WO2014086159A1 - 一种补偿滤波器的实现方法及信号带宽补偿的装置 - Google Patents

一种补偿滤波器的实现方法及信号带宽补偿的装置 Download PDF

Info

Publication number
WO2014086159A1
WO2014086159A1 PCT/CN2013/080501 CN2013080501W WO2014086159A1 WO 2014086159 A1 WO2014086159 A1 WO 2014086159A1 CN 2013080501 W CN2013080501 W CN 2013080501W WO 2014086159 A1 WO2014086159 A1 WO 2014086159A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
signal
filter
parameter
conversion
Prior art date
Application number
PCT/CN2013/080501
Other languages
English (en)
French (fr)
Inventor
李军
李先锋
庞彦钊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13786406.2A priority Critical patent/EP2768194B1/en
Priority to US14/198,919 priority patent/US9048795B2/en
Publication of WO2014086159A1 publication Critical patent/WO2014086159A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3294Acting on the real and imaginary components of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for implementing a compensation filter and a device for signal bandwidth compensation. Background technique
  • the filtering characteristics of the communication device have a rated bandwidth, and the signal exceeding the rated bandwidth portion is not processed, causing the useful signal to be attenuated and affecting the normal transmission of the signal.
  • this problem is more common. There is no corresponding device in the prior art to solve this problem. Summary of the invention
  • the technical problem to be solved by the embodiments of the present invention is to provide a method for implementing a compensation filter and a device for compensating for a signal bandwidth, which solves the problem of lack of a compensation device in the prior art.
  • a method for implementing a compensation filter including: obtaining a first parameter matrix having a minimum number of columns according to a target performance index, an order of the first parameter matrix being 2M + 1; determining a parameter matrix of the compensation filter The order is 2N + 1; the parameter matrix of the filtering characteristics of the device to be compensated is convoluted to obtain a transformation matrix of order 2M + 2N + 1; the transformation matrix is converted into 2N + 1 column, 2M + 1 row Second parameter matrix;
  • represents the parameter matrix of the compensation filter
  • w [..., w
  • g represents the first parameter matrix
  • ? [?— ⁇ ,?— M+1 , ⁇ . , q M f
  • X denotes the second parameter matrix, -M+N+l
  • the conversion matrix is converted to a 2N + 1 column, a 2M + 1 row second
  • the parameter matrix of the filtering characteristic of the device to be compensated is convoluted, and the order is obtained.
  • the conversion matrix of 2M + 2N + 1 specifically includes: if the matrix order obtained by convolving the parameter matrix of the filtering characteristic of the device to be compensated is greater than 2M + 2N + 1 , the same number of columns are respectively removed from both ends, and obtained a conversion matrix of order 2M + 2N + 1; if the matrix order obtained by convolving the parameter matrix of the filter characteristic of the device to be compensated is less than 2M + 2N + 1 , the zeros of the same number of columns are respectively added at both ends , obtain a transformation matrix of order 2M + 2N + 1.
  • a second aspect provides a signal bandwidth compensation apparatus, including a digital predistortion filtering unit, a compensation filter, a conversion unit, and a power amplifier; a digital predistortion filtering unit, configured to receive an original signal, and perform predistortion processing on the original signal.
  • a compensation filter for receiving the predistortion signal from the digital predistortion filtering unit, compensating for distortion caused by the transmission of the predistortion signal to the power amplifier, and outputting compensation to the conversion unit a pre-distortion signal; a conversion unit, configured to receive the compensated pre-distortion signal from the compensation filter, convert the compensated pre-distortion signal into an analog signal, perform a mixing process, and output the mixed frequency to the power amplifier a predistortion signal; a power amplifier, configured to receive the mixed predistortion signal from the conversion unit, amplify the mixed predistortion signal, and output the amplified signal;
  • the parameters of the compensation filter are obtained by the following formula:
  • the first parameter matrix is the parameter matrix with the smallest number of columns obtained according to the target performance index;
  • X is the second parameter matrix,
  • the second parameter matrix is converted from the conversion matrix
  • the matrix is a matrix obtained by convolving the parameter matrix according to the filtering characteristics of the devices in the conversion unit, and the order of the conversion matrix is 2M + 2N + 1; x' is the conjugate transposed matrix of X.
  • the conversion matrix is obtained by convolving the parameter matrix according to the filtering characteristic of the device in the conversion unit.
  • the matrix, the order of the conversion matrix is 2M + 2N + 1, which specifically includes: if the matrix order obtained by convolving the parameter matrix of the filtering characteristic of the device to be compensated is greater than 2 + 2N + 1 , then respectively from two The same number of columns is removed, and a transformation matrix of order 2M + 2N + 1 is obtained; if the matrix order obtained by convolving the parameter matrix of the filtering characteristics of the device to be compensated is less than 2 + 2N + 1 , respectively The end complements the zero of the same number of columns to obtain a transformation matrix of order 2M + 2N + 1.
  • the target performance indicator includes the mixed
  • the bandwidth of the predistortion signal is greater than or equal to the bandwidth of the triple amplified signal
  • the amplitude of the signal in the passband of the filter formed by the compensation filter and the conversion unit is less than or equal to ldB
  • the filter formed by the compensation filter and the conversion unit The group delay fluctuation is less than or equal to 5 ns.
  • the target performance indicator further includes: a filter formed by the compensation filter and the conversion unit The difference between the stopband attenuation and the passband attenuation is greater than or equal to 20 dB.
  • a method for implementing a compensation filter provided by an embodiment of the present invention solves the problem of lack of a compensation device in the prior art.
  • the compensation filter compensates for useful signals that are attenuated beyond the rated bandwidth of the device to ensure proper signal transmission.
  • FIG. 1 is a flow chart of a first embodiment of a method for implementing a compensation filter according to the present invention
  • FIG. 2 is a schematic structural view of a signal predistortion device in the prior art
  • FIG. 3 is a schematic structural diagram of a first embodiment of a device for signal bandwidth compensation according to the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of a device for signal bandwidth compensation according to the present invention. detailed description
  • FIG. 1 is a flow chart of a first embodiment of a method for implementing a compensation filter according to the present invention. As shown in the figure, the implementation method of the compensation filter includes:
  • Step S101 Obtain a first parameter matrix with the smallest number of columns according to the target performance indicator, and the order of the first parameter matrix is 2M + 1.
  • the target performance indicator is the performance index that the compensation filter needs to achieve after compensating for the device to be compensated.
  • Target performance indicators can be determined based on actual needs.
  • the first parameter matrix can be obtained according to the target performance indicator.
  • the first parameter matrix can be directly generated by using software such as MATLAB or other tools.
  • the order of the first parameter matrix is determined mainly by performance metrics such as bandwidth, in-band flatness and group delay, and attenuation in the out-of-band and in-band. For example: If the in-band flatness is less than ldB, the matrix needs 20 steps; if the in-band flatness is less than 3dB, the matrix only needs 10 steps.
  • Step S102 determining that the order of the parameter matrix of the compensation filter is 2N+1;
  • Step S103 Convolving a parameter matrix of a filter characteristic of the device to be compensated, and obtaining a conversion matrix having an order of 2M + 2N + 1;
  • the parameter matrix of the filtering characteristics of the device to be compensated can be obtained by vector scanning of each device in the device to be compensated, or according to the device data provided by the manufacturer. After obtaining the parameter matrix of the filtering characteristics of the device to be compensated, the parameter matrix is convoluted to obtain the order
  • Step S104 Convert the conversion matrix into a second parameter matrix of 2N + 1 column and 2M + 1 row;
  • Step S105 Calculate the parameters of the compensation filter by the following formula:
  • w represents the parameter matrix of the compensation filter
  • w [ W — ...... , w N f
  • g the first parameter matrix
  • ⁇ ⁇ +1 , ⁇ . , q , x represents the second parameter matrix
  • the compensation filter is placed before the device to be compensated, and the combination of the filter characteristic of the compensation filter and the filter characteristic of the device to be compensated is equivalent to the filter characteristic of the target filter, if the compensation filter, the device to be compensated, and the target filter
  • the filter characteristics of the device are expressed in the frequency domain, then
  • g is the parameter matrix of the target filter in the time domain
  • _y is the parameter matrix of the device to be compensated in the time domain
  • is the parameter matrix of the compensation filter in the time domain.
  • w (x'-x) -1 ⁇ xq ( 6 )
  • g is the parameter matrix of the target filter, that is, the first parameter matrix in the above embodiment
  • X is the operation matrix, that is, the second in the above embodiment Parameter matrix
  • is the parameter matrix of the compensation filter, that is, the parameter matrix of the compensation filter in the above embodiment
  • _y is the parameter matrix of the device to be compensated, that is, the transformation matrix in the above embodiment
  • x' is X Conjugate transposed matrix.
  • the compensation filter solves the problem of the lack of compensation devices in the prior art.
  • the compensation filter compensates for useful signals that are attenuated beyond the rated bandwidth of the device, ensuring proper transmission of the signal.
  • step S103 may specifically include:
  • the step S104 may further include:
  • the number of columns of the second parameter matrix is the same as the order of the parameter matrix of the compensation filter.
  • the compensation filter solves the problem of the lack of compensation devices in the prior art.
  • the compensation filter compensates for useful signals that are attenuated beyond the rated bandwidth of the device, ensuring proper transmission of the signal.
  • the present invention further provides an apparatus implementation for signal bandwidth compensation.
  • FIG. 2 is a schematic structural diagram of a signal predistortion device in the prior art.
  • the power amplifier 305 cannot receive the digital signal. Therefore, the predistortion signal output by the digital predistortion filtering unit 301 needs to undergo the conversion by the digital to analog conversion unit 302, and then the baseband signal output from the digital to analog conversion unit 302 is modulated to the intermediate frequency by the baseband modulator 303.
  • the RF signal is then passed through the mixer 304 to become the RF signal of the target frequency band and sent to the power amplifier 305.
  • the baseband modulator 303, and the mixer 304 all have nominal bandwidths, signals outside the nominal bandwidth portion are not processed. Therefore, part of the predistortion signal outputted by the digital predistortion filtering unit 301 is cut off, so that part of the signal distortion occurs in the predistortion signal entering the power amplifier 305, causing the distortion of the power amplifier 305 when the amplifier is amplified. The distorted signal does not cancel the nonlinearity of the power amplifier 305, forming a nonlinear residual, which interferes with the adjacent channel signal and also affects the signal in the band.
  • FIG. 3 is a schematic structural diagram of a first embodiment of a signal bandwidth compensation apparatus according to the present invention.
  • the signal bandwidth compensation device 40 includes a digital predistortion filtering unit 401, a compensation filter 402, a conversion unit 403, and a power amplifier 404.
  • the digital predistortion filtering unit 401 receives the original signal, performs predistortion processing on the original signal, and outputs a predistortion signal to the compensation filter 402.
  • the compensation filter 402 receives the predistortion signal from the digital predistortion filtering unit 401, compensates for distortion caused by the transmission of the predistortion signal to the power amplifier 404, and outputs the compensated predistortion signal to the conversion unit 403.
  • the converting unit 403 receives the compensated predistortion signal from the compensation filter 402, converts the compensated predistortion signal into an analog signal, performs a mixing process, and outputs the mixed predistortion signal to the power amplifier 404.
  • the power amplifier 404 is for receiving the mixed predistortion signal from the conversion unit 404, amplifying the mixed predistortion signal, and outputting the amplified signal.
  • the parameters of the compensation filter 402 are obtained by the following formula:
  • is the parameter matrix of the compensation filter
  • w [w - ..., w, w has an order of 2N + 1
  • q is the first parameter matrix
  • ? [?_ M ,?_ M+1 , . , q M f , g has an order of 2M + 1
  • the first parameter matrix is the parameter matrix with the smallest number of columns obtained according to the target performance index.
  • X is the second parameter matrix
  • the matrix is a matrix obtained by convolving the parameter matrix according to the filtering characteristics of the devices in the conversion unit.
  • the order of the conversion matrix is 2M + 2N + 1
  • ⁇ ' is the conjugate transposed matrix of X.
  • the digital predistortion filtering unit 401 and the digital to analog conversion unit 403 A compensation filter 402 is provided between them. A useful signal that is attenuated beyond the nominal bandwidth of the device is compensated by the compensation filter 402 to ensure proper transmission of the signal.
  • FIG. 4 is a schematic structural diagram of a second embodiment of the apparatus for compensating for signal bandwidth of the present invention.
  • the signal bandwidth compensation device 50 includes a digital predistortion filtering unit 501, a compensation filter 502, a conversion unit 503, and a power amplifier 504.
  • the conversion unit 503 includes a first digital to analog converter 5031, a second digital to analog converter 5032, a baseband modulator 5033, and a first mixer 5034.
  • the digital predistortion filtering unit 401 receives the original signal, performs predistortion processing on the original signal, and outputs a predistortion signal to the compensation filter 402.
  • the compensation filter 402 receives the predistortion signal from the digital predistortion filtering unit 401, compensates for distortion caused by the transmission of the predistortion signal to the first power amplifier 405, and respectively to the first digital to analog converter 5031 and the second digital to analog mode.
  • the converter 5032 outputs the compensated predistortion I signal and the predistortion Q signal.
  • the first digital to analog converter 5031 converts the predistortion I signal into a predistortion analog I signal and outputs it to the baseband modulator 5033.
  • the second digital to analog converter 5032 converts the predistortion Q signal into a predistorted analog Q signal and outputs it to the baseband modulator 5033.
  • the baseband modulator 5033 modulates the predistortion analog Q signal and the predistortion analog I signal to generate a predistortion analog signal, and outputs the one predistortion analog signal to the first mixing module 5034.
  • the first mixing module 5034 converts the one analog signal to the target frequency band to obtain a mixed pre-distorted signal, and outputs the signal to the power amplifier 504.
  • the power amplifier 504 receives the mixed predistortion signal from the first mixing module 5034, amplifies the mixed predistortion signal, and outputs the amplified signal.
  • the parameters of the compensation filter 502 are obtained by the following formula:
  • is the parameter matrix of the compensation filter 502
  • w [w - ..., w, the order of w is 2N + ⁇
  • g is the first parameter matrix
  • ? ⁇ ,?— M+1 , ⁇ . , q M f , g has an order of 2M + 1.
  • the first parameter matrix is a parameter matrix with the smallest number of columns obtained according to the target performance index. Target performance indicators can be pre-defined according to actual needs.
  • the target performance indicator includes that the bandwidth of the pre-distorted signal after mixing is greater than or equal to the bandwidth of the signal after three times of amplification, and the compensation filter 402 and the rotation
  • the amplitude of the signal in the passband of the filter formed by the unit 403 is less than or equal to ldB, and the group delay of the filter formed by the compensation filter and the conversion unit is less than or equal to 5 ns.
  • the target performance indicator may further include a difference between the stop band attenuation and the pass band attenuation of the filter formed by the compensation filter 402 and the conversion unit 403 being greater than or equal to 20 dB.
  • the conversion matrix is a matrix obtained by convolving the parameter matrix of the filtering characteristics of the device in the conversion unit 503, and the order of the conversion matrix is 2M + 2N + 1.
  • Parameter calculation formula compensation filter 502 ⁇ : ⁇ ' ⁇ ') - can be found in the origin of a compensation filter implementation of the first embodiment, here, not a repeat.
  • the digital predistortion filtering unit 501 includes a digital predistortion filter 5011 and a digital predistortion coefficient calculator 5012.
  • the device 50 also includes a feedback unit 506.
  • the feedback unit 506 includes a second mixer 5061, a first low pass filter 5062, a second low pass filter 5063, a first analog to digital converter 5064, and a second analog to digital converter 5065.
  • the second mixer 5061 receives the amplified signal of the power amplifier 504, and divides the amplified signal to obtain an analog I signal and an analog Q signal, and respectively to the first low pass filter 5062 and the first
  • the second low pass filter 5063 outputs an analog I signal and an analog Q signal.
  • the first low pass filter 5062 receives the analog I signal of the second mixer 5061, performs low pass filtering on the analog I signal, obtains a low pass filtered analog I signal, and outputs a low pass to the first analog to digital converter 5064. Filtered analog I signal.
  • the first analog to digital converter 5064 receives the low pass filtered analog I signal, converts the low pass filtered analog I signal into a digital I signal, and outputs it to the digital predistortion coefficient calculator 5012.
  • the second low pass filter 5063 receives the analog Q signal of the second mixer 5061, performs low pass filtering on the analog Q signal, obtains the low pass filtered analog Q signal, and outputs the low to the second analog to digital converter 5065. Filtered analog Q signal.
  • the second analog to digital converter 5065 receives the low pass filtered analog Q signal, converts the low pass filtered analog Q signal into a digital Q signal, and outputs it to the digital predistortion coefficient calculator 5012.
  • the digital predistortion system calculator 5012 receives the digital signal of the first analog to digital converter 5064 and the digital Q signal of the second analog to digital converter 5065, and also receives the original signal, and based on the original signal, the digital Q signal, and the digital I signal.
  • the predistortion coefficient is calculated, and the predistortion coefficient is output to the digital predistortion filter 5011.
  • the digital predistortion filter 5011 receives the original signal, performs predistortion processing on the original signal based on the predistortion coefficient, and outputs a predistortion signal to the compensation filter 502.
  • the device 50 may not include the feedback unit 506.
  • a predefined pre-distortion coefficient is set in advance, and the digital pre-distortion coefficient calculator 5012 directly inputs the predefined pre-distortion coefficient into the digital pre-distortion. Filter 5011.
  • the digital predistortion system calculator 5012 is set at the receiving end (not shown), the receiving end calculates the predistortion coefficient according to the received signal and the ideal signal, and adds the predistortion coefficient to the service signal, and then passes through the extraction module (Fig. The predistortion coefficient is extracted from the traffic signal and output to the digital predistortion filter 5011.
  • a compensation filter 502 is provided between the digital predistortion filtering unit 501 and the converting unit 503.
  • the compensating filter 502 compensates for useful signals that are attenuated beyond the device's nominal bandwidth to ensure proper signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种补偿滤波器的实现方法及信号带宽补偿的装置,装置包括数字预失真滤波单元、补偿滤波器、转换单元以及功率放大器;数字预失真滤波单元,接收原始信号,对原始信号进行预失真处理,以及向补偿滤波器输出预失真信号;补偿滤波器,接收预失真信号,补偿预失真信号传输到功率放大器的过程中所造成的失真,以及向转换单元输出补偿后的预失真信号;转换单元,接收补偿后的预失真信号,将补偿后的预失真信号转换成模拟信号,并进行混频处理,以及向功率放大器输出混频后的预失真信号;功率放大器,接收混频后的预失真信号,对混频后的预失真信号进行放大,以及输出放大后的信号。通过上述方式,本发明能够保证信号的正常传输。

Description

一种补偿滤波器的实现方法及信号带宽补偿的装置 技术领域
本发明涉及通信领域, 特别是涉及一种补偿滤波器的实现方法及信号带 宽补偿的装置。 背景技术
实际应用的通信网络中, 通信器件的滤波特性具有额定的带宽, 对于超 出额定带宽部份的信号不做处理, 导致有用信号被衰减, 影响信号的正常传 输。 特别是模拟器件, 该问题更为普遍。 现有技术中没有相应的器件解决该 问题。 发明内容
本发明实施方式主要解决的技术问题是提供一种 卜偿滤波器的实现方法 及信号带宽补偿的装置, 解决现有技术中缺少补偿器件的问题。
本发明的实施方式釆用如下技术方案:
第一方面, 提供一种补偿滤波器的实现方法, 包括: 根据目标性能指标 获得列数最少的第一参数矩阵, 第一参数矩阵的阶数为 2M + 1 ; 确定补偿滤波 器的参数矩阵的阶数为 2N + 1 ; 对所要补偿的装置的滤波特性的参数矩阵求卷 积, 获得阶数为 2M + 2N + 1的转换矩阵; 将转换矩阵转换为 2N + 1列、 2M + 1行 的第二参数距阵;
通过下述公式计算补偿滤波器的参数:
w = (x'-x)-1 · x q;
其中, ^表示补偿滤波器的参数距阵, w = [ ...... ,w ; g表示第一 参 数 矩 阵 , ? = [?—Μ,?— M+1,―. ,qM f ; X 表 示 第 二 参 数 矩 阵 , -M+N+l,
X = x'表示 x的共轭转置矩阵, 结合第一方面实现方式, 在第一方面的第一种可能实现方式中, 将转换 矩阵转换为 2N + 1列、 2M + 1行的第二参数距阵, 具体包括: 自转换矩阵的第 个元素起, 取 2N + 1个元素, 作为第二参数距阵的第 行, 0 < <= 2Μ + 1 , 为 正整数。
结合第一方面实现方式或者第一方面的第一种可能实现方式, 在第一方 面的第二种可能实现方式中, 对所要补偿的装置的滤波特性的参数矩阵求卷 积, 获得阶数为 2M + 2N + 1的转换矩阵, 具体包括: 若对所要补偿的装置的滤 波特性的参数矩阵求卷积获得的矩阵阶数大于 2M + 2N + 1 , 则分别从两端去除 相同列数, 获得阶数为 2M + 2N + 1的转换矩阵; 若对所要补偿的装置的滤波特 性的参数矩阵求卷积获得的矩阵阶数小于 2M + 2N + 1 , 则分别在两端补充相同 列数的零, 获得阶数为 2M + 2N + 1的转换矩阵。
第二方面, 提供一种信号带宽补偿的装置, 包括包括数字预失真滤波单 元、 补偿滤波器、 转换单元以及功率放大器; 数字预失真滤波单元, 用于接 收原始信号, 对原始信号进行预失真处理, 以及向补偿滤波器输出预失真信 号; 补偿滤波器, 用于从数字预失真滤波单元接收预失真信号, 补偿预失真 信号传输到功率放大器的过程中所造成的失真, 以及向转换单元输出补偿后 的预失真信号; 转换单元, 用于从补偿滤波器接收补偿后的预失真信号, 将 补偿后的预失真信号转换成模拟信号, 并进行混频处理, 以及向功率放大器 输出混频后的预失真信号; 功率放大器, 用于从转换单元接收混频后的预失 真信号, 对混频后的预失真信号进行放大, 以及输出放大后的信号;
补偿滤波器的参数通过以下公式得到:
w = (x'-x)-1 · x q;
其中, w为补偿滤波器的参数距阵, w = [w— ...... , wN , w的阶数为 2N + 1 ; q 为第一参数矩阵, ? = [?_M,?_M+1, ..... ,qM f , g的阶数为 2M + 1 ; 第一参数距阵是 根据目标性能指标获得的列数最少的参数矩阵; X为第二参数距阵,
Figure imgf000005_0001
X: ; 第二参数距阵由转换距阵转换得到; 转换
X, X,
距阵是根据转换单元中器件的滤波特性的参数矩阵求卷积得到的矩阵, 转换 距阵的阶数为 2M + 2N + 1 ; x'为 X的共轭转置矩阵。
结合第二方面实现方式, 在第二方面的第一种可能实现方式中, 第二参 数距阵由转换距阵转换得到, 具体包括: 第二参数矩阵的第 行为转换矩阵的 第 个元素起, 取 2N + 1个元素构成, 0 < <= 2Μ + 1 , 为正整数。
结合第二方面实现方式或者第二方面的第一种可能实现方式, 在第二方 面的第二种可能实现方式中, 转换距阵是根据转换单元中器件的滤波特性的 参数矩阵求卷积得到的矩阵, 转换距阵的阶数为 2M + 2N + 1 , 具体包括: 若对 所要补偿的装置的滤波特性的参数矩阵求卷积获得的矩阵阶数大于 2 + 2N + 1 , 则分别从两端去除相同列数, 获得阶数为 2M + 2N + 1的转换矩阵; 若对所要补偿的装置的滤波特性的参数矩阵求卷积获得的矩阵阶数小于 2 + 2N + 1 , 则分别在两端补充相同列数的零, 获得阶数为 2M + 2N + 1的转换 矩阵。
结合第二方面实现方式、 第二方面的第一种可能实现方式或者第二方面 的第二种可能实现方式, 在第二方面的第三种可能实现方式中, 目标性能指 标包括混频后的预失真信号的带宽大于等于三倍放大后的信号的带宽、 补偿 滤波器与转换单元形成的滤波器的通带内的信号幅值波动小于等于 ldB , 以 及补偿滤波器与转换单元形成的滤波器的群延时波动小于等于 5ns。
结合第二方面的第三种可能实现方式, 在第二方面的第四种可能实现方 式中, 目标性能指标进一步包括: 补偿滤波器与转换单元形成的滤波器的的 阻带衰减与通带衰减之差大于等于 20dB。
本发明实施方式提供的一种补偿滤波器的实现方法, 解决现有技术中缺 少补偿器件的问题。 通过补偿滤波器补偿超出器件额定带宽而被衰减的有用 信号, 保证信号的正常传输。 附图说明
图 1是本发明补偿滤波器的实现方法第一实施方式的流程图;
图 2是现有技术中信号预失真装置的结构示意图;
图 3是本发明信号带宽补偿的装置第一实施方式的结构示意图;
图 4是本发明信号带宽补偿的装置第二实施方式的结构示意图。 具体实施方式
请参阅图 1 ,图 1是本发明补偿滤波器的实现方法第一实施方式的流程图。 如图所示, 所述补偿滤波器的实现方法包括:
步骤 S101 : 根据目标性能指标获得列数最少的第一参数矩阵, 第一参数 矩阵的阶数为 2M + 1。
目标性能指标为补偿滤波器对所要补偿的装置进行补偿后, 需要达到的 性能指标。 目标性能指标可根据实际需求确定。
在确定目标性能指标后, 可以根据目标性能指标获得第一参数矩阵。 本 实施方式中可直接使用 MATLAB等软件或者其它工具生成第一参数矩阵。 而 第一参数矩阵的阶数, 主要根据带宽、 带内平坦度和群延时, 以及带外和带 内的衰减等性能指标确定的。 例如: 如果要求带内平坦度小于 ldB , 矩阵需 要 20阶; 如果带内平坦度小于 3dB , 矩阵仅需要 10阶。
步骤 S102: 确定补偿滤波器的参数矩阵的阶数为 2N+ 1 ;
补偿滤波器的参数矩阵的阶数越高, 补偿效果越好, 但硬件成本也越高。 在实际应用中, 在成本允许的范围内, 尽可能增大补偿滤波器的参数矩阵的 阶数。
步骤 S103: 对所要补偿的装置的滤波特性的参数矩阵求卷积, 获得阶数 为 2M + 2N + 1的转换矩阵;
所要补偿的装置的滤波特性的参数矩阵可通过对所要补偿的装置内的各 器件进行矢量扫描得到, 或者根据厂家提供的器件资料得到。 在得到所要补 偿的装置的滤波特性的参数矩阵后, 将参数矩阵求卷积后, 得到阶数为
2M + 2N + 1的转换矩阵。
步骤 S104: 将转换矩阵转换为 2N + 1列、 2M + 1行的第二参数距阵; 步骤 S105: 通过下述公式计算补偿滤波器的参数:
w = (χ'·χ)— 1. x q; ( 1 )
w表示补偿滤波器的参数距阵, w = [W— ...... ,wNf , g表示第一参数矩 阵 , = [υΜ+1,―. ,q , x 表 示 第 二 参 数 矩 阵 ,
-Μ+Ν+1,
X = , χ'表示 的共轭转置矩阵, 对于补偿滤波器的参数的计算公式 ^ ^X^X. X')-1是由以下方法推导得到 的:
其中, 补偿滤波器设置于所要补偿的装置之前, 补偿滤波器的滤波特性 与所要补偿的装置的滤波特性的组合相当于目标滤波器的滤波特性, 若补偿 滤波器、 所要补偿的装置以及目标滤波器的滤波特性均用频域表示, 则
Q = Y-W, (2) 其中, ρ为频域上目标滤波器的参数;; r为频域上所要补偿的装置的参数, w为频域上补偿滤波器的参数。
频域的乘积转换到时域可以用卷积形式表示, 为: qm = ∑ m-n^n ' «的取值范围为 - 到 (3) 其中, g为时域上目标滤波器的参数矩阵; _y为时域上所要补偿的装置的 参数矩阵; ^为时域上补偿滤波器的参数距阵。
假设补偿滤波器的参数矩阵 w的阶数 n = 2N+\, n的取值范围为 - N到 N; 目标滤波器的参数矩阵 g的阶数 = 2M + l, 的取值范围为 -M到 M; 则所要 补偿的装置的参数矩阵;的阶数为 2M + 2N + , 该阶数的取值范围为 -M-N到 M + N。 公式(3 )可以简化为: qm = ∑ ' ∞的取值范围为 - M到 M; (4) 根据卷积运算规则, 将公式(4 ) 中阶数为 2M + 2N + 1的所要补偿的装置 的参数矩阵 _y转换为 2M + 1行、 2N + 1列的运算矩阵 X , 则公式(4 )转换为: q = x-w ( 5 ) 进一步的, 对公式(5)进行推导:
x、'q = x -x-w
(xf · x)"1 'X - q-w
从而得到补偿滤波器的参数的计算公式:
w = (x'-x)-1 · x q ( 6 ) 其中, g为目标滤波器的参数矩阵, 即上述实施方式中的第一参数矩阵; X为运算矩阵, 即上述实施方式中的第二参数矩阵; ^为补偿滤波器的参数距 阵, 即上述实施方式中的补偿滤波器的参数距阵; _y为所要补偿的装置的参数 矩阵, 即上述实施方式中的转换矩阵; x'为 X的共轭转置矩阵。
在本发明实施方式中, 补偿滤波器解决现有技术中缺少补偿器件的问题。 通过补偿滤波器补偿超出器件额定带宽而被衰减的有用信号, 保证信号的正 常传输。
另一实施方式中,基于上述实施方式中的步骤 S101至步骤 S105,进一步 的, 步骤 S103可以具体包括:
对所要补偿的装置的滤波特性的参数矩阵求卷积获得原始矩阵, 判断原 始转换矩阵的阶数是否大于 2M + 2N + 1 , 若原始转换矩阵的阶数大于 2 + 2N + 1 , 则分别从两端去除相同列数, 获得阶数为 2M + 2N + 1的转换矩阵; 若转换矩阵的矩阵阶数小于 2M + 2N + 1 , 则分别在两端补充相同列数的零, 获 得阶数为 2M + 2N + 1的转换矩阵; 若原始转换矩阵的阶数等于 2M + 2N + 1 , 则 将原始转换矩阵作为阶数为 2Μ + 2N + 1的转换矩阵。
另一实施方式中,基于上述实施方式中的步骤 S101至步骤 S105 ,进一步 地, 步骤 S104可以具体包括:
自转换矩阵的第 个元素起,取 2N + 1个元素,作为第二参数距阵的第 行; 0 < / <= 2 + 1 , 为正整数。 从而获得 2N + 1列、 2M + 1行的第二参数距阵。
通过对转换矩阵转换第二参数距阵, 使得第二参数距阵的列数与补偿滤 波器的参数矩阵的阶数相同。
在本发明实施方式中, 补偿滤波器解决现有技术中缺少补偿器件的问题。 通过补偿滤波器补偿超出器件额定带宽而被衰减的有用信号, 保证信号的正 常传输。
本发明又提供一种信号带宽补偿的装置实施方式。 在进行信号带宽补偿 的装置说明之前, 需要说明的是: 请参阅图 2 , 图 2是现有技术中信号预失真 装置的结构示意图。 功率放大器 305 不能接收数字信号, 因此, 数字预失真 滤波单元 301输出的预失真信号需要经历数模转换单元 302转换, 再经过基 带调制器 303将数模转换单元 302输出的基带信号调制到中频或射频信号, 再经过混频器 304变成目标频段的射频信号, 送给功率放大器 305。 由于数模 转换单元 302、基带调制器 303和混频器 304均有额定带宽, 对超出额定带宽 部份的信号不以处理。 由此, 会造成数字预失真滤波单元 301 输出的预失真 信号中的部份信号被截断, 使得进入功率放大器 305 的预失真信号出现部份 信号失真, 导致功率放大器 305 进行放大时, 失真的预失真信号没法抵消功 率放大器 305 的非线性, 形成非线性残留, 对邻道信号形成干扰, 同时也会 对带内的信号造成影响。 而在本发明实施方式中,在数字预失真滤波单元 301与数模转换单元 302 之间设置补偿滤波器, 用于补偿超出器件额定带宽而被衰减的有用信号, 保 证信号的正常传输。 详细的, 请参阅图 3 , 图 3是本发明信号带宽补偿装置的 第一实施方式的结构示意图。 如图所示, 信号带宽补偿的装置 40包括数字预 失真滤波单元 401、 补偿滤波器 402、 转换单元 403以及功率放大器 404。
数字预失真滤波单元 401接收原始信号, 并对原始信号进行预失真处理, 以及向补偿滤波器 402输出预失真信号。 补偿滤波器 402从数字预失真滤波 单元 401接收预失真信号, 补偿预失真信号传输到功率放大器 404的过程中 所造成的失真, 以及向转换单元 403输出补偿后的预失真信号。转换单元 403 从补偿滤波器 402接收补偿后的预失真信号, 将补偿后的预失真信号转换成 模拟信号, 并进行混频处理, 以及向功率放大器 404输出混频后的预失真信 号。 功率放大器 404用于从转换单元 404接收混频后的预失真信号, 对混频 后的预失真信号进行放大, 以及输出放大后的信号。
补偿滤波器 402的参数通过以下公式得到:
w = (x'-x)-1 · x q
^为补偿滤波器的参数距阵, w = [w— ...... ,w , w的阶数为 2N + 1 , q 为第一参数矩阵, ? = [?_M,?_M+1, ..... ,qM f , g的阶数为 2M + 1 ; 第一参数距阵是 根据目标性能指标获得的列数最少的参数矩阵, X为第二参数距阵,
X = , 第二参数距阵由转换距阵转换得到, 转换
Figure imgf000010_0001
距阵是根据转换单元中器件的滤波特性的参数矩阵求卷积得到的矩阵, 转换 距阵的阶数为 2M + 2N + 1 , χ'为 X的共轭转置矩阵。
补偿滤波器 402的参数计算公式^ : ^^'^^')-1的理论依据可参阅补偿滤 波器的实现方法第一实施方式, 此处, 不再一赘述。
在本发明实施方式中, 在数字预失真滤波单元 401 与数模转换单元 403 之间设置补偿滤波器 402。通过补偿滤波器 402补偿超出器件额定带宽而被衰 减的有用信号, 保证信号的正常传输。
请参阅图 4 ,图 4是本发明信号带宽补偿的装置第二实施方式的结构示意 图。 如图所示, 信号带宽补偿的装置 50包括包括数字预失真滤波单元 501、 补偿滤波器 502、 转换单元 503以及功率放大器 504。 转换单元 503包括第一 数模转换器 5031、第二数模转换器 5032、基带调制器 5033和第一混频器 5034。
数字预失真滤波单元 401接收原始信号, 并对原始信号进行预失真处理, 以及向补偿滤波器 402输出预失真信号。 补偿滤波器 402从数字预失真滤波 单元 401接收预失真信号, 补偿预失真信号传输到第一功率放大器 405的过 程中所造成的失真,以及分别向第一数模转换器 5031和第二数模转换器 5032 输出补偿后的预失真 I信号和预失真 Q信号。 第一数模转换器 5031将预失真 I信号转换成预失真模拟 I信号, 并输出到基带调制器 5033。 第二数模转换器 5032将预失真 Q信号转换成预失真模拟 Q信号, 并输出到基带调制器 5033。 基带调制器 5033将预失真模拟 Q信号和预失真模拟 I信号, 进行调制生成一 路预失真模拟信号,并将所述一路预失真模拟信号输出到第一混频模块 5034。 第一混频模块 5034将所述一路模拟信号变频到目标频段, 得到混频后的预失 真信号, 并输出到功率放大器 504。 功率放大器 504从第一混频模块 5034接 收混频后的预失真信号, 对混频后的预失真信号进行放大, 以及输出放大后 的信号。
补偿滤波器 502的参数通过以下公式得到:
w = (x'-x)-1 · x q
^为补偿滤波器 502的参数距阵, w = [w— ...... ,w , w的阶数为 2N+ \ , g为第一参数矩阵, ? = Μ,?— M+1,―. ,qM f , g的阶数为 2M + 1。 其中, 第一参数 距阵是根据目标性能指标获得的列数最少的参数矩阵。 目标性能指标可根据 实际需要, 预先定义好。 在本发明实施方式中, 目标性能指标包括混频后的 预失真信号的带宽大于等于三倍放大后的信号的带宽、 补偿滤波器 402 与转 换单元 403形成的滤波器的通带内的信号幅值波动小于等于 ldB, 以及补偿 滤波器与转换单元形成的滤波器的群延时波动小于等于 5ns。 进一步的, 目标 性能指标还可包括补偿滤波器 402与转换单元 403形成的滤波器的的阻带衰 减与通带衰减之差大于等于 20dB。
X为第二参数距阵, x = -M+N+l, , 其中, 第二参数
Figure imgf000012_0001
矩阵的第 行为转换矩阵的第 个元素起, 取 2N+ 1个元素构成的行, 0 < i <= 2M + \ , 为正整数。 转换距阵是根据转换单元 503 中器件的滤波特性 的参数矩阵求卷积得到的矩阵, 并且转换距阵的阶数为 2M + 2N + 1。 值得注意 的是: 若对转换单元 503 中器件的滤波特性的参数矩阵求卷积获得的矩阵 数大于 2M + 2N + 1 , 则分别从两端去除相同列数, 获得阶数为 2M + 2N + 1的转 换矩阵; 若对转换单元 503 中器件的滤波特性的参数矩阵求卷积获得的矩阵 阶数小于 2M + 2N + 1 ,则分别在两端补充相同列数的零,获得阶数为 2M + 2N + 1 的所述转换矩阵。 x'为 的共轭转置矩阵。
补偿滤波器 502的参数计算公式^ : ^^'^^')-1的由来可参阅补偿滤波器 的实现方法第一实施方式, 此处, 不再一赘述。
数字预失真滤波单元 501包括数字预失真滤波器 5011和数字预失真系数 计算器 5012。装置 50还包括反馈单元 506。反馈单元 506包括第二混频器 5061、 第一低通滤波器 5062、 第二低通滤波器 5063、 第一模数转换器 5064和第二 模数转换器 5065。
第二混频器 5061接收功率放大器 504放大后的信号, 并将放大后的信号 的进行分频处理, 得到一路模拟 I信号和一路模拟 Q信号, 以及分别向第一 低通滤波器 5062和第二低通滤波器 5063输出模拟 I信号和模拟 Q信号。 第 一低通滤波器 5062接收第二混频器 5061的模拟 I信号,对模拟 I信号进行低 通滤波, 得到低通滤波后的模拟 I信号 , 并向第一模数转换器 5064输出低通 滤波后的模拟 I信号。 第一模数转换器 5064接收低通滤波后的模拟 I信号, 将低通滤波后的模拟 I信号转换成数字 I信号,并输出到数字预失真系数计算 器 5012。 第二低通滤波器 5063接收第二混频器 5061的模拟 Q信号, 对模拟 Q信号进行进行低通滤波, 得到低通滤波后的模拟 Q信号, 并向第二模数转 换器 5065输出低通滤波后的模拟 Q信号。 第二模数转换器 5065接收低通滤 波后的模拟 Q信号 , 将低通滤波后的模拟 Q信号转成成数字 Q信号 , 并输出 到数字预失真系数计算器 5012。
数字预失真系计算器 5012除了接收第一模数转换器 5064的数字 I信号和 第二模数转换器 5065的数字 Q信号, 还接收原始信号, 并根据原始信号、 数 字 Q信号和数字 I信号计算预失真系数, 以及向数字预失真滤波器 5011输出 预失真系数。 数字预失真滤波器 5011接收原始信号, 并根据预失真系数对原 始信号进行预失真处理, 以及向补偿滤波器 502输出预失真信号。
当然, 装置 50也可不包括反馈单元 506, 预先在数字预失真系数计算单 器 5012中, 设置预定义的预失真系数, 数字预失真系数计算器 5012直接将 预定义的预失真系数输入数字预失真滤波器 5011。 或者, 将数字预失真系计 算器 5012设置于接收端 (图未视), 接收端根据接收的信号与理想信号计算 预失真系数, 并将预失真系数添加到业务信号, 再通过提取模块(图未视) 从业务信号提取预失真系数, 并输出到数字预失真滤波器 5011。
在本发明实施方式中, 在数字预失真滤波单元 501与转换单元 503之间 设置补偿滤波器 502。通过补偿滤波器 502补偿超出器件额定带宽而被衰减的 有用信号, 保证信号的正常传输。
以上所述仅为本发明的实施方式, 并非因此限制本发明的专利范围, 凡 是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或 间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要求 书
1、 一种信号带宽补偿的装置, 其特征在于, 所述装置包括数字预失真滤波 单元、 补偿滤波器、 转换单元以及功率放大器;
所述数字预失真滤波单元, 用于接收原始信号, 对所述原始信号进行预失 真处理, 以及向所述补偿滤波器输出预失真信号;
所述补偿滤波器, 用于从所述数字预失真滤波单元接收所述预失真信号, 补偿所述预失真信号传输到所述功率放大器的过程中所造成的失真, 以及向所 述转换单元输出补偿后的预失真信号;
所述转换单元, 用于从所述补偿滤波器接收所述补偿后的预失真信号, 将 所述补偿后的预失真信号转换成模拟信号, 并进行混频处理, 以及向所述功率 放大器输出混频后的预失真信号;
所述功率放大器, 用于从所述转换单元接收所述混频后的预失真信号, 对 所述混频后的预失真信号进行放大, 以及输出放大后的信号;
所述补偿滤波器的参数通过以下公式得到:
w = (x'-x)-1 · x q;
其中,
w为所述补偿滤波器的参数距阵, w = [w— ...... ,w , w的阶数为 2N + 1 ; g为第一参数矩阵, ? = Μ,?— M+1, ..... ,q , g的阶数为 2M + 1 , 并且所述第一 参数距阵是根据目标性能指标获得的列数最少的参数矩阵;
X为第二参数距阵, x , 所述第二参数距阵
Figure imgf000014_0001
由转换距阵转换得到; 所述转换距阵是根据所述转换单元中器件的滤波特性的 参数矩阵求卷积得到的矩阵, 所述转换距阵的阶数为 2M + 2N + 1 ;
x'为 X的共轭转置矩阵。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第二参数距阵由转换距 阵转换得到, 具体包括:
所述第二参数矩阵的第 i行为所述转换矩阵的第 i个元素起, 取 2N + 1个元素 构成, 0 < i <= 2M + \ , 为正整数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述转换距阵是根据所 述转换单元中器件的滤波特性的参数矩阵求卷积得到的矩阵, 所述转换距阵的 阶数为 2M + 2N + 1 , 具体包括:
若对所要补偿的装置的滤波特性的参数矩阵求卷积获得的矩阵阶数大于 2M + 2N + 1 , 则分别从两端去除相同列数, 获得阶数为 2M + 2N + 1的所述转换矩 阵;
若对所要补偿的装置的滤波特性的参数矩阵求卷积获得的矩阵阶数小于 2 + 2N + 1 , 则分别在两端补充相同列数的零, 获得阶数为 2M + 2N + 1的所述转 换矩阵。
4、 根据权利要求 1、 2或 3所述的装置, 其特征在于, 所述目标性能指标 包括所述混频后的预失真信号的带宽大于等于三倍所述放大后的信号的带宽、 所述补偿滤波器与所述转换单元形成的滤波器的通带内的信号幅值波动小于等 于 ldB,以及所述补偿滤波器与所述转换单元形成的滤波器的群延时波动小于等 于 5ns。
5、 根据权利要求 4所述的装置, 其特征在于, 所述目标性能指标进一步包 括: 所述补偿滤波器与所述转换单元形成的滤波器的的阻带衰减与通带衰减之 差大于等于 20dB。
6、 一种补偿滤波器的实现方法, 其特征在于, 包括:
根据目标性能指标获得列数最少的第一参数矩阵, 所述第一参数矩阵的阶 数为 2M + 1 ;
确定所述补偿滤波器的参数矩阵的阶数为 2N + 1;
对所要补偿的装置的滤波特性的参数矩阵求卷积, 获得阶数为 2M + 2N + 1的 转换矩阵; 将所述转换矩阵转换为 2N + 1列、 2M + 1行的第二参数距阵;
通过下述公式计算所述补偿滤波器的参数:
w = (x'-x)-1 · x q;
其中,
w表示所述补偿滤波器的参数距阵, ^ = [ w , w_N+1 , ...... ,w ;
g表示所述第一参数矩阵, ? = [q_M , q_M+l , ..... , M f; x表示所述第二参数矩阵,
Figure imgf000016_0001
x'表示 X的共轭转置矩阵。
7、 根据权利要求 6所述的方法, 其特征在于, 所述将所述转换矩阵转换为 2N + 1列、 2M + 1行的第二参数距阵, 具体包括:
自所述转换矩阵的第 个元素起, 取 2N + 1个元素, 作为所述第二参数距阵 的第 行, 0 < i <= 2M + \ , 为正整数。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述对所要补偿的装置 的滤波特性的参数矩阵求卷积, 获得阶数为 2M + 2N + 1的转换矩阵, 具体包括: 若对所要补偿的装置的滤波特性的参数矩阵求卷积获得的矩阵阶数大于 2 + 2N + 1 , 则分别从两端去除相同列数, 获得阶数为 2M + 2N + 1的所述转换矩 阵;
若对所要补偿的装置的滤波特性的参数矩阵求卷积获得的矩阵阶数小于 2 + 2N + 1 , 则分别在两端补充相同列数的零, 获得阶数为 2M + 2N + 1的所述转 换矩阵。
PCT/CN2013/080501 2012-12-03 2013-07-31 一种补偿滤波器的实现方法及信号带宽补偿的装置 WO2014086159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13786406.2A EP2768194B1 (en) 2012-12-03 2013-07-31 Implementation method of compensating filter and signal bandwidth compensating apparatus
US14/198,919 US9048795B2 (en) 2012-12-03 2014-03-06 Method for implementing compensation filter and apparatus for signal bandwidth compensation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210508814.7 2012-12-03
CN201210508814.7A CN103856426B (zh) 2012-12-03 2012-12-03 一种补偿滤波器的实现方法及信号带宽补偿的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/198,919 Continuation US9048795B2 (en) 2012-12-03 2014-03-06 Method for implementing compensation filter and apparatus for signal bandwidth compensation

Publications (1)

Publication Number Publication Date
WO2014086159A1 true WO2014086159A1 (zh) 2014-06-12

Family

ID=50863652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080501 WO2014086159A1 (zh) 2012-12-03 2013-07-31 一种补偿滤波器的实现方法及信号带宽补偿的装置

Country Status (4)

Country Link
US (1) US9048795B2 (zh)
EP (1) EP2768194B1 (zh)
CN (1) CN103856426B (zh)
WO (1) WO2014086159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745239A (zh) * 2022-03-31 2022-07-12 宁波大学 一种基于单路反馈的数字预失真方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941466B (zh) * 2016-01-04 2020-11-06 中兴通讯股份有限公司 一种软硬件协同的数字预失真的方法及装置
CN116644265B (zh) * 2023-07-19 2024-01-26 密卡思(深圳)电讯有限公司 一种非线性信号的补偿方法、补偿装置及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706522A (zh) * 2009-11-13 2010-05-12 电子科技大学 一种数字示波器通道带宽补偿装置
WO2012029613A1 (ja) * 2010-09-01 2012-03-08 日本電気株式会社 デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム
CN102511153A (zh) * 2011-11-16 2012-06-20 华为技术有限公司 一种微波预失真信号生成方法和装置
CN102694760A (zh) * 2009-01-22 2012-09-26 联发科技股份有限公司 调谐数字补偿滤波器的方法和数字补偿滤波器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923712A (en) * 1997-05-05 1999-07-13 Glenayre Electronics, Inc. Method and apparatus for linear transmission by direct inverse modeling
US20030058959A1 (en) * 2001-09-25 2003-03-27 Caly Networks. Combined digital adaptive pre-distorter and pre-equalizer system for modems in link hopping radio networks
US8548091B2 (en) * 2007-12-21 2013-10-01 Apple Inc. Measuring and correcting errors in a transmit chain with an IQ up-converter and IQ down-converter
EP2244380B1 (en) * 2008-01-15 2013-07-03 Mitsubishi Electric Corporation Predistorter
US7688138B2 (en) * 2008-03-24 2010-03-30 Harris Corporation Electronic device having a predistortion filter and related methods
US8280314B2 (en) * 2009-06-30 2012-10-02 Alcatel Lucent Method and apparatus for compensating for transceiver impairments
US8154432B2 (en) * 2010-03-22 2012-04-10 Raytheon Company Digital to analog converter (DAC) having high dynamic range
US8410843B2 (en) * 2011-01-10 2013-04-02 Massachusetts Institute Of Technology Polyphase nonlinear digital predistortion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694760A (zh) * 2009-01-22 2012-09-26 联发科技股份有限公司 调谐数字补偿滤波器的方法和数字补偿滤波器
CN101706522A (zh) * 2009-11-13 2010-05-12 电子科技大学 一种数字示波器通道带宽补偿装置
WO2012029613A1 (ja) * 2010-09-01 2012-03-08 日本電気株式会社 デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム
CN102511153A (zh) * 2011-11-16 2012-06-20 华为技术有限公司 一种微波预失真信号生成方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745239A (zh) * 2022-03-31 2022-07-12 宁波大学 一种基于单路反馈的数字预失真方法
CN114745239B (zh) * 2022-03-31 2023-08-08 宁波大学 一种基于单路反馈的数字预失真方法

Also Published As

Publication number Publication date
EP2768194A1 (en) 2014-08-20
CN103856426B (zh) 2017-04-19
US9048795B2 (en) 2015-06-02
EP2768194A4 (en) 2015-11-18
CN103856426A (zh) 2014-06-11
EP2768194B1 (en) 2017-11-01
US20140184327A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
CA2821892C (en) Systems and methods for digital predistortion in a dual band transmitter
CN101662821B (zh) 信号处理方法及通信系统
EP2575310B1 (en) Method and device for digital baseband predistortion
JP6025965B2 (ja) マルチバンド・トランシーバにおけるクロストークのキャンセル
US20110235748A1 (en) Active antenna array having analogue transmitter linearisation and a method for predistortion of radio signals
JP5896392B2 (ja) 通信補正のための装置及び方法
CN109428610B (zh) 反馈电路单元、rof无线发射机及消除非线性失真的方法
CN103685108A (zh) 用来实施具有降低的噪声的利用数字预失真的无线电发射器的系统和方法
WO2014086159A1 (zh) 一种补偿滤波器的实现方法及信号带宽补偿的装置
JP6221518B2 (ja) 電力増幅装置、送信機および電力増幅装置制御方法
WO2016138880A1 (zh) 一种多频段信号处理方法及设备
TWI700888B (zh) 數位預失真電路及數位預失真方法
CN111147412B (zh) 预失真处理装置、信号传输系统和预失真处理方法
WO2014050383A1 (ja) 歪補償装置および無線通信装置
CN115001913B (zh) 一种基于数字辅助的全双工频域自干扰消除方法
CN113904906B (zh) 一种频域非线性连续干扰抑制的实现方法
JP2014513495A (ja) 分散型フィードバックアーキテクチャを含む無線通信
JP2014121080A (ja) 歪補償装置および電力増幅装置の歪補償方法
CN201947373U (zh) 一种高效率数字电视发射装置
WO2009093396A1 (ja) 非線形歪補償回路、送信回路、及び非線形歪補償方法
US20240056109A1 (en) Optical signal transmission device and method based on digital predistortion in symbol domain
US10841137B2 (en) Analog signal width modulator apparatus with closed loop configuration
EP2975789A1 (en) Optical transmitter
Garcia-Hernandez et al. Survey on compensation for analog front end imperfections by means of adaptive digital front end for on-chip OFDM wireless transmitters
CN112511112A (zh) 数字预失真电路及数字预失真方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013786406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013786406

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE