WO2014084545A1 - 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법 - Google Patents

미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법 Download PDF

Info

Publication number
WO2014084545A1
WO2014084545A1 PCT/KR2013/010569 KR2013010569W WO2014084545A1 WO 2014084545 A1 WO2014084545 A1 WO 2014084545A1 KR 2013010569 W KR2013010569 W KR 2013010569W WO 2014084545 A1 WO2014084545 A1 WO 2014084545A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
microfluidic chip
magnetic
separation
biomaterial
Prior art date
Application number
PCT/KR2013/010569
Other languages
English (en)
French (fr)
Inventor
김용권
이윤식
고율
강호만
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130139222A external-priority patent/KR20140068758A/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to US14/647,876 priority Critical patent/US9696301B2/en
Publication of WO2014084545A1 publication Critical patent/WO2014084545A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0896Nanoscaled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Definitions

  • the present invention relates to nanoparticle separation using a microfluidic chip and a biomaterial analysis method using the same. More specifically, nanoparticle separation using a microfluidic chip that detects a substance to be analyzed more sensitively and reliably and using the same It relates to a biomaterial analysis method.
  • Microfluidic chips such as lab-on-a-chip, are based on such microfluidics, and the analysis of samples in a short amount of time and with accuracy and convenience is the key to excellent performance. In order to achieve this better performance, research and development are currently underway.
  • the microfluidic chip has a micro or nano sized sample and reactant, so it is difficult to detect sensitive materials, and the microfluidic chip cannot effectively filter out the remaining material without reacting in the microfluidic chip. There was a problem that can not provide a reliable analysis results.
  • the present invention has been made to solve the above-described problems, an object of the present invention to provide a microfluidic chip and a biomaterial analysis method using the same to detect a target to be analyzed more sensitive and precisely to obtain a reliable analysis results will be.
  • the nanoparticles can be separated according to the size using the nanoparticle separation hole according to the present invention as a nano-sized hole that can pass through the nanoparticles to provide a reliable microfluidic chip and a biomaterial analysis method using the same.
  • microfluidic chip for solving the above problems is made of a sample injection unit, a fluid solution injection unit and a flow channel,
  • the flow channel is formed by sequentially placing the reaction part, the separation part and the discharge part, and the separation part includes a separation membrane including one or more nanoparticle separation holes.
  • the separation portion of the flow channel is characterized in that the lower layer of the flow channel is formed of a concave groove, the concave groove is covered with the separator.
  • the upper surface of the separator is characterized in that in contact with the partition wall extending from the upper layer of the flow channel.
  • the partition wall is characterized in that the contact with the interruption of the separator except the front end of the separation membrane toward the injection portion and the rear end of the separation membrane toward the discharge portion.
  • the size of the nanoparticle separation hole is characterized in that 100nm ⁇ 1000nm.
  • the surface of the separator is characterized in that the silicon oxide film is located on the silicon nitride film.
  • the surface of the nanoparticle separation hole is characterized in that consisting of a silicon oxide film.
  • the magnetic force applying unit is positioned between the reaction unit and the separation unit of the flow channel.
  • the unreacted sample discharge unit for discharging the unreacted sample is positioned between the magnetic force applying unit and the separation unit.
  • a method for detecting a biomaterial includes: 1) injecting a sample and a fluid into the flow channel of the microfluidic chip according to claim 1, and 2) reacting the reactant by reacting the injected sample in a reaction unit. Forming, 3) the reactant is detected without passing through at least one nanoparticle separation hole present in the separation of the flow channel, and 4) analyzing the detected reactant according to the present invention. Characterized in that through the microfluidic chip.
  • the magnetic nanoparticles, biomaterials and probes are injected into the sample of step 1), and the formation of the reactants of step 2) involves the reaction of the magnetic nanoparticles, biomaterials, and probes with the magnetic nanoparticles-biomaterials-probe complex. Characterized in that form.
  • the magnetic nanoparticle-biomaterial-probe complex may be a magnetic nanoparticle-biomaterial-probe complex formed by recognizing the biomaterial by a receptor bound to the magnetic nanoparticle and a receptor bound to the probe.
  • the magnetic nanoparticles and the magnetic nanoparticles-biological material-probe complex between the step 2) and the step 3) is characterized in that it further comprises the step of being fixed by a magnetic force applying unit.
  • the method may further include discharging the unreacted sample which is not fixed by the magnetic force applying unit through the unreacted sample discharge unit after the fixed and collected step.
  • the magnetic force application unit stops applying magnetic force to move the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex from the inlet of the flow channel to the outlet.
  • the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex move from the inlet to the outlet of the flow channel, the magnetic nanoparticles pass through the nanoparticle separation hole, but the magnetic nanoparticle-bio The material-probe complex may not pass through the nanoparticle separation hole.
  • a method of manufacturing a separator for a microfluidic chip includes 1) forming a silicon nitride film through chemical vapor deposition (CVD) on silicon or a substrate including the same, and 2) after the step 1). Forming a separation hole having a size of 1 to 3 ⁇ m, and 3) forming a silicon oxide film through chemical vapor deposition (CVD) on the substrate including the separation hole.
  • CVD chemical vapor deposition
  • chemical vapor deposition for forming the silicon oxide film of step 3
  • CVD chemical vapor deposition
  • CVD chemical vapor deposition
  • step 3 is characterized in that the chemical vapor deposition (CVD, chemical vapor deposition) until the size of the separation hole is 100nm ⁇ 1000nm.
  • the microfluidic chip according to the present invention has an effect of detecting analyte more sensitively and precisely, and when the microfluidic chip is analyzed through a biomaterial analysis method using the microfluidic chip according to the present invention, the nanoparticles are separated.
  • the separation of nanoparticles according to size is possible by using holes, which enables the analysis of highly reliable biomaterials.
  • the microfluidic chip according to the present invention relates to an invention that can significantly increase the reliability of biomaterial analysis by using a nanoparticle separation hole for a nanoparticle to be separated and using the same. The reliability of the analysis can be greatly improved.
  • FIG. 1 is a view showing an overall plan view (a) and a cross-sectional view (b) of the microfluidic chip according to the first embodiment of the present invention.
  • FIG. 2 is a view showing the periphery of the nanoparticle separation hole according to the first embodiment of the present invention and a scanning electron microscope (SEM) photograph before the formation of the silicon oxide film.
  • SEM scanning electron microscope
  • Figure 3 is a scanning electron microscope (SEM) photograph showing the change in size of the nanoparticle separation hole according to the chemical vapor deposition in Example 1 according to the present invention.
  • Figure 4 shows a photograph and a graph of the size change of the nanoparticle separation hole according to the chemical vapor deposition in Example 1 according to the present invention.
  • FIG. 5 is a photograph showing a nanoparticle separation hole fabricated to have a size of 500nm as one preferred embodiment according to the present invention.
  • SEM scanning electron microscope
  • FIG. 7 is a view showing an overall plan view (a) and a cross-sectional view (b) of the microfluidic chip according to the second embodiment.
  • Example 8 is a photograph showing an example of separating nanoparticles labeled with a fluorescent material using the microfluidic chip according to Example 2.
  • FIG. 9 is a photograph showing a preferred example of a microfluidic chip in which the nanoparticle separation hole is formed of a plurality of linear plurality of nanoparticle separation holes in the separator of Example 2;
  • FIG. 10 is a SEM photograph showing the results of separating nanoparticles using the microfluidic chip according to Example 2.
  • FIG. 10 is a SEM photograph showing the results of separating nanoparticles using the microfluidic chip according to Example 2.
  • FIG. 11 is a photograph showing that 300 nm size nanoparticles are separated by a microfluidic chip having a 250 nm size nanoparticle separation hole as in the embodiment of the present invention.
  • Example 12 is a graph showing the results of measuring the diameter of each nanoparticle separation hole after fabricating the microfluidic chip according to Example 1 (a) and Example 2 (b).
  • FIG. 13 is a simplified illustration of magnetic nanoparticles, probes, and magnetic nanoparticle-biomaterial-probe complexes.
  • the present inventors have diligently researched to develop a microfluidic chip that provides highly reliable analysis results. As a result, the inventors have found a microfluidic chip and a biomaterial analysis method using the same.
  • the microfluidic chip according to the present invention includes a sample injector 110, a fluid solution injector 120, and a flow channel 130, and the flow channel includes a reaction unit 140, a separation unit 150, and As the discharge unit 160 is sequentially formed, the separation unit 150 may include a separation membrane 180 including one or more nanoparticle separation holes 170.
  • the microfluidic chip can be said to be the key to determine the sensitivity of the analysis how sensitive and precisely detect the reactants for performing the analysis
  • the present invention is a separation membrane including the one or more nanoparticle separation hole 170 180 may enable more sensitive and accurate analysis.
  • the separation unit 150 of the flow channel 130 is preferably a lower layer 230 of the flow channel 130 is made of a concave groove, the concave groove may be covered with the separation membrane 180.
  • the upper surface of the separator may be in contact with the partition wall 190 extending from the upper layer 220 of the flow channel 130.
  • partition wall 190 may be in contact with the interruption of the separation membrane 180 except for the front end of the separation membrane 180 facing the injection parts 110 and 120 and the rear end of the separation membrane 180 facing the discharge part 160. have.
  • Separation unit 150 of the flow channel may preferably separate the reactant and the unreacted sample formed by reacting between the samples, the unreacted sample may be preferably magnetic nanoparticles (MNP).
  • MNP magnetic nanoparticles
  • Separation of the reactant and the unreacted sample through the separator may be separated through the nanoparticle separation hole 170 of the separator 180.
  • the nanoparticle separation hole of the separation membrane 180 is not particularly limited as long as its size can pass the magnetic nanoparticles (MNP) as the unreacted sample, but is preferably 100 nm to 1000 nm. If the diameter is less than 100 nm, the flow of the flowing solution is not smooth, and as the unreacted sample, the magnetic nanoparticles are difficult to pass through the nanoparticle separation hole, which is not preferable.
  • MNP magnetic nanoparticles
  • reactants reacted between samples may also pass through the nanoparticle separation hole together with the magnetic nanoparticles, which is not preferable.
  • the shape and structure of the nanoparticle separation hole is not particularly limited as long as it can be separated without passing the nanoparticles, but may preferably include not only circular nanoholes but also nanoslits having a thin and long rectangular structure.
  • the separator is not particularly limited, but preferably, a plurality of linear nanoparticle separation hole populations including a plurality of nanoparticle separation holes may be arranged in a zigzag form.
  • the diameter of the nanoparticle separation hole may be formed to a smaller size in the process of manufacturing the separator. If the size of the nanoparticle separation hole is made small, more precise nanoparticle separation is possible.
  • the material of the separator 180 is not particularly limited as long as it can pass the magnetic nanoparticles without disturbing the flow of the flow solution in the flow channel 130, but preferably silicon or a substrate including the same. Can be.
  • the silicon oxide film may be sequentially formed on the silicon nitride film.
  • the surface of the nanoparticle separation hole 170 may be a silicon oxide film is preferably formed through chemical vapor deposition (CVD, Chemical Vapor Deposition).
  • nanoparticle separation hole of various sizes between 100nm ⁇ 1000nm of the size of the nanoparticle separation hole.
  • the size of the nanoparticle separation hole is smaller than the size of the nanoparticle to be separated and is made larger than the magnetic nanoparticles, the relatively small magnetic nanoparticles pass through the nanoparticle separation hole and have a relatively large size. Only selective separation of the nanoparticles may be possible.
  • the material of the flow channel 130 may be used without particular limitation as long as it is a polymer material that does not interfere with the flow of the fluid, the polymer material is preferably polydimethylsiloxane (PMDS), polymethylmethacrylate (polymethylmethacrylate).
  • PMDS polydimethylsiloxane
  • PMMA polycarbonate
  • polycyclic olefin polyimide
  • polyurethane may be any one or more materials selected from the group consisting of.
  • the lower layer 230 of the flow channel located in the separation unit 150 among the lower layers 230 of the flow channel 130 may be formed of silicon or glass or may be included together with the polymer material.
  • the sample injecting unit 110 may be injected without particular limitation as long as it is a reaction and a material necessary for the reaction, and preferably, any one or more materials selected from the group consisting of magnetic nanoparticles, biological materials, and probes may be injected.
  • the biomaterial may preferably be an antigen or a biomarker.
  • the sample injected through the sample injector 110 may be injected with the sample after the reaction, but preferably, the reaction unit 140 may react.
  • the reactant formed in the reaction unit 140 may be a magnetic nanoparticle-biomaterial-probe complex formed by recognizing the biomaterial by a receptor bound to the magnetic nanoparticle and a receptor bound to the probe.
  • a magnetic force applying unit 200 may be preferably located between the reaction unit 140 and the separation unit 150 of the flow channel.
  • the magnetic force applying unit 200 may collect the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex by an applied magnetic force.
  • the flow channel 130 has an unreacted sample outlet 210 capable of discharging the remaining unreacted sample not collected by the magnetic force applying unit 200 between the magnetic force applying unit 200 and the separation unit 150. It can be located at
  • a micro valve such as a pneumatic valve.
  • the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex collected by the magnetic force applying unit 200 are again stopped by the application of the magnetic force. It may move toward the separation unit 150 through the flow channel 130.
  • the separator may be separated by the separator 180.
  • the magnetic nanoparticles may be nanoparticle separator holes.
  • the magnetic nanoparticle-biomaterial-probe complex is larger than the nanoparticle separation hole and cannot pass through because it is smaller in size. That is, the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex may be selectively separated according to the size by the nanoparticle separation hole.
  • the magnetic nanoparticle-biomaterial-probe complex of high purity may be detected by the separator 180 including the one or more nanoparticle separation holes.
  • the biomaterial may be analyzed to achieve more accurate, sensitive and reliable analysis.
  • a biomaterial analysis method comprising: 1) injecting a sample and a fluid into a flow channel of the microfluidic chip, 2) forming a reactant by reacting the injected sample in a reaction unit; 3) The reactant may be detected through the microfluidic chip, including the step of not detecting one or more nanoparticle separation holes present in the flow channel, and 4) analyzing the detected reactant.
  • the injected sample may be injected without particular limitation as long as it is a reaction object capable of reacting in the microfluidic chip to detect a biomaterial, and preferably, may be magnetic nanoparticles, a biomaterial, and a probe.
  • the formation of the reactant may preferably form the magnetic nanoparticle-biomaterial-probe complex by reacting the magnetic nanoparticle, the biomaterial and the probe.
  • the magnetic nanoparticle-biomaterial-probe complex may be formed by the receptor coupled with the magnetic nanoparticle and the receptor coupled with the probe to recognize the biomaterial.
  • the magnetic nanoparticle-biomaterial-probe complex can preferably be detected without passing through it due to a size larger than one or more nanoparticle separation holes present in the separation of the flow channel.
  • the magnetic nanoparticle-biomaterial-probe complex may further include a step of being fixed and collected by a magnetic force applying unit.
  • the magnetic nanoparticle and the magnetic nanoparticle-biomaterial-probe complex may be fixed by the attraction force between the magnetic nanoparticle and the magnetic force.
  • the unreacted sample except the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex may be first moved through the flow channel.
  • the unreacted sample that is not fixed by the magnetic force applying unit and moved first is discharged through the unreacted sample discharge unit.
  • the unreacted sample is first discharged through the unreacted sample outlet, it is possible to detect magnetic nanoparticle-biological material-probe complex with higher purity, thereby increasing the reliability of the analysis.
  • the application of the magnetic force may be stopped.
  • the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex collected in the magnetic force applying unit move again toward the outlet of the flow channel.
  • the magnetic nanoparticles and the magnetic nanoparticles-biomaterial-probe complexes moved through the flow channel may be separated by a separator including the nanoparticle separation holes in the separator.
  • the separation of the magnetic nanoparticles is preferably smaller than that of the nanoparticle separation hole, and thus the magnetic nanoparticle-biomaterial-probe complex is larger than the nanoparticle separation hole. It can not be separated. That is, the sizes of the magnetic nanoparticles and the magnetic nanoparticle-biomaterial-probe complex are different from each other, and the size difference allows selective separation of only the magnetic nanoparticle-biomaterial-probe complex from the nanoparticle separation hole.
  • the size of the nanoparticle separation hole is preferably 100nm ⁇ 1000nm, the size of the magnetic nanoparticles is preferably smaller than the nanoparticle separation hole may be more preferably 30 ⁇ 500nm.
  • the size of the magnetic nanoparticle-biomaterial-probe complex may be larger than the nanoparticle separation hole and more preferably 200 to 1500 nm. Therefore, the magnetic nanoparticles are smaller in size than the nanoparticle separation holes so that they can easily pass.
  • the magnetic nanoparticle-biological material-probes are larger than the nanoparticle separation holes so that the nanoparticle separation holes are separated. I can't pass.
  • the membrane including the nanoparticle separation hole separates the magnetic nanoparticle-biomaterial-probe complex separately with high purity, thereby enabling more accurate analysis of the biomaterial.
  • Biomaterial analysis may be performed with the magnetic nanoparticle-biomaterial-probe complex detected without passing through the nanoparticle separation hole.
  • the analysis method may be applied to all known analysis methods applied in the art, and preferably may be analysis by Raman spectroscopy.
  • a method of manufacturing a separator for a microfluidic chip including the nanoparticle separation hole may include: 1) forming a silicon nitride film through chemical vapor deposition (CVD) on silicon or a substrate including the same; 2) forming a separation hole having a size of 1 ⁇ 3 ⁇ m after step 1), and 3) forming a silicon oxide film through chemical vapor deposition (CVD) on the substrate including the formed separation hole. It may include.
  • Chemical vapor deposition for forming the silicon oxide film of step 3 may be chemical vapor deposition until the separation hole size is 100 ⁇ 1000nm. Chemical vapor deposition such that the size of the separation hole is less than 100 nm is not preferable because it does not effectively pass the magnetic nanoparticles, and if the chemical vapor deposition to the size of the separation hole exceeds 1000 nm, the magnetic nanoparticle-biomaterial-probe complex will pass through. It can be undesirable.
  • the nanoparticle separation hole was positioned on the lower surface of the flow channel to prepare a microfluidic chip.
  • the nanoparticle separation hole is formed on the silicon substrate by a chemical vapor deposition (CVD) process to form a silicon nitride film 500nm ⁇ 1000nm thickness on the silicon substrate.
  • CVD chemical vapor deposition
  • a plurality of micro holes having a size of 2.5 ⁇ m are patterned by a photolithography process and the silicon nitride film of the silicon substrate is etched through plasma etching.
  • the silicon substrate exposed by the silicon nitride film etching is etched 3 to 5 um through anisotropic etching.
  • the bottom surface of the flow channel is completed by etching again in the silicon substrate etchant TMAH, KOH solution.
  • a silicon substrate silicon oxide film is formed by using a chemical vapor deposition (CVD) process in order to reduce the size of the plurality of micro holes of 2.5 ⁇ m into nano-sized separation holes.
  • CVD chemical vapor deposition
  • the upper surface of the flow hole is manufactured by using a polydimethylsiloxane (PDMS) molding method, oxidized to the lower surface of the flow hole and the nanoparticle separation hole by oxygen plasma treatment and bonded to both sides, magnetic force applied to the microfluidic chip
  • PDMS polydimethylsiloxane
  • FIG. 1 is a view showing an overall plan view (a) and a cross-sectional view (b) of the microfluidic chip according to the first embodiment.
  • FIG. 2 is an enlarged view of the periphery of the nanoparticle separation hole in the microfluidic chip according to the first embodiment, and shows that the nanoparticle separation hole is located below the upper PDMS plane of the flow channel.
  • the figure shows a three-dimensional spaced apart nanoparticle separation hole (Fig. 2a), and after etching the silicon nitride film of the silicon substrate before the silicon substrate silicon oxide film yet formed Is a scanning electron micrograph (FIG. 2b) showing the arrangement of the 2.5 ⁇ m separation holes on the substrate, and also shows the principle that only nanoparticles having small particles pass through the nanoparticle separation holes through the nanoparticle separation holes.
  • FIG. 2C is a vertical cross-sectional view of a microfluidic chip in which a plurality of nanoparticle separation holes are manufactured in a plurality of groups. 2d) and a cross-sectional view (FIG. 2e).
  • FIG. 3 shows that the size of the separation hole is 2.5 ⁇ m before etching the substrate of the silicon nitride film and depositing the silicon oxide film on the silicon substrate, and the size is reduced to 575 nm through the formation of the silicon oxide film to form nanoparticle separation holes. It is a scanning electron micrograph showing an aspect.
  • Figure 4 is a graph showing the change in diameter of the nano-particle separation hole through the scanning electron micrograph (Fig. 4a) and the nano-particle separation hole more precisely observed by dividing before and after the silicon oxide film deposition of the silicon substrate (Fig. 4b).
  • Figure 5 is a scanning electron micrograph observed by manufacturing a microfluidic chip having a nanoparticle separation hole of 500nm, unlike 250nm embodiment of the present invention. That is, Figure 5 is a microfluidic chip in accordance with the present invention, through the chemical vapor deposition (CVD) is a photograph showing a nanoparticle through hole of a different size from the embodiment, which is a nanoparticle of various sizes through chemical vapor deposition in the end It is shown that the production of particle through holes is possible. Therefore, the microfluidic chip having 500 nm-sized nanoparticle through holes according to FIG. 5 also corresponds to one preferred embodiment of the present invention.
  • CVD chemical vapor deposition
  • FIG. 6 is a scanning electron micrograph of the nanoparticle separation hole observed in the case of a microfluidic chip in which a plurality of nanoparticle separation holes are manufactured in a plurality of groups.
  • the analysis can be performed more quickly and efficiently.
  • Example 2 A plurality of nanoparticle separation holes are formed of a plurality of linear nanoparticle separation hole populations, and the fabrication of a microfluidic chip including a separator fabricated such that the populations are arranged in a zigzag form.
  • the microfluidic chip using the same method as in Example 1 above. Was produced. In this case, the plasma etching was performed such that the micro holes can be arranged in a plurality of groups linearly.
  • FIG. 7 is a diagram showing an overall plan view (a) and a cross-sectional view (b) of the microfluidic chip according to the second embodiment.
  • FIG. 8 is a photograph showing an example of separating nanoparticles labeled with a fluorescent material using the microfluidic chip according to the second embodiment.
  • FIG. 9 is a photograph showing a preferred example of the microfluidic chip in which the nanoparticle separation hole is formed of a plurality of linear plurality of nanoparticle separation holes in the separator.
  • Figure 10 is a SEM photograph showing the result of separating the nanoparticles using a microfluidic chip according to the second embodiment.
  • the microfluidic chip according to the present invention although the difference in size between the nanoparticle separation hole and the nanoparticles is only 50nm, it can be confirmed that the finely and sensitively filtered without passing the 300nm-sized nanoparticles.
  • the microfluidic chip according to the present invention including the nanoparticle separation hole is manufactured, and when the material to be analyzed is analyzed through this, It was confirmed that analysis with higher reliability and sensitivity is possible.
  • the diameter of the nanoparticle separation hole according to the deposition amount is significantly smaller than that of Example 2 (FIG. 12B), so that fine nanoparticle separation is possible than that of Example 1 (FIG. 12A). Confirmed.
  • Figure 13 is a simplified illustration of the magnetic nanoparticles, probes and magnetic nanoparticles-biological material-probe complex which is one of the preferred examples of the sample in the present invention.
  • the microfluidic chip having the nanoparticle separation hole according to the present invention as described in the above experimental example is an invention related to the microfluidic chip which enables the detection and obtaining of more sensitive reactants and provides a reliable analysis result.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 미세 유체칩을 이용한 나노입자의 분리 및 이를 이용하는 생체물질분석방법에 관한 발명이다. 본 발명에 따른 미세 유체칩은 보다 민감하고 정밀하게 분석 대상을 검출하는 효과가 있으며, 상기 본 발명에 따른 미세 유체칩을 이용하여 생체물질분석방법을 통해 분석을 실시하면 본 발명과 같은 나노입자 분리홀을 이용하여 크기에 따른 나노입자의 분리가 가능하므로 신뢰성 높은 생체물질의 분석이 가능하다. 결과적으로 본 발명에 따른 미세 유체칩은 분리하려는 나노입자의 크기에 맞는 맞춤형 나노입자 분리홀을 제작한 후, 이를 이용하여 생체물질분석의 신뢰도를 크게 높일 수 있는 발명에 관한 것으로서, 미세 유체 공학 및 미세 유체 시스템을 통한 분석의 신뢰도를 크게 향상시킬 수 있다.

Description

미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법
본 발명은 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법에 관한 것으로서, 보다 구체적으로는 분석하고자 하는 물질을 보다 민감하고 신뢰성 있게 검출해 내는 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법에 관한 것이다.
인간 게놈 프로젝트가 완료되고 포스트게놈 시대가 도래함에 따라 쏟아져 나오는 많은 양의 바이오 정보는 기존의 실험실 분석 시스템으로는 그 신속한 처리가 어려운 실정이다. 이러한 추세에 따라 생명현상의 규명과 신약 개발 및 진단을 위한 생물학적 검출 시스템은 미세 유체 공학의 기반 위에서 발전하고 있다.
이러한 미세 유체 공학을 기반으로 실현된 랩온어칩(Lab-on-a-chip) 등의 미세 유체칩은 보다 적은 양으로 빠른 시간에 정확하고 편리하게 시료를 분석하는 것이 우수한 성능을 좌우하는 핵심이며, 이러한 성능을 보다 우수하게 달성하기 위한 연구 개발이 현재 다각적으로 진행 중 이다.
하지만, 이러한 미세 유체칩은 주입되는 시료 및 반응물의 크기가 마이크로나 나노 크기여서 민감한 검출이 어렵고, 미세 유체칩 내에서 반응하지 않고 남은 물질을 효과적으로 걸러내지 못했으며, 반응물과 미반응물이 혼재하여 민감하고 신뢰성 높은 분석 결과를 제공하지 못하는 문제점이 있었다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 분석하려는 대상을 보다 민감하고 정밀하게 검출하여 신뢰성 높은 분석 결과를 도출하는 미세 유체칩 및 이를 이용한 생체물질분석방법을 제공하는 것이다. 특히 나노입자의 통과가 가능한 나노크기의 구멍으로서 본 발명에 따른 나노입자 분리홀을 이용하여 크기에 따른 나노입자의 분리가 가능하므로 신뢰성 높은 미세 유체칩 및 이를 이용한 생체물질분석방법을 제공하는 것이다.
위와 같은 과제를 해결하기 위한 본 발명의 한 특징에 따른 미세 유체칩은 시료 주입부, 유동용액 주입부 및 유동채널로 이루어지며,
상기 유동채널은 반응부, 분리부 및 배출부가 순차적으로 위치하여 이루어진 것으로서, 상기 분리부는 하나 이상의 나노입자 분리홀이 포함된 분리막을 포함한다.
또한 상기 유동채널의 분리부는 유동채널의 하층이 오목한 홈으로 이루어져 있으며, 상기 오목한 홈은 상기 분리막으로 덮혀 있는 것을 특징으로 한다.
또한 상기 분리막의 상부면은 상기 유동채널의 상층으로부터 연장된 격벽과 접촉하는 것을 특징으로 한다.
또한 상기 격벽은 상기 주입부를 향하는 분리막의 전단과 상기 배출부를 향하는 분리막의 후단을 제외한 분리막의 중단과 접촉하는 것을 특징으로 한다.
또한 상기 나노입자 분리홀의 크기는 100nm~1000nm인 것을 특징으로 한다.
또한 상기 분리막의 표면은 질화규소 막 위에 산화규소 막이 위치하여 이루어진 것을 특징으로 한다.
또한 상기 나노입자 분리홀의 표면은 산화규소 막으로 이루어진 것을 특징으로 한다.
또한 상기 유동채널의 반응부와 분리부 사이에 자기력 인가부가 위치하여 이루어지는 것을 특징으로 한다.
또한 상기 자기력 인가부와 분리부 사이에 미반응시료를 배출시키는 미반응시료 배출부가 위치하여 이루어지는 것을 특징으로 한다.
본 발명의 또 다른 특징에 따른 생체물질검출방법은 1) 제 1항에 따른 미세 유체칩의 유동채널에 시료와 유동용액을 주입하는 단계, 2) 상기 주입된 시료가 반응부에서 반응하여 반응물을 형성하는 단계, 3) 상기 반응물은 상기 유동채널의 분리부에 존재하는 하나 이상의 나노입자 분리홀을 통과하지 못하고 검출되는 단계, 및 4) 상기 검출된 반응물을 분석하는 단계를 포함하여 본 발명에 따른 상기 미세 유체칩을 통해 이루어지는 것을 특징으로 한다.
또한 상기 1)단계의 시료로 자성 나노입자, 생체물질 및 프로브를 주입하며, 상기 2)단계의 반응물의 형성은 상기 자성 나노입자, 생체물질 및 프로브가 반응하여 자성 나노입자-생체물질-프로브 복합체를 형성하는 것을 특징으로 한다.
또한 상기 자성 나노입자-생체물질-프로브 복합체는 상기 자성 나노입자와 결합된 수용체와 상기 프로브와 결합된 수용체가 상기 생체물질을 인식하여 형성된 자성 나노입자-생체물질-프로브 복합체인 것을 특징으로 한다.
또한 상기 2)단계와 상기 3)단계 사이에는 상기 자성 나노입자와 상기 자성나노입자-생체물질-프로브 복합체가 자기력 인가부에 의해 고정되어 수집되는 단계를 더 포함하는 것을 특징으로 한다.
또한 고정되어 수집되는 단계 이후에 상기 자기력 인가부에 의해 고정되지 않는 미반응시료를 미반응시료 배출부를 통해 배출하는 단계를 더 포함하는 것을 특징으로 한다.
또한 상기 미반응시료 배출 단계 이후에 상기 자기력 인가부의 자기력 인가를 중단하여 상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체를 상기 유동채널의 주입부에서 배출부 쪽으로 다시 이동시키는 것을 특징으로 한다.
또한 상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체가 상기 유동채널의 주입부에서 배출부 쪽으로 이동 한 후 상기 자성 나노입자는 상기 나노입자 분리홀을 통과하지만, 상기 자성 나노입자-생체물질-프로브 복합체는 상기 나노입자 분리홀을 통과하지 못하는 것을 특징으로 한다.
본 발명의 또 다른 특징에 따른 미세 유체칩용 분리막의 제조방법은 1) 실리콘 또는 이를 포함하는 기판에 화학기상증착(CVD, chemical vapor deposition)을 통하여 질화규소 막을 형성하는 단계, 2) 상기 1)단계 후 1~3㎛ 크기의 분리홀을 형성하는 단계, 및 3) 상기 형성된 분리홀을 포함한 기판에 화학기상증착(CVD, chemical vapor deposition)을 통하여 산화규소 막을 형성하는 단계를 포함한다.
또한 상기 3)단계의 산화규소 막을 형성하기 위한 화학기상증착(CVD, chemical vapor deposition)은 분리홀의 크기가 100nm~1000nm가 될 때까지 화학기상증착(CVD, chemical vapor deposition)하는 것을 특징으로 한다.
본 발명에 따른 미세 유체칩은 보다 민감하고 정밀하게 분석 대상을 검출하는 효과가 있으며, 상기 본 발명에 따른 미세 유체칩을 이용하여 생체물질분석방법을 통해 분석을 실시하면 본 발명과 같은 나노입자 분리홀을 이용하여 크기에 따른 나노입자의 분리가 가능하므로 신뢰성 높은 생체물질의 분석이 가능하다. 결과적으로 본 발명에 따른 미세 유체칩은 분리하려는 나노입자에 맞는 맞춤형 나노입자 분리홀을 제작한 후 이를 이용하면 생체물질분석의 신뢰도를 크게 높일 수 있는 발명에 관한 것으로서, 미세 유체 공학 및 미세 유체 시스템을 통한 분석의 신뢰도를 크게 향상시킬 수 있다.
도 1은 본 발명의 실시예 1에 따른 미세 유체칩의 전체적인 평면도(a) 및 단면도(b)를 나타내는 그림이다.
도 2는 본 발명의 실시예 1에 따른 나노입자 분리홀의 주변부를 나타낸 그림 및 산화규소 막의 형성 전 주사전자 현미경(SEM) 사진이다.
도 3은 본 발명에 따른 실시예 1에서 화학기상증착에 따라 나노입자 분리홀의 크기 변화를 나타낸 주사전자 현미경(SEM) 사진이다.
도 4는 본 발명에 따른 실시예 1에서 화학기상증착에 따른 나노입자 분리홀의 크기 변화 사진 및 그래프를 나타낸 것이다.
도 5는 본 발명에 따른 바람직한 일실시예 중 하나로서 500nm 크기를 갖도록 제작된 나노입자 분리홀을 보여주는 사진이다.
도 6은 본 발명에 있어서, 복수의 나노입자 분리홀을 복수의 그룹으로 제작한 미세 유체칩의 경우 관측되는 나노입자 분리홀의 주사전자 현미경(SEM) 사진이다.
도 7은 실시예 2에 따른 미세 유체칩의 전체적인 평면도(a) 및 단면도(b)를 나타내는 그림이다.
도 8은 실시예 2에 따른 미세 유체칩을 사용하여 형광물질로 표지된 나노입자를 분리하는 예시를 나타낸 사진이다.
도 9는 실시예 2의 분리막에서 상기 나노입자 분리홀이 복수개의 선형 복수개의 나노입자 분리홀 집단으로 형성되어 제작된 미세 유체칩의 바람직한 예시를 나타낸 사진이다.
도 10은 실시예 2에 따른 미세 유체칩을 사용하여 나노입자를 분리한 결과를 나타낸 SEM 사진이다.
도 11은 본 발명의 실시예와 같은 250nm 크기의 나노입자 분리홀을 가진 미세유체칩에 의해 300nm 크기의 나노입자가 분리되는 것을 보여주는 사진이다.
도 12는 실시예 1(a) 및 실시예 2(b)에 따른 미세유체칩을 제작한 후 각각의 나노입자 분리홀의 직경을 측정한 결과를 나타낸 그래프이다.
도 13은 자성 나노입자, 프로브 및 자성 나노입자-생체물질-프로브 복합체를 간단히 나타낸 그림이다.
이에 본 발명자들은 신뢰성 높은 분석 결과를 제공하는 미세 유체칩을 개발하기 위하여 예의 연구 노력한 결과, 본 발명에 따른 미세 유체칩 및 이를 이용한 생체물질분석방법을 발견하여 본 발명을 완성하였다.
구체적으로 본 발명에 따른 미세 유체칩은 시료 주입부(110), 유동용액 주입부(120) 및 유동채널(130)로 이루어지며, 상기 유동채널은 반응부(140), 분리부(150) 및 배출부(160)가 순차적으로 위치하여 이루어진 것으로서, 상기 분리부(150)는 하나 이상의 나노입자 분리홀(170)이 포함된 분리막(180)을 포함할 수 있다.
일반적으로 상기 미세 유체칩은 분석을 수행하기 위한 반응물을 얼마나 민감하고 정확하게 검출하느냐가 분석의 신뢰도를 좌우하는 핵심이라고 할 수 있으며, 본 발명은 상기 하나 이상의 나노입자 분리홀(170)이 포함된 분리막(180)에 의해 보다 민감하고 정확한 분석을 가능하게 할 수 있다.
상기 유동채널(130)의 분리부(150)는 바람직하게는 유동채널(130)의 하층(230)이 오목한 홈으로 이루어져 있으며, 상기 오목한 홈은 상기 분리막(180)으로 덮혀 있을 수 있다.
또한 상기 분리막의 상부면은 바람직하게는 상기 유동채널(130)의 상층(220)으로부터 연장된 격벽(190)과 접촉할 수 있다.
또한 상기 격벽(190)은 상기 주입부(110, 120)를 향하는 분리막(180)의 전단과 상기 배출부(160)를 향하는 분리막(180)의 후단을 제외한 분리막(180)의 중단과 접촉할 수 있다.
상기 유동채널의 분리부(150)는 바람직하게는 시료간에 반응하여 형성된 반응물과 미반응시료를 분리해 낼 수 있으며, 상기 미반응시료는 바람직하게는 자성 나노입자(Magnetic nano particle, MNP)일 수 있다.
상기 분리부를 통한 반응물과 미반응시료의 분리는 상기 분리막(180)의 나노입자 분리홀(170)을 통해 분리해 낼 수 있다.
상기 분리막(180)의 나노입자 분리홀은 그 크기가 상기 미반응시료로서 상기 자성 나노입자(Magnetic nano particle, MNP)를 통과시킬 수 있는 크기면 크게 제한되는 것은 아니지만, 바람직하게는 100nm~1000nm인 것이 바람직한데, 그 직경이 100nm미만이면 유동용액의 흐름이 원활하지 못하며, 상기 미반응시료로서 자성 나노입자가 상기 나노입자 분리홀을 통과하기 어렵게 되어 바람직하지 못하다.
또한 상기 나노입자 분리홀의 크기가 1000nm를 초과하면 시료 간의 반응한 반응물도 상기 자성 나노입자와 함께 상기 나노입자 분리홀을 통과할 수 있어 바람직하지 않다.
또한 상기 나노입자 분리홀의 형태 및 구조는 나노입자를 통과시키지 않으면서 분리할 수 있는 것이라면 특별한 제한이 없지만, 바람직하게는 원형의 나노홀 뿐만 아니라 얇고 긴 직사각형 구조의 나노슬릿이 포함될 수 있다.
한편 상기 분리막은 특별한 제한이 있는 것은 아니지만 바람직하게는 복수개의 나노입자 분리홀을 포함하는 복수개의 선형 나노입자 분리홀 집단이 지그재그 형태로 배열되어 이루어지는 것일 수 있다. 이렇게 지그재그 형태로 배열되는 경우 상기 분리막의 제조 과정에서 상기 나노입자 분리홀의 직경이 보다 작은 크기로 형성될 수 있다. 이렇게 나노입자 분리홀의 크기를 작게 형성하게 되면 보다 정교한 나노입자의 분리가 가능하게 된다.
상기 분리막(180)의 재질은 상기 유동채널(130)에서 상기 유동용액의 흐름을 방해하지 않으면서 상기 자성 나노입자를 통과시킬 수 있는 것이면 특별한 제한이 없지만, 바람직하게는 실리콘 또는 이를 포함하는 기판일 수 있다.
상기 실리콘 또는 이를 포함하는 기판은 표면에 질화규소 막 및 산화규소 막이 화학기상증착(CVD, Chemical Vapor Deposition)을 통하여 형성된 것이 바람직하며, 더욱 바람직하게는 상기 질화규소 막 위에 산화규소 막이 순차적으로 형성된 것일 수 있다.
또한 상기 나노입자 분리홀(170)의 표면은 바람직하게는 산화규소 막이 화학기상증착(CVD, Chemical Vapor Deposition)을 통하여 형성된 것일 수 있다.
상기 화학기상증착에 의해 상기 나노입자 분리홀의 크기인 100nm~1000nm 사이에서 다양한 크기의 나노입자 분리홀의 제작이 가능하다. 그리하여 상기 나노입자 분리홀의 크기를 분리하려는 나노입자의 크기보다 작은 크기이면서 자성 나노입자보다는 큰 크기로 제작하게 되면 크기가 상대적으로 작은 자성 나노입자는 나노입자 분리홀을 통과하게 되면서 크기가 상대적으로 큰 상기 나노입자만의 선택적 분리가 가능할 수 있다.
상기 유동채널(130)의 재료는 유동용액의 흐름을 방해하지 않는 고분자 물질이면 특별한 제한 없이 사용할 수 있지만, 상기 고분자 물질은 바람직하게는 폴리디메틸실록산(polydimethylsiloxane; PMDS), 폴리메틸메타크릴레이트(polymethylmethacrylate; PMMA), 폴리카보네이트(polycarbonate), 폴리사이클릭 올레핀(polycyclic olefin), 폴리이미드(polyimide) 및 폴리우레탄(polyurethane)으로 이루어지는 군 중에서 선택된 어느 하나 이상의 물질일 수 있다. 또한 상기 유동채널(130)의 하층(230) 중 상기 분리부(150)에 위치하는 유동채널의 하층(230)은 실리콘 또는 유리가 사용되거나 상기 고분자 물질과 함께 포함될 수 있다.
상기 시료 주입부(110)에는 반응 및 상기 반응에 필요한 물질이면 특별한 제한 없이 주입될 수 있지만, 바람직하게는 자성 나노입자, 생체물질 및 프로브로 이루어지는 군 중에서 선택된 어느 하나 이상의 물질이 주입될 수 있으며, 상기 생체물질에는 바람직하게는 항원 또는 바이오마커일 수 있다.
상기 시료 주입부(110)를 통해 주입된 시료는 반응을 끝낸 시료가 주입될 수도 있지만, 바람직하게는 상기 반응부(140)에서 반응할 수 있다.
상기 반응부(140)에서 형성된 반응물은 바람직하게는 상기 자성 나노입자에 결합된 수용체와 상기 프로브에 결합된 수용체가 상기 생체물질을 인식하여 형성된 자성 나노입자-생체물질-프로브 복합체일 수 있다.
상기 유동채널의 반응부(140)와 분리부(150) 사이에는 바람직하게는 자기력 인가부(200)가 위치할 수 있다.
상기 자기력 인가부(200)는 바람직하게는 인가된 자기력에 의해 상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체를 수집할 수 있다.
상기 유동채널(130)은 상기 자기력 인가부(200)에 의해 수집되지 않은 나머지 미반응시료를 배출할 수 있는 미반응시료 배출부(210)가 상기 자기력 인가부(200)와 상기 분리부(150) 사이에 위치할 수 있다.
상기 미반응시료 배출을 위한 유체흐름을 제어하기 위해서는 공기압 밸브 등 마이크로 밸브를 사용하는 것이 바람직하다.
상기 미반응시료 배출부(210)를 통해 미반응시료가 배출되고 나면 상기 자기력 인가부(200)에 의해 수집되었던 상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체가 자기력의 인가 중단에 의해 다시 상기 유동채널(130)을 통해 분리부(150)쪽으로 이동할 수 있다.
상기 분리부(150) 쪽으로 이동한 후 상기 분리막(180)에 의해 분리가 이루어질 수 있으며, 바람직하게는 상기 분리막(180)의 나노입자 분리홀(170)의 경우 상기 자성 나노입자는 나노입자 분리홀보다 크기가 작기 때문에 통과할 수 있지만, 상기 자성 나노입자-생체물질-프로브 복합체는 나노입자 분리홀보다 크기가 커서 이를 통과할 수 없다. 즉, 자성 나노입자와 자성 나노입자-생체물질-프로브 복합체는 상기 나노입자 분리홀에 의해 크기에 따른 선택적 분리가 가능할 수 있다.
이를 통해 상기 하나 이상의 나노입자 분리홀이 포함된 분리막(180)에 의해 순도 높은 상기 자성 나노입자-생체물질-프로브 복합체의 검출이 가능 할 수 있다.
그러므로 본 발명에 따른 미세 유체칩을 이용하여 순도 높은 상기 자성 나노입자-생체물질-프로브 복합체를 검출해 내고 이를 통해 상기 생체물질을 분석하게 되면 보다 정확하고 민감하며 신뢰성 높은 분석을 달성할 수 있다.
본 발명의 또 다른 특징에 따른 생체물질분석방법은 1)상기 미세 유체칩의 유동채널에 시료와 유동용액을 주입하는 단계, 2)상기 주입된 시료가 반응부에서 반응하여 반응물을 형성하는 단계, 3)상기 반응물은 상기 유동채널 내에 존재하는 하나 이상의 나노입자 분리홀을 통과하지 못하고 검출되는 단계, 및 4)상기 검출된 반응물을 분석하는 단계를 포함하여 상기 미세 유체칩을 통해 이루어질 수 있다.
상기 주입되는 시료로는 미세 유체칩 안에서 반응하여 생체물질을 검출할 수 있는 반응대상물이면 특별한 제한 없이 주입될 수 있지만, 바람직하게는 자성 나노입자, 생체물질 및 프로브일 수 있다. 또한 상기 반응물의 형성은 바람직하게는 상기 자성 나노입자, 생체물질 및 프로브가 반응하여 자성 나노입자-생체물질-프로브 복합체를 형성할 수 있다.
상기 자성 나노입자-생체물질-프로브 복합체는 상기 자성 나노입자와 결합된 수용체와 상기 프로브와 결합된 수용체가 상기 생체물질을 인식하여 형성될 수 있다.
상기 자성 나노입자-생체물질-프로브 복합체는 바람직하게는 상기 유동채널의 분리부에 존재하는 하나 이상의 나노입자 분리홀보다 큰 크기로 인해 이를 통과하지 못하고 검출 될 수 있다.
상기 2)단계와 3)단계 사이에는 바람직하게는 상기 자성 나노입자-생체물질-프로브 복합체가 자기력 인가부에 의해 고정되어 수집되는 단계를 더 포함할 수 있다.
상기 자기력 인가부에 자기력을 인가하게 되면 상기 자성 나노입자와 상기 자기력 간에 인력에 의해 상기 자성 나노입자 및 상기 자성 나노입자-생체물질-프로브 복합체가 고정될 수 있다.
상기 자기력 인가부에 의한 고정 단계를 더 포함하게 되면 상기 자성 나노입자 및 상기 자성 나노입자-생체물질-프로브 복합체를 제외한 미반응시료를 먼저 유동채널을 통해 이동시킬수 있다.
상기 자기력 인가부에 의해 고정되지 않아 먼저 이동한 미반응시료는 미반응시료 배출부를 통해 배출하는 단계를 더 포함하는 것이 바람직하다. 상기 미반응시료를 미반응시료 배출부를 통해 먼저 배출하게 되면, 바람직하게는 보다 순도 높은 자성 나노입자-생체물질-프로브 복합체의 검출이 가능하여 분석의 신뢰도를 높일 수 있다.
상기 미반응시료가 미반응시료 배출부를 통해 배출된 후 바람직하게는 상기 자기력의 인가를 중단할 수 있다. 상기 자기력의 인가를 중단하게 되면 상기 자기력 인가부에 수집되었던 자성 나노입자 및 자성 나노입자-생체물질-프로브 복합체가 상기 유동채널의 배출부 방향으로 다시 이동하게 된다.
상기 유동채널을 통해 이동한 상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체는 상기 분리부에서 상기 나노입자 분리홀이 포함된 분리막에 의해 분리 될 수 있다. 이때 상기 분리는 바람직하게는 상기 자성 나노입자는 상기 나노입자 분리홀에 비해 크기가 작으므로 이를 통과하게 되며, 상기 자성 나노입자-생체물질-프로브 복합체는 상기 나노입자 분리홀보다 크기가 커서 이를 통과하지 못해 분리 될 수 있다. 즉, 자성 나노입자와 자성 나노입자-생체물질-프로브 복합체의 크기가 서로 다르며, 이러한 크기 차이를 통해 상기 나노입자 분리홀에서 상기 자성 나노입자-생체물질-프로브 복합체만의 선택적 분리가 가능하다.
상기 나노입자 분리홀의 크기는 바람직하게는 100nm~1000nm일 수 있으며, 상기 자성 나노입자의 크기는 바람직하게는 상기 나노입자 분리홀보다 작으면서 더욱 바람직하게는 30~500nm일 수 있다. 또한 상기 자성 나노입자-생체물질-프로브 복합체의 크기는 바람직하게는 상기 나노입자 분리홀보다 크면서 더욱 바람직하게는 200~1500nm일 수 있다. 그러므로 상기 자성 나노입자는 상기 나노입자 분리홀에 비해 그 크기가 작아 쉽게 통과할 수 있으며, 상기 자성 나노입자-생체물질-프로브는 그 크기가 상기 나노입자 분리홀보다 크기 때문에 상기 나노입자 분리홀을 통과할 수 없다.
결국 상기 나노입자 분리홀이 포함된 분리막은 상기 자성 나노입자-생체물질-프로브 복합체를 순도 높게 따로이 분리해 내며 이를 통해 보다 정확한 생체물질의 분석이 가능하다.
상기 나노입자 분리홀을 통과하지 못하고 검출된 자성 나노입자-생체물질-프로브 복합체를 가지고 생체물질분석을 실시할 수 있다. 또한 상기 분석의 방법은 당업계에 적용되는 공지의 분석 방법이 모두 적용될 수 있으며, 바람직하게는 라만 분광법에 의한 분석일 수 있다.
본 발명의 또 다른 특징에 따른 상기 나노입자 분리홀이 포함된 미세 유체칩용 분리막의 제조방법은 1) 실리콘 또는 이를 포함하는 기판에 화학기상증착(CVD, Chemical Vapor Deposition)을 통하여 질화규소 막을 형성하는 단계, 2) 상기 1)단계 후 1~3㎛ 크기의 분리홀을 형성하는 단계, 3)상기 형성된 분리홀을 포함한 기판에 화학기상증착(CVD, Chemical Vapor Deposition)을 통하여 산화규소 막을 형성하는 단계를 포함할 수 있다.
상기 3)단계의 산화규소 막을 형성하기 위한 화학기상증착(CVD, Chemical Vapor Deposition)은 분리홀의 크기가 100~1000nm가 될 때까지 화학기상증착 할 수 있다. 상기 분리홀의 크기가 100nm미만이 되도록 화학기상증착하면 자성 나노입자를 효과적으로 통과시키지 못해 바람직하지 않으며, 상기 분리홀의 크기가 1000nm를 초과하도록 화학기상증착되면 자성 나노입자-생체물질-프로브 복합체가 통과될 수 있어 바람직하지 않다.
이하 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.
실시예
<실시예 1: 250nm 나노입자 분리홀을 가진 미세 유체칩의 제작>
시료 주입부, 유동용액 주입부, 유동채널, 반응부, 분리부 및 배출부를 가진 미세 유체칩에서 나노입자 분리홀을 유동채널의 하부면에 위치시켜 미세 유체칩을 제조하였다. 이러한 나노입자 분리홀은 실리콘 기판 위에 화학기상증착(CVD) 공정으로 실리콘 기판 위에 질화규소 막을 500nm ~ 1000nm 두께로 형성한다. 이러한 기판에 복수의 나노입자 분리홀을 제작하기 위하여 사진 식각 공정으로 2.5 um 크기의 복수의 마이크로 홀을 패터닝하고 플라즈마 식각을 통해 실리콘 기판의 질화규소 막을 식각한다. 이후, 유동채널의 하부면을 제작하기 위하여 질화규소 막 식각으로 드러난 실리콘 기판을 비등방성 식각을 통하여서 3~5 um 식각한다. 이후, 실리콘 기판 식각액인 TMAH, KOH용액 속에서 다시 한번 식각하여서 유동채널의 하부면을 완성한다. 마지막으로 2.5 um크기의 복수의 마이크로홀을 나노 크기의 분리홀로 크기를 줄이기 위하여 화학기상증착(CVD) 공정을 이용하여서 실리콘 기판 산화규소 막을 형성한다. 실리콘 기판 산화규소 막이 형성됨에 따라서 2.5um 지름의 마이크로 홀의 크기는 줄어들며, 막의 두께를 조절하여서 복수의 나노입자 분리홀의 직경이 250nm가 되도록 공정한다.
또한 유동홀의 상부면은 폴리디메틸실록산(PDMS) 재질을 이용하여서 몰딩방법으로 제작하며, 유동홀의 하부면 및 나노입자 분리홀에 산소플라즈마 처리를 통해 산화시키고 양면을 접합하였으며, 미세 유체칩에 자기력 인가부와 미반응물 배출부를 추가로 설치하여 최종 미세 유체칩을 완성하였다.
하기 도 1은 본 실시예 1따른 미세 유체칩의 전체적인 평면도(a) 및 단면도(b)를 나타내는 그림이다.
또한 하기 도 2는 본 실시예 1에 따른 미세 유체칩에 있어서, 상기 나노입자 분리홀의 주변부를 확대하여 나타낸 그림으로서, 유동채널의 상층 PDMS 면의 아래에 상기 나노입자 분리홀이 위치하는 것을 나타내되, 상기 나노입자 분리홀의 위치를 보다 상세히 묘사하기 위해 나노입자 분리홀을 입체적으로 이격하여 나타낸 그림을 나타내며(도 2a), 또한 상기 실리콘 기판의 질화규소 막을 식각한 후 아직 실리콘 기판 산화규소 막을 형성하기 이전에 기판 위의 2.5㎛ 분리홀의 배치를 보여주는 주사전자 현미경 사진(도 2b)이며, 또한 상기 나노입자 분리홀을 통해 입자의 크기가 작은 나노입자만이 상기 나노입자 분리홀을 통과하게 되는 원리를 나타내는 그림(도 2c)이며, 또한 복수의 나노입자 분리홀을 복수의 그룹으로 제작한 미세 유체칩의 세로 단면도(도 2d)와 가로 단면도(도 2e)를 나타낸 그림이다.
또한 하기 도 3은 실리콘 질화규소 막의 기판을 식각하여 실리콘 기판의 산화규소 막으로 증착하기 전 분리홀의 크기가 2.5㎛였다가 실리콘 산화규소 막 형성을 통하여 575nm까지 크기가 작아져 나노입자 분리홀이 형성되는 양상을 나타내는 주사전자 현미경 사진이다.
또한 도 4는 실리콘 기판의 산화규소 막 증착 전후로 나눠 나노입자 분리홀을 보다 정밀하게 관측한 주사전자 현미경 사진(도 4a)과 증착을 통해 변화하는 나노입자 분리홀의 직경 변화 양상을 그래프로 나타낸 그림(도 4b)이다.
또한 하기 도 5는 본 발명의 실시예인 250nm와는 달리 500nm의 나노입자 분리홀을 가진 미세유체칩을 제작하여 관측한 주사전자 현미경 사진이다. 즉, 하기 도 5는 본 발명에 따른 미세유체칩에 있어서, 화학기상증착(CVD)을 통하여 실시예와 다른 크기의 나노입자 투과홀을 보여주는 사진이며, 이는 결국 화학기상증착을 통한 다양한 크기의 나노입자 투과홀의 제작이 가능함을 보여준다. 그러므로 하기 도 5에 의한 500nm 크기의 나노입자 투과홀을 가진 미세유체칩도 본 발명의 바람직한 일실시예 중 하나에 해당한다.
또한 하기 도 6은 복수의 나노입자 분리홀을 복수의 그룹으로 제작한 미세 유체칩의 경우 관측되는 나노입자 분리홀의 주사전자 현미경 사진이다.
상기 도 6과 같이 복수의 나노입자 분리홀을 복수의 그룹으로 하여 미세 유체칩을 제작하게 되면, 보다 빠르고 효율적으로 분석을 수행할 수 있어 바람직하다.
<실시예 2: 복수개의 나노입자 분리홀이 복수개의 선형 나노입자 분리홀 집단으로 형성되고, 이러한 집단이 지그재그 형태로 배열되게 제작된 분리막을 포함하는 미세 유체칩의 제작>
한편 상기 복수개의 나노입자 분리홀이 복수개의 선형 나노입자 분리홀 집단으로 형성되고, 이러한 집단이 지그재그 형태로 배열되게 분리막을 제작한 것을 제외하고는 상기 실시예 1과 동일한 방법을 사용하여 미세 유체칩을 제작하였다. 이때 상기 플라즈마 식각은 상기 마이크로 홀이 선형으로 복수개의 집단을 이루어 배열될 수 있도록 수행하였다.
하기 도 7은 본 실시예 2에 따른 미세 유체칩의 전체적인 평면도(a) 및 단면도(b)를 나타내는 그림이다.
또한 하기 도 8은 본 실시예 2에 따른 미세 유체칩을 사용하여 형광물질로 표지된 나노입자를 분리하는 예시를 나타낸 사진이다.
또한 하기 도 9는 상기 분리막에서 상기 나노입자 분리홀이 복수개의 선형 복수개의 나노입자 분리홀 집단으로 형성되어 제작된 미세 유체칩의 바람직한 예시를 나타낸 사진이다.
또한 하기 도 10은 본 실시예 2에 따른 미세 유체칩을 사용하여 나노입자를 분리한 결과를 나타낸 SEM 사진이다.
실험예:
<실험예 1: 실시예의 미세유체칩을 이용하여 크기 차이에 따른 선택적 나노입자의 수득>
상기 실시예 1의 250nm 크기의 복수 나노입자 분리홀을 가진 미세 유체칩에 300nm 크기를 가진 나노입자를 통과시켜 그 통과 여부를 측정하는 실험을 진행하였다. 이의 결과는 하기 도 11에 나타냈다.
하기 도 11에서 확인할 수 있는 바와 같이 본 발명의 실시예 1에 따라 제작된 250nm 크기의 나노입자 분리홀을 가진 미세유체칩에는 300nm 크기의 나노입자가 상기 나노입자 분리홀을 통과하지 못하고 걸러지게 됨을 확인할 수 있었다.
이를 통해 본 발명에 따른 미세유체칩은 나노입자 분리홀과 나노입자 간의 크기 차이가 비록 50nm에 불과하지만, 정교하고 민감하게 300nm크기의 나노입자를 통과시키지 않고 걸러내게 됨을 확인할 수 있었다.
이러한 실험 결과를 통해 분석하려는 물질 보다는 작은 크기의 나노입자 분리홀을 제작한 후, 이러한 나노입자 분리홀을 포함하는 본 발명에 따른 미세유체칩을 제작하고, 이를 통해 분석하려는 물질을 분석하게 되면, 보다 높은 신뢰도와 민감도를 가진 분석이 가능함을 확인할 수 있었다.
<실험예 2: 실시예 1 및 실시예 2의 미세유체칩에서 나노입자 분리홀의 직경 비교>
상기 실시예 1 및 실시예 2에 따른 미세유체칩을 제작한 후 각각의 나노입자 분리홀의 직경을 측정하였다. 이를 측정한 결과는 하기 도 12와 같다.
상기 도 12에서 확인할 수 있는 바와 같이 증착의 양에 따른 나노입자 분리홀의 직경이 실시예 2(도 12b)에 따른 경우가 현저히 작아 실시예 1(도 12a)의 경우보다 정교한 나노입자 분리가 가능함을 확인하였다.
한편 도 13은 본 발명에서 시료의 바람직한 예시 중 하나인 자성 나노입자, 프로브 및 자성 나노입자-생체물질-프로브 복합체를 간략하게 나타낸 그림이다.
결국 상기 실험예의 결과와 같이 본 발명에 따른 나노입자 분리홀을 보유한 미세 유체칩은 보다 민감한 반응물의 검출 및 수득을 가능하게 하여 신뢰성 높은 분석 결과를 제공하는 미세 유체칩에 관한 발명임을 확인할 수 있었다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것은 아니고, 본 발명의 기술 사상 범위 내에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 첨부된 특허 청구 범위에 속하는 것은 당연하다.
[부호의 설명]
110. 시료 주입부.
120. 유동용액 주입부.
130. 유동채널.
140. 반응부.
150. 분리부.
160. 배출부.
170. 나노입자 분리홀.
180. 분리막.
190. 격벽.
200. 자기력 인가부.
210. 미반응시료 배출부.
220. 유동채널 상부.
230. 유동채널 하부.

Claims (19)

  1. 시료 주입부, 유동용액 주입부 및 유동채널로 이루어지며,
    상기 유동채널은 반응부, 분리부 및 배출부가 순차적으로 위치하여 이루어진 것으로서,
    상기 분리부는 하나 이상의 나노입자 분리홀이 포함된 분리막을 포함하는 미세 유체칩.
  2. 제 1항에 있어서,
    상기 유동채널의 분리부는 유동채널의 하층이 오목한 홈으로 이루어져 있으며, 상기 오목한 홈은 상기 분리막으로 덮혀 있는 것을 특징으로 하는 미세 유체칩.
  3. 제 1항에 있어서,
    상기 분리막은 복수개의 나노입자 분리홀을 포함하는 복수개의 선형 나노입자 분리홀 집단이 지그재그 형태로 배열되어 이루어지는 것을 특징으로 하는 미세유체칩.
  4. 제 2항에 있어서,
    상기 분리막의 상부면은 상기 유동채널의 상층으로부터 연장된 격벽과 접촉하는 것을 특징으로 하는 미세 유체칩.
  5. 제 4항에 있어서,
    상기 격벽은 상기 주입부를 향하는 분리막의 전단과 상기 배출부를 향하는 분리막의 후단을 제외한 분리막의 중단과 접촉하는 것을 특징으로 하는 미세 유체칩.
  6. 제 1항에 있어서,
    상기 나노입자 분리홀의 크기는 100nm~1000nm인 것을 특징으로 하는 미세 유체칩.
  7. 제 1항에 있어서,
    상기 분리막의 표면은 질화규소 막 위에 산화규소 막이 위치하여 이루어진 것을 특징으로 하는 미세 유체칩.
  8. 제 1항에 있어서,
    상기 나노입자 분리홀의 표면은 산화규소 막으로 이루어진 것을 특징으로 하는 미세 유체칩.
  9. 제 1항에 있어서,
    상기 유동채널의 반응부와 분리부 사이에 자기력 인가부가 위치하여 이루어지는 것을 특징으로 하는 미세 유체칩.
  10. 제 8항에 있어서,
    상기 자기력 인가부와 분리부 사이에 미반응시료를 배출시키는 미반응시료 배출부가 위치하여 이루어지는 것을 특징으로 하는 미세 유체칩.
  11. 1) 제 1항에 따른 미세 유체칩의 유동채널에 시료와 유동용액을 주입하는 단계;
    2) 상기 주입된 시료가 반응부에서 반응하여 반응물을 형성하는 단계;
    3) 상기 반응물은 상기 유동채널의 분리부에 존재하는 하나 이상의 나노입자 분리홀을 통과하지 못하고 검출되는 단계; 및
    4) 상기 검출된 반응물을 분석하는 단계;
    를 포함하여 제 1항에 따른 미세 유체칩을 통해 이루어지는 것을 특징으로 하는 생체물질분석방법.
  12. 제 11항에 있어서,
    상기 1)단계의 시료로 자성 나노입자, 생체물질 및 프로브를 주입하며, 상기 2)단계의 반응물의 형성은 상기 자성 나노입자, 생체물질 및 프로브가 반응하여 자성 나노입자-생체물질-프로브 복합체를 형성하는 것을 특징으로 하는 생체물질분석방법.
  13. 제 12항에 있어서,
    상기 자성 나노입자-생체물질-프로브 복합체는 상기 자성 나노입자와 결합된 수용체와 상기 프로브와 결합된 수용체가 상기 생체물질을 인식하여 형성된 자성 나노입자-생체물질-프로브 복합체인 것을 특징으로 하는 생체물질분석방법.
  14. 제 11항 또는 제 12항에 있어서,
    상기 2)단계와 상기 3)단계 사이에는 상기 자성 나노입자와 상기 자성나노입자-생체물질-프로브 복합체가 자기력 인가부에 의해 고정되어 수집되는 단계를 더 포함하는 것을 특징으로 하는 생체물질분석방법.
  15. 제 14항에 있어서,
    상기 고정되어 수집되는 단계 이후에 상기 자기력 인가부에 의해 고정되지 않는 미반응시료를 미반응시료 배출부를 통해 배출하는 단계를 더 포함하는 것을 특징으로 하는 생체물질분석방법.
  16. 제 15항에 있어서,
    상기 미반응시료 배출 단계 이후에 상기 자기력 인가부의 자기력 인가를 중단하여 상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체를 상기 유동채널의 주입부에서 배출부 쪽으로 다시 이동시키는 것을 특징으로 하는 생체물질분석방법.
  17. 제 16항에 있어서,
    상기 자성 나노입자와 상기 자성 나노입자-생체물질-프로브 복합체가 상기 유동채널의 주입부에서 배출부 쪽으로 이동 한 후 상기 자성 나노입자는 제 10항에 따른 상기 나노입자 분리홀을 통과하지만, 상기 자성 나노입자-생체물질-프로브 복합체는 상기 나노입자 분리홀을 통과하지 못하는 것을 특징으로 하는 생체물질분석방법.
  18. 1) 실리콘 또는 이를 포함하는 기판에 화학기상증착(CVD, chemical vapor deposition)을 통하여 질화규소 막을 형성하는 단계;
    2) 상기 1)단계 후 1~3㎛ 크기의 분리홀을 형성하는 단계; 및
    3) 상기 형성된 분리홀을 포함한 기판에 화학기상증착(CVD, chemical vapor deposition)을 통하여 산화규소 막을 형성하는 단계;
    를 포함하는 제 1항에 따른 나노입자 분리홀이 포함된 미세 유체칩용 분리막의 제조방법.
  19. 제 18항에 있어서,
    상기 3)단계의 산화규소 막을 형성하기 위한 화학기상증착(CVD, chemical vapor deposition)은 분리홀의 크기가 100nm~1,000nm가 될 때까지 화학기상증착(CVD, chemical vapor deposition)하는 것을 특징으로 하는 제 1항에 따른 나노입자 분리홀이 포함된 미세 유체칩용 분리막의 제조방법.
PCT/KR2013/010569 2012-11-28 2013-11-20 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법 WO2014084545A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/647,876 US9696301B2 (en) 2012-11-28 2013-11-20 Method for separating nanoparticles and analyzing biological substance using microfluidic chip

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120135918 2012-11-28
KR10-2012-0135918 2012-11-28
KR1020130139222A KR20140068758A (ko) 2012-11-28 2013-11-15 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법
KR10-2013-0139222 2013-11-15

Publications (1)

Publication Number Publication Date
WO2014084545A1 true WO2014084545A1 (ko) 2014-06-05

Family

ID=50828118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010569 WO2014084545A1 (ko) 2012-11-28 2013-11-20 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법

Country Status (1)

Country Link
WO (1) WO2014084545A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004309A1 (ko) * 2016-06-30 2018-01-04 김성천 이중가닥 핵산 신호 프로브 및 이를 이용한 표적분자의 검출방법
CN109939751A (zh) * 2017-12-21 2019-06-28 东莞东阳光科研发有限公司 一种全血检测的微流控芯片、检测装置及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267912A (ja) * 2003-03-07 2004-09-30 Seiko Epson Corp 水素透過フィルターの製造方法、水素透過フィルター並びにそれを用いた燃料電池用水素燃料供給システム
JP2008256701A (ja) * 2008-04-25 2008-10-23 Fuji Electric Holdings Co Ltd 抗原の分離装置並びにこれを利用した抗原の計測方法及び装置
JP2008540070A (ja) * 2005-04-29 2008-11-20 ユニバーシティー オブ ロチェスター 超薄多孔質ナノスケール膜、その製造方法および使用
KR100988945B1 (ko) * 2008-04-17 2010-10-20 재단법인서울대학교산학협력재단 마이크로 채널을 이용한 혈관 내 특정부위에 세포를유도·고정하기 위한 시뮬레이션 장치 및 이를 이용하는시뮬레이션 방법
KR20120056442A (ko) * 2010-11-25 2012-06-04 한국전자통신연구원 생체 시료 분석용 미세유체제어 칩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267912A (ja) * 2003-03-07 2004-09-30 Seiko Epson Corp 水素透過フィルターの製造方法、水素透過フィルター並びにそれを用いた燃料電池用水素燃料供給システム
JP2008540070A (ja) * 2005-04-29 2008-11-20 ユニバーシティー オブ ロチェスター 超薄多孔質ナノスケール膜、その製造方法および使用
KR100988945B1 (ko) * 2008-04-17 2010-10-20 재단법인서울대학교산학협력재단 마이크로 채널을 이용한 혈관 내 특정부위에 세포를유도·고정하기 위한 시뮬레이션 장치 및 이를 이용하는시뮬레이션 방법
JP2008256701A (ja) * 2008-04-25 2008-10-23 Fuji Electric Holdings Co Ltd 抗原の分離装置並びにこれを利用した抗原の計測方法及び装置
KR20120056442A (ko) * 2010-11-25 2012-06-04 한국전자통신연구원 생체 시료 분석용 미세유체제어 칩

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004309A1 (ko) * 2016-06-30 2018-01-04 김성천 이중가닥 핵산 신호 프로브 및 이를 이용한 표적분자의 검출방법
CN109939751A (zh) * 2017-12-21 2019-06-28 东莞东阳光科研发有限公司 一种全血检测的微流控芯片、检测装置及其检测方法

Similar Documents

Publication Publication Date Title
KR101712940B1 (ko) 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법
CN103803479B (zh) 集成电微流控探针卡、系统及其使用方法
CA2426483C (en) Mems-based integrated magnetic particle identification system
CA2482566C (en) Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
WO2014010960A1 (en) Fluid analysis cartridge
AU2002239432A1 (en) MEMS-based integrated magnetic particle identification system
WO2011005050A2 (ko) 다기능 미세유체 유동 제어 장치 및 다기능 미세유체 유동 제어 방법
WO2014084545A1 (ko) 미세 유체칩을 이용한 나노입자 분리 및 이를 이용한 생체물질분석방법
WO2018182342A1 (ko) 플로팅 게이트 반도체 나노구조 바이오센서 및 이의 제조방법
WO2016099108A1 (ko) 나노 포어 소자 및 이의 제조 방법
WO2019168236A1 (ko) 유체 검사 카트리지, 이를 포함하는 유체 검사장치 및 검사장치의 제어방법
WO2015137691A1 (ko) 테일러 괴틀러 와류를 이용한 마이크로 믹서 및 그 제작방법
TW200933135A (en) Microfluid apparatus with micro-structure, and sensing system and method thereof
CN109879238A (zh) 内嵌通道式的微悬臂梁装置、加工方法及一种检测方法
WO2020106004A1 (ko) 박막을 이용하여 분리 가능한 구조를 갖는 마이크로 플루이딕 디바이스
WO2019107763A1 (ko) 다공성 박막을 이용하여 채널 내 미세 버블의 제거가 가능한 마이크로 플루이딕 디바이스와 버블 유입 방지용 시료주입 장치 및 이형필름을 이용한 미세유체 소자의 패널 본딩방법
WO2014081109A1 (ko) 자유지지형 나노박막의 기계적 특성 측정 장치 및 방법
WO2012086994A2 (en) Micro-fluidic system
Yuen et al. Microbarcode sorting device
WO2018221784A1 (ko) 유체 분석용 마이크로 칩
WO2011065729A2 (ko) 바이오 센서
WO2015008927A1 (ko) 바이오 센서 칩
CN109896498A (zh) 内嵌通道微悬臂梁的一种并联结构及加工方法
CN112881493A (zh) 场效应晶体管型生物传感器件及生物分子检测方法
JP2008132543A (ja) 樹脂基板へのパターン形成方法及びこの方法を用いたマイクロ流路デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14647876

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13857732

Country of ref document: EP

Kind code of ref document: A1