZC sequence of the second ZC sequence and the frequency domain, and the frequency offset of the uplink signal of the RTD and the UE is obtained.
- a specific implementation of this embodiment refers to a random access method provided by Embodiment 2 of the present invention.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two connections in parallel in the time domain or the frequency domain by using a random access channel to send to the base station.
- the incoming sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing.
- the complexity and reduced cell handover delay since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- FIG. 10 is a schematic structural diagram of a base station 800 according to Embodiment 6 of the present invention.
- base station 800 generally includes at least one processor 810, such as a central processing unit (Central).
- Communication bus 840 is used to implement connection communication between these devices.
- the processor 810 is configured to execute an executable module, such as a computer program, stored in the memory 830; optionally, the base station 800 can include a user interface 850 including, but not limited to, a display, a keyboard, and a pointing device, such as a mouse, a trackball (trackball), touchpad or tactile display.
- the memory 830 may include a random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
- memory 830 stores the following elements, executable modules or data structures, or a subset thereof, or their extension set:
- Operating system 832 which contains various system programs for implementing various basic services and processing hardware-based tasks
- Application module 834 which contains various applications for implementing various application services.
- the application module 834 includes, but is not limited to, a receiving module 71, a processing module 72, and an estimating module 73.
- a receiving module 71 receives data from the external source.
- a processing module 72 receives data from the external source.
- an estimating module 73 receives data from the external source.
- each module in the application module 834 refers to the corresponding module in the base station 700, and details are not described herein.
- the embodiment of the present invention uses the UE to superimpose the two access sequences in the time domain or the frequency domain, and then sends the two connections in parallel in the time domain or the frequency domain by using a random access channel to send to the base station.
- the incoming sequence enables the base station to detect two access sequences in one sample window, reducing the delay of random access.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing.
- the complexity and reduced cell handover delay since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- FIG. 11 is a schematic structural diagram of a random access system 900 according to Embodiment 7 of the present invention.
- the system 900 includes: a base station 91 and a UE 92.
- the base station 91 is a base station 700 according to the fifth embodiment of the present invention or a base station 800 according to the sixth embodiment of the present invention.
- the UE 600 provided in Embodiment 4 of the present invention.
- the UE uses the UE to superimpose the two access sequences in the time domain or the frequency domain
- the two access sequences are sent in parallel in the time domain or the frequency domain, so that the base station can detect two access sequences in one sample window, which reduces random access. Delay.
- the base station since the time alignment of all the cells cannot be guaranteed in the FDD system, the base station must detect both access sequences on the two detected sampling windows, but the embodiment of the present invention
- the two access sequences sent by the UE are in the same sample window, so the FDD system processes the same for the cell and the neighboring cell, and can detect two access sequences in one sample window, reducing the baseband processing. The complexity and reduced cell handover delay.
- Figure 12 is a schematic diagram of the time required to complete a random access normally. As shown in FIG. 12, t1 is the time required for the base station to receive two ZC sequences, and t2 is the delay for the base station to process after receiving two ZC sequences. Therefore, the minimum time required to complete a random access is tl. +t2.
- the size of tl is determined by the RACH frame format, and t2 is related to the receiving and processing capabilities of the base station. Usually, t2 is much smaller than tl.
- FIG. 13 is a schematic diagram of time required to complete a random access according to an embodiment of the present invention.
- t3 is the time required for the base station to receive two ZC sequences
- t4 is the delay for the base station to process after receiving the two ZC sequences. Therefore, the minimum required for completing a random access in the embodiment of the present invention is as follows.
- the time is t3+t4.
- the size of t3 is determined by the RACH frame format, and t4 is related to the receiving and processing capabilities of the base station. Usually, t4 is much smaller than t3.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种随机接入方法、用户设备、基站及系统。方法包括:获取两个接入序列,所述两个接入序列不同;将所述两个接入序列在时域或频域进行叠加,生成随机接入信号;将所述随机接入信号通过随机接入信道发送给基站。本发明实施例通过在时域或频域上一次并行发送两个接入序列,使得基站可以在一个釆样窗口内检测两个接入序列,减少了随机接入的时延。
Description
随机接入方法、 用户设备、 基站及系统
技术领域
本发明涉及通信技术, 尤其涉及一种随机接入方法、 用户设备、 基站及 系统。 背景技术
长期演进系统 (Long Term Evolution, 简称 LTE ) 中, 随机接入信道 ( Random Access Channel ,简称 RACH )主要用于用户设备 ( User Equipment , 简称 UE )的初始化接入, 它不携带任何用户数据。 UE在 RACH信道上发送 的信号为前导序列 (Preamble Sequence ) 。 如图 1所示, 3GPP TS 36.211协 议的规定, 前导序列包括一段长度为7 ^的循环前缀(Cyclic Prefix, 简称 CP ) 和一段长度为 sEQ的接入序列 (Sequence, 简称 SEQ )两个部分, 接入序列通 常为 Zadoff-Chu序列 (简称 ZC序列) 。 同时, 协议还规定了几种不同格式 的前导序列, 每个前导序列对应各自的7 ^和7^ , 以匹配不同的小区半径。
在高速的通信接入系统中, 也常常伴随着小区的广覆盖。 对于大小区的 覆盖, 即可覆盖到 100千米(km )范围以外, 基站可以在正常 RACH信号釆 样时刻后再釆样一次信号, 将两次釆样的信号分别与本地 ZC序列做相关, 如图 2所示, 这样可保证釆样到完整的周期信号, 可以实现小区内任意可能 的往返传播时延(Round Time Delay, 简称 RTD ) 。 相应地, 通常的超远超 高速随机接入方法中: 用户设备 ( User Equipment, 简称 UE ) 需要获取两个 ZC序列, 对这两个 ZC序列进行一系列处理, 并先后发送给基站。 基站根据 这两个 ZC序列识别 RTD和 UE上行信号的频偏。 歹l , 导致每次完整的随机接入时延至少是 2倍的序列发送时间, 如以格式编 号为 3的 ZC序列为例, 发送一个 ZC序列占据 3毫秒(ms ) , 发送两个 ZC 序列占据 6ms , 则随机接入时延至少为 6ms。
发明内容
本发明实施例提供一种随机接入方法、 用户设备、 基站及系统, 用以解 决现有技术中超远超高速场景下随机接入时延大的问题。
第一方面, 本发明实施例提供一种随机接入方法, 包括:
获取两个接入序列, 所述两个接入序列不同;
将所述两个接入序列在时域或频域进行叠加, 生成随机接入信号; 将所述随机接入信号通过随机接入信道发送给基站。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述将所述两 个接入序列在时域进行叠加, 生成随机接入信号, 包括:
对所述两个接入序列分别依次进行离散傅里叶变换、 资源映射、 逆离散 傅里叶变换后, 生成所述两个接入序列分别对应的第一时域信号和第二时域 信号;
将所述第一时域信号和第二时域信号进行叠加后进行射频处理, 生成所 述随机接入信号; 或者, 对所述第一时域信号和第二时域信号进行射频处理 后在空口进行叠加, 生成所述随机接入信号。
结合第一方面, 在第一方面的第二种可能的实现方式中, 所述将所述两 个接入序列在频域进行叠加, 生成随机接入信号, 包括:
对所述两个接入序列分别进行离散傅里叶变换生成所述两个接入序列分 别对应的第一频域信号和第二频域信号;
将所述第一频域信号和第二频域信号进行叠加后依次进行资源映射、 逆 离散傅里叶变换、 射频处理, 生成所述随机接入信号。
结合第一方面或第一方面的上述两种可能的实现方式, 在第一方面的第 三种可能的实现方式中, 所述两个接入序列为两个 ZC序列, 所述两个 ZC序 列的 du值不同。
第二方面, 本发明实施例提供一种随机接入方法, 包括:
接收用户设备 UE通过随机接入信道发送的随机接入信号, 所述随机接 入信号是所述 UE将两个接入序列在时域或频域进行叠加后生成的, 所述两 个接入序列不同;
对所述随机接入信号进行处理, 得到所述两个接入序列的时域特性参数 和频域特性参数;
根据所述两个接入序列的时域特性参数和频域特性参数估计往返传播时
延 RTD和所述 UE上行信号的频偏。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述两个接入 序列为两个 ZC序列, 所述两个 ZC序列的 du值不同。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实 现方式中, 所述对所述随机接入信号进行处理, 得到所述两个接入序列的时 域特性参数和频域特性参数, 包括:
对所述随机接入信号依次进行离散傅里叶变换、 子载波抽取处理后, 得 到所述两个 ZC序列的叠加序列;
将所述叠加序列与第一本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第一 ZC序列的时域特性参数;
将所述叠加序列与第二本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第二 ZC序列的时域特性参数和频域特性参数;
所述第一本地 ZC序列的 du值小于所述第二本地 ZC序列的 du值。 结合第二方面的第二种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 所述根据所述两个接入序列的时域特性参数和频域特性参数估计 往返传播时延 RTD和所述 UE上行信号的频偏, 包括:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述 RTD和所述第二 ZC序列的频域特性参数, 估计所述 UE上行 信号的频偏。
结合第二方面的第二种可能的实现方式, 在第二方面的第四种可能的实 现方式中, 所述根据所述两个接入序列的时域特性参数和频域特性参数估计 往返传播时延 RTD和所述 UE上行信号的频偏, 包括:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述估计的 RTD范围和所述第二 ZC序列的频域特性参数, 估计所 述 UE上行信号的频偏。
第三方面, 本发明实施例提供一种 UE, 包括:
获取模块, 用于获取两个接入序列, 所述两个接入序列不同;
生成模块, 用于将所述两个接入序列在时域或频域进行叠加, 生成随机
接入信号;
发送模块, 用于将所述随机接入信号通过随机接入信道发送给基站。 结合第三方面, 在第三方面的第一种可能的实现方式中, 所述生成模块 具体用于:
对所述两个接入序列分别依次进行离散傅里叶变换、 资源映射、 逆离散 傅里叶变换后, 生成所述两个接入序列分别对应的第一时域信号和第二时域 信号;
将所述第一时域信号和第二时域信号进行叠加后进行射频处理, 生成所 述随机接入信号; 或者, 对所述第一时域信号和第二时域信号进行射频处理 后在空口进行叠加, 生成所述随机接入信号。
结合第三方面, 在第三方面的第二种可能的实现方式中, 所述生成模块 具体用于:
对所述两个接入序列分别进行离散傅里叶变换生成所述两个接入序列分 别对应的第一频域信号和第二频域信号;
将所述第一频域信号和第二频域信号进行叠加后依次进行资源映射、 逆 离散傅里叶变换、 射频处理, 生成所述随机接入信号。
结合第三方面或第三方面的上述两种可能的实现方式, 在第三方面的第 三种可能的实现方式中, 所述两个接入序列为两个 ZC序列, 所述两个 ZC序 列的 du值不同。
第四方面, 本发明实施例提供一种基站, 包括:
接收模块, 用于接收 UE通过随机接入信道发送的随机接入信号, 所述 随机接入信号是所述 UE将两个接入序列在时域或频域进行叠加后生成的, 所述两个接入序列不同;
处理模块, 用于对所述随机接入信号进行处理, 得到所述两个接入序列 的时域特性参数和频域特性参数;
估计模块, 用于根据所述两个接入序列的时域特性参数和频域特性参数 估计往返传播时延 RTD和所述 UE上行信号的频偏。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述两个接入 序列为两个 ZC序列, 所述两个 ZC序列的 du值不同。
结合第四方面的第一种可能的实现方式, 在第四方面的第二种可能的实
现方式中, 所述处理模块具体用于:
对所述随机接入信号依次进行离散傅里叶变换、 子载波抽取处理后, 得 到所述两个 ZC序列的叠加序列;
将所述叠加序列与第一本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第一 ZC序列的时域特性参数;
将所述叠加序列与第二本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第二 ZC序列的时域特性参数和频域特性参数;
所述第一本地 ZC序列的 du值小于所述第二本地 ZC序列的 du值。 结合第四方面的第二种可能的实现方式, 在第四方面的第三种可能的实 现方式中, 所述估计模块具体用于:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述 RTD和所述第二 ZC序列的频域特性参数, 估计所述 UE上行 信号的频偏。
结合第四方面的第二种可能的实现方式, 在第四方面的第四种可能的实 现方式中, 所述估计模块具体用于:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述估计的 RTD范围和所述第二 ZC序列的频域特性参数, 估计所 述 UE上行信号的频偏。
第五方面, 本发明实施例提供一种随机接入系统, 包括: 如第三方面所 述的 UE和如第四方面所述的基站。
以上多个技术方案中的至少一个具有如下有益效果:
本发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两 个接入序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随 机接入的时延。 附图说明 为了更清楚: 方案, 下面将对
实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为通常的前导序列的格式示意图;
图 2为通常的基站釆样信号的示意图;
图 3为本发明实施例一提供的一种随机接入方法的流程示意图; 图 4为本发明实施例二提供的一种随机接入方法的流程示意图; 图 5为本发明实施例三提供的一种 UE500的结构示意图;
图 6为图 5所示实施例的一种应用示意图;
图 Ί为本发明实施例四提供的一种 UE600的结构示意图;
图 8为本发明实施例五提供的一种基站 700的结构示意图;
图 9为图 8所示实施例的一种应用示意图;
图 10为本发明实施例六提供的一种基站 800的结构示意图;
图 1 1为本发明实施例七提供的一种随机接入系统 900的结构示意图; 图 12为通常完成一次随机接入所需时间的示意图;
图 13为本发明实施例完成一次随机接入所需时间的示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 3为本发明实施例一提供的一种随机接入方法的流程示意图。 如图 3 所示, 该方法包括:
301、 获取两个接入序列, 所述两个接入序列不同。
举例来说, UE获取两个接入序列。 具体地, 所述两个接入序列可以从基 站广播的系统消息块中获取。 基站将系统消息块( System Information Block, 简称 SIB )广播给 UE, SIB中携带有配置的 RACH参数, RACH参数包括初
始接入功率、 所选的两个接入序列、 两个接入序列的先后关系等。 具体地, 基站通过广播信道通知 UE 两个接入序列组, 每个接入序列组 包括多个接入序列, UE从每个接入序列组中各选择一个接入序列。 可选地, 基站也可以通过广播信道通知 UE多个接入序列对, 其中每个接入序列对包 含两个接入序列, UE从多个接入序列对中选择一个接入序列对。
如果是定制系统, 可以通过预先配置的方式让 UE和基站都知晓 RACH 参数。 相应地, UE可从本地的配置参数中获取两个接入序列。
通常, 两个接入序列为两个 ZC序列, 两个 ZC序列的 du值不同。 具体 地, du值是指基于多普勒频移获得的循环移位点数( cyclic shift corresponding to a Doppler shift ) 。 通常, 两个 ZC序列的 du值的差值由系统允许的最大频 偏对于接入信道子载波带宽的倍数确定, 具体地, 在系统允许的最大频偏对 于接入信道子载波带宽的倍数确定后, 一个 ZC序列的 du值至少大于上述倍 数和另一 ZC序列 du值的乘积。
302、 将所述两个接入序列在时域或频域进行叠加, 生成随机接入信号。 具体地, 将所述两个接入序列在时域进行叠加, 生成随机接入信号, 包 括:
对所述两个接入序列分别依次进行离散傅里叶变换 (Discrete Fourier Transform,简称 DFT )、资源映射、逆离散傅里叶变换( Inverse Discrete Fourier Transform, 简称 IDFT )后, 生成所述两个接入序列分别对应的第一时域信号 和第二时域信号;
将所述第一时域信号和第二时域信号在时域进行叠加后进行射频处理, 生成所述随机接入信号; 或者, 对所述第一时域信号和第二时域信号进行射 频处理后在空口进行叠加, 生成所述随机接入信号。
具体地, 将所述两个接入序列在频域进行叠加, 生成随机接入信号, 包 括: 对所述两个接入序列分别进行 DFT生成所述两个接入序列分别对应的第 一频域信号和第二频域信号;
将所述第一频域信号和第二频域信号进行叠加后依次进行资源映射、 IDFT、 射频处理, 生成所述随机接入信号。
通常,上述资源映射是指将频域信号映射到 RACH资源上,也称为 RACH 资源映射。
303、 将所述随机接入信号通过 RACH发送给基站。
本发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两 个接入序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随 机接入的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不 能保证所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个 接入序列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个 釆样窗口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个 釆样窗口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换 时延。
图 4为本发明实施例二提供的一种随机接入方法的流程示意图。 如图 4 所示, 该方法包括:
401、接收 UE通过 RACH发送的随机接入信号, 所述随机接入信号是所 述 UE将两个接入序列在时域或频域进行叠加后生成的, 所述两个接入序列 不同。
举例来说, 基站接收 UE通过 RACH发送的随机接入信号。 通常, 所述 两个接入序列为两个 ZC序列, 所述两个 ZC序列的 du值不同。
402、对所述随机接入信号进行处理, 得到所述两个接入序列的时域特性 参数和频域特性参数。
具体地, 接入序列的时域特性参数包括多径时延, 即多个空口路径的时 延, 接入序列的频域特性参数包括频偏。 通常, 接入序列的时域特性参数和 频域特性参数可以通过该接入序列相关的输出功率延迟语 ( Power Delay Profile, 简称 PDP )表示。
402可以包括:
对所述随机接入信号依次进行 DFT、 子载波抽取处理后, 得到所述两个 接入序列的叠加序列;
将所述叠加序列与第一本地接入序列进行相关和 IDFT,得到所述两个接 入序列中第一接入序列的时域特性参数和频域特性参数;
将所述叠加序列与第二本地接入序列进行相关和 IDFT,得到所述两个接 入序列中第二接入序列的时域特性参数和频域特性参数。
通常, 在与第一本地接入序列或第二本地接入序列相关后, 可以相应得 到第一接入序列或第二接入序列的时域特性参数, 进一步地, 在对相关得到 的序列进行 IDFT后, 可以得到第一接入序列或第二接入序列的频域特性参 数。
403、根据所述两个接入序列的时域特性参数和频域特性参数估计往返传 播时延 RTD和所述 UE上行信号的频偏。
在本实施例的一种实现方式中, UE发送的两个接入序列为两个 ZC序列, 基站的两个本地接入序列为两个本地 ZC序列, 两个本地 ZC序列的 du值不 同, 下面以第一本地 ZC序列的 du值小于第二本地 ZC的 du值、对应地第一 ZC序列的 du值小于第二 ZC的 du值为例进行说明。
可选地, 403可以包括:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述 RTD和所述第二 ZC序列的频域特性参数, 估计所述 UE上行 信号的频偏。
可选地, 403可以包括:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述估计的 RTD范围和所述第二 ZC序列的频域特性参数, 估计所 述 UE上行信号的频偏。
通常,基站通过第一 ZC序列的时域特性参数, 即第一 ZC序列的多径时 延估计 RTD范围。 再根据估计的 RTD范围, 结合第二 ZC序列的多径时延, 即第二 ZC序列的多径时延,找出第一 ZC序列与第二 ZC序列重叠的时延点, 将重叠的时延点作为估计的 RTD。 进一步地, 基站通过估计的 RTD范围或 估计的 RTD, 在根据第二 ZC序列相关的输出 PDP上找出峰值所在的偏移窗 口, 估计 UE上行信号的频偏。 具体地, 基站以估计 RTD范围的下限或者小 于 RTD的一个数值对第二 ZC序列相关的输出 PDP进行循环左移,找出一个 或者两个最大峰值所的偏移窗口, 估计 UE上行信号的频偏。
本发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两
个接入序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随 机接入的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不 能保证所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个 接入序列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个 釆样窗口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个 釆样窗口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换 时延。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
图 5为本发明实施例三提供的一种 UE500的结构示意图。 如图 5所示, UE500包括:
获取模块 51 , 用于获取两个接入序列, 所述两个接入序列不同; 生成模块 52, 用于将所述两个接入序列在时域或频域进行叠加, 生成随 机接入信号;
发送模块 53, 用于将所述随机接入信号通过 RACH发送给基站。
可选地, 生成模块 52具体用于:
对所述两个接入序列分别依次进行 DFT、 资源映射、 IDFT后, 生成所述 两个接入序列分别对应的第一时域信号和第二时域信号;
将所述第一时域信号和第二时域信号进行叠加后进行射频处理, 生成所 述随机接入信号; 或者, 对所述第一时域信号和第二时域信号进行射频处理 后在空口进行叠加, 生成所述随机接入信号。
可选地, 生成模块 52具体用于:
对所述两个接入序列分别进行 DFT生成所述两个接入序列分别对应的第 一频域信号和第二频域信号;
将所述第一频域信号和第二频域信号进行叠加后依次进行资源映射、 IDFT、 射频处理, 生成所述随机接入信号。
可选地, 所述两个接入序列为两个 ZC序列, 所述两个 ZC序列的 du值
不同。
图 6为图 5所示实施例的一种应用示意图。 如图 6所示, 在 UE中, 依 次对两个 ZC序列, 即第一 ZC序列和第二 ZC序列, 分别进行 DFT、 RACH 资源映射、 IDFT后, 生成第一时域信号和第二时域信号, 将所述第一时域信 号和第二时域信号进行叠加后, 再经射频处理后在天线上发射。
本实施例的具体实现参照本发明实施例一提供的一种随机接入方法。 本 发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随 机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两个接入 序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随机接入 的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不能保证 所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个接入序 列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个釆样窗 口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个釆样窗 口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换时延。
图 7为本发明实施例四提供的一种 UE600的结构示意图。 如图 Ί所示,
UE600一般包括至少一个处理器 610 , 例如中央处理单元 ( Central Processing Unit, 简称 CPU ) , 数字信号处理器 ( Digital Signal Processor, 简称 DSP ) , 至少一个端口 620 , 存储器 630 , 和至少一个通信总线 640。 通信总线 640用于实现这些装置之间的连接通信。 处理器 610用于执行存 储器 630中存储的可执行模块, 例如计算机程序; 可选地, UE600可包括 用户接口 650 , 用户接口 650包括但不限于显示器, 键盘和点击设备, 例 如鼠标、 轨迹球( trackball ) 、 触感板或者触感显示屏。 存储器 630可能 包含随机存储器 (Random Access Memory, 简称 RAM ) , 也可能还包括 非易失性存储器 (non-volatile memory ) , 例如至少一个磁盘存储器。
在一些实施方式中, 存储器 630存储了如下的元素, 可执行模块或者 数据结构, 或者他们的子集, 或者他们的扩展集:
操作系统 632 , 包含各种系统程序, 用于实现各种基础业务以及处理 基于硬件的任务;
应用模块 634 , 包含各种应用程序, 用于实现各种应用业务。
应用模块 634中包括但不限于获取模块 51、 生成模块 52和发送模块
53。应用模块 634中各模块的具体实现参见 UE500中的相应模块,在此不 赘述。
本发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两 个接入序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随 机接入的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不 能保证所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个 接入序列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个 釆样窗口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个 釆样窗口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换 时延。
图 8为本发明实施例五提供的一种基站 700的结构示意图。如图 8所示, 基站 700包括:
接收模块 71 , 用于接收 UE通过随机接入信道发送的随机接入信号, 所 述随机接入信号是所述 UE将两个接入序列在时域或频域进行叠加后生成的, 所述两个接入序列不同;
处理模块 72, 用于对所述随机接入信号进行处理, 得到所述两个接入序 列的时域特性参数和频域特性参数;
估计模块 73, 用于根据所述两个接入序列的时域特性参数和频域特性参 数估计 RTD和所述 UE上行信号的频偏。
可选地, 所述两个接入序列为两个 ZC序列, 所述两个 ZC序列的 du值 不同。
进一步地, 处理模块 72具体用于:
对所述随机接入信号依次进行 DFT、 子载波抽取处理后, 得到所述两个 ZC序列的叠加序列;
将所述叠加序列与第一本地 ZC序列进行相关和 IDFT ,得到所述两个 ZC 序列中第一 ZC序列的时域特性参数;
将所述叠加序列与第二本地 ZC序列进行相关和 IDFT ,得到所述两个 ZC 序列中第二 ZC序列的时域特性参数和频域特性参数;
所述第一本地 ZC序列的 du值小于所述第二本地 ZC序列的 du值。
可选地, 估计模块 73具体用于:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述 RTD和所述第二 ZC序列的频域特性参数, 估计所述 UE上行 信号的频偏。
可选地, 估计模块 73具体用于:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述估计的 RTD范围和所述第二 ZC序列的频域特性参数, 估计所 述 UE上行信号的频偏。
图 9为图 8所示实施例的一种应用示意图。 如图 9所示, 在基站中, 从 RACH信道接收 UE发送的随机接入信号, 对随机接入信号进行 DFT、 子载 波抽取后, 分别与第一本地 ZC序列和第二本地 ZC序列相关, 与第一本地 ZC序列相关后得到频域的第一 ZC序列, 对频域的第一 ZC序列进行 IDFT , 得到时域的第一 ZC序列, 对时域的第一 ZC序列进行序列检测, 得到 RTD 范围; 另外, 与第二本地 ZC序列相关后得到频域的第二 ZC序列, 对频域的 第二 ZC序列进行 IDFT, 得到时域的第二 ZC序列, 结合 RTD范围对时域的 第二 ZC序列和频域的 ZC序列进行序列检测, 得到 RTD和 UE上行信号的 频偏。
本实施例的具体实现参照本发明实施例二提供的一种随机接入方法。 本 发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随 机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两个接入 序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随机接入 的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不能保证 所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个接入序 列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个釆样窗 口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个釆样窗 口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换时延。
图 10为本发明实施例六提供的一种基站 800的结构示意图。 如图 10所 示, 基站 800—般包括至少一个处理器 810, 例如中央处理单元 ( Central
Processing Unit, 简称 CPU ) , 数字信号处理器 ( Digital Signal Processor, 简称 DSP ) , 至少一个端口 820 , 存储器 830 , 和至少一个通信总线 840。 通信总线 840用于实现这些装置之间的连接通信。 处理器 810用于执行存 储器 830中存储的可执行模块, 例如计算机程序; 可选地, 基站 800可包 括用户接口 850, 用户接口 850包括但不限于显示器, 键盘和点击设备, 例如鼠标、 轨迹球( trackball ) 、 触感板或者触感显示屏。 存储器 830可 能包含随机存储器 ( Random Access Memory, 简称 RAM ) , 也可能还包 括非易失性存储器 ( non- volatile memory ) , 例如至少一个磁盘存储器。
在一些实施方式中, 存储器 830存储了如下的元素, 可执行模块或者 数据结构, 或者他们的子集, 或者他们的扩展集:
操作系统 832, 包含各种系统程序, 用于实现各种基础业务以及处理 基于硬件的任务;
应用模块 834, 包含各种应用程序, 用于实现各种应用业务。
应用模块 834中包括但不限于接收模块 71、 处理模块 72和估计模块 73。 应用模块 834中各模块的具体实现参见基站 700中的相应模块, 在此 不赘述。
本发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后, 通过随机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两 个接入序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随 机接入的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不 能保证所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个 接入序列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个 釆样窗口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个 釆样窗口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换 时延。
图 11为本发明实施例七提供的一种随机接入系统 900的结构示意图。 图 11所示, 系统 900包括: 基站 91和 UE92 , 基站 91为如本发明实施例 五提供的基站 700或如本发明实施例六提供的基站 800, UE92为如本发明 实施例三提供的 UE500或如本发明实施例四提供的 UE600。
本发明实施例釆用 UE将所述两个接入序列在时域或频域进行叠加后,
通过随机接入信道发送给基站的技术手段, 在时域或频域上一次并行发送两 个接入序列, 使得基站可以在一个釆样窗口内检测两个接入序列, 减少了随 机接入的时延。 另外, FDD 系统中用户切换场景下, 由于在 FDD 系统中不 能保证所有小区时间对齐, 通常, 基站必须在两个检测的釆样窗口上对两个 接入序列都进行检测, 而本发明实施例中 UE发送的两次接入序列在同一个 釆样窗口内, 所以 FDD系统中对于本小区和邻区的处理都一样, 可以在一个 釆样窗口内检测两个接入序列, 降低了基带处理的复杂度并减少了小区切换 时延。
图 12为通常完成一次随机接入所需时间的示意图。 如图 12所示, tl为 基站接收两个 ZC序列所需的时间, t2为基站接收到两个 ZC序列后进行处理 的时延, 故, 通常完成一次随机接入所需要的最短时间为 tl+t2。 其中, tl的 大小由 RACH帧格式决定, t2与基站的接收、 处理能力相关, 通常 t2远远小 于 tl。
图 13为本发明实施例完成一次随机接入所需时间的示意图。 如图 13所 示, t3为基站接收两个 ZC序列所需的时间, t4为基站接收到两个 ZC序列后 进行处理的时延, 故, 本发明实施例完成一次随机接入所需要的最短时间为 t3+t4。 其中, t3的大小由 RACH帧格式决定, t4与基站的接收、 处理能力相 关, 通常 t4远远小于 t3。
通过图 12和图 13的比对可知, 在釆用相同的 RACH帧格式的情况下, t3<(tl ÷ 2), 加上基站对随机接入信号的处理时延可忽略, 故本发明实施例可 以大大缩短 UE随机接入的时延。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims
1、 一种随机接入方法, 其特征在于, 包括:
获取两个接入序列, 所述两个接入序列不同;
将所述两个接入序列在时域或频域进行叠加, 生成随机接入信号; 将所述随机接入信号通过随机接入信道发送给基站。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将所述两个接入序列 在时域进行叠加, 生成随机接入信号, 包括:
对所述两个接入序列分别依次进行离散傅里叶变换、 资源映射、 逆离散 傅里叶变换后, 生成所述两个接入序列分别对应的第一时域信号和第二时域 信号;
将所述第一时域信号和第二时域信号进行叠加后进行射频处理, 生成所 述随机接入信号; 或者, 对所述第一时域信号和第二时域信号进行射频处理 后在空口进行叠加, 生成所述随机接入信号。
3、 根据权利要求 1所述的方法, 其特征在于, 所述将所述两个接入序列 在频域进行叠加, 生成随机接入信号, 包括:
对所述两个接入序列分别进行离散傅里叶变换生成所述两个接入序列分 别对应的第一频域信号和第二频域信号;
将所述第一频域信号和第二频域信号进行叠加后依次进行资源映射、 逆 离散傅里叶变换、 射频处理, 生成所述随机接入信号。
4、 根据权利要求 1〜3中任一项所述的方法, 其特征在于, 所述两个接入 序列为两个 ZC序列, 所述两个 ZC序列的 du值不同。
5、 一种随机接入方法, 其特征在于, 包括:
接收用户设备 UE通过随机接入信道发送的随机接入信号, 所述随机接 入信号是所述 UE将两个接入序列在时域或频域进行叠加后生成的, 所述两 个接入序列不同;
对所述随机接入信号进行处理, 得到所述两个接入序列的时域特性参数 和频域特性参数;
根据所述两个接入序列的时域特性参数和频域特性参数估计往返传播时 延 RTD和所述 UE上行信号的频偏。
6、 根据权利要求 5所述的方法, 其特征在于, 所述两个接入序列为两个
ZC序列, 所述两个 ZC序列的 du值不同。
7、 根据权利要求 6所述的方法, 其特征在于, 所述对所述随机接入信号 进行处理, 得到所述两个接入序列的时域特性参数和频域特性参数, 包括: 对所述随机接入信号依次进行离散傅里叶变换、 子载波抽取处理后, 得 到所述两个 ZC序列的叠加序列;
将所述叠加序列与第一本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第一 ZC序列的时域特性参数;
将所述叠加序列与第二本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第二 ZC序列的时域特性参数和频域特性参数;
所述第一本地 ZC序列的 du值小于所述第二本地 ZC序列的 du值。
8、 根据权利要求 7所述的方法, 其特征在于, 所述根据所述两个接入序 列的时域特性参数和频域特性参数估计往返传播时延 RTD和所述 UE上行信 号的频偏, 包括:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述 RTD和所述第二 ZC序列的频域特性参数, 估计所述 UE上行 信号的频偏。
9、 根据权利要求 7所述的方法, 其特征在于, 所述根据所述两个接入序 列的时域特性参数和频域特性参数估计往返传播时延 RTD和所述 UE上行信 号的频偏, 包括:
根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述估计的 RTD范围和所述第二 ZC序列的频域特性参数, 估计所 述 UE上行信号的频偏。
10、 一种用户设备, 其特征在于, 包括:
获取模块, 用于获取两个接入序列, 所述两个接入序列不同;
生成模块, 用于将所述两个接入序列在时域或频域进行叠加, 生成随机 接入信号;
发送模块, 用于将所述随机接入信号通过随机接入信道发送给基站。
11、 根据权利要求 10所述的用户设备, 其特征在于, 所述生成模块具体
用于:
对所述两个接入序列分别依次进行离散傅里叶变换、 资源映射、 逆离散 傅里叶变换后, 生成所述两个接入序列分别对应的第一时域信号和第二时域 信号;
将所述第一时域信号和第二时域信号进行叠加后进行射频处理, 生成所 述随机接入信号; 或者, 对所述第一时域信号和第二时域信号进行射频处理 后在空口进行叠加, 生成所述随机接入信号。
12、 根据权利要求 10所述的用户设备, 其特征在于, 所述生成模块具体 用于:
对所述两个接入序列分别进行离散傅里叶变换生成所述两个接入序列分 别对应的第一频域信号和第二频域信号;
将所述第一频域信号和第二频域信号进行叠加后依次进行资源映射、 逆 离散傅里叶变换、 射频处理, 生成所述随机接入信号。
13、 根据权利要求 10〜12中任一项所述的用户设备, 其特征在于, 所述 两个接入序列为两个 ZC序列, 所述两个 ZC序列的 du值不同。
14、 一种基站, 其特征在于, 包括:
接收模块, 用于接收用户设备 UE通过随机接入信道发送的随机接入信 号, 所述随机接入信号是所述 UE将两个接入序列在时域或频域进行叠加后 生成的, 所述两个接入序列不同;
处理模块, 用于对所述随机接入信号进行处理, 得到所述两个接入序列 的时域特性参数和频域特性参数;
估计模块, 用于根据所述两个接入序列的时域特性参数和频域特性参数 估计往返传播时延 RTD和所述 UE上行信号的频偏。
15、 根据权利要求 14所述的基站, 其特征在于, 所述两个接入序列为两 个 ZC序列, 所述两个 ZC序列的 du值不同。
16、根据权利要求 15所述的基站,其特征在于,所述处理模块具体用于: 对所述随机接入信号依次进行离散傅里叶变换、 子载波抽取处理后, 得 到所述两个 ZC序列的叠加序列;
将所述叠加序列与第一本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第一 ZC序列的时域特性参数;
将所述叠加序列与第二本地 ZC序列进行相关和逆离散傅里叶变换, 得 到所述两个 ZC序列中第二 ZC序列的时域特性参数和频域特性参数;
所述第一本地 ZC序列的 du值小于所述第二本地 ZC序列的 du值。
17、根据权利要求 16所述的基站,其特征在于,所述估计模块具体用于: 根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述 RTD和所述第二 ZC序列的频域特性参数, 估计所述 UE上行 信号的频偏。
18、根据权利要求 16所述的基站,其特征在于,所述估计模块具体用于: 根据所述第一 ZC序列的时域特性参数, 估计 RTD范围;
根据所述估计的 RTD范围和第二 ZC序列的时域特性参数, 估计 RTD; 根据所述估计的 RTD范围和所述第二 ZC序列的频域特性参数, 估计所 述 UE上行信号的频偏。
19、 一种随机接入系统, 其特征在于, 包括如权利要求 10〜13中任一项 所述的用户设备, 和如权利要求 14〜18中任一项所述的基站。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/086436 WO2014089775A1 (zh) | 2012-12-12 | 2012-12-12 | 随机接入方法、用户设备、基站及系统 |
CN201280002475.3A CN103988565B (zh) | 2012-12-12 | 2012-12-12 | 随机接入方法、用户设备、基站及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/086436 WO2014089775A1 (zh) | 2012-12-12 | 2012-12-12 | 随机接入方法、用户设备、基站及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014089775A1 true WO2014089775A1 (zh) | 2014-06-19 |
Family
ID=50933692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/086436 WO2014089775A1 (zh) | 2012-12-12 | 2012-12-12 | 随机接入方法、用户设备、基站及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103988565B (zh) |
WO (1) | WO2014089775A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113412672B (zh) * | 2019-02-15 | 2023-11-21 | 中兴通讯股份有限公司 | 无线通信中的随机接入前导码 |
CN112583755B (zh) * | 2019-09-30 | 2022-05-06 | 华为技术有限公司 | 卫星通信方法和相关通信设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101394226A (zh) * | 2007-09-18 | 2009-03-25 | Nxp股份有限公司 | 蜂窝电话系统的具有多Zadoff-Chu序列的随机接入前同步码 |
CN101409584A (zh) * | 2007-10-12 | 2009-04-15 | Nxp股份有限公司 | 无线通信系统的随机接入前同步码和接收方案 |
CN102036408A (zh) * | 2009-09-30 | 2011-04-27 | 意法-爱立信公司 | 用于传输和接收随机接入前导的设备和方法 |
CN102387108A (zh) * | 2010-08-30 | 2012-03-21 | 中兴通讯股份有限公司 | 一种物理随机接入信道信号的传输方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1259780C (zh) * | 2002-10-31 | 2006-06-14 | 电子科技大学 | 一种ofdm时间、频率同步方法 |
CN101170533A (zh) * | 2006-10-24 | 2008-04-30 | 中兴通讯股份有限公司 | 一种移动终端的信号发射方法 |
KR101549022B1 (ko) * | 2008-11-03 | 2015-09-01 | 엘지전자 주식회사 | 상향링크 및 하향링크 멀티 캐리어를 지원하는 무선통신 시스템에 있어서, 사용자 기기의 기지국에의 임의 접속방법 |
EP2334122B1 (en) * | 2009-12-14 | 2014-03-26 | Intel Mobile Communications GmbH | Method and apparatus for data communication in LTE cellular networks |
CN102316601B (zh) * | 2011-09-28 | 2014-05-07 | 北京北方烽火科技有限公司 | 一种随机接入信道的前导序列检测方法和装置 |
-
2012
- 2012-12-12 WO PCT/CN2012/086436 patent/WO2014089775A1/zh active Application Filing
- 2012-12-12 CN CN201280002475.3A patent/CN103988565B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101394226A (zh) * | 2007-09-18 | 2009-03-25 | Nxp股份有限公司 | 蜂窝电话系统的具有多Zadoff-Chu序列的随机接入前同步码 |
CN101409584A (zh) * | 2007-10-12 | 2009-04-15 | Nxp股份有限公司 | 无线通信系统的随机接入前同步码和接收方案 |
CN102036408A (zh) * | 2009-09-30 | 2011-04-27 | 意法-爱立信公司 | 用于传输和接收随机接入前导的设备和方法 |
CN102387108A (zh) * | 2010-08-30 | 2012-03-21 | 中兴通讯股份有限公司 | 一种物理随机接入信道信号的传输方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103988565A (zh) | 2014-08-13 |
CN103988565B (zh) | 2018-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190327049A1 (en) | Apparatus, Methods, And Computer Program Products Providing An Indication Of Cyclic Prefix Length | |
RU2629165C1 (ru) | Система и способ передачи сигнала синхронизации | |
JP5809660B2 (ja) | 無線通信システムおよび通信制御方法 | |
EP2437453B1 (en) | Secondary synchronization signal detection method and device | |
WO2014137174A1 (en) | Method and apparatus for transmitting and receiving uplink random access channel slot in a wireless communication system using beamforming | |
WO2018018417A1 (zh) | 信息传输方法和信息传输设备 | |
CN107113757B (zh) | Sc-fdma中的没有前导码的上行链路同步 | |
WO2018028339A1 (zh) | 同步处理方法、装置和设备 | |
KR101990487B1 (ko) | 무선통신시스템 및 통신방법 | |
JP2017028672A (ja) | ロングタームエボリューション通信システムにおける物理ランダムアクセスチャネルのプリアンブルの検出 | |
WO2013104293A1 (zh) | 一种通信系统中的随机接入方法及装置 | |
WO2016000258A1 (zh) | Lte同步方法和相关设备及系统 | |
CN109391403A (zh) | 用于无线信号的发送和接收的方法和装置 | |
CN114916039A (zh) | 接入方法、装置、通信设备及可读存储介质 | |
WO2009043309A1 (fr) | Procédé et appareil pour la mesure de plages dans un système de communication sans fil | |
WO2008022598A1 (fr) | Procédé de test, terminal et dispositif côté réseau pour accès aléatoire | |
CN110557239A (zh) | 小区特定参考信号crs序列的确定方法及装置 | |
WO2014089775A1 (zh) | 随机接入方法、用户设备、基站及系统 | |
WO2014079068A1 (zh) | 同步信号的发送、接收方法和装置 | |
WO2011140875A1 (zh) | 在移动通信系统中实现上行同步的方法和装置 | |
WO2012003671A1 (zh) | 同步前导码发送方法、同步方法、装置及系统 | |
US10193719B2 (en) | Signal processing method, network equipment, system and computer storage medium | |
WO2009082953A1 (fr) | Procédé, système et dispositif de transmission par un canal synchrone | |
Bontu et al. | Asynchronous simultaneous small packet transmission in cellular wireless system | |
CN117561786A (zh) | 无线通信系统中用多维结构的prach来随机接入的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12889850 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12889850 Country of ref document: EP Kind code of ref document: A1 |