WO2014087009A1 - Kühlerlüfter eines kraftfahrzeugs und elektromotor - Google Patents

Kühlerlüfter eines kraftfahrzeugs und elektromotor Download PDF

Info

Publication number
WO2014087009A1
WO2014087009A1 PCT/EP2013/075899 EP2013075899W WO2014087009A1 WO 2014087009 A1 WO2014087009 A1 WO 2014087009A1 EP 2013075899 W EP2013075899 W EP 2013075899W WO 2014087009 A1 WO2014087009 A1 WO 2014087009A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
air
rotor
cooling air
radiator fan
Prior art date
Application number
PCT/EP2013/075899
Other languages
English (en)
French (fr)
Inventor
Thomas Dreesen
Karsten UDE
Original Assignee
Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg filed Critical Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg
Publication of WO2014087009A1 publication Critical patent/WO2014087009A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/329Details of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine

Definitions

  • the invention relates to a radiator fan of a motor vehicle, in particular main fan, with an electric motor.
  • a liquid coolant is usually used, which in turn must be cooled. This is usually done by means of an acted upon by a wind radiator network, which is in heat exchange with the coolant.
  • the coolant is directed into tubes that are incorporated into the radiator network. Since, especially at low vehicle speeds, the airstream for cooling is normally insufficient, it is known, for example, from EP 1 621 773 A1 to use an electric fan by means of which the airstream is amplified.
  • the fan is arranged in the direction of travel behind the radiator network. With the help of a fan of the fan, the air is sucked through the radiator network and passed to the engine. If, in addition to the radiator network, a condenser network of a condenser of an air conditioning system is present, the condenser network is usually arranged upstream of the radiator network in the direction of travel.
  • the electric motor itself is cooled by means of cooling air which is sucked into the electric motor on the side facing away from the radiator network through openings. This cooling air flow is, after the electric motor has flowed through completely, deflected by the hub of the fan and fed to the ambient air.
  • the invention has for its object to provide an improved radiator fan of a motor vehicle and an electric motor, which is particularly comparatively efficiently cooled.
  • the radiator fan is part of a motor vehicle and is used in particular for cooling an internal combustion engine.
  • wind is passed through a radiator network, wherein the wind is amplified by means of the radiator fan or generated at a standstill of the vehicle.
  • the radiator fan includes a fan with a number of fan blades.
  • the fan blades are connected to a central hub. The connection can be made by means of additional elements, such as screws, or material.
  • the fan is made of a plastic and is manufactured in one piece in an injection molding process.
  • the fan wheel is rotated by means of an electric motor.
  • the fan is connected via the central hub to a rotor of the motor.
  • the electric motor is a brushless inner rotor and thus the rotor is arranged within a stator of the electric motor.
  • cooling air directed which is preferably taken from the environment.
  • the steering of the cooling air takes place here at least partially by means of two air ducts.
  • the two air ducts are at least partially sealed against each other, so that cooling air, which is guided in one of the two air ducts, does not come into contact with the cooling air, which is guided in the other air duct.
  • a mixing is preferably carried out only outside the electric motor.
  • the seal is present in the region of the exit from the electric motor, and suitably the seal pneumatically, so that different air pressures in the two air ducts can be realized.
  • one of the air ducts is used to cool the one or more electromagnets of the electric motor, whereas the other is used to cool any existing in the electric motor permanent magnet.
  • a stator of the electric motor and by means of the guided in the other cooling air of the rotor of the electric motor is cooled by means of the guided in one of the air ducts cooling air.
  • one surface of a component of the electric motor is acted upon, whereas the other air duct leads through this component. In this way, the component is cooled both from the outside and from the inside.
  • one of the two air ducts surrounds the other air duct at least partially radially, ie in a radial direction relative to the rotor of the electric motor. Consequently, the distance of the one of the two air ducts to the axis of rotation of the rotor is greater than the corresponding distance of the other air duct.
  • each of the two air ducts is, for example, substantially circular-segment-shaped.
  • the radially outer air duct surrounds the radially inner air duct substantially completely.
  • efficient cooling of both a radially inner region of the electric motor and a radially outer region of the electric motor is ensured.
  • the cross section of the air ducts is substantially annular, perpendicular to the axis of rotation of the electric motor, wherein alternatively, the cross section of the inner air duct is circular.
  • the two air ducts abut each other, and are separated from each other only by means of the seal. At least the distance between the two air ducts is comparatively small.
  • the Rings or the ring and the circle concentric with each other, wherein the center is located in particular on the axis of rotation.
  • the cooling air which is guided in the radially inner air duct, in the region of the outlet is substantially parallel to the direction of entry of the cooling air into the electric motor.
  • the cooling air is sucked through by the electric motor from the side facing away from the radiator network through the electric motor, so that the exiting from the inner air duct cooling air is directed in the direction of the radiator network. This is especially contrary to the direction of any existing wind.
  • the hub has at least one opening into which the radially inner air duct opens.
  • the opening is offset radially inwards.
  • the distance of the opening to the axis of rotation of the electric motor is less than, for example, half the radius of the hub.
  • the distance is equal to or less than a quarter of the radius.
  • a number of openings, so at least two openings, introduced into the hub is relatively hindered, which ensures a rapid passage of the cooling air through the electric motor.
  • using a number of apertures instead of a single large aperture increases the stability of the hub and at least partially inhibits the ingress of dirt into the electric motor.
  • the outlet direction of the cooling air guided in the radially outer air duct is preferably equal to the travel wind direction, that is to say the direction of the airstream, by means of which the electric motor is at least partially acted upon. In this way, a turbulence in the mixing of the exiting cooling air is reduced with the existing wind, which improves the acoustic properties of the radiator fan.
  • the outlet direction is opposite to the direction of entry of the cooling air into the electric motor. If in the radially inner Air duct guided cooling air is led out in the inlet direction of the electric motor, thus a mixing of the cooling air outside the electric motor is comparatively small, so that the heated cooling air is cooled separately and any outside of the electric motor located component of the motor vehicle, which is located in the inlet direction behind the electric motor , Not by means of a comparatively hot and strong flow of cooling air - namely the cooling air from both air ducts - is acted upon.
  • the hub at least partially surrounds the rotor radially, wherein between the two a circumferential slot is formed.
  • the hub is pot-shaped, wherein the inner radius of the hub is greater than the outer radius of the rotor and in particular of the electric motor.
  • the radially outer air duct opens into the slot formed between the hub and the rotor. In this way, a comparatively wide outflow area for the guided in the outer air duct cooling air is provided, resulting in a comparatively high flow rate of the cooling air through the electric motor.
  • a deflection contour is formed within the hub, by means of which the cooling air is deflected in such a way that it is parallel to the travel wind direction or counter to the direction of entry.
  • the direction of entry of the cooling air into the electric motor is substantially parallel to the axis of rotation of the electric motor. In this way, no space in the region of the magnet structure of the electric motor must be provided for supplying the cooling air, which could hinder the propagation and interaction of the magnetic fields and thus reduce the efficiency of the electric motor.
  • the electric motor comprises a deflection device, by means of which the cooling air is assigned to the corresponding air duct.
  • the deflection is within the electric motor.
  • the deflecting device is consequently enclosed by a possibly present housing of the electric motor.
  • the deflection device is located between the rotor and any existing electronics of the electric motor.
  • the electrical nik is charged by the full cooling air, which is then divided on the two air ducts.
  • the cooling of the electronics is relatively efficient, which is the most temperature-critical component of the electric motor.
  • the air is passed through a suction port or a plurality of pneumatically interconnected inlet openings in the electric motor and in particular sucked.
  • each of the air ducts is filled with cooling air, resulting in spite of the reduced supply of cooling air to an efficient cooling of the electric motor.
  • the deflection device itself is not affected due to the placement within the electric motor of any dirt, which is held in particular by means of a suitable design of the openings outside the electric motor.
  • the deflection device is designed such that the division of the cooling air takes place on the respective air duct according to the desired cooling capacity.
  • the allocation of the cooling air by means of the deflection device is independent of the cross section of the two air ducts.
  • the two air ducts in the region of the rotor are parallel to each other.
  • no complicated design of the air ducts is required to realize the pneumatic separation of the two, which also has a comparatively large amount of space.
  • the air ducts are also parallel to the axis of rotation of the rotor.
  • the air ducts are substantially rectilinear in this area, which contributes to an increased cooling air velocity and thus enhances the cooling of the electric motor.
  • both air ducts are formed by means of recesses which pass through the rotor.
  • only one of the air ducts is realized by means of a suitable design of the rotor, so that this air duct leads through the rotor.
  • the remaining of the two air ducts is formed in the region of the rotor by means of the provided between the rotor and the stator air gap. In this way, a design effort is reduced and an existing electric motor can be adjusted by introducing the second air duct into the rotor and its seal against the air gap formed between the rotor and stator.
  • the electric motor has two at least partially mutually sealed air ducts into which cooling air is passed during operation of the electric motor.
  • the air ducts lead at least partially through the electric motor and are in particular pneumatically separated from each other, so that cooling air, which is located in one of the two air ducts, can not get into the other of the two air ducts, even with a prevailing pressure difference between the two.
  • the two air ducts lead out of the electric motor separately from each other.
  • the electric motor has at least two mutually spatially separate regions, which are not in communication with each other, from which the cooling air flows.
  • FIG. 1 shows schematically a radiator fan with an electric motor
  • Fig. 2 shows a first embodiment of the electric motor
  • Fig. 3 shows a second embodiment of the electric motor.
  • Fig. 1 is a schematic simplified view in a side view of a radiator fan 2 of a motor vehicle.
  • the radiator fan 2 comprises a radiator network 4, through which a cooling pipe 6 is guided.
  • a cooling liquid which is kept in circulation by means of a pump, not shown here.
  • the cooling liquid is passed through and heated by an internal combustion engine 8, wherein the internal combustion engine 8 is cooled.
  • the heated coolant is again passed through the radiator network 4, which is acted upon by a wind.
  • the direction of the wind is here along a wind direction 10, which corresponds substantially to the main direction of travel of the motor vehicle.
  • the wind is amplified or generated at a standstill of the vehicle. This is done by means of an electric motor 14, which sets a fan 16 in rotation. Further, by means of the fan wheel 16, the wind is directed to the internal combustion engine 8, and this thus applied from the outside with the airstream. This leads to an additional cooling of the internal combustion engine 8.
  • the fan 16 is disposed within a radiator frame 18, by means of which the airstream is steered. In the transition region between the frame 18 and the fan 16 are brushes or a certain contour, each of which prevents a so-called leakage between the two components.
  • the electric motor 14 is attached by means of struts 20 on the frame 18. The struts 20 are produced in one piece with the frame 18, for example in a plastic injection method.
  • Fig. 2 is shown in a sectional view taken along a rotation axis 22 of the electric motor 14, which is parallel to the air flow direction 10, the arranged in the wind direction 10 behind the radiator network 4 electric motor 14 schematically simplified.
  • the electric motor 14 comprises a cylindrically shaped housing 24 within which a stator 26 and a rotor 30 rotatably mounted about a rotor axis 28 are arranged.
  • an electronics 34 for energizing electromagnets of the stator 26 is arranged in a housing 24 on the opposite side of the radiator grid 4 side cover 32.
  • On the Lernetz 4 facing the housing 24 this is limited by means of a cup-shaped hub 36, are connected to the not shown wings of the impeller 16.
  • the housing 24 is partially in the hub 36, wherein between the hub 36 and the housing 24, a circumferential slot 38 is formed.
  • the inner diameter of the hub 36 is greater than the outer diameter of the housing 24.
  • the width of the slot 38 is in this case substantially constant.
  • the hub 36 is fixed to the rotor 30 by means of a web 40 having a substantially hollow cylindrical shape.
  • the web 40 seals in the region of the hub 36 a radially inner air duct 42 against a radially outer air duct 44 from which radially surrounds the radially inner air duct 42 completely.
  • the radially outer air duct 44 opens into the slot 38 and is partially formed by the existing between the stator 26 and the rotor 30 air gap 26.
  • the radially inner air gap 42 is formed in the region of the stator 26 or of the rotor 30 by recesses 48 introduced into the rotor 30, which are substantially parallel to the axis of rotation 22 and to the air gap 46.
  • the radially inner air duct 42 opens into openings 50, which are introduced in the region of the axis of rotation 22 in the area of the hub 36 facing the radiator network 4.
  • both the rotor 30 and the hub 36 coupled thereto are set in rotation about the rotation axis 22 with respect to the stator 26.
  • the hub 26 integrated suction device such as wings or réelleverrippung
  • cooling air 52 is sucked from the radiator network 4 side facing away from the electric motor 14 through openings not shown in detail inside the lid 32 in the electric motor 14, wherein the inlet direction the cooling air 52 is directed substantially counter to the direction of travel 10.
  • the cooling air 52 passes over the electronics 34 and thus cools them. After the electronics 34, the cooling air strikes a deflection device 54, by means of which the substantially homogeneous flow of cooling air 52 is split between the two air ducts 42, 44.
  • the guided in the outer air duct 44 portion of the cooling air 52 is passed through the air gap 46, where cooling of the facing surfaces of the rotor 30 and the stator 26 takes place, and strikes the radially outer portion of the hub 36.
  • the hub 36 of this Part of the cooling air 52 deflected and fed through the slot 38 of the environment.
  • the outlet direction of the cooling air 52 is substantially parallel to the direction of travel 10th
  • the remaining part of the cooling air 52 is passed through the recess 48 in the rotor 30 therethrough.
  • the air flow is in this case directed parallel to the axis of rotation 22 and cools permanent magnets present in the rotor 30, in order to avoid demagnetization of these and a consequent loss of efficiency.
  • the guided in the radially inner air duct 42 part of the cooling air 52 meets after passing through the rotor 30 to the sealed by means of the web 40 area between the hub 36 and the rotor 30, from which the cooling air 52 through the openings 50 in the direction of the radiator network 4 opposite the wind direction 10 escapes.
  • a reduced air pressure in comparison to the radially inner air duct 42 is generated in the radially outer air duct 44, so that the flow velocity of the cooling air 52 in the radially outer air duct 44 is increased.
  • the cooling air 52 is deflected in such a way that essentially two thirds of the cooling air 52 flowing into the electric motor 14 is directed into the radially outer air duct 44. In this way, a comparatively efficient cooling of the electric motor 14 is possible, in particular of the stator 26, wherein additionally the rotor 30 is acted upon from the inside and not only its surface with the cooling air 52.
  • the embodiment of the electric motor 14 shown in FIG. 3 differs from the previous one essentially by the design of the radially outer ren air duct 44 and the hub 36. This is applied to the housing 24, so that the slot 38 is not present.
  • the annular chamber formed by the hub 36 and the rotor 30 and the stator 26, which constitutes a region of the outer air duct 44, is opened by means of outlet slots 56, through which the cooling air 52 guided in the radially outer air duct 44 exits.
  • cooling air 52 Due to the guidance of the cooling air 52 to the radiator network 4 to the exiting the electric motor 14 cooling air 52 is in the wind direction 10 in front of the fan blades of the fan 16, by means of which a pressure difference between the electric motor 14 in the wind direction 10 surrounding areas is formed. In other words, there is a lower air pressure in the region of the exit of the cooling air 52 through the hub 36 than in the region of the inlet of the cooling air 52 through the lid 32. Consequently, the suction device, which sucks the cooling air 52 through the air ducts 42, 44 eliminates what leads to a reduced expansion of the housing 24 and the hub 36 in the wind direction 10.
  • the speed with which the cooling air 52 flows through the electric motor 14 is essentially predetermined only by the pressure difference realized by means of the fan wheel 16, which is relatively independent of speed or substantially constant in the operation of the radiator fan 2 compared to internal ribbing of the hub 36 ,
  • the pressure difference between the two air ducts 42, 44 is thus realized only by means of the deflection device 54.
  • the radial extent of the electric motor 14 is lower. As a result, a comparatively compact cooling fan 2 is to be realized.
  • inlet openings 58 are represented, through which the cooling air 52 is guided through the lid 32 and the electronics 34 into the electric motor 14. This leads to a defined impact of the cooling air 52 on the deflection device 54, which facilitates a need-based distribution of the cooling air 52 to the respective air ducts 42, 44.
  • the invention is not limited to the embodiments described above. Rather, other variants of the invention can be derived therefrom by the person skilled in the art without departing from the subject matter of the invention. In particular, all the individual features described in connection with the individual embodiments are also combinable with one another in other ways, without departing from the subject matter of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Die Erfindung betrifft einen Kühlerlüfter (2) eines Kraftfahrzeugs, insbesondere Hauptlüfter, mit einem an einer Nabe (36) kraftschlüssig angebundenen Rotor (30) eines Elektromotors (14), durch den zumindest teilweise Kühlluft (52) gelenkt ist. Die Kühlluft (52) ist in zwei zumindest teilweise gegeneinander abgedichteten Luftführkanälen (42, 44) geführt.

Description

Beschreibung
KÜHLERLÜFTER EINES KRAFTFAHRZEUGS UND ELEKTROMOTOR
Die Erfindung betrifft einen Kühlerlüfter eines Kraftfahrzeugs, insbesondere Hauptlüfter, mit einem Elektromotor.
Kraftfahrzeuge mit einem Verbrennungsmotor weisen während des Betriebs eine beträchtliche Wärmeentwicklung auf. Zum Halten der Betriebstemperatur des Verbrennungsmotors und auch für den Betrieb einer Klimaanlage wird üblicherweise ein flüssiges Kühlmittel eingesetzt, welches wiederrum gekühlt werden muss. Dies erfolgt üblicherweise mittels eines von einem Fahrtwind beaufschlagten Kühlernetzes, das im Wärmeaustausch zu dem Kühlmittel steht. Beispielsweise wird das Kühlmittel in Rohre geleitet, die in das Kühlernetz eingearbeitet sind. Da insbesondere bei geringen Fahrzeuggeschwindigkeiten der Fahrtwind zur Kühlung normalerweise nicht ausreicht, ist es beispielsweise aus der EP 1 621 773 A1 bekannt, einen elektrischen Lüfter zu verwenden, mittels dessen der Fahrtwind verstärkt wird.
Hierbei wird der Lüfter in Fahrtrichtung hinter dem Kühlernetz angeordnet. Mit Hilfe eines Lüfterrads des Lüfters wird die Luft durch das Kühlernetz hindurch gesaugt und auf den Verbrennungsmotor geleitet. Falls zusätzlich zum Kühlernetz ein Kondensatornetz eines Verflüssigers einer Klimaanlage vorhanden ist, so wird üblicherweise das Kondensatornetz in Fahrtwindrichtung vor dem Kühlernetz angeordnet.
Der Elektromotor selbst wird mittels Kühlluft gekühlt, die auf der dem Kühlernetz abgewandten Seite durch Öffnungen in den Elektromotor hineingesaugt wird. Dieser Kühlluftstrom wird, nachdem der Elektromotor vollständig durchströmt wurde, mittels der Nabe des Lüfterrads umgelenkt und der Umgebungsluft zugeführt. Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten Kühlerlüfter eines Kraftfahrzeugs und einen Elektromotor anzugeben, der insbesondere vergleichsweise effizient gekühlt ist.
Hinsichtlich des Kühlerlüfters wird diese Aufgabe durch die Merkmale des Anspruchs 1 und hinsichtlich des Elektromotors durch die Merkmale des Anspruchs 1 1 erfindungsgemäß gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der Unteransprüche.
Der Kühlerlüfter ist Bestandteil eines Kraftfahrzeugs und dient insbesondere der Kühlung einer Verbrennungsmaschine. Hierfür wird Fahrtwind durch ein Kühlernetz geleitet, wobei der Fahrtwind mittels des Kühlerlüfters verstärkt oder bei einem Stillstand des Fahrzeugs erzeugt wird. Der Kühlerlüfter umfasst ein Lüfterrad mit einer Anzahl von Lüfterflügeln. Die Lüfterflügel sind an einer zentralen Nabe angebunden. Die Anbindung kann mittels zusätzlicher Elemente, wie beispielsweise Schrauben, oder stofflich erfolgen. Insbesondere besteht das Lüfterrad aus einem Kunststoff und ist einstückig in einem Spritzgussverfahren hergestellt. Das Lüfterrad wird mittels eines Elektromotors in Drehung versetzt. Hierfür ist das Lüfterrad über die zentrale Nabe an einem Rotor des Motors angebunden. Beispielsweise ist der Elektromotor ein bürstenloser Innenläufer und der Rotor somit innerhalb eines Stators des Elektromotors angeordnet.
Zur Kühlung von Komponenten des Elektromotors, wie z. B. der Elektronik oder etwaigen Windungen eines Elektromagneten, ist durch den Elektromotor hindurch, insbesondere ebenfalls durch die Nabe, Kühlluft gelenkt, welche vorzugsweise der Umgebung entnommen wird. Die Lenkung der Kühlluft erfolgt hierbei zumindest teilweise mittels zweier Luftführkanäle. Die beiden Luftführkanäle sind zumindest abschnittsweise gegeneinander abgedichtet, so dass Kühlluft, die in einem der beiden Luftführkanäle geführt ist, nicht in Kontakt mit der Kühlluft gelangt, die in dem anderen Luftführkanal geführt ist. Eine Vermischung erfolgt vorzugsweise erst außerhalb des Elektromotors. Insbesondere ist die Abdichtung im Bereich des Austritts aus dem Elektromotor vorhanden, und geeigneterweise ist die Abdichtung pneumatisch, so dass unterschiedliche Luftdrücke in den beiden Luftführkanälen realisierbar sind.
Aufgrund der Aufteilung der Kühlluft auf die zwei Luftführkanäle ist es ermöglicht, mittels jeweils einem von den Luftführkanälen bestimmte Komponenten des Elektromotors zu kühlen. Beispielsweise wird einer der Luftführkanäle zur Kühlung des oder der Elektromagneten des Elektromotors herangezogen, wohingegen der andere zur Kühlung etwaiger in dem Elektromotor vorhandener Permanentmagneten verwendet wird. Ebenso ist es denkbar, dass mittels der in einem der Luftführkanäle geführten Kühlluft ein Stator des Elektromotors und mittels der in dem anderen geführten Kühlluft der Rotor des Elektromotors gekühlt wird. Alternativ oder in Kombination hierzu wird mittels der in einem der beiden Luftführkanäle geführten Kühlluft eine Oberfläche eines Bauteils des Elektromotors beaufschlagt, wohingegen der andere Luftführkanal durch dieses Bauteil hindurch führt. Auf diese Weise wird das Bauteil sowohl von außen als auch von innen gekühlt.
In einer besonders bevorzugten Ausführungsform der Erfindung umgibt der eine der beiden Luftführkanäle den anderen Luftführkanal zumindest teilweise radial, also in einer radialen Richtung bezogen auf den Rotor des Elektromotors. Folglich ist der Abstand des einen der beiden Luftführkanäle zu der Rotationsachse des Rotors größer als der entsprechende Abstand des anderen Luftführkanals. Hierbei ist jeder der beiden Luftführkanäle zum Beispiel im Wesentlichen kreisseg- mentförmig geformt.
Zweckmäßigerweise umgibt der radial äußere Luftführkanal den radial inneren Luftführkanal im Wesentlichen vollständig. Somit ist eine effiziente Kühlung sowohl eines radial inneren Bereichs des Elektromotors als auch eines radial äußeren Bereichs des Elektromotors gewährleistet. Vorzugsweise ist der Querschnitt der Luftführkanäle senkrecht zur Rotationsachse des Elektromotors im Wesentlichen ringförmig, wobei alternativ der Querschnitt des innen liegenden Luftführkanals kreisförmig ist. Insbesondere liegen die beiden Luftführkanäle aneinander an, und sind lediglich mittels der Abdichtung voneinander getrennt. Zumindest ist der Abstand der beiden Luftführkanäle vergleichsweise gering. Insbesondere sind die Ringe bzw. der Ring und der Kreis zueinander konzentrisch, wobei der Mittelpunkt insbesondere auf der Rotationsachse liegt.
Beispielsweise ist die Kühlluft, die in dem radial inneren Luftführkanal geführt ist, im Bereich des Austritts im Wesentlichen parallel zu der Eintrittsrichtung der Kühlluft in den Elektromotor. Vorzugsweise wird die Kühlluft mittels des Elektromotors von der dem Kühlernetz abgewandten Seite durch den Elektromotor hindurchgesaugt, so dass die aus dem inneren Luftführkanal austretende Kühlluft in Richtung des Kühlernetzes gerichtet ist. Dies ist insbesondere entgegen der Richtung eines etwaig vorhandenen Fahrtwindes.
Hierfür weist bevorzugt die Nabe mindestens eine Öffnung auf, in die der radial innere Luftführkanal mündet. Insbesondere ist die Öffnung radial nach innen versetzt. Mit anderen Worten ist der Abstand der Öffnung zu der Rotationsachse des Elektromotors geringer als beispielsweise die Hälfte des Radius der Nabe. Vorzugsweise ist der Abstand gleich einem Vierteil des Radius oder geringer. Beispielsweise ist eine Anzahl von Öffnungen, also mindestens zwei Öffnungen, in die Nabe eingebracht. Auf diese Weise wird die durch den inneren Luftführkanal strömende Kühlluft vergleichsweise gering behindert, was einen zügigen Durchtritt der Kühlluft durch den Elektromotor gewährleistet. Auch ist bei der Verwendung einer Anzahl von Öffnungen anstatt einer einzigen großen Öffnung die Stabilität der Nabe erhöht und ein Eindringen von Schmutz in den Elektromotor zumindest teilweise unterbunden.
Die Austrittsrichtung der in dem radial äußeren Luftführkanal geführten Kühlluft ist bevorzugt gleich der Fahrtwindrichtung, also der Richtung des Fahrtwindes, mittels dessen der Elektromotors zumindest teilweise beaufschlagt ist. Auf diese Weise ist eine Turbulenzenbildung bei der Vermischung der austretenden Kühlluft mit dem vorhandenen Fahrtwind reduziert, was die akustischen Eigenschaften des Kühlerlüfters verbessert.
Alternativ oder in Kombination hierzu ist die Austrittsrichtung entgegen der Eintrittsrichtung der Kühlluft in den Elektromotor. Sofern die in dem radial inneren Luftführkanal geführte Kühlluft in Eintrittsrichtung aus dem Elektromotor hinausgeführt wird, ist somit eine Vermischung der Kühlluft außerhalb des Elektromotors vergleichsweise gering, so dass die erwärmte Kühlluft separat gekühlt wird und ein etwaiges außerhalb des Elektromotors befindliches Bauteils des Kraftfahrzeugs, das sich in Eintrittsrichtung hinter dem Elektromotor befindet, nicht mittels eines vergleichsweise heißen und starken Kühlluftstroms - nämlich der Kühlluft aus beiden Luftführkanälen - beaufschlagt wird,.
Geeigneterweise umgibt die Nabe den Rotor zumindest teilweise radial, wobei zwischen den beiden ein umlaufender Schlitz gebildet ist. Insbesondere ist die Nabe topfförmig ausgestaltet, wobei der Innenradius der Nabe größer als der Außenradius des Rotors und insbesondere des Elektromotors ist. Zweckmäßigerweise mündet der radial äußere Luftführkanal in den zwischen der Nabe und dem Rotor gebildeten Schlitz. Auf diese Weise ist eine vergleichsweise breite Ausströmfläche für die in der äußeren Luftführkanal geführte Kühlluft bereitgestellt, was zu einer vergleichsweise hohen Strömungsgeschwindigkeit der Kühlluft durch den Elektromotor führt. Insbesondere ist innerhalb der Nabe eine Umlenkkontur ausgebildet, mittels derer die Kühlluft derart umgelenkt wird, dass diese parallel zur Fahrtwindrichtung bzw. entgegen der Eintrittsrichtung ist.
In einer geeigneten Ausführungsform der Erfindung ist die Eintrittsrichtung der Kühlluft in den Elektromotor im Wesentlichen parallel zur Rotationsachse des Elektromotors. Auf diese Weise muss zur Zuführung der Kühlluft kein Platz im Bereich der Magnetenstruktur des Elektromotors vorgesehen werden, was die Ausbreitung und die Interaktion der Magnetfelder behindern und somit den Wirkungsgrad des Elektromotors herabsetzen könnte.
Zum Beispiel umfasst der Elektromotor eine Umlenkvorrichtung, mittels derer die Kühlluft dem entsprechenden Luftführkanal zugeordnet wird. Hierbei befindet sich die Umlenkvorrichtung innerhalb des Elektromotors. Die Umlenkvorrichtung wird folglich von einem etwaig vorhandenen Gehäuse des Elektromotors umschlossen. Insbesondere befindet sich die Umlenkvorrichtung zwischen dem Rotor und einer etwaig vorhandenen Elektronik des Elektromotors. Infolgedessen wird die Elektro- nik von der vollständigen Kühlluft beaufschlagt, die im Anschluss auf die beiden Luftführkanäle aufgeteilt wird. Somit ist die Kühlung der Elektronik vergleichsweise effizient, die das temperaturkritischste Bauelement des Elektromotors darstellt.
Ferner wird die Luft lediglich durch eine Ansaugöffnung oder einer Vielzahl pneumatisch miteinander verbündender Einlassöffnungen in den Elektromotor geleitet und insbesondere angesaugt. Bei einem Verschluss einer der Öffnungen aufgrund von Schmutz oder dergleichen wird dennoch jeder der Luftführkanäle mit Kühlluft gefüllt, was trotz der verringerten Kühlluftzufuhr zu einer effizienten Kühlung des Elektromotors führt. Die Umlenkvorrichtung selbst wird aufgrund der Platzierung innerhalb des Elektromotors von etwaigem Schmutz nicht beeinträchtigt, der insbesondere mittels einer geeigneten Ausgestaltung der Öffnungen außerhalb des Elektromotors gehalten wird. Insbesondere ist die Umlenkvorrichtung derart gestaltet, dass die Aufteilung der Kühlluft auf den jeweiligen Luftführkanal entsprechend der gewünschten Kühlleistung erfolgt. Insbesondere ist die Zuteilung der Kühlluft mittels der Umlenkvorrichtung unabhängig von dem Querschnitt der beiden Luftführkanäle.
Zweckmäßigerweise sind die beiden Luftführkanäle im Bereich des Rotors zueinander parallel. Auf diese Weise ist keine komplizierte Gestaltung der Luftführkanäle erforderlich, um die pneumatische Trennung der beiden zu realisieren, was zudem einen vergleichsweise hohen Platzbedarf aufweist. Somit ist es ermöglicht, den Rotor auf dessen magnetische Eigenschaften hin zu optimieren und somit den Wirkungsgrad des Elektromotors zu erhöhen. Insbesondere sind die Luftführkanäle zudem parallel zur Rotationsachse des Rotors. Mit anderen Worten sind die Luftführkanäle im Wesentlichen geradlinig in diesem Bereich, was zu einer erhöhten Kühlluftgeschwindigkeit beiträgt und somit die Kühlung des Elektromotors verstärkt. Weiterhin ist die Herstellung des Elektromotors aufgrund der zueinander und zu der Rotationsachse parallelen Luftführkanäle vereinfacht, da keine aufwendigen Strukturen zur Führung der Kühlluft in den Elektromotor eingebracht werden müssen. Zum Beispiel sind beide Luftführkanäle mittels Aussparungen gebildet, die durch den Rotor hindurch führen. In einer besonders bevorzugten Alternative hierzu wird jedoch lediglich einer der Luftführkanäle mittels einer geeigneten Ausgestaltung des Rotors realisiert, so dass dieser Luftführkanal durch den Rotor hindurch führt. Der verbliebene der beiden Luftführkanäle wird im Bereich des Rotors mittels des zwischen dem Rotor und dem Stator bereitgestellten Luftspalts gebildet. Auf diese Weise ist ein Konstruktionsaufwand verringert und ein bereits bestehender Elektromotor kann mittels Einbringung des zweiten Luftführkanals in den Rotor und dessen Abdichtung gegenüber dem zwischen dem Rotor und Stator gebildeten Luftspalt angepasst werden.
Der Elektromotor weist zwei zumindest teilweise gegeneinander abgedichtete Luftführkanäle auf, in die bei einem Betrieb des Elektromotors Kühlluft geleitet wird. Die Luftführkanäle führen zumindest teilweise durch den Elektromotor hindurch und sind insbesondere pneumatisch gegeneinander getrennt, so dass Kühlluft, die sich in einem der beiden Luftführkanäle befindet, nicht in den anderen der beiden Luftführkanäle gelangen kann, auch bei einer herrschenden Druckdifferenz zwischen den beiden. Geeigneterweise führen die beiden Luftführkanäle gegeneinander getrennt aus dem Elektromotor heraus. Mit anderen Worten weist der Elektromotor mindesten zwei gegeneinander räumlich getrennte Bereiche auf, die nicht miteinander in Verbindung stehen, aus denen die Kühlluft strömt.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
Fig. 1 schematisch einen Kühlerlüfter mit einem Elektromotor,
Fig. 2 eine erste Ausführungsform des Elektromotors, und
Fig. 3 eine zweite Ausführungsform des Elektromotors.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen. In Fig. 1 ist schematisch vereinfacht in einer Seitendarstellung ein Kühlerlüfter 2 eines Kraftfahrzeugs dargestellt. Der Kühlerlüfter 2 umfasst ein Kühlernetz 4, durch das ein Kühlrohr 6 geführt ist. Innerhalb des Kühlrohrs 6 befindet sich eine Kühlflüssigkeit, welche mittels einer hier nicht dargestellten Pumpe in Zirkulation gehalten wird. Die Kühlflüssigkeit wird durch eine Verbrennungskraftmaschine 8 geleitet und von dieser erwärmt, wobei die Verbrennungskraftmaschine 8 gekühlt wird. Die erwärmte Kühlflüssigkeit wird erneut durch das Kühlernetz 4 geleitet, welches von einem Fahrtwind beaufschlagt ist. Die Richtung des Fahrtwindes ist hierbei längs einer Fahrtwindrichtung 10, die im Wesentlichen der Hauptfortbewegungsrichtung des Kraftfahrzeugs entspricht.
Mittels eines Lüfters 12, der in Fahrtwindrichtung 10 hinter dem Kühlernetz 4 angeordnet ist, wird der Fahrtwind verstärkt oder bei einem Stillstand des Fahrzeugs erzeugt. Dies erfolgt mittels eines Elektromotors 14, der ein Lüfterrad 16 in Rotation versetzt. Ferner wird mittels des Lüfterrades 16 der Fahrtwind auf die Verbrennungskraftmaschine 8 geleitet, und diese somit von außen mit dem Fahrtwind beaufschlagt. Dies führt zu einer zusätzlichen Kühlung der Verbrennungskraftmaschine 8. Das Lüfterrad 16 ist innerhalb einer Kühlerzarge 18 angeordnet, mittels derer der Fahrtwind gelenkt wird. In dem Übergangsbereich zwischen der Zarge 18 und dem Lüfterrad 16 befinden sich Bürsten oder eine bestimmte Kontur, die jeweils eine sogenannte Leckluft zwischen den beiden Komponenten unterbindet. Der Elektromotor 14 ist mittels Streben 20 an der Zarge 18 befestigt. Die Streben 20 sind einstückig mit der Zarge 18 hergestellt, beispielsweise in einem Kunst- stoffspritzverfahren .
In Fig. 2 ist in einer Schnittdarstellung entlang einer Rotationsachse 22 des Elektromotors 14, die parallel zur Fahrtwindrichtung 10 ist, der in Fahrtwindrichtung 10 hinter dem Kühlernetz 4 angeordnete Elektromotor 14 schematisch vereinfacht dargestellt. Der Elektromotor 14 umfasst ein zylindrisch geformtes Gehäuse 24, innerhalb dessen ein Stator 26 und ein um eine Rotorachse 28 drehbar gelagerter Rotor 30 angeordnet sind. In einem das Gehäuse 24 auf der dem Kühlernetz 4 gegenüberliegenden Seite abschließenden Deckel 32 ist eine Elektronik 34 zur Bestromung von Elektromagneten des Stators 26 angeordnet. Auf der dem Küh- lernetz 4 zugewandten des Gehäuses 24 wird dieses mittels einer topfförmig ausgestalteten Nabe 36 begrenzt, an der nicht dargestellte Flügel des Flügelrads 16 angebunden sind. Hierbei liegt das Gehäuse 24 teilweise in der Nabe 36 ein, wobei zwischen der Nabe 36 und dem Gehäuse 24 ein umlaufender Schlitz 38 gebildet ist. Mit anderen Worten ist der Innendurchmesser der Nabe 36 größer als der Außendurchmesser des Gehäuses 24. Die Breite des Schlitzes 38 ist hierbei im Wesentlichen konstant.
Die Nabe 36 ist an dem Rotor 30 mittels eines Steges 40 befestigt, der eine im Wesentlichen hohlzylindrische Form aufweist. Der Steg 40 dichtet im Bereich der Nabe 36 einen radial innenliegenden Luftführkanal 42 gegen einen radial äußeren Luftführkanal 44 pneumatisch ab, der den radial inneren Luftführkanal 42 vollständig umgibt. Der radial äußere Luftführkanal 44 mündet hierbei in den Schlitz 38 und wird teilweise von dem zwischen dem Stator 26 und dem Rotor 30 bestehenden Luftspalt 26 gebildet. Der radial innere Luftspalt 42 hingegen wird im Bereich des Stators 26 bzw. des Rotors 30 von in den Rotor 30 eingebrachten Aussparungen 48 gebildet, die im Wesentlichen parallel zur Rotationsachse 22 und zu dem Luftspalt 46 sind. Der radial innere Luftführkanal 42 mündet in Öffnungen 50, die im Bereich der Rotationsachse 22 in den dem Kühlernetz 4 zugewandten Bereich der Nabe 36 eingebracht sind.
Bei Betrieb des Kühlerlüfters 2 und somit einer Bestromung des Elektromotors 14 wird sowohl der Rotor 30 als auch die hieran gekoppelte Nabe 36 in eine Rotationsbewegung um die Rotationsachse 22 bzgl. des Stators 26 versetzt. Mittels einer nicht näher dargestellten in der Nabe 26 integrierten Ansaugvorrichtung, wie beispielsweise Flügeln oder einer Innenverrippung, wird Kühlluft 52 von der dem Kühlernetz 4 abgewandten Seite des Elektromotors 14 durch nicht näher gezeigte Öffnungen innerhalb des Deckels 32 in den Elektromotor 14 hineingesaugt, wobei die Eintrittsrichtung der Kühlluft 52 im Wesentlichen der Fahrtwindrichtung 10 entgegen gerichtet ist. Dabei überstreicht die Kühlluft 52 die Elektronik 34 und kühlt diese somit. Nach der Elektronik 34 trifft die Kühlluft auf eine Umlenkvorrichtung 54, mittels derer der im Wesentlichen homogene Strom aus Kühlluft 52 auf die beiden Luftführkanäle 42, 44 aufgeteilt wird. Der im äußeren Luftführkanal 44 geführte Teil der Kühlluft 52 wird durch den Luftspalt 46 geleitet, wo eine Kühlung der einander zugewandten Oberflächen des Rotors 30 und des Stators 26 erfolgt, und trifft auf den radial äußeren Bereich der Nabe 36. Mittels der Nabe 36 wird dieser Teil der Kühlluft 52 umgelenkt und durch den Schlitz 38 der Umgebung zugeführt. Hierbei ist die Austrittsrichtung der Kühlluft 52 im Wesentlichen parallel zur Fahrtwindrichtung 10.
Der verbliebene Teil der Kühlluft 52 wird durch die Aussparung 48 im Rotor 30 durch diesen hindurch geleitet. Der Luftstrom ist hierbei parallel zur Rotationsachse 22 gerichtet und kühlt in dem Rotor 30 vorhandene Permanentmagnete, um eine Entmagnetisierung dieser und einen folglichen Wirkungsgradverlust zu vermeiden. Der im radial inneren Luftführkanal 42 geleitete Teil der Kühlluft 52 trifft nach Durchtritt durch den Rotor 30 auf den mittels des Stegs 40 abgedichteten Bereich zwischen der Nabe 36 und dem Rotor 30, aus dem die Kühlluft 52 durch die Öffnungen 50 in Richtung des Kühlernetzes 4 entgegen der Fahrtwindrichtung 10 entweicht.
Mittels geeigneter Ausgestaltung der Ansaugvorrichtung wird in dem radial äußeren Luftführkanal 44 ein im Vergleich zum radial inneren Luftführkanal 42 verringerter Luftdruck erzeugt, so dass die Strömungsgeschwindigkeit der Kühlluft 52 im radial äußeren Luftführkanal 44 erhöht ist. Auch wird mit der Umlenkvorrichtung 54 die Kühlluft 52 derart umgelenkt, dass im Wesentlichen zwei Drittel der in den Elektromotor 14 einströmenden Kühlluft 52 in den radial äußeren Luftführkanal 44 gelenkt wird. Auf diese Weise ist eine vergleichsweise effiziente Kühlung des Elektromotors 14 ermöglicht, insbesondere des Stators 26, wobei zusätzlich der Rotor 30 von innen und nicht nur dessen Oberfläche mit der Kühlluft 52 beaufschlagt ist.
Die in Fig. 3 gezeigte Ausführungsform des Elektromotors 14 unterscheidet sich von der vorhergehenden im Wesentlichen durch die Gestaltung des radial äuße- ren Luftführkanals 44 und der Nabe 36. Diese liegt an dem Gehäuse 24 an, so dass der Schlitz 38 nicht vorhanden ist. Die ringförmige von der Nabe 36 und dem Rotor 30 sowie dem Stator 26 gebildete Kammer, die einen Bereich des äußeren Luftführkanal 44 darstellt, ist mittels Austrittsschlitzen 56 geöffnet, durch die die im radial äußeren Luftführkanal 44 geführte Kühlluft 52 austritt.
Aufgrund der Führung der Kühlluft 52 auf das Kühlernetz 4 zu befindet sich die aus dem Elektromotor 14 austretende Kühlluft 52 in Fahrtwindrichtung 10 vor den Lüfterflügeln des Lüfterrads 16, mittels derer eine Druckdifferenz zwischen den den Elektromotor 14 in Fahrtwindrichtung 10 umgebenden Bereichen ausgebildet wird. Mit anderen Worten herrscht im Bereich des Austritts der Kühlluft 52 durch die Nabe 36 ein geringerer Luftdruck als im Bereich des Eintritts der Kühlluft 52 durch den Deckel 32. Folglich kann die Ansaugvorrichtung, die die Kühlluft 52 durch die Luftführkanäle 42, 44 einsaugt entfallen, was zu einer verringerten Ausdehnung des Gehäuses 24 und der Nabe 36 in Fahrtwindrichtung 10 führt.
Ferner ist die Geschwindigkeit, mit der die Kühlluft 52 durch den Elektromotor 14 strömt, im Wesentlichen lediglich von der mittels des Lüfterrads 16 realisierten Druckdifferenz vorgegeben, die im Vergleich zu einer Innenverrippung der Nabe 36 vergleichsweise drehzahlunabhängig oder im Betrieb des Kühlerlüfters 2 im Wesentlichen konstant ist. Die Druckdifferenz zwischen den beiden Luftführkanälen 42, 44 wird somit lediglich mittels der Umlenkvorrichtung 54 realisiert. Weiterhin ist aufgrund des entfallenen Schlitzes 38 die radiale Ausdehnung des Elektromotors 14 geringer. Infolge dessen ist ein vergleichsweise kompakt bauender Kühlerlüfter 2 zu realisieren.
Als weiterer Unterschied sind Eintrittsöffnungen 58 dargestellt, durch die die Kühlluft 52 durch den Deckel 32 und die Elektronik 34 in den Elektromotor 14 geführt wird. Dies führt zu einem definierten Auftreffen der Kühlluft 52 auf die Umlenkvorrichtung 54, was eine bedarfsgerechte Aufteilung der Kühlluft 52 auf die jeweiligen Luftführkanäle 42, 44 erleichtert. Die Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fachmann hieraus abgeleitet werden, ohne den Gegenstand der Erfindung zu verlassen. Insbesondere sind ferner alle im Zusammenhang mit den einzelnen Ausführungsbeispielen beschriebene Einzelmerkmale auch auf andere Weise miteinander kombinierbar, ohne den Gegenstand der Erfindung zu verlassen.
Bezugszeichenliste
2 Kühlerlüfter
4 Kühlernetz
6 Kühlrohr
8 Verbrennungskraftmaschine
10 Fahrtwindrichtung
12 Lüfter
14 Elektromotor
16 Lüfterrad
18 Kühlerzarge
20 Strebe
22 Rotationsachse
24 Gehäuse
26 Stator
28 Rotorachse
30 Rotor
32 Deckel
34 Elektronik
36 Nabe
38 Schlitz
40 Stegs
42 radial innerer Luftführkanal
44 radial äußerer Luftführkanal
46 Luftspalt
48 Aussparungen
50 Öffnung
52 Kühlluft
54 Umlenkvorrichtung
56 Austrittsschlitz
58 Eintrittsöffnung

Claims

Ansprüche
Kühlerlüfter (2) eines Kraftfahrzeugs, insbesondere Hauptlüfter, mit einem an einer Nabe (36) kraftschlüssig angebundenen Rotor (30) eines Elektromotors (14), durch den zumindest teilweise Kühlluft (52) gelenkt ist, wobei die Kühlluft (52) in zwei zumindest teilweise gegeneinander abgedichteten Luftführkanälen (42, 44) geführt ist.
Kühlerlüfter (2) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass der eine der beiden Luftführkanälen (44) den andern Luftführkanal (42) zumindest teilweise, insbesondere vollständig, radial umgibt.
Kühlerlüfter (2) nach Anspruch 2,
dadurch gekennzeichnet,
dass die Austrittsrichtung der in dem radial inneren Luftführkanal (42) geführten Kühlluft (52) aus dem Elektromotor (14) im Wesentlichen der Eintrittsrichtung in den Elektromotor (14) entspricht.
Kühlerlüfter (2) nach Anspruch 3,
dadurch gekennzeichnet,
dass die Nabe (36) mindestens eine Öffnung (50) aufweist, in die der radial innere Luftführkanal (42) mündet.
Kühlerlüfter (2) nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet, dass die Austrittsrichtung der in dem radial äußeren Luftführkanal (44) geführten Kühlluft (52) aus dem Elektromotor (14) im Wesentlichen gleich einer Fahrtwindrichtung (10) und/oder entgegen der Eintrittsrichtung ist.
6. Kühlerlüfter (2) nach Anspruch 5,
dadurch gekennzeichnet,
dass die Nabe (36) den Rotor (30) unter Bildung eines umlaufenden Schlitzes (38) zumindest teilweise radial umgibt, wobei der radial äußere Luftführkanal (44) in dem Schlitz (38) mündet.
7. Kühlerlüfter (2) nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Eintrittsrichtung der Kühlluft (52) parallel zur Rotationsachse (22) des Rotors (30) ist.
8. Kühlerlüfter (2) nach einem der Ansprüche 1 bis 7,
gekennzeichnet durch
eine Umlenkvorrichtung (54) zur Zuordnung der Kühlluft (52) zu dem jeweiligen Luftführkanal (42, 44) nach Eintritt in den Elektromotor (14).
9. Kühlerlüfter (2) nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass die beiden Luftführkanäle (42, 44) im Bereich des Rotors (30) zueinander parallel sind, insbesondere parallel zur Rotationsachse (22) des Rotors (30).
10. Kühlerlüfter (2) nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
dass der eine der Luftführkanäle (44) zumindest teilweise zwischen dem Rotor (30) und einem Stator (26) und der andere der beiden Luftführkanäle (42) innerhalb des Rotors (30) gebildet ist.
1 1 . Elektromotor (14) eines Kühlerlüfters (2) nach einem der Ansprüche 1 bis 10.
PCT/EP2013/075899 2012-12-08 2013-12-09 Kühlerlüfter eines kraftfahrzeugs und elektromotor WO2014087009A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012024034.1 2012-12-08
DE102012024034.1A DE102012024034A1 (de) 2012-12-08 2012-12-08 Kühlerlüfter eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO2014087009A1 true WO2014087009A1 (de) 2014-06-12

Family

ID=49726783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/075899 WO2014087009A1 (de) 2012-12-08 2013-12-09 Kühlerlüfter eines kraftfahrzeugs und elektromotor

Country Status (2)

Country Link
DE (1) DE102012024034A1 (de)
WO (1) WO2014087009A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002585A1 (fr) * 2017-06-30 2019-01-03 Valeo Systemes Thermiques Hélice pour ventilateur de systéme thermique de véhicule automobile, ventilateur et système thermique comprenant une telle hélice
EP3319210B1 (de) * 2015-12-03 2020-01-15 Mitsubishi Heavy Industries, Ltd. Elektromotorträgermechanismus, verdichter und auflader

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011585A1 (de) * 2014-08-02 2016-02-04 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektrische Maschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB229708A (en) * 1924-02-23 1925-03-26 Rateau Soc Improvements in or relating to electrically driven fans
DE4143383A1 (de) * 1991-07-03 1994-02-24 Licentia Gmbh Axialgebläse, insbesondere zur Kühlung eines dem Kühler eines Fahrzeugs vorgeordneten Kondensators einer Klimaanlage
US6342741B1 (en) * 1999-05-21 2002-01-29 Mitsuba Corporation Cooling structure of fan motor
EP1722462A1 (de) * 2005-05-10 2006-11-15 Siemens Aktiengesellschaft Elektrische Maschine
DE102005049261B3 (de) * 2005-10-14 2007-03-29 Siemens Ag Kühlerlüfter für ein Kraftfahrzeug

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044066A1 (de) * 2000-09-07 2002-04-04 Stribel Gmbh Elektrischer Lüfter
EP1621773B1 (de) 2004-07-30 2013-04-17 Brose Fahrzeugteile GmbH & Co. KG, Würzburg Kühlgebläse mit Elektromotor
DE102010001354A1 (de) * 2009-08-26 2011-03-03 Robert Bosch Gmbh Gebläse
DE102010030949B4 (de) * 2010-07-05 2014-12-31 Hanning Elektro-Werke Gmbh & Co. Kg Elektrische Maschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB229708A (en) * 1924-02-23 1925-03-26 Rateau Soc Improvements in or relating to electrically driven fans
DE4143383A1 (de) * 1991-07-03 1994-02-24 Licentia Gmbh Axialgebläse, insbesondere zur Kühlung eines dem Kühler eines Fahrzeugs vorgeordneten Kondensators einer Klimaanlage
US6342741B1 (en) * 1999-05-21 2002-01-29 Mitsuba Corporation Cooling structure of fan motor
EP1722462A1 (de) * 2005-05-10 2006-11-15 Siemens Aktiengesellschaft Elektrische Maschine
DE102005049261B3 (de) * 2005-10-14 2007-03-29 Siemens Ag Kühlerlüfter für ein Kraftfahrzeug

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3319210B1 (de) * 2015-12-03 2020-01-15 Mitsubishi Heavy Industries, Ltd. Elektromotorträgermechanismus, verdichter und auflader
US10630144B2 (en) 2015-12-03 2020-04-21 Mitsubishi Heavy Industries, Ltd. Electric motor support mechanism, compressor, and turbocharger
WO2019002585A1 (fr) * 2017-06-30 2019-01-03 Valeo Systemes Thermiques Hélice pour ventilateur de systéme thermique de véhicule automobile, ventilateur et système thermique comprenant une telle hélice
FR3073582A1 (fr) * 2017-06-30 2019-05-17 Valeo Systemes Thermiques Helice pour ventilateur de systeme thermique de vehicule automobile, ventilateur et systeme thermique comprenant une telle helice
CN110998098A (zh) * 2017-06-30 2020-04-10 法雷奥热系统公司 机动车辆热系统的风扇的螺旋桨、包括这种螺旋桨的风扇及热系统
US11078920B2 (en) 2017-06-30 2021-08-03 Valeo Systemes Thermiques Propeller for fan of a thermal system of a motor vehicle, fan and thermal system comprising such a propeller
CN110998098B (zh) * 2017-06-30 2021-09-28 法雷奥热系统公司 机动车辆热系统的风扇的螺旋桨、包括这种螺旋桨的风扇及热系统

Also Published As

Publication number Publication date
DE102012024034A1 (de) 2014-06-12

Similar Documents

Publication Publication Date Title
EP2691655B1 (de) Diagonalventilator
DE102013200105A1 (de) Kühlung für Stirnräume einer geschlossenen elektrischen Maschine
WO2005013459A1 (de) Elektrische maschine mit läuferkühlung und entsprechendes kühlungsverfahren
EP2470793A2 (de) Gebläse
WO2014019853A2 (de) Aktive kühlung eines motors mit integriertem kühlkanal
WO2021078458A1 (de) Stator für eine elektrische maschine
EP2930827B1 (de) Elektrische Maschine mit Strömungskühlung
DE202011110551U1 (de) Kühlerzarge und Kühlerverbund
DE112016002636T5 (de) Elektrische Maschine für ein Fahrzeug
WO2014087009A1 (de) Kühlerlüfter eines kraftfahrzeugs und elektromotor
DE102014106455A1 (de) Elektromaschine für den Einsatz im KFZ-Bereich
EP2591542B1 (de) Elektrische maschine
DE3102333C2 (de) Außenläufermotor
WO2009095119A2 (de) Elektrische maschine, insbesondere drehstrommaschine mit schleifringläufer
DE102009040545A1 (de) Zentrifugalgebläse
WO2015144733A1 (de) Elektromotoranordnung, fahrzeug mit einer elektromotoranordnung
DE4441649B4 (de) Gebläse, insbesondere Axialgebläse für Kraftfahrzeuge
DE102018214782A1 (de) Lüfterzarge eines Kraftfahrzeugs
DE102011087273A1 (de) Elektrische Maschine
DE102008063921A1 (de) Kühleinheit
DE102008042292A1 (de) Kommutatorlüftermotor
DE2558405C3 (de) Geschlossene, oberflächenbelüftete elektrische Maschine
EP3577745B1 (de) Kühlung einer elektrischen maschine
DE102014106453A1 (de) Elektromaschine für den Einsatz im KFZ-Bereich
EP3804095B1 (de) Rotor für eine elektrische maschine, insbesondere eines kraftfahrzeugs, sowie elektrische maschine, insbesondere für ein kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13802363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13802363

Country of ref document: EP

Kind code of ref document: A1