WO2014087984A1 - Organic-inorganic hybrid particles, conductive particles, conductive material and connection structure - Google Patents

Organic-inorganic hybrid particles, conductive particles, conductive material and connection structure Download PDF

Info

Publication number
WO2014087984A1
WO2014087984A1 PCT/JP2013/082422 JP2013082422W WO2014087984A1 WO 2014087984 A1 WO2014087984 A1 WO 2014087984A1 JP 2013082422 W JP2013082422 W JP 2013082422W WO 2014087984 A1 WO2014087984 A1 WO 2014087984A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
organic
group
inorganic hybrid
conductive
Prior art date
Application number
PCT/JP2013/082422
Other languages
French (fr)
Japanese (ja)
Inventor
恭幸 山田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2013557951A priority Critical patent/JP5699230B2/en
Priority to KR1020157002171A priority patent/KR101538904B1/en
Priority to CN201380052357.8A priority patent/CN104718241B/en
Publication of WO2014087984A1 publication Critical patent/WO2014087984A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to an organic-inorganic hybrid particle that is an aggregate of a plurality of inorganic particles.
  • the present invention also relates to conductive particles, conductive materials and connection structures using the organic-inorganic hybrid particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit (FPC), a glass substrate, and a semiconductor chip to obtain a connection structure.
  • connection target members such as a flexible printed circuit (FPC), a glass substrate, and a semiconductor chip to obtain a connection structure.
  • connection target members such as a flexible printed circuit (FPC), a glass substrate, and a semiconductor chip.
  • conductive particles having resin particles and a conductive layer disposed on the surface of the resin particles may be used as the conductive particles.
  • Patent Document 1 discloses polymer particles having a breaking point load of 9.8 mN or less.
  • the polymer particles as a preferred embodiment of the polymer particles, (a) inorganic particles formed of metal oxides such as silica, alumina, and titania, metal nitrides, metal sulfides, metal carbides, etc.
  • (B) (b) an aspect in which a metalloxane chain (a molecular chain containing a “metal-oxygen-metal” bond) such as (organo) polysiloxane and polytitanoxane is combined with an organic molecule at a molecular level; c)
  • the aspect etc. which are organic inorganic polymer particles containing a vinyl polymer frame
  • the liquid crystal display element is configured by arranging liquid crystal between two glass substrates.
  • a spacer is used as a gap control material in order to keep the distance (gap) between two glass substrates uniform and constant.
  • resin particles are generally used as the spacer.
  • Patent Document 2 listed below contains a polyfunctional silane compound having a polymerizable unsaturated group in the presence of a surfactant.
  • Organic-inorganic hybrid particles obtained by decomposition and polycondensation are disclosed.
  • the polyfunctional silane compound is at least one radical polymerizable group-containing first silicon compound selected from a compound represented by the following formula (X) and a derivative thereof.
  • R1 represents a hydrogen atom or a methyl group
  • R2 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms
  • R3 represents a carbon atom having 1 to 5 carbon atoms
  • R 4 represents an alkyl group or a phenyl group, and R 4 represents at least one monovalent group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • the breaking load during compression may be low.
  • the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and placed between substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect electrodes.
  • a conductive layer is formed on the surface and used as conductive particles to electrically connect electrodes.
  • An object of the present invention is to provide an organic-inorganic hybrid particle having a high compressive load and a good compressive deformation characteristic, and conductive particles, a conductive material, and a connection structure using the organic-inorganic hybrid particle. is there.
  • a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group containing a second reactive functional group capable of reacting with the first reactive functional group Organic-inorganic hybrid particles that are obtained using organopolysiloxane and are aggregates of the inorganic particles are provided.
  • the first reactive functional group is a hydroxyl group.
  • the alkoxy group-containing organopolysiloxane has an epoxy group or a (meth) acryloyl group as the second reactive functional group.
  • the alkoxy group-containing organopolysiloxane has an epoxy group as the second reactive functional group.
  • a plurality of the inorganic particles are integrated through a structure derived from the alkoxy group-containing organopolysiloxane to obtain an aggregate of the inorganic particles. ing.
  • the alkoxy group-containing organopolysiloxane has a methoxy group as the second reactive functional group.
  • the alkoxy group-containing organopolysiloxane has an alkyl group directly bonded to a silicon atom.
  • the organic-inorganic hybrid particles according to the present invention are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer, or used as spacers for liquid crystal display elements.
  • conductive particles comprising the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles.
  • the conductive particles include a binder resin, and the conductive particles include the organic-inorganic hybrid particles described above, and a conductive layer disposed on the surface of the organic-inorganic hybrid particles.
  • a conductive material is provided.
  • a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connection portion connecting the second connection target member, and the connection portion is formed of conductive particles or formed of a conductive material including the conductive particles and a binder resin.
  • the conductive particles include the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles, and the first electrode and the second electrode are the conductive particles.
  • the organic-inorganic hybrid particle according to the present invention includes a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group having a second reactive functional group capable of reacting with the first reactive functional group. Since it is an aggregate of the inorganic particles obtained using the organopolysiloxane, the organic-inorganic hybrid particles have high compressive deformation characteristics due to high breaking load during compression.
  • FIG. 1 is a cross-sectional view schematically showing organic-inorganic hybrid particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing conductive particles using the organic-inorganic hybrid particles shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a modification of the conductive particles using the organic-inorganic hybrid particles shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a liquid crystal display element using the organic-inorganic hybrid particles shown in FIG. 1 as a spacer for a liquid crystal display element.
  • the organic-inorganic hybrid particle according to the present invention includes a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group having a second reactive functional group capable of reacting with the first reactive functional group. It is obtained using the containing organopolysiloxane.
  • the organic-inorganic hybrid particle according to the present invention is an aggregate of the inorganic particles.
  • organic-inorganic hybrid particles according to the present invention have the above-described configuration, organic-inorganic hybrid particles having a high breaking load during compression can be obtained. Since the organic-inorganic hybrid particles have a high breaking load during compression, the organic-inorganic hybrid particles have good compression deformation characteristics. In order to obtain the organic-inorganic hybrid particles according to the present invention, the breaking load is effectively increased by using the alkoxy group-containing organopolysiloxane separately from the inorganic particles. For this reason, when the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and placed between substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect electrodes. When an impact is applied to the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, the liquid crystal display element spacer or the conductive particles are hardly cracked or damaged.
  • FIG. 1 is a cross-sectional view schematically showing organic-inorganic hybrid particles according to the first embodiment of the present invention.
  • the organic-inorganic hybrid particle 1 shown in FIG. 1 has a plurality of inorganic particles 11 and a structure portion 12 derived from an alkoxy group-containing organopolysiloxane.
  • the organic-inorganic hybrid particle 1 is an aggregate of inorganic particles 11.
  • the structure part 12 is a substance different from the inorganic particles 11.
  • inorganic particles having a first reactive functional group on the surface are used.
  • an alkoxy group-containing organopolysiloxane having a second reactive functional group capable of reacting with the first reactive functional group is used.
  • the organic-inorganic hybrid particle 1 includes an inorganic particle having a first reactive functional group on its surface, an alkoxy group-containing organopolysiloxane having a second reactive functional group capable of reacting with the first reactive functional group, and Is obtained.
  • the structural portion 12 is disposed on the surface of the inorganic particles 11.
  • the structure part 12 exists between the plurality of inorganic particles 11.
  • the plurality of inorganic particles 11 are preferably integrated via a structure (structure part 12) derived from an alkoxy group-containing organopolysiloxane. It is preferable that the aggregate
  • the structure part 12 preferably binds a plurality of inorganic particles 11.
  • the inorganic particles include particles formed of metal oxides, metal nitrides, metal sulfides, metal carbides, and composites thereof.
  • the metal oxide include silica, alumina, and titania. Especially, it is preferable that the said inorganic particle is a silica particle.
  • the main component of the inorganic particles is an inorganic substance. If the said inorganic particle is a small quantity, it may contain the carbon atom.
  • the content of carbon atoms in 100% by weight of the inorganic particles is preferably 20% by weight or less, more preferably 10% by weight or less. Particles containing a small amount of carbon atoms are also included in the inorganic particles.
  • Examples of the first reactive functional group include a hydroxyl group, an alkoxy group, an epoxy group, a (meth) acryloyl group, an amino group, a mercapto group, and an isocyanate group.
  • a hydroxyl group is preferable because functional groups can be easily and massively introduced onto the surface of the inorganic particles.
  • the inorganic particles preferably contain a polysiloxane skeleton.
  • the inorganic particles are preferably obtained by hydrolyzing and condensing a silane compound.
  • the silane compound may have an organic group such as an alkyl group and a vinyl group. Particles obtained using such a silane compound having an organic group are also called inorganic particles if the main component is an inorganic substance.
  • the inorganic particles may be formed using organopolysiloxane.
  • silane compound examples include a compound represented by the following formula (1) (hereinafter sometimes referred to as compound (1)) and a compound represented by the following formula (2) (hereinafter referred to as compound (2)). And a compound represented by the following formula (3) (hereinafter, a compound represented by the compound (3), etc.)
  • the silane compound the compound (1), the compound (2) and the compound It is preferable to use at least one selected from the group consisting of (3) If such a compound is used, the resulting inorganic particles have silanol groups on the surface, so that they have hydroxyl groups.
  • Ra represents a (meth) acryloyl group
  • Rb represents an optionally substituted divalent organic group having 1 to 20 carbon atoms
  • R1 and R2 each represents a hydrogen atom.
  • Z represents an alkyl group having 1 to 5 carbon atoms, an acyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • R1, R2 and R3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 2 to 5 carbon atoms.
  • Ra represents a methyl group or an ethyl group
  • R1, R2, and R3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acyl group having 2 to 5 carbon atoms.
  • the compound (1) has a Ra—O—Rb— group.
  • This group has a Ra group as a group containing a polymerizable unsaturated group.
  • a radical polymerization reaction By subjecting the polymerizable unsaturated group in the compound (1) to a radical polymerization reaction, an organic polymer skeleton having high flexibility is formed.
  • an organic polymer skeleton having sufficiently high flexibility is not formed.
  • Ra in the above formula (1) represents a (meth) acryloyl group.
  • Rb represents a divalent organic group having 1 to 20 carbon atoms which may have a substituent. Due to the presence of such an organic group, an organic polymer skeleton having high flexibility is formed.
  • Examples of the divalent organic group having 1 to 20 carbon atoms in Rb include alkylene groups such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, and an octylene group, and a group in which a substituent is bonded to the alkylene group. And a phenylene group and a group in which a substituent is bonded to the phenylene group, a group in which an alkylene group is bonded through an ether bond, a group in which a phenylene group is bonded through an ether bond, and the like. Of these, a propylene group or a phenylene group is preferable, and a propylene group is more preferable.
  • Z represents an alkyl group having 1 to 5 carbon atoms, an acyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Since the number of reactive base points increases, Z in the above formula (1) is preferably an alkoxy group having 1 to 5 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and is an alkoxy group having 1 to 5 carbon atoms. It may be an alkyl group having 1 to 3 carbon atoms. When Z in the formula (1) is an alkoxy group, Z is more preferably an alkoxy group having 1 or 2 carbon atoms. When Z in the formula (1) is an alkyl group, Z is more preferably an alkyl group having 1 or 2 carbon atoms, and further preferably a methyl group.
  • Ra represents a methyl group or an ethyl group.
  • Ra in the formula (3) is preferably a methyl group.
  • R1, R2 and R3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 2 to 5 carbon atoms. These groups are hydrolyzable groups. Since the hydrolysis rate is moderately high, R1, R2 and R3 in the above formulas (1), (2) and (3) are each an alkyl group having 1 to 3 carbon atoms or an acyl group having 2 carbon atoms.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably a methyl group.
  • Examples of the compound (1) include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxypropyltriethoxysilane. Examples include acryloxypropyltriethoxysilane. As for the above-mentioned compound (1), only 1 type may be used and 2 or more types may be used together.
  • Examples of the compound (2) include vinyltrimethoxysilane and vinyltriethoxysilane. As for the said compound (2), only 1 type may be used and 2 or more types may be used together.
  • Examples of the compound (3) include methyltrimethoxysilane and ethyltrimethoxysilane. As for the said compound (3), only 1 type may be used and 2 or more types may be used together.
  • the alkoxy group-containing organopolysiloxane has a second reactive functional group capable of reacting with the first reactive functional group.
  • the second reactive functional group is appropriately selected according to the type of the first reactive functional group.
  • the second reactive functional group include a hydroxyl group, an alkoxy group, an epoxy group, a (meth) acryloyl group, an amino group, a mercapto group, and an isocyanate group.
  • the first reactive functional group is a hydroxyl group
  • the hydroxyl group reacts with an alkoxy group, and therefore the alkoxy group in the alkoxy group-containing organopolysiloxane corresponds to the second reactive functional group.
  • an epoxy group, a (meth) acryloyl group, a mercapto group, or an alkoxy group is preferable because the reaction with the first reactive functional group in the inorganic particles easily proceeds, and an epoxy group, a (meth) acryloyl group, or An alkoxy group is more preferable.
  • the alkoxy group-containing organopolysiloxane preferably has an epoxy group, a (meth) acryloyl group or a mercapto group as the second reactive functional group, and more preferably has an epoxy group or a (meth) acryloyl group.
  • an epoxy group or a mercapto group More preferably an epoxy group or a mercapto group, still more preferably an epoxy group, even more preferably a (meth) acryloyl group, further preferably an alkoxy group, an epoxy group, ) It is more preferred to have an acryloyl group or mercapto group and an alkoxy group, more preferably an epoxy group or mercapto group and an alkoxy group, and particularly preferably an epoxy group and an alkoxy group.
  • the alkoxy group is preferably a methoxy group or an ethoxy group.
  • the alkoxy group-containing organopolysiloxane preferably has an epoxy group, a methoxy group, or an ethoxy group as the second reactive functional group, because much better compression deformation characteristics can be obtained.
  • alkoxy-containing organopolysiloxane examples include alkoxy oligomers and the like, and X-41-1053, X-41-1059A (having epoxy groups, methoxy groups, and ethoxy groups) manufactured by Shin-Etsu Chemical Co., Ltd., X-41-1056 (having epoxy group, methoxy group), X-41-1805 (having mercapto group, methoxy group, ethoxy group), X-41-1818 (having mercapto group, ethoxy group), X- 41-1810 (having a mercapto group and a methoxy group), X-41-2651 (having an amino group and a methoxy group), X-40-2655A (having a methacryloyl group and a methoxy group), KR-513 (acryloyl group, Having methoxy group), KC-89S, KR-500, X-40-9225, X-40-9 46, X
  • the alkoxy group-containing organopolysiloxane may be a reaction product of a cyclic siloxane and the silane compound having the second reactive functional group.
  • the cyclic siloxane is preferably opened.
  • the silane compound having the second reactive functional group may be a silane coupling agent.
  • the alkoxy group-containing organopolysiloxane preferably has an alkyl group directly bonded to a silicon atom.
  • the alkyl group is an organic functional group.
  • the inorganic particles have an epoxy group and an alkoxy group as the second reactive functional group. More preferably, the inorganic particles have an epoxy group, a (meth) acryloyl group or a mercapto group, an alkoxy group, and an alkyl group directly bonded to a silicon atom, and an epoxy group or a (meth) acryloyl group, an alkoxy group, and a silicon atom. It is particularly preferable to have an alkyl group directly bonded to the alkyl group, and it is most preferable to have an epoxy group, an alkoxy group, and an alkyl group directly bonded to a silicon atom. Even better compression deformation properties are obtained by the presence of these preferred second reactive functional groups and by the presence of these preferred second reactive functional groups and organic functional groups.
  • the weight average molecular weight of the alkoxy group-containing organopolysiloxane is preferably 500 or more, more preferably 1000 or more, preferably 10,000 or less, more preferably 7000 or less.
  • the said weight average molecular weight shows the weight average molecular weight in polystyrene conversion calculated
  • the organic-inorganic hybrid particles are obtained by reacting the first reactive functional group and the second reactive functional group, because much better compression deformation characteristics can be obtained.
  • the organic-inorganic hybrid particles it is preferable that a plurality of the inorganic particles are integrated through a structure derived from the alkoxy group-containing organopolysiloxane because more excellent compression deformation characteristics can be obtained.
  • the organic-inorganic hybrid particle is an aggregate of a plurality of the inorganic particles.
  • the number of inorganic particles in the aggregate is 2 or more, preferably 5 or more, more preferably 10 or more. In the examples described later, the number of inorganic particles in the aggregate is 10 or more.
  • the upper limit of the number of inorganic particles in the aggregate is not particularly limited.
  • the particle diameter of each inorganic particle in the aggregate is preferably 0.1 nm or more, more preferably 1 nm or more, still more preferably 3 nm or more, preferably 1000 nm or less, more preferably 500 nm or less, still more preferably. Is 200 nm or less, particularly preferably 100 nm or less. If the particle size of the inorganic particles in the aggregate is not less than the above lower limit, it is difficult to be brittle because there are few grain boundaries, and if it is not more than the above upper limit, it becomes brittle because there are few voids in the organic-inorganic hybrid particles. There is a tendency to become difficult.
  • the breaking load of the organic / inorganic hybrid particles is preferably 5 mN or more, more preferably 10 mN or more, and even more preferably 11 mN or more.
  • the breaking load is equal to or more than the lower limit, the organic-inorganic hybrid particles are hardly cracked or damaged during compression.
  • the breaking load can be measured as follows, for example. Using a micro-compression tester, organic-inorganic hybrid particles are compressed on a smooth indenter end face of a cylinder (diameter 100 ⁇ m, made of diamond) under the conditions of 25 ° C., compression speed of 0.3 mN / second, and maximum test load of 20 mN. The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the above breaking load represents the load value when the bending point is confirmed in the measurement curve of the load value and the compression displacement.
  • the compression recovery rate of the organic / inorganic hybrid particles is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
  • the compression recovery rate is equal to or higher than the lower limit, the organic / inorganic hybrid particles are less likely to be damaged, and the organic / inorganic hybrid particles easily follow and deform in response to fluctuations in the distance between substrates or electrodes. . For this reason, it becomes difficult to produce the connection failure between board
  • the compression recovery rate can be measured as follows, for example.
  • the load speed is 0.33 mN / sec.
  • As the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used. *
  • Compression recovery rate (%) [(L1 ⁇ L2) / L1] ⁇ 100
  • L1 Compression displacement from the load value for the origin when applying the load to the reverse load value
  • L2 Inversion when releasing the load
  • the particle diameter of the organic-inorganic hybrid particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, even more. It is preferably 300 ⁇ m or less, more preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • the organic / inorganic hybrid particles indicates the maximum diameter.
  • a particle size distribution measuring machine using principles such as laser light scattering, electric resistance value change, and image analysis after imaging can be used.
  • the method for producing the organic / inorganic hybrid particles is not particularly limited.
  • the method for producing the organic-inorganic hybrid particles preferably includes a hydrolysis and condensation step of hydrolyzing and condensing the silane compound to obtain inorganic particles. According to this method, organic-inorganic hybrid particles having a uniform particle diameter and even better compression deformation characteristics can be obtained.
  • hydrolysis and condensation step hydrolysis and condensation reactions occur at the contact interface between the silane compound and the aqueous solvent, a polysiloxane skeleton is formed, and inorganic particles are obtained.
  • a catalyst is generally used.
  • the silane compound is reacted in the presence of a catalyst.
  • a catalyst for example, water and an acidic catalyst or a basic catalyst are used.
  • the said catalyst only 1 type may be used and 2 or more types may be used together.
  • Examples of the acidic catalyst include inorganic acids, organic acids, acid anhydrides of inorganic acids and derivatives thereof, and acid anhydrides of organic acids and derivatives thereof.
  • an appropriate organic solvent may be used in addition to water.
  • the organic solvent include alcohols, ketones, esters, (cyclo) paraffins, ethers and aromatic hydrocarbons.
  • the said organic solvent only 1 type may be used and 2 or more types may be used together.
  • reaction temperature in the said hydrolysis and condensation process is not specifically limited, Preferably it is 0 degreeC or more, Preferably it is 100 degrees C or less, More preferably, it is 70 degrees C or less.
  • the reaction time in the hydrolysis and condensation step is not particularly limited, but is preferably 30 minutes or more, and preferably 100 hours or less.
  • the method for producing the organic-inorganic hybrid particle includes a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group having a second reactive functional group capable of reacting with the first reactive functional group. It is preferable to provide a step of reacting the containing organopolysiloxane to obtain an aggregate of the inorganic particles. In this step, it is preferable to integrate a plurality of the inorganic particles through a structure derived from the alkoxy group-containing organopolysiloxane. It is preferable to obtain an aggregate of inorganic particles by integrating a plurality of inorganic particles via a structure (structure part) derived from an alkoxy group-containing organopolysiloxane.
  • the silane compound layer containing the alkoxy group-containing organopolysiloxane are separated in a container, or a layer containing water and the silane compound and a layer containing the alkoxy group-containing organopolysiloxane;
  • the silane compound is hydrolyzed and condensed to obtain inorganic particles, and the alkoxy group-containing organopolysiloxane is deposited and deposited on the surface of the obtained inorganic particles to obtain the first reactivity.
  • the use of the organic-inorganic hybrid particles is not particularly limited.
  • the organic-inorganic hybrid particles are suitably used for various applications that require a high breaking load.
  • the organic-inorganic hybrid particles are preferably used for electronic parts.
  • the organic-inorganic hybrid particles are preferably organic-inorganic hybrid particles for electronic parts.
  • the organic / inorganic hybrid particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer, or used as spacers for liquid crystal display elements.
  • the organic-inorganic hybrid particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the organic / inorganic hybrid particles are preferably used as spacers for liquid crystal display elements. Since the organic-inorganic hybrid particles have a high breaking load, the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and disposed between the substrates, or a conductive layer is formed on the surface to be used as conductive particles between the electrodes.
  • the spacer for liquid crystal display element or the conductive particles When electrically connected, the spacer for liquid crystal display element or the conductive particles are not easily broken and damaged. In particular, when an impact is applied to the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, the liquid crystal display element spacer and the conductive particles are difficult to break and damage. .
  • organic-inorganic hybrid particles are also suitably used as a shock absorber or a vibration absorber.
  • the organic-inorganic hybrid particles can be used as an alternative such as rubber or spring.
  • FIG. 2 is a cross-sectional view schematically showing conductive particles using the organic-inorganic hybrid particles shown in FIG.
  • the conductive particle 21 shown in FIG. 1 has the organic-inorganic hybrid particle 1 and the conductive layer 31A disposed on the surface of the organic-inorganic hybrid particle 1.
  • the conductive particle 21 shown in FIG. 1 has the organic-inorganic hybrid particle 1 and the conductive layer 31A disposed on the surface of the organic-inorganic hybrid particle 1.
  • the conductive layer 31 ⁇ / b> A covers the surface of the organic-inorganic hybrid particle 1.
  • the conductive particles 21 are coated particles in which the surface of the organic-inorganic hybrid particle 1 is coated with a conductive layer 31A.
  • FIG. 3 schematically shows a modification of the conductive particles using the organic-inorganic hybrid particles shown in FIG. 1 in a cross-sectional view.
  • the 3 includes the organic-inorganic hybrid particle 1, the conductive layer 31B, a plurality of core substances 32, and a plurality of insulating substances 33.
  • the conductive layer 31 ⁇ / b> B is disposed on the surface of the organic-inorganic hybrid particle 1.
  • the conductive layer 31B includes a first conductive layer 31Ba that is an inner layer and a second conductive layer 31Bb that is an outer layer. On the surface of the organic-inorganic hybrid particle 1, the first conductive layer 31Ba is disposed. A second conductive layer 31Bb is arranged on the surface of the first conductive layer 31Ba.
  • the conductive particles 22 have a plurality of protrusions on the conductive surface.
  • the conductive layer 31B and the second conductive layer 31Bb have a plurality of protrusions on the outer surface.
  • the conductive particles may have protrusions on the conductive surface of the conductive particles, or may have protrusions on the outer surfaces of the conductive layer and the second conductive layer.
  • a plurality of core substances 32 are arranged on the surface of the organic-inorganic hybrid particle 1.
  • the plurality of core materials 32 are embedded in the conductive layer 31B.
  • the core substance 32 is disposed inside the protrusions in the conductive particles 22 and the conductive layer 31B.
  • the conductive layer 31 ⁇ / b> B covers a plurality of core materials 32.
  • the outer surface of the conductive layer 31B is raised by the plurality of core materials 32, and protrusions are formed.
  • the conductive particles 22 have an insulating material 33 disposed on the outer surface of the conductive layer 31B. At least a part of the outer surface of the conductive layer 31 ⁇ / b> B is covered with the insulating material 33.
  • the insulating substance 33 is made of an insulating material and is an insulating particle.
  • the said electroconductive particle may have the insulating substance arrange
  • the metal for forming the conductive layer is not particularly limited.
  • the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and these. And the like.
  • the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable.
  • the conductive layer may be formed of a single layer.
  • the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable.
  • the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced.
  • the outermost layer is a gold layer, the corrosion resistance is further enhanced.
  • the method for forming a conductive layer on the surface of the organic-inorganic hybrid particles is not particularly limited.
  • a method for forming the conductive layer for example, a method using electroless plating, a method using electroplating, a method using physical vapor deposition, and a metal powder or a paste containing a metal powder and a binder are coated on the surface of the organic-inorganic hybrid particles. Methods and the like.
  • the method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the particle diameter of the conductive particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, preferably 520 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, and even more preferably. Is 50 ⁇ m or less, particularly preferably 20 ⁇ m or less.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductive layer When forming the conductive particles, it becomes difficult to form aggregated conductive particles.
  • interval between the electrodes connected via the electroconductive particle does not become large too much, and it becomes difficult for a conductive layer to peel from the surface of an organic inorganic hybrid particle.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle diameter of the conductive particles means a diameter when the conductive particles are true spherical, and means a maximum diameter when the conductive particles have a shape other than the true spherical shape.
  • the thickness of the conductive layer (when the conductive layer is a multilayer, the total thickness of the conductive layer) is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, Preferably it is 0.3 micrometer or less.
  • the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
  • the thickness of the outermost conductive layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0. .1 ⁇ m or less.
  • the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is further increased. Lower. Further, the thinner the gold layer when the outermost layer is a gold layer, the lower the cost.
  • the thickness of the conductive layer can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles may have protrusions on the outer surface of the conductive layer. It is preferable that there are a plurality of the protrusions.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made low.
  • the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the conductive particles and the electrodes are separated by protrusions of the conductive particles. Insulating substances or binder resins in between can be effectively eliminated. For this reason, the conduction
  • a method of forming protrusions on the surface of the conductive particles a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the organic-inorganic hybrid particles, and a method of forming no protrusion on the surface of the organic-inorganic hybrid particles.
  • Examples include a method of forming a conductive layer by electrolytic plating, attaching a core substance, and further forming a conductive layer by electroless plating.
  • the core material may not be used to form the protrusion.
  • the conductive particles may include an insulating material disposed on the outer surface of the conductive layer.
  • an insulating material disposed on the outer surface of the conductive layer.
  • an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes.
  • the insulating substance between the conductive layer of an electroconductive particle and an electrode can be easily excluded by pressurizing electroconductive particle with two electrodes in the case of the connection between electrodes.
  • the insulating substance is preferably an insulating resin layer or insulating particles, and more preferably insulating particles.
  • the insulating particles are preferably insulating resin particles.
  • the conductive material includes the conductive particles described above and a binder resin.
  • the conductive particles are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably a conductive material for circuit connection.
  • the binder resin is not particularly limited.
  • a known insulating resin is used.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of a method for dispersing the conductive particles in the binder resin include a method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. The conductive particles are dispersed in water. Alternatively, after uniformly dispersing in an organic solvent using a homogenizer or the like, it is added to the binder resin and kneaded with a planetary mixer or the like, and the binder resin is diluted with water or an organic solvent. Then, the method of adding the said electroconductive particle, kneading with a planetary mixer etc. and disperse
  • distributing is mentioned.
  • the conductive material can be used as a conductive paste and a conductive film.
  • a film not including conductive particles may be laminated on the conductive film including the conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less, More preferably, it is 10 weight% or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure can be obtained by connecting the connection target members using the conductive particles described above or using a conductive material including the conductive particles described above and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, and the connection portion.
  • connection portion connecting the first connection target member and the second connection target member, and the connection portion.
  • the connection part is the conductive particles. That is, the first and second connection target members are connected by the conductive particles.
  • the conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
  • the first connection object member preferably has a first electrode on the surface.
  • the second connection target member preferably has a second electrode on the surface. It is preferable that the first electrode and the second electrode are electrically connected by the conductive particles.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles 21 shown in FIG.
  • connection structure 51 shown in FIG. 4 is a connection that connects the first connection target member 52, the second connection target member 53, and the first connection target member 52 and the second connection target member 53.
  • the connection part 54 is formed of a conductive material including the conductive particles 21 and a binder resin.
  • the conductive particles 21 are schematically illustrated for convenience of illustration. Instead of the conductive particles 21, other conductive particles such as the conductive particles 22 may be used.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface).
  • the first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Accordingly, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 21.
  • the manufacturing method of the connection structure is not particularly limited.
  • a method of manufacturing a connection structure a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • the pressure applied to connect the electrode of the flexible printed board, the electrode disposed on the resin film, and the electrode of the touch panel is about 9.8 ⁇ 10 4 to 1.0 ⁇ 10 6 Pa.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
  • connection target member is preferably a flexible printed circuit board or a connection target member in which an electrode is disposed on the surface of a resin film.
  • the connection target member is preferably a flexible printed board, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film.
  • the flexible printed board generally has electrodes on the surface.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • the organic-inorganic hybrid particles are preferably used as a spacer for a liquid crystal display element. That is, the organic / inorganic hybrid particle includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and a liquid crystal display element spacer disposed between the pair of substrates. It is suitably used for obtaining an element.
  • FIG. 5 is a cross-sectional view of a liquid crystal display element using organic / inorganic hybrid particles according to an embodiment of the present invention as a spacer for a liquid crystal display element.
  • a liquid crystal display element 81 shown in FIG. 5 has a pair of transparent glass substrates 82.
  • the transparent glass substrate 82 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 .
  • a transparent electrode 83 is formed on the insulating film in the transparent glass substrate 82. Examples of the material of the transparent electrode 83 include ITO.
  • the transparent electrode 83 can be formed by patterning, for example, by photolithography.
  • An alignment film 84 is formed on the transparent electrode 83 on the surface of the transparent glass substrate 82. Examples of the material of the alignment film 84 include polyimide.
  • a liquid crystal 85 is sealed between the pair of transparent glass substrates 82.
  • a plurality of organic-inorganic hybrid particles 1 are disposed between the pair of transparent glass substrates 82.
  • the organic-inorganic hybrid particle 1 is used as a spacer for a liquid crystal display element.
  • the space between the pair of transparent glass substrates 82 is regulated by the plurality of organic-inorganic hybrid particles 1.
  • a sealing agent 86 is disposed between the edges of the pair of transparent glass substrates 82. Outflow of the liquid crystal 85 to the outside is prevented by the sealing agent 86.
  • the organic-inorganic hybrid particle 1 is schematically shown for convenience of illustration. Instead of the organic / inorganic hybrid particles 1, other organic / inorganic hybrid particles may be used.
  • the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less.
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
  • Example 1 In a 500 mL reaction vessel equipped with a stirrer and a thermometer, 300 g of a 0.13% by weight aqueous ammonia solution was placed. Next, 4.1 g of methyltrimethoxysilane, 19.2 g of vinyltrimethoxysilane, silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd., methoxy group, A mixture of 0.7 g of weight average molecular weight (about 1600) having an ethoxy group, an epoxy group and an alkyl group directly bonded to a silicon atom was slowly added.
  • X-41-1053 manufactured by Shin-Etsu Chemical Co., Ltd.
  • organic-inorganic hybrid particles After the hydrolysis and condensation reaction proceeded with stirring, 2.4 mL of a 25 wt% aqueous ammonia solution was added, and then the particles were isolated from the aqueous ammonia solution, and the resulting particles were subjected to an oxygen partial pressure of 10 ⁇ 17 atm, Firing at 400 ° C. for 2 hours gave organic-inorganic hybrid particles.
  • the particle diameters of the obtained organic-inorganic hybrid particles are shown in Table 1 below.
  • Example 2 Silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.), alkoxy oligomer (“KR-500” manufactured by Shin-Etsu Chemical Co., Ltd.), having a methoxy group and an alkyl group directly bonded to a silicon atom, weight average Organic-inorganic hybrid particles were obtained in the same manner as in Example 1 except that the molecular weight was changed to 3000 to 10,000.
  • Example 3 Silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.), silicone oligomer (“X-41-1805” manufactured by Shin-Etsu Chemical Co., Ltd.), weight average molecular weight having methoxy group, ethoxy group and mercapto group : About 1800), except that the organic-inorganic hybrid particles were obtained in the same manner as in Example 1.
  • Example 4 In a 500 mL reaction vessel equipped with a stirrer and a thermometer, 300 g of a 0.13% by weight aqueous ammonia solution was placed. Next, a mixture of 4.1 g of methyltrimethoxysilane and 19.2 g of vinyltrimethoxysilane was slowly stirred into the aqueous ammonia solution in the reaction vessel. After the hydrolysis and condensation reaction proceeds with stirring, a silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd., having an alkyl group directly bonded to a methoxy group, an ethoxy group, an epoxy group, and a silicon atom) ) 0.7g was added and stirred slowly.
  • X-41-1053 manufactured by Shin-Etsu Chemical Co., Ltd., having an alkyl group directly bonded to a methoxy group, an ethoxy group, an epoxy group, and a silicon atom
  • Example 5 In a 500 mL reaction vessel equipped with a stirrer and a thermometer, 300 g of a 0.13% by weight aqueous ammonia solution was placed. Next, 1.9 g of 3-methacryloxypropyltrimethoxysilane, 4.1 g of methyltrimethoxysilane, 17.3 g of vinyltrimethoxysilane, silicone alkoxy oligomer (Shin-Etsu Chemical Co., Ltd.) were added to the aqueous ammonia solution in the reaction vessel.
  • Example 6 Cyclopentasiloxane (“KF-995” manufactured by Shin-Etsu Chemical Co., Ltd.), a cyclic siloxane, and 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.), an epoxy silane coupling agent, To obtain an alkoxy group-containing organopolysiloxane A (having an epoxy group and an alkoxy group, and a weight average molecular weight of about 1500).
  • Organic-inorganic hybrid particles were obtained in the same manner as in Example 4 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an alkoxy group-containing organopolysiloxane A.
  • Example 7 Cyclopentasiloxane (“KF-995” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane, and 3-acryloxypropyltrimethoxysilane (“KBM-5103” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent having an acryloyl group. ) To obtain an alkoxy group-containing organopolysiloxane B (having an acryloyl group and an alkoxy group, weight average molecular weight: about 1300).
  • Organic-inorganic hybrid particles were obtained in the same manner as in Example 4 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an alkoxy group-containing organopolysiloxane B.
  • Example 8 Cyclopentasiloxane (“KF-995” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane, and 3-methacryloxypropyltrimethoxysilane (“KBM-503” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent having a methacryloyl group.
  • KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.
  • methacryloxy group-containing organopolysiloxane C having a methacryloyl group and an alkoxy group, weight average molecular weight: about 2000).
  • Organic-inorganic hybrid particles were obtained in the same manner as in Example 4 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an alkoxy group-containing organopolysiloxane C.
  • Example 9 Palladium adhesion process
  • the organic-inorganic hybrid particles obtained in Example 4 were prepared.
  • the organic / inorganic hybrid particles were etched and washed with water.
  • organic-inorganic hybrid particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • Organic / inorganic hybrid particles were added to 0.5 wt% dimethylamine borane solution at pH 6 to obtain organic / inorganic hybrid particles to which palladium was attached.
  • the nickel layer was formed on the surface of the organic inorganic hybrid particle to which the core substance was adhered, and the electroconductive particle was produced.
  • the nickel layer had a thickness of 0.1 ⁇ m.
  • Example 10 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • the particle diameter of each inorganic particle (per inorganic particle) in the aggregate is X-ray small angle scattering (Powder X, manufactured by Rigaku Corporation). Measurement was performed by a transmission method using a line diffractometer SmartLab (parallel beam method). The average size obtained using the analysis software NANO-Solver was adopted. In the model of the analysis software NANO-Solver, the scatterer model was a sphere, the particles were SiO 2 , and the matrix was Air.
  • the particle diameter of each inorganic particle in the aggregate was 1 to 500 nm.
  • connection structure 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), 200 parts by weight of methyl ethyl ketone, and a microcapsule type curing agent (Asahi Kasei E-material) 50 parts by weight of “HX3941HP” manufactured by KK And dispersed to obtain a resin composition.
  • Bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation)
  • acrylic rubber weight average molecular weight of about 800,000
  • methyl ethyl ketone 200 parts by weight of methyl ethyl ketone
  • microcapsule type curing agent Asahi Kasei E-material 50 parts by weight of “HX3941HP” manufactured by KK And dispersed to obtain a resin composition.
  • the obtained resin composition was applied to a 50 ⁇ m-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film.
  • the thickness of the obtained anisotropic conductive film was 12 ⁇ m.
  • the obtained anisotropic conductive film was cut into a size of 5 mm ⁇ 5 mm.
  • PET substrate width 3 cm, length 3 cm
  • the two-layer flexible printed circuit board width 2cm, length 1cm
  • a laminate of the PET substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure.
  • the two-layer flexible printed board by which the copper electrode was formed in the polyimide film and the copper electrode surface was Au-plated was used.
  • connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. Connection resistance was determined according to the following criteria.
  • connection resistance is 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0, 4.0 ⁇ or less ⁇ : Connection resistance exceeds 4.0, 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • Example of use as spacer for liquid crystal display element Production of STN type liquid crystal display element In a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the spacers (organic-inorganic hybrid particles) for liquid crystal display elements of Examples 1 to 8 in 100% by weight of the obtained spacer dispersion liquid had a solid content concentration of 2 It added so that it might become weight%, and stirred, and the spacer dispersion liquid for liquid crystal display elements was obtained.
  • An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering.
  • a polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by spin coating, and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the rubbing treatment for the alignment film, the liquid crystal display element spacers were wet-sprayed on the alignment film side of one substrate so that the number of spacers for a liquid crystal display element was 100 to 200 per 1 mm 2 .
  • this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
  • the distance between the substrates was well regulated by the liquid crystal display element spacers of Examples 1 to 8. Moreover, the liquid crystal display element showed favorable display quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided are organic-inorganic hybrid particles which have high breaking load when compressed and have good compressive deformation characteristics. Organic-inorganic hybrid particles of the present invention are obtained using a plurality of inorganic particles, each of which has a first reactive functional group on the surface, and an alkoxy group-containing organopolysiloxane, which has a second reactive functional group that is reactive with the first reactive functional group. The organic-inorganic hybrid particles are aggregates of the inorganic particles.

Description

有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
 本発明は、複数の無機粒子の集合体である有機無機ハイブリッド粒子に関する。また、本発明は、上記有機無機ハイブリッド粒子を用いた導電性粒子、導電材料及び接続構造体に関する。 The present invention relates to an organic-inorganic hybrid particle that is an aggregate of a plurality of inorganic particles. The present invention also relates to conductive particles, conductive materials and connection structures using the organic-inorganic hybrid particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、樹脂粒子と、該樹脂粒子の表面上に配置された導電層とを有する導電性粒子が用いられることがある。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin. The anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit (FPC), a glass substrate, and a semiconductor chip to obtain a connection structure. In addition, conductive particles having resin particles and a conductive layer disposed on the surface of the resin particles may be used as the conductive particles.
 上記導電性粒子に用いられる樹脂粒子の一例として、下記の特許文献1では、破壊点荷重が9.8mN以下である重合体粒子が開示されている。特許文献1では、上記重合体粒子の好ましい態様として、(a)シリカ、アルミナ、チタニア等の金属酸化物、金属窒化物、金属硫化物、金属炭化物等により形成された無機質粒子が、有機質中に分散されている態様、(b)(オルガノ)ポリシロキサン、ポリチタノキサン等のメタロキサン鎖(「金属-酸素-金属」結合を含む分子鎖)と有機分子とが分子レベルで複合している態様、並びに(c)ビニル重合体骨格とポリシロキサン骨格とを含む有機無機重合体粒子である態様等が挙げられている。 As an example of the resin particles used for the conductive particles, the following Patent Document 1 discloses polymer particles having a breaking point load of 9.8 mN or less. In Patent Document 1, as a preferred embodiment of the polymer particles, (a) inorganic particles formed of metal oxides such as silica, alumina, and titania, metal nitrides, metal sulfides, metal carbides, etc. (B) (b) an aspect in which a metalloxane chain (a molecular chain containing a “metal-oxygen-metal” bond) such as (organo) polysiloxane and polytitanoxane is combined with an organic molecule at a molecular level; c) The aspect etc. which are organic inorganic polymer particles containing a vinyl polymer frame | skeleton and a polysiloxane skeleton are mentioned.
 また、液晶表示素子は、2枚のガラス基板間に液晶が配置されて構成されている。該液晶表示素子では、2枚のガラス基板の間隔(ギャップ)を均一かつ一定に保つために、ギャップ制御材としてスペーサが用いられている。該スペーサとして、樹脂粒子が一般に用いられている。 Further, the liquid crystal display element is configured by arranging liquid crystal between two glass substrates. In the liquid crystal display element, a spacer is used as a gap control material in order to keep the distance (gap) between two glass substrates uniform and constant. As the spacer, resin particles are generally used.
 上記導電性粒子又は上記液晶表示素子用スペーサに用いられる樹脂粒子の一例として、下記の特許文献2には、重合性不飽和基を有する多官能性シラン化合物を、界面活性剤の存在下で加水分解及重縮合させることにより得られる有機無機ハイブリッド粒子が開示されている。特許文献2では、上記多官能性シラン化合物が、下記式(X)で表される化合物及びその誘導体から選ばれた少なくとも1つのラジカル重合性基含有第1シリコン化合物である。 As an example of the resin particles used for the conductive particles or the liquid crystal display element spacers, Patent Document 2 listed below contains a polyfunctional silane compound having a polymerizable unsaturated group in the presence of a surfactant. Organic-inorganic hybrid particles obtained by decomposition and polycondensation are disclosed. In Patent Document 2, the polyfunctional silane compound is at least one radical polymerizable group-containing first silicon compound selected from a compound represented by the following formula (X) and a derivative thereof.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(X)中、R1は水素原子又はメチル基を示し、R2は置換基を有していてもよい炭素数1~20の2価の有機基を示し、R3は炭素数1~5のアルキル基又はフェニル基を示し、R4は水素原子と、炭素数1~5のアルキル基と、炭素数2~5のアシル基とからなる群から選ばれる少なくとも1つの1価基を示す。 In the above formula (X), R1 represents a hydrogen atom or a methyl group, R2 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms, and R3 represents a carbon atom having 1 to 5 carbon atoms. R 4 represents an alkyl group or a phenyl group, and R 4 represents at least one monovalent group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
WO2012/020799A1WO2012 / 020799A1 特開2000-204119号公報JP 2000-204119 A
 特許文献1,2に記載のような従来の有機無機ハイブリッド粒子では、圧縮時の破壊荷重が低いことがある。 In conventional organic-inorganic hybrid particles as described in Patent Documents 1 and 2, the breaking load during compression may be low.
 このため、上記有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体に衝撃が加わったときに、液晶表示素子用スペーサ又は導電性粒子に割れ又は損傷が生じることがある。 For this reason, when the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and placed between substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect electrodes. When an impact is applied to the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, the liquid crystal display element spacer or the conductive particles may be cracked or damaged. .
 本発明の目的は、圧縮時の破壊荷重が高く、良好な圧縮変形特性を有する有機無機ハイブリッド粒子、並びに該有機無機ハイブリッド粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。 An object of the present invention is to provide an organic-inorganic hybrid particle having a high compressive load and a good compressive deformation characteristic, and conductive particles, a conductive material, and a connection structure using the organic-inorganic hybrid particle. is there.
 本発明の広い局面によれば、第1の反応性官能基を表面に有する複数の無機粒子と、前記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを用いて得られ、前記無機粒子の集合体である、有機無機ハイブリッド粒子が提供される。 According to a wide aspect of the present invention, a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group containing a second reactive functional group capable of reacting with the first reactive functional group Organic-inorganic hybrid particles that are obtained using organopolysiloxane and are aggregates of the inorganic particles are provided.
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記第1の反応性官能基が水酸基である。 In a specific aspect of the organic-inorganic hybrid particle according to the present invention, the first reactive functional group is a hydroxyl group.
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記アルコキシ基含有オルガノポリシロキサンが、前記第2の反応性官能基として、エポキシ基又は(メタ)アクリロイル基を有する。 In a specific aspect of the organic-inorganic hybrid particle according to the present invention, the alkoxy group-containing organopolysiloxane has an epoxy group or a (meth) acryloyl group as the second reactive functional group.
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記アルコキシ基含有オルガノポリシロキサンが、前記第2の反応性官能基として、エポキシ基を有する。 In a specific aspect of the organic-inorganic hybrid particle according to the present invention, the alkoxy group-containing organopolysiloxane has an epoxy group as the second reactive functional group.
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、複数の前記無機粒子が、前記アルコキシ基含有オルガノポリシロキサンに由来する構造を介して、一体化して、前記無機粒子の集合体が得られている。 In a specific aspect of the organic-inorganic hybrid particle according to the present invention, a plurality of the inorganic particles are integrated through a structure derived from the alkoxy group-containing organopolysiloxane to obtain an aggregate of the inorganic particles. ing.
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記アルコキシ基含有オルガノポリシロキサンが、前記第2の反応性官能基として、メトキシ基を有する。 In a specific aspect of the organic-inorganic hybrid particle according to the present invention, the alkoxy group-containing organopolysiloxane has a methoxy group as the second reactive functional group.
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記アルコキシ基含有オルガノポリシロキサンが、珪素原子に直接結合したアルキル基を有する。 In a specific aspect of the organic-inorganic hybrid particle according to the present invention, the alkoxy group-containing organopolysiloxane has an alkyl group directly bonded to a silicon atom.
 本発明に係る有機無機ハイブリッド粒子は、表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられることが好ましい。 The organic-inorganic hybrid particles according to the present invention are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer, or used as spacers for liquid crystal display elements.
 本発明の広い局面によれば、上述した有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電性粒子が提供される。 According to a wide aspect of the present invention, there is provided conductive particles comprising the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles.
 本発明の広い局面によれば、導電性粒子と、バインダー樹脂とを含み、前記導電性粒子が、上述した有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電材料が提供される。 According to a wide aspect of the present invention, the conductive particles include a binder resin, and the conductive particles include the organic-inorganic hybrid particles described above, and a conductive layer disposed on the surface of the organic-inorganic hybrid particles. A conductive material is provided.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備え、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connection portion connecting the second connection target member, and the connection portion is formed of conductive particles or formed of a conductive material including the conductive particles and a binder resin. The conductive particles include the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles, and the first electrode and the second electrode are the conductive particles. To provide a connection structure that is electrically connected.
 本発明に係る有機無機ハイブリッド粒子は、第1の反応性官能基を表面に有する複数の無機粒子と、上記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを用いて得られ、上記無機粒子の集合体であるので、圧縮時の破壊荷重が高く、有機無機ハイブリッド粒子が良好な圧縮変形特性を有する。 The organic-inorganic hybrid particle according to the present invention includes a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group having a second reactive functional group capable of reacting with the first reactive functional group. Since it is an aggregate of the inorganic particles obtained using the organopolysiloxane, the organic-inorganic hybrid particles have high compressive deformation characteristics due to high breaking load during compression.
図1は、本発明の第1の実施形態に係る有機無機ハイブリッド粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing organic-inorganic hybrid particles according to the first embodiment of the present invention. 図2は、図1に示す有機無機ハイブリッド粒子を用いた導電性粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing conductive particles using the organic-inorganic hybrid particles shown in FIG. 図3は、図1に示す有機無機ハイブリッド粒子を用いた導電性粒子の変形例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a modification of the conductive particles using the organic-inorganic hybrid particles shown in FIG. 図4は、図2に示す導電性粒子を用いた接続構造体を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles shown in FIG. 図5は、図1に示す有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いた液晶表示素子を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a liquid crystal display element using the organic-inorganic hybrid particles shown in FIG. 1 as a spacer for a liquid crystal display element.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 (有機無機ハイブリッド粒子)
 本発明に係る有機無機ハイブリッド粒子は、第1の反応性官能基を表面に有する複数の無機粒子と、上記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを用いて得られる。本発明に係る有機無機ハイブリッド粒子は、上記無機粒子の集合体である。
(Organic inorganic hybrid particles)
The organic-inorganic hybrid particle according to the present invention includes a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group having a second reactive functional group capable of reacting with the first reactive functional group. It is obtained using the containing organopolysiloxane. The organic-inorganic hybrid particle according to the present invention is an aggregate of the inorganic particles.
 本発明に係る有機無機ハイブリッド粒子では、上述した構成が備えられているので、圧縮時の破壊荷重が高い有機無機ハイブリッド粒子を得ることができる。上記有機無機ハイブリッド粒子の圧縮時の破壊荷重が高いので、上記有機無機ハイブリッド粒子は良好な圧縮変形特性を有する。本発明に係る有機無機ハイブリッド粒子を得るために、上記アルコキシ基含有オルガノポリシロキサンを上記無機粒子とは別に用いることで、破壊荷重が効果的に高くなる。このため、上記有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体に衝撃が加わったときに、液晶表示素子用スペーサ又は導電性粒子に割れ又は損傷が生じ難くなる。 Since the organic-inorganic hybrid particles according to the present invention have the above-described configuration, organic-inorganic hybrid particles having a high breaking load during compression can be obtained. Since the organic-inorganic hybrid particles have a high breaking load during compression, the organic-inorganic hybrid particles have good compression deformation characteristics. In order to obtain the organic-inorganic hybrid particles according to the present invention, the breaking load is effectively increased by using the alkoxy group-containing organopolysiloxane separately from the inorganic particles. For this reason, when the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and placed between substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect electrodes. When an impact is applied to the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, the liquid crystal display element spacer or the conductive particles are hardly cracked or damaged.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1は、本発明の第1の実施形態に係る有機無機ハイブリッド粒子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing organic-inorganic hybrid particles according to the first embodiment of the present invention.
 図1に示す有機無機ハイブリッド粒子1は、複数の無機粒子11と、アルコキシ基含有オルガノポリシロキサンに由来する構造部12とを有する。有機無機ハイブリッド粒子1は、無機粒子11の集合体である。構造部12は、無機粒子11とは別の物質である。 The organic-inorganic hybrid particle 1 shown in FIG. 1 has a plurality of inorganic particles 11 and a structure portion 12 derived from an alkoxy group-containing organopolysiloxane. The organic-inorganic hybrid particle 1 is an aggregate of inorganic particles 11. The structure part 12 is a substance different from the inorganic particles 11.
 無機粒子11を得るために、第1の反応性官能基を表面に有する無機粒子が用いられている。構造部12を得るために、上記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンが用いられている。有機無機ハイブリッド粒子1は、第1の反応性官能基を表面に有する無機粒子と、上記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを用いて得られる。 In order to obtain the inorganic particles 11, inorganic particles having a first reactive functional group on the surface are used. In order to obtain the structure portion 12, an alkoxy group-containing organopolysiloxane having a second reactive functional group capable of reacting with the first reactive functional group is used. The organic-inorganic hybrid particle 1 includes an inorganic particle having a first reactive functional group on its surface, an alkoxy group-containing organopolysiloxane having a second reactive functional group capable of reacting with the first reactive functional group, and Is obtained.
 構造部12は、無機粒子11の表面上に配置されている。複数の無機粒子11間に構造部12が存在している。複数の無機粒子11が、アルコキシ基含有オルガノポリシロキサンに由来する構造(構造部12)を介して、一体化していることが好ましい。複数の無機粒子11が、アルコキシ基含有オルガノポリシロキサンに由来する構造(構造部12)を介して、一体化して、無機粒子11の集合体が得られていることが好ましい。構造部12は、複数の無機粒子11を結着させていることが好ましい。 The structural portion 12 is disposed on the surface of the inorganic particles 11. The structure part 12 exists between the plurality of inorganic particles 11. The plurality of inorganic particles 11 are preferably integrated via a structure (structure part 12) derived from an alkoxy group-containing organopolysiloxane. It is preferable that the aggregate | assembly of the inorganic particle 11 is obtained by integrating the some inorganic particle 11 via the structure (structure part 12) derived from an alkoxy group containing organopolysiloxane. The structure part 12 preferably binds a plurality of inorganic particles 11.
 上記無機粒子としては、金属酸化物、金属窒化物、金属硫化物、金属炭化物、及びこれらの複合物等により形成された粒子が挙げられる。上記金属酸化物としては、シリカ、アルミナ及びチタニア等が挙げられる。なかでも、上記無機粒子はシリカ粒子であることが好ましい。 Examples of the inorganic particles include particles formed of metal oxides, metal nitrides, metal sulfides, metal carbides, and composites thereof. Examples of the metal oxide include silica, alumina, and titania. Especially, it is preferable that the said inorganic particle is a silica particle.
 上記無機粒子の主成分は無機物質である。上記無機粒子は、少量であれば、炭素原子を含んでいてもよい。上記無機粒子100重量%中、炭素原子の含有量は好ましくは20重量%以下、より好ましくは10重量%以下である。炭素原子を少量含む粒子も、無機粒子に含まれる。 The main component of the inorganic particles is an inorganic substance. If the said inorganic particle is a small quantity, it may contain the carbon atom. The content of carbon atoms in 100% by weight of the inorganic particles is preferably 20% by weight or less, more preferably 10% by weight or less. Particles containing a small amount of carbon atoms are also included in the inorganic particles.
 上記第1の反応性官能基としては、水酸基、アルコキシ基、エポキシ基、(メタ)アクリロイル基、アミノ基、メルカプト基及びイソシアネート基等が挙げられる。なかでも、無機粒子の表面に官能基を容易にかつ大量に導入することができることから、水酸基が好ましい。 Examples of the first reactive functional group include a hydroxyl group, an alkoxy group, an epoxy group, a (meth) acryloyl group, an amino group, a mercapto group, and an isocyanate group. Among these, a hydroxyl group is preferable because functional groups can be easily and massively introduced onto the surface of the inorganic particles.
 上記無機粒子は、ポリシロキサン骨格を含むことが好ましい。上記無機粒子は、シラン化合物を加水分解及び縮合させて得られることが好ましい。上記シラン化合物は、アルキル基及びビニル基などの有機基を有していてもよい。このような有機基を有するシラン化合物を用いて得られる粒子も、主成分が無機物質であれば、無機粒子と呼ぶ。上記無機粒子は、オルガノポリシロキサンを用いて形成されていてもよい。 The inorganic particles preferably contain a polysiloxane skeleton. The inorganic particles are preferably obtained by hydrolyzing and condensing a silane compound. The silane compound may have an organic group such as an alkyl group and a vinyl group. Particles obtained using such a silane compound having an organic group are also called inorganic particles if the main component is an inorganic substance. The inorganic particles may be formed using organopolysiloxane.
 上記シラン化合物としては、下記式(1)で表される化合物(以下、化合物(1)と記載することがある)、下記式(2)で表される化合物(以下、化合物(2)と記載することがある)、並びに下記式(3)で表される化合物(以下、化合物(3)で表される化合物等が挙げられる。上記シラン化合物として、化合物(1)、化合物(2)及び化合物(3)からなる群から選択された少なくとも1種を用いることが好ましい。このような化合物を用いれば、得られる無機粒子が表面に、シラノール基を有することから、水酸基を有するようになる。 Examples of the silane compound include a compound represented by the following formula (1) (hereinafter sometimes referred to as compound (1)) and a compound represented by the following formula (2) (hereinafter referred to as compound (2)). And a compound represented by the following formula (3) (hereinafter, a compound represented by the compound (3), etc.) As the silane compound, the compound (1), the compound (2) and the compound It is preferable to use at least one selected from the group consisting of (3) If such a compound is used, the resulting inorganic particles have silanol groups on the surface, so that they have hydroxyl groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、Raは(メタ)アクリロイル基を表し、Rbは置換基を有していてもよい炭素数1~20の2価の有機基を表し、R1及びR2はそれぞれ、水素原子、炭素数1~5のアルキル基又は炭素数2~5のアシル基を表し、Zは炭素数1~5のアルキル基、炭素数2~5のアシル基又は炭素数1~5のアルコキシ基を表す。 In the above formula (1), Ra represents a (meth) acryloyl group, Rb represents an optionally substituted divalent organic group having 1 to 20 carbon atoms, and R1 and R2 each represents a hydrogen atom. Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 2 to 5 carbon atoms, and Z represents an alkyl group having 1 to 5 carbon atoms, an acyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. To express.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(2)中、R1、R2及びR3はそれぞれ、水素原子、炭素数1~5のアルキル基又は炭素数2~5のアシル基を表す。 In the above formula (2), R1, R2 and R3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 2 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(3)中、Raは、メチル基又はエチル基を表し、R1、R2及びR3はそれぞれ、水素原子、炭素数1~5のアルキル基又は炭素数2~5のアシル基を表す。 In the above formula (3), Ra represents a methyl group or an ethyl group, and R1, R2, and R3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acyl group having 2 to 5 carbon atoms.
 上記化合物(1)は、Ra-O-Rb-基を有する。この基は、重合性不飽和基を含む基として、Ra基を有する。化合物(1)における重合性不飽和基をラジカル重合反応させることで、フレキシブル性が高い有機ポリマー骨格が形成される。一方で、化合物(1)を用いずに、化合物(2)のみを用いると、フレキシブル性が十分に高い有機ポリマー骨格は形成されない。 The compound (1) has a Ra—O—Rb— group. This group has a Ra group as a group containing a polymerizable unsaturated group. By subjecting the polymerizable unsaturated group in the compound (1) to a radical polymerization reaction, an organic polymer skeleton having high flexibility is formed. On the other hand, when only the compound (2) is used without using the compound (1), an organic polymer skeleton having sufficiently high flexibility is not formed.
 上記式(1)におけるRaは、(メタ)アクリロイル基を表す。 Ra in the above formula (1) represents a (meth) acryloyl group.
 上記式(1)におけるRbは、置換基を有していてもよい炭素数1~20の2価の有機基を表す。このような有機基の存在により、フレキシブル性が高い有機ポリマー骨格が形成される。 In the above formula (1), Rb represents a divalent organic group having 1 to 20 carbon atoms which may have a substituent. Due to the presence of such an organic group, an organic polymer skeleton having high flexibility is formed.
 上記Rbにおける炭素数1~20の2価の有機基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基などのアルキレン基及び該アルキレン基に置換基が結合された基や、フェニレン基及び該フェニレン基に置換基が結合された基や、アルキレン基がエーテル結合を介して結合した基や、フェニレン基がエーテル結合を介して結合した基等が挙げられる。なかでも、プロピレン基又はフェニレン基が好ましく、プロピレン基がより好ましい。 Examples of the divalent organic group having 1 to 20 carbon atoms in Rb include alkylene groups such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, and an octylene group, and a group in which a substituent is bonded to the alkylene group. And a phenylene group and a group in which a substituent is bonded to the phenylene group, a group in which an alkylene group is bonded through an ether bond, a group in which a phenylene group is bonded through an ether bond, and the like. Of these, a propylene group or a phenylene group is preferable, and a propylene group is more preferable.
 上記式(1)中、Zは炭素数1~5のアルキル基、炭素数2~5のアシル基又は炭素数1~5のアルコキシ基を表す。反応基点が多くなることから、上記式(1)におけるZは、炭素数1~5のアルコキシ基又は炭素数1~3のアルキル基であることが好ましく、炭素数1~5のアルコキシ基であってもよく、炭素数1~3のアルキル基であってもよい。上記式(1)におけるZがアルコキシ基である場合に、Zは、炭素数1又は2のアルコキシ基であることがより好ましい。上記式(1)におけるZがアルキル基である場合に、Zは、炭素数1又は2のアルキル基であることがより好ましく、メチル基であることが更に好ましい。 In the above formula (1), Z represents an alkyl group having 1 to 5 carbon atoms, an acyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Since the number of reactive base points increases, Z in the above formula (1) is preferably an alkoxy group having 1 to 5 carbon atoms or an alkyl group having 1 to 3 carbon atoms, and is an alkoxy group having 1 to 5 carbon atoms. It may be an alkyl group having 1 to 3 carbon atoms. When Z in the formula (1) is an alkoxy group, Z is more preferably an alkoxy group having 1 or 2 carbon atoms. When Z in the formula (1) is an alkyl group, Z is more preferably an alkyl group having 1 or 2 carbon atoms, and further preferably a methyl group.
 上記式(3)中、Raは、メチル基又はエチル基を表す。上記式(3)中のRaは、メチル基であることが好ましい。 In the above formula (3), Ra represents a methyl group or an ethyl group. Ra in the formula (3) is preferably a methyl group.
 上記式(1),(2),(3)中、R1、R2及びR3はそれぞれ、水素原子、炭素数1~5のアルキル基又は炭素数2~5のアシル基を表す。これらの基は、加水分解性基である。加水分解速度が適度に速くなるので、上記式(1),(2),(3)におけるR1、R2及びR3はそれぞれ、炭素数1~3のアルキル基又は炭素数2のアシル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましく、炭素数1又は2のアルキル基であることが更に好ましく、メチル基であることが特に好ましい。 In the above formulas (1), (2) and (3), R1, R2 and R3 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 2 to 5 carbon atoms. These groups are hydrolyzable groups. Since the hydrolysis rate is moderately high, R1, R2 and R3 in the above formulas (1), (2) and (3) are each an alkyl group having 1 to 3 carbon atoms or an acyl group having 2 carbon atoms. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably a methyl group.
 上記化合物(1)としては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。上記記化合物(1)は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the compound (1) include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxypropyltriethoxysilane. Examples include acryloxypropyltriethoxysilane. As for the above-mentioned compound (1), only 1 type may be used and 2 or more types may be used together.
 上記化合物(2)としては、例えば、ビニルトリメトキシシラン、及びビニルトリエトキシシラン等が挙げられる。上記化合物(2)は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the compound (2) include vinyltrimethoxysilane and vinyltriethoxysilane. As for the said compound (2), only 1 type may be used and 2 or more types may be used together.
 上記化合物(3)としては、例えば、メチルトリメトキシシラン、及びエチルトリメトキシシラン等が挙げられる。上記化合物(3)は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the compound (3) include methyltrimethoxysilane and ethyltrimethoxysilane. As for the said compound (3), only 1 type may be used and 2 or more types may be used together.
 上記アルコキシ基含有オルガノポリシロキサンは、上記第1の反応性官能基と反応可能な第2の反応性官能基を有する。上記第2の反応性官能基は、上記第1の反応性官能基の種類に応じて適宜選択される。上記第2の反応性官能基としては、水酸基、アルコキシ基、エポキシ基、(メタ)アクリロイル基、アミノ基、メルカプト基及びイソシアネート基等が挙げられる。例えば、上記第1の反応性官能基が水酸基である場合には、水酸基はアルコキシ基と反応するので、上記アルコキシ基含有オルガノポリシロキサンにおけるアルコキシ基は第2の反応性官能基に相当する。なかでも、上記無機粒子における第1の反応性官能基との反応が進行しやすいことから、エポキシ基、(メタ)アクリロイル基、メルカプト基又はアルコキシ基が好ましく、エポキシ基、(メタ)アクリロイル基又はアルコキシ基がより好ましい。上記アルコキシ基含有オルガノポリシロキサンは、上記第2の反応性官能基として、エポキシ基、(メタ)アクリロイル基又はメルカプト基を有することが好ましく、エポキシ基又は(メタ)アクリロイル基を有することがより好ましく、エポキシ基又はメルカプト基を有することもより好ましく、エポキシ基を有することがより一層好ましく、(メタ)アクリロイル基を有することもより一層好ましく、更にアルコキシ基を有することが好ましく、エポキシ基、(メタ)アクリロイル基又はメルカプト基とアルコキシ基とを有することがより好ましく、エポキシ基又はメルカプト基とアルコキシ基とを有することが更に好ましく、エポキシ基とアルコキシ基とを有することが特に好ましい。上記アルコキシ基は、メトキシ基又はエトキシ基であることが好ましい。 The alkoxy group-containing organopolysiloxane has a second reactive functional group capable of reacting with the first reactive functional group. The second reactive functional group is appropriately selected according to the type of the first reactive functional group. Examples of the second reactive functional group include a hydroxyl group, an alkoxy group, an epoxy group, a (meth) acryloyl group, an amino group, a mercapto group, and an isocyanate group. For example, when the first reactive functional group is a hydroxyl group, the hydroxyl group reacts with an alkoxy group, and therefore the alkoxy group in the alkoxy group-containing organopolysiloxane corresponds to the second reactive functional group. Among them, an epoxy group, a (meth) acryloyl group, a mercapto group, or an alkoxy group is preferable because the reaction with the first reactive functional group in the inorganic particles easily proceeds, and an epoxy group, a (meth) acryloyl group, or An alkoxy group is more preferable. The alkoxy group-containing organopolysiloxane preferably has an epoxy group, a (meth) acryloyl group or a mercapto group as the second reactive functional group, and more preferably has an epoxy group or a (meth) acryloyl group. More preferably an epoxy group or a mercapto group, still more preferably an epoxy group, even more preferably a (meth) acryloyl group, further preferably an alkoxy group, an epoxy group, ) It is more preferred to have an acryloyl group or mercapto group and an alkoxy group, more preferably an epoxy group or mercapto group and an alkoxy group, and particularly preferably an epoxy group and an alkoxy group. The alkoxy group is preferably a methoxy group or an ethoxy group.
 より一層良好な圧縮変形特性が得られることから、上記アルコキシ基含有オルガノポリシロキサンは、上記第2の反応性官能基として、エポキシ基、メトキシ基又はエトキシ基を有することが好ましい。 The alkoxy group-containing organopolysiloxane preferably has an epoxy group, a methoxy group, or an ethoxy group as the second reactive functional group, because much better compression deformation characteristics can be obtained.
 上記アルコキシ含有オルガノポリシロキサンとしては、例えば、アルコキシオリゴマー等が挙げられ、信越化学工業社製のX-41-1053、X-41-1059A(以上、エポキシ基、メトキシ基、エトキシ基を有する)、X-41-1056(エポキシ基、メトキシ基を有する)、X-41-1805(メルカプト基、メトキシ基、エトキシ基を有する)、X-41-1818(メルカプト基、エトキシ基を有する)、X-41-1810(メルカプト基、メトキシ基を有する)、X-41-2651(アミノ基、メトキシ基を有する)、X-40-2655A(メタクリロイル基、メトキシ基を有する)、KR-513(アクリロイル基、メトキシ基を有する)、KC-89S、KR-500、X-40-9225、X-40-9246、X-40-9250、KR-401N、X-40-9227、X-40-9247、KR-510、KR-9218、KR-213、X-40-2308(以上、メトキシ基を有する)、並びにX-40-9238(エトキシ基を有する)等が挙げられる。上記アルコキシ含有オルガノポリシロキサンは1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the alkoxy-containing organopolysiloxane include alkoxy oligomers and the like, and X-41-1053, X-41-1059A (having epoxy groups, methoxy groups, and ethoxy groups) manufactured by Shin-Etsu Chemical Co., Ltd., X-41-1056 (having epoxy group, methoxy group), X-41-1805 (having mercapto group, methoxy group, ethoxy group), X-41-1818 (having mercapto group, ethoxy group), X- 41-1810 (having a mercapto group and a methoxy group), X-41-2651 (having an amino group and a methoxy group), X-40-2655A (having a methacryloyl group and a methoxy group), KR-513 (acryloyl group, Having methoxy group), KC-89S, KR-500, X-40-9225, X-40-9 46, X-40-9250, KR-401N, X-40-9227, X-40-9247, KR-510, KR-9218, KR-213, X-40-2308 (and above, having a methoxy group), X-40-9238 (having an ethoxy group) and the like. As for the said alkoxy containing organopolysiloxane, only 1 type may be used and 2 or more types may be used together.
 上記アルコキシ基含有オルガノポリシロキサンは、環状シロキサンと、上記第2の反応性官能基を有するシラン化合物との反応物であってもよい。上記反応物では、上記環状シロキサンが開環されていることが好ましい。上記第2の反応性官能基を有するシラン化合物はシランカップリング剤であってもよい。 The alkoxy group-containing organopolysiloxane may be a reaction product of a cyclic siloxane and the silane compound having the second reactive functional group. In the reaction product, the cyclic siloxane is preferably opened. The silane compound having the second reactive functional group may be a silane coupling agent.
 また、上記アルコキシ基含有オルガノポリシロキサンは、珪素原子に直接結合したアルキル基を有することが好ましい。該アルキル基は、有機官能基である。 The alkoxy group-containing organopolysiloxane preferably has an alkyl group directly bonded to a silicon atom. The alkyl group is an organic functional group.
 上記無機粒子は、上記第2の反応性官能基として、エポキシ基とアルコキシ基とを有することがより好ましい。上記無機粒子は、エポキシ基、(メタ)アクリロイル基又はメルカプト基とアルコキシ基と珪素原子に直接結合したアルキル基とを有することが更に好ましく、エポキシ基又は(メタ)アクリロイル基とアルコキシ基と珪素原子に直接結合したアルキル基とを有することが特に好ましく、エポキシ基とアルコキシ基と珪素原子に直接結合したアルキル基とを有することが最も好ましい。これらの好ましい第2の反応性官能基の存在により、並びにこれらの好ましい第2の反応性官能基及び有機官能基の存在により、更に一層良好な圧縮変形特性が得られる。 More preferably, the inorganic particles have an epoxy group and an alkoxy group as the second reactive functional group. More preferably, the inorganic particles have an epoxy group, a (meth) acryloyl group or a mercapto group, an alkoxy group, and an alkyl group directly bonded to a silicon atom, and an epoxy group or a (meth) acryloyl group, an alkoxy group, and a silicon atom. It is particularly preferable to have an alkyl group directly bonded to the alkyl group, and it is most preferable to have an epoxy group, an alkoxy group, and an alkyl group directly bonded to a silicon atom. Even better compression deformation properties are obtained by the presence of these preferred second reactive functional groups and by the presence of these preferred second reactive functional groups and organic functional groups.
 上記アルコキシ基含有オルガノポリシロキサンの重量平均分子量は、好ましくは500以上、より好ましくは1000以上、好ましくは10000以下、より好ましくは7000以下である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定により求められるポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the alkoxy group-containing organopolysiloxane is preferably 500 or more, more preferably 1000 or more, preferably 10,000 or less, more preferably 7000 or less. The said weight average molecular weight shows the weight average molecular weight in polystyrene conversion calculated | required by a gel permeation chromatography (GPC) measurement.
 より一層良好な圧縮変形特性が得られることから、上記有機無機ハイブリッド粒子は、上記第1の反応性官能基と上記第2の反応性官能基とを反応させて得られることが好ましい。 It is preferable that the organic-inorganic hybrid particles are obtained by reacting the first reactive functional group and the second reactive functional group, because much better compression deformation characteristics can be obtained.
 より一層良好な圧縮変形特性が得られることから、上記有機無機ハイブリッド粒子では、複数の上記無機粒子が、上記アルコキシ基含有オルガノポリシロキサンに由来する構造を介して、一体化していることが好ましい。 In the organic-inorganic hybrid particles, it is preferable that a plurality of the inorganic particles are integrated through a structure derived from the alkoxy group-containing organopolysiloxane because more excellent compression deformation characteristics can be obtained.
 上記有機無機ハイブリッド粒子は、複数の上記無機粒子の集合体である。上記有機無機ハイブリッド粒子において、集合体における無機粒子の数は、2以上であり、好ましくは5以上、より好ましくは10以上である。なお、後述する実施例では、集合体における無機粒子の数は10以上である。集合体における無機粒子の数の上限は特に限定されない。 The organic-inorganic hybrid particle is an aggregate of a plurality of the inorganic particles. In the organic-inorganic hybrid particles, the number of inorganic particles in the aggregate is 2 or more, preferably 5 or more, more preferably 10 or more. In the examples described later, the number of inorganic particles in the aggregate is 10 or more. The upper limit of the number of inorganic particles in the aggregate is not particularly limited.
 上記有機無機ハイブリッド粒子において、集合体における各無機粒子の粒子径は、好ましくは0.1nm以上、より好ましくは1nm以上、更に好ましくは3nm以上、好ましくは1000nm以下、より好ましくは500nm以下、更に好ましくは200nm以下、特に好ましくは100nm以下である。上記集合体における無機粒子の粒子径が上記下限以上であると、粒界が少なく存在することで脆くなり難く、上記上限以下であると、有機無機ハイブリッド粒子に空隙が少なく存在することで脆くなりにくくなる傾向がある。 In the organic-inorganic hybrid particles, the particle diameter of each inorganic particle in the aggregate is preferably 0.1 nm or more, more preferably 1 nm or more, still more preferably 3 nm or more, preferably 1000 nm or less, more preferably 500 nm or less, still more preferably. Is 200 nm or less, particularly preferably 100 nm or less. If the particle size of the inorganic particles in the aggregate is not less than the above lower limit, it is difficult to be brittle because there are few grain boundaries, and if it is not more than the above upper limit, it becomes brittle because there are few voids in the organic-inorganic hybrid particles. There is a tendency to become difficult.

 有機無機ハイブリッド粒子の損傷をより一層抑制する観点からは、上記有機無機ハイブリッド粒子の破壊荷重は、好ましくは5mN以上、より好ましくは10mN以上、更に好ましくは11mN以上である。上記破壊荷重が上記下限以上であると、圧縮時に上記有機無機ハイブリッド粒子が割れたり、損傷したりし難くなる。

From the viewpoint of further suppressing damage to the organic / inorganic hybrid particles, the breaking load of the organic / inorganic hybrid particles is preferably 5 mN or more, more preferably 10 mN or more, and even more preferably 11 mN or more. When the breaking load is equal to or more than the lower limit, the organic-inorganic hybrid particles are hardly cracked or damaged during compression.

 上記破壊荷重は、例えば、以下のようにして測定できる。微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で有機無機ハイブリッド粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。

The breaking load can be measured as follows, for example. Using a micro-compression tester, organic-inorganic hybrid particles are compressed on a smooth indenter end face of a cylinder (diameter 100 μm, made of diamond) under the conditions of 25 ° C., compression speed of 0.3 mN / second, and maximum test load of 20 mN. The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 上記破壊荷重は、荷重値と圧縮変位との測定曲線において、屈曲点が確認された時点の荷重値を表す。 The above breaking load represents the load value when the bending point is confirmed in the measurement curve of the load value and the compression displacement.
 上記有機無機ハイブリッド粒子の圧縮回復率は、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上である。上記圧縮回復率が上記下限以上であると、上記有機無機ハイブリッド粒子が損傷しにくく、基板間又は電極間の間隔の変動に対応して、上記有機無機ハイブリッド粒子が十分に追従して変形しやすい。このため、基板間又は電極間の接続不良が生じ難くなる。 The compression recovery rate of the organic / inorganic hybrid particles is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more. When the compression recovery rate is equal to or higher than the lower limit, the organic / inorganic hybrid particles are less likely to be damaged, and the organic / inorganic hybrid particles easily follow and deform in response to fluctuations in the distance between substrates or electrodes. . For this reason, it becomes difficult to produce the connection failure between board | substrates or between electrodes.
 上記圧縮回復率は、例えば、以下のようにして測定できる。試料台上に有機無機ハイブリッド粒子を散布する。散布された有機無機ハイブリッド粒子1個について、微小圧縮試験機を用いて、有機無機ハイブリッド粒子の中心方向に、有機無機ハイブリッド粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。  The compression recovery rate can be measured as follows, for example. Spread organic-inorganic hybrid particles on the sample stage. With respect to one dispersed organic-inorganic hybrid particle, a load (reversal load value) is applied to the center direction of the organic-inorganic hybrid particle until the organic-inorganic hybrid particle is 30% compressed and deformed using a micro compression tester. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used. *
圧縮回復率(%)=[(L1-L2)/L1]×100 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでのまでの圧縮変位 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [(L1−L2) / L1] × 100 L1: Compression displacement from the load value for the origin when applying the load to the reverse load value L2: Inversion when releasing the load Unloading displacement from the load value to the load value for origin

 上記有機無機ハイブリッド粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは50μm以下、特に好ましくは30μm以下、最も好ましくは5μm以下である。上記有機無機ハイブリッド粒子の粒子径が上記下限以上及び上記上限以下であると、上記有機無機ハイブリッド粒子を電子部品用途に好適に用いることができる。上記有機無機ハイブリッド粒子の粒子径は最大径を示す。

The particle diameter of the organic-inorganic hybrid particles is preferably 0.1 μm or more, more preferably 1 μm or more, still more preferably 1.5 μm or more, particularly preferably 2 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, even more. It is preferably 300 μm or less, more preferably 50 μm or less, particularly preferably 30 μm or less, and most preferably 5 μm or less. When the particle diameter of the organic / inorganic hybrid particles is not less than the lower limit and not more than the upper limit, the organic / inorganic hybrid particles can be suitably used for electronic parts. The particle diameter of the organic-inorganic hybrid particles indicates the maximum diameter.

 上記有機無機ハイブリッド粒子の粒子径を測定するために、例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析などの原理を用いた粒度分布測定機が利用できる。

In order to measure the particle diameter of the organic-inorganic hybrid particles, for example, a particle size distribution measuring machine using principles such as laser light scattering, electric resistance value change, and image analysis after imaging can be used.

 (有機無機ハイブリッド粒子の製造方法)

 上記有機無機ハイブリッド粒子の製造方法は特に限定されない。上記有機無機ハイブリッド粒子の製造方法は、シラン化合物を加水分解及び縮合させて、無機粒子を得る加水分解及び縮合工程を備えることが好ましい。この方法では、均一な粒子径を有し、かつ、より一層良好な圧縮変形特性を有する有機無機ハイブリッド粒子が得られる。上記加水分解及び縮合工程では、シラン化合物と水溶媒との接触界面にて、加水分解及び縮合反応が起こり、ポリシロキサン骨格が形成され、無機粒子が得られる。

(Method for producing organic-inorganic hybrid particles)

The method for producing the organic / inorganic hybrid particles is not particularly limited. The method for producing the organic-inorganic hybrid particles preferably includes a hydrolysis and condensation step of hydrolyzing and condensing the silane compound to obtain inorganic particles. According to this method, organic-inorganic hybrid particles having a uniform particle diameter and even better compression deformation characteristics can be obtained. In the hydrolysis and condensation step, hydrolysis and condensation reactions occur at the contact interface between the silane compound and the aqueous solvent, a polysiloxane skeleton is formed, and inorganic particles are obtained.

 上記加水分解及び縮合工程では、一般に触媒が用いられる。触媒の存在下で、上記シラン化合物が反応される。上記加水分解及び縮合工程では、具体的には、例えば、水と酸性触媒又は塩基性触媒とが用いられる。上記触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。

In the hydrolysis and condensation step, a catalyst is generally used. The silane compound is reacted in the presence of a catalyst. Specifically, in the hydrolysis and condensation step, for example, water and an acidic catalyst or a basic catalyst are used. As for the said catalyst, only 1 type may be used and 2 or more types may be used together.

 上記酸性触媒としては、例えば、無機酸、有機酸、無機酸の酸無水物及びその誘導体、並びに有機酸の酸無水物及びその誘導体が挙げられる。

Examples of the acidic catalyst include inorganic acids, organic acids, acid anhydrides of inorganic acids and derivatives thereof, and acid anhydrides of organic acids and derivatives thereof.

 上記加水分解及び縮合工程では、水のほかに、適宜の有機溶剤を用いてもよい。該有機溶剤の具体例としては、アルコール類、ケトン類、エステル類、(シクロ)パラフィン類、エーテル類及び芳香族炭化水素等が挙げられる。上記有機溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。

In the hydrolysis and condensation step, an appropriate organic solvent may be used in addition to water. Specific examples of the organic solvent include alcohols, ketones, esters, (cyclo) paraffins, ethers and aromatic hydrocarbons. As for the said organic solvent, only 1 type may be used and 2 or more types may be used together.

 上記加水分解及び縮合工程における反応温度は特に限定されないが、好ましくは0℃以上、好ましくは100℃以下、より好ましくは70℃以下である。上記加水分解及び縮合工程における反応時間は特に限定されないが、好ましくは30分以上、好ましくは100時間以下である。

Although the reaction temperature in the said hydrolysis and condensation process is not specifically limited, Preferably it is 0 degreeC or more, Preferably it is 100 degrees C or less, More preferably, it is 70 degrees C or less. The reaction time in the hydrolysis and condensation step is not particularly limited, but is preferably 30 minutes or more, and preferably 100 hours or less.
 上記有機無機ハイブリッド粒子の製造方法は、第1の反応性官能基を表面に有する複数の無機粒子と、上記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを反応させて、上記無機粒子の集合体を得る工程を備えることが好ましい。この工程において、複数の上記無機粒子を、上記アルコキシ基含有オルガノポリシロキサンに由来する構造を介して、一体化させることが好ましい。複数の無機粒子を、アルコキシ基含有オルガノポリシロキサンに由来する構造(構造部)を介して、一体化させて、無機粒子の集合体を得ることが好ましい。 The method for producing the organic-inorganic hybrid particle includes a plurality of inorganic particles having a first reactive functional group on the surface, and an alkoxy group having a second reactive functional group capable of reacting with the first reactive functional group. It is preferable to provide a step of reacting the containing organopolysiloxane to obtain an aggregate of the inorganic particles. In this step, it is preferable to integrate a plurality of the inorganic particles through a structure derived from the alkoxy group-containing organopolysiloxane. It is preferable to obtain an aggregate of inorganic particles by integrating a plurality of inorganic particles via a structure (structure part) derived from an alkoxy group-containing organopolysiloxane.
 例えば、容器内で水と上記アルコキシ基含有オルガノポリシロキサンを含む上記シラン化合物の層とを分離させた状態で、又は水及び上記シラン化合物を含む層と上記アルコキシ基含有オルガノポリシロキサンを含む層とを分離させた状態で、シラン化合物を加水分解及び縮合させて、無機粒子を得て、得られた無機粒子の表面に上記アルコキシ基含有オルガノポリシロキサンを付着及び析出させて、第1の反応性官能基を表面に有する複数の無機粒子と上記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを反応させて、上記無機粒子の集合体を得てもよい。 For example, in a state where water and the silane compound layer containing the alkoxy group-containing organopolysiloxane are separated in a container, or a layer containing water and the silane compound and a layer containing the alkoxy group-containing organopolysiloxane; In the separated state, the silane compound is hydrolyzed and condensed to obtain inorganic particles, and the alkoxy group-containing organopolysiloxane is deposited and deposited on the surface of the obtained inorganic particles to obtain the first reactivity. Aggregates of the inorganic particles obtained by reacting a plurality of inorganic particles having a functional group on the surface with an alkoxy group-containing organopolysiloxane having a second reactive functional group capable of reacting with the first reactive functional group. You may get
 (有機無機ハイブリッド粒子の用途)
 上記有機無機ハイブリッド粒子の用途は特に限定されない。上記有機無機ハイブリッド粒子は、破壊荷重が高いことが求められる様々な用途に好適に用いられる。上記有機無機ハイブリッド粒子は、電子部品に用いられることが好ましい。上記有機無機ハイブリッド粒子は、電子部品用有機無機ハイブリッド粒子であることが好ましい。
(Use of organic-inorganic hybrid particles)
The use of the organic-inorganic hybrid particles is not particularly limited. The organic-inorganic hybrid particles are suitably used for various applications that require a high breaking load. The organic-inorganic hybrid particles are preferably used for electronic parts. The organic-inorganic hybrid particles are preferably organic-inorganic hybrid particles for electronic parts.
 上記有機無機ハイブリッド粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられることが好ましい。上記有機無機ハイブリッド粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記有機無機ハイブリッド粒子は、液晶表示素子用スペーサとして用いられることが好ましい。上記有機無機ハイブリッド粒子の破壊荷重が高いので、上記有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、液晶表示素子用スペーサ又は導電性粒子が、割れにくく、かつ損傷しにくい。特に、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体に衝撃が加わったときに、液晶表示素子用スペーサ及び導電性粒子が割れにくく、かつ損傷しにくい。 The organic / inorganic hybrid particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer, or used as spacers for liquid crystal display elements. The organic-inorganic hybrid particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The organic / inorganic hybrid particles are preferably used as spacers for liquid crystal display elements. Since the organic-inorganic hybrid particles have a high breaking load, the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and disposed between the substrates, or a conductive layer is formed on the surface to be used as conductive particles between the electrodes. When electrically connected, the spacer for liquid crystal display element or the conductive particles are not easily broken and damaged. In particular, when an impact is applied to the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, the liquid crystal display element spacer and the conductive particles are difficult to break and damage. .
 さらに、上記有機無機ハイブリッド粒子は、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記有機無機ハイブリッド粒子を用いることができる。 Furthermore, the organic-inorganic hybrid particles are also suitably used as a shock absorber or a vibration absorber. For example, the organic-inorganic hybrid particles can be used as an alternative such as rubber or spring.
 図2に、図1に示す有機無機ハイブリッド粒子を用いた導電性粒子を模式的に断面図で示す。 FIG. 2 is a cross-sectional view schematically showing conductive particles using the organic-inorganic hybrid particles shown in FIG.
 図2に示す導電性粒子21は、有機無機ハイブリッド粒子1と、有機無機ハイブリッド粒子1の表面上に配置された導電層31Aとを有する。 2 has the organic-inorganic hybrid particle 1 and the conductive layer 31A disposed on the surface of the organic-inorganic hybrid particle 1. The conductive particle 21 shown in FIG.
 導電層31Aは、有機無機ハイブリッド粒子1の表面を被覆している。導電性粒子21は、有機無機ハイブリッド粒子1の表面が導電層31Aにより被覆された被覆粒子である。 The conductive layer 31 </ b> A covers the surface of the organic-inorganic hybrid particle 1. The conductive particles 21 are coated particles in which the surface of the organic-inorganic hybrid particle 1 is coated with a conductive layer 31A.
 図3に、図1に示す有機無機ハイブリッド粒子を用いた導電性粒子の変形例を模式的に断面図で示す。 FIG. 3 schematically shows a modification of the conductive particles using the organic-inorganic hybrid particles shown in FIG. 1 in a cross-sectional view.
 図3に示す導電性粒子22は、有機無機ハイブリッド粒子1と、導電層31Bと、複数の芯物質32と、複数の絶縁性物質33とを有する。 3 includes the organic-inorganic hybrid particle 1, the conductive layer 31B, a plurality of core substances 32, and a plurality of insulating substances 33. The conductive particles 22 shown in FIG.
 導電層31Bは、有機無機ハイブリッド粒子1の表面上に配置されている。導電層31Bは、内層である第1の導電層31Baと外層である第2の導電層31Bbとを有する。有機無機ハイブリッド粒子1の表面上に、第1の導電層31Baが配置されている。第1の導電層31Baの表面上に、第2の導電層31Bbが配置されている。 The conductive layer 31 </ b> B is disposed on the surface of the organic-inorganic hybrid particle 1. The conductive layer 31B includes a first conductive layer 31Ba that is an inner layer and a second conductive layer 31Bb that is an outer layer. On the surface of the organic-inorganic hybrid particle 1, the first conductive layer 31Ba is disposed. A second conductive layer 31Bb is arranged on the surface of the first conductive layer 31Ba.
 導電性粒子22は導電性の表面に、複数の突起を有する。導電層31B及び第2の導電層31Bbは外表面に、複数の突起を有する。このように、上記導電性粒子は、導電性粒子の導電性の表面に突起を有していてもよく、導電層及び第2の導電層の外表面に突起を有していてもよい。複数の芯物質32が、有機無機ハイブリッド粒子1の表面上に配置されている。複数の芯物質32は導電層31B内に埋め込まれている。芯物質32は、導電性粒子22及び導電層31Bにおける突起の内側に配置されている。導電層31Bは、複数の芯物質32を被覆している。複数の芯物質32により導電層31Bの外表面が隆起されており、突起が形成されている。 The conductive particles 22 have a plurality of protrusions on the conductive surface. The conductive layer 31B and the second conductive layer 31Bb have a plurality of protrusions on the outer surface. As described above, the conductive particles may have protrusions on the conductive surface of the conductive particles, or may have protrusions on the outer surfaces of the conductive layer and the second conductive layer. A plurality of core substances 32 are arranged on the surface of the organic-inorganic hybrid particle 1. The plurality of core materials 32 are embedded in the conductive layer 31B. The core substance 32 is disposed inside the protrusions in the conductive particles 22 and the conductive layer 31B. The conductive layer 31 </ b> B covers a plurality of core materials 32. The outer surface of the conductive layer 31B is raised by the plurality of core materials 32, and protrusions are formed.
 導電性粒子22は、導電層31Bの外表面上に配置された絶縁性物質33を有する。導電層31Bの外表面の少なくとも一部の領域が、絶縁性物質33により被覆されている。絶縁性物質33は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、上記導電性粒子は、導電層の外表面上に配置された絶縁性物質を有していてもよい。 The conductive particles 22 have an insulating material 33 disposed on the outer surface of the conductive layer 31B. At least a part of the outer surface of the conductive layer 31 </ b> B is covered with the insulating material 33. The insulating substance 33 is made of an insulating material and is an insulating particle. Thus, the said electroconductive particle may have the insulating substance arrange | positioned on the outer surface of a conductive layer.
 上記導電層を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムが好ましい。 The metal for forming the conductive layer is not particularly limited. Examples of the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and these. And the like. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable.
 導電性粒子21のように、上記導電層は、1つの層により形成されていてもよい。導電性粒子22のように、導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。 Like the conductive particles 21, the conductive layer may be formed of a single layer. Like the conductive particles 22, the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers. When the conductive layer is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable. When the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced. Moreover, when the outermost layer is a gold layer, the corrosion resistance is further enhanced.
 上記有機無機ハイブリッド粒子の表面に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを有機無機ハイブリッド粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method for forming a conductive layer on the surface of the organic-inorganic hybrid particles is not particularly limited. As a method for forming the conductive layer, for example, a method using electroless plating, a method using electroplating, a method using physical vapor deposition, and a metal powder or a paste containing a metal powder and a binder are coated on the surface of the organic-inorganic hybrid particles. Methods and the like. Especially, since formation of a conductive layer is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
 上記導電性粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上、好ましくは520μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が有機無機ハイブリッド粒子の表面から剥離し難くなる。また、導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に使用可能である。 The particle diameter of the conductive particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, still more preferably 1 μm or more, preferably 520 μm or less, more preferably 500 μm or less, still more preferably 100 μm or less, and even more preferably. Is 50 μm or less, particularly preferably 20 μm or less. When the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductive layer When forming the conductive particles, it becomes difficult to form aggregated conductive particles. Moreover, the space | interval between the electrodes connected via the electroconductive particle does not become large too much, and it becomes difficult for a conductive layer to peel from the surface of an organic inorganic hybrid particle. Further, when the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には最大径を意味する。 The particle diameter of the conductive particles means a diameter when the conductive particles are true spherical, and means a maximum diameter when the conductive particles have a shape other than the true spherical shape.
 上記導電層の厚み(導電層が多層である場合には導電層全体の厚み)は、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。導電層の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。 The thickness of the conductive layer (when the conductive layer is a multilayer, the total thickness of the conductive layer) is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, Preferably it is 0.3 micrometer or less. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
 上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗がより一層低くなる。また、上記最外層が金層である場合の金層の厚みが薄いほど、コストが低くなる。 When the conductive layer is formed of a plurality of layers, the thickness of the outermost conductive layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably 0. .1 μm or less. When the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is further increased. Lower. Further, the thinner the gold layer when the outermost layer is a gold layer, the lower the cost.
 上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive layer can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
 上記導電性粒子は、上記導電層の外表面に突起を有していてもよい。該突起は複数であることが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜が効果的に排除される。このため、電極と導電性粒子の導電層とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、導電性粒子が表面に絶縁性物質を備える場合に、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。 The conductive particles may have protrusions on the outer surface of the conductive layer. It is preferable that there are a plurality of the protrusions. An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made low. Furthermore, when the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the conductive particles and the electrodes are separated by protrusions of the conductive particles. Insulating substances or binder resins in between can be effectively eliminated. For this reason, the conduction | electrical_connection reliability between electrodes can be improved.
 上記導電性粒子の表面に突起を形成する方法としては、有機無機ハイブリッド粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、並びに有機無機ハイブリッド粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いなくてもよい。 As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the organic-inorganic hybrid particles, and a method of forming no protrusion on the surface of the organic-inorganic hybrid particles. Examples include a method of forming a conductive layer by electrolytic plating, attaching a core substance, and further forming a conductive layer by electroless plating. In addition, the core material may not be used to form the protrusion.
 上記導電性粒子は、上記導電層の外表面上に配置された絶縁性物質を備えていてもよい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁性物質を容易に排除できる。導電性粒子が上記導電層の表面に突起を有する場合には、導電性粒子の導電層と電極との間の絶縁性物質をより一層容易に排除できる。上記絶縁性物質は、絶縁性樹脂層又は絶縁性粒子であることが好ましく、絶縁性粒子であることがより好ましい。上記絶縁性粒子は、絶縁性樹脂粒子であることが好ましい。 The conductive particles may include an insulating material disposed on the outer surface of the conductive layer. In this case, when the conductive particles are used for connection between the electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when a plurality of conductive particles are in contact with each other, an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes. In addition, the insulating substance between the conductive layer of an electroconductive particle and an electrode can be easily excluded by pressurizing electroconductive particle with two electrodes in the case of the connection between electrodes. When the conductive particles have protrusions on the surface of the conductive layer, the insulating substance between the conductive layer of the conductive particles and the electrode can be more easily eliminated. The insulating substance is preferably an insulating resin layer or insulating particles, and more preferably insulating particles. The insulating particles are preferably insulating resin particles.
 (導電材料)
 上記導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、回路接続用導電材料であることが好ましい。
(Conductive material)
The conductive material includes the conductive particles described above and a binder resin. The conductive particles are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably a conductive material for circuit connection.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。 The method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. Examples of a method for dispersing the conductive particles in the binder resin include a method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. The conductive particles are dispersed in water. Alternatively, after uniformly dispersing in an organic solvent using a homogenizer or the like, it is added to the binder resin and kneaded with a planetary mixer or the like, and the binder resin is diluted with water or an organic solvent. Then, the method of adding the said electroconductive particle, kneading with a planetary mixer etc. and disperse | distributing is mentioned.
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムとして使用される場合には、該導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。 The conductive material can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is used as a conductive film, a film not including conductive particles may be laminated on the conductive film including the conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less, More preferably, it is 10 weight% or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
 (接続構造体及び液晶表示素子)
 上述した導電性粒子を用いて、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure and liquid crystal display element)
A connection structure can be obtained by connecting the connection target members using the conductive particles described above or using a conductive material including the conductive particles described above and a binder resin.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材とを接続している接続部とを備え、該接続部が上述した導電性粒子により形成されているか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。 The connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, and the connection portion. Is preferably formed of the above-described conductive particles, or a connection structure formed of a conductive material containing the above-described conductive particles and a binder resin. When the conductive particles are used alone, the connection part itself is the conductive particles. That is, the first and second connection target members are connected by the conductive particles. The conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
 上記第1の接続対象部材は、第1の電極を表面に有することが好ましい。上記第2の接続対象部材は、第2の電極を表面に有することが好ましい。上記第1の電極と上記第2の電極とが、上記導電性粒子により電気的に接続されていることが好ましい。 The first connection object member preferably has a first electrode on the surface. The second connection target member preferably has a second electrode on the surface. It is preferable that the first electrode and the second electrode are electrically connected by the conductive particles.
 図4は、図2に示す導電性粒子21を用いた接続構造体を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles 21 shown in FIG.
 図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52と第2の接続対象部材53とを接続している接続部54とを備える。接続部54は、導電性粒子21とバインダー樹脂とを含む導電材料により形成されている。図4では、図示の便宜上、導電性粒子21は略図的に示されている。導電性粒子21にかえて、導電性粒子22などの他の導電性粒子を用いてもよい。 The connection structure 51 shown in FIG. 4 is a connection that connects the first connection target member 52, the second connection target member 53, and the first connection target member 52 and the second connection target member 53. Part 54. The connection part 54 is formed of a conductive material including the conductive particles 21 and a binder resin. In FIG. 4, the conductive particles 21 are schematically illustrated for convenience of illustration. Instead of the conductive particles 21, other conductive particles such as the conductive particles 22 may be used.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子21により電気的に接続されている。 The first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface). The first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Accordingly, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 21.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。フレキシブルプリント基板の電極、樹脂フィルム上に配置された電極及びタッチパネルの電極を接続するための上記加圧の圧力は9.8×10~1.0×10Pa程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of a method of manufacturing a connection structure, a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc. The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C. The pressure applied to connect the electrode of the flexible printed board, the electrode disposed on the resin film, and the electrode of the touch panel is about 9.8 × 10 4 to 1.0 × 10 6 Pa.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. The conductive material is preferably a conductive material for connecting electronic components. The conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
 上記導電性粒子及び上記導電材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブルプリント基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブルプリント基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブルプリント基板は、一般に電極を表面に有する。 The conductive particles and the conductive material are also suitably used for touch panels. Therefore, the connection target member is preferably a flexible printed circuit board or a connection target member in which an electrode is disposed on the surface of a resin film. The connection target member is preferably a flexible printed board, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film. The flexible printed board generally has electrodes on the surface.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 また、上記有機無機ハイブリッド粒子は、液晶表示素子用スペーサとして好適に用いられる。すなわち、上記有機無機ハイブリッド粒子は、液晶セルを構成する一対の基板と、該一対の基板間に封入された液晶と、上記一対の基板間に配置された液晶表示素子用スペーサとを備える液晶表示素子を得るために好適に用いられる。 The organic-inorganic hybrid particles are preferably used as a spacer for a liquid crystal display element. That is, the organic / inorganic hybrid particle includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and a liquid crystal display element spacer disposed between the pair of substrates. It is suitably used for obtaining an element.
 図5に、本発明の一実施形態に係る有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いた液晶表示素子を断面図で示す。 FIG. 5 is a cross-sectional view of a liquid crystal display element using organic / inorganic hybrid particles according to an embodiment of the present invention as a spacer for a liquid crystal display element.
 図5に示す液晶表示素子81は、一対の透明ガラス基板82を有する。透明ガラス基板82は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板82における絶縁膜上に透明電極83が形成されている。透明電極83の材料としては、ITO等が挙げられる。透明電極83は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板82の表面上の透明電極83上に、配向膜84が形成されている。配向膜84の材料としては、ポリイミド等が挙げられている。 A liquid crystal display element 81 shown in FIG. 5 has a pair of transparent glass substrates 82. The transparent glass substrate 82 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 . A transparent electrode 83 is formed on the insulating film in the transparent glass substrate 82. Examples of the material of the transparent electrode 83 include ITO. The transparent electrode 83 can be formed by patterning, for example, by photolithography. An alignment film 84 is formed on the transparent electrode 83 on the surface of the transparent glass substrate 82. Examples of the material of the alignment film 84 include polyimide.
 一対の透明ガラス基板82間には、液晶85が封入されている。一対の透明ガラス基板82間には、複数の有機無機ハイブリッド粒子1が配置されている。有機無機ハイブリッド粒子1は、液晶表示素子用スペーサとして用いられている。複数の有機無機ハイブリッド粒子1により、一対の透明ガラス基板82の間隔が規制されている。一対の透明ガラス基板82の縁部間には、シール剤86が配置されている。シール剤86によって、液晶85の外部への流出が防がれている。図5では、図示の便宜上、有機無機ハイブリッド粒子1は略図的に示されている。有機無機ハイブリッド粒子1にかえて、他の有機無機ハイブリッド粒子を用いてもよい。 A liquid crystal 85 is sealed between the pair of transparent glass substrates 82. A plurality of organic-inorganic hybrid particles 1 are disposed between the pair of transparent glass substrates 82. The organic-inorganic hybrid particle 1 is used as a spacer for a liquid crystal display element. The space between the pair of transparent glass substrates 82 is regulated by the plurality of organic-inorganic hybrid particles 1. A sealing agent 86 is disposed between the edges of the pair of transparent glass substrates 82. Outflow of the liquid crystal 85 to the outside is prevented by the sealing agent 86. In FIG. 5, the organic-inorganic hybrid particle 1 is schematically shown for convenience of illustration. Instead of the organic / inorganic hybrid particles 1, other organic / inorganic hybrid particles may be used.
 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。 In the liquid crystal display element, the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less. When the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform. When the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 攪拌機及び温度計が取り付けられた500mLの反応容器内に、0.13重量%のアンモニア水溶液300gを入れた。次に、反応容器内のアンモニア水溶液中に、メチルトリメトキシシラン4.1gと、ビニルトリメトキシシラン19.2gと、シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」、メトキシ基とエトキシ基とエポキシ基と珪素原子に直接結合したアルキル基とを有する、重量平均分子量:約1600)0.7gとの混合物をゆっくりと添加した。撹拌しながら、加水分解及び縮合反応を進行させた後、25重量%アンモニア水溶液2.4mL添加した後、アンモニア水溶液中から粒子を単離して、得られた粒子を酸素分圧10-17atm、400℃で2時間焼成して、有機無機ハイブリッド粒子を得た。得られた有機無機ハイブリッド粒子の粒子径を下記の表1に示した。
(Example 1)
In a 500 mL reaction vessel equipped with a stirrer and a thermometer, 300 g of a 0.13% by weight aqueous ammonia solution was placed. Next, 4.1 g of methyltrimethoxysilane, 19.2 g of vinyltrimethoxysilane, silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd., methoxy group, A mixture of 0.7 g of weight average molecular weight (about 1600) having an ethoxy group, an epoxy group and an alkyl group directly bonded to a silicon atom was slowly added. After the hydrolysis and condensation reaction proceeded with stirring, 2.4 mL of a 25 wt% aqueous ammonia solution was added, and then the particles were isolated from the aqueous ammonia solution, and the resulting particles were subjected to an oxygen partial pressure of 10 −17 atm, Firing at 400 ° C. for 2 hours gave organic-inorganic hybrid particles. The particle diameters of the obtained organic-inorganic hybrid particles are shown in Table 1 below.
 (実施例2)
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を、アルコキシオリゴマー(信越化学工業社製「KR-500」、メトキシ基と珪素原子に直接結合したアルキル基とを有する、重量平均分子量:3000~10000)に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子を得た。
(Example 2)
Silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.), alkoxy oligomer (“KR-500” manufactured by Shin-Etsu Chemical Co., Ltd.), having a methoxy group and an alkyl group directly bonded to a silicon atom, weight average Organic-inorganic hybrid particles were obtained in the same manner as in Example 1 except that the molecular weight was changed to 3000 to 10,000.
 (実施例3)
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を、シリコーンオリゴマー(信越化学工業社製「X-41-1805」、メトキシ基とエトキシ基とメルカプト基とを有する、重量平均分子量:約1800)に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子を得た。
(Example 3)
Silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.), silicone oligomer (“X-41-1805” manufactured by Shin-Etsu Chemical Co., Ltd.), weight average molecular weight having methoxy group, ethoxy group and mercapto group : About 1800), except that the organic-inorganic hybrid particles were obtained in the same manner as in Example 1.
 (実施例4)
 撹拌機及び温度計が取り付けられた500mLの反応容器内に、0.13重量%のアンモニア水溶液300gを入れた。次に、反応容器内のアンモニア水溶液中に、メチルトリメトキシシラン4.1gと、ビニルトリメトキシシラン19.2gとの混合物をゆっくりと撹拌した。撹拌しながら加水分解及び縮合反応を進行させた後、シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」、メトキシ基とエトキシ基とエポキシ基と珪素原子に直接結合したアルキル基を有する)0.7gを加えて、ゆっくりと撹拌した。シリコーンアルコキシオリゴマーが消失した後、25重量%アンモニア水溶液2.4mL添加した後、アンモニア水溶液から粒子を単離して、得られた粒子を酸素分圧10-17atm、400℃で2時間焼成して、有機無機ハイブリッド粒子を得た。
Example 4
In a 500 mL reaction vessel equipped with a stirrer and a thermometer, 300 g of a 0.13% by weight aqueous ammonia solution was placed. Next, a mixture of 4.1 g of methyltrimethoxysilane and 19.2 g of vinyltrimethoxysilane was slowly stirred into the aqueous ammonia solution in the reaction vessel. After the hydrolysis and condensation reaction proceeds with stirring, a silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd., having an alkyl group directly bonded to a methoxy group, an ethoxy group, an epoxy group, and a silicon atom) ) 0.7g was added and stirred slowly. After the disappearance of the silicone alkoxy oligomer, 2.4 mL of 25 wt% aqueous ammonia solution was added, and then the particles were isolated from the aqueous ammonia solution, and the obtained particles were calcined at 400 ° C. for 2 hours at an oxygen partial pressure of 10 −17 atm. Organic / inorganic hybrid particles were obtained.
 (実施例5)
 攪拌機及び温度計が取り付けられた500mLの反応容器内に、0.13重量%のアンモニア水溶液300gを入れた。次に、反応容器内のアンモニア水溶液中に、3-メタクリロキシプロピルトリメトキシシラン1.9gと、メチルトリメトキシシラン4.1gと、ビニルトリメトキシシラン17.3gと、シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」、メトキシ基とエトキシ基とエポキシ基と珪素原子に直接結合したアルキル基とを有する)0.7gとの混合物をゆっくりと添加した。撹拌しながら、加水分解及び縮合反応を進行させた後、25重量%アンモニア水溶液2.4mL添加した後、アンモニア水溶液中から粒子を単離して、得られた粒子を酸素分圧10-17atm、400℃で2時間焼成して、有機無機ハイブリッド粒子を得た。
(Example 5)
In a 500 mL reaction vessel equipped with a stirrer and a thermometer, 300 g of a 0.13% by weight aqueous ammonia solution was placed. Next, 1.9 g of 3-methacryloxypropyltrimethoxysilane, 4.1 g of methyltrimethoxysilane, 17.3 g of vinyltrimethoxysilane, silicone alkoxy oligomer (Shin-Etsu Chemical Co., Ltd.) were added to the aqueous ammonia solution in the reaction vessel. A mixture of 0.7 g of “X-41-1053” (having a methoxy group, an ethoxy group, an epoxy group, and an alkyl group directly bonded to a silicon atom) was slowly added. After the hydrolysis and condensation reaction proceeded with stirring, 2.4 mL of a 25 wt% aqueous ammonia solution was added, and then the particles were isolated from the aqueous ammonia solution, and the resulting particles were subjected to an oxygen partial pressure of 10 −17 atm, Firing at 400 ° C. for 2 hours gave organic-inorganic hybrid particles.
 (実施例6)
 環状シロキサンであるシクロペンタシロキサン(信越化学工業社製「KF-995」)と、エポキシシランカップリング剤である3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製「KBM-403」)とを反応させて、アルコキシ基含有オルガノポリシロキサンA(エポキシ基とアルコキシ基とを有する、重量平均分子量約1500)を得た。
(Example 6)
Cyclopentasiloxane (“KF-995” manufactured by Shin-Etsu Chemical Co., Ltd.), a cyclic siloxane, and 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.), an epoxy silane coupling agent, To obtain an alkoxy group-containing organopolysiloxane A (having an epoxy group and an alkoxy group, and a weight average molecular weight of about 1500).
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を、アルコキシ基含有オルガノポリシロキサンAに変更したこと以外は実施例4と同様にして、有機無機ハイブリッド粒子を得た。 Organic-inorganic hybrid particles were obtained in the same manner as in Example 4 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an alkoxy group-containing organopolysiloxane A.
 (実施例7)
 環状シロキサンであるシクロペンタシロキサン(信越化学工業社製「KF-995」)と、アクリロイル基を有するシランカップリング剤である3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製「KBM-5103」)とを反応させて、アルコキシ基含有オルガノポリシロキサンB(アクリロイル基とアルコキシ基とを有する、重量平均分子量:約1300)を得た。
(Example 7)
Cyclopentasiloxane (“KF-995” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane, and 3-acryloxypropyltrimethoxysilane (“KBM-5103” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent having an acryloyl group. ) To obtain an alkoxy group-containing organopolysiloxane B (having an acryloyl group and an alkoxy group, weight average molecular weight: about 1300).
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を、アルコキシ基含有オルガノポリシロキサンBに変更したこと以外は実施例4と同様にして、有機無機ハイブリッド粒子を得た。 Organic-inorganic hybrid particles were obtained in the same manner as in Example 4 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an alkoxy group-containing organopolysiloxane B.
 (実施例8)
 環状シロキサンであるシクロペンタシロキサン(信越化学工業社製「KF-995」)と、メタクリロイル基を有するシランカップリング剤である3-メタクリロキシプロピルトリメトキシシラン(信越化学工業社製「KBM-503」)とを反応させて、メタクリロキシ基含有オルガノポリシロキサンC(メタクリロイル基とアルコキシ基とを有する、重量平均分子量:約2000)を得た。
(Example 8)
Cyclopentasiloxane (“KF-995” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane, and 3-methacryloxypropyltrimethoxysilane (“KBM-503” manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent having a methacryloyl group. And methacryloxy group-containing organopolysiloxane C (having a methacryloyl group and an alkoxy group, weight average molecular weight: about 2000).
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を、アルコキシ基含有オルガノポリシロキサンCに変更したこと以外は実施例4と同様にして、有機無機ハイブリッド粒子を得た。 Organic-inorganic hybrid particles were obtained in the same manner as in Example 4 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an alkoxy group-containing organopolysiloxane C.
 (実施例9)
 (1)パラジウム付着工程
 実施例4で得られた有機無機ハイブリッド粒子を用意した。有機無機ハイブリッド粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に有機無機ハイブリッド粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に有機無機ハイブリッド粒子を添加し、パラジウムが付着された有機無機ハイブリッド粒子を得た。
Example 9
(1) Palladium adhesion process The organic-inorganic hybrid particles obtained in Example 4 were prepared. The organic / inorganic hybrid particles were etched and washed with water. Next, organic-inorganic hybrid particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash | cleaned. Organic / inorganic hybrid particles were added to 0.5 wt% dimethylamine borane solution at pH 6 to obtain organic / inorganic hybrid particles to which palladium was attached.
 (2)芯物質付着工程
 パラジウムが付着された有機無機ハイブリッド粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された有機無機ハイブリッド粒子を得た。
(2) Core substance adhering step The organic-inorganic hybrid particles to which palladium was attached were stirred and dispersed in 300 mL of ion-exchanged water for 3 minutes to obtain a dispersion. Next, 1 g of metallic nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain organic-inorganic hybrid particles to which the core material was adhered.
 (3)無電解ニッケルめっき工程
 無電解めっき法により、芯物質が付着された有機無機ハイブリッド粒子の表面上に、ニッケル層を形成し、導電性粒子を作製した。なお、ニッケル層の厚さは0.1μmであった。
(3) Electroless nickel plating process By the electroless plating method, the nickel layer was formed on the surface of the organic inorganic hybrid particle to which the core substance was adhered, and the electroconductive particle was produced. The nickel layer had a thickness of 0.1 μm.
 (実施例10)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒径220nm及びCV値10%の絶縁性粒子を得た。
(Example 10)
(1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。 The insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
 (2)絶縁性粒子付き導電性粒子の作製
 実施例9で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
(2) Production of conductive particles with insulating particles 10 g of the conductive particles obtained in Example 9 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. . After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
 走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the surface of the conductive particles. The coverage of the insulating particles with respect to the area of 2.5 μm from the center of the conductive particles by image analysis (that is, the projected area of the particle diameter of the insulating particles) was calculated to be 30%.
 (比較例1)
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を用いなかったこと以外は実施例1と同様にして、有機無機ハイブリッド粒子を得た。
(Comparative Example 1)
Organic-inorganic hybrid particles were obtained in the same manner as in Example 1 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was not used.
 (比較例2)
 シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)を、反応性を有さないメチルフェニルシリコーンオイル(信越化学工業社製「KF-56A」)に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子を得た。
(Comparative Example 2)
Example 1 except that the silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to a non-reactive methylphenyl silicone oil (“KF-56A” manufactured by Shin-Etsu Chemical Co., Ltd.) In the same manner, organic-inorganic hybrid particles were obtained.
 (評価)
 (1)有機無機ハイブリッド粒子の粒子径
 得られた有機無機ハイブリッド粒子の粒子径に関しては、粒度分布測定装置(ベックマンコールター社製「Multisizer3」)を用いて、約10000個の有機無機ハイブリッド粒子の粒子径を測定した。測定された粒子径の平均値を求め、有機無機ハイブリッド粒子の粒子径とした。 
(Evaluation)
(1) Particle size of organic-inorganic hybrid particles Regarding the particle size of the obtained organic-inorganic hybrid particles, about 10,000 organic-inorganic hybrid particle particles were measured using a particle size distribution measuring device ("Multisizer 3" manufactured by Beckman Coulter, Inc.). The diameter was measured. The average value of the measured particle diameters was determined and used as the particle diameter of the organic / inorganic hybrid particles.
 (2)有機無機ハイブリッド粒子の上記破壊荷重
 得られた有機無機ハイブリッド粒子の上記破壊荷重を、上述した方法により、フィッシャー社製「フィッシャースコープH-100」を用いて測定した。
(2) Breaking Load of Organic / Inorganic Hybrid Particles The breaking load of the obtained organic / inorganic hybrid particles was measured by the above-described method using “Fischer Scope H-100” manufactured by Fisher.
 (3)集合体における各無機粒子(無機粒子1個当たり)の粒子径
 得られた有機無機ハイブリッド粒子において、集合体における各無機粒子の粒子径は、X線小角散乱(リガク社製・粉末X線回折装置SmartLab(平行ビーム法))を用いて、透過法により測定した。解析ソフトウェアNANO-Solverを用いて求めた平均サイズを採用した。解析ソフトウェアNANO-Solverでのモデルは、散乱体モデルを球とし、粒子をSiOとし、マトリックスをAirとした。
(3) Particle diameter of each inorganic particle (per inorganic particle) in the aggregate In the obtained organic-inorganic hybrid particle, the particle diameter of each inorganic particle in the aggregate is X-ray small angle scattering (Powder X, manufactured by Rigaku Corporation). Measurement was performed by a transmission method using a line diffractometer SmartLab (parallel beam method). The average size obtained using the analysis software NANO-Solver was adopted. In the model of the analysis software NANO-Solver, the scatterer model was a sphere, the particles were SiO 2 , and the matrix was Air.
 求めた有機無機ハイブリッド粒子において、集合体における各無機粒子の粒子径は、1~500nmであった。 In the obtained organic-inorganic hybrid particles, the particle diameter of each inorganic particle in the aggregate was 1 to 500 nm.
 (4)接続抵抗
 導電性粒子の作製:
 実施例1~8及び比較例1,2で得られた有機無機ハイブリッド粒子を洗浄し、乾燥した。その後、無電解めっき法により、得られた有機無機ハイブリッド粒子の表面上に、ニッケル層を形成し、導電性粒子を作製した。なお、ニッケル層の厚さは0.1μmであった。実施例9及び10では得られた導電性粒子をそのまま使用した。
(4) Connection resistance Production of conductive particles:
The organic / inorganic hybrid particles obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were washed and dried. Then, the nickel layer was formed on the surface of the obtained organic-inorganic hybrid particle | grains by the electroless-plating method, and the electroconductive particle was produced. The nickel layer had a thickness of 0.1 μm. In Examples 9 and 10, the obtained conductive particles were used as they were.
 接続構造体の作製:
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成イーマテリアルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、樹脂組成物を得た。
Fabrication of connection structure:
10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), 200 parts by weight of methyl ethyl ketone, and a microcapsule type curing agent (Asahi Kasei E-material) 50 parts by weight of “HX3941HP” manufactured by KK And dispersed to obtain a resin composition.
 得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。 The obtained resin composition was applied to a 50 μm-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film. The thickness of the obtained anisotropic conductive film was 12 μm.
 得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するITO(高さ0.1μm、L/S=20μm/20μm)が設けられたPET基板(幅3cm、長さ3cm)のITO電極側のほぼ中央に貼り付けた。次いで、同じ金電極が設けられた2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このPET基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムに銅電極が形成され、銅電極表面がAuめっきされている、2層フレキシブルプリント基板を用いた。 The obtained anisotropic conductive film was cut into a size of 5 mm × 5 mm. PET substrate (width 3 cm, length 3 cm) provided with ITO (height 0.1 μm, L / S = 20 μm / 20 μm) having a lead wire for resistance measurement on one side of the cut anisotropic conductive film Affixed to the center of the ITO electrode. Subsequently, the two-layer flexible printed circuit board (width 2cm, length 1cm) provided with the same gold electrode was bonded after aligning so that electrodes might overlap. A laminate of the PET substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure. In addition, the two-layer flexible printed board by which the copper electrode was formed in the polyimide film and the copper electrode surface was Au-plated was used.
 得られた接続構造体の対向する電極間の接続抵抗を4端子法により測定した。接続抵抗を下記の基準で判定した。 The connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. Connection resistance was determined according to the following criteria.
 [接続抵抗の評価基準]
 ○○:接続抵抗が3.0Ω以下
 ○:接続抵抗が3.0を超え、4.0Ω以下
 △:接続抵抗が4.0を超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
[Evaluation criteria for connection resistance]
◯: Connection resistance is 3.0Ω or less ○: Connection resistance exceeds 3.0, 4.0Ω or less △: Connection resistance exceeds 4.0, 5.0Ω or less ×: Connection resistance exceeds 5.0Ω
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (5)液晶表示素子用スペーサとしての使用例
 STN型液晶表示素子の作製:
 イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で実施例1~8の液晶表示素子用スペーサ(有機無機ハイブリッド粒子)を固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。
(5) Example of use as spacer for liquid crystal display element Production of STN type liquid crystal display element:
In a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the spacers (organic-inorganic hybrid particles) for liquid crystal display elements of Examples 1 to 8 in 100% by weight of the obtained spacer dispersion liquid had a solid content concentration of 2 It added so that it might become weight%, and stirred, and the spacer dispersion liquid for liquid crystal display elements was obtained.
 一対の透明ガラス板(縦50mm、横50mm、厚さ0.4mm)の一面に、CVD法によりSiO膜を蒸着した後、SiO膜の表面全体にスパッタリングによりITO膜を形成した。得られたITO膜付きガラス基板に、スピンコート法によりポリイミド配向膜組成物(日産化学社製、SE3510)を塗工し、280℃で90分間焼成することによりポリイミド配向膜を形成した。配向膜にラビング処理を施した後、一方の基板の配向膜側に、液晶表示素子用スペーサを1mm当たり100~200個となるように湿式散布した。他方の基板の周辺にシール剤を形成した後、この基板とスペーサを散布した基板とをラビング方向が90°になるように対向配置させ、両者を貼り合わせた。その後、160℃で90分間処理してシール剤を硬化させて、空セル(液晶の入ってない画面)を得た。得られた空セルに、カイラル剤入りのSTN型液晶(DIC社製)を注入し、次に注入口を封止剤で塞いだ後、120℃で30分間熱処理してSTN型液晶表示素子を得た。 An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering. A polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by spin coating, and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the rubbing treatment for the alignment film, the liquid crystal display element spacers were wet-sprayed on the alignment film side of one substrate so that the number of spacers for a liquid crystal display element was 100 to 200 per 1 mm 2 . After forming a sealant around the other substrate, this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
 得られた液晶表示素子では、実施例1~8の液晶表示素子用スペーサにより基板間の間隔が良好に規制されていた。また、液晶表示素子は、良好な表示品質を示した。 In the obtained liquid crystal display elements, the distance between the substrates was well regulated by the liquid crystal display element spacers of Examples 1 to 8. Moreover, the liquid crystal display element showed favorable display quality.
 1…有機無機ハイブリッド粒子
 11…無機粒子
 12…アルコキシ基含有オルガノポリシロキサンに由来する構造部
 21,22…導電性粒子
 31A,31B…導電層
 31Ba…第1の導電層
 31Bb…第2の導電層
 32…芯物質
 33…絶縁性物質
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
 81…液晶表示素子
 82…透明ガラス基板
 83…透明電極
 84…配向膜
 85…液晶
 86…シール剤
DESCRIPTION OF SYMBOLS 1 ... Organic-inorganic hybrid particle 11 ... Inorganic particle 12 ... Structure part derived from alkoxy-group-containing organopolysiloxane 21, 22 ... Conductive particle 31A, 31B ... Conductive layer 31Ba ... First conductive layer 31Bb ... Second conductive layer 32 ... Core material 33 ... Insulating material 51 ... Connection structure 52 ... First connection object member 52a ... First electrode 53 ... Second connection object member 53a ... Second electrode 54 ... Connection part 81 ... Liquid crystal display Element 82 ... Transparent glass substrate 83 ... Transparent electrode 84 ... Alignment film 85 ... Liquid crystal 86 ... Sealing agent

Claims (11)

  1.  第1の反応性官能基を表面に有する複数の無機粒子と、前記第1の反応性官能基と反応可能な第2の反応性官能基を有するアルコキシ基含有オルガノポリシロキサンとを用いて得られ、
     前記無機粒子の集合体である、有機無機ハイブリッド粒子。
    It is obtained by using a plurality of inorganic particles having a first reactive functional group on the surface and an alkoxy group-containing organopolysiloxane having a second reactive functional group capable of reacting with the first reactive functional group. ,
    Organic-inorganic hybrid particles, which are aggregates of the inorganic particles.
  2.  前記第1の反応性官能基が水酸基である、請求項1に記載の有機無機ハイブリッド粒子。 The organic-inorganic hybrid particle according to claim 1, wherein the first reactive functional group is a hydroxyl group.
  3.  前記アルコキシ基含有オルガノポリシロキサンが、前記第2の反応性官能基として、エポキシ基又は(メタ)アクリロイル基を有する、請求項1又は2に記載の有機無機ハイブリッド粒子。 The organic-inorganic hybrid particle according to claim 1 or 2, wherein the alkoxy group-containing organopolysiloxane has an epoxy group or a (meth) acryloyl group as the second reactive functional group.
  4.  前記アルコキシ基含有オルガノポリシロキサンが、前記第2の反応性官能基として、エポキシ基を有する、請求項3に記載の有機無機ハイブリッド粒子。 The organic-inorganic hybrid particle according to claim 3, wherein the alkoxy group-containing organopolysiloxane has an epoxy group as the second reactive functional group.
  5.  複数の前記無機粒子が、前記アルコキシ基含有オルガノポリシロキサンに由来する構造を介して、一体化して、前記無機粒子の集合体が得られている、請求項1~4のいずれか1項に記載の有機無機ハイブリッド粒子。 The aggregate of the inorganic particles is obtained by integrating the plurality of the inorganic particles through a structure derived from the alkoxy group-containing organopolysiloxane. Organic-inorganic hybrid particles.
  6.  前記アルコキシ基含有オルガノポリシロキサンが、前記第2の反応性官能基として、メトキシ基を有する、請求項1~5のいずれか1項に記載の有機無機ハイブリッド粒子。 The organic-inorganic hybrid particle according to any one of claims 1 to 5, wherein the alkoxy group-containing organopolysiloxane has a methoxy group as the second reactive functional group.
  7.  前記アルコキシ基含有オルガノポリシロキサンが、珪素原子に直接結合したアルキル基を有する、請求項1~6のいずれか1項に記載の有機無機ハイブリッド粒子。 The organic-inorganic hybrid particle according to any one of claims 1 to 6, wherein the alkoxy group-containing organopolysiloxane has an alkyl group directly bonded to a silicon atom.
  8.  表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられる、請求項1~7のいずれか1項に記載の有機無機ハイブリッド粒子。 The organic / inorganic material according to any one of claims 1 to 7, wherein a conductive layer is formed on a surface and used to obtain conductive particles having the conductive layer, or used as a spacer for a liquid crystal display element. Hybrid particles.
  9.  請求項1~8のいずれか1項に記載の有機無機ハイブリッド粒子と、
     前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電性粒子。
    Organic-inorganic hybrid particles according to any one of claims 1 to 8,
    A conductive particle comprising a conductive layer disposed on a surface of the organic-inorganic hybrid particle.
  10.  導電性粒子と、バインダー樹脂とを含み、
     前記導電性粒子が、請求項1~8のいずれか1項に記載の有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電材料。
    Containing conductive particles and a binder resin,
    A conductive material, wherein the conductive particles include the organic-inorganic hybrid particles according to any one of claims 1 to 8, and a conductive layer disposed on a surface of the organic-inorganic hybrid particles.
  11.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~8のいずれか1項に記載の有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備え、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    A connection portion connecting the first connection target member and the second connection target member;
    The connecting portion is formed of conductive particles or formed of a conductive material containing the conductive particles and a binder resin;
    The conductive particle comprises the organic-inorganic hybrid particle according to any one of claims 1 to 8, and a conductive layer disposed on a surface of the organic-inorganic hybrid particle,
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2013/082422 2012-12-06 2013-12-03 Organic-inorganic hybrid particles, conductive particles, conductive material and connection structure WO2014087984A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013557951A JP5699230B2 (en) 2012-12-06 2013-12-03 Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
KR1020157002171A KR101538904B1 (en) 2012-12-06 2013-12-03 Organic-inorganic hybrid particles, conductive particles, conductive material and connection structure
CN201380052357.8A CN104718241B (en) 2012-12-06 2013-12-03 Organic inorganic hybridization particle, electroconductive particle, conductive material and connection structural bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012267382 2012-12-06
JP2012-267382 2012-12-06

Publications (1)

Publication Number Publication Date
WO2014087984A1 true WO2014087984A1 (en) 2014-06-12

Family

ID=50883401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082422 WO2014087984A1 (en) 2012-12-06 2013-12-03 Organic-inorganic hybrid particles, conductive particles, conductive material and connection structure

Country Status (5)

Country Link
JP (1) JP5699230B2 (en)
KR (1) KR101538904B1 (en)
CN (1) CN104718241B (en)
TW (1) TWI506076B (en)
WO (1) WO2014087984A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088882A (en) * 2015-11-11 2017-05-25 積水化学工業株式会社 Particle aggregate, particle material, connection material and connection structure
KR20180081454A (en) * 2015-11-11 2018-07-16 세키스이가가쿠 고교가부시키가이샤 Particles, particle material, connecting material and connection structure
JP2020519704A (en) * 2017-04-21 2020-07-02 ペラテック ホールドコ リミテッド Composite material
KR20220133306A (en) * 2020-02-19 2022-10-04 트리플 더블유 리미티드 Method and system for lactic acid production and polylactic acid recycling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221649B (en) * 2016-03-21 2020-05-19 中国科学院苏州纳米技术与纳米仿生研究所 Electrode with organic-inorganic composite protective layer, preparation method and application thereof
JP6216474B1 (en) 2017-03-07 2017-10-18 宇部エクシモ株式会社 Organic inorganic composite particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197705A (en) * 1996-01-11 1997-07-31 Nippon Shokubai Co Ltd Organic-inorganic composite particles, their production and use
JP2000204119A (en) * 1999-01-14 2000-07-25 Nippon Shokubai Co Ltd Organic and inorganic composite particle, its production and use
JP2001115024A (en) * 1999-10-19 2001-04-24 Dainippon Toryo Co Ltd Aqueous emulsion of organic-inorganic composite resin, its production and two-pack type coating composition
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
WO2012020799A1 (en) * 2010-08-11 2012-02-16 株式会社日本触媒 Polymeric microparticles, conductive microparticles, and anisotropic conductive material
JP2012041392A (en) * 2010-08-13 2012-03-01 Asahi Kasei E-Materials Corp Photosensitive silica particle-containing condensation product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
JP4803350B2 (en) * 2005-06-03 2011-10-26 信越化学工業株式会社 Crimpable anisotropic conductive resin composition and method for connecting fine electrodes
EP2385968B1 (en) * 2009-01-08 2015-11-04 Nanogram Corporation Composites of polysiloxane polymers and inorganic nanoparticles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197705A (en) * 1996-01-11 1997-07-31 Nippon Shokubai Co Ltd Organic-inorganic composite particles, their production and use
JP2000204119A (en) * 1999-01-14 2000-07-25 Nippon Shokubai Co Ltd Organic and inorganic composite particle, its production and use
JP2001115024A (en) * 1999-10-19 2001-04-24 Dainippon Toryo Co Ltd Aqueous emulsion of organic-inorganic composite resin, its production and two-pack type coating composition
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
WO2012020799A1 (en) * 2010-08-11 2012-02-16 株式会社日本触媒 Polymeric microparticles, conductive microparticles, and anisotropic conductive material
JP2012041392A (en) * 2010-08-13 2012-03-01 Asahi Kasei E-Materials Corp Photosensitive silica particle-containing condensation product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088882A (en) * 2015-11-11 2017-05-25 積水化学工業株式会社 Particle aggregate, particle material, connection material and connection structure
KR20180081454A (en) * 2015-11-11 2018-07-16 세키스이가가쿠 고교가부시키가이샤 Particles, particle material, connecting material and connection structure
JPWO2017082353A1 (en) * 2015-11-11 2018-08-30 積水化学工業株式会社 Particle, particle material, connecting material and connecting structure
KR102542827B1 (en) 2015-11-11 2023-06-14 세키스이가가쿠 고교가부시키가이샤 Particles, particle materials, connection materials, and connection structures
JP2020519704A (en) * 2017-04-21 2020-07-02 ペラテック ホールドコ リミテッド Composite material
KR20220133306A (en) * 2020-02-19 2022-10-04 트리플 더블유 리미티드 Method and system for lactic acid production and polylactic acid recycling
KR102557331B1 (en) 2020-02-19 2023-07-21 트리플더블유 리미티드 Methods and systems for lactic acid production and polylactic acid recycling

Also Published As

Publication number Publication date
JP5699230B2 (en) 2015-04-08
TWI506076B (en) 2015-11-01
JPWO2014087984A1 (en) 2017-01-05
TW201434898A (en) 2014-09-16
KR20150023064A (en) 2015-03-04
KR101538904B1 (en) 2015-07-22
CN104718241B (en) 2016-11-23
CN104718241A (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5699230B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
WO2014061545A1 (en) Organic-inorganic hybrid particles, conductive particles, conductive material, and connection structure
JP5620608B1 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
KR102172940B1 (en) Base material particle, conductive particle, conductive material, and connection structure
JP6333626B2 (en) Projection particle, conductive particle, conductive material, and connection structure
JP6641406B2 (en) Base particles, conductive particles, conductive material and connection structure
JP6266973B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP6306970B2 (en) Base particle, conductive particle, conductive material, and connection structure
JP2014159549A (en) Method of producing organic inorganic hybrid particle, conductive particle, conductive material and connection structure
JP6279300B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP6130784B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP6460673B2 (en) Base particle, conductive particle, conductive material, and connection structure
JP6212380B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP2015110743A (en) Method of producing organic inorganic hybrid particle, conductive particle, conductive material and connection structure
JP6084886B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP6345536B2 (en) Base particle, conductive particle, conductive material, and connection structure
JP2014111725A (en) Core shell particle, method for producing core shell particle, conductive particle, conductive material and connection structure
JP2014160647A (en) Base particle, conductive particle, conductive material and connection structure
JP6426913B2 (en) Protruding particles, conductive particles, conductive materials and connection structures
JP2015072898A (en) Base material particle, conductive particle, conductive material and connection structure
KR20210010447A (en) Substrate particle, conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013557951

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002171

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859795

Country of ref document: EP

Kind code of ref document: A1