WO2014084538A1 - Exhaust gas denitrification reactor and exhaust gas denitrification system using same - Google Patents

Exhaust gas denitrification reactor and exhaust gas denitrification system using same Download PDF

Info

Publication number
WO2014084538A1
WO2014084538A1 PCT/KR2013/010532 KR2013010532W WO2014084538A1 WO 2014084538 A1 WO2014084538 A1 WO 2014084538A1 KR 2013010532 W KR2013010532 W KR 2013010532W WO 2014084538 A1 WO2014084538 A1 WO 2014084538A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
housing
reactor
reducing agent
noise
Prior art date
Application number
PCT/KR2013/010532
Other languages
French (fr)
Korean (ko)
Inventor
이수태
최원석
허재우
Original Assignee
주식회사 파나시아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파나시아 filed Critical 주식회사 파나시아
Publication of WO2014084538A1 publication Critical patent/WO2014084538A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/10Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling in combination with sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a reactor in which a chemical reaction in which nitrogen oxide contained in the introduced exhaust gas is converted to nitrogen gas through a denitrification reaction with a catalyst, and an exhaust gas denitrification system using the same. It is formed on the housing and the inner surface of the housing to reduce noise in the exhaust gas introduced into the housing and to prevent the heat is discharged to the outside of the housing to keep the thermal insulation and sound absorbing portion and the inside of the housing Exhaust gas denitrification reactor and exhaust gas denitrification using the same, including a resonator for resonating the exhaust gas to reduce the noise, the warming and sound absorbing unit heats the reactor and absorbs the noise, and the resonator reduces the noise It's about the system.
  • the conventional exhaust gas denitrification system for removing and reducing the nitrogen oxides and noise of the exhaust gas is provided with a separate silencer to reduce the noise or simply connected to the reactor to remove the nitrogen oxides of the exhaust gas,
  • the total size of the denitrification system for removing and reducing the nitrogen oxides and noise of the exhaust gas is increased so that a large installation cost is required and the space where the denitrification system is installed cannot be efficiently utilized.
  • the removal of nitrogen oxides by the reactor is carried out by a denitrification reaction using a catalyst, the denitrification reaction occurs at a high temperature of about 400 degrees, so that the reactor is equipped with a thermal insulation facility, the thermal insulation facility is formed outside the reactor There is a problem in that it can not perform other functions other than the thermal insulation function to increase the size of the reactor.
  • the present invention has been made to solve the above problems,
  • an object of the present invention is to provide an exhaust gas denitrification reactor and an exhaust gas denitrification system using the same, in which a thermal insulation and sound absorption unit is formed inside the reactor to keep the reactor warm and absorb noise, thereby reducing the size of the reactor.
  • the present invention forms a resonance portion at the front and rear ends of the inside of the housing to reduce the noise by resonating the incoming exhaust gas
  • the front and rear ends of the housing may be expanded or reduced in order to reduce noise. It is an object of the present invention to provide an exhaust gas denitrification reactor and an exhaust gas denitrification system using the same, which do not require a process to reduce manufacturing costs.
  • the present invention is to provide an exhaust gas denitrification reactor and an exhaust gas denitrification system using the same, which is easy to install and can provide improved convenience because the configuration for thermal insulation and the configuration for reducing noise is located inside the reactor.
  • the purpose is.
  • Exhaust gas denitrification reactor for achieving the above object of the present invention includes the following configuration.
  • the exhaust gas denitrification reactor according to the present invention is formed on the housing and the inner surface of the housing to reduce the noise in the exhaust gas introduced into the housing and to the outside of the housing Including a heat-absorbing and sound-absorbing unit for insulating the reactor by preventing heat from being released, the heat-absorbing and sound absorbing unit keeps the reactor and absorbs noise, so that the size of the reactor can be reduced.
  • the exhaust gas denitrification reactor according to the present invention is that the reactor includes an outer housing and a resonator for reducing the noise by resonating the exhaust gas introduced into the interior of the housing It features.
  • the exhaust gas denitrification reactor according to the present invention is characterized in that it further comprises a resonator for reducing the noise by resonating the exhaust gas introduced into the interior of the housing.
  • the thermal insulation and sound absorbing portion is formed to surround the inner surface of the housing to reduce noise in the introduced exhaust gas and heat inside the housing is reduced. It characterized in that it comprises a heat-absorbing sound absorbing material to prevent being discharged to the outside of the housing, and a support portion formed inside the housing to support the heat absorbing sound absorbing material.
  • the resonance portion is formed in the front side of the inner surface of the housing to expand the exhaust gas introduced into the housing to reduce sound wave energy to reduce noise.
  • a second resonance portion formed on the rear side of the inner side of the housing and reducing the sound wave energy by contracting the exhaust gas before being discharged from the housing to reduce noise.
  • one end of the first resonance portion is coupled to the front surface of the housing and the other end is coupled to the support portion to be enlarged toward the discharge direction of the exhaust gas.
  • the second resonance portion is coupled to the rear end of the housing and the other end is coupled to the support portion characterized in that it has a form that is reduced toward the discharge direction of the exhaust gas.
  • the first resonance portion is coupled to the front surface of the housing and the other end is coupled to the support portion and is formed along the inner surface of the housing to exhaust gas. It includes a diameter expansion plate for increasing the inner space of the housing toward the discharge direction of the hwayeong material, and a flaw material to reduce the noise in the exhaust gas located in the space surrounded by the front, support and expansion plate of the housing It is done.
  • the expansion plate in the exhaust gas denitrification reactor according to the present invention, is characterized in that a plurality of perforations are formed.
  • the exhaust gas denitrification system using the exhaust gas denitrification reactor according to the present invention is mixed with a reducing agent injection unit for supplying a reducing agent to the incoming exhaust gas, and a reducing agent supplied from the reducing agent injection unit
  • a reactor for converting nitrogen oxides into nitrogen gas in the exhaust gas, and a reducing agent supply control device for controlling the reducing agent supply amount of the reducing agent injection unit wherein the reactor is a reactor according to any one of claims 1 to 3. It is characterized by that.
  • the present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
  • the present invention has the effect of enabling the denitrification and noise reduction without installing a separate silencer.
  • the present invention has the effect of reducing the size of the reactor because the thermal insulation and the sound absorbing portion is formed inside the reactor to keep the reactor and absorb the noise.
  • the present invention forms a resonance portion at the front and rear ends of the inside of the housing to reduce the noise by resonating the incoming exhaust gas
  • the front and rear ends of the housing may be expanded or reduced in order to reduce noise. There is no effect to reduce the manufacturing cost is not necessary.
  • the present invention has a configuration for reducing the noise and the configuration for thermal insulation inside the reactor, there is an effect that can be easy to install and provide improved convenience in use.
  • FIG. 1 is a block diagram of a denitrification system having an exhaust gas denitrification reactor according to one embodiment of the invention.
  • Figure 2 is a block diagram for explaining the reducing agent injection unit and the mixing chamber used in the denitrification system of FIG.
  • FIG. 3 is a perspective view of an exhaust gas denitrification reactor according to an embodiment of the present invention.
  • Figure 4 is a partially cut perspective view of the exhaust gas denitrification reactor according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of the exhaust gas denitrification reactor cut along the line A-A of FIG. 4; FIG.
  • FIG. 6 is a cross-sectional view of the exhaust gas denitrification reactor taken along the line B-B in FIG. 4.
  • FIG. 7 is a partially cutaway perspective view of an exhaust gas denitrification reactor according to another embodiment of the present invention.
  • FIG. 8 is a perspective view of the exhaust gas denitrification reactor cut along the line A-A of FIG.
  • FIG. 9 is a cross-sectional view of the exhaust gas denitrification reactor taken along line B-B of FIG. 7.
  • FIG. 9 is a cross-sectional view of the exhaust gas denitrification reactor taken along line B-B of FIG. 7.
  • FIG. 10 is a block diagram for explaining a detailed configuration of the control device of FIG.
  • FIG. 11 is a block diagram illustrating a detailed configuration of a transceiver of FIG. 10.
  • FIG. 12 is a block diagram for explaining a detailed configuration of the function setting unit of FIG.
  • FIG. 13 is a block diagram for explaining a detailed configuration of the function execution unit of FIG.
  • FIG. 14 is a block diagram for explaining a detailed configuration of the first execution module of FIG.
  • 15 is a screen of the display of FIG. 10;
  • FIG. 1 is a block diagram of a denitrification system having an exhaust gas denitrification reactor according to an embodiment of the present invention
  • FIG. 2 is a block diagram illustrating a reducing agent spray unit and a mixing chamber used in the denitrification system of
  • FIG. 3 is a perspective view of an exhaust gas denitrification reactor according to an embodiment of the present invention
  • FIG. 4 is a partially cutaway perspective view of the exhaust gas denitrification reactor according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view of an exhaust gas denitrification reactor taken along line BB of FIG. 4
  • FIG. 7 is a partially cutaway perspective view of an exhaust gas denitrification reactor according to another embodiment of the present invention
  • FIG. 7 is a perspective view of the exhaust gas denitrification reactor cut by line AA of FIG. 7,
  • FIG. 9 is a cross-sectional view of the exhaust gas denitrification reactor cut by line BB of FIG. 7, and
  • FIG. 10 is a detailed description of the control device of FIG. 1.11 is a block diagram illustrating a detailed configuration of the transceiver of FIG. 10,
  • FIG. 12 is a block diagram illustrating a detailed configuration of the function setting section of FIG. 10, and
  • FIG. 13 is a function execution diagram of FIG. 10.
  • 14 is a block diagram illustrating the detailed configuration of the first execution module of FIG. 13, and
  • FIG. 15 is a screen of the display of FIG. 10.
  • a denitrification system having an exhaust gas denitrification reactor includes an inlet 1 through which exhaust gas is introduced and an exhaust gas introduced by the inlet 1.
  • Reducing agent spraying unit (2) for supplying a reducing agent, the mixing chamber (3) for producing a mixed gas mixed with the exhaust gas introduced by the inlet (1) and the reducing agent supplied by the reducing agent spraying unit (2)
  • a reactor 4 for denitrifying nitrogen oxides (NOx) to harmless components and reducing noise in a mixed gas mixed with the exhaust gas and a reducing agent, and an exhaust gas deniterated and reduced in noise in the reactor 4.
  • the inlet 1 is a configuration in which a gas or a fluid (hereinafter referred to as 'exhaust gas') containing nitrogen oxide discharged from a small and medium-sized cogeneration-generated LNG gas discharge unit, an engine for thermal power generation, a marine engine, or the like is introduced.
  • 'exhaust gas' a gas or a fluid
  • the reducing agent spraying unit 2 is configured to supply a reducing agent into the mixing chamber 3, which will be described later, and the reducing agent spraying unit 2 supplies an air supply unit 21, a reducing agent supplying unit 22, an injection unit 23, and the like. Include.
  • the air supply unit 21 is configured to provide external air to the injection unit 23 and is controlled by the control device 7.
  • the air supply unit 21 includes an air pressurizing unit 211 which causes air flow so that external air can be supplied to the injection unit 23.
  • the air pressurizing unit 211 may be a blower, a compressor or the like.
  • the reducing agent supply unit 22 is configured to provide a reducing agent to the injection unit 23 and is controlled by the control device 7.
  • the reducing agent supply unit 22 includes a reducing agent storage tank 221, a flow control pump 222, and the like.
  • the reducing agent storage tank 221 is a configuration for storing the reducing agent, for example, may be formed in a variety of shapes, such as cylindrical, rectangular, etc., and may be formed of various materials and various sizes and capacities such as SUS304 or SPV300. For example, urea water may be used as the reducing agent.
  • One end of the flow control pump 222 is connected to an output end of the reducing agent storage tank 221 to supply a reducing agent to the injection part 23 and to adjust the strength of the output under the control of the control device 7 to supply the reducing agent. Can be adjusted.
  • a "YAD-12211 (1/2") model of Daelim Total Flow Meter which has a flow rate range of 5.7 to 85 liter / min and is made of SCS13 (Body) and SUS316 (TRIM), may be used.
  • the injector 23 is connected to the air supply unit 21 and the reducing agent supply unit 22 to inject the received air and the reducing agent into the mixing chamber 3, and the injector 23 is configured to It is connected to the output end of the pressure unit 211 and the output end of the flow control pump 222, respectively.
  • a spray nozzle of a model of "wide-angle circular spraying (setup No. 26)" made by Spraying Systems Co. Korea, which is made of a spraying amount of 33 liters / hr and a material of SUS 304, may be used.
  • the mixing chamber 3 is configured to mix the exhaust gas introduced through the inlet 1 and the reducing agent injected through the injection unit 23 to generate a mixed gas.
  • a mixed gas For example, when urea water is used as the reducing agent, the urea water injected through the injection unit 23 is mixed with high temperature exhaust gas and supplied with heat through the exhaust gas, thereby receiving a gaseous phase through a reaction such as the following chemical reaction formula. It is converted into ammonia, and a mixed gas of ammonia and exhaust gas is supplied to the reactor 4.
  • the denitrification system uses a multiple mixer 31 in which the mixing chamber 5 can mix the reducing agent and the exhaust gas in a short time.
  • the reactor 4 is configured to denitrate nitrogen oxides (NOx) to harmless components and reduce noise in a mixed gas of a reducing agent and exhaust gas.
  • NOx nitrogen oxides
  • 41 including the sound-absorbing sound absorbing portion 42, the resonance portion 43, the catalyst portion 44, the silencer 45, etc., can reduce the noise simultaneously with the denitrification reaction can reduce the size of the entire denitrification system There is a characteristic.
  • Exhaust gas denitrified in the reactor 4 is discharged to the outside through the discharge portion (6).
  • the housing 41 is configured to form the outer shape of the reactor 4, the thermal insulation and absorption unit 42, the resonance unit 43, the catalyst unit 44 and the silencer 45 is located inside the reactor. do.
  • An inlet passage 414 is formed on the front surface 411 of the housing 41 to introduce the mixed gas discharged from the mixing chamber 3, and the rear surface 412 of the housing 41 is denitrated and noise is generated.
  • a discharge path 415 through which the reduced exhaust gas is discharged is formed, and a side surface 413 is formed between the front surface 411 and the rear surface 412 of the housing 41 which are positioned at a predetermined interval.
  • the housing 41 has a certain shape, but preferably has a rectangular cylinder shape.
  • the thermal insulation sound absorbing portion 42 is formed on the inner surface, that is, the inner surface of the side surface 413 of the housing 41 to reduce noise in the exhaust gas introduced through the inflow passage 414 and inside the housing 41.
  • the heat of the reactor is prevented from being discharged to the outside to keep the reactor 4 warm.
  • the sound absorbing and sound absorbing part 42 includes a heat insulating sound absorbing material 421, a support part 422, and the like.
  • the insulating sound absorbing material 421 is formed to surround the inner surface of the housing 41, to reduce a certain noise in the mixed gas introduced through the inlet passage 414, the heat inside the housing 41 The discharge to the outside of the housing 41 is prevented.
  • the thermal insulation sound absorbing material 421 may be made of various materials, for example, may be formed of mineral wool having excellent thermal insulation and excellent noise absorption efficiency.
  • the support part 422 is formed inside the housing 41 outside the heat insulating sound absorbing material 421 to support the heat insulating sound absorbing material 421, and has one side surface of the support part 422 and the housing 41.
  • the insulating sound absorbing material 421 is located between the inner surface of the.
  • a plurality of perforations 422a are formed in the support part 422, so that the mixed gas introduced into the reactor 41 moves in contact with the insulating sound absorbing material 421 through one perforation and is discharged through the other perforations. Therefore, the noise caused by the exhaust gas is reduced.
  • the resonance unit 43 is installed inside the housing 41 to resonate the mixed gas introduced into the housing 41 so that sound wave energy is lost to reduce noise, and the first resonance unit ( 431 and the second resonance unit 432.
  • the first resonance portion 431 is formed on the front side of the inner surface of the housing 41 to expand the mixed gas introduced into the housing 41 through the inlet passage 414, that is to resonate so as to reduce the sound wave energy
  • one end is coupled to the front surface 411 and the other end support portion 422 Coupled to the has a shape that is enlarged toward the discharge path (415) toward.
  • the second resonance unit 432 is formed on the inner side rear side of the housing 41 to contract the exhaust gas before being discharged through the discharge path 415, that is, to resonate so that the sound wave energy is reduced to improve a certain noise.
  • the denitrification treatment is performed by the catalyst unit 44 to be described later, and may have various shapes such that the exhaust gas before being discharged through the discharge path 415 may be contracted.
  • the other end is coupled to the support portion 422 has a shape that is enlarged toward the inflow path 414 toward.
  • the resonance portion 43 is formed at the front and rear ends of the housing 41 to resonate the exhaust gas flowing therein, thereby reducing the noise, thereby reducing the noise of the housing 41. There is no need to expand or reduce the front and rear ends, which can reduce manufacturing costs.
  • the catalyst unit 44 is installed in the housing 41 behind the first resonance unit 431 and includes a plurality of through holes 441 through which the catalyst is coated and the mixed gas can pass.
  • the catalyst unit 44 is preferably coupled to the outer side of the thermal insulation and sound absorbing portion 42 and the perforation 4221 is provided near the support portion 422 of the thermal insulation and sound absorption portion 42 which is coupled to the catalyst portion 44. It is not formed so that the mixed gas can move toward the catalyst 44.
  • the mixed gas introduced into the reactor 41 passes through the catalyst unit 44.
  • nitrogen oxide (NOx) included in the mixed gas is converted into nitrogen through denitrification with the catalyst.
  • the nitrogen oxide in the mixed gas is introduced into a harmless component through the reaction of the following chemical reaction by the action of the catalyst.
  • urea water was used as a reducing agent in the reaction.
  • a variety of products can be used as the catalyst, such as oxides, such as V, Rh, Mo, W, Cu, Ni, Fe, Cr, Mn, Sn, sulfate, rare earth oxides, precious metals, etc. as catalytic active species, Products using catalyst carriers such as Al 2 0 3 , Ti0 2 , activated carbon, zeolite, silica, and the like may be used.
  • V 2 0 5 vanadium pentoxide
  • Ti0 2 titanium oxide
  • Mo0 3 mobdenum troxide
  • W0 3 tungsten trioxide
  • the silencer 45 is located inside the reactor 4 at the rear of the catalyst unit 44 and passes through the catalyst unit 44 to reduce noise from the denitrified exhaust gas. It includes.
  • a plurality of partitions 451 are located in the reactor 6 at the rear side of the catalyst unit 44 in parallel with the flow direction of the exhaust gas at regular intervals, and pass through the catalyst unit 44 to perform denitrification treatment. It distributes the flow of exhaust gas and absorbs the noise.
  • the partition 451 includes a sound absorbing material 4511 that absorbs noise, and a support plate 4512 positioned at both sides of the sound absorbing material 4511 to support the sound absorbing material 4511.
  • the front surface 4413 of the partition 451 may have a semi-circular or triangular shape to minimize pressure loss of the denitrified exhaust gas flowing into the silencer 45.
  • the sound absorbing material 4511 is made of a sound absorbing material and absorbs noise from the denitrified exhaust gas passing through the silencer 45.
  • the sound absorbing material may be made of various materials, for example, resistant to heat and excellent in absorbing noise. It may be formed of mineral wool.
  • the support plate 4512 is disposed on both sides of the sound absorbing material 4511 to support the sound absorbing material 4511, and the support plate 4512 includes a plurality of through holes 4512a to effectively absorb noise in the sound absorbing material 4511. ) Is formed.
  • the partition 451 prevents the formation of vortices and concentration of fluid to prevent the increase of sound wave energy by dispersing the flow of the denitrified exhaust gas, and the sound absorbing material 4511 absorbs noise,
  • the silencer 45 can effectively reduce noise.
  • the mixed gas introduced into the housing 41 through the inlet 414 is the first resonance Noise is reduced by the expansion of the portion 431, the mixed gas passing through the first resonance portion 431 is denitrified while passing through the catalyst portion 44, and the exhaust gas denitrified by the catalyst portion 44.
  • the gas passes through the silencer 45 to reduce noise, and the denitrified exhaust gas passing through the silencer 45 is expanded by the second resonance unit 432 to reduce the noise, thereby reducing the noise.
  • Through 415 While the mixed gas is introduced into the housing 41 and discharged, the mixed gas or the denitrified exhaust gas may be reduced in noise by the thermal insulation sound absorbing unit 42.
  • Exhaust gas denitrification reactor having the above configuration has a feature that can reduce the size of the reactor because the thermal insulation and the sound absorbing portion is formed inside the reactor to keep the reactor and absorb the noise, and the configuration and noise for the thermal insulation inside the reactor is reduced Since the configuration for the location is easy to install, there is a feature that can provide improved convenience in use.
  • the reactor 5 includes the reactor 4 and the resonance unit 53 described with reference to FIGS. 3 to 6. There is a difference in the following, the resonance unit 53 will be described below.
  • the resonance unit 53 is installed inside the housing 41 to resonate the mixed gas introduced into the housing 41 so that sound wave energy is lost to reduce noise, and the first resonance unit ( 531 and a second resonance unit 532.
  • the first resonator 531 is formed on the inner side of the housing 41 to expand the mixed gas introduced into the housing 41 through the inlet passage 414, that is, to resonate so as to reduce sound wave energy.
  • the expansion plate (5311) In this configuration to remove the constant noise, the expansion plate (5311), and includes a sound absorbing material (5312).
  • One end of the expansion plate 5311 is coupled to the front surface 411 and the other end is coupled to the support part 422, and is formed along the inner surface of the housing 41 to discharge the space of the housing 41 from the discharge path 415.
  • a plurality of perforations (5311a) are formed in the enlarged diameter plate (5311) in a configuration that increases in the direction toward).
  • the sound absorbing material 5312 is located in a space S1 formed by being surrounded by the front surface 411, the support part 422, and the enlarged diameter plate 5311 to absorb noise from the mixed gas.
  • the second resonance unit 532 is formed on the rear side of the inner surface of the housing 41 to contract the exhaust gas before being discharged through the discharge path 415, that is, to resonate so that the sound wave energy is reduced to improve a certain noise.
  • the shaft plate 5321 and the sound absorbing material 5322 are included.
  • One end of the side plate (5321) is coupled to the rear surface 412, the other end is coupled to the support portion 422 is formed along the inner surface of the housing 41, the space of the housing 41 discharge path 415
  • the shaft diameter plate (5321) is formed with a plurality of perforations (5321a) is formed in the configuration to shrink toward the direction.
  • the sound absorbing material 5322 is located in a space S2 surrounded by the rear surface 412, the support 422, and the shaft plate 5321 to absorb noise from the mixed gas.
  • the analyzers 11 and 61 are installed at the inlet 1 and / or the outlet 6 to sense information on the amount of nitrogen oxide contained in the exhaust gas, and then to the reducing agent supply control device 7 below. In a configuration for transmitting, the first analyzer 11 and the second analyzer 61 is included.
  • the first analyzer 11 is connected to one side of the inlet 1 to sense information on the amount of nitrogen oxide contained in the exhaust gas flowing into the reducing agent supply control device 7 to be described later It is meant for.
  • the information on the amount of nitrogen oxides transmitted from the first analyzer 11 to the reducing agent supply control device 7 also includes a ratio of the amount of nitrogen monoxide and the amount of nitrogen dioxide.
  • the second analyzer 61 senses the amount of nitrogen oxide present in the denitrified exhaust gas discharged through the discharge unit 6 and transmits it to the reducing agent supply control device 7.
  • the first and second analyzers 11 and 61 are respectively installed at the inlet 1 and the outlet 6, but in the exhaust gas denitrification system, only the first analyzer 11 is installed at the inlet 1. It is also possible, and only the second analyzer 61 may be installed in the discharge part 6, and the reducing agent supply control device 7 even when the first and second analyzers 11 and 61 are not installed.
  • the display unit 62 is configured to display information of the exhaust gas denitrification system, and is controlled by the reducing agent supply control device 7.
  • the reducing agent supply control device 7 is configured to control the overall operation of the denitrification system, and controls the reducing agent injection unit 2 to adjust the amount of reducing agent to be supplied to the exhaust gas.
  • the reducing agent supply control device 7 includes a transceiver 71, a function setting unit 72, a storage unit 73, a function execution unit 74, an error correction unit 75, a screen display unit 76, a control unit ( 77) and the like.
  • the transceiver 71 receives the information on the nitrogen oxides of the exhaust gas transmitted from the first and second analyzers 11 and 61 and transmits the information on the reducing agent supply amount to the reducing agent injection unit 2.
  • the first receiving module 711 for receiving information on the nitrogen oxides of the exhaust gas transmitted from the first analyzer 11 and the information on the nitrogen oxides of the exhaust gas transmitted from the second analyzer 61
  • a second receiving module 712 for receiving and a transmitting module 713 for transmitting information on the amount of reducing agent supplied to the reducing agent injection unit 2.
  • the function setting unit 72 stores various information of the denitrification system and selects a specific function of the function execution unit 74 to be described later.
  • the engine setting module 721 is a module for setting information on an engine that discharges exhaust gas to be denitrated by the denitrification system, and the information set by the engine setting module 721 is stored in the storage unit 73. do.
  • the information on the engine includes an amount of exhaust gas that the engine normally discharges, an amount of nitrogen oxide contained in the exhaust gas, and the like.
  • the analyzer registration module 722 is a module for setting information about the position and the number of analyzers 11 and 61 installed in the denitrification system.
  • the information set in the analyzer registration module 722 is stored in the storage unit 73. Will be stored in.
  • the function selection module 723 is a module for selecting a specific function of the function execution unit 74 according to the installation position and the number of the analyzers 11 and 61, and in the function selection module 723, the function execution unit. It is possible to select any one of the first to fourth execution modules 741 to 742 of 74.
  • the storage unit 73 is configured to store the information of the reducing agent to be supplied according to the information set by the function setting unit 72 and the information on the engine, the first storage module 731, the second storage module ( 732).
  • the first storage module 731 is a module for storing information on the denitrification system set by the function setting unit 72.
  • the module 741 includes information about the engine, information about an analyzer, and an execution module 741 of a selected function execution unit. 742).
  • the second storage module 732 is a module in which data about the amount of reducing agent to be supplied is stored in a table according to the information on the engine set by the engine registration module.
  • the function execution unit 74 is configured to include a plurality of execution modules for controlling the reducing agent supply amount of the reducing agent supply unit 2 by calculating the amount of reducing agent to be supplied to the exhaust gas according to the installation position and the number of analyzers,
  • the first execution module 741, the second execution module 742, the third execution module 743, and the fourth execution module 744 are included.
  • the first execution module 741 is based on the amount of nitrogen oxide contained in the exhaust gas transmitted by the first analyzer 11 installed in the inlet 1 and the second analyzer 61 installed in the outlet 6.
  • the reducing agent supply amount of the reducing agent injection unit 2 is controlled by calculating the amount of the reducing agent to be supplied to the exhaust gas. 7413).
  • the reducing agent calculation module 7741 is a module for controlling the reducing agent supply amount of the reducing agent injection unit 2 by calculating the amount of the reducing agent to be supplied according to the amount of nitrogen oxides in the exhaust gas transmitted from the first analyzer 11. .
  • the first reducing agent correction module 7422 is a module for correcting the amount of reducing agent calculated by the reducing agent calculation module 7741 in consideration of the ratio of nitrogen monoxide and nitrogen dioxide of the exhaust gas transmitted from the first analyzer 11. For example, in the case of nitrogen dioxide, approximately 1.3 times of reducing agent is supplied as compared to nitrogen monoxide.
  • the second reducing agent correction module 7741 is a module for correcting the amount of reducing agent calculated by the first reducing agent correction module according to the amount of nitrogen oxides of the exhaust gas transmitted from the second analyzer 61, in the denitrification system.
  • the amount of nitrogen oxides in the exhaust gas transmitted from the second analyzer 61 has a value within the allowable discharge value, so that the amount of reducing agent supplied is not necessary, but is transmitted from the second analyzer 61.
  • the second reducing agent correction module 7741 corrects the amount of the reducing agent calculated by the first reducing agent correction module 7262.
  • the second execution module 742 calculates the amount of the reducing agent to be supplied to the exhaust gas according to the amount of nitrogen oxide contained in the exhaust gas transmitted by the first analyzer 11 installed in the inlet 1 and the reducing agent.
  • the reducing agent supply amount of the injection unit 2 is controlled, and includes a reducing agent calculating module 7701 and a reducing agent correction module 7742.
  • the reducing agent calculation module 7741 is a module for controlling the reducing agent supply amount of the reducing agent injection unit 2 by calculating the amount of the reducing agent to be supplied according to the amount of nitrogen oxides in the exhaust gas transmitted from the first analyzer 11. .
  • the reducing agent correction module 7742 is a module for correcting the amount of reducing agent calculated by the reducing agent calculation module 7701 in consideration of the ratio of nitrogen monoxide and nitrogen dioxide of the exhaust gas transmitted from the first analyzer 11, for example. In the case of nitrogen dioxide, about 1.3 times as much reducing agent as nitrogen monoxide is supplied.
  • the third execution module 743 calculates the amount of the reducing agent to be supplied to the exhaust gas according to the amount of nitrogen oxide contained in the exhaust gas transmitted by the second analyzer 61 installed in the discharge unit 6 and the reducing agent.
  • the reducing agent supply amount of the injection unit 2 is controlled, and the amount of reducing agent is calculated so that the amount of nitrogen oxides in the exhaust gas transmitted from the second analyzer 61 has a value less than the allowable discharge amount. ).
  • the fourth execution module 744 is configured to control the reducing agent supply amount of the reducing agent injection unit 2 according to the amount of the reducing agent to be supplied stored in the storage unit 73 when the engine is operated.
  • the error correction unit 75 executes the function according to the current situation of the analyzers 11 and 61 when the execution module selected by all or part of the analyzers 11 and 61 is not properly operated.
  • the configuration for controlling the operation of the other execution module of the unit 74 includes an error determination module 751, error correction module 752.
  • the error judging module 751 is a module that calculates an error by analyzing the information transmitted from the analyzers 11 and 61, for example, when the information is not transmitted from the analyzers 11 and 61 or is out of an acceptable range. Determined.
  • the error correction module 752 adjusts the function of the function execution unit 74 according to the state of the analyzer 11, 61.
  • This configuration controls the operation. For example, when the first analyzer 11 and the second analyzer 61 are installed in the denitrification system, the error determination module 751 determines that the second analyzer 61 has an error. 752 stops the operation of the first execution module 741 and executes the second execution module 742. When the error determination module 751 determines that the first analyzer 11 has an error, The error correction module 752 stops the operation of the first execution module 741 and executes the third execution module 743, and the error determination module 751 causes both the first and second analyzers 11 and 61 to operate.
  • the error correction module 752 stops the operation of the first execution module 741 and executes the fourth execution module 744.
  • the first analyzer 11 or the second analyzer 61 is installed in the denitrification system.
  • the error determination module 751 indicates that the first analyzer 11 or the second analyzer 61 has an error. If it is determined, the error correction module 752 stops the operation of the second execution module 742 or the third execution module 743 and executes the fourth execution module 744.
  • the screen display unit 76 is configured to display setting and execution information of the exhaust gas denitrification system, and includes a screen display module 761 for displaying on the display 62 information for setting and executing a function for reducing agent supply. And an interface module 762 for selecting an item of a screen displayed on the display 62 through a user's touch or mouse keyboard input. Information on the function setting unit 72 and the function execution unit 73 is displayed on the display by the screen display unit 761, and corresponds to the information displayed on the display 62 by the interface unit 762. You can select an item.
  • the control unit 77 controls the overall operation of the reducing agent supply control device (7).
  • the reducing agent supply control device 7 first select the item 101 of the engine setting module displayed on the display 62, and set up and register information about the engine, and then register the analyzer Select item 102 of the module to set and register information on the analyzer about the location and number of analyzers installed in the denitrification system, and select items 103 to 106 of the function selection module to analyze the analyzer installed in the denitrification system. Select one of the first to fourth execution modules 741 to 744 of the function execution unit 74 corresponding to the information about. For example, when the analyzers 11 and 61 are installed in both the inlet 1 and the outlet 6, the item 103 of the first execution module is selected, and the analyzer 11 is installed only in the inlet 1.
  • the item 104 of the second execution module selects the item 105 of the third execution module, the inlet (1) and the discharge unit If all the analyzers are not installed in (6), the item 106 of the fourth execution module is selected.
  • the selected execution module is operated to control the supply of the reducing agent to the reducing agent injection unit 2.

Abstract

The present invention relates to a reactor for generating a chemical reaction, in which nitrogen oxide included in the inflown exhaust gas is converted into nitrogen gas through a denitrification reaction with a catalyst, and an exhaust gas denitrification system using the same and, more specifically, to an exhaust gas denitrification reactor and an exhaust gas denitrification system, the reactor comprising: a housing for defining an outer shape; a heat-insulating sound absorption part which is formed on the inner surface of the housing so as to reduce the noise from the exhaust gas which flows into the housing and to prevent thermal emission to the outside of the housing, thereby maintaining the warmth of the reactor; and a resonator which resonates the exhaust gas which flows into the housing so as to reduce noise, wherein the heat-insulating sound absorption part maintains the warmth of the reactor and absorbs noise and the resonator reduces noise such that the size of the reactor can be reduced.

Description

배기가스 탈질 반응기 및 이를 이용하는 배기가스 탈질시스템Exhaust gas denitrification reactor and exhaust gas denitrification system using the same
본 발명은 유입된 배기가스에 포함되어 있는 질소산화물이 촉매와의 탈질반응을 통해 질소 기체로 변환되는 화학반응이 일어나는 반응기 및 이를 이용하는 배기가스 탈질시스템에 대한 것으로, 더욱 상세하게는 외형을 형성하는 하우징과 상기 하우징의 내측면에 형성되어 상기 하우징에 유입된 배기가스에서 소음을 저감하고 상기 하우징의 외부로 열이 방출되는 것을 방지하여 상기 반응기를 보온하는 보온흡음부와 상기 하우징의 내부에 유입된 배기가스를 공명시켜 소음을 저감하는 공명기를 포함하여, 상기 보온흡음부가 반응기를 보온하고 소음을 흡수하고 상기 공명기가 소음을 저감하므로 반응기의 크기를 줄일 수 있는 배기가스 탈질 반응기 및 이를 이용하는 배기가스 탈질시스템에 대한 것이다.The present invention relates to a reactor in which a chemical reaction in which nitrogen oxide contained in the introduced exhaust gas is converted to nitrogen gas through a denitrification reaction with a catalyst, and an exhaust gas denitrification system using the same. It is formed on the housing and the inner surface of the housing to reduce noise in the exhaust gas introduced into the housing and to prevent the heat is discharged to the outside of the housing to keep the thermal insulation and sound absorbing portion and the inside of the housing Exhaust gas denitrification reactor and exhaust gas denitrification using the same, including a resonator for resonating the exhaust gas to reduce the noise, the warming and sound absorbing unit heats the reactor and absorbs the noise, and the resonator reduces the noise It's about the system.
화력발전소 및 선박 등의 엔진에서 배출하는 배기가스에는 다량의 질소산화물(NOx)이 포함되어 있는데, 상기 질소산화물은 산성비 및 호흡기 질환의 원인물질로 알려져 있다. 따라서, 배기가스에 포함된 질소산화물을 제거하기 위한 다양한 기술이 개발되고 있다. 또한, 엔진 자체에서 발생하는 엔진 작동 소음과 배기가스에 의해 발생하는 유동 소음이 배기가스와 함께 외부 환경으로 바로 배출되는 경우에는 주변환경을 파괴하고 민원의 대상이 되므로, 엔진 작동 소음 및 배기가스에 의해 발생하는 소음을 저감하기 위한 기술이 개발되고 있다.Exhaust gases emitted from engines such as thermal power plants and ships contain a large amount of nitrogen oxides (NOx), which are known to cause acid rain and respiratory diseases. Therefore, various techniques for removing nitrogen oxides contained in the exhaust gas have been developed. In addition, when the engine noise generated by the engine itself and the flow noise generated by the exhaust gas are discharged directly to the external environment together with the exhaust gas, the surrounding environment is destroyed and subject to complaints. A technology for reducing the noise generated by the development has been developed.
하지만, 배기가스의 질소산화물과 소음을 제거·저감하기 위한 종래의 배기가스 탈질시스템은 소음을 저감하는 소음기가 별도로 구비되거나 상기 소음기가 배기가스의 질소산화물을 제거하는 반응기와 단순히 연결된 형태를 가져, 배기가스의 질소산화물과 소음의 제거·저감하기 위한 탈질시스템의 전체 크기가 크게 되어 많은 설치비용이 소요되고 상기 탈질시스템이 설치되는 공간을 효율적으로 활용할 수 없는 문제가 있다.However, the conventional exhaust gas denitrification system for removing and reducing the nitrogen oxides and noise of the exhaust gas is provided with a separate silencer to reduce the noise or simply connected to the reactor to remove the nitrogen oxides of the exhaust gas, The total size of the denitrification system for removing and reducing the nitrogen oxides and noise of the exhaust gas is increased so that a large installation cost is required and the space where the denitrification system is installed cannot be efficiently utilized.
또한, 상기 반응기에 의한 질소산화물 제거는 촉매를 사용한 탈질반응에 의해 이루어지는데 상기 탈질반응은 400도 내외의 고온에서 일어나므로 상기 반응기에는 보온시설이 설치되는데, 상기 보온시설은 상기 반응기의 외부에 형성되어 보온기능 이외에는 다른 기능을 수행할 수 없어 상기 반응기의 크기를 크게 하는 문제가 있다.In addition, the removal of nitrogen oxides by the reactor is carried out by a denitrification reaction using a catalyst, the denitrification reaction occurs at a high temperature of about 400 degrees, so that the reactor is equipped with a thermal insulation facility, the thermal insulation facility is formed outside the reactor There is a problem in that it can not perform other functions other than the thermal insulation function to increase the size of the reactor.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been made to solve the above problems,
본 발명은 별도의 소음기를 설치하지 않고 탈질반응과 소음저감이 가능한 배기가스 탈질 반응기 및 이를 이용하는 배기가스 탈질시스템을 제공하는데 그 목적이 있다.It is an object of the present invention to provide an exhaust gas denitrification reactor capable of denitrification and noise reduction without installing a separate silencer and an exhaust gas denitrification system using the same.
또한, 본 발명은 반응기 내부에 보온흡음부가 형성되어 반응기를 보온하고 소음을 흡수하므로 반응기의 크기를 줄일 수 있는 배기가스 탈질 반응기 및 이를 이용하는 배기가스 탈질시스템을 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide an exhaust gas denitrification reactor and an exhaust gas denitrification system using the same, in which a thermal insulation and sound absorption unit is formed inside the reactor to keep the reactor warm and absorb noise, thereby reducing the size of the reactor.
또한, 본 발명은 반응기의 하우징을 제작한 후에 상기 하우징 내부의 전단 및 후단에 공명부를 형성하여 유입되는 배기가스를 공명시켜 소음을 저감하므로, 소음을 저감하기 위해 하우징의 전단 및 후단을 확경 또는 축경시키는 과정이 필요하지 않아 제작비용을 절감할 수 있는 배기가스 탈질 반응기 및 이를 이용하는 배기가스 탈질시스템을 제공하는데 그 목적이 있다.In addition, since the present invention forms a resonance portion at the front and rear ends of the inside of the housing to reduce the noise by resonating the incoming exhaust gas, the front and rear ends of the housing may be expanded or reduced in order to reduce noise. It is an object of the present invention to provide an exhaust gas denitrification reactor and an exhaust gas denitrification system using the same, which do not require a process to reduce manufacturing costs.
또한, 본 발명은 반응기 내부에 보온을 위한 구성 및 소음을 저감하기 위한 구성이 위치하므로, 설치가 용이하고 사용상 향상된 편리성을 제공할 수 있는 배기가스 탈질 반응기 및 이를 이용하는 배기가스 탈질시스템을 제공하는데 그 목적이 있다.In addition, the present invention is to provide an exhaust gas denitrification reactor and an exhaust gas denitrification system using the same, which is easy to install and can provide improved convenience because the configuration for thermal insulation and the configuration for reducing noise is located inside the reactor. The purpose is.
상술한 본 발명의 목적을 달성하기 위한 배기가스 탈질 반응기는 다음과 같은 구성을 포함한다.Exhaust gas denitrification reactor for achieving the above object of the present invention includes the following configuration.
본 발명의 일 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기는 외형을 형성하는 하우징과, 상기 하우징의 내측면에 형성되어 상기 하우징에 유입된 배기가스에서 소음을 저감하고 상기 하우징의 외부로 열이 방출되는 것을 방지하여 상기 반응기를 보온하는 보온흡음부를 포함하여, 상기 보온흡음부가 반응기를 보온하고 소음을 흡수하므로 반응기의 크기를 줄일 수 있는 것을 특징으로 한다.According to an embodiment of the present invention, the exhaust gas denitrification reactor according to the present invention is formed on the housing and the inner surface of the housing to reduce the noise in the exhaust gas introduced into the housing and to the outside of the housing Including a heat-absorbing and sound-absorbing unit for insulating the reactor by preventing heat from being released, the heat-absorbing and sound absorbing unit keeps the reactor and absorbs noise, so that the size of the reactor can be reduced.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기는 상기 반응기는 외형을 형성하는 하우징과, 상기 하우징의 내부에 유입된 배기가스를 공명시켜 소음을 저감하는 공명기를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the exhaust gas denitrification reactor according to the present invention is that the reactor includes an outer housing and a resonator for reducing the noise by resonating the exhaust gas introduced into the interior of the housing It features.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기는 상기 하우징의 내부에 유입된 배기가스를 공명시켜 소음을 저감하는 공명기를 추가로 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the exhaust gas denitrification reactor according to the present invention is characterized in that it further comprises a resonator for reducing the noise by resonating the exhaust gas introduced into the interior of the housing.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기에 있어서 상기 보온흡음부는 상기 하우징의 내측면을 에워싸도록 형성되어 유입된 배기가스에서 소음을 저감하고 상기 하우징 내부의 열이 상기 하우징의 외부로 방출되는 것을 방지하는 보온흡음재와, 상기 하우징의 내부에 형성되어 상기 보온흡음재를 지지하는 지지부를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the exhaust gas denitrification reactor according to the present invention, the thermal insulation and sound absorbing portion is formed to surround the inner surface of the housing to reduce noise in the introduced exhaust gas and heat inside the housing is reduced. It characterized in that it comprises a heat-absorbing sound absorbing material to prevent being discharged to the outside of the housing, and a support portion formed inside the housing to support the heat absorbing sound absorbing material.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기에 있어서 상기 공명부는 상기 하우징의 내측면 전측에 형성되어 상기 하우징에 유입된 배기가스를 팽창시켜 음파에너지가 감소하도록 하여 소음을 저감하는 제1공명부와, 상기 하우징의 내측면 후측에 형성되어 상기 하우징에서 배출되기 전의 배기가스를 수축시켜 음파에너지가 감소하도록 하여 소음을 제거하는 제2공명부를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the exhaust gas denitrification reactor according to the present invention, the resonance portion is formed in the front side of the inner surface of the housing to expand the exhaust gas introduced into the housing to reduce sound wave energy to reduce noise. And a second resonance portion formed on the rear side of the inner side of the housing and reducing the sound wave energy by contracting the exhaust gas before being discharged from the housing to reduce noise.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기에 있어서 상기 제1공명부는 일단은 상기 하우징의 전면에 결합하고 타단은 지지부에 결합하여 배기가스의 배출방향으로 갈수록 확경되는 형태를 가지며, 상기 제2공명부는 일단은 상기 하우징의 후면에 결합하고 타단은 지지부에 결합하여 배기가스의 배출방향으로 갈수록 축경되는 형태를 가지는 것을 특징으로 한다.According to another embodiment of the present invention, in the exhaust gas denitrification reactor according to the present invention, one end of the first resonance portion is coupled to the front surface of the housing and the other end is coupled to the support portion to be enlarged toward the discharge direction of the exhaust gas. The second resonance portion is coupled to the rear end of the housing and the other end is coupled to the support portion characterized in that it has a form that is reduced toward the discharge direction of the exhaust gas.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기에 있어서 상기 제1공명부는 일단은 하우징의 전면에 결합하고 타단은 지지부에 결합하며 상기 하우징의 내측면을 따라 형성되어 배기가스의 배출방향으로 갈수록 상기 하우징의 내부공간을 확경시키는 확경판과, 상기 하우징의 전면, 지지부 및 확경판에 의해 에워싸져 형성되는 공간에 위치하여 배기가스에서 소음을 저감하는 흠음재를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the exhaust gas denitrification reactor according to the present invention, the first resonance portion is coupled to the front surface of the housing and the other end is coupled to the support portion and is formed along the inner surface of the housing to exhaust gas. It includes a diameter expansion plate for increasing the inner space of the housing toward the discharge direction of the hwayeong material, and a flaw material to reduce the noise in the exhaust gas located in the space surrounded by the front, support and expansion plate of the housing It is done.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기에 있어서 상기 확경판에는 다수의 타공이 형성되는 것을 특징으로 한다.According to another embodiment of the present invention, in the exhaust gas denitrification reactor according to the present invention, the expansion plate is characterized in that a plurality of perforations are formed.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 배기가스 탈질 반응기를 이용하는 배기가스 탈질시스템은 유입되는 배기가스에 환원제를 공급하는 환원제분사부와, 상기 환원제분사부에서 공급된 환원제와 혼합된 배기가스에서 질소산화물을 질소기체로 변환시키는 반응기와, 상기 환원제분사부의 환원제 공급량을 제어하는 환원제공급 제어장치를 포함하며, 상기 반응기는 제1항 내지 제3항 중 어느 하나의 항에 있어서의 반응기인 것을 특징으로 한다.According to another embodiment of the present invention, the exhaust gas denitrification system using the exhaust gas denitrification reactor according to the present invention is mixed with a reducing agent injection unit for supplying a reducing agent to the incoming exhaust gas, and a reducing agent supplied from the reducing agent injection unit A reactor for converting nitrogen oxides into nitrogen gas in the exhaust gas, and a reducing agent supply control device for controlling the reducing agent supply amount of the reducing agent injection unit, wherein the reactor is a reactor according to any one of claims 1 to 3. It is characterized by that.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
본 발명은 별도의 소음기를 설치하지 않고 탈질반응과 소음저감이 가능한 효과가 있다.The present invention has the effect of enabling the denitrification and noise reduction without installing a separate silencer.
또한, 본 발명은 반응기 내부에 보온흡음부가 형성되어 반응기를 보온하고 소음을 흡수하므로 반응기의 크기를 줄일 수 있는 효과가 있다.In addition, the present invention has the effect of reducing the size of the reactor because the thermal insulation and the sound absorbing portion is formed inside the reactor to keep the reactor and absorb the noise.
또한, 본 발명은 반응기의 하우징을 제작한 후에 상기 하우징 내부의 전단 및 후단에 공명부를 형성하여 유입되는 배기가스를 공명시켜 소음을 저감하므로, 소음을 저감하기 위해 하우징의 전단 및 후단을 확경 또는 축경시키는 과정이 필요하지 않아 제작비용을 절감할 수 있는 효과가 있다.In addition, since the present invention forms a resonance portion at the front and rear ends of the inside of the housing to reduce the noise by resonating the incoming exhaust gas, the front and rear ends of the housing may be expanded or reduced in order to reduce noise. There is no effect to reduce the manufacturing cost is not necessary.
또한, 본 발명은 반응기 내부에 보온을 위한 구성 및 소음을 저감하기 위한 구성이 위치하므로, 설치가 용이하고 사용상 향상된 편리성을 제공할 수 있는 효과가 있다.In addition, the present invention has a configuration for reducing the noise and the configuration for thermal insulation inside the reactor, there is an effect that can be easy to install and provide improved convenience in use.
도 1은 본 발명의 일 실시예에 따른 배기가스 탈질 반응기를 가지는 탈질시스템의 블럭도.1 is a block diagram of a denitrification system having an exhaust gas denitrification reactor according to one embodiment of the invention.
도 2는 도 1의 탈질시스템에 사용되는 환원제분사부와 혼합챔버를 설명하기 위한 구성도.Figure 2 is a block diagram for explaining the reducing agent injection unit and the mixing chamber used in the denitrification system of FIG.
도 3은 본 발명의 일 실시예에 따른 배기가스 탈질 반응기의 사시도.3 is a perspective view of an exhaust gas denitrification reactor according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 배기가스 탈질 반응기의 부분절단 사시도.Figure 4 is a partially cut perspective view of the exhaust gas denitrification reactor according to an embodiment of the present invention.
도 5는 도 4의 A-A선으로 절단한 배기가스 탈질 반응기의 사시도.FIG. 5 is a perspective view of the exhaust gas denitrification reactor cut along the line A-A of FIG. 4; FIG.
도 6은 도 4의 B-B선으로 절단한 배기가스 탈질 반응기의 단면도.6 is a cross-sectional view of the exhaust gas denitrification reactor taken along the line B-B in FIG. 4.
도 7은 본 발명의 다른 실시예에 따른 배기가스 탈질 반응기의 부분절단 사시도.7 is a partially cutaway perspective view of an exhaust gas denitrification reactor according to another embodiment of the present invention.
도 8은 도 7의 A-A선으로 절단한 배기가스 탈질 반응기의 사시도.FIG. 8 is a perspective view of the exhaust gas denitrification reactor cut along the line A-A of FIG.
도 9는 도 7의 B-B선으로 절단한 배기가스 탈질 반응기의 단면도.FIG. 9 is a cross-sectional view of the exhaust gas denitrification reactor taken along line B-B of FIG. 7. FIG.
도 10은 도 1의 제어장치의 세부구성을 설명하기 위한 블럭도.10 is a block diagram for explaining a detailed configuration of the control device of FIG.
도 11은 도 10의 송수신부의 세부구성을 설명하기 위한 블럭도.FIG. 11 is a block diagram illustrating a detailed configuration of a transceiver of FIG. 10.
도 12는 도 10의 기능설정부의 세부구성을 설명하기 위한 블럭도.12 is a block diagram for explaining a detailed configuration of the function setting unit of FIG.
도 13은 도 10의 기능실행부의 세부구성을 설명하기 위한 블럭도.FIG. 13 is a block diagram for explaining a detailed configuration of the function execution unit of FIG.
도 14는 도 13의 제1실행모듈의 세부구성을 설명하기 위한 블럭도.14 is a block diagram for explaining a detailed configuration of the first execution module of FIG.
도 15는 도 10의 디스플레이의 화면.15 is a screen of the display of FIG. 10;
이하에서는 본 발명에 따른 배기가스 탈질 반응기를 가지는 탈질시스템의 블럭도를 첨부된 도면을 참조하여 상세히 설명한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대해 상세한 설명은 생략한다.Hereinafter, a block diagram of a denitration system having an exhaust gas denitrification reactor according to the present invention will be described in detail with reference to the accompanying drawings. Unless otherwise defined, all terms in this specification are equivalent to the general meaning of the terms understood by those of ordinary skill in the art to which the present invention pertains and, if they conflict with the meanings of the terms used herein, Follow the definition used in the specification. In addition, detailed description of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1은 본 발명의 일 실시예에 따른 배기가스 탈질 반응기를 가지는 탈질시스템의 블럭도이며, 도 2는 도 1의 탈질시스템에 사용되는 환원제분사부와 혼합챔버를 설명하기 위한 구성도이고, 도 3은 본 발명의 일 실시예에 따른 배기가스 탈질 반응기의 사시도이며, 도 4는 본 발명의 일 실시예에 따른 배기가스 탈질 반응기의 부분절단 사시도이고, 도 5는 도 4의 A-A선으로 절단한 배기가스 탈질 반응기의 사시도이며, 도 6은 도 4의 B-B선으로 절단한 배기가스 탈질 반응기의 단면도이고, 도 7은 본 발명의 다른 실시예에 따른 배기가스 탈질 반응기의 부분절단 사시도이며, 도 8은 도 7의 A-A선으로 절단한 배기가스 탈질 반응기의 사시도이고, 도 9는 도 7의 B-B선으로 절단한 배기가스 탈질 반응기의 단면도이고, 도 10은 도 1의 제어장치의 세부구성을 설명하기 위한 블럭도이며, 도 11은 도 10의 송수신부의 세부구성을 설명하기 위한 블럭도이고, 도 12는 도 10의 기능설정부의 세부구성을 설명하기 위한 블럭도이며, 도 13은 도 10의 기능실행부의 세부구성을 설명하기 위한 블럭도이고, 도 14는 도 13의 제1실행모듈의 세부구성을 설명하기 위한 블럭도이며, 도 15는 도 10의 디스플레이의 화면이다.1 is a block diagram of a denitrification system having an exhaust gas denitrification reactor according to an embodiment of the present invention, FIG. 2 is a block diagram illustrating a reducing agent spray unit and a mixing chamber used in the denitrification system of FIG. 3 is a perspective view of an exhaust gas denitrification reactor according to an embodiment of the present invention, FIG. 4 is a partially cutaway perspective view of the exhaust gas denitrification reactor according to an embodiment of the present invention, and FIG. 6 is a cross-sectional view of an exhaust gas denitrification reactor taken along line BB of FIG. 4, and FIG. 7 is a partially cutaway perspective view of an exhaust gas denitrification reactor according to another embodiment of the present invention, and FIG. 8. 7 is a perspective view of the exhaust gas denitrification reactor cut by line AA of FIG. 7, FIG. 9 is a cross-sectional view of the exhaust gas denitrification reactor cut by line BB of FIG. 7, and FIG. 10 is a detailed description of the control device of FIG. 1.11 is a block diagram illustrating a detailed configuration of the transceiver of FIG. 10, FIG. 12 is a block diagram illustrating a detailed configuration of the function setting section of FIG. 10, and FIG. 13 is a function execution diagram of FIG. 10. 14 is a block diagram illustrating the detailed configuration of the first execution module of FIG. 13, and FIG. 15 is a screen of the display of FIG. 10.
도 1 내지 15를 참조하면, 본 발명의 일 실시예에 따른 배기가스 탈질 반응기를 가지는 탈질시스템은 배기가스가 유입되는 유입부(1)와, 상기 유입부(1)에 의해 유입된 배기가스에 환원제를 공급하는 환원제분사부(2)와, 상기 유입부(1)에 의해 유입된 배기가스와 상기 환원제분사부(2)에 의해 공급된 환원제가 혼합된 혼합가스를 생성하는 혼합챔버(3)와, 상기 배기가스와 환원제가 혼합된 혼합가스에서 질소산화물(NOx)을 무해한 성분으로 탈질시키고 소음을 저감하는 반응기(4)와, 상기 반응기(4)에서 탈질처리되고 소음이 저감된 배기가스가 배출되는 배출부(6)와, 상기 배기가스 탈질시스템의 정보를 표시하는 디스플레이(62)와, 상기 탈질시스템의 전체적인 작동을 제어하는 환원제공급 제어장치(7)를 포함한다.1 to 15, a denitrification system having an exhaust gas denitrification reactor according to an embodiment of the present invention includes an inlet 1 through which exhaust gas is introduced and an exhaust gas introduced by the inlet 1. Reducing agent spraying unit (2) for supplying a reducing agent, the mixing chamber (3) for producing a mixed gas mixed with the exhaust gas introduced by the inlet (1) and the reducing agent supplied by the reducing agent spraying unit (2) And a reactor 4 for denitrifying nitrogen oxides (NOx) to harmless components and reducing noise in a mixed gas mixed with the exhaust gas and a reducing agent, and an exhaust gas deniterated and reduced in noise in the reactor 4. A discharge part 6 to be discharged, a display 62 for displaying information of the exhaust gas denitrification system, and a reducing agent supply control device 7 for controlling the overall operation of the denitrification system.
상기 유입부(1)는 중소형 열병합발전용 LNG가스배출부, 화력발전을 위한 엔진, 선박용 엔진 등에서 배출되는 질소산화물을 포함한 가스 또는 유체(이하, '배기가스'라 함)가 유입되는 구성이다.The inlet 1 is a configuration in which a gas or a fluid (hereinafter referred to as 'exhaust gas') containing nitrogen oxide discharged from a small and medium-sized cogeneration-generated LNG gas discharge unit, an engine for thermal power generation, a marine engine, or the like is introduced.
상기 환원제분사부(2)는 후술할 혼합챔버(3) 내에 환원제를 공급하는 구성으로, 상기 환원제분사부(2)는 공기공급부(21), 환원제공급부(22), 분사부(23) 등을 포함한다.The reducing agent spraying unit 2 is configured to supply a reducing agent into the mixing chamber 3, which will be described later, and the reducing agent spraying unit 2 supplies an air supply unit 21, a reducing agent supplying unit 22, an injection unit 23, and the like. Include.
상기 공기공급부(21)는 외부의 공기를 상기 분사부(23)에 제공하는 구성으로, 상기 제어장치(7)에 의해서 제어된다. 상기 공기공급부(21)는 외부공기가 상기 분사부(23)에 공급될 수 있도록 공기 유동을 일으키는 공기가압부(211)를 포함한다. 예컨대, 상기 공기가압부(211)는 송풍기, 컴프레셔 등이 사용될 수 있다.The air supply unit 21 is configured to provide external air to the injection unit 23 and is controlled by the control device 7. The air supply unit 21 includes an air pressurizing unit 211 which causes air flow so that external air can be supplied to the injection unit 23. For example, the air pressurizing unit 211 may be a blower, a compressor or the like.
상기 환원제공급부(22)는 환원제를 상기 분사부(23)에 제공하는 구성으로, 상기 제어장치(7)에 의해서 제어된다. 상기 환원제공급부(22)는 환원제저장탱크(221), 유량제어펌프(222) 등을 포함한다. 상기 환원제저장탱크(221)는 환원제를 저장하는 구성으로, 예컨대, 원통형, 장방형 등과 같은 다양한 형상으로 형성될 수 있고, SUS304 또는 SPV300과 같은 다양한 재질과 다양한 크기와 용량으로 형성될 수 있다. 상기 환원제는 예컨대, 요소수 등이 사용될 수 있다. 상기 유량제어펌프(222)는 일단이 상기 환원제저장탱크(221)의 출력단과 연결되어 환원제를 상기 분사부(23)에 공급하며 제어장치(7)의 제어하에 출력의 강약을 조절하여 환원제의 공급량을 조절할 수 있다. 예컨대, 유량범위 5.7 ~ 85 liter/min이고 SCS13(Body), SUS316(TRIM) 재질로 제작된 대림종합유량계의 "YAD-12211(1/2")" 모델 등이 사용될 수 있다.The reducing agent supply unit 22 is configured to provide a reducing agent to the injection unit 23 and is controlled by the control device 7. The reducing agent supply unit 22 includes a reducing agent storage tank 221, a flow control pump 222, and the like. The reducing agent storage tank 221 is a configuration for storing the reducing agent, for example, may be formed in a variety of shapes, such as cylindrical, rectangular, etc., and may be formed of various materials and various sizes and capacities such as SUS304 or SPV300. For example, urea water may be used as the reducing agent. One end of the flow control pump 222 is connected to an output end of the reducing agent storage tank 221 to supply a reducing agent to the injection part 23 and to adjust the strength of the output under the control of the control device 7 to supply the reducing agent. Can be adjusted. For example, a "YAD-12211 (1/2") model of Daelim Total Flow Meter, which has a flow rate range of 5.7 to 85 liter / min and is made of SCS13 (Body) and SUS316 (TRIM), may be used.
상기 분사부(23)는 상기 공기공급부(21) 및 환원제공급부(22)에 연결되어 제공받은 공기 및 환원제를 상기 혼합챔버(3) 내에 분사하는 구성으로, 상기 분사부(23)는 상기 공기가압부(211)의 출력단과 유량제어펌프(222)의 출력단에 각각 연결된다. 예컨대 분사량 33liter/hr, 재질 SUS304로 이루어진 스프레잉시스템코리아사(Spraying Systems Co. Korea)의 "광각원형분사(setup번호: 26)"모델의 분사노즐 등이 사용될 수 있다.The injector 23 is connected to the air supply unit 21 and the reducing agent supply unit 22 to inject the received air and the reducing agent into the mixing chamber 3, and the injector 23 is configured to It is connected to the output end of the pressure unit 211 and the output end of the flow control pump 222, respectively. For example, a spray nozzle of a model of "wide-angle circular spraying (setup No. 26)" made by Spraying Systems Co. Korea, which is made of a spraying amount of 33 liters / hr and a material of SUS 304, may be used.
상기 혼합챔버(3)는 상기 유입부(1)를 통해 유입된 배기가스와 상기 분사부(23)를 통해 분사된 환원제를 혼합하여 혼합가스를 생성하는 구성이다. 예컨대, 상기 환원제로 요소수가 사용되는 경우, 상기 분사부(23)를 통해 분사된 요소수는 고온의 배기가스와 혼합되어 배기가스를 통해 열을 공급받아 아래의 화학반응식과 같은 반응을 통해 기상의 암모니아로 변환되게 되고, 암모니아와 배기가스가 혼합된 혼합가스가 상기 반응기(4)에 공급되게 된다.The mixing chamber 3 is configured to mix the exhaust gas introduced through the inlet 1 and the reducing agent injected through the injection unit 23 to generate a mixed gas. For example, when urea water is used as the reducing agent, the urea water injected through the injection unit 23 is mixed with high temperature exhaust gas and supplied with heat through the exhaust gas, thereby receiving a gaseous phase through a reaction such as the following chemical reaction formula. It is converted into ammonia, and a mixed gas of ammonia and exhaust gas is supplied to the reactor 4.
xH2O + CO(NH2)2 → 2NH3 + CO2 + (x-1)H2OxH 2 O + CO (NH 2 ) 2 → 2NH 3 + CO 2 + (x-1) H 2 O
이때, 상기 혼합챔버(3)의 내부에서 상기 분사부(23)를 통해 분사된 환원제를 배기가스와 혼합시키기 위해서는 반드시 일정 길이 이상의 공간과 시간을 필요로 하는바, 이에 따라 상기 혼합챔버(3)의 크기가 커질 수밖에 없어 설비공간을 최적화하는데 문제점이 있었다. 따라서, 본원발명에서 이를 개선하기 위해 탈질시스템은 상기 혼합챔버(5)가 환원제와 배기가스가 짧은 시간 내에 혼합될 수 있도록 하는 다중혼합기(31)가 사용된다.In this case, in order to mix the reducing agent injected through the injection unit 23 with the exhaust gas inside the mixing chamber 3, a space and a time of a predetermined length or more are required. Accordingly, the mixing chamber 3 There is a problem in optimizing the installation space because the size of the inevitably increases. Therefore, in order to improve this in the present invention, the denitrification system uses a multiple mixer 31 in which the mixing chamber 5 can mix the reducing agent and the exhaust gas in a short time.
상기 반응기(4)를 도 3 내지 6을 참조하여 설명하면, 상기 반응기(4)는 환원제와 배기가스의 혼합가스에서 질소산화물(NOx)을 무해한 성분으로 탈질시키고 소음을 저감하는 구성으로, 하우징(41), 보온흡음부(42), 공명부(43), 촉매부(44), 사일렌서(45) 등을 포함하여, 탈질반응과 동시에 소음의 저감이 가능하여 전체 탈질시스템의 크기를 줄일 수 있는 특징이 있다. 상기 반응기(4)에서 탈질처리된 배기가스는 상기 배출부(6)를 통해 외부로 배출되게 된다.3 to 6, the reactor 4 is configured to denitrate nitrogen oxides (NOx) to harmless components and reduce noise in a mixed gas of a reducing agent and exhaust gas. 41), including the sound-absorbing sound absorbing portion 42, the resonance portion 43, the catalyst portion 44, the silencer 45, etc., can reduce the noise simultaneously with the denitrification reaction can reduce the size of the entire denitrification system There is a characteristic. Exhaust gas denitrified in the reactor 4 is discharged to the outside through the discharge portion (6).
상기 하우징(41)은 상기 반응기(4)의 외형을 형성하는 구성으로, 상기 반응기의 내부에는 보온흡음부(42), 공명부(43), 촉매부(44) 및 사일렌서(45)가 위치하게 된다. 상기 하우징(41)의 전면(411)에는 상기 혼합챔버(3)로부터 배출된 혼합가스가 유입되는 유입로(414)가 형성되고, 상기 하우징(41)의 후면(412)에는 탈질처리되고 소음이 저감된 배기가스가 배출되는 배출로(415)가 형성되며, 일정 간격을 두고 위치하는 상기 하우징(41)의 전면(411)과 후면(412) 사이에는 측면(413)이 형성되게 된다. 상기 하우징(41)은 일정 형상을 가지나 바람직하게는 사각통의 형상을 가진다.The housing 41 is configured to form the outer shape of the reactor 4, the thermal insulation and absorption unit 42, the resonance unit 43, the catalyst unit 44 and the silencer 45 is located inside the reactor. do. An inlet passage 414 is formed on the front surface 411 of the housing 41 to introduce the mixed gas discharged from the mixing chamber 3, and the rear surface 412 of the housing 41 is denitrated and noise is generated. A discharge path 415 through which the reduced exhaust gas is discharged is formed, and a side surface 413 is formed between the front surface 411 and the rear surface 412 of the housing 41 which are positioned at a predetermined interval. The housing 41 has a certain shape, but preferably has a rectangular cylinder shape.
상기 보온흡음부(42)는 상기 하우징(41)의 측면(413)의 내면 즉, 내측면에 형성되어 상기 유입로(414)를 통해 유입된 배기가스에서 소음을 저감하고 상기 하우징(41) 내부의 열이 외부로 배출되는 것을 방지하여 상기 반응기(4)를 보온한다. 상기 보음흡음부(42)는 보온흡음재(421), 지지부(422) 등을 포함한다.The thermal insulation sound absorbing portion 42 is formed on the inner surface, that is, the inner surface of the side surface 413 of the housing 41 to reduce noise in the exhaust gas introduced through the inflow passage 414 and inside the housing 41. The heat of the reactor is prevented from being discharged to the outside to keep the reactor 4 warm. The sound absorbing and sound absorbing part 42 includes a heat insulating sound absorbing material 421, a support part 422, and the like.
상기 보온흡음재(421)는 상기 하우징(41)의 내측면을 에워싸도록 형성되어, 상기 유입로(414)를 통해 유입된 혼합가스에서 일정 소음을 저감하고, 상기 하우징(41) 내부의 열이 상기 하우징(41)의 외부로 배출되는 것을 방지한다. 상기 보온흡음재(421)은 다양한 소재로 이루어질 수 있으며, 예컨대 단열성이 뛰어나고 소음 흡수효율이 뛰어난 미네랄울로 형성될 수 있다.The insulating sound absorbing material 421 is formed to surround the inner surface of the housing 41, to reduce a certain noise in the mixed gas introduced through the inlet passage 414, the heat inside the housing 41 The discharge to the outside of the housing 41 is prevented. The thermal insulation sound absorbing material 421 may be made of various materials, for example, may be formed of mineral wool having excellent thermal insulation and excellent noise absorption efficiency.
상기 지지부(422)는 상기 보온흡음재(421)의 외측 상기 하우징(41)의 내부에 형성되어 상기 보온흡음재(421)를 지지하는 구성으로, 상기 지지부(422)의 일측면과 상기 하우징(41)의 내측면 사이에는 상기 보온흡음재(421)가 위치하게 된다. 상기 지지부(422)에는 다수 개의 타공(422a)이 형성되어 상기 반응기(41) 내부에 유입된 혼합가스는 일 타공을 통해 보온흡음재(421)와 접촉하여 이동하고 타 타공을 통해 배출되는 과정을 반복하므로 상기 배기가스에 의한 소음이 저감되게 된다.The support part 422 is formed inside the housing 41 outside the heat insulating sound absorbing material 421 to support the heat insulating sound absorbing material 421, and has one side surface of the support part 422 and the housing 41. The insulating sound absorbing material 421 is located between the inner surface of the. A plurality of perforations 422a are formed in the support part 422, so that the mixed gas introduced into the reactor 41 moves in contact with the insulating sound absorbing material 421 through one perforation and is discharged through the other perforations. Therefore, the noise caused by the exhaust gas is reduced.
상기 공명부(43)는 상기 하우징(41)의 내부에 설치되어 상기 하우징(41)의 내부에 유입된 혼합가스를 공명시켜 음파에너지가 손실되도록 하여 소음을 저감하는 구성으로, 제1공명부(431)와 제2공명부(432)를 포함한다.The resonance unit 43 is installed inside the housing 41 to resonate the mixed gas introduced into the housing 41 so that sound wave energy is lost to reduce noise, and the first resonance unit ( 431 and the second resonance unit 432.
상기 제1공명부(431)는 상기 하우징(41)의 내측면 전측에 형성되어 상기 유입로(414)를 통해 상기 하우징(41)에 유입된 혼합가스를 팽창시켜 즉 공명시켜 음파에너지가 감소하도록 하여 일정 소음을 제거하는 구성으로, 상기 유입로(41)를 통해 유입된 배기가스를 팽창시킬 수 있도록 하는 다양한 형상을 가지나, 바람직하게는 일단은 전면(411)에 결합하고 타단은 지지부(422)에 결합하여 배출로(415) 방향으로 갈수록 확경되는 형태를 가진다.The first resonance portion 431 is formed on the front side of the inner surface of the housing 41 to expand the mixed gas introduced into the housing 41 through the inlet passage 414, that is to resonate so as to reduce the sound wave energy In order to remove a certain noise by having a variety of shapes to expand the exhaust gas introduced through the inflow path 41, but preferably one end is coupled to the front surface 411 and the other end support portion 422 Coupled to the has a shape that is enlarged toward the discharge path (415) toward.
상기 제2공명부(432)는 상기 하우징(41)의 내측면 후측에 형성되어 상기 배출로(415)를 통해 배출되기 전의 배기가스를 수축시켜 즉 공명시켜 음파에너지가 감소하도록 하여 일정 소음을 제고하는 구성으로, 상기 후술할 촉매부(44)에 의해서 탈질처리되어 상기 배출로(415)를 통해 배출되기 전의 배기가스를 수축시킬 수 있도록 하는 다양한 형상을 가지나, 바람직하게는 일단은 후면(412)에 결합하고 타단은 지지부(422)에 결합하여 유입로(414) 방향으로 갈수록 확경되는 형태를 가진다. 상기 하우징(41)을 제작한 후에 상기 하우징(41) 내부의 전단 및 후단에 공명부(43)를 형성하여 유입되는 배기가스를 공명시켜 소음을 저감하므로, 소음을 저감하기 위해 하우징(41)의 전단 및 후단을 확경 또는 축경시키는 과정이 필요하지 않아 제작비용을 절감할 수 있는 특징이 있다.The second resonance unit 432 is formed on the inner side rear side of the housing 41 to contract the exhaust gas before being discharged through the discharge path 415, that is, to resonate so that the sound wave energy is reduced to improve a certain noise. In this configuration, the denitrification treatment is performed by the catalyst unit 44 to be described later, and may have various shapes such that the exhaust gas before being discharged through the discharge path 415 may be contracted. The other end is coupled to the support portion 422 has a shape that is enlarged toward the inflow path 414 toward. After the housing 41 is manufactured, the resonance portion 43 is formed at the front and rear ends of the housing 41 to resonate the exhaust gas flowing therein, thereby reducing the noise, thereby reducing the noise of the housing 41. There is no need to expand or reduce the front and rear ends, which can reduce manufacturing costs.
상기 촉매부(44)는 상기 제1공명부(431) 후측의 상기 하우징(41)의 내부에 설치되며, 촉매가 코팅되고 혼합가스가 통과할 수 있는 다수 개의 관통공(441)를 포함한다. 상기 촉매부(44)는 바람직하게는 상기 보온흡음부(42)의 외측에 결합하며 상기 촉매부(44)와 결합하는 상기 보온흡음부(42)의 지지부(422) 부근에는 타공(4221)이 형성되지 않도록 하여 혼합가스가 상기 촉매부(44)를 향해 이동할 수 있도록 한다. 상기 반응기(41)에 유입된 혼합가스는 상기 촉매부(44)를 통과하는데 이 과정에서 상기 혼합가스에 포함되어 있는 질소산화물(NOx)은 촉매와의 탈질반응을 통해 질소로 변환되게 된다. 즉, 유입되는 혼합가스 중 질소산화물은 촉매의 작용에 의해 아래의 화학반응식과 같은 반응을 통해 무해한 성분으로 변환되게 된다. 단, 상기 반응에서 환원제로 요소수가 사용되었다.The catalyst unit 44 is installed in the housing 41 behind the first resonance unit 431 and includes a plurality of through holes 441 through which the catalyst is coated and the mixed gas can pass. The catalyst unit 44 is preferably coupled to the outer side of the thermal insulation and sound absorbing portion 42 and the perforation 4221 is provided near the support portion 422 of the thermal insulation and sound absorption portion 42 which is coupled to the catalyst portion 44. It is not formed so that the mixed gas can move toward the catalyst 44. The mixed gas introduced into the reactor 41 passes through the catalyst unit 44. In this process, nitrogen oxide (NOx) included in the mixed gas is converted into nitrogen through denitrification with the catalyst. In other words, the nitrogen oxide in the mixed gas is introduced into a harmless component through the reaction of the following chemical reaction by the action of the catalyst. However, urea water was used as a reducing agent in the reaction.
4NO + 4NH3 + O2 → 4N2 + 6H2O4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
2NO2 + 4NH3 + O2 → 3N2 + 6H2O2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O
이때, 상기 촉매로는 다양한 제품이 사용될 수 있는데, V, Rh,Mo, W, Cu, Ni, Fe, Cr, Mn, Sn 등의 산화물, 황산염, 희토류산화물, 귀금속 등을 촉매 활성종으로 하고, Al203, Ti02, 활성탄, 제올라이트, 실리카 등을 촉매담체로 하는 제품이 사용될 수 있으며, 이들 중 현재 실용화되어 있는 것은 Ti02(titanium oxide)를 담체로 한 V205(vanadium pentoxide), Mo03(molybdenum troxide), W03(tungsten trioxide)계의 촉매이다.At this time, a variety of products can be used as the catalyst, such as oxides, such as V, Rh, Mo, W, Cu, Ni, Fe, Cr, Mn, Sn, sulfate, rare earth oxides, precious metals, etc. as catalytic active species, Products using catalyst carriers such as Al 2 0 3 , Ti0 2 , activated carbon, zeolite, silica, and the like may be used. Among them, V 2 0 5 (vanadium pentoxide) based on Ti0 2 (titanium oxide) is currently in practical use. , Mo0 3 (molybdenum troxide) and W0 3 (tungsten trioxide) catalysts.
상기 사일렌서(45)는 상기 촉매부(44) 후측의 반응기(4) 내부에 위치하여 상기 촉매부(44)를 통과하여 탈질처리된 배기가스로부터 소음을 저감하는 구성으로, 구획부(451) 등을 포함한다.The silencer 45 is located inside the reactor 4 at the rear of the catalyst unit 44 and passes through the catalyst unit 44 to reduce noise from the denitrified exhaust gas. It includes.
상기 구획부(451)는 상기 촉매부(44)의 후측의 반응기(6) 내부에 일정한 간격으로 상기 배기가스의 흐름 방향과 평행하게 다수 개가 위치하여, 상기 촉매부(44)를 통과하여 탈질처리된 배기가스의 흐름을 분산하고 소음을 흡수하는 구성이다. 상기 구획부(451)는 소음을 흡수하는 흡음재(4511)와, 상기 흡음재(4511)의 양 측면에 위치하여 상기 흡음재(4511)를 지지하는 지지판(4512)을 포함한다. 상기 구획부(451)의 전면(4513)은 상기 사일렌서(45)에 유입되는 탈질처리된 배기가스의 압력손실을 최소화할 수 있도록 반원형 또는 삼각형의 형태를 가진다.A plurality of partitions 451 are located in the reactor 6 at the rear side of the catalyst unit 44 in parallel with the flow direction of the exhaust gas at regular intervals, and pass through the catalyst unit 44 to perform denitrification treatment. It distributes the flow of exhaust gas and absorbs the noise. The partition 451 includes a sound absorbing material 4511 that absorbs noise, and a support plate 4512 positioned at both sides of the sound absorbing material 4511 to support the sound absorbing material 4511. The front surface 4413 of the partition 451 may have a semi-circular or triangular shape to minimize pressure loss of the denitrified exhaust gas flowing into the silencer 45.
상기 흡음재(4511)는 흡음재료로 이루어져 상기 사일렌서(45)를 통과하는 탈질처리된 배기가스에서 소음을 흡음하는 구성으로, 상기 흡음재는 다양한 소재로 이루어질 수 있으며, 예컨대 열에 강하고 소음을 흡수효율이 뛰어난 미네랄울로 형성될 수 있다.The sound absorbing material 4511 is made of a sound absorbing material and absorbs noise from the denitrified exhaust gas passing through the silencer 45. The sound absorbing material may be made of various materials, for example, resistant to heat and excellent in absorbing noise. It may be formed of mineral wool.
상기 지지판(4512)은 상기 흡음재(4511)의 양 측면에 위치하여 상기 흡음재(4511)를 지지하는 구성으로, 상기 지지판(4512)에는 상기 흡음재(4511)에 소음이 효과적으로 흡음되도록 다수 개의 통공(4512a)이 형성된다.The support plate 4512 is disposed on both sides of the sound absorbing material 4511 to support the sound absorbing material 4511, and the support plate 4512 includes a plurality of through holes 4512a to effectively absorb noise in the sound absorbing material 4511. ) Is formed.
상기 구획부(451)가 탈질처리된 배기가스의 흐름을 분산하여 와류의 형성과 유체의 집중유입을 막아 음파에너지가 증가되는 것을 방지할 수 있고, 상기 흡음재(4511)가 소음을 흡수하므로, 상기 사일렌서(45)는 효과적으로 소음을 저감할 수 있다.The partition 451 prevents the formation of vortices and concentration of fluid to prevent the increase of sound wave energy by dispersing the flow of the denitrified exhaust gas, and the sound absorbing material 4511 absorbs noise, The silencer 45 can effectively reduce noise.
상기와 같은 구성을 포함하는 배기가스 탈질 반응기(4)에서 일어나는 탈질반응과 소음저감의 과정을 살펴보면, 상기 유입로(414)를 통해 상기 하우징(41) 내부로 유입된 혼합가스는 상기 제1공명부(431)에 의해 팽창하여 소음이 저감되고, 상기 제1공명부(431)를 통과한 혼합가스는 촉매부(44)를 통과하면서 탈질처리되며, 상기 촉매부(44)에서 탈질처리된 배기가스는 상기 사일렌서(45)를 통과하여 소음이 저감되고, 상기 사일렌서(45)를 통과한 탈질처리된 배기가스는 상기 제2공명부(432)에 의해 팽창하여 소음이 저감된 후 상기 배출로(415)를 통해 배출되게 된다. 상기 혼합가스가 상기 하우징(41)에 유입되어 배출되는 과정에서 혼합가스 또는 탈질처리된 배기가스는 상기 보온흡음부(42)에 의해서도 소음이 저감되게 된다. 상기와 같은 구성을 포함하는 배기가스 탈질 반응기는 반응기 내부에 보온흡음부가 형성되어 반응기를 보온하고 소음을 흡수하므로 반응기의 크기를 줄일 수 있는 특징이 있고, 반응기 내부에 보온을 위한 구성 및 소음을 저감하기 위한 구성이 위치하므로 설치가 용이하고 사용상 향상된 편리성을 제공할 수 있는 특징이 있다.Looking at the process of denitrification reaction and noise reduction occurring in the exhaust gas denitrification reactor 4 having the above configuration, the mixed gas introduced into the housing 41 through the inlet 414 is the first resonance Noise is reduced by the expansion of the portion 431, the mixed gas passing through the first resonance portion 431 is denitrified while passing through the catalyst portion 44, and the exhaust gas denitrified by the catalyst portion 44. The gas passes through the silencer 45 to reduce noise, and the denitrified exhaust gas passing through the silencer 45 is expanded by the second resonance unit 432 to reduce the noise, thereby reducing the noise. Through 415). While the mixed gas is introduced into the housing 41 and discharged, the mixed gas or the denitrified exhaust gas may be reduced in noise by the thermal insulation sound absorbing unit 42. Exhaust gas denitrification reactor having the above configuration has a feature that can reduce the size of the reactor because the thermal insulation and the sound absorbing portion is formed inside the reactor to keep the reactor and absorb the noise, and the configuration and noise for the thermal insulation inside the reactor is reduced Since the configuration for the location is easy to install, there is a feature that can provide improved convenience in use.
본 발명의 다른 실시예에 따른 배기가스 탈질 반응기(5)를 도 7 내지 9를 참조하여 설명하면, 상기 반응기(5)는 도 3 내지 6을 참조하여 설명한 반응기(4)와 공명부(53)에 있어서 차이가 있는데, 이하에서는 상기 공명부(53)에 대해서 설명하기로 한다.When the exhaust gas denitrification reactor 5 according to another embodiment of the present invention is described with reference to FIGS. 7 to 9, the reactor 5 includes the reactor 4 and the resonance unit 53 described with reference to FIGS. 3 to 6. There is a difference in the following, the resonance unit 53 will be described below.
상기 공명부(53)는 상기 하우징(41)의 내부에 설치되어 상기 하우징(41)의 내부에 유입된 혼합가스를 공명시켜 음파에너지가 손실되도록 하여 소음을 저감하는 구성으로, 제1공명부(531)와 제2공명부(532)를 포함한다.The resonance unit 53 is installed inside the housing 41 to resonate the mixed gas introduced into the housing 41 so that sound wave energy is lost to reduce noise, and the first resonance unit ( 531 and a second resonance unit 532.
상기 제1공명부(531)는 상기 하우징(41)의 내측면 전측에 형성되어 상기 유입로(414)를 통해 상기 하우징(41)에 유입된 혼합가스를 팽창시켜 즉 공명시켜 음파에너지가 감소하도록 하여 일정 소음을 제거하는 구성으로, 확경판(5311), 흡음재(5312)를 포함한다.The first resonator 531 is formed on the inner side of the housing 41 to expand the mixed gas introduced into the housing 41 through the inlet passage 414, that is, to resonate so as to reduce sound wave energy. In this configuration to remove the constant noise, the expansion plate (5311), and includes a sound absorbing material (5312).
상기 확경판(5311)는 일단은 전면(411)에 결합하고 타단은 지지부(422)에 결합하며 상기 하우징(41)의 내측면을 따라 형성되어, 상기 하우징(41)의 공간을 배출로(415) 방향으로 갈수록 확경시키는 구성으로, 상기 확경판(5311)에는 다수 개의 타공(5311a)이 형성된다.One end of the expansion plate 5311 is coupled to the front surface 411 and the other end is coupled to the support part 422, and is formed along the inner surface of the housing 41 to discharge the space of the housing 41 from the discharge path 415. A plurality of perforations (5311a) are formed in the enlarged diameter plate (5311) in a configuration that increases in the direction toward).
상기 흡음재(5312)는 상기 전면(411), 지지부(422) 및 확경판(5311)에 의해 에워싸져 형성되는 공간(S1)에 위치하여 혼합가스에서 소음을 흡수한다.The sound absorbing material 5312 is located in a space S1 formed by being surrounded by the front surface 411, the support part 422, and the enlarged diameter plate 5311 to absorb noise from the mixed gas.
상기 제2공명부(532)는 상기 하우징(41)의 내측면 후측에 형성되어 상기 배출로(415)를 통해 배출되기 전의 배기가스를 수축시켜 즉 공명시켜 음파에너지가 감소하도록 하여 일정 소음을 제고하는 구성으로, 축경판(5321), 흡음재(5322)를 포함한다.The second resonance unit 532 is formed on the rear side of the inner surface of the housing 41 to contract the exhaust gas before being discharged through the discharge path 415, that is, to resonate so that the sound wave energy is reduced to improve a certain noise. In this configuration, the shaft plate 5321 and the sound absorbing material 5322 are included.
상기 측경판(5321)는 일단은 후면(412)에 결합하고 타단은 지지부(422)에 결합하며 상기 하우징(41)의 내측면을 따라 형성되어, 상기 하우징(41)의 공간을 배출로(415) 방향으로 갈수록 축경시키는 구성으로, 상기 축경판(5321)에는 다수 개의 타공(5321a)이 형성된다.One end of the side plate (5321) is coupled to the rear surface 412, the other end is coupled to the support portion 422 is formed along the inner surface of the housing 41, the space of the housing 41 discharge path 415 The shaft diameter plate (5321) is formed with a plurality of perforations (5321a) is formed in the configuration to shrink toward the direction.
상기 흡음재(5322)는 상기 후면(412), 지지부(422) 및 축경판(5321)에 의해 에워싸져 형성되는 공간(S2)에 위치하여 혼합가스에서 소음을 흡수한다.The sound absorbing material 5322 is located in a space S2 surrounded by the rear surface 412, the support 422, and the shaft plate 5321 to absorb noise from the mixed gas.
상기 분석기(11, 61)는 상기 유입부(1) 및/또는 배출부(6)에 설치되어 배기가스에 포함되어 있는 질소산화물량에 관한 정보를 센싱하여 하기의 환원제공급 제어장치(7)에 전송하는 구성으로, 제1분석기(11), 제2분석기(61)를 포함한다.The analyzers 11 and 61 are installed at the inlet 1 and / or the outlet 6 to sense information on the amount of nitrogen oxide contained in the exhaust gas, and then to the reducing agent supply control device 7 below. In a configuration for transmitting, the first analyzer 11 and the second analyzer 61 is included.
상기 제1분석기(11)는 상기 유입부(1)의 일측에 연결되어 유입되는 배기가스에 포함되어 있는 질소산화물량에 관한 정보를 센싱하여 하기에 설명할 환원제공급 제어장치(7)로 전송하기 위한 수단이다. 상기 제1분석기(11)에서 상기 환원제공급 제어장치(7)로 전송되는 질소산화물량에 관한 정보는 일산화질소량과 이산화질소량에 대한 비율도 포함한다.The first analyzer 11 is connected to one side of the inlet 1 to sense information on the amount of nitrogen oxide contained in the exhaust gas flowing into the reducing agent supply control device 7 to be described later It is meant for. The information on the amount of nitrogen oxides transmitted from the first analyzer 11 to the reducing agent supply control device 7 also includes a ratio of the amount of nitrogen monoxide and the amount of nitrogen dioxide.
상기 제2분석기(61)는 상기 배출부(6)를 통해 배출되는 탈질처리된 배기가스에 존재하는 질소산화물량을 센싱하여 상기 환원제공급 제어장치(7)에 전송한다. 상기 제1, 2분석기(11, 61)은 각각 유입부(1) 및 배출부(6)에 설치되나, 상기 배기가스 탈질시스템에서는 제1분석기(11)만 상기 유입부(1)에 설치되는 것도 가능하고, 상기 제2분석기(61)만 배출부(6)에 설치되는 것도 가능하며, 상기 제1, 제2분석기(11, 61)가 설치되지 않는 경우에도 상기 환원제공급 제어장치(7)의 제어에 의해 상기 환원제분사부(2)가 환원제를 공급하는 것이 가능한데, 이에 대해서는 하기에서 자세히 설명하기로 한다. 상기 디스플레이부(62)는 상기 배기가스 탈질시스템의 정보를 표시하는 구성으로, 상기 환원제공급 제어장치(7)에 의해 제어된다.The second analyzer 61 senses the amount of nitrogen oxide present in the denitrified exhaust gas discharged through the discharge unit 6 and transmits it to the reducing agent supply control device 7. The first and second analyzers 11 and 61 are respectively installed at the inlet 1 and the outlet 6, but in the exhaust gas denitrification system, only the first analyzer 11 is installed at the inlet 1. It is also possible, and only the second analyzer 61 may be installed in the discharge part 6, and the reducing agent supply control device 7 even when the first and second analyzers 11 and 61 are not installed. By the control of the reducing agent injection unit 2 it is possible to supply a reducing agent, which will be described in detail below. The display unit 62 is configured to display information of the exhaust gas denitrification system, and is controlled by the reducing agent supply control device 7.
상기 환원제공급 제어장치(7)는 상기 탈질시스템의 전체적인 작동을 제어하는 구성으로, 상기 환원제분사부(2)를 제어하여 배기가스에 공급되어야 할 환원제의 양을 조절한다. 상기 환원제공급 제어장치(7)는 송수신부(71), 기능설정부(72), 저장부(73), 기능실행부(74), 오류수정부(75), 화면표시부(76), 제어부(77) 등을 포함한다.The reducing agent supply control device 7 is configured to control the overall operation of the denitrification system, and controls the reducing agent injection unit 2 to adjust the amount of reducing agent to be supplied to the exhaust gas. The reducing agent supply control device 7 includes a transceiver 71, a function setting unit 72, a storage unit 73, a function execution unit 74, an error correction unit 75, a screen display unit 76, a control unit ( 77) and the like.
상기 송수신부(71)는 상기 제1, 2분석기(11, 61)로부터 전송되는 배가가스의 질소산화물에 대한 정보를 수신하고 상기 환원제분사부(2)에 환원제공급량에 대한 정보를 송신하는 구성으로, 상기 제1분석기(11)로부터 전송되는 배기가스의 질소산화물에 대한 정보를 수신하는 제1수신모듈(711)과, 상기 제2분석기(61)로부터 전송되는 배기가스의 질소산화물에 대한 정보를 수신하는 제2수신모듈(712)과, 상기 환원제분사부(2)에 환원제공급량에 대한 정보를 송신하는 송신모듈(713)을 포함한다.The transceiver 71 receives the information on the nitrogen oxides of the exhaust gas transmitted from the first and second analyzers 11 and 61 and transmits the information on the reducing agent supply amount to the reducing agent injection unit 2. In addition, the first receiving module 711 for receiving information on the nitrogen oxides of the exhaust gas transmitted from the first analyzer 11 and the information on the nitrogen oxides of the exhaust gas transmitted from the second analyzer 61 And a second receiving module 712 for receiving and a transmitting module 713 for transmitting information on the amount of reducing agent supplied to the reducing agent injection unit 2.
상기 기능설정부(72)는 상기 탈질시스템의 각종 정보를 저장하고 후술할 기능실행부(74)의 특정 기능을 선택하는 구성으로, 엔진설정모듈(721), 분석기등록모듈(722), 기능선택모듈(723)을 포함한다.The function setting unit 72 stores various information of the denitrification system and selects a specific function of the function execution unit 74 to be described later. The engine setting module 721, the analyzer registration module 722, and the function selection Module 723.
상기 엔진설정모듈(721)은 상기 탈질시스템이 탈질하고자 하는 배기가스를 배출하는 엔진에 대한 정보를 설정하는 모듈로, 상기 엔진설정모듈(721)에서 설정된 정보는 상기 저장부(73)에 저장되게 된다. 상기 엔진에 대한 정보는 상기 엔진이 통상적으로 배출하는 배기가스의 양, 상기 배기가스에 포함되어 있는 질소산화물의 양을 등을 포함한다.The engine setting module 721 is a module for setting information on an engine that discharges exhaust gas to be denitrated by the denitrification system, and the information set by the engine setting module 721 is stored in the storage unit 73. do. The information on the engine includes an amount of exhaust gas that the engine normally discharges, an amount of nitrogen oxide contained in the exhaust gas, and the like.
상기 분석기등록모듈(722)은 상기 탈질시스템에 설치되는 분석기(11, 61)의 위치 및 개수에 대한 정보를 설정하는 모듈로, 상기 분석기등록모듈(722)에서 설정된 정보는 상기 저장부(73)에 저장되게 된다.The analyzer registration module 722 is a module for setting information about the position and the number of analyzers 11 and 61 installed in the denitrification system. The information set in the analyzer registration module 722 is stored in the storage unit 73. Will be stored in.
상기 기능선택모듈(723)은 상기 분석기(11, 61)의 설치 위치 및 개수에 따라 상기 기능실행부(74)의 특정 기능을 선택하는 모듈로, 상기 기능선택모듈(723)에서는 상기 기능실행부(74)의 제1 내지 4 실행모듈(741 ~ 742) 중에 어느 하나를 선택하는 가능하게 한다.The function selection module 723 is a module for selecting a specific function of the function execution unit 74 according to the installation position and the number of the analyzers 11 and 61, and in the function selection module 723, the function execution unit. It is possible to select any one of the first to fourth execution modules 741 to 742 of 74.
상기 저장부(73)는 상기 기능설정부(72)에 의해서 설정된 정보와 엔진에 대한 정보에 따라 공급되어야 할 환원제의 정보가 저장되는 구성으로, 제1저장모듈(731), 제2저장모듈(732)를 포함한다.The storage unit 73 is configured to store the information of the reducing agent to be supplied according to the information set by the function setting unit 72 and the information on the engine, the first storage module 731, the second storage module ( 732).
상기 제1저장모듈(731)은 상기 기능설정부(72)에서 설정된 상기 탈질시스템에 대한 정보를 저장하는 모듈로, 상기 엔진에 대한 정보, 분석기에 대한 정보, 선택된 기능실행부의 실행모듈듈(741 ~ 742)에 대한 정보를 포함한다.The first storage module 731 is a module for storing information on the denitrification system set by the function setting unit 72. The module 741 includes information about the engine, information about an analyzer, and an execution module 741 of a selected function execution unit. 742).
상기 제2저장모듈(732)은 상기 엔진등록모듈에 의해 설정된 엔진에 대한 정보에 따라 공급하여야 할 환원제의 양에 대한 데이터가 테이블화되어 저장되는 모듈이다.The second storage module 732 is a module in which data about the amount of reducing agent to be supplied is stored in a table according to the information on the engine set by the engine registration module.
상기 기능실행부(74)는 분석기의 설치 위치 및 개수에 따라 배기가스에 공급하여야할 환원제의 양을 산정하여 상기 환원제공급부(2)의 환원제공급량을 제어하는 복수의 실행모듈을 포함하는 구성으로, 제1실행모듈(741), 제2실행모듈(742), 제3실행모듈(743), 제4실행모듈(744)을 포함한다.The function execution unit 74 is configured to include a plurality of execution modules for controlling the reducing agent supply amount of the reducing agent supply unit 2 by calculating the amount of reducing agent to be supplied to the exhaust gas according to the installation position and the number of analyzers, The first execution module 741, the second execution module 742, the third execution module 743, and the fourth execution module 744 are included.
상기 제1실행모듈(741)은 유입부(1)에 설치된 제1분석기(11) 및 배출부(6)에 설치된 제2분석기(61)가 송신하는 배기가스에 포함되어 있는 질소산화물량에 따라 배기가스에 공급하여야 할 환원제의 양을 산정하여 상기 환원제분사부(2)의 환원제공급량을 제어하는 구성으로, 환원제산정모듈(7411), 제1환원제보정모듈(7412), 제2환원제보정모듈(7413)을 포함한다.The first execution module 741 is based on the amount of nitrogen oxide contained in the exhaust gas transmitted by the first analyzer 11 installed in the inlet 1 and the second analyzer 61 installed in the outlet 6. The reducing agent supply amount of the reducing agent injection unit 2 is controlled by calculating the amount of the reducing agent to be supplied to the exhaust gas. 7413).
상기 환원제산정모듈(7411)은 상기 제1분석기(11)로부터 송신되는 배기가스의 질소산화물량에 따라 공급되어야 할 환원제의 양을 산정하여 상기 환원제분사부(2)의 환원제공급량을 제어하는 모듈이다.The reducing agent calculation module 7741 is a module for controlling the reducing agent supply amount of the reducing agent injection unit 2 by calculating the amount of the reducing agent to be supplied according to the amount of nitrogen oxides in the exhaust gas transmitted from the first analyzer 11. .
상기 제1환원제보정모듈(7412)은 상기 제1분석기(11)로부터 송신되는 배기가스의 일산화질소와 이산화질소의 비율을 고려하여 상기 환원제산정모듈(7411)에서 산정된 환원제의 양을 보정하는 모듈로, 예컨대, 이산화질소의 경우 일산화질소에 비하여 대략 1.3배의 환원제를 공급하게 된다.The first reducing agent correction module 7422 is a module for correcting the amount of reducing agent calculated by the reducing agent calculation module 7741 in consideration of the ratio of nitrogen monoxide and nitrogen dioxide of the exhaust gas transmitted from the first analyzer 11. For example, in the case of nitrogen dioxide, approximately 1.3 times of reducing agent is supplied as compared to nitrogen monoxide.
상기 제2환원제보정모듈(7413)은 상기 제2분석기(61)로부터 송신되는 배기가스의 질소산화물량에 따라 상기 제1환원제보정모듈에서 산정된 환원제의 양을 보정하는 모듈로, 상기 탈질시스템에서 배기가스가 정상적으로 탈질되고 있는 경우에는 제2분석기(61)에서 송신되는 배기가스의 질소산화물량이 배출허용치 이내의 값을 가져 공급되는 환원제량의 보정이 필요 없으나, 상기 제2분석기(61)에서 송신되는 배기가스의 질소산화물량이 배출허용치를 초과하는 값을 가지는 경우 상기 제2환원제보정모듈(7413)은 상기 제1환원제보정모듈(7412)에서 산정된 환원제의 양을 보정하게 된다.The second reducing agent correction module 7741 is a module for correcting the amount of reducing agent calculated by the first reducing agent correction module according to the amount of nitrogen oxides of the exhaust gas transmitted from the second analyzer 61, in the denitrification system. When the exhaust gas is normally denitrified, the amount of nitrogen oxides in the exhaust gas transmitted from the second analyzer 61 has a value within the allowable discharge value, so that the amount of reducing agent supplied is not necessary, but is transmitted from the second analyzer 61. When the amount of nitrogen oxides in the exhaust gas exceeds a discharge allowable value, the second reducing agent correction module 7741 corrects the amount of the reducing agent calculated by the first reducing agent correction module 7262.
상기 제2실행모듈(742)은 유입부(1)에 설치된 제1분석기(11)가 송신하는 배기가스에 포함되어 있는 질소산화물량에 따라 배기가스에 공급하여야 할 환원제의 양을 산정하여 상기 환원제분사부(2)의 환원제공급량을 제어하는 구성으로, 환원제산정모듈(7421), 환원제보정모듈(7422)을 포함한다.The second execution module 742 calculates the amount of the reducing agent to be supplied to the exhaust gas according to the amount of nitrogen oxide contained in the exhaust gas transmitted by the first analyzer 11 installed in the inlet 1 and the reducing agent. The reducing agent supply amount of the injection unit 2 is controlled, and includes a reducing agent calculating module 7701 and a reducing agent correction module 7742.
상기 환원제산정모듈(7421)은 상기 제1분석기(11)로부터 송신되는 배기가스의 질소산화물량에 따라 공급되어야 할 환원제의 양을 산정하여 상기 환원제분사부(2)의 환원제공급량을 제어하는 모듈이다.The reducing agent calculation module 7741 is a module for controlling the reducing agent supply amount of the reducing agent injection unit 2 by calculating the amount of the reducing agent to be supplied according to the amount of nitrogen oxides in the exhaust gas transmitted from the first analyzer 11. .
상기 환원제보정모듈(7422)은 상기 제1분석기(11)로부터 송신되는 배기가스의 일산화질소와 이산화질소의 비율을 고려하여 상기 환원제산정모듈(7421)에서 산정된 환원제의 양을 보정하는 모듈로, 예컨대, 이산화질소의 경우 일산화질소에 비하여 대략 1.3배의 환원제를 공급하게 된다.The reducing agent correction module 7742 is a module for correcting the amount of reducing agent calculated by the reducing agent calculation module 7701 in consideration of the ratio of nitrogen monoxide and nitrogen dioxide of the exhaust gas transmitted from the first analyzer 11, for example. In the case of nitrogen dioxide, about 1.3 times as much reducing agent as nitrogen monoxide is supplied.
상기 제3실행모듈(743)은 배출부(6)에 설치된 제2분석기(61)가 송신하는 배기가스에 포함되어 있는 질소산화물량에 따라 배기가스에 공급하여야 할 환원제의 양을 산정하여 상기 환원제분사부(2)의 환원제공급량을 제어하는 구성으로, 상기 제2분석기(61)에서 송신되는 배기가스의 질소산화물량이 배출허용치 미만의 값을 가지도록 환원제의 양을 산정하여 상기 환원제분사부(2)를 제어한다.The third execution module 743 calculates the amount of the reducing agent to be supplied to the exhaust gas according to the amount of nitrogen oxide contained in the exhaust gas transmitted by the second analyzer 61 installed in the discharge unit 6 and the reducing agent. The reducing agent supply amount of the injection unit 2 is controlled, and the amount of reducing agent is calculated so that the amount of nitrogen oxides in the exhaust gas transmitted from the second analyzer 61 has a value less than the allowable discharge amount. ).
상기 제4실행모듈(744)는 엔진 작동시 상기 저장부(73)에 저장된 공급되어야 할 환원제의 양에 따라 상기 환원제분사부(2)의 환원제공급량을 제어하는 구성이다.The fourth execution module 744 is configured to control the reducing agent supply amount of the reducing agent injection unit 2 according to the amount of the reducing agent to be supplied stored in the storage unit 73 when the engine is operated.
상기 오류수정부(75)는 상기 분석기(11, 61)의 전부 또는 일부 오류에 의해 선택된 실행모듈의 작동이 제대로 이루어지고 있지 않은 경우, 상기 분석기(11, 61)의 현 상황에 맞추어 상기 기능실행부(74)의 다른 실행모듈을 작동을 제어하는 구성으로, 오류판단모듈(751), 오류수정모듈(752)를 포함한다.The error correction unit 75 executes the function according to the current situation of the analyzers 11 and 61 when the execution module selected by all or part of the analyzers 11 and 61 is not properly operated. The configuration for controlling the operation of the other execution module of the unit 74, and includes an error determination module 751, error correction module 752.
상기 오류판단모듈(751)은 상기 분석기(11, 61)로부터 송신되는 정보를 분석하여 오류를 산정하는 모듈로, 예컨대 상기 분석기(11, 61)에서 정보가 송신되지 않거나 허용되는 범위를 벗어나는 경우 오류로 판정한다.The error judging module 751 is a module that calculates an error by analyzing the information transmitted from the analyzers 11 and 61, for example, when the information is not transmitted from the analyzers 11 and 61 or is out of an acceptable range. Determined.
상기 오류수정모듈(752)는 상기 오류판단모듈(752)이 상기 분석기(11, 61)에 오류가 있다고 판정한 경우, 상기 분석기(11, 61)의 상태에 맞추어 상기 기능실행부(74)의 작동을 제어하는 구성이다. 예컨대, 상기 탈질시스템에 제1분석기(11)와 제2분석기(61)가 설치되어 있는데, 상기 오류판단모듈(751)이 제2분석기(61)가 오류가 있는 것으로 판정되는 경우 상기 오류수정모듈(752)은 제1실행모듈(741)의 작동을 중단시키고 제2실행모듈(742)을 실행시키며, 상기 오류판단모듈(751)이 제1분석기(11)가 오류가 있는 것으로 판정되는 경우 상기 오류수정모듈(752)은 제1실행모듈(741)의 작동을 중단시키고 제3실행모듈(743)을 실행시키고, 상기 오류판단모듈(751)이 상기 제1,2분석기(11, 61) 모두에 오류가 있다고 판정하는 경우 상기 오류수정모듈(752)는 상기 제1실행모듈(741)의 작동을 중단시키고 제4실행모듈(744)을 실행시킨다. 또한, 상기 탈질시스템에 제1분석기(11) 또는 제2분석기(61)가 설치되어 있는데, 상기 오류판단모듈(751)이 제1분석기(11) 또는 제2분석기(61)가 오류가 있는 것으로 판정되는 경우 상기 오류수정모듈(752)은 제2실행모듈(742) 또는 제3실행모듈(743)의 작동을 중단시키고 제4실행모듈(744)을 실행시킨다.When the error determination module 752 determines that the analyzer 11, 61 has an error, the error correction module 752 adjusts the function of the function execution unit 74 according to the state of the analyzer 11, 61. This configuration controls the operation. For example, when the first analyzer 11 and the second analyzer 61 are installed in the denitrification system, the error determination module 751 determines that the second analyzer 61 has an error. 752 stops the operation of the first execution module 741 and executes the second execution module 742. When the error determination module 751 determines that the first analyzer 11 has an error, The error correction module 752 stops the operation of the first execution module 741 and executes the third execution module 743, and the error determination module 751 causes both the first and second analyzers 11 and 61 to operate. If it is determined that there is an error, the error correction module 752 stops the operation of the first execution module 741 and executes the fourth execution module 744. In addition, the first analyzer 11 or the second analyzer 61 is installed in the denitrification system. The error determination module 751 indicates that the first analyzer 11 or the second analyzer 61 has an error. If it is determined, the error correction module 752 stops the operation of the second execution module 742 or the third execution module 743 and executes the fourth execution module 744.
상기 화면표시부(76)는 상기 배기가스 탈질시스템의 설정 및 실행 정보를 표시하는 구성으로, 환원제 공급에 대한 기능을 설정 및 실행하기 위한 정보를 디스플레이(62)에 표시하는 화면표시모듈(761)과, 사용자의 터치 또는 마우스 키보드 입력을 통해 디스플레이(62)에 표시되는 화면의 항목을 선택할 수 있도록 하는 인터페이스모듈(762) 등의 구성을 포함한다. 상기 화면표시부(761)에 의해 상기 기능설정부(72), 기능실행부(73)에 대한 정보가 디스플레이에 표시되며, 상기 인터페이스부(762)에 의해 상기 디스플레이(62)에 표시된 정보에 해당하는 항목을 선택할 수 있다. 상기 제어부(77)는 상기 환원제공급 제어장치(7)의 전체적인 작동을 제어한다.The screen display unit 76 is configured to display setting and execution information of the exhaust gas denitrification system, and includes a screen display module 761 for displaying on the display 62 information for setting and executing a function for reducing agent supply. And an interface module 762 for selecting an item of a screen displayed on the display 62 through a user's touch or mouse keyboard input. Information on the function setting unit 72 and the function execution unit 73 is displayed on the display by the screen display unit 761, and corresponds to the information displayed on the display 62 by the interface unit 762. You can select an item. The control unit 77 controls the overall operation of the reducing agent supply control device (7).
상기와 같은 구성을 가지는 환원제공급 제어장치(7)의 작동과정을 살펴보면, 먼저 디스플레이(62)에 표시되는 엔진설정모듈의 항목(101)을 선택하여 엔진에 대한 정보를 설정등록하고, 다음 분석기등록모듈의 항목(102)을 선택하여 상기 탈질시스템에 설치된 분석기의 위치와 개수에 대한 분석기에 대한 정보를 설정등록하고, 기능선택모듈의 항목(103 ~ 106)을 선택하여 상기 탈질시스템에 설치된 분석기에 대한 정보에 해당하는 기능실행부(74)의 제1 내지 4실행모듈(741 ~ 744)의 어느 하나를 선택한다. 예컨대, 유입부(1)와 배출부(6)에 모두 분석기(11, 61)가 설치되는 경우 제1실행모듈의 항목(103)을 선택하고, 유입부(1)에만 분석기(11)가 설치되는 경우 제2실행모듈의 항목(104)을 선택하고, 배출부(6)에만 분석기(61)가 설치되는 경우 제3실행모듈의 항목(105)을 선택하고, 유입부(1)와 배출부(6)에 모두 분석기가 설치되지 않은 경우에는 제4실행모듈의 항목(106)을 선택한다. 상기 기능실행부(74)의 제1 내지 4실행모듈(741 ~ 744)의 어느 하나를 선택되는 경우 선택된 실행모듈이 작동하여 환원제분사부(2)의 환원제 공급을 제어하게 된다.Looking at the operation process of the reducing agent supply control device 7 having the above configuration, first select the item 101 of the engine setting module displayed on the display 62, and set up and register information about the engine, and then register the analyzer Select item 102 of the module to set and register information on the analyzer about the location and number of analyzers installed in the denitrification system, and select items 103 to 106 of the function selection module to analyze the analyzer installed in the denitrification system. Select one of the first to fourth execution modules 741 to 744 of the function execution unit 74 corresponding to the information about. For example, when the analyzers 11 and 61 are installed in both the inlet 1 and the outlet 6, the item 103 of the first execution module is selected, and the analyzer 11 is installed only in the inlet 1. Is selected, the item 104 of the second execution module, if the analyzer 61 is installed only in the discharge unit 6, select the item 105 of the third execution module, the inlet (1) and the discharge unit If all the analyzers are not installed in (6), the item 106 of the fourth execution module is selected. When any one of the first to fourth execution modules 741 to 744 of the function execution unit 74 is selected, the selected execution module is operated to control the supply of the reducing agent to the reducing agent injection unit 2.
이상에서, 출원인은 본 발명의 다양한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며, 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.In the above, the Applicant has described various embodiments of the present invention, but these embodiments are merely one embodiment for implementing the technical idea of the present invention, and any changes or modifications may be made to the present invention as long as the technical idea of the present invention is implemented. It should be interpreted as falling within the scope of.

Claims (9)

  1. 유입된 배기가스에 포함되어 있는 질소산화물이 촉매와의 탈질반응을 통해 질소 기체로 변환되는 화학반응이 일어나는 반응기에 있어서,In the reactor where the nitrogen oxide contained in the exhaust gas is converted into nitrogen gas through the denitrification reaction with the catalyst,
    상기 반응기는 외형을 형성하는 하우징과, 상기 하우징의 내측면에 형성되어 상기 하우징에 유입된 배기가스에서 소음을 저감하고 상기 하우징의 외부로 열이 방출되는 것을 방지하여 상기 반응기를 보온하는 보온흡음부를 포함하여, 상기 보온흡음부가 반응기를 보온하고 소음을 흡수하므로 반응기의 크기를 줄일 수 있는 것을 특징으로 하는 배기가스 탈질 반응기.The reactor is formed on the inner surface of the housing, and the inner surface of the housing to reduce the noise in the exhaust gas introduced into the housing and to prevent the heat is discharged to the outside of the housing to insulate the thermal insulation sound absorbing portion Including, the insulation sound absorbing unit to heat the reactor and absorb the noise, the exhaust gas denitrification reactor, characterized in that to reduce the size of the reactor.
  2. 유입된 배기가스에 포함되어 있는 질소산화물이 촉매와의 탈질반응을 통해 질소 기체로 변환되는 화학반응이 일어나는 반응기에 있어서,In the reactor where the nitrogen oxide contained in the exhaust gas is converted into nitrogen gas through the denitrification reaction with the catalyst,
    상기 반응기는 외형을 형성하는 하우징과, 상기 하우징의 내부에 유입된 배기가스를 공명시켜 소음을 저감하는 공명기를 포함하는 것을 특징으로 하는 배기가스 탈질 반응기.The reactor includes an exhaust gas denitrification reactor comprising a housing forming an outer shape and a resonator for resonating exhaust gas introduced into the housing to reduce noise.
  3. 제1항에 있어서, 상기 반응기는The method of claim 1, wherein the reactor
    상기 하우징의 내부에 유입된 배기가스를 공명시켜 소음을 저감하는 공명기를 추가로 포함하는 것을 특징으로 하는 배기가스 탈질 반응기.And a resonator for resonating exhaust gas introduced into the housing to reduce noise.
  4. 제1항 또는 제3항에 있어서, 상기 보온흡음부는According to claim 1 or 3, wherein the thermal insulation sound absorbing portion
    상기 하우징의 내측면을 에워싸도록 형성되어 유입된 배기가스에서 소음을 저감하고 상기 하우징 내부의 열이 상기 하우징의 외부로 방출되는 것을 방지하는 보온흡음재와, 상기 하우징의 내부에 형성되어 상기 보온흡음재를 지지하는 지지부를 포함하는 것을 특징으로 하는 배기가스 탈질 반응기.Insulating sound absorbing material is formed to surround the inner surface of the housing to reduce noise in the inflow exhaust gas and to prevent heat inside the housing to be discharged to the outside of the housing, and formed inside the housing Exhaust gas denitrification reactor comprising a support for supporting the.
  5. 제2항 또는 제3항에 있어서, 상기 공명부는According to claim 2 or 3, wherein the resonance unit
    상기 하우징의 내측면 전측에 형성되어 상기 하우징에 유입된 배기가스를 팽창시켜 음파에너지가 감소하도록 하여 소음을 저감하는 제1공명부와, 상기 하우징의 내측면 후측에 형성되어 상기 하우징에서 배출되기 전의 배기가스를 수축시켜 음파에너지가 감소하도록 하여 소음을 제거하는 제2공명부를 포함하는 것을 특징으로 하는 배기가스 탈질 반응기.A first resonance part formed on the inner side of the housing to reduce noise by expanding the exhaust gas introduced into the housing to reduce sound wave energy, and formed on the rear side of the inner side of the housing before being discharged from the housing. And a second resonance unit configured to reduce noise by shrinking the exhaust gas so as to reduce sound wave energy.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1공명부는 일단은 상기 하우징의 전면에 결합하고 타단은 지지부에 결합하여 배기가스의 배출방향으로 갈수록 확경되는 형태를 가지며,The first resonance portion is coupled to the front surface of the housing and the other end is coupled to the support portion has a form that is enlarged toward the discharge direction of the exhaust gas,
    상기 제2공명부는 일단은 상기 하우징의 후면에 결합하고 타단은 지지부에 결합하여 배기가스의 배출방향으로 갈수록 축경되는 형태를 가지는 것을 특징으로 하는 배기가스 탈질 반응기.The second resonance portion is coupled to the rear surface of the housing and the other end is coupled to the support portion has an exhaust gas denitrification reactor characterized in that it has a shape that is reduced toward the discharge direction of the exhaust gas.
  7. 제5항에 있어서, 상기 제1공명부는The method of claim 5, wherein the first resonance unit
    일단은 하우징의 전면에 결합하고 타단은 지지부에 결합하며 상기 하우징의 내측면을 따라 형성되어 배기가스의 배출방향으로 갈수록 상기 하우징의 내부공간을 확경시키는 확경판과, 상기 하우징의 전면, 지지부 및 확경판에 의해 에워싸져 형성되는 공간에 위치하여 배기가스에서 소음을 저감하는 흠음재를 포함하는 것을 특징으로 하는 배기가스 탈질 반응기.One end is coupled to the front surface of the housing and the other end is coupled to the support portion and is formed along the inner surface of the housing to enlarge the inner space of the housing toward the discharge direction of the exhaust gas, and the front, support and expansion of the housing An exhaust gas denitrification reactor comprising a flaw material which is located in a space formed by a hard plate and reduces noise in the exhaust gas.
  8. 제7항에 있어서, 상기 확경판에는The method of claim 7, wherein the expansion plate
    다수의 타공이 형성되는 것을 특징으로 하는 배기가스 탈질 반응기.An exhaust gas denitrification reactor, characterized in that a plurality of perforations are formed.
  9. 유입되는 배기가스에 환원제를 공급하는 환원제분사부와, 상기 환원제분사부에서 공급된 환원제와 혼합된 배기가스에서 질소산화물을 질소기체로 변환시키는 반응기와, 상기 환원제분사부의 환원제 공급량을 제어하는 환원제공급 제어장치를 포함하며,Reductant injection unit for supplying a reducing agent to the incoming exhaust gas, a reactor for converting nitrogen oxides into nitrogen gas in the exhaust gas mixed with the reducing agent supplied from the reducing agent injection unit, reducing agent supply for controlling the reducing agent supply amount of the reducing agent injection unit Including a control unit,
    상기 반응기는 제1항 내지 제3항 중 어느 하나의 항에 있어서의 반응기인 것을 특징으로 하는 배기가스 탈질 반응기를 이용하는 배기가스 탈질시스템.The reactor is an exhaust gas denitrification system using an exhaust gas denitrification reactor, characterized in that the reactor according to any one of claims 1 to 3.
PCT/KR2013/010532 2012-11-27 2013-11-20 Exhaust gas denitrification reactor and exhaust gas denitrification system using same WO2014084538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0135164 2012-11-27
KR1020120135164A KR101381827B1 (en) 2012-11-27 2012-11-27 Exhaust gas denitrifing reactor and the exhaust gas denitrifing system

Publications (1)

Publication Number Publication Date
WO2014084538A1 true WO2014084538A1 (en) 2014-06-05

Family

ID=50656679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010532 WO2014084538A1 (en) 2012-11-27 2013-11-20 Exhaust gas denitrification reactor and exhaust gas denitrification system using same

Country Status (2)

Country Link
KR (1) KR101381827B1 (en)
WO (1) WO2014084538A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102614430B1 (en) * 2018-03-22 2023-12-15 에이치디한국조선해양 주식회사 Scrubber
KR102039134B1 (en) * 2018-12-03 2019-11-05 엔알텍주식회사 Scrubber with noise reduction on ship
KR102232267B1 (en) 2018-12-11 2021-03-24 (유)태신 An apparatus for reducing nitrogen oxide
KR102262733B1 (en) * 2020-08-26 2021-06-10 에스티엑스엔진 주식회사 Integrated structure of exhaust gas aftertreatment device and silencer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980018778U (en) * 1996-09-30 1998-07-06 양재신 Exhaust Noise Reduction Device for Catalytic Converter
KR20020083033A (en) * 2001-04-25 2002-11-01 한국델파이주식회사 Catalytic converter for vehicle
KR101100851B1 (en) * 2009-10-29 2012-01-02 한국전력기술 주식회사 An Exhaust Gas Denitrifing System having Reducer-mixing and Noise-diminution Structure
KR20120125972A (en) * 2012-10-11 2012-11-19 주식회사 파나시아 Exhaust gas denitrifing system having noise-reduction structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980018778U (en) * 1996-09-30 1998-07-06 양재신 Exhaust Noise Reduction Device for Catalytic Converter
KR20020083033A (en) * 2001-04-25 2002-11-01 한국델파이주식회사 Catalytic converter for vehicle
KR101100851B1 (en) * 2009-10-29 2012-01-02 한국전력기술 주식회사 An Exhaust Gas Denitrifing System having Reducer-mixing and Noise-diminution Structure
KR20120125972A (en) * 2012-10-11 2012-11-19 주식회사 파나시아 Exhaust gas denitrifing system having noise-reduction structure

Also Published As

Publication number Publication date
KR101381827B1 (en) 2014-04-04

Similar Documents

Publication Publication Date Title
WO2012118331A4 (en) System for denitrifying exhaust gas having a noise-damping structure
WO2011053013A2 (en) Exhaust gas nitrogen-removal system having a reducing-agent-mixing and noise-attenuating structure
EP2300697B1 (en) Catalytic devices for converting urea to ammonia
EP2215336B1 (en) Exhaust system
KR101818928B1 (en) Exhaust gas emission purification device
WO2014084538A1 (en) Exhaust gas denitrification reactor and exhaust gas denitrification system using same
US9371764B2 (en) After-treatment component
KR101292627B1 (en) Exhaust purification apparatus
JP2011528088A (en) SCR system with bypass system
CN105339620A (en) Selective catalytic reduction and catalytic regeneration system
KR101619098B1 (en) Exhaust gas purification device
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
JPH0861050A (en) Usage of silencer unit of large-sized diesel engine and exhaust gas device and silencer unit thereof
JP2003232218A (en) Exhaust emission control device for engine
JPH1030431A (en) Denitrating device having shield plate
KR102150213B1 (en) Catalyst Integrated Dust Collector
WO2014084536A1 (en) Apparatus for controlling reducing agent supply for exhaust fume denitrification and exhaust fume denitrification system using same
BRPI0207565B1 (en) System for the selective catalytic reduction of nitrogen oxide in a furnace flue gas stream having an initial concentration of nitrogen oxide, and a method for the selective conversion of nitrogen oxide into a furnace flue gas stream having a initial concentration of nitrogen oxide.
KR101724429B1 (en) Exhaust gas denitrifing system having noise-reduction structure
WO2014084543A1 (en) Denitrification system comprising perforated plate for preventing drift of flow
KR102232267B1 (en) An apparatus for reducing nitrogen oxide
US20200003103A1 (en) Exhaust aftertreatment system for an engine
US10190464B2 (en) Exhaust aftertreatment device for aftertreatment of exhaust of an internal combustion engine
WO2002068098A3 (en) Gas phase reactor and process for reducing nitrogen oxide in a gas stream,
JPH11128686A (en) Apparatus for denitrificating stack gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13859016

Country of ref document: EP

Kind code of ref document: A1