WO2014084310A1 - Amino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, resin-equipped film, laminated plate, multilayer printed circuit board, and semiconductor package - Google Patents

Amino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, resin-equipped film, laminated plate, multilayer printed circuit board, and semiconductor package Download PDF

Info

Publication number
WO2014084310A1
WO2014084310A1 PCT/JP2013/082054 JP2013082054W WO2014084310A1 WO 2014084310 A1 WO2014084310 A1 WO 2014084310A1 JP 2013082054 W JP2013082054 W JP 2013082054W WO 2014084310 A1 WO2014084310 A1 WO 2014084310A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
compound
amino
thermosetting resin
Prior art date
Application number
PCT/JP2013/082054
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 小竹
駿介 長井
慎太郎 橋本
慎一郎 安部
正人 宮武
高根沢 伸
村井 曜
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2014549892A priority Critical patent/JP6375951B2/en
Publication of WO2014084310A1 publication Critical patent/WO2014084310A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an amino-modified siloxane compound having an aromatic azomethine suitable for semiconductor packages and printed wiring boards, a modified imide resin using the same, a thermosetting resin composition, a prepreg, a film with a resin, a laminate, and a multilayer print
  • the present invention relates to a wiring board and a semiconductor package.
  • liquid crystalline polymers such as polyesters, polyamides, polycarbonates, polythiols, polyethers, and polyazomethines are thermosetting resins that are excellent in low thermal expansion, dielectric properties, and heat resistance.
  • workability and moldability are insufficient, and a problem that solubility in an organic solvent is insufficient and handling is difficult.
  • Non-Patent Document 1 Since D'Aleio found polyazomethine, which is a liquid crystalline oligomer (see Non-Patent Document 1), many cases relating to resins using polyazomethine have been reported (see, for example, Patent Documents 1 to 7).
  • Patent Document 1 discloses various polyazomethines, and Patent Documents 2 to 7 disclose polyazomethines having specific structures.
  • Patent Document 8 discloses thermosetting polyazomethine resins containing unsaturated groups, and describes that these resins exhibit high heat resistance.
  • JP 51-138800 A JP-A-60-181127 JP-A-60-101123 JP 2003-073470 A JP-A-63-193925 Japanese Patent Laid-Open No. 01-069631 Japanese Patent Laid-Open No. 01-079233 Japanese Patent Laid-Open No. 05-140067
  • the polyazomethines described in Patent Documents 1 to 7 may have insufficient heat resistance and formability when applied as a copper clad laminate or an interlayer insulating material.
  • the thermosetting polyazomethine resin described in Patent Document 8 still lacks improvement in heat resistance and toughness, and even when these are applied as a copper clad laminate or an interlayer insulating material, the heat resistance and reliability are also improved. , Workability and the like may be insufficient.
  • the object of the present invention is a modified imide resin or thermosetting which exhibits excellent low curing shrinkage, low thermal expansion, good dielectric properties, and high elastic modulus when applied to various applications.
  • Amino-modified siloxane compound capable of realizing a functional resin composition, the modified imide resin and a thermosetting resin composition, a prepreg using the same, a film with a resin, a laminate, a multilayer printed wiring board, and a semiconductor package It is.
  • the present inventors have found that the above object can be achieved by using an amino-modified siloxane compound having an aromatic azomethine.
  • the present invention is based on such knowledge.
  • the present invention provides an amino-modified siloxane compound having the following aromatic azomethine, a modified imide resin using the amino-modified siloxane compound, a thermosetting resin composition containing the amino-modified siloxane compound, a prepreg, and a film with a resin
  • the present invention provides a laminated board, a multilayer printed wiring board, and a semiconductor package.
  • Aromatic azomethine compound (A) having at least one aldehyde group in one molecule and siloxane compound (B) having at least two primary amino groups at the molecular end can be reacted with an aromatic in the molecular structure.
  • An amino-modified siloxane compound having azomethine is
  • [2] Obtained by reacting an amino-modified siloxane compound having an aromatic azomethine in the molecular structure according to [1] and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule.
  • a modified imide resin having an aromatic azomethine obtained by reacting an amino-modified siloxane compound having an aromatic azomethine in the molecular structure according to [1] and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule.
  • each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent
  • each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • thermosetting resin composition comprising the amino-modified siloxane compound having an aromatic azomethine according to [1] and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule.
  • thermosetting resin composition according to [4] further comprising an amine compound (D) having an acidic substituent represented by the following general formula (1).
  • each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent
  • each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.
  • thermosetting resin composition according to [4] or [5] further containing a thermoplastic elastomer (E).
  • a modified imide resin or thermosetting resin composition that exhibits excellent low curing shrinkage and low thermal expansion, good dielectric properties, and high elastic modulus when applied to various applications.
  • An amino-modified siloxane compound, a modified imide resin and a thermosetting resin composition that can be realized, a prepreg, a film with a resin, a laminate, a multilayer printed wiring board, and a semiconductor package using the same can be provided.
  • a modified imide resin or a thermosetting resin composition using an amino-modified siloxane compound having an aromatic azomethine of the present invention is obtained by impregnating and coating a base material and a support.
  • a laminated film produced by laminating and forming a film with resin and the prepreg in particular, has low curing shrinkage, low thermal expansion, excellent dielectric properties, and high elastic modulus, and is used as a multilayer printed wiring board and semiconductor package. Useful.
  • the amino-modified siloxane compound having an aromatic azomethine of the present invention is an aromatic amine compound (i) having at least two primary amino groups in one molecule, and an aromatic aldehyde having at least two aldehyde groups in one molecule.
  • the aromatic azomethine means a compound in which at least one aromatic is bonded to a Schiff base (—N ⁇ CH—).
  • aromatic amine compound (i) having at least two primary amino groups in one molecule of the present invention examples include p-phenylenediamine and m-phenylenediamine.
  • 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4 has high reactivity at the time of reaction and can achieve higher heat resistance.
  • '-Diamino-3,3'-dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (4- Aminophenoxy) phenyl) propane is preferred.
  • 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diamino-3,3 ′ are inexpensive and have solubility in solvents.
  • -Diethyl-diphenylmethane, bis (4- (4-aminophenoxy) phenyl) propane is more preferred.
  • 4,4′-diamino-3,3′-diethyl-diphenylmethane and bis (4- (4-aminophenoxy) phenyl) propane are particularly preferred from the viewpoint of low thermal expansion and dielectric properties.
  • p-phenylenediamine, m-phenylenediamine, 3-methyl-1,4-diaminobenzene, and 2,5-dimethyl-1,4-diaminobenzene capable of increasing the elastic modulus are also preferable.
  • aromatic aldehyde compound (ii) having at least two aldehyde groups in one molecule of the present invention examples include terephthalaldehyde, isophthalaldehyde, o-phthalaldehyde. 2,2′-bipyridine-4,4′-dicarboxaldehyde and the like.
  • terephthalaldehyde is particularly preferable because it can be further reduced in thermal expansion, has high reactivity during the reaction, is excellent in solvent solubility, and is easily available commercially.
  • the siloxane compound (B) (hereinafter sometimes referred to as component (B)) having at least two primary amino groups at the molecular ends of the present invention includes the following general formula (2).
  • R 3 and R 4 each independently represents an alkyl group, a phenyl group or a substituted phenyl group, and n is an integer of 1 to 100.
  • n is an integer of 1 to 100, more preferably an integer of 2 to 50.
  • a commercial item can be used as a component (B).
  • Examples of commercially available products include “KF-8010” (amino group equivalent 430), “X-22-161A” (amino group equivalent 800), “X-22-161B” (amino group equivalent 1500), “KF— 8012 "(amino group equivalent 2200),” KF-8008 "(amino group equivalent 5700),” X-22-9409 "(amino group equivalent 700),” X-22-1660B-3 "(amino group equivalent 2200) (Shin-Etsu Chemical Co., Ltd.), “BY-16-853U” (amino group equivalent 460), “BY-16-853” (amino group equivalent 650), “BY-16-853B” (amino group equivalent) 2200) (above, manufactured by Toray Dow Corning Co., Ltd.).
  • X-22-161A, X-22-161B, KF-8012, X-22-1660B-3, BY-16- 853B is preferable, and X-22-161A and X-22-161B, which have excellent compatibility and can increase the elastic modulus, are more preferable.
  • an aromatic amine compound (i) having at least two primary amino groups in one molecule Aromatic azomethine compound (A) having at least one aldehyde group in one molecule by subjecting aromatic aldehyde compound (ii) having at least two aldehyde groups in one molecule to dehydration condensation reaction in an organic solvent (Hereinafter sometimes referred to as component (A)).
  • an amino-modified siloxane compound having an aromatic azomethine is obtained by subjecting the component (A) and a siloxane compound (B) having at least two primary amino groups at the molecular ends to a dehydration condensation reaction in an organic solvent. Can do.
  • this reaction has a feature that the molecular weight of the aromatic azomethine can be easily controlled in the molecule of the amino-modified siloxane compound having the aromatic azomethine of the present invention, and the resin composition containing this has a high elastic modulus. Is particularly effective.
  • examples of the organic solvent used when the component (i) and the component (ii) are subjected to a dehydration condensation reaction include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • ether solvents such as tetrahydrofuran
  • aromatic solvents such as toluene, xylene and mesitylene
  • nitrogen atoms such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone
  • solvents sulfur atom-containing solvents such as dimethyl sulfoxide, and ester solvents such as ⁇ -butyrolactone. These may be used alone or in admixture of two or more.
  • propylene glycol monomethyl ether, cyclohexanone, toluene, dimethylformamide, dimethylacetamide, ⁇ -butyrolactone and the like are preferable.
  • propylene glycol monomethyl ether and toluene are more preferable because they are highly volatile and hardly remain as a residual solvent during the production of the prepreg.
  • this reaction is a dehydration condensation reaction, water is produced as a by-product.
  • a reaction catalyst can be optionally used as necessary.
  • the reaction catalyst include acidic catalysts such as p-toluenesulfonic acid, amines such as triethylamine, pyridine and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and phosphorus-based catalysts such as triphenylphosphine. . These may be used alone or in admixture of two or more. In order to allow the dehydration condensation reaction to proceed efficiently, for example, an acidic catalyst such as p-toluenesulfonic acid is preferred.
  • the amount of component (i) and component (ii) used is, for example, the number of primary amino groups of component (i) [the amount of component (i) used / the primary amino group equivalent of component (i)] It is desirable to use it in a range of 0.1 to 5.0 times the number of aldehyde groups in ii) [amount of component (ii) used / aldehyde group equivalent of component (ii)].
  • a decrease in the molecular weight of the aromatic azomethine compound obtained by this reaction tends to be suppressed.
  • the amount of the organic solvent used is preferably 25 to 2000 parts by mass, for example, 40 to 1000 parts by mass with respect to 100 parts by mass of the total of the resin components of component (i) and component (ii). More preferably, the amount is 40 to 500 parts by mass.
  • the amount of the organic solvent used is 25 parts by mass or more, insufficient solubility tends to be suppressed. Further, when the amount is 2000 parts by mass or less, there is a tendency that a long time is required for the reaction.
  • Component (A) is obtained by charging the above raw materials, organic solvent, and, if necessary, a reaction catalyst in a reaction kettle and stirring for 0.1 to 10 hours, if necessary, while heating and keeping warm to cause a dehydration condensation reaction.
  • the reaction temperature at this time is preferably 70 to 150 ° C., for example, and more preferably 100 to 130.
  • the reaction temperature By setting the reaction temperature to 70 ° C. or higher, the reaction rate tends to be low.
  • a high-boiling solvent is not required as the reaction solvent, and when the prepreg is produced, the residual solvent hardly remains and the heat resistance tends to be reduced.
  • an amino-modified siloxane having an aromatic azomethine is obtained by subjecting the component (A) obtained by the above reaction and a siloxane compound (B) having at least two amino groups at the molecular ends to a dehydration condensation reaction in an organic solvent.
  • a compound can be obtained.
  • the amount of component (A) and component (B) used is, for example, the number of primary amino groups in component (B) [the amount of component (B) used / the primary amino group equivalent of component (B)] It is desirable that the number of aldehyde groups in A) is 1.0 to 10.0 times the number of aldehyde groups [amount of component (A) used / aldehyde equivalent of component (A)]. By setting it to 1.0 times or more, a decrease in solubility in a solvent tends to be suppressed. Moreover, a favorable elastic modulus is obtained in the thermosetting resin containing the amino modified siloxane compound which has aromatic azomethine by setting it as 10.0 times or less.
  • the amount of the organic solvent used is preferably 25 to 2000 parts by weight, for example, 40 to 1000 parts by weight with respect to 100 parts by weight of the total of the resin components of component (A) and component (B). More preferably, the amount is 40 to 500 parts by mass.
  • the amount of the organic solvent used is 25 parts by mass or more, the lack of solubility tends to be small. Moreover, by setting it as 2000 mass parts or less, reaction does not require a long time.
  • An amino-modified siloxane compound having an aromatic azomethine is prepared by charging the above raw materials, an organic solvent, and if necessary, a reaction catalyst in a reaction kettle and stirring and dehydrating and condensing for 0.1 to 10 hours while heating and holding as necessary. can get.
  • the reaction temperature is, for example, preferably 70 to 150 ° C., more preferably 100 to 130.
  • the reaction temperature By setting the reaction temperature to 70 ° C. or higher, the reaction rate tends not to be too slow.
  • the reaction temperature is set to 150 ° C. or lower, a high-boiling solvent is not required for the reaction solvent, and when the prepreg is produced, the residual solvent hardly remains and good heat resistance tends to be obtained.
  • the amino-modified siloxane compound having an aromatic azomethine obtained by the above reaction can be confirmed by performing IR measurement.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is 1000 or more, good low curing shrinkage and low thermal expansion tend to be obtained. Moreover, it exists in the tendency for favorable compatibility and an elasticity modulus to be obtained as it is 300,000 or less.
  • the weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) and converted by a calibration curve produced using standard polystyrene.
  • an auto sampler (AS-8020 manufactured by Tosoh Corporation), a column oven (860-C0 manufactured by JASCO Corporation), an RI detector (830-RI manufactured by JASCO Corporation), a UV / VIS detector (Japan) Spectroscopic industry 870-UV), HPLC pump (JASCO Corporation 880-PU) is used.
  • TSKgel SuperHZ2000, 2300 manufactured by Tosoh Corporation is used as the column used, and measurement is possible by using a measurement temperature of 40 ° C., a flow rate of 0.5 ml / min, and a solvent of tetrahydrofuran.
  • modified imide resin The modified imide resin of the present invention is obtained by reacting the aforementioned amino-modified siloxane compound of the present invention with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. .
  • the modified imide resin preferably has an acidic substituent, and the acidic substituent is derived from the acidic substituent of the amine compound (D) represented by the following general formula (1).
  • the acidic substituent can be introduced by reacting the amine compound (D). By having such an acidic substituent, good low thermal expansibility can be obtained.
  • each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent
  • each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • x is an integer of 1 to 5
  • y is an integer of 0 to 4
  • the sum of x and y is 5.
  • the modified imide resin can be produced in a “pre-reaction” when producing a thermosetting resin composition described later.
  • thermosetting resin composition comprises an amino-modified siloxane compound having an aromatic azomethine and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. is there.
  • maleimide compounds (C) having at least two N-substituted maleimide groups in one molecule include bis (4-maleimidophenyl) methane and polyphenylmethane.
  • a component (C) may be used independently, or 2 or more types may be mixed and used for it.
  • bis (4-maleimidophenyl) methane, bis (4-maleimidophenyl) sulfone, 2,2-bis (4- (4- (4- Maleimidophenoxy) phenyl) propane is preferred, and bis (4-maleimidophenyl) methane and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane are more preferred and inexpensive from the viewpoint of solubility in solvents.
  • Bis (4-maleimidophenyl) methane is particularly preferred from a certain point.
  • the amount of the amino-modified siloxane compound having an aromatic azomethine is preferably, for example, 1 to 30 parts by mass per 100 parts by mass of the total resin components. It is more preferable to set it as a mass part from the point of copper foil adhesiveness and chemical resistance.
  • the amount of component (C) used is, for example, preferably from 30 to 99 parts by weight, and preferably from 40 to 95 parts by weight per 100 parts by weight of the sum of the resin components in terms of low thermal expansion and high elastic modulus. More preferred
  • thermosetting resin composition of the present invention comprises an amino-modified siloxane compound having an aromatic azomethine and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. . Moreover, it can also be used as modified imide resin which has the said compound pre-reacted and has aromatic azomethine. By performing such a pre-reaction, the molecular weight can be controlled, and further low curing shrinkage and low thermal expansion can be improved.
  • This pre-reaction is performed by reacting an amino-modified siloxane compound having aromatic azomethine with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule while heating and keeping in an organic solvent. It is preferable to synthesize an imide resin.
  • the reaction temperature when reacting an amino-modified siloxane compound having an aromatic azomethine in an organic solvent with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule is, for example, 70 to 150. ° C is preferable, and 100 to 130 ° C is more preferable.
  • the reaction time is, for example, preferably 0.1 to 10 hours, and more preferably 1 to 6 hours.
  • the amount of the amino-modified siloxane compound having component (C) and aromatic azomethine is, for example, the number of maleimide groups of component (C) [the amount of component (C) used / maleimide group equivalent of component (C) ]
  • the primary amino group number of amino-modified siloxane compound having aromatic azomethine the amount of amino-modified siloxane compound having aromatic azomethine used / primary amino group equivalent of amino-modified siloxane compound having aromatic azomethine
  • a range that is 10.0 times larger is preferable. By setting it to 2.0 times or more, gelation and a decrease in heat resistance tend to be suppressed. Moreover, it exists in the tendency for the solubility to an organic solvent and the fall of heat resistance to be suppressed by setting it as 10.0 times or less.
  • the amount of component (C) used in the pre-reaction is, for example, preferably 50 to 3000 parts by weight, and 100 to 1500 parts by weight with respect to 100 parts by weight of the resin component of the amino-modified siloxane compound while maintaining the above relationship. Is more preferable.
  • the amount is 50 parts by mass or more, a decrease in heat resistance tends to be suppressed.
  • low thermal expansibility can be kept favorable by setting it as 3000 mass parts or less.
  • organic solvent used in this pre-reaction examples include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and acetic acid.
  • alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • acetic acid examples include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • ketone solvents such as acetone
  • Ester solvents such as ethyl ester and ⁇ -butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, dimethyl sulfoxide And sulfur atom-containing solvents such as These organic solvents can be used alone or in combination of two or more.
  • organic solvents for example, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and ⁇ -butyrolactone are preferable from the viewpoint of solubility, and cyclohexanone has low toxicity and is highly volatile and hardly remains as a residual solvent.
  • cyclohexanone has low toxicity and is highly volatile and hardly remains as a residual solvent.
  • Propylene glycol monomethyl ether, and dimethylacetamide are particularly preferable.
  • the amount of the organic solvent used is, for example, 100 parts by mass of the total resin component of the modified siloxane compound having aromatic azomethine and the maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. 25 to 2000 parts by mass, more preferably 40 to 1000 parts by mass, and particularly preferably 40 to 500 parts by mass.
  • the amount of the organic solvent used is 25 parts by mass or more, insufficient solubility tends to be suppressed.
  • the amount is 2000 parts by mass or less, the reaction does not take a long time.
  • reaction catalyst can be optionally used for this pre-reaction.
  • the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, phosphorus-based catalysts such as triphenylphosphine, and alkali metal amides such as lithium amide, sodium amide, and potassium amide. Etc. These reaction catalysts can be used alone or in combination of two or more.
  • the amount of the modified imide resin having an aromatic azomethine obtained from the pre-reaction is preferably 50 to 100 parts by mass, for example, 100 to 100 parts by mass per 100 parts by mass of the total resin components. More preferably. By setting the blending amount of the modified imide resin having aromatic azomethine to 50 parts by mass or more, good low thermal expansibility and high elastic modulus can be obtained.
  • thermosetting resin composition comprising the amino-modified siloxane compound having an aromatic azomethine of the present invention and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule, and
  • the modified imide resin having an aromatic azomethine obtained by the reaction alone has good thermosetting reactivity, but if necessary, a curing agent and a radical initiator can be used in combination. By using a curing agent and a radical initiator, heat resistance, adhesiveness, and mechanical strength can be improved.
  • curing agent used in combination examples include dicyandiamide, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4′-diaminodiphenylsulfone, phenylenediamine, and xylenediamine.
  • Aromatic amines such as hexamethylenediamine and 2,5-dimethylhexamethylenediamine, and guanamine compounds such as melamine and benzoguanamine. These may be used alone or in admixture of two or more.
  • radical initiator examples include organic peroxides such as acyl peroxides, hydroperoxides, ketone peroxides, organic peroxides having a t-butyl group, and peroxides having a cumyl group. Can be used. These may be used alone or in admixture of two or more. Among these, for example, aromatic amines are preferable from the viewpoint of good reactivity and heat resistance.
  • thermosetting resin composition of the present invention can contain an amine compound (D) having an acidic substituent represented by the following general formula (1).
  • each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent
  • each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.
  • Examples of the amine compound (D) having an acidic substituent include m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m -Aminobenzoic acid, o-aminobenzoic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline, etc. .
  • m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, and 3,5- Dihydroxyaniline is preferred.
  • m-aminophenol and p-aminophenol are more preferable.
  • the amount of component (D) used is, for example, preferably from 0.5 to 30 parts by weight, and more preferably from 1 to 20 parts by weight per 100 parts by weight of the total of the resin components, from the viewpoint of low thermal expansion. preferable.
  • thermosetting resin composition of the present invention comprises an amino-modified siloxane compound having an aromatic azomethine, a maleimide compound (C) having at least two N-substituted maleimide groups in a molecule, and an amine compound having an acidic substituent ( D) may be contained.
  • the compound can be pre-reacted and used as a modified imide resin having an acidic substituent and an aromatic azomethine. By performing such a pre-reaction, the molecular weight can be controlled, and further low curing shrinkage and low thermal expansion can be improved.
  • This pre-reaction involves synthesizing a modified imide resin having an acidic substituent by reacting an amino-modified siloxane compound having an aromatic azomethine, component (C), and component (D) while keeping the temperature in an organic solvent.
  • the reaction temperature at the time of reacting the amino-modified siloxane compound having aromatic azomethine, component (C), and component (D) in an organic solvent is preferably, for example, 70 to 150 ° C., and preferably 100 to 130 ° C. More preferably.
  • the reaction time is, for example, preferably 0.1 to 10 hours, and more preferably 1 to 6 hours.
  • the amount of amino-modified siloxane compound having aromatic azomethine, component (C), and component (D) is, for example, the number of maleimide groups in component (C) [the amount of component (C) used / component ( C) maleimide group equivalent] is an amino-modified siloxane compound having an aromatic azomethine and the number of primary amino groups in component (D) [amount of amino-modified siloxane compound having an aromatic azomethine / amino-modified siloxane compound having an aromatic azomethine
  • the primary amino group equivalent + the amount of component (D) used / the primary amino group equivalent of component (D)] is desirably in a range of 2.0 to 10.0 times. By setting it to 2.0 times or more, gelation and a decrease in heat resistance tend to be suppressed. Moreover, it exists in the tendency for the solubility to an organic solvent and the fall of heat resistance to be suppressed by setting it as 10.0 times or less.
  • the amount of the component (C) used in the pre-reaction is preferably 50 to 3000 parts by weight with respect to 100 parts by weight of the resin component of the amino-modified siloxane compound having an aromatic azomethine while maintaining the above relationship, 100 to 1500 parts by mass is more preferable.
  • the amount of component (D) used in the pre-reaction is, for example, preferably from 1 to 1000 parts by weight, more preferably from 5 to 500 parts by weight, based on 100 parts by weight of the resin component of the amino-modified siloxane compound.
  • the content is 1 part by mass or more, a decrease in heat resistance tends to be suppressed.
  • low thermal expansibility can be kept favorable by setting it as 1000 mass parts or less.
  • organic solvent used in this pre-reaction examples include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and acetic acid.
  • alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • acetic acid examples include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • ketone solvents such as acetone
  • Ester solvents such as ethyl ester and ⁇ -butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, dimethyl sulfoxide And sulfur atom-containing solvents such as These organic solvents can be used alone or in combination of two or more.
  • organic solvents for example, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and ⁇ -butyrolactone are preferable from the viewpoint of solubility, and cyclohexanone has low toxicity and is highly volatile and hardly remains as a residual solvent.
  • cyclohexanone has low toxicity and is highly volatile and hardly remains as a residual solvent.
  • Propylene glycol monomethyl ether, and dimethylacetamide are particularly preferable.
  • the amount of the organic solvent used is, for example, 25 to 2000 parts by mass with respect to 100 parts by mass of the total of the amino-modified siloxane compound having aromatic azomethine, the component (C), and the resin component of component (D).
  • the amount is preferably 40 to 1000 parts by weight, more preferably 40 to 500 parts by weight.
  • the amount of the organic solvent used is 25 parts by mass or more, insufficient solubility tends to be suppressed.
  • the amount is 2000 parts by mass or less, the reaction does not take a long time.
  • reaction catalyst can be optionally used for this pre-reaction.
  • the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, phosphorus-based catalysts such as triphenylphosphine, and alkali metal amides such as lithium amide, sodium amide, and potassium amide. Etc. These can be used alone or in combination of two or more.
  • the amount of the modified imide resin having an acidic substituent and an aromatic azomethine obtained by the pre-reaction is preferably 50 to 100 parts by mass, for example, per 100 parts by mass of the total resin components, and preferably 60 to More preferably, it is 90 parts by mass.
  • the blending amount of the modified imide resin having an acidic substituent and an aromatic azomethine is 50 parts by mass or more, good low thermal expansibility and high elastic modulus tend to be obtained.
  • An amino-modified siloxane compound having an aromatic azomethine of the present invention comprising a maleimide compound (C) having at least two N-substituted maleimide groups in a molecule, and an amine compound (D) having an acidic substituent.
  • a thermosetting resin composition and a modified imide resin having an aromatic substituent and an aromatic azomethine obtained by pre-reacting the above compound alone have good thermosetting reactivity, but if necessary, a curing agent and radical initiation An agent may be used. By using a curing agent and a radical initiator in combination, heat resistance, adhesiveness, and mechanical strength can be improved.
  • curing agent used in combination examples include dicyandiamide, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4′-diaminodiphenylsulfone, phenylenediamine, and xylenediamine.
  • Aromatic amines such as hexamethylenediamine and 2,5-dimethylhexamethylenediamine, and guanamine compounds such as melamine and benzoguanamine.
  • radical initiator examples include organic peroxides such as acyl peroxides, hydroperoxides, ketone peroxides, organic peroxides having a t-butyl group, and peroxides having a cumyl group. Can be used. These may be used alone or in admixture of two or more. Among these, for example, aromatic amines are preferable from the viewpoint of good reactivity and heat resistance.
  • thermosetting resin composition of the present invention can contain a thermoplastic elastomer (E).
  • the thermoplastic elastomer (E) include, for example, a styrene elastomer, an olefin elastomer, a urethane elastomer, a polyester elastomer, a polyamide elastomer, an acrylic elastomer, and a silicone elastomer.
  • elastomers and derivatives thereof include a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness. These can be used individually by 1 type or in mixture of 2 or more types.
  • the component (E) one having a reactive functional group at the molecular end or molecular chain can be used.
  • the reactive functional group include an epoxy group, a hydroxyl group, a carboxyl group, an amino group, an amide group, an isocyanato group, an acryl group, a methacryl group, and a vinyl group.
  • styrene elastomers for example, styrene elastomers, olefin elastomers, polyamide elastomers, and silicone elastomers are preferable from the viewpoint of heat resistance and insulation reliability, and styrene elastomers from the viewpoint of dielectric properties. And olefin-based elastomers are particularly preferred.
  • the reactive functional group possessed in the molecular terminal or molecular chain of these components (E) is preferably, for example, an epoxy group, a hydroxyl group, a carboxyl group, an amino group, and an amide group in terms of adhesion to the metal foil.
  • an epoxy group, a hydroxyl group, and an amino group are particularly preferable.
  • the amount of component (E) used is, for example, preferably from 0.1 to 50 parts by weight, and more preferably from 2 to 30 parts by weight, based on 100 parts by weight of the total resin components. It is more preferable because the compatibility of the resin is good, and the cured product has low curing shrinkage, low thermal expansion, and excellent dielectric properties.
  • thermosetting resin composition of the present invention may contain at least one thermosetting resin (F) (hereinafter sometimes referred to as component (F)) selected from epoxy resins and cyanate resins.
  • component (F) epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, and bisphenol.
  • F novolac type epoxy resin stilbene type epoxy resin, triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenolphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy Resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, polyfunctional phenols and diglycidyl esters of polycyclic aromatics such as anthracene And Tel compounds and phosphorus-containing epoxy resin obtained by introducing a phosphorus compound thereof.
  • biphenyl aralkyl type epoxy resins and naphthalene type epoxy resins are preferable from the viewpoint of heat resistance and flame retardancy.
  • cyanate resin of component (F) examples include, for example, bisphenol type cyanate resins such as novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, and some of these. Examples include triazine prepolymers. These may be used alone or in admixture of two or more. Among these, for example, a novolac type cyanate resin is preferable from the viewpoint of heat resistance and flame retardancy.
  • a curing agent can be used for these components (F) as necessary.
  • the curing agent include, for example, polyfunctional phenol compounds such as phenol novolak, cresol novolak, aminotriazine novolak resin, amine compounds such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, maleic anhydride
  • acids anhydrides such as acid and maleic anhydride copolymers. These 1 type can be used individually or in mixture of 2 or more types.
  • the amount of component (F) used is, for example, preferably 1 to 50 parts by mass per 100 parts by mass of the total resin components, and 3 to 35 parts by mass from the viewpoint of heat resistance and chemical resistance. Is more preferable.
  • the thermosetting resin composition of the present invention can contain an inorganic filler (G).
  • the inorganic filler (G) include silica, alumina, talc, mica, kaolin, aluminum hydroxide, boehmite, magnesium hydroxide, zinc borate, and stannic acid.
  • component (G) examples include zinc, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, potassium titanate, glass powder such as E glass, T glass, and D glass, and hollow glass beads. These may be used alone or in admixture of two or more.
  • silica is particularly preferable in terms of dielectric properties, heat resistance, and low thermal expansion.
  • examples of the silica include precipitated silica produced by a wet method and having a high water content, and dry method silica produced by a dry method and containing almost no bound water.
  • examples of the dry process silica include crushed silica, fumed silica, fused spherical silica and the like depending on the production method. Among these, fused spherical silica is preferable because of its low thermal expansion and high fluidity when filled in a resin.
  • the average particle size is preferably 0.1 to 10 ⁇ m, and more preferably 0.3 to 8 ⁇ m.
  • the average particle size of the fused spherical silica is preferably 0.1 to 10 ⁇ m, and more preferably 0.3 to 8 ⁇ m.
  • the average particle diameter is the particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle diameter is obtained with the total volume of the particles as 100%, and the laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • the content of the component (G) is, for example, preferably 20 to 500 parts by mass, more preferably 50 to 350 parts by mass with respect to 100 parts by mass of the total resin components.
  • the content of component (G) is, for example, preferably 20 to 500 parts by mass, more preferably 50 to 350 parts by mass with respect to 100 parts by mass of the total resin components.
  • the thermosetting resin composition of the present invention can contain a curing accelerator (H).
  • a curing accelerator (H) examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and tris.
  • Organometallic salts such as acetylacetonate cobalt (III), imidazoles and derivatives thereof, organophosphorus compounds such as phosphines and phosphonium salts, secondary amines, tertiary amines, and quaternary ammonium salts Is mentioned.
  • These 1 type can be used individually or in mixture of 2 or more types.
  • zinc naphthenate, imidazole derivatives, and phosphonium salts are preferable from the viewpoint of the promoting effect and the storage stability.
  • the content of the component (H) is, for example, preferably 0.01 to 3.0 parts by mass, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the total resin components. preferable. By setting the content of the component (H) to 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the total of the resin components, the acceleration effect and the storage stability can be kept good.
  • thermoplastic resin organic filler, flame retardant, ultraviolet absorber, antioxidant, photopolymerization initiator, fluorescent whitening agent, and adhesion improver may be used without departing from the object.
  • Etc. can be used. These may be used alone or in combination of two or more.
  • thermoplastic resin examples include polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, xylene resin, petroleum resin, and silicone resin.
  • the organic filler examples include a resin filler made of polyethylene, polypropylene, polystyrene, polyphenylene ether resin, silicone resin, tetrafluoroethylene resin, acrylate ester resin, methacrylate ester resin, conjugated diene resin, and the like.
  • the flame retardant examples include halogen-containing flame retardants containing bromine and chlorine, triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphoric ester compounds, phosphorous flame retardants such as red phosphorus, sulfamic acid Nitrogen flame retardants such as guanidine, melamine sulfate, melamine polyphosphate and melamine cyanurate, phosphazene flame retardants such as cyclophosphazene and polyphosphazene, and inorganic flame retardants such as antimony trioxide.
  • halogen-containing flame retardants containing bromine and chlorine triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphoric ester compounds
  • phosphorous flame retardants such as red phosphorus, sulfamic acid
  • Nitrogen flame retardants such as guanidine, melamine sulfate
  • examples of UV absorbers include benzotriazole UV absorbers
  • examples of antioxidants include hindered phenols and hindered amines
  • examples of photopolymerization initiators include benzophenones, benzyl ketals, and thioxanthone.
  • examples of photopolymerization initiators and fluorescent brighteners include stilbene derivative fluorescent brighteners, and adhesion improvers such as urea compounds such as urea silane and silane, titanate and aluminate cups. A ring agent etc. are mentioned.
  • thermosetting resin composition containing the amino-modified siloxane compound having an aromatic azomethine of the present invention is used in a prepreg, finally, the varnish state in which each component is dissolved or dispersed in an organic solvent and It is preferable to do.
  • organic solvent used here examples include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and butyl acetate.
  • alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and butyl acetate.
  • Ester solvents such as propylene glycol monomethyl ether acetate, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, dimethyl sulfoxide And a sulfur atom-containing solvent. These can be used individually by 1 type or in mixture of 2 or more types.
  • methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, and propylene glycol monomethyl ether are preferable from the viewpoint of solubility, and methyl isobutyl ketone, cyclohexanone, and propylene glycol monomethyl ether are more preferable from the viewpoint of low toxicity.
  • the final thermosetting resin composition in the varnish is, for example, preferably 40 to 90% by mass, more preferably 50 to 80% by mass of the entire varnish.
  • “resin component” means an amino-modified siloxane compound, a modified imide resin (having an acidic substituent derived from the acidic substituent of the amine compound (D) represented by the general formula (1) described above). Modified imide resin), maleimide compound (C), amine compound (D) having an acidic substituent, thermoplastic elastomer (E), thermosetting resin (F), and reaction products thereof.
  • the “thermosetting resin composition” refers to a resin component containing an inorganic filler and a curing accelerator.
  • the prepreg of the present invention is obtained by impregnating a base material with the above-described thermosetting resin composition of the present invention. .
  • the prepreg of the present invention will be described in detail.
  • the prepreg of the present invention can be produced by impregnating the thermosetting resin composition of the present invention into a substrate and semi-curing (B-stage) by heating or the like.
  • a method to make a base material impregnate the thermosetting resin composition of this invention For example, the method of immersing a base material in a resin varnish, the method of apply
  • the method of immersing the base material in the resin varnish is preferable.
  • the impregnation property of the resin composition with respect to a base material can be improved.
  • the well-known thing used for the laminated board for various electrical insulation materials can be used, for example.
  • the material include inorganic fibers such as E glass, D glass, S glass and Q glass, organic fibers such as polyimide, polyester and tetrafluoroethylene, and mixtures thereof.
  • carbon fiber or the like can be used in the case of a fiber reinforced base material.
  • These base materials have, for example, the shapes of woven fabric, non-woven fabric, robink, chopped strand mat and surfacing mat, and the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, can be used alone. Alternatively, two or more kinds of materials and shapes can be combined.
  • the thickness of the base material can be, for example, about 0.03 to 0.5 mm, and the surface treated with a silane coupling agent or the like or mechanically subjected to a fiber opening treatment has heat resistance and It is suitable in terms of moisture resistance and processability.
  • the prepreg of the present invention has, for example, a base so that the amount of the thermosetting resin composition attached to the substrate is 20 to 90% by mass in terms of the content of the thermosetting resin composition of the prepreg after drying. After impregnating or coating the material, it can usually be obtained by drying by heating at a temperature of 100 to 200 ° C. for 1 to 30 minutes and semi-curing (B-stage).
  • the film with a resin of the present invention is obtained by forming a layer of the thermosetting resin composition of the present invention on a support.
  • the thermosetting resin composition obtained by this invention is made into a varnish state, and various coaters are used.
  • the resin composition layer can be formed by applying to a support and further drying by heating or blowing hot air.
  • the resin-coated film of the present invention can be produced by being semi-cured (B-staged) by heating or the like.
  • This semi-cured state is a state in which the adhesive force between the resin composition layer of the resin-coated film and the circuit board is secured when the film with resin and the circuit board are laminated and cured, and embedded in the circuit board. It is preferable that the property (fluidity) is ensured.
  • the coater used when the thermosetting resin composition of the present invention is applied on a support is not particularly limited, and for example, a die coater, a comma coater, a bar coater, a kiss coater, a roll coater, etc. can be used. . These can be appropriately selected depending on the thickness of the resin composition layer. As a drying method, heating, hot air blowing, or the like can be used.
  • the drying conditions after applying the thermosetting resin composition to the support are, for example, such that the content of the organic solvent in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. dry.
  • the amount of the organic solvent in the varnish varies depending on the boiling point of the organic solvent.
  • the resin composition layer can be obtained by drying a varnish containing 30 to 60% by mass of the organic solvent at 50 to 150 ° C. for about 3 to 10 minutes. It is formed. It is preferable to set suitable drying conditions as appropriate by simple experiments in advance.
  • the thickness of the resin composition layer formed on the support is usually not less than the thickness of the conductor layer of the circuit board.
  • the thickness of the conductor layer is preferably, for example, 5 to 70 ⁇ m, more preferably 5 to 50 ⁇ m, and even more preferably 5 to 30 ⁇ m in order to reduce the thickness of the multilayer printed wiring board.
  • the support in the film with resin is made of, for example, polyolefin such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and the like.
  • PET polyethylene terephthalate
  • polyester such as polyethylene naphthalate, polycarbonate, polyimide, and the like.
  • the film include metal foil such as release paper, copper foil, and aluminum foil. Note that the support and the protective film described later may be subjected to a release treatment in addition to the mat treatment and the corona treatment.
  • the thickness of the support is, for example, preferably 10 to 150 ⁇ m, more preferably 25 to 50 ⁇ m.
  • a protective film can be further laminated on the surface of the resin composition layer on which the support is not provided.
  • the protective film may be the same as or different from the material of the support.
  • the thickness of the protective film is, for example, 1 to 40 ⁇ m.
  • the laminated board of the present invention is obtained by laminating the above-mentioned resin-coated film.
  • it can be manufactured by laminating a film with resin on one side or both sides of a circuit board, a prepreg, a base material and the like using a vacuum laminator and curing by heating as necessary.
  • the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like.
  • a circuit board means here that the circuit pattern was formed in the one or both surfaces of the above boards.
  • a printed wiring board in which a plurality of conductor layers and insulating layers are alternately laminated and having a circuit pattern formed on one side or both sides of the outermost layer of the printed wiring board is also included in the circuit board here.
  • the surface of the conductor layer may be subjected to a roughening process in advance by a blackening process or the like.
  • the film with resin has a protective film
  • preheat the film with resin and the circuit board as necessary Crimp to circuit board while pressing and heating.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used.
  • Lamination conditions are, for example, that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 0.1 to 1.1 MPa, and the lamination is performed under a reduced pressure of air pressure 20 mmHg (26.7 hPa) or less. Is preferred.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the resin composition layer After laminating the resin-coated film on the circuit board, after cooling to around room temperature and then peeling the support, the resin composition layer is heat-cured after peeling the support (hereinafter, after heat-curing)
  • the resin composition layer may be referred to as an insulating layer).
  • the thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 to 220 ° C. for 20 to 180 minutes, more preferably 160 to 200 ° C. It is selected in the range of 30 to 120 minutes at ° C. Moreover, you may peel a support body, after thermosetting a resin composition layer.
  • Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary.
  • drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
  • a conductor layer is formed on the insulating layer by dry plating or wet plating.
  • dry plating for example, a known method such as vapor deposition, sputtering, or ion plating can be used.
  • wet plating first, the surface of the cured insulating resin composition layer is permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid. Roughening treatment is performed with an oxidizing agent such as to form an uneven anchor.
  • an aqueous sodium hydroxide solution such as potassium permanganate and sodium permanganate is particularly preferably used.
  • a conductor layer is formed by a method combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a known subtractive method or semi-additive method can be used.
  • the laminate of the present invention is obtained by laminating the above-described prepreg of the present invention.
  • the prepreg of the present invention can be produced, for example, by laminating 1 to 20 sheets and laminating with a structure in which a metal foil such as copper or aluminum is disposed on one or both sides.
  • the molding conditions for laminating the laminate can be, for example, the method of a laminate for an electrical insulating material and a multilayer plate, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. Molding can be performed in a range of up to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours.
  • the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a laminated board.
  • the multilayer printed wiring board of this invention is manufactured using the said laminated board.
  • the circuit board can be obtained by wiring processing the conductor layer of the laminate of the present invention by an ordinary etching method. Then, a plurality of laminated boards processed by wiring through the above-described prepreg are laminated and subjected to hot press processing to be multi-layered at once. Thereafter, a multilayer printed wiring board can be manufactured through formation of through holes or blind via holes by drilling, laser processing, etc., and formation of interlayer wiring by plating or conductive paste.
  • the semiconductor package of the present invention is obtained by mounting a semiconductor element on the multilayer printed wiring board.
  • the semiconductor package of the present invention is manufactured by mounting a semiconductor element such as a semiconductor chip or a memory at a predetermined position of the printed wiring board.
  • the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
  • it measured by the following method about the shrinkage
  • the glass transition temperature, the coefficient of thermal expansion, the copper foil adhesion, the solder heat resistance with copper, the bending elastic modulus, and the dielectric properties were measured and evaluated by the following methods.
  • Tg glass transition temperature
  • a copper-clad laminate is immersed in a copper etching solution to form a copper foil having a width of 3 mm to produce an evaluation substrate, and copper is tested using a tensile tester. The adhesion (peel strength) of the foil was measured.
  • a bending elastic modulus copper-clad laminate was immersed in a copper etching solution to prepare a 25 mm ⁇ 50 mm evaluation board from which the copper foil was removed, and a 5-ton tensilon manufactured by Orientec Co., Ltd. was used, and the crosshead speed was 1 mm / min. Measured at a span distance of 20 mm.
  • Dielectric properties (dielectric constant and dielectric loss tangent) A 100 mm ⁇ 2 mm evaluation board from which copper foil was removed by immersing a copper clad laminate in a copper etching solution was used, and a cavity resonator device (manufactured by Kanto Electronics Application Development Co., Ltd.) was used to obtain a ratio at a frequency of 1 GHz. The dielectric constant and dielectric loss tangent were measured.
  • Production Example 1 Production of amino-modified siloxane compound (I-1) having aromatic azomethine
  • a reaction vessel having a volume of 2 liters capable of being heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser.
  • terephthalaldehyde 17.1 g
  • propylene glycol monomethyl ether 45.0 g were added, reacted at 115 ° C. for 4 hours, and then raised to 130 ° C.
  • Production Example 2 Production of amino-modified siloxane compound (I-2) having aromatic azomethine
  • a reaction vessel having a volume of 2 liters capable of being heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser.
  • 2,8.7-dimethyl-1,4-diaminobenzene 8.7 g
  • terephthalaldehyde 21.3 g
  • propylene glycol monomethyl ether 45.0 g were added, reacted at 115 ° C. for 4 hours, then heated to 130 ° C.
  • the solution was dehydrated by normal pressure concentration to obtain an aromatic azomethine compound-containing solution (resin component: 60% by mass).
  • X-22-161B manufactured by Shin-Etsu Chemical Co., Ltd., trade name: 413.8 g and propylene glycol monomethyl ether: 645.7 g were added to the reaction solution, reacted at 115 ° C. for 4 hours, The mixture was heated up to 0 ° C. and dehydrated by atmospheric concentration to obtain a modified siloxane compound (I-2) -containing solution (Mw: 25000, resin component: 90% by mass) having an aromatic azomethine.
  • I-2 modified siloxane compound
  • Examples 1 to 18 and Comparative Examples 1 to 6 Amino-modified siloxane compound-containing solution (I-1, I-2) having an aromatic azomethine obtained in Production Examples 1 and 2 and a modified imide resin-containing solution having an aromatic azomethine obtained in Production Example 3 ( J-1) and a modified imide resin-containing solution (K-1) having an acidic substituent and an aromatic azomethine obtained in Production Example 4, an aromatic amine compound (i) and an aromatic aldehyde compound ( ii), siloxane compound (B), maleimide compound (C), amine compound (D) having an acidic substituent, thermoplastic elastomer (E), thermosetting resin (F), inorganic filler (G), curing acceleration Using agent (H) and methyl ethyl ketone as a diluent solvent, mixing was carried out at the blending ratio (parts by mass) shown in Tables 1 to 4 to obtain a varnish having a resin content of 65% by mass.
  • the varnish was applied to a 16 ⁇ m polyethylene terephthalate film with a film applicator (PI-1210, manufactured by Tester Sangyo Co., Ltd.) so that the resin thickness after drying was 35 ⁇ m, and then at 160 ° C. for 10 minutes. Heat drying was performed to obtain a semi-cured resin powder.
  • a film applicator PI-1210, manufactured by Tester Sangyo Co., Ltd.
  • This resin powder was put into a mold of a Teflon (registered trademark) sheet, the glossy surface of 12 ⁇ m electrolytic copper foil was placed up and down, and pressed at a pressure of 2.0 MPa and a temperature of 240 ° C. for 60 minutes. The foil was removed to obtain a resin plate. Further, the varnish was impregnated and applied to an E glass cloth having a thickness of 0.1 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a thermosetting resin composition content of 48 mass%. Four prepregs were stacked, 12 ⁇ m electrolytic copper foils were placed one above the other, and pressed at a pressure of 3.0 MPa and a temperature of 240 ° C. for 60 minutes to obtain a copper-clad laminate. Tables 1 to 4 show the measurement and evaluation results of the obtained resin plates and copper-clad laminates.
  • Aromatic amine compounds (i) KAYAHARD AA: 3,3′-diethyl-4,4′-diaminodiphenylmethane [manufactured by Nippon Kayaku Co., Ltd., trade name]
  • Siloxane compound (B) X-22-161B terminal amino-modified siloxane (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Maleimide compound (C) ⁇ BMI: Bis (4-maleimidophenyl) methane (trade name, manufactured by Kay Kasei Co., Ltd.)
  • BMI-4000 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (trade name, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
  • Amine compound having acidic substituent (D) ⁇ P-Aminophenol (trade name, manufactured by Kanto Chemical Co., Inc.)
  • Thermosetting resin (F) PT-30 Novolac-type cyanate resin (Lonza Japan Co., Ltd., trade name)
  • NC-7000L ⁇ -naphthol / cresol novolac type epoxy resin (trade name, manufactured by Nippon Kayaku Co., Ltd.)
  • Curing accelerator (H) Zinc (II) naphthenate 8% mineral spirit solution
  • G-8809L Isocyanate mask imidazole
  • TPP-MK Tetraphenylphosphonium tetra-p-tolylborate (trade name, manufactured by Hokuko Chemical Co., Ltd.)
  • amino-modified siloxane compound-containing solutions (I-1) and (I-2) having aromatic azomethines in Tables 1 to 4 modified imide resin-containing solutions (J-1) having aromatic azomethines, and acidic substituents
  • the amount (parts by mass) of the modified imide resin-containing solution having azomethine and aromatic azomethine indicates a value in terms of solid content of the resin component.
  • the curing shrinkage rate of the resin plate is small and excellent in low cure shrinkage. Also in the characteristics of the laminated plate, the thermal expansion rate, the copper foil Excellent adhesion, elastic modulus and dielectric properties. On the other hand, the comparative example has a large curing shrinkage rate of the resin plate, and also in the characteristics of the laminated plate, the thermal expansion coefficient, the copper foil adhesiveness, the elastic modulus, and the dielectric characteristics are any of the characteristics. Inferior.
  • a prepreg obtained by impregnating or coating a base material with a polyimide using an amino-modified siloxane compound having an aromatic azomethine of the present invention, or a thermosetting resin composition containing an amino-modified siloxane compound is applied to a support.
  • the film with resin obtained by coating and the laminate produced by laminating the prepreg have particularly low cure shrinkage, low thermal expansion, copper foil adhesion, high elastic modulus, and excellent dielectric properties. It is useful as a highly integrated semiconductor package and multilayer printed wiring board for electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Silicon Polymers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided are: an amino-modified siloxane compound comprising an aromatic azomethine in a molecular structure obtained by reacting a siloxane compound (B) having at least two primary amino groups on the molecular end thereof with an aromatic azomethine compound (A) that has at least one aldehyde group per molecule and that is obtained by reacting an aromatic amine compound (i) having at least two primary amino groups per molecule with an aromatic aldehyde compound (ii) having at least two aldehyde groups per molecule; and a modified imide resin and a thermosetting resin composition using said amino-modified siloxane compound.

Description

アミノ変性シロキサン化合物、変性イミド樹脂、熱硬化性樹脂組成物、プリプレグ、樹脂付フィルム、積層板、多層プリント配線板、及び半導体パッケージAmino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
 本発明は、半導体パッケージやプリント配線板用に好適な芳香族アゾメチンを有するアミノ変性シロキサン化合物、これを用いた変性イミド樹脂、熱硬化性樹脂組成物、プリプレグ、樹脂付フィルム、積層板、多層プリント配線板、及び半導体パッケージに関する。 The present invention relates to an amino-modified siloxane compound having an aromatic azomethine suitable for semiconductor packages and printed wiring boards, a modified imide resin using the same, a thermosetting resin composition, a prepreg, a film with a resin, a laminate, and a multilayer print The present invention relates to a wiring board and a semiconductor package.
 近年の電子機器の小型化・高性能化の流れに伴い、プリント配線板では配線密度の高度化、高集積化が進展し、これにともなって、配線用積層板の耐熱性の向上による信頼性向上への要求が強まっている。このような用途、特に半導体パッケージにおいては、優れた耐熱性、低熱膨張性を兼備することが要求されている。また、電気信号の高周波数化に対応する誘電特性も要求されてきている。 In recent years, with the trend toward miniaturization and higher performance of electronic devices, the printed wiring boards have become increasingly dense and highly integrated, and as a result, reliability has been improved by improving the heat resistance of laminated boards for wiring. There is an increasing demand for improvement. In such applications, particularly semiconductor packages, it is required to have both excellent heat resistance and low thermal expansion. In addition, dielectric characteristics corresponding to higher frequency of electric signals have been required.
 この点、ポリエステル系やポリアミド系、ポリカーボネート系、ポリチオール系、ポリエーテル系、ポリアゾメチン系等の公知の液晶性高分子は、低熱膨張性、誘電特性、耐熱性に優れる熱硬化性樹脂であるが、加工性や成形性が不足するという問題や、有機溶剤への溶解性が不足し、取り扱いにくいという問題があった。 In this regard, known liquid crystalline polymers such as polyesters, polyamides, polycarbonates, polythiols, polyethers, and polyazomethines are thermosetting resins that are excellent in low thermal expansion, dielectric properties, and heat resistance. However, there is a problem that workability and moldability are insufficient, and a problem that solubility in an organic solvent is insufficient and handling is difficult.
 これらの液晶性高分子の中でも、G.F.D’Alelioが液晶性オリゴマであるポリアゾメチン(非特許文献1参照)を見出して以来、多くのポリアゾメチンを使用する樹脂に関する事例が報告されている(例えば、特許文献1~7参照)。 Among these liquid crystalline polymers, G.M. F. Since D'Aleio found polyazomethine, which is a liquid crystalline oligomer (see Non-Patent Document 1), many cases relating to resins using polyazomethine have been reported (see, for example, Patent Documents 1 to 7).
 特許文献1には種々のポリアゾメチンが開示され、特許文献2~7には特定構造を有するポリアゾメチンが開示されている。また、特許文献8には不飽和基を含有する熱硬化性ポリアゾメチン樹脂が開示され、これらの樹脂により高耐熱性を発現することが記載されている。 Patent Document 1 discloses various polyazomethines, and Patent Documents 2 to 7 disclose polyazomethines having specific structures. Patent Document 8 discloses thermosetting polyazomethine resins containing unsaturated groups, and describes that these resins exhibit high heat resistance.
特開昭51-138800号公報JP 51-138800 A 特開昭60-181127号公報JP-A-60-181127 特開昭60-101123号公報JP-A-60-101123 特開2003-073470号公報JP 2003-073470 A 特開昭63-193925号公報JP-A-63-193925 特開平01-069631号公報Japanese Patent Laid-Open No. 01-069631 特開平01-079233号公報Japanese Patent Laid-Open No. 01-079233 特開平05-140067号公報Japanese Patent Laid-Open No. 05-140067
 しかしながら、特許文献1~7に記載のポリアゾメチンは、銅張積層板や層間絶縁材料として適用した場合、耐熱性や成形性が不足する場合がある。また、特許文献8に記載の熱硬化性ポリアゾメチン樹脂は、耐熱性や強靭性の改良が依然不足であり、これらを銅張積層板や層間絶縁材料として適用した場合も、耐熱性や信頼性、加工性等が不足する場合がある。 However, the polyazomethines described in Patent Documents 1 to 7 may have insufficient heat resistance and formability when applied as a copper clad laminate or an interlayer insulating material. Further, the thermosetting polyazomethine resin described in Patent Document 8 still lacks improvement in heat resistance and toughness, and even when these are applied as a copper clad laminate or an interlayer insulating material, the heat resistance and reliability are also improved. , Workability and the like may be insufficient.
 本発明の目的は、こうした現状に鑑み、種々の用途に適用した際に、優れた低硬化収縮性、そして低熱膨張性、また良好な誘電特性、高弾性率を発揮する変性イミド樹脂や熱硬化性樹脂組成物を実現できるアミノ変性シロキサン化合物、当該変性イミド樹脂及び熱硬化性樹脂組成物、これを用いたプリプレグ、樹脂付フィルム、積層板、多層プリント配線板、並びに、半導体パッケージを提供することである。 In view of the current situation, the object of the present invention is a modified imide resin or thermosetting which exhibits excellent low curing shrinkage, low thermal expansion, good dielectric properties, and high elastic modulus when applied to various applications. Amino-modified siloxane compound capable of realizing a functional resin composition, the modified imide resin and a thermosetting resin composition, a prepreg using the same, a film with a resin, a laminate, a multilayer printed wiring board, and a semiconductor package It is.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、芳香族アゾメチンを有するアミノ変性シロキサン化合物を用いることで上記の目的を達成し得ることを見出し本発明に至った。本発明は、かかる知見にもとづくものである。 As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by using an amino-modified siloxane compound having an aromatic azomethine. The present invention is based on such knowledge.
 すなわち、本発明は、以下の芳香族アゾメチンを有するアミノ変性シロキサン化合物、アミノ変性シロキサン化合物を用いた変性イミド樹脂、アミノ変性シロキサン化合物を含有する熱硬化性樹脂組成物、及び、プリプレグ、樹脂付フィルム、積層板、多層プリント配線板及び半導体パッケージを提供するものである。 That is, the present invention provides an amino-modified siloxane compound having the following aromatic azomethine, a modified imide resin using the amino-modified siloxane compound, a thermosetting resin composition containing the amino-modified siloxane compound, a prepreg, and a film with a resin The present invention provides a laminated board, a multilayer printed wiring board, and a semiconductor package.
[1] 1分子中に少なくとも2個の一級アミノ基を有する芳香族アミン化合物(i)、1分子中に少なくとも2個のアルデヒド基を有する芳香族アルデヒド化合物(ii)を反応させて得られる、1分子中に少なくとも1個のアルデヒド基を有する芳香族アゾメチン化合物(A)と、分子末端に少なくとも2個の一級アミノ基を有するシロキサン化合物(B)を反応させ得られる、分子構造中に芳香族アゾメチンを有するアミノ変性シロキサン化合物。
[2] [1]に記載の分子構造中に芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを反応させて得られる、芳香族アゾメチンを有する変性イミド樹脂。
[1] Obtained by reacting an aromatic amine compound (i) having at least two primary amino groups in one molecule and an aromatic aldehyde compound (ii) having at least two aldehyde groups in one molecule, Aromatic azomethine compound (A) having at least one aldehyde group in one molecule and siloxane compound (B) having at least two primary amino groups at the molecular end can be reacted with an aromatic in the molecular structure. An amino-modified siloxane compound having azomethine.
[2] Obtained by reacting an amino-modified siloxane compound having an aromatic azomethine in the molecular structure according to [1] and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. A modified imide resin having an aromatic azomethine.
[3] さらに、酸性置換基を有し、該酸性置換基が下記一般式(1)に示すアミン化合物(D)の酸性置換基に由来する[2]に記載の変性イミド樹脂。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を、R2は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示し、xは1~5の整数、yは0~4の整数で、且つxとyの和は5である。)
[4] [1]に記載の芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)を含有する熱硬化性樹脂組成物。
[3] The modified imide resin according to [2], further having an acidic substituent, wherein the acidic substituent is derived from the acidic substituent of the amine compound (D) represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(In formula (1), each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
[4] A thermosetting resin composition comprising the amino-modified siloxane compound having an aromatic azomethine according to [1] and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule.
[5] さらに、下記一般式(1)に示す酸性置換基を有するアミン化合物(D)を含有する[4]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を、R2は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示し、xは1~5の整数、yは0~4の整数で、且つxとyの和は5である。)
[6] さらに、熱可塑性エラストマー(E)を含有する[4]又は[5]に記載の熱硬化性樹脂組成物。
[7] さらに、エポキシ樹脂及びシアネート樹脂から選ばれた少なくとも一種の熱硬化性樹脂(F)を含有する[4]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8] さらに、無機充填材(G)を含有する[4]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9] さらに、硬化促進剤(H)を含有する[4]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[5] The thermosetting resin composition according to [4], further comprising an amine compound (D) having an acidic substituent represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
(In formula (1), each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
[6] The thermosetting resin composition according to [4] or [5], further containing a thermoplastic elastomer (E).
[7] The thermosetting resin composition according to any one of [4] to [6], further containing at least one thermosetting resin (F) selected from an epoxy resin and a cyanate resin.
[8] The thermosetting resin composition according to any one of [4] to [7], further containing an inorganic filler (G).
[9] The thermosetting resin composition according to any one of [4] to [8], further comprising a curing accelerator (H).
[10] [4]~[9]のいずれかに記載の熱硬化性樹脂組成物を基材に含浸してなるプリプレグ。
[11] [4]~[9]のいずれかに記載の熱硬化性樹脂組成物を支持体上に層形成してなる樹脂付フィルム。
[12] [10]記載のプリプレグを積層成形し得られる積層板。
[13] [11]記載の樹脂付フィルムを積層成形して得られる積層板。
[14] [12]又は[13]記載の積層板を用いて製造される多層プリント配線板。
[15] [14]記載の多層プリント配線板に半導体素子を搭載してなる半導体パッケージ。
[10] A prepreg obtained by impregnating a base material with the thermosetting resin composition according to any one of [4] to [9].
[11] A film with a resin obtained by forming a layer of the thermosetting resin composition according to any one of [4] to [9] on a support.
[12] A laminate obtained by laminate-molding the prepreg according to [10].
[13] A laminate obtained by laminating the film with resin according to [11].
[14] A multilayer printed wiring board produced using the laminated board according to [12] or [13].
[15] A semiconductor package comprising a semiconductor element mounted on the multilayer printed wiring board according to [14].
 本発明によれば、種々の用途に適用した際に、優れた低硬化収縮性、そして低熱膨張性、また良好な誘電特性、高弾性率を発揮する変性イミド樹脂や熱硬化性樹脂組成物を実現できるアミノ変性シロキサン化合物、当該変性イミド樹脂及び熱硬化性樹脂組成物、これを用いたプリプレグ、樹脂付フィルム、積層板、多層プリント配線板及び半導体パッケージを提供することができる。 According to the present invention, a modified imide resin or thermosetting resin composition that exhibits excellent low curing shrinkage and low thermal expansion, good dielectric properties, and high elastic modulus when applied to various applications. An amino-modified siloxane compound, a modified imide resin and a thermosetting resin composition that can be realized, a prepreg, a film with a resin, a laminate, a multilayer printed wiring board, and a semiconductor package using the same can be provided.
 特に、本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物を用いた変性イミド樹脂や熱硬化性樹脂組成物を、基材に含浸、塗工して得たプリプレグ、支持体に塗工して得た樹脂付フィルム、及び該プリプレグを積層成形することにより製造した積層板は、特に低硬化収縮性、低熱膨張性、優れた誘電特性、高弾性率を有し、多層プリント配線板、半導体パッケージとして有用である。 In particular, a modified imide resin or a thermosetting resin composition using an amino-modified siloxane compound having an aromatic azomethine of the present invention is obtained by impregnating and coating a base material and a support. A laminated film produced by laminating and forming a film with resin and the prepreg, in particular, has low curing shrinkage, low thermal expansion, excellent dielectric properties, and high elastic modulus, and is used as a multilayer printed wiring board and semiconductor package. Useful.
 以下、本発明について詳細に説明する。
(アミノ変性シロキサン化合物)
 本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物は、1分子中に少なくとも2個の一級アミノ基を有する芳香族アミン化合物(i)、1分子中に少なくとも2個のアルデヒド基を有する芳香族アルデヒド化合物(ii)を反応させて得られる、1分子中に少なくとも1個のアルデヒド基を有する芳香族アゾメチン化合物(A)と、分子末端に少なくとも2個の一級アミノ基を有するシロキサン化合物(B)を反応させ得られるものである。
 ここで、芳香族アゾメチンとは、シッフ塩基(-N=CH-)に少なくとも1つの芳香族が結合したものをいう。
Hereinafter, the present invention will be described in detail.
(Amino-modified siloxane compound)
The amino-modified siloxane compound having an aromatic azomethine of the present invention is an aromatic amine compound (i) having at least two primary amino groups in one molecule, and an aromatic aldehyde having at least two aldehyde groups in one molecule. An aromatic azomethine compound (A) having at least one aldehyde group in one molecule and a siloxane compound (B) having at least two primary amino groups at the molecular ends obtained by reacting compound (ii) It can be obtained by reaction.
Here, the aromatic azomethine means a compound in which at least one aromatic is bonded to a Schiff base (—N═CH—).
 本発明の1分子中に少なくとも2個の一級アミノ基を有する芳香族アミン化合物(i)(以下、成分(i)と呼ぶことがある)としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3-メチル-1,4-ジアミノベンゼン、2,5-ジメチル-1,4-ジアミノベンゼン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノ-3,3'-ジメチル-ジフェニルメタン、4,4'-ジアミノ-3,3'-ジエチル-ジフェニルメタン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルケトン、ベンジジン、3,3'-ジメチル-4,4'-ジアミノビフェニル、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4'-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、9,9-ビス(4-アミノフェニル)フルオレン等が挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。 Examples of the aromatic amine compound (i) having at least two primary amino groups in one molecule of the present invention (hereinafter sometimes referred to as component (i)) include p-phenylenediamine and m-phenylenediamine. O-phenylenediamine, 3-methyl-1,4-diaminobenzene, 2,5-dimethyl-1,4-diaminobenzene, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′- Dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4 ' -Diaminodiphenyl ketone, benzidine, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-dia Nobiphenyl, 3,3′-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanediamine, 2,2 -Bis (4-aminophenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-amino) Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- ( 3-aminophenoxy) phenyl) sulfone, 9,9-bis (4-aminophenyl) fluorene and the like. These may be used alone or in admixture of two or more.
 これらの中で、例えば、反応時の反応性が高く、より高耐熱性化できる点から、4,4'-ジアミノジフェニルメタン、3,3'-ジメチル-4,4'-ジアミノビフェニル、4,4'-ジアミノ-3,3'-ジメチル-ジフェニルメタン、4,4'-ジアミノ-3,3'-ジエチル-ジフェニルメタン、4,4'-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)プロパンが好ましい。さらに、安価であることや溶剤への溶解性の点から、4,4'-ジアミノジフェニルメタン、3,3'-ジメチル-4,4'-ジアミノビフェニル、4,4'-ジアミノ-3,3'-ジエチル-ジフェニルメタン、ビス(4-(4-アミノフェノキシ)フェニル)プロパンがより好ましい。さらに、低熱膨張性や誘電特性の点から、4,4'-ジアミノ-3,3'-ジエチル-ジフェニルメタン、ビス(4-(4-アミノフェノキシ)フェニル)プロパンが特に好ましい。また、高弾性率化できるp-フェニレンジアミン、m-フェニレンジアミン、3-メチル-1,4-ジアミノベンゼン、2,5-ジメチル-1,4-ジアミノベンゼンも好ましい。 Among these, for example, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4 has high reactivity at the time of reaction and can achieve higher heat resistance. '-Diamino-3,3'-dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (4- Aminophenoxy) phenyl) propane is preferred. Furthermore, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diamino-3,3 ′ are inexpensive and have solubility in solvents. -Diethyl-diphenylmethane, bis (4- (4-aminophenoxy) phenyl) propane is more preferred. Furthermore, 4,4′-diamino-3,3′-diethyl-diphenylmethane and bis (4- (4-aminophenoxy) phenyl) propane are particularly preferred from the viewpoint of low thermal expansion and dielectric properties. Further, p-phenylenediamine, m-phenylenediamine, 3-methyl-1,4-diaminobenzene, and 2,5-dimethyl-1,4-diaminobenzene capable of increasing the elastic modulus are also preferable.
 本発明の1分子中に少なくとも2個のアルデヒド基を有する芳香族アルデヒド化合物(ii)(以下、成分(ii)と呼ぶことがある)としては、例えば、テレフタルアルデヒド、イソフタルアルデヒド、o-フタルアルデヒド、2,2’-ビピリジン-4,4’-ジカルボキシアルデヒド等が挙げられる。これらの中で、例えば、より低熱膨張化が可能であり、反応時の反応性が高く、溶剤溶解性にも優れ、商業的にも入手しやすいテレフタルアルデヒドが特に好ましい。 Examples of the aromatic aldehyde compound (ii) having at least two aldehyde groups in one molecule of the present invention (hereinafter sometimes referred to as component (ii)) include terephthalaldehyde, isophthalaldehyde, o-phthalaldehyde. 2,2′-bipyridine-4,4′-dicarboxaldehyde and the like. Among these, for example, terephthalaldehyde is particularly preferable because it can be further reduced in thermal expansion, has high reactivity during the reaction, is excellent in solvent solubility, and is easily available commercially.
 本発明の分子末端に少なくとも2個の一級アミノ基を有するシロキサン化合物(B)(以下、成分(B)と呼ぶことがある)は、下記の一般式(2)を含むものである。 The siloxane compound (B) (hereinafter sometimes referred to as component (B)) having at least two primary amino groups at the molecular ends of the present invention includes the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
[式中、R3及びR4はそれぞれ独立にアルキル基、フェニル基又は置換フェニル基を示し、nは1~100の整数である。]
 一般式(2)の式中、nは1~100の整数であり、より好ましくは、2~50の整数である。
Figure JPOXMLDOC01-appb-C000005
[Wherein, R 3 and R 4 each independently represents an alkyl group, a phenyl group or a substituted phenyl group, and n is an integer of 1 to 100. ]
In the general formula (2), n is an integer of 1 to 100, more preferably an integer of 2 to 50.
 また、成分(B)としては市販品を用いることができる。市販品としては、例えば、「KF-8010」(アミノ基当量430)、「X-22-161A」(アミノ基当量800)、「X-22-161B」(アミノ基当量1500)、「KF-8012」(アミノ基当量2200)、「KF-8008」(アミノ基当量5700)、「X-22-9409」(アミノ基当量700)、「X-22-1660B-3」(アミノ基当量2200)(以上、信越化学工業株式会社製)、「BY-16-853U」(アミノ基当量460)、「BY-16-853」(アミノ基当量650)、「BY-16-853B」(アミノ基当量2200)(以上、東レダウコーニング株式会社製)等が挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。
 これらの中で、合成時の反応性が高く、低熱膨張性の点から、例えば、X-22-161A、X-22-161B、KF-8012、X-22-1660B-3、BY-16-853Bが好ましく、相溶性に優れ、高弾性率化できるX-22-161A、X-22-161Bがさらに好ましい。
Moreover, a commercial item can be used as a component (B). Examples of commercially available products include “KF-8010” (amino group equivalent 430), “X-22-161A” (amino group equivalent 800), “X-22-161B” (amino group equivalent 1500), “KF— 8012 "(amino group equivalent 2200)," KF-8008 "(amino group equivalent 5700)," X-22-9409 "(amino group equivalent 700)," X-22-1660B-3 "(amino group equivalent 2200) (Shin-Etsu Chemical Co., Ltd.), “BY-16-853U” (amino group equivalent 460), “BY-16-853” (amino group equivalent 650), “BY-16-853B” (amino group equivalent) 2200) (above, manufactured by Toray Dow Corning Co., Ltd.). These may be used alone or in admixture of two or more.
Among these, from the viewpoint of high reactivity during synthesis and low thermal expansion, for example, X-22-161A, X-22-161B, KF-8012, X-22-1660B-3, BY-16- 853B is preferable, and X-22-161A and X-22-161B, which have excellent compatibility and can increase the elastic modulus, are more preferable.
 本発明において、分子構造中に芳香族アゾメチンを有するアミノ変性シロキサン化合物を得るための反応としては、始めに、1分子中に少なくとも2個の一級アミノ基を有する芳香族アミン化合物(i)と、1分子中に少なくとも2個のアルデヒド基を有する芳香族アルデヒド化合物(ii)を有機溶媒中で脱水縮合反応させることにより、1分子中に少なくとも1個のアルデヒド基を有する芳香族アゾメチン化合物(A)を得る(以下、成分(A)と呼ぶことがある)。次いで、前記成分(A)と、分子末端に少なくとも2個の一級アミノ基を有するシロキサン化合物(B)を有機溶媒中で脱水縮合反応させることにより、芳香族アゾメチンを有するアミノ変性シロキサン化合物を得ることができる。
 また、本反応は、本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物の分子中における、芳香族アゾメチンの分子量制御が容易である特徴を有し、これを含有する樹脂組成物の高弾性率化に特に有効である。
In the present invention, as a reaction for obtaining an amino-modified siloxane compound having an aromatic azomethine in the molecular structure, first, an aromatic amine compound (i) having at least two primary amino groups in one molecule; Aromatic azomethine compound (A) having at least one aldehyde group in one molecule by subjecting aromatic aldehyde compound (ii) having at least two aldehyde groups in one molecule to dehydration condensation reaction in an organic solvent (Hereinafter sometimes referred to as component (A)). Next, an amino-modified siloxane compound having an aromatic azomethine is obtained by subjecting the component (A) and a siloxane compound (B) having at least two primary amino groups at the molecular ends to a dehydration condensation reaction in an organic solvent. Can do.
In addition, this reaction has a feature that the molecular weight of the aromatic azomethine can be easily controlled in the molecule of the amino-modified siloxane compound having the aromatic azomethine of the present invention, and the resin composition containing this has a high elastic modulus. Is particularly effective.
 本発明において、成分(i)と成分(ii)を脱水縮合反応させる際に使用される有機溶媒としては、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤、γ-ブチロラクトン等のエステル系溶剤などが挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。これらの中で、例えば、溶解性の点から、プロピレングリコールモノメチルエーテル、シクロヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、γ-ブチロラクトン等が好ましい。さらに揮発性が高くプリプレグの製造時に残溶剤として残りにくい点から、プロピレングリコールモノメチルエーテル、トルエンがより好ましい。
 また、この反応は脱水縮合反応であるため副生成物として水が生成される。この副生成物である水を除去する目的で、例えば、芳香族系溶剤との共沸により副生成物である水を除去しながら反応することが望ましい。
In the present invention, examples of the organic solvent used when the component (i) and the component (ii) are subjected to a dehydration condensation reaction include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether. , Including ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atoms such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Examples thereof include solvents, sulfur atom-containing solvents such as dimethyl sulfoxide, and ester solvents such as γ-butyrolactone. These may be used alone or in admixture of two or more. Among these, from the viewpoint of solubility, for example, propylene glycol monomethyl ether, cyclohexanone, toluene, dimethylformamide, dimethylacetamide, γ-butyrolactone and the like are preferable. Furthermore, propylene glycol monomethyl ether and toluene are more preferable because they are highly volatile and hardly remain as a residual solvent during the production of the prepreg.
Moreover, since this reaction is a dehydration condensation reaction, water is produced as a by-product. For the purpose of removing water as a by-product, it is desirable to react while removing water as a by-product by azeotropy with an aromatic solvent, for example.
 成分(i)と成分(ii)の脱水縮合反応には、必要により任意に反応触媒を使用することができる。反応触媒としては、例えば、p-トルエンスルホン酸等の酸性触媒、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。脱水縮合反応を効率よく進行させるため、例えば、p-トルエンスルホン酸等の酸性触媒が好ましい。 In the dehydration condensation reaction of component (i) and component (ii), a reaction catalyst can be optionally used as necessary. Examples of the reaction catalyst include acidic catalysts such as p-toluenesulfonic acid, amines such as triethylamine, pyridine and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and phosphorus-based catalysts such as triphenylphosphine. . These may be used alone or in admixture of two or more. In order to allow the dehydration condensation reaction to proceed efficiently, for example, an acidic catalyst such as p-toluenesulfonic acid is preferred.
 ここで、成分(i)と成分(ii)の使用量は、例えば、成分(i)の一級アミノ基数〔成分(i)の使用量/成分(i)の一級アミノ基当量〕が、成分(ii)のアルデヒド基数〔成分(ii)の使用量/成分(ii)のアルデヒド基当量〕の0.1倍~5.0倍の範囲になるように使用することが望ましい。0.1倍以上とすることにより、本反応により得られる芳香族アゾメチン化合物の分子量の低下が抑制される傾向にある。また、5.0倍以下とすることにより、溶媒への溶解性の低下が抑制される傾向にある。 Here, the amount of component (i) and component (ii) used is, for example, the number of primary amino groups of component (i) [the amount of component (i) used / the primary amino group equivalent of component (i)] It is desirable to use it in a range of 0.1 to 5.0 times the number of aldehyde groups in ii) [amount of component (ii) used / aldehyde group equivalent of component (ii)]. By setting it to 0.1 times or more, a decrease in the molecular weight of the aromatic azomethine compound obtained by this reaction tends to be suppressed. Moreover, it exists in the tendency for the fall of the solubility to a solvent to be suppressed by setting it as 5.0 times or less.
 また、有機溶媒の使用量は、例えば、成分(i)、及び成分(ii)の樹脂成分の総和100質量部に対して、25~2000質量部とすることが好ましく、40~1000質量部とすることがより好ましく、40~500質量部とすることが特に好ましい。有機溶媒の使用量を25質量部以上とすることにより、溶解性の不足が抑制される傾向にある。また2000質量部以下とすることにより、反応に長時間を要すること少ない傾向にある。 The amount of the organic solvent used is preferably 25 to 2000 parts by mass, for example, 40 to 1000 parts by mass with respect to 100 parts by mass of the total of the resin components of component (i) and component (ii). More preferably, the amount is 40 to 500 parts by mass. When the amount of the organic solvent used is 25 parts by mass or more, insufficient solubility tends to be suppressed. Further, when the amount is 2000 parts by mass or less, there is a tendency that a long time is required for the reaction.
 上記の原料、有機溶媒、必要により反応触媒を反応釜に仕込み、必要により加熱・保温しながら0.1時間から10時間攪拌し脱水縮合反応させることにより、成分(A)が得られる。
 このときの反応温度は、例えば、70~150℃が好ましく、100~130がより好ましい。また、副生成物である水を除去しながら反応することが好ましい。反応温度を70℃以上とすることにより、反応速度が遅くなることが少ない傾向にある。また、反応温度を150℃以下とすることにより、反応溶媒に高沸点の溶媒を必要とせず、プリプレグを製造する際、残溶剤が残りにくく、良好な耐熱性低下が得られる傾向にある。
Component (A) is obtained by charging the above raw materials, organic solvent, and, if necessary, a reaction catalyst in a reaction kettle and stirring for 0.1 to 10 hours, if necessary, while heating and keeping warm to cause a dehydration condensation reaction.
The reaction temperature at this time is preferably 70 to 150 ° C., for example, and more preferably 100 to 130. Moreover, it is preferable to react, removing the water which is a by-product. By setting the reaction temperature to 70 ° C. or higher, the reaction rate tends to be low. In addition, by setting the reaction temperature to 150 ° C. or lower, a high-boiling solvent is not required as the reaction solvent, and when the prepreg is produced, the residual solvent hardly remains and the heat resistance tends to be reduced.
 次いで、前記反応により得られた成分(A)と、分子末端に少なくとも2個のアミノ基を有するシロキサン化合物(B)を有機溶媒中で脱水縮合反応させることにより、芳香族アゾメチンを有するアミノ変性シロキサン化合物を得ることができる。 Next, an amino-modified siloxane having an aromatic azomethine is obtained by subjecting the component (A) obtained by the above reaction and a siloxane compound (B) having at least two amino groups at the molecular ends to a dehydration condensation reaction in an organic solvent. A compound can be obtained.
 ここで、成分(A)と成分(B)の使用量は、例えば、成分(B)の一級アミノ基数〔成分(B)の使用量/成分(B)の一級アミノ基当量〕が、成分(A)のアルデヒド基数〔成分(A)の使用量/成分(A)のアルデヒド基当量〕の1.0~10.0倍の範囲になるように使用されることが望ましい。1.0倍以上とすることにより、溶媒への溶解性の低下が抑制される傾向にある。また、10.0倍以下とすることにより、芳香族アゾメチンを有するアミノ変性シロキサン化合物を含有する熱硬化性樹脂において、良好な弾性率が得られる。 Here, the amount of component (A) and component (B) used is, for example, the number of primary amino groups in component (B) [the amount of component (B) used / the primary amino group equivalent of component (B)] It is desirable that the number of aldehyde groups in A) is 1.0 to 10.0 times the number of aldehyde groups [amount of component (A) used / aldehyde equivalent of component (A)]. By setting it to 1.0 times or more, a decrease in solubility in a solvent tends to be suppressed. Moreover, a favorable elastic modulus is obtained in the thermosetting resin containing the amino modified siloxane compound which has aromatic azomethine by setting it as 10.0 times or less.
 また、有機溶媒の使用量は、例えば、成分(A)、及び成分(B)の樹脂成分の総和100質量部に対して、25~2000質量部とすることが好ましく、40~1000質量部とすることがより好ましく、40~500質量部とすることが特に好ましい。有機溶媒の使用量を25質量部以上とすることにより、溶解性の不足が少ない傾向にある。また2000質量部以下とすることにより、反応に長時間を要することがない。 The amount of the organic solvent used is preferably 25 to 2000 parts by weight, for example, 40 to 1000 parts by weight with respect to 100 parts by weight of the total of the resin components of component (A) and component (B). More preferably, the amount is 40 to 500 parts by mass. When the amount of the organic solvent used is 25 parts by mass or more, the lack of solubility tends to be small. Moreover, by setting it as 2000 mass parts or less, reaction does not require a long time.
 上記の原料、有機溶媒、必要により反応触媒を反応釜に仕込み、必要により加熱・保温しながら0.1時間から10時間攪拌し脱水縮合反応させることにより、芳香族アゾメチンを有するアミノ変性シロキサン化合物が得られる。
 反応温度は、例えば、70~150℃が好ましく、100~130がより好ましい。また、副生成物である水を除去しながら反応することが好ましい。反応温度を70℃以上とすることにより、反応速度が遅くなりすぎない傾向にある。また、反応温度を150℃以下とすることにより、反応溶媒に高沸点の溶媒を必要とせず、プリプレグを製造する際、残溶剤が残りにくく、良好な耐熱性が得られる傾向にある。
An amino-modified siloxane compound having an aromatic azomethine is prepared by charging the above raw materials, an organic solvent, and if necessary, a reaction catalyst in a reaction kettle and stirring and dehydrating and condensing for 0.1 to 10 hours while heating and holding as necessary. can get.
The reaction temperature is, for example, preferably 70 to 150 ° C., more preferably 100 to 130. Moreover, it is preferable to react, removing the water which is a by-product. By setting the reaction temperature to 70 ° C. or higher, the reaction rate tends not to be too slow. Moreover, when the reaction temperature is set to 150 ° C. or lower, a high-boiling solvent is not required for the reaction solvent, and when the prepreg is produced, the residual solvent hardly remains and good heat resistance tends to be obtained.
 上記の反応により得られた芳香族アゾメチンを有するアミノ変性シロキサン化合物は、IR測定を行うことにより確認することができる。IR測定により、アゾメチン基(-N=CH-)に起因する1620cm-1のピークが出現することを確認し、また、一級アミノ基に起因する3440cm-1、及び3370cm-1付近のピークが存在することを確認することにより、良好に反応が進行し、所望の化合物が得られていることを確認することができる。また、重量平均分子量(Mw)は、特に限定されないが、例えば、1000~300000であること好ましく、6000~150000であることがより好ましい。重量平均分子量(Mw)が1000以上であると、良好な低硬化収縮性、及び低熱膨張性が得られる傾向にある。また、300000以下であると、良好な相溶性、及び弾性率が得られる傾向にある。なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定を行い、標準ポリスチレンを用いて作製した検量線により換算したものである。 The amino-modified siloxane compound having an aromatic azomethine obtained by the above reaction can be confirmed by performing IR measurement. The IR measurement, to confirm that the peak of 1620 cm -1 attributable to the azomethine group (-N = CH-) appears, also, at 3,440 cm -1 due to the primary amino group, and there is a peak of 3370cm around -1 By confirming that the reaction is carried out, it can be confirmed that the reaction proceeds well and the desired compound is obtained. The weight average molecular weight (Mw) is not particularly limited, but is preferably 1000 to 300000, and more preferably 6000 to 150,000, for example. When the weight average molecular weight (Mw) is 1000 or more, good low curing shrinkage and low thermal expansion tend to be obtained. Moreover, it exists in the tendency for favorable compatibility and an elasticity modulus to be obtained as it is 300,000 or less. The weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) and converted by a calibration curve produced using standard polystyrene.
 例えば、以下条件で行うことが出来る。
 測定装置としては、オートサンプラー(東ソー社製AS-8020)、カラムオーブン(日本分光工業社製860-C0)、RI検出器(日本分光工業社製830-RI)、UV/VIS検出器(日本分光工業社製870-UV)、HPLCポンプ(日本分光工業社製880-PU)を使用する。
 また、使用カラムとしては、東ソー社製 TSKgel SuperHZ2000,2300を使用し、測定条件としては、測定温度 40℃、流量 0.5ml/min、溶媒をテトラヒドロフランとすることで、測定可能である。
For example, it can be performed under the following conditions.
As a measuring device, an auto sampler (AS-8020 manufactured by Tosoh Corporation), a column oven (860-C0 manufactured by JASCO Corporation), an RI detector (830-RI manufactured by JASCO Corporation), a UV / VIS detector (Japan) Spectroscopic industry 870-UV), HPLC pump (JASCO Corporation 880-PU) is used.
In addition, TSKgel SuperHZ2000, 2300 manufactured by Tosoh Corporation is used as the column used, and measurement is possible by using a measurement temperature of 40 ° C., a flow rate of 0.5 ml / min, and a solvent of tetrahydrofuran.
(変性イミド樹脂)
 本発明の変性イミド樹脂は、既述の本発明のアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを反応させて得られるものである。
(Modified imide resin)
The modified imide resin of the present invention is obtained by reacting the aforementioned amino-modified siloxane compound of the present invention with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. .
 さらに、変性イミド樹脂は、酸性置換基を有し、該酸性置換基が下記一般式(1)に示すアミン化合物(D)の酸性置換基に由来するものであることが好ましい。当該酸性置換基はアミン化合物(D)を反応させることで導入できる。かかる酸性置換基を有することで、良好な低熱膨張性を得ることができる。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を、R2は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示し、xは1~5の整数、yは0~4の整数で、且つxとyの和は5である。)
 なお、アミン化合物(D)のさらなる詳細については後述する。また、「アミン化合物(D)の酸性置換基に由来するもの」とは、アミン化合物(D)の酸性置換基そのもの、及び、当該酸性置換基を含むものをいう。
Furthermore, the modified imide resin preferably has an acidic substituent, and the acidic substituent is derived from the acidic substituent of the amine compound (D) represented by the following general formula (1). The acidic substituent can be introduced by reacting the amine compound (D). By having such an acidic substituent, good low thermal expansibility can be obtained.
Figure JPOXMLDOC01-appb-C000006
(In formula (1), each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
Further details of the amine compound (D) will be described later. The term “derived from the acidic substituent of the amine compound (D)” refers to the acidic substituent itself of the amine compound (D) and the one containing the acidic substituent.
 変性イミド樹脂は、後述の熱硬化性樹脂組成物を製造する際の「プレ反応」において製造することができる。 The modified imide resin can be produced in a “pre-reaction” when producing a thermosetting resin composition described later.
(熱硬化性樹脂組成物)
 本発明の熱硬化性樹脂組成物は、芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを含有してなるものである。
(Thermosetting resin composition)
The thermosetting resin composition of the present invention comprises an amino-modified siloxane compound having an aromatic azomethine and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. is there.
 1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)(以下、成分(C)と呼ぶことがある)としては、例えば、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン等が挙げられる。成分(C)は、単独で用いても2種類以上を混合して用いてもよい。 Examples of maleimide compounds (C) having at least two N-substituted maleimide groups in one molecule (hereinafter sometimes referred to as component (C)) include bis (4-maleimidophenyl) methane and polyphenylmethane. Maleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebis And maleimide, m-phenylene bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, and the like. A component (C) may be used independently, or 2 or more types may be mixed and used for it.
 これらの中で、例えば、反応性が高く、より高耐熱性化できる点から、ビス(4-マレイミドフェニル)メタン、ビス(4-マレイミドフェニル)スルホン、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンが好ましく、溶剤への溶解性の点から、ビス(4-マレイミドフェニル)メタン、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンがより好ましく、安価である点からビス(4-マレイミドフェニル)メタンが特に好ましい。 Among these, bis (4-maleimidophenyl) methane, bis (4-maleimidophenyl) sulfone, 2,2-bis (4- (4- (4- Maleimidophenoxy) phenyl) propane is preferred, and bis (4-maleimidophenyl) methane and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane are more preferred and inexpensive from the viewpoint of solubility in solvents. Bis (4-maleimidophenyl) methane is particularly preferred from a certain point.
 本発明の熱硬化性樹脂組成物において、芳香族アゾメチンを有するアミノ変性シロキサン化合物の使用量は、例えば、樹脂成分の総和100質量部当たり、1~30質量部とすることが好ましく、5~20質量部とすることが、銅箔接着性、耐薬品性の点からより好ましい。
 成分(C)の使用量は、例えば、樹脂成分の総和100質量部当たり、30~99質量部とすることが好ましく、40~95質量部とすることが、低熱膨張性、高弾性率の点からより好ましい
In the thermosetting resin composition of the present invention, the amount of the amino-modified siloxane compound having an aromatic azomethine is preferably, for example, 1 to 30 parts by mass per 100 parts by mass of the total resin components. It is more preferable to set it as a mass part from the point of copper foil adhesiveness and chemical resistance.
The amount of component (C) used is, for example, preferably from 30 to 99 parts by weight, and preferably from 40 to 95 parts by weight per 100 parts by weight of the sum of the resin components in terms of low thermal expansion and high elastic modulus. More preferred
 本発明の熱硬化性樹脂組成物は、芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)を含有してなるものである。また、上記化合物をプレ反応させて芳香族アゾメチンを有する変性イミド樹脂として使用することもできる。このようなプレ反応を行うことにより、分子量を制御することができ、更なる低硬化収縮性、低熱膨張性向上を行うことができる。 The thermosetting resin composition of the present invention comprises an amino-modified siloxane compound having an aromatic azomethine and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. . Moreover, it can also be used as modified imide resin which has the said compound pre-reacted and has aromatic azomethine. By performing such a pre-reaction, the molecular weight can be controlled, and further low curing shrinkage and low thermal expansion can be improved.
 このプレ反応は、有機溶媒中で加熱保温しながら芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを反応させて変性イミド樹脂を合成することが好ましい。
 有機溶媒中で芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを反応させる際の反応温度は、例えば、70~150℃であることが好ましく、100~130℃であることがより好ましい。反応時間は、例えば、0.1~10時間であることが好ましく、1~6時間であることがより好ましい。
This pre-reaction is performed by reacting an amino-modified siloxane compound having aromatic azomethine with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule while heating and keeping in an organic solvent. It is preferable to synthesize an imide resin.
The reaction temperature when reacting an amino-modified siloxane compound having an aromatic azomethine in an organic solvent with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule is, for example, 70 to 150. ° C is preferable, and 100 to 130 ° C is more preferable. The reaction time is, for example, preferably 0.1 to 10 hours, and more preferably 1 to 6 hours.
 このプレ反応において、成分(C)と芳香族アゾメチンを有するアミノ変性シロキサン化合物の使用量は、例えば、成分(C)のマレイミド基数〔成分(C)の使用量/成分(C)のマレイミド基当量〕が、芳香族アゾメチンを有するアミノ変性シロキサン化合物の一級アミノ基数〔芳香族アゾメチンを有するアミノ変性シロキサン化合物の使用量/芳香族アゾメチンを有するアミノ変性シロキサン化合物の一級アミノ基当量〕の2.0~10.0倍になる範囲であることが好ましい。2.0倍以上とすることによりゲル化及び耐熱性の低下が抑制される傾向にある。また、10.0倍以下とすることにより有機溶剤への溶解性、及び耐熱性の低下が抑制される傾向にある。 In this pre-reaction, the amount of the amino-modified siloxane compound having component (C) and aromatic azomethine is, for example, the number of maleimide groups of component (C) [the amount of component (C) used / maleimide group equivalent of component (C) ] Of the primary amino group number of amino-modified siloxane compound having aromatic azomethine [the amount of amino-modified siloxane compound having aromatic azomethine used / primary amino group equivalent of amino-modified siloxane compound having aromatic azomethine] A range that is 10.0 times larger is preferable. By setting it to 2.0 times or more, gelation and a decrease in heat resistance tend to be suppressed. Moreover, it exists in the tendency for the solubility to an organic solvent and the fall of heat resistance to be suppressed by setting it as 10.0 times or less.
 プレ反応における成分(C)の使用量は、上記のような関係を維持しつつ、例えば、アミノ変性シロキサン化合物の樹脂成分100質量部に対して50~3000質量部が好ましく、100~1500質量部がより好ましい。50質量部以上とすることにより耐熱性の低下が抑制される傾向にある。また、3000質量部以下とすることにより低熱膨張性を良好に保つことができる。 The amount of component (C) used in the pre-reaction is, for example, preferably 50 to 3000 parts by weight, and 100 to 1500 parts by weight with respect to 100 parts by weight of the resin component of the amino-modified siloxane compound while maintaining the above relationship. Is more preferable. When the amount is 50 parts by mass or more, a decrease in heat resistance tends to be suppressed. Moreover, low thermal expansibility can be kept favorable by setting it as 3000 mass parts or less.
 このプレ反応で使用される有機溶媒は、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチルエステルやγ-ブチロラクトン等のエステル系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤などが挙げられる。これらの有機溶媒は、1種又は2種以上を混合して使用できる。 Examples of the organic solvent used in this pre-reaction include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and acetic acid. Ester solvents such as ethyl ester and γ-butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, dimethyl sulfoxide And sulfur atom-containing solvents such as These organic solvents can be used alone or in combination of two or more.
 これらの有機溶媒の中で、例えば、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ-ブチロラクトンが好ましく、低毒性であることや揮発性が高く残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが特に好ましい。 Among these organic solvents, for example, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and γ-butyrolactone are preferable from the viewpoint of solubility, and cyclohexanone has low toxicity and is highly volatile and hardly remains as a residual solvent. , Propylene glycol monomethyl ether, and dimethylacetamide are particularly preferable.
 有機溶媒の使用量は、例えば、芳香族アゾメチンを有する変性シロキサン化合物、及び1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)の樹脂成分の総和100質量部に対して、25~2000質量部とすることが好ましく、40~1000質量部とすることがより好ましく、40~500質量部とすることが特に好ましい。有機溶媒の使用量を25質量部以上とすることにより、溶解性の不足が抑制される傾向にある。また、2000質量部以下とすることにより、反応に長時間を要することがない。 The amount of the organic solvent used is, for example, 100 parts by mass of the total resin component of the modified siloxane compound having aromatic azomethine and the maleimide compound (C) having at least two N-substituted maleimide groups in one molecule. 25 to 2000 parts by mass, more preferably 40 to 1000 parts by mass, and particularly preferably 40 to 500 parts by mass. When the amount of the organic solvent used is 25 parts by mass or more, insufficient solubility tends to be suppressed. In addition, when the amount is 2000 parts by mass or less, the reaction does not take a long time.
 また、このプレ反応には任意に反応触媒を使用することができる。反応触媒としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒、リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミドなどが挙げられる。これらの反応触媒は1種又は2種以上を混合して使用できる。 In addition, a reaction catalyst can be optionally used for this pre-reaction. Examples of the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, phosphorus-based catalysts such as triphenylphosphine, and alkali metal amides such as lithium amide, sodium amide, and potassium amide. Etc. These reaction catalysts can be used alone or in combination of two or more.
 また、上記プレ反応より得られた芳香族アゾメチンを有する変性イミド樹脂の使用量は、例えば、樹脂成分の総和100質量部当たり、50~100質量部とすることが好ましく、60~100質量部とすることがより好ましい。芳香族アゾメチンを有する変性イミド樹脂の配合量を50質量部以上とすることにより、良好な低熱膨張性、高弾性率が得られる。 The amount of the modified imide resin having an aromatic azomethine obtained from the pre-reaction is preferably 50 to 100 parts by mass, for example, 100 to 100 parts by mass per 100 parts by mass of the total resin components. More preferably. By setting the blending amount of the modified imide resin having aromatic azomethine to 50 parts by mass or more, good low thermal expansibility and high elastic modulus can be obtained.
 本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)を含有してなる熱硬化性樹脂組成物及び前記化合物をプレ反応させて得られる芳香族アゾメチンを有する変性イミド樹脂は、単独で良好な熱硬化反応性を有するが、必要により、硬化剤及びラジカル開始剤を併用することができる。硬化剤及びラジカル開始剤を用いることで、耐熱性や接着性、機械強度を向上させることができる。
 併用する硬化剤としては、例えば、ジシアンジアミドや、4,4’-ジアミノジフェニルメタン、4,4'-ジアミノ-3,3'-ジエチル-ジフェニルメタン、4,4’-ジアミノジフェニルスルホン、フェニレンジアミン、キシレンジアミン等の芳香族アミン類、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン等の脂肪族アミン類、メラミン、ベンゾグアナミン等のグアナミン化合物類などが挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。
A thermosetting resin composition comprising the amino-modified siloxane compound having an aromatic azomethine of the present invention and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule, and The modified imide resin having an aromatic azomethine obtained by the reaction alone has good thermosetting reactivity, but if necessary, a curing agent and a radical initiator can be used in combination. By using a curing agent and a radical initiator, heat resistance, adhesiveness, and mechanical strength can be improved.
Examples of the curing agent used in combination include dicyandiamide, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4′-diaminodiphenylsulfone, phenylenediamine, and xylenediamine. Aromatic amines such as hexamethylenediamine and 2,5-dimethylhexamethylenediamine, and guanamine compounds such as melamine and benzoguanamine. These may be used alone or in admixture of two or more.
 また、上記ラジカル開始剤としては、例えば、アシル過酸化物、ハイドロパーオキサイド、ケトン過酸化物、t-ブチル基を有する有機過酸化物、クミル基を有する過酸化物等の有機過酸化物などが使用できる。これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、例えば、良好な反応性や耐熱性の点から、芳香族アミン類が好ましい。 Examples of the radical initiator include organic peroxides such as acyl peroxides, hydroperoxides, ketone peroxides, organic peroxides having a t-butyl group, and peroxides having a cumyl group. Can be used. These may be used alone or in admixture of two or more. Among these, for example, aromatic amines are preferable from the viewpoint of good reactivity and heat resistance.
 さらに、本発明の熱硬化性樹脂組成物は、下記一般式(1)に示す酸性置換基を有するアミン化合物(D)を含有することができる
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を、R2は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示し、xは1~5の整数、yは0~4の整数で、且つxとyの和は5である。)
Furthermore, the thermosetting resin composition of the present invention can contain an amine compound (D) having an acidic substituent represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
(In formula (1), each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
 酸性置換基を有するアミン化合物(D)(以下、成分(D)と呼ぶことがある)としては、例えば、m-アミノフェノール、p-アミノフェノール、o-アミノフェノール、p-アミノ安息香酸、m-アミノ安息香酸、o-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン等が挙げられる。これらの中で、例えば、溶解性や合成の収率の点から、m-アミノフェノール、p-アミノフェノール、o-アミノフェノール、p-アミノ安息香酸、m-アミノ安息香酸、及び3,5-ジヒドロキシアニリンが好ましい。また、耐熱性の点から、m-アミノフェノール及びp-アミノフェノールがより好ましい。 Examples of the amine compound (D) having an acidic substituent (hereinafter sometimes referred to as component (D)) include m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m -Aminobenzoic acid, o-aminobenzoic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline, etc. . Among these, for example, in terms of solubility and synthesis yield, m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, and 3,5- Dihydroxyaniline is preferred. From the viewpoint of heat resistance, m-aminophenol and p-aminophenol are more preferable.
 成分(D)の使用量は、例えば、樹脂成分の総和100質量部当たり、0.5~30質量部とすることが好ましく、1~20質量部とすることが、低熱膨張性の点からより好ましい。 The amount of component (D) used is, for example, preferably from 0.5 to 30 parts by weight, and more preferably from 1 to 20 parts by weight per 100 parts by weight of the total of the resin components, from the viewpoint of low thermal expansion. preferable.
 本発明の熱硬化性樹脂組成物は、芳香族アゾメチンを有するアミノ変性シロキサン化合物、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)、酸性置換基を有するアミン化合物(D)を含有してもよい。また、前記化合物をプレ反応させて、酸性置換基と芳香族アゾメチンを有する変性イミド樹脂として使用することもできる。このようなプレ反応を行うことにより、分子量を制御することができ、更なる低硬化収縮性、低熱膨張性向上を行うことができる。 The thermosetting resin composition of the present invention comprises an amino-modified siloxane compound having an aromatic azomethine, a maleimide compound (C) having at least two N-substituted maleimide groups in a molecule, and an amine compound having an acidic substituent ( D) may be contained. Alternatively, the compound can be pre-reacted and used as a modified imide resin having an acidic substituent and an aromatic azomethine. By performing such a pre-reaction, the molecular weight can be controlled, and further low curing shrinkage and low thermal expansion can be improved.
 このプレ反応は、有機溶媒中で加熱保温しながら、芳香族アゾメチンを有するアミノ変性シロキサン化合物、成分(C)、及び成分(D)を反応させて酸性置換基を有する変性イミド樹脂を合成することが好ましい。
 有機溶媒中で芳香族アゾメチンを有するアミノ変性シロキサン化合物、成分(C)、及び成分(D)を反応させる際の反応温度は、例えば、70~150℃であることが好ましく、100~130℃であることがより好ましい。反応時間は、例えば、0.1~10時間であることが好ましく、1~6時間であることがより好ましい。
This pre-reaction involves synthesizing a modified imide resin having an acidic substituent by reacting an amino-modified siloxane compound having an aromatic azomethine, component (C), and component (D) while keeping the temperature in an organic solvent. Is preferred.
The reaction temperature at the time of reacting the amino-modified siloxane compound having aromatic azomethine, component (C), and component (D) in an organic solvent is preferably, for example, 70 to 150 ° C., and preferably 100 to 130 ° C. More preferably. The reaction time is, for example, preferably 0.1 to 10 hours, and more preferably 1 to 6 hours.
 このプレ反応において、芳香族アゾメチンを有するアミノ変性シロキサン化合物、成分(C)、及び成分(D)の使用量は、例えば、成分(C)のマレイミド基数〔成分(C)の使用量/成分(C)のマレイミド基当量〕が、芳香族アゾメチンを有するアミノ変性シロキサン化合物と成分(D)の一級アミノ基数〔芳香族アゾメチンを有するアミノ変性シロキサン化合物の使用量/芳香族アゾメチンを有するアミノ変性シロキサン化合物の一級アミノ基当量+成分(D)の使用量/成分(D)の一級アミノ基当量〕の2.0~10.0倍になる範囲であることが望ましい。2.0倍以上とすることによりゲル化及び耐熱性の低下が抑制される傾向にある。また、10.0倍以下とすることにより有機溶剤への溶解性、及び耐熱性の低下が抑制される傾向にある。 In this pre-reaction, the amount of amino-modified siloxane compound having aromatic azomethine, component (C), and component (D) is, for example, the number of maleimide groups in component (C) [the amount of component (C) used / component ( C) maleimide group equivalent] is an amino-modified siloxane compound having an aromatic azomethine and the number of primary amino groups in component (D) [amount of amino-modified siloxane compound having an aromatic azomethine / amino-modified siloxane compound having an aromatic azomethine The primary amino group equivalent + the amount of component (D) used / the primary amino group equivalent of component (D)] is desirably in a range of 2.0 to 10.0 times. By setting it to 2.0 times or more, gelation and a decrease in heat resistance tend to be suppressed. Moreover, it exists in the tendency for the solubility to an organic solvent and the fall of heat resistance to be suppressed by setting it as 10.0 times or less.
 プレ反応における成分(C)の使用量は、上記のような関係を維持しつつ、例えば、芳香族アゾメチンを有するアミノ変性シロキサン化合物の樹脂成分100質量部に対して50~3000質量部が好ましく、100~1500質量部がより好ましい。50質量部以上とすることにより耐熱性の低下が抑制される傾向にある。また、3000質量部以下とすることにより低熱膨張性を良好に保つことができる。
 また、プレ反応における成分(D)の使用量は、例えば、アミノ変性シロキサン化合物の樹脂成分100質量部に対して1~1000質量部が好ましく、5~500質量部がより好ましい。1質量部以上とすることにより耐熱性の低下が抑制される傾向にある。また、1000質量部以下とすることにより低熱膨張性を良好に保つことができる。
The amount of the component (C) used in the pre-reaction is preferably 50 to 3000 parts by weight with respect to 100 parts by weight of the resin component of the amino-modified siloxane compound having an aromatic azomethine while maintaining the above relationship, 100 to 1500 parts by mass is more preferable. When the amount is 50 parts by mass or more, a decrease in heat resistance tends to be suppressed. Moreover, low thermal expansibility can be kept favorable by setting it as 3000 mass parts or less.
The amount of component (D) used in the pre-reaction is, for example, preferably from 1 to 1000 parts by weight, more preferably from 5 to 500 parts by weight, based on 100 parts by weight of the resin component of the amino-modified siloxane compound. When the content is 1 part by mass or more, a decrease in heat resistance tends to be suppressed. Moreover, low thermal expansibility can be kept favorable by setting it as 1000 mass parts or less.
 このプレ反応で使用される有機溶媒は、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチルエステルやγ-ブチロラクトン等のエステル系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤などが挙げられる。これらの有機溶媒は、1種又は2種以上を混合して使用できる。 Examples of the organic solvent used in this pre-reaction include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and acetic acid. Ester solvents such as ethyl ester and γ-butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, dimethyl sulfoxide And sulfur atom-containing solvents such as These organic solvents can be used alone or in combination of two or more.
 これらの有機溶媒の中で、例えば、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ-ブチロラクトンが好ましく、低毒性であることや揮発性が高く残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが特に好ましい。 Among these organic solvents, for example, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and γ-butyrolactone are preferable from the viewpoint of solubility, and cyclohexanone has low toxicity and is highly volatile and hardly remains as a residual solvent. , Propylene glycol monomethyl ether, and dimethylacetamide are particularly preferable.
 有機溶媒の使用量は、例えば、芳香族アゾメチンを有するアミノ変性シロキサン化合物、成分(C)、及び成分(D)の樹脂成分の総和100質量部に対して、25~2000質量部とすることが好ましく、40~1000質量部とすることがより好ましく、40~500質量部とすることが特に好ましい。有機溶媒の使用量を25質量部以上とすることにより、溶解性の不足が抑制される傾向にある。また、2000質量部以下とすることにより、反応に長時間を要することがない。 The amount of the organic solvent used is, for example, 25 to 2000 parts by mass with respect to 100 parts by mass of the total of the amino-modified siloxane compound having aromatic azomethine, the component (C), and the resin component of component (D). The amount is preferably 40 to 1000 parts by weight, more preferably 40 to 500 parts by weight. When the amount of the organic solvent used is 25 parts by mass or more, insufficient solubility tends to be suppressed. In addition, when the amount is 2000 parts by mass or less, the reaction does not take a long time.
 また、このプレ反応には任意に反応触媒を使用することができる。反応触媒としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒、リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミドなどが挙げられる。これらは1種又は2種以上を混合して使用できる。 In addition, a reaction catalyst can be optionally used for this pre-reaction. Examples of the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, phosphorus-based catalysts such as triphenylphosphine, and alkali metal amides such as lithium amide, sodium amide, and potassium amide. Etc. These can be used alone or in combination of two or more.
 また、上記プレ反応より得られた酸性置換基と芳香族アゾメチンを有する変性イミド樹脂の使用量は、例えば、樹脂成分の総和100質量部当たり、50~100質量部とすることが好ましく、60~90質量部とすることがより好ましい。酸性置換基と芳香族アゾメチンを有する変性イミド樹脂の配合量を50質量部以上とすることにより、良好な低熱膨張性、及び高弾性率が得られる傾向にある。 The amount of the modified imide resin having an acidic substituent and an aromatic azomethine obtained by the pre-reaction is preferably 50 to 100 parts by mass, for example, per 100 parts by mass of the total resin components, and preferably 60 to More preferably, it is 90 parts by mass. When the blending amount of the modified imide resin having an acidic substituent and an aromatic azomethine is 50 parts by mass or more, good low thermal expansibility and high elastic modulus tend to be obtained.
 本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)、及び酸性置換基を有するアミン化合物(D)を含有してなる熱硬化性樹脂組成物並びに前記化合物をプレ反応させて得られる酸性置換基と芳香族アゾメチンを有する変性イミド樹脂は、単独で良好な熱硬化反応性を有するが、必要により、硬化剤及びラジカル開始剤を用いてもよい。硬化剤及びラジカル開始剤を併用することで、耐熱性や接着性、機械強度を向上させることができる。
 併用する硬化剤としては、例えば、ジシアンジアミドや、4,4’-ジアミノジフェニルメタン、4,4'-ジアミノ-3,3'-ジエチル-ジフェニルメタン、4,4’-ジアミノジフェニルスルホン、フェニレンジアミン、キシレンジアミン等の芳香族アミン類、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン等の脂肪族アミン類、メラミン、ベンゾグアナミン等のグアナミン化合物類などが挙げられる。
 また、上記ラジカル開始剤としては、例えば、アシル過酸化物、ハイドロパーオキサイド、ケトン過酸化物、t-ブチル基を有する有機過酸化物、クミル基を有する過酸化物等の有機過酸化物などが使用できる。これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、例えば、良好な反応性や耐熱性の点から、芳香族アミン類が好ましい。
An amino-modified siloxane compound having an aromatic azomethine of the present invention, comprising a maleimide compound (C) having at least two N-substituted maleimide groups in a molecule, and an amine compound (D) having an acidic substituent. A thermosetting resin composition and a modified imide resin having an aromatic substituent and an aromatic azomethine obtained by pre-reacting the above compound alone have good thermosetting reactivity, but if necessary, a curing agent and radical initiation An agent may be used. By using a curing agent and a radical initiator in combination, heat resistance, adhesiveness, and mechanical strength can be improved.
Examples of the curing agent used in combination include dicyandiamide, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4′-diaminodiphenylsulfone, phenylenediamine, and xylenediamine. Aromatic amines such as hexamethylenediamine and 2,5-dimethylhexamethylenediamine, and guanamine compounds such as melamine and benzoguanamine.
Examples of the radical initiator include organic peroxides such as acyl peroxides, hydroperoxides, ketone peroxides, organic peroxides having a t-butyl group, and peroxides having a cumyl group. Can be used. These may be used alone or in admixture of two or more. Among these, for example, aromatic amines are preferable from the viewpoint of good reactivity and heat resistance.
 さらに、本発明の熱硬化性樹脂組成物は、熱可塑性エラストマー(E)を含有すことができる。
 熱可塑性エラストマー(E)(以下、成分(E)と呼ぶことがある)としては、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマーやその誘導体等が挙げられる。これらは、ハードセグメント成分とソフトセグメント成分を含んでおり、一般に前者が耐熱性及び強度に、後者が柔軟性及び強靭性に寄与している。これらは、1種を単独で又は2種以上を混合して使用できる。
Furthermore, the thermosetting resin composition of the present invention can contain a thermoplastic elastomer (E).
Examples of the thermoplastic elastomer (E) (hereinafter sometimes referred to as the component (E)) include, for example, a styrene elastomer, an olefin elastomer, a urethane elastomer, a polyester elastomer, a polyamide elastomer, an acrylic elastomer, and a silicone elastomer. Examples thereof include elastomers and derivatives thereof. These include a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness. These can be used individually by 1 type or in mixture of 2 or more types.
 また、成分(E)としては、分子末端又は分子鎖中に反応性官能基を有するものを用いることができる。反応性官能基としては、例えば、エポキシ基、水酸基、カルボキシル基、アミノ基、アミド基、イソシアナト基、アクリル基、メタクリル基、ビニル基等が挙げられる。これら反応性官能基を分子末端又は分子鎖中に有することにより、樹脂への相溶性が向上し、本発明の熱硬化性樹脂組成物の硬化時に発生する内部応力をより効果的に低減することができる。そのため、結果として、基板の反りを顕著に低減することが可能となる。 Further, as the component (E), one having a reactive functional group at the molecular end or molecular chain can be used. Examples of the reactive functional group include an epoxy group, a hydroxyl group, a carboxyl group, an amino group, an amide group, an isocyanato group, an acryl group, a methacryl group, and a vinyl group. By having these reactive functional groups in the molecular terminal or molecular chain, compatibility with the resin is improved, and internal stress generated during curing of the thermosetting resin composition of the present invention is more effectively reduced. Can do. Therefore, as a result, it is possible to significantly reduce the warpage of the substrate.
 これらの成分(E)の中で、例えば、耐熱性、絶縁信頼性の点で、スチレン系エラストマー、オレフィン系エラストマー、ポリアミド系エラストマー、及びシリコーン系エラストマーが好ましく、誘電特性の点から、スチレン系エラストマー及びオレフィン系エラストマーが特に好ましい。 Among these components (E), for example, styrene elastomers, olefin elastomers, polyamide elastomers, and silicone elastomers are preferable from the viewpoint of heat resistance and insulation reliability, and styrene elastomers from the viewpoint of dielectric properties. And olefin-based elastomers are particularly preferred.
 また、これら成分(E)の分子末端又は分子鎖中に有する反応性官能基は、例えば、金属箔との密着性の点で、エポキシ基、水酸基、カルボキシル基、アミノ基、及びアミド基が好ましく、耐熱性、絶縁信頼性の点から、エポキシ基、水酸基、及びアミノ基が特に好ましい。 Further, the reactive functional group possessed in the molecular terminal or molecular chain of these components (E) is preferably, for example, an epoxy group, a hydroxyl group, a carboxyl group, an amino group, and an amide group in terms of adhesion to the metal foil. In view of heat resistance and insulation reliability, an epoxy group, a hydroxyl group, and an amino group are particularly preferable.
 成分(E)の使用量は、例えば、樹脂成分の総和100質量部に対して、0.1~50質量部であることが好ましく、2~30質量部であることがより好ましい。樹脂の相溶性が良く、硬化物の低硬化収縮性、低熱膨張性、優れた誘電特性を効果的に発現できる点からより好ましい。 The amount of component (E) used is, for example, preferably from 0.1 to 50 parts by weight, and more preferably from 2 to 30 parts by weight, based on 100 parts by weight of the total resin components. It is more preferable because the compatibility of the resin is good, and the cured product has low curing shrinkage, low thermal expansion, and excellent dielectric properties.
 さらに、本発明の熱硬化性樹脂組成物は、エポキシ樹脂及びシアネート樹脂から選ばれた少なくとも一種の熱硬化性樹脂(F)(以下、成分(F)と呼ぶことがある)を含有することができる。
 成分(F)のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物並びにこれらにリン化合物を導入したリン含有エポキシ樹脂などが挙げられる。これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、例えば、耐熱性、難燃性の点からビフェニルアラルキル型エポキシ樹脂及びナフタレン型エポキシ樹脂が好ましい。
Furthermore, the thermosetting resin composition of the present invention may contain at least one thermosetting resin (F) (hereinafter sometimes referred to as component (F)) selected from epoxy resins and cyanate resins. it can.
Examples of the component (F) epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, and bisphenol. F novolac type epoxy resin, stilbene type epoxy resin, triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenolphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy Resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, polyfunctional phenols and diglycidyl esters of polycyclic aromatics such as anthracene And Tel compounds and phosphorus-containing epoxy resin obtained by introducing a phosphorus compound thereof. These may be used alone or in admixture of two or more. Among these, for example, biphenyl aralkyl type epoxy resins and naphthalene type epoxy resins are preferable from the viewpoint of heat resistance and flame retardancy.
 また、成分(F)のシアネート樹脂としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂、及びこれらが一部トリアジン化したプレポリマーなどを挙げられる。これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、例えば、耐熱性、難燃性の点からノボラック型シアネート樹脂が好ましい。 Examples of the cyanate resin of component (F) include, for example, bisphenol type cyanate resins such as novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, and some of these. Examples include triazine prepolymers. These may be used alone or in admixture of two or more. Among these, for example, a novolac type cyanate resin is preferable from the viewpoint of heat resistance and flame retardancy.
 これらの成分(F)には、必要に応じて硬化剤を使用することができる。硬化剤の例としては、例えば、フェノールノボラック、クレゾールノボラック、アミノトリアジンノボラック樹脂等の多官能フェノール化合物、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等のアミン化合物、無水フタル酸、無水ピロメリット酸、無水マレイン酸、無水マレイン酸共重合体等の酸無水物などが挙げられる。これらの1種を単独で又は2種以上を混合して使用できる。 A curing agent can be used for these components (F) as necessary. Examples of the curing agent include, for example, polyfunctional phenol compounds such as phenol novolak, cresol novolak, aminotriazine novolak resin, amine compounds such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, maleic anhydride Examples thereof include acid anhydrides such as acid and maleic anhydride copolymers. These 1 type can be used individually or in mixture of 2 or more types.
 成分(F)の使用量としては、例えば、樹脂成分の総和100質量部当たり、1~50質量部とすることが好ましく、耐熱性、耐薬品性の点から、3~35質量部であることがより好ましい。 The amount of component (F) used is, for example, preferably 1 to 50 parts by mass per 100 parts by mass of the total resin components, and 3 to 35 parts by mass from the viewpoint of heat resistance and chemical resistance. Is more preferable.
 本発明の熱硬化性樹脂組成物は、無機充填材(G)を含有することができる。
 無機充填材(G)(以下、成分(G)と呼ぶことがある)としては,例えば、シリカ、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、EガラスやTガラス、Dガラス等のガラス粉や中空ガラスビーズなどが挙げられる。これらは単独で、あるいは2種類以上を混合して使用してもよい。
The thermosetting resin composition of the present invention can contain an inorganic filler (G).
Examples of the inorganic filler (G) (hereinafter sometimes referred to as component (G)) include silica, alumina, talc, mica, kaolin, aluminum hydroxide, boehmite, magnesium hydroxide, zinc borate, and stannic acid. Examples thereof include zinc, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, potassium titanate, glass powder such as E glass, T glass, and D glass, and hollow glass beads. These may be used alone or in admixture of two or more.
 成分(G)としては、例えば、誘電特性、耐熱性、低熱膨張性の点からシリカが特に好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカなどが挙げられる。乾式法シリカとしてはさらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融球状シリカ等が挙げられる。これらの中で、低熱膨張性及び樹脂に充填した際の高流動性から溶融球状シリカが好ましい。 As the component (G), for example, silica is particularly preferable in terms of dielectric properties, heat resistance, and low thermal expansion. Examples of the silica include precipitated silica produced by a wet method and having a high water content, and dry method silica produced by a dry method and containing almost no bound water. Further, examples of the dry process silica include crushed silica, fumed silica, fused spherical silica and the like depending on the production method. Among these, fused spherical silica is preferable because of its low thermal expansion and high fluidity when filled in a resin.
 成分(G)として溶融球状シリカを用いる場合、例えば、その平均粒子径は0.1~10μmであることが好ましく、0.3~8μmであることがより好ましい。該溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂に高充填した際の流動性を良好に保つことができる。また、10μm以下にすることで、粗大粒子の混入確率を減らし粗大粒子起因の不良の発生を抑えることができる。ここで,平均粒子径とは,粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。 When using fused spherical silica as the component (G), for example, the average particle size is preferably 0.1 to 10 μm, and more preferably 0.3 to 8 μm. By setting the average particle size of the fused spherical silica to 0.1 μm or more, it is possible to maintain good fluidity when the resin is highly filled. Moreover, by setting it as 10 micrometers or less, the mixing probability of a coarse particle can be reduced and generation | occurrence | production of the defect resulting from a coarse particle can be suppressed. Here, the average particle diameter is the particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle diameter is obtained with the total volume of the particles as 100%, and the laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
 成分(G)の含有量は、例えば、樹脂成分の総和100質量部に対して20~500質量部であることが好ましく、50~350質量部であることがより好ましい。成分(G)の含有量を樹脂成分の総和100質量部に対して20~500質量部にすることで、樹脂組成物の成形性と低熱膨張性を良好に保つことができる。
 また、樹脂組成物に成分(G)を配合するに際しては、例えば、成分(G)をシラン系、チタネート系等のカップリング剤、シリコーンオリゴマー等の表面処理剤で前処理、あるいはインテグラルブレンド処理してもよい。
The content of the component (G) is, for example, preferably 20 to 500 parts by mass, more preferably 50 to 350 parts by mass with respect to 100 parts by mass of the total resin components. By setting the content of component (G) to 20 to 500 parts by mass with respect to 100 parts by mass of the total of the resin components, the moldability and low thermal expansibility of the resin composition can be kept good.
In addition, when the component (G) is blended into the resin composition, for example, the component (G) is pretreated with a silane or titanate coupling agent, a surface treatment agent such as a silicone oligomer, or an integral blend treatment. May be.
 本発明の熱硬化性樹脂組成物は、硬化促進剤(H)を含有することができる。
 硬化促進剤(H)(以下、成分(H)と呼ぶことがある)としては、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、イミダゾール類及びその誘導体、ホスフィン類及びホスホニウム塩等の有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩などが挙げられる。これらの1種を単独で又は2種以上を混合して使用できる。
 これらの中で、例えば、促進効果と保存安定性の点から、ナフテン酸亜鉛、イミダゾール誘導体、ホスホニウム塩が好ましい。
The thermosetting resin composition of the present invention can contain a curing accelerator (H).
Examples of the curing accelerator (H) (hereinafter sometimes referred to as component (H)) include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and tris. Organometallic salts such as acetylacetonate cobalt (III), imidazoles and derivatives thereof, organophosphorus compounds such as phosphines and phosphonium salts, secondary amines, tertiary amines, and quaternary ammonium salts Is mentioned. These 1 type can be used individually or in mixture of 2 or more types.
Among these, for example, zinc naphthenate, imidazole derivatives, and phosphonium salts are preferable from the viewpoint of the promoting effect and the storage stability.
 成分(H)の含有量は、例えば、樹脂成分の総和100質量部に対して0.01~3.0質量部であることが好ましく、0.05~2.0質量部であることがより好ましい。成分(H)の含有量を樹脂成分の総和100質量部に対して0.01~3.0質量部にすることで、促進効果と保存安定性を良好に保つことができる。 The content of the component (H) is, for example, preferably 0.01 to 3.0 parts by mass, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the total resin components. preferable. By setting the content of the component (H) to 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the total of the resin components, the acceleration effect and the storage stability can be kept good.
 本発明では,その目的に反しない範囲内で、任意に公知の熱可塑性樹脂、有機充填材、難燃剤,紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び接着性向上剤等を使用できる。これらは、単独で用いても、2種以上を併用してもよい。 In the present invention, any known thermoplastic resin, organic filler, flame retardant, ultraviolet absorber, antioxidant, photopolymerization initiator, fluorescent whitening agent, and adhesion improver may be used without departing from the object. Etc. can be used. These may be used alone or in combination of two or more.
 熱可塑性樹脂としては、例えば、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂等が挙げられる。 Examples of the thermoplastic resin include polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, xylene resin, petroleum resin, and silicone resin.
 有機充填材としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等よりなる樹脂フィラー、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、共役ジエン系樹脂等よりなるゴム状態のコア層と、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、芳香族ビニル系樹脂、シアン化ビニル系樹脂等よりなるガラス状態のシェル層を持つコアシェル構造の樹脂フィラーなどが挙げられる。 Examples of the organic filler include a resin filler made of polyethylene, polypropylene, polystyrene, polyphenylene ether resin, silicone resin, tetrafluoroethylene resin, acrylate ester resin, methacrylate ester resin, conjugated diene resin, and the like. Examples thereof include a resin filler having a core-shell structure having a rubbery core layer and a glassy shell layer made of an acrylic ester resin, a methacrylic ester resin, an aromatic vinyl resin, a vinyl cyanide resin, or the like.
 難燃剤としては、例えば、臭素や塩素を含有する含ハロゲン系難燃剤、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、赤リン等のリン系難燃剤、スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤、シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤、三酸化アンチモン等の無機系難燃剤などが挙げられる。 Examples of the flame retardant include halogen-containing flame retardants containing bromine and chlorine, triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphoric ester compounds, phosphorous flame retardants such as red phosphorus, sulfamic acid Nitrogen flame retardants such as guanidine, melamine sulfate, melamine polyphosphate and melamine cyanurate, phosphazene flame retardants such as cyclophosphazene and polyphosphazene, and inorganic flame retardants such as antimony trioxide.
 その他、紫外線吸収剤の例としてはベンゾトリアゾール系紫外線吸収剤、酸化防止剤の例としてはヒンダードフェノール系やヒンダードアミン系酸化防止剤、光重合開始剤の例としてはベンゾフェノン類、ベンジルケタール類、チオキサントン系の光重合開始剤、蛍光増白剤の例としてはスチルベン誘導体の蛍光増白剤、接着性向上剤の例としては尿素シラン等の尿素化合物やシラン系、チタネート系、アルミネート系等のカップリング剤などが挙げられる。 In addition, examples of UV absorbers include benzotriazole UV absorbers, examples of antioxidants include hindered phenols and hindered amines, and examples of photopolymerization initiators include benzophenones, benzyl ketals, and thioxanthone. Examples of photopolymerization initiators and fluorescent brighteners include stilbene derivative fluorescent brighteners, and adhesion improvers such as urea compounds such as urea silane and silane, titanate and aluminate cups. A ring agent etc. are mentioned.
 本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物を含有する熱硬化性樹脂組成物は、プリプレグに用いられるため、最終的には、各成分が有機溶媒中に溶解もしくは分散されたワニスの状態とすることが好ましい。 Since the thermosetting resin composition containing the amino-modified siloxane compound having an aromatic azomethine of the present invention is used in a prepreg, finally, the varnish state in which each component is dissolved or dispersed in an organic solvent and It is preferable to do.
 この際用いる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒、ジメチルスルホキシド等の硫黄原子含有溶媒などが挙げられる。これらは1種を単独で又は2種以上を混合して使用できる。
 これらの中で、例えば、溶解性の点からメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルセロソルブ、プロピレングリコールモノメチルエーテルが好ましく、低毒性である点からメチルイソブチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルがより好ましい。
Examples of the organic solvent used here include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and butyl acetate. Ester solvents such as propylene glycol monomethyl ether acetate, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, dimethyl sulfoxide And a sulfur atom-containing solvent. These can be used individually by 1 type or in mixture of 2 or more types.
Among these, for example, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, and propylene glycol monomethyl ether are preferable from the viewpoint of solubility, and methyl isobutyl ketone, cyclohexanone, and propylene glycol monomethyl ether are more preferable from the viewpoint of low toxicity.
 最終的に得られるワニス中の熱硬化性樹脂組成物は、例えば、ワニス全体の40~90質量%であることが好ましく、50~80質量%であることがより好ましい。ワニス中の熱硬化性樹脂組成物の含有量を40~90質量%にすることで、塗工性を良好に保ち、適切な樹脂組成物付着量のプリプレグを得ることができる。 The final thermosetting resin composition in the varnish is, for example, preferably 40 to 90% by mass, more preferably 50 to 80% by mass of the entire varnish. By setting the content of the thermosetting resin composition in the varnish to 40 to 90% by mass, it is possible to obtain a prepreg having an appropriate resin composition adhesion amount while maintaining good coating properties.
 ここで、本明細書において「樹脂成分」とは、アミノ変性シロキサン化合物、変性イミド樹脂(既述の一般式(1)に示すアミン化合物(D)の酸性置換基に由来する酸性置換基を有する変性イミド樹脂を含む)、マレイミド化合物(C)、酸性置換基を有するアミン化合物(D)、熱可塑性エラストマー(E)、熱硬化性樹脂(F)、及びこれらの反応生成物をいう。また、「熱硬化性樹脂組成物」とは、上記樹脂成分に、無機充填材及び硬化促進剤等を含むものをいう。 Here, in this specification, “resin component” means an amino-modified siloxane compound, a modified imide resin (having an acidic substituent derived from the acidic substituent of the amine compound (D) represented by the general formula (1) described above). Modified imide resin), maleimide compound (C), amine compound (D) having an acidic substituent, thermoplastic elastomer (E), thermosetting resin (F), and reaction products thereof. The “thermosetting resin composition” refers to a resin component containing an inorganic filler and a curing accelerator.
(プリプレグ)
 本発明のプリプレグは、前記した本発明の熱硬化性樹脂組成物を、基材に含浸してなるものである。。以下、本発明のプリプレグについて詳述する。
 本発明のプリプレグは、本発明の熱硬化性樹脂組成物を、基材に含浸し、加熱等により半硬化(Bステージ化)して製造することができる。本発明の熱硬化性樹脂組成物を基材に含浸させる方法として特に限定されないが、例えば、基材を樹脂ワニスに浸漬する方法、各種コーターにより塗布する方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。
 本発明の基材としては、例えば、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物などが挙げられる。他の用途では、例えば、繊維強化基材であれば、炭素繊維等を用いることも可能である。
(Prepreg)
The prepreg of the present invention is obtained by impregnating a base material with the above-described thermosetting resin composition of the present invention. . Hereinafter, the prepreg of the present invention will be described in detail.
The prepreg of the present invention can be produced by impregnating the thermosetting resin composition of the present invention into a substrate and semi-curing (B-stage) by heating or the like. Although it does not specifically limit as a method to make a base material impregnate the thermosetting resin composition of this invention, For example, the method of immersing a base material in a resin varnish, the method of apply | coating with various coaters, the method of spraying, etc. are mentioned. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to a base material can be improved.
As a base material of this invention, the well-known thing used for the laminated board for various electrical insulation materials can be used, for example. Examples of the material include inorganic fibers such as E glass, D glass, S glass and Q glass, organic fibers such as polyimide, polyester and tetrafluoroethylene, and mixtures thereof. In other applications, for example, carbon fiber or the like can be used in the case of a fiber reinforced base material.
 これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマットの形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。基材の厚さは、例えば、約0.03~0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。 These base materials have, for example, the shapes of woven fabric, non-woven fabric, robink, chopped strand mat and surfacing mat, and the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, can be used alone. Alternatively, two or more kinds of materials and shapes can be combined. The thickness of the base material can be, for example, about 0.03 to 0.5 mm, and the surface treated with a silane coupling agent or the like or mechanically subjected to a fiber opening treatment has heat resistance and It is suitable in terms of moisture resistance and processability.
 本発明のプリプレグは、例えば、該基材に対する熱硬化性樹脂組成物の付着量が,乾燥後のプリプレグの熱硬化性樹脂組成物の含有率で、20~90質量%となるように、基材に含浸又は塗工した後、通常、100~200℃の温度で1~30分加熱乾燥し、半硬化(Bステージ化)させて得ることができる。 The prepreg of the present invention has, for example, a base so that the amount of the thermosetting resin composition attached to the substrate is 20 to 90% by mass in terms of the content of the thermosetting resin composition of the prepreg after drying. After impregnating or coating the material, it can usually be obtained by drying by heating at a temperature of 100 to 200 ° C. for 1 to 30 minutes and semi-curing (B-stage).
(樹脂付フィルム)
 本発明の樹脂付フィルムは、本発明の熱硬化性樹脂組成物を支持体上に層形成してなるものである。本発明で得られる熱硬化性樹脂組成物を支持体上に層形成する方法として特に限定されないが、例えば、本発明で得られる熱硬化性樹脂組成物をワニスの状態にし、各種コーターを用いて支持体に塗布し、更に加熱、あるいは熱風吹きつけ等により乾燥させて樹脂組成物層を形成させることができる。このように加熱等により半硬化(Bステージ化)して本発明の樹脂付フィルムを製造することができる。この半硬化状態は、樹脂付きフィルムと回路基板を積層し、硬化する際に、樹脂付きフィルムの樹脂組成物層と回路基板との接着力が確保される状態で、また、回路基板への埋めこみ性(流動性)が確保される状態であることが好ましい。
本発明の熱硬化性樹脂組成物を支持体上に塗布する際に用いるコーターは、特に限定されるものではないが、例えば、ダイコーター、コンマコーター、バーコーター、キスコーター、ロールコーター等が利用できる。これらは、樹脂組成物層の厚みによって適宜選択できる。また、乾燥方法としては、加熱、あるいは熱風吹きつけ等を用いることができる。
(Film with resin)
The film with a resin of the present invention is obtained by forming a layer of the thermosetting resin composition of the present invention on a support. Although it does not specifically limit as a method of carrying out layer formation of the thermosetting resin composition obtained by this invention on a support body, For example, the thermosetting resin composition obtained by this invention is made into a varnish state, and various coaters are used. The resin composition layer can be formed by applying to a support and further drying by heating or blowing hot air. Thus, the resin-coated film of the present invention can be produced by being semi-cured (B-staged) by heating or the like. This semi-cured state is a state in which the adhesive force between the resin composition layer of the resin-coated film and the circuit board is secured when the film with resin and the circuit board are laminated and cured, and embedded in the circuit board. It is preferable that the property (fluidity) is ensured.
The coater used when the thermosetting resin composition of the present invention is applied on a support is not particularly limited, and for example, a die coater, a comma coater, a bar coater, a kiss coater, a roll coater, etc. can be used. . These can be appropriately selected depending on the thickness of the resin composition layer. As a drying method, heating, hot air blowing, or the like can be used.
 熱硬化性樹脂組成物を支持体に塗布した後の乾燥条件は、例えば、該樹脂組成物層への有機溶媒の含有量が通常の10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶媒量は、有機溶媒の沸点によっても異なるが、例えば30~60質量%の有機溶媒を含むワニスを50~150℃で3~10分程度乾燥させることにより、樹脂組成物層が形成される。乾燥条件は、予め簡単な実験により適宜、好適な乾燥条件を設定することが好ましい。 The drying conditions after applying the thermosetting resin composition to the support are, for example, such that the content of the organic solvent in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. dry. The amount of the organic solvent in the varnish varies depending on the boiling point of the organic solvent. For example, the resin composition layer can be obtained by drying a varnish containing 30 to 60% by mass of the organic solvent at 50 to 150 ° C. for about 3 to 10 minutes. It is formed. It is preferable to set suitable drying conditions as appropriate by simple experiments in advance.
 支持体上に形成される樹脂組成物層の厚さは、通常、回路基板が有する導体層の厚さ以上とする。導体層の厚さは、例えば、5~70μmであることが好ましく、多層プリント配線板の軽薄短小化のために、5~50μmであることがより好ましく、5~30μmであることがより好ましい。 The thickness of the resin composition layer formed on the support is usually not less than the thickness of the conductor layer of the circuit board. The thickness of the conductor layer is preferably, for example, 5 to 70 μm, more preferably 5 to 50 μm, and even more preferably 5 to 30 μm in order to reduce the thickness of the multilayer printed wiring board.
 樹脂付フィルムにおける支持体は、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどからなるフィルム、更には離型紙や銅箔、アルミニウム箔等の金属箔などが挙げられる。なお、支持体及び後述する保護フィルムには、マット処理、コロナ処理の他、離型処理等を施してもよい。 The support in the film with resin is made of, for example, polyolefin such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and the like. Examples of the film include metal foil such as release paper, copper foil, and aluminum foil. Note that the support and the protective film described later may be subjected to a release treatment in addition to the mat treatment and the corona treatment.
 支持体の厚さは、例えば、10~150μmが好ましく、より好ましくは25~50μmである。樹脂組成物層の支持体が設けられていない面には、保護フィルムをさらに積層することができる。保護フィルムは、支持体の材質と同じでも、異なっていてもよい。保護フィルムの厚さは、例えば1~40μmである。保護フィルムを積層することにより、異物混入を防止することができ、樹脂付フィルムをロール状に巻き取って保管することもできる。 The thickness of the support is, for example, preferably 10 to 150 μm, more preferably 25 to 50 μm. A protective film can be further laminated on the surface of the resin composition layer on which the support is not provided. The protective film may be the same as or different from the material of the support. The thickness of the protective film is, for example, 1 to 40 μm. By laminating the protective film, foreign matter can be prevented from being mixed, and the resin-coated film can be wound into a roll and stored.
(積層板)
 本発明の積層板は、前述の樹脂付フィルムを積層成形して得られるものである。例えば、樹脂付フィルムを、真空ラミネーターを用いて、回路基板、プリプレグ及び基材等の片面又は両面にラミネートし、必要に応じ、加熱により硬化することで製造することができる。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面に回路パターンが形成されたものをいう。また導体層と絶縁層とを交互に複数積層してなるプリント配線板において、該プリント配線板の最外層の片面又は両面に回路パターンが形成されたものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理等により予め粗化処理が施されていてもよい。
(Laminated board)
The laminated board of the present invention is obtained by laminating the above-mentioned resin-coated film. For example, it can be manufactured by laminating a film with resin on one side or both sides of a circuit board, a prepreg, a base material and the like using a vacuum laminator and curing by heating as necessary. Examples of the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like. In addition, a circuit board means here that the circuit pattern was formed in the one or both surfaces of the above boards. In addition, a printed wiring board in which a plurality of conductor layers and insulating layers are alternately laminated and having a circuit pattern formed on one side or both sides of the outermost layer of the printed wiring board is also included in the circuit board here. The surface of the conductor layer may be subjected to a roughening process in advance by a blackening process or the like.
 上記のようにラミネートする際に、樹脂付フィルムが保護フィルムを有している場合には、該保護フィルムを除去した後、必要に応じて樹脂付フィルム及び回路基板をプレヒートし、樹脂付フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の樹脂付フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネート条件は、例えば、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは0.1~1.1MPaとし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのことが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。 When laminating as described above, if the film with resin has a protective film, after removing the protective film, preheat the film with resin and the circuit board as necessary, Crimp to circuit board while pressing and heating. In the film with resin of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used. Lamination conditions are, for example, that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 0.1 to 1.1 MPa, and the lamination is performed under a reduced pressure of air pressure 20 mmHg (26.7 hPa) or less. Is preferred. The laminating method may be a batch method or a continuous method using a roll.
 樹脂付フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は、支持体を剥離した後に、前記樹脂組成物層を熱硬化する(以下、熱硬化後の樹脂組成物層を絶縁層と呼ぶことがある)。熱硬化の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分~180分、より好ましくは160℃~200℃で30~120分の範囲で選択される。また、樹脂組成物層を熱硬化した後に、支持体を剥離してもよい。 After laminating the resin-coated film on the circuit board, after cooling to around room temperature and then peeling the support, the resin composition layer is heat-cured after peeling the support (hereinafter, after heat-curing) The resin composition layer may be referred to as an insulating layer). The thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 to 220 ° C. for 20 to 180 minutes, more preferably 160 to 200 ° C. It is selected in the range of 30 to 120 minutes at ° C. Moreover, you may peel a support body, after thermosetting a resin composition layer.
 次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。 Next, if necessary, holes are made in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
 次いで、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、例えば、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、まず、硬化した絶縁樹脂組成物層の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理し、凸凹のアンカーを形成する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解メッキと電解メッキとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、公知のサブトラクティブ法、セミアディティブ法等を用いることができる。 Next, a conductor layer is formed on the insulating layer by dry plating or wet plating. As the dry plating, for example, a known method such as vapor deposition, sputtering, or ion plating can be used. In the case of wet plating, first, the surface of the cured insulating resin composition layer is permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid. Roughening treatment is performed with an oxidizing agent such as to form an uneven anchor. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a known subtractive method or semi-additive method can be used.
 本発明の積層板は、前述の本発明のプリプレグを積層成形して得られるものである。本発明のプリプレグを、例えば、1~20枚重ね、その片面又は両面に銅、アルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。
 積層板を積層成形する際の成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、積層板を製造することもできる。
The laminate of the present invention is obtained by laminating the above-described prepreg of the present invention. The prepreg of the present invention can be produced, for example, by laminating 1 to 20 sheets and laminating with a structure in which a metal foil such as copper or aluminum is disposed on one or both sides.
The molding conditions for laminating the laminate can be, for example, the method of a laminate for an electrical insulating material and a multilayer plate, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. Molding can be performed in a range of up to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a laminated board.
(多層プリント配線板)
 本発明の多層プリント配線板は、前記積層板を用いて製造される。例えば、本発明の積層板の導体層を通常のエッチング法によって配線加工し回路基板を得ることが出来る。そして、前述のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化する。その後、ドリル加工、レーザー加工等によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。
(Multilayer printed wiring board)
The multilayer printed wiring board of this invention is manufactured using the said laminated board. For example, the circuit board can be obtained by wiring processing the conductor layer of the laminate of the present invention by an ordinary etching method. Then, a plurality of laminated boards processed by wiring through the above-described prepreg are laminated and subjected to hot press processing to be multi-layered at once. Thereafter, a multilayer printed wiring board can be manufactured through formation of through holes or blind via holes by drilling, laser processing, etc., and formation of interlayer wiring by plating or conductive paste.
(半導体パッケージ)
 本発明の半導体パッケージは、前記多層プリント配線板に半導体素子を搭載してなるものである。本発明の半導体パッケージは、前記プリント配線板の所定の位置に半導体チップやメモリ等の半導体素子を搭載し製造される。
(Semiconductor package)
The semiconductor package of the present invention is obtained by mounting a semiconductor element on the multilayer printed wiring board. The semiconductor package of the present invention is manufactured by mounting a semiconductor element such as a semiconductor chip or a memory at a predetermined position of the printed wiring board.
 次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
 なお、各実施例及び比較例で得られた樹脂板を用いて硬化収縮率について以下の方法で測定し、評価した。さらに、銅張積層板を用いて、ガラス転移温度、熱膨張率、銅箔接着性、銅付きはんだ耐熱性、曲げ弾性率、及び誘電特性について以下の方法で測定し、評価した。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
In addition, it measured by the following method about the shrinkage | contraction rate using the resin board obtained by each Example and the comparative example, and evaluated. Furthermore, using a copper-clad laminate, the glass transition temperature, the coefficient of thermal expansion, the copper foil adhesion, the solder heat resistance with copper, the bending elastic modulus, and the dielectric properties were measured and evaluated by the following methods.
(1)樹脂板の硬化収縮率の測定
 5mm角の樹脂板(厚さ1mm)を作製し、TMA試験装置(TAインスツルメント社製、Q400)を用いて圧縮法で熱機械分析を行った。樹脂板を前記装置にZ方向に装着後、荷重5g、昇温速度45℃/分とし、20℃(5分保持)~260℃(2分保持)~20℃(5分保持)の温度プロファイルにて測定した。樹脂板の初期寸法と昇温開始前の20℃及び昇温後の20℃での寸法変化量から樹脂板の硬化収縮率を評価した。
 具体的には、以下の式を用いて、樹脂板の硬化収縮率を算出した。
硬化収縮率(%)=[(昇温開始前20℃の寸法(mm)-昇温後20℃の寸法(mm))/昇温開始前20℃の寸法(mm)]×100
(1) Measurement of cure shrinkage rate of resin plate A 5 mm square resin plate (thickness 1 mm) was prepared, and thermomechanical analysis was performed by a compression method using a TMA test apparatus (TA Instruments, Q400). . After mounting the resin plate in the Z direction on the device, the temperature profile is 20 ° C (5 minutes hold) to 260 ° C (2 minutes hold) to 20 ° C (5 minutes hold) with a load of 5 g and a heating rate of 45 ° C / min. Measured with The cure shrinkage rate of the resin plate was evaluated from the initial dimension of the resin plate and the dimensional change at 20 ° C. before starting the temperature increase and 20 ° C. after the temperature increase.
Specifically, the curing shrinkage rate of the resin plate was calculated using the following formula.
Curing shrinkage (%) = [(dimension at 20 ° C. before starting temperature rise (mm) −dimension at 20 ° C. after temperature rise (mm)) / dimension at 20 ° C. before temperature rise (mm)] × 100
(2)ガラス転移温度(Tg)の測定
 銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(TAインスツルメント社製、Q400)を用いて圧縮法で熱機械分析をおこなった。評価基板を前記装置にZ方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における熱膨張曲線の異なる接線の交点で示されるTgを求め、耐熱性を評価した。
(2) Measurement of glass transition temperature (Tg) A 5-mm square evaluation board from which copper foil was removed by immersing a copper-clad laminate in a copper etching solution was prepared, and a TMA test apparatus (TA Instruments, Q400) was prepared. ) Was used for thermomechanical analysis by the compression method. After mounting the evaluation substrate on the apparatus in the Z direction, the measurement substrate was measured twice continuously under the measurement conditions of a load of 5 g and a heating rate of 10 ° C./min. The Tg indicated by the intersection of tangents with different thermal expansion curves in the second measurement was determined, and the heat resistance was evaluated.
(3)熱膨張率の測定
 銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(TAインスツルメント社製、Q400)を用いて圧縮法で熱機械分析をおこなった。評価基板を前記装置にX方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における30℃から100℃までの平均熱膨張率を算出し、これを熱膨張率の値とした。
(3) Measurement of coefficient of thermal expansion A 5-mm square evaluation board from which copper foil was removed by immersing a copper clad laminate in a copper etching solution was prepared, and a TMA test apparatus (TA Instruments, Q400) was used. The thermomechanical analysis was performed by the compression method. After mounting the evaluation substrate on the apparatus in the X direction, the measurement substrate was measured twice continuously under the measurement conditions of a load of 5 g and a heating rate of 10 ° C./min. The average coefficient of thermal expansion from 30 ° C. to 100 ° C. in the second measurement was calculated and used as the value of the coefficient of thermal expansion.
(4)銅箔接着性(銅箔ピール強度)の評価
 銅張積層板を銅エッチング液に浸漬することにより3mm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔の接着性(ピール強度)を測定した。
(4) Evaluation of copper foil adhesion (copper foil peel strength) A copper-clad laminate is immersed in a copper etching solution to form a copper foil having a width of 3 mm to produce an evaluation substrate, and copper is tested using a tensile tester. The adhesion (peel strength) of the foil was measured.
(5)銅付きはんだ耐熱性の評価
 銅張積層板から25mm角の評価基板を作製し、温度288℃のはんだ浴に、120分間評価基板をフロートし、外観を観察することにより銅付きはんだ耐熱性を評価した。
(5) Evaluation of solder heat resistance with copper Solder heat resistance with copper by preparing a 25 mm square evaluation board from a copper clad laminate, floating the evaluation board in a solder bath at a temperature of 288 ° C. for 120 minutes, and observing the appearance Sex was evaluated.
(6)曲げ弾性率
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた25mm×50mmの評価基板を作製し、オリエンテック社製5トンテンシロンを用い、クロスヘッド速度1mm/min、スパン間距離20mmで測定した。
(6) A bending elastic modulus copper-clad laminate was immersed in a copper etching solution to prepare a 25 mm × 50 mm evaluation board from which the copper foil was removed, and a 5-ton tensilon manufactured by Orientec Co., Ltd. was used, and the crosshead speed was 1 mm / min. Measured at a span distance of 20 mm.
(7)誘電特性(比誘電率及び誘電正接)
 銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた100mm×2mmの評価基板を作製し、空洞共振機装置(株式会社関東電子応用開発製)を用いて、周波数1GHzでの比誘電率及び誘電正接を測定した。
(7) Dielectric properties (dielectric constant and dielectric loss tangent)
A 100 mm × 2 mm evaluation board from which copper foil was removed by immersing a copper clad laminate in a copper etching solution was used, and a cavity resonator device (manufactured by Kanto Electronics Application Development Co., Ltd.) was used to obtain a ratio at a frequency of 1 GHz. The dielectric constant and dielectric loss tangent were measured.
製造実施例1:芳香族アゾメチンを有するアミノ変性シロキサン化合物(I-1)の製造
 温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン:12.9g、テレフタルアルデヒド:17.1g、プロピレングリコールモノメチルエーテル:45.0gを入れ、115℃で4時間反応した後、130℃まで昇温して常圧濃縮により脱水し、1分子中に少なくとも1個のアルデヒド基を有する芳香族アゾメチン化合物含有溶液(樹脂成分:60質量%)を得た。
 次に、上記反応溶液に、分子末端に少なくとも2個の一級アミノ基を有するシロキサン化合物X-22-161B〔信越化学工業株式会社製、商品名〕:325.5g、プロピレングリコールモノメチルエーテル:513.3gを入れ、115℃で4時間反応した後、130℃まで昇温して常圧濃縮により脱水し、分子構造中に芳香族アゾメチンを有する変性シロキサン化合物(I-1)含有溶液(Mw:30000、樹脂成分:90質量%)を得た。
Production Example 1: Production of amino-modified siloxane compound (I-1) having aromatic azomethine In a reaction vessel having a volume of 2 liters capable of being heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. 3,3′-diethyl-4,4′-diaminodiphenylmethane: 12.9 g, terephthalaldehyde: 17.1 g, propylene glycol monomethyl ether: 45.0 g were added, reacted at 115 ° C. for 4 hours, and then raised to 130 ° C. The mixture was dehydrated by warming and concentration under atmospheric pressure to obtain an aromatic azomethine compound-containing solution having at least one aldehyde group in one molecule (resin component: 60% by mass).
Next, in the reaction solution, siloxane compound X-22-161B (manufactured by Shin-Etsu Chemical Co., Ltd., trade name) having at least two primary amino groups at the molecular terminals: 325.5 g, propylene glycol monomethyl ether: 513. 3 g was added, reacted at 115 ° C. for 4 hours, then heated to 130 ° C. and dehydrated by atmospheric concentration, and a modified siloxane compound (I-1) -containing solution having an aromatic azomethine in the molecular structure (Mw: 30000) , Resin component: 90% by mass).
製造実施例2:芳香族アゾメチンを有するアミノ変性シロキサン化合物(I-2)の製造
 温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、2,5-ジメチル-1,4-ジアミノベンゼン:8.7g、テレフタルアルデヒド:21.3g、プロピレングリコールモノメチルエーテル:45.0gを入れ、115℃で4時間反応した後、130℃まで昇温して常圧濃縮により脱水し、芳香族アゾメチン化合物含有溶液(樹脂成分:60質量%)を得た。
 次に、上記反応溶液に、X-22-161B〔信越化学工業株式会社製、商品名〕:413.8g、プロピレングリコールモノメチルエーテル:645.7gを入れ、115℃で4時間反応した後、130℃まで昇温して常圧濃縮により脱水し、芳香族アゾメチンを有する変性シロキサン化合物(I-2)含有溶液(Mw:25000、樹脂成分:90質量%)を得た。
Production Example 2: Production of amino-modified siloxane compound (I-2) having aromatic azomethine In a reaction vessel having a volume of 2 liters capable of being heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. 2,8.7-dimethyl-1,4-diaminobenzene: 8.7 g, terephthalaldehyde: 21.3 g, propylene glycol monomethyl ether: 45.0 g were added, reacted at 115 ° C. for 4 hours, then heated to 130 ° C. The solution was dehydrated by normal pressure concentration to obtain an aromatic azomethine compound-containing solution (resin component: 60% by mass).
Next, X-22-161B (manufactured by Shin-Etsu Chemical Co., Ltd., trade name): 413.8 g and propylene glycol monomethyl ether: 645.7 g were added to the reaction solution, reacted at 115 ° C. for 4 hours, The mixture was heated up to 0 ° C. and dehydrated by atmospheric concentration to obtain a modified siloxane compound (I-2) -containing solution (Mw: 25000, resin component: 90% by mass) having an aromatic azomethine.
製造実施例3:芳香族アゾメチンを有する変性イミド樹脂(J-1)の製造
 温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、芳香族アゾメチンを有する変性シロキサン化合物(I-1)含有溶液(樹脂成分:90質量%):62.4g、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン:243.9g、プロピレングリコールモノメチルエーテル:443.8gを入れ、115℃で4時間反応した後、130℃まで昇温して常圧濃縮し、芳香族アゾメチンを有する変性イミド樹脂(J-1)含有溶液(Mw:8000、樹脂成分:60質量%)を得た。
Production Example 3 Production of Modified Imide Resin (J-1) Having Aromatic Azomethine Into a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, Modified siloxane compound (I-1) -containing solution having a group azomethine (resin component: 90% by mass): 62.4 g, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane: 243.9 g, propylene 443.8 g of glycol monomethyl ether was added, reacted at 115 ° C. for 4 hours, heated to 130 ° C. and concentrated at normal pressure, and a modified imide resin (J-1) -containing solution having aromatic azomethine (Mw: 8000) , Resin component: 60% by mass).
製造実施例4:酸性置換基と芳香族アゾメチンを有する変性イミド樹脂(K-1)の製造
 温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、芳香族アゾメチンを有する変性シロキサン化合物(I-1)含有溶液(樹脂成分:90質量%):62.5g、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン:238.1g、p-アミノフェノール:5.7g、プロピレングリコールモノメチルエーテル:443.8gを入れ、115℃で4時間反応した後、130℃まで昇温して常圧濃縮し、酸性置換基と芳香族アゾメチンを有する変性イミド樹脂(K-1)含有溶液(Mw:6500、樹脂成分:60質量%)を得た。
Production Example 4 Production of Modified Imide Resin (K-1) Having Acid Substituent and Aromatic Azomethine Reaction of 2 liters in volume capable of heating and cooling with thermometer, stirrer, moisture meter with reflux condenser In a container, a modified siloxane compound (I-1) -containing solution having an aromatic azomethine (resin component: 90% by mass): 62.5 g, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane: 238 0.1 g, p-aminophenol: 5.7 g, propylene glycol monomethyl ether: 443.8 g, reacted at 115 ° C. for 4 hours, heated to 130 ° C. and concentrated at normal pressure, acid substituent and aromatic A modified imide resin (K-1) -containing solution having azomethine (Mw: 6500, resin component: 60% by mass) was obtained.
実施例1~18及び比較例1~6
 製造実施例1、2で得られた芳香族アゾメチンを有するアミノ変性シロキサン化合物含有溶液(I-1、I-2)、製造実施例3で得られた芳香族アゾメチンを有する変性イミド樹脂含有溶液(J-1)及び製造実施例4で得られた酸性置換基と芳香族アゾメチンを有する変性イミド樹脂含有溶液(K-1)と、以下に示す芳香族アミン化合物(i)、芳香族アルデヒド化合物(ii)、シロキサン化合物(B)、マレイミド化合物(C)、酸性置換基を有するアミン化合物(D)、熱可塑性エラストマー(E)、熱硬化性樹脂(F)、無機充填材(G)、硬化促進剤(H)、及び希釈溶剤にメチルエチルケトンを使用して、第1表~第4表に示した配合割合(質量部)で混合して樹脂分65質量%のワニスを得た。
 次に、上記ワニスを、16μmのポリエチレンテレフタレート製フィルムに、乾燥後の樹脂厚が35μmとなるようにフィルムアプリケーター(テスター産業株式会社製、PI-1210)を用いて塗布し、160℃で10分加熱乾燥し、半硬化物の樹脂粉を得た。支持体としては、特に制限はなく、汎用のものを使用することができ、また、塗布の方法としても特に制限はなく、通常の卓上塗工機を用いて塗布すればよい。
 この樹脂粉をテフロン(登録商標)シートの型枠に投入し、12μmの電解銅箔の光沢面を上下に配置し、圧力2.0MPa、温度240℃で60分間プレスを行った後、電解銅箔を除去して樹脂板を得た。
 また,上記ワニスを厚さ0.1mmのEガラスクロスに含浸塗工し,160℃で10分加熱乾燥して熱硬化性樹脂組成物含有量48質量%のプリプレグを得た。
 このプリプレグを4枚重ね,12μmの電解銅箔を上下に配置し,圧力3.0MPa、温度240℃で60分間プレスを行って,銅張積層板を得た。
 得られた樹脂板及び銅張積層板の測定・評価結果を第1表~第4表に示す。
Examples 1 to 18 and Comparative Examples 1 to 6
Amino-modified siloxane compound-containing solution (I-1, I-2) having an aromatic azomethine obtained in Production Examples 1 and 2 and a modified imide resin-containing solution having an aromatic azomethine obtained in Production Example 3 ( J-1) and a modified imide resin-containing solution (K-1) having an acidic substituent and an aromatic azomethine obtained in Production Example 4, an aromatic amine compound (i) and an aromatic aldehyde compound ( ii), siloxane compound (B), maleimide compound (C), amine compound (D) having an acidic substituent, thermoplastic elastomer (E), thermosetting resin (F), inorganic filler (G), curing acceleration Using agent (H) and methyl ethyl ketone as a diluent solvent, mixing was carried out at the blending ratio (parts by mass) shown in Tables 1 to 4 to obtain a varnish having a resin content of 65% by mass.
Next, the varnish was applied to a 16 μm polyethylene terephthalate film with a film applicator (PI-1210, manufactured by Tester Sangyo Co., Ltd.) so that the resin thickness after drying was 35 μm, and then at 160 ° C. for 10 minutes. Heat drying was performed to obtain a semi-cured resin powder. There is no restriction | limiting in particular as a support body, A general purpose thing can be used, Moreover, there is no restriction | limiting in particular also as the application | coating method, What is necessary is just to apply | coat using a normal desktop coating machine.
This resin powder was put into a mold of a Teflon (registered trademark) sheet, the glossy surface of 12 μm electrolytic copper foil was placed up and down, and pressed at a pressure of 2.0 MPa and a temperature of 240 ° C. for 60 minutes. The foil was removed to obtain a resin plate.
Further, the varnish was impregnated and applied to an E glass cloth having a thickness of 0.1 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a thermosetting resin composition content of 48 mass%.
Four prepregs were stacked, 12 μm electrolytic copper foils were placed one above the other, and pressed at a pressure of 3.0 MPa and a temperature of 240 ° C. for 60 minutes to obtain a copper-clad laminate.
Tables 1 to 4 show the measurement and evaluation results of the obtained resin plates and copper-clad laminates.
芳香族アミン化合物(i)
・KAYAHARD A-A:3,3’-ジエチル-4,4’-ジアミノジフェニルメタン〔日本化薬株式会社製、商品名〕
Aromatic amine compounds (i)
KAYAHARD AA: 3,3′-diethyl-4,4′-diaminodiphenylmethane [manufactured by Nippon Kayaku Co., Ltd., trade name]
芳香族アルデヒド化合物(ii)
・TPAL:テレフタルアルデヒド〔東レ・ファインケミカル株式会社製、商品名〕
Aromatic aldehyde compounds (ii)
・ TPAL: terephthalaldehyde (trade name, manufactured by Toray Fine Chemical Co., Ltd.)
シロキサン化合物(B)
・X-22-161B:末端アミノ変性シロキサン〔信越化学工業株式会社製、商品名〕
Siloxane compound (B)
X-22-161B: terminal amino-modified siloxane (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
マレイミド化合物(C)
・BMI:ビス(4-マレイミドフェニル)メタン〔ケイ・アイ化成株式会社製、商品名〕
・BMI-4000:2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン〔大和化成工業株式会社製、商品名〕
Maleimide compound (C)
・ BMI: Bis (4-maleimidophenyl) methane (trade name, manufactured by Kay Kasei Co., Ltd.)
BMI-4000: 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (trade name, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
酸性置換基を有するアミン化合物(D)
・p-アミノフェノール〔関東化学株式会社製、商品名〕
Amine compound having acidic substituent (D)
・ P-Aminophenol (trade name, manufactured by Kanto Chemical Co., Inc.)
熱可塑性エラストマー(E)
・タフテックH1043:水添スチレン-ブタジエン共重合樹脂〔旭化成ケミカルズ株式会社、商品名:〕
・エポフレンドCT-310:エポキシ変性スチレン-ブタジエン共重合樹脂〔株式会社ダイセル製、商品名:〕
Thermoplastic elastomer (E)
・ Tuftec H1043: Hydrogenated styrene-butadiene copolymer resin [Asahi Kasei Chemicals Corporation, trade name:]
・ Epofriend CT-310: Epoxy-modified styrene-butadiene copolymer resin (product name: manufactured by Daicel Corporation)
熱硬化性樹脂(F)
・PT-30:ノボラック型シアネート樹脂〔ロンザジャパン株式会社製、商品名〕
・NC-7000L:α-ナフトール/クレゾールノボラック型エポキシ樹脂〔日本化薬株式会社製、商品名〕
Thermosetting resin (F)
PT-30: Novolac-type cyanate resin (Lonza Japan Co., Ltd., trade name)
NC-7000L: α-naphthol / cresol novolac type epoxy resin (trade name, manufactured by Nippon Kayaku Co., Ltd.)
無機充填材(G)
・SC2050-KNK:溶融シリカ〔株式会社アドマテックス(株)製、商品名〕
・モリブデン酸亜鉛〔シャーウィン・ウィリアムズ社製、商品名:KEMGARD1100〕
Inorganic filler (G)
SC2050-KNK: fused silica [manufactured by Admatechs Co., Ltd., trade name]
・ Zinc molybdate [manufactured by Sherwin Williams, trade name: KEMGARD1100]
硬化促進剤(H)
・ナフテン酸亜鉛(II)8%ミネラルスピリット溶液〔東京化成工業株式会社製、商品名〕
・G-8009L:イソシアネートマスクイミダゾール〔第一工業製薬株式会社製、商品名〕
・TPP-MK:テトラフェニルホスホニウムテトラ-p-トリルボレート〔北興化学工業株式会社製、商品名〕
Curing accelerator (H)
・ Zinc (II) naphthenate 8% mineral spirit solution [Tokyo Chemical Industry Co., Ltd., trade name]
G-8809L: Isocyanate mask imidazole [Daiichi Kogyo Seiyaku Co., Ltd., trade name]
・ TPP-MK: Tetraphenylphosphonium tetra-p-tolylborate (trade name, manufactured by Hokuko Chemical Co., Ltd.)
 以下、表1~4の芳香族アゾメチンを有するアミノ変性シロキサン化合物含有溶液(I-1)、(I-2)、芳香族アゾメチンを有する変性イミド樹脂含有溶液(J-1)、及び酸性置換基と芳香族アゾメチンを有する変性イミド樹脂含有溶液の配合量(質量部)は、樹脂成分の固形分換算の値を示すものである。 Hereinafter, amino-modified siloxane compound-containing solutions (I-1) and (I-2) having aromatic azomethines in Tables 1 to 4, modified imide resin-containing solutions (J-1) having aromatic azomethines, and acidic substituents The amount (parts by mass) of the modified imide resin-containing solution having azomethine and aromatic azomethine indicates a value in terms of solid content of the resin component.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 第1表~第4表から明らかなように、本発明の実施例では、樹脂板の硬化収縮率が小さく低硬化収縮性に優れ、また、積層板の特性においても、熱膨張率、銅箔接着性、弾性率、誘電特性に優れている。
 一方、比較例は、樹脂板の硬化収縮率が大きく、また、積層板の特性においても、熱膨張率、銅箔接着性、弾性率、誘電特性において実施例と比較し、いずれかの特性に劣っている。
As is apparent from Tables 1 to 4, in the examples of the present invention, the curing shrinkage rate of the resin plate is small and excellent in low cure shrinkage. Also in the characteristics of the laminated plate, the thermal expansion rate, the copper foil Excellent adhesion, elastic modulus and dielectric properties.
On the other hand, the comparative example has a large curing shrinkage rate of the resin plate, and also in the characteristics of the laminated plate, the thermal expansion coefficient, the copper foil adhesiveness, the elastic modulus, and the dielectric characteristics are any of the characteristics. Inferior.
本発明の芳香族アゾメチンを有するアミノ変性シロキサン化合物を使用したポリイミド、又はアミノ変性シロキサン化合物を含有する熱硬化性樹脂組成物を、基材に含浸、又は塗工して得たプリプレグ、支持体に塗工して得た樹脂付フィルム、及び該プリプレグを積層成形することにより製造した積層板は、特に低硬化収縮性、低熱膨張性、銅箔接着性、高弾性率、優れた誘電特性を有し、高集積化された半導体パッケージや電子機器用多層プリント配線板として有用である A prepreg obtained by impregnating or coating a base material with a polyimide using an amino-modified siloxane compound having an aromatic azomethine of the present invention, or a thermosetting resin composition containing an amino-modified siloxane compound is applied to a support. The film with resin obtained by coating and the laminate produced by laminating the prepreg have particularly low cure shrinkage, low thermal expansion, copper foil adhesion, high elastic modulus, and excellent dielectric properties. It is useful as a highly integrated semiconductor package and multilayer printed wiring board for electronic devices.

Claims (15)

  1.  1分子中に少なくとも2個の一級アミノ基を有する芳香族アミン化合物(i)、1分子中に少なくとも2個のアルデヒド基を有する芳香族アルデヒド化合物(ii)を反応させて得られる、1分子中に少なくとも1個のアルデヒド基を有する芳香族アゾメチン化合物(A)と、分子末端に少なくとも2個の一級アミノ基を有するシロキサン化合物(B)を反応させ得られる、分子構造中に芳香族アゾメチンを有するアミノ変性シロキサン化合物。 In one molecule obtained by reacting an aromatic amine compound (i) having at least two primary amino groups in one molecule and an aromatic aldehyde compound (ii) having at least two aldehyde groups in one molecule Having an aromatic azomethine in the molecular structure obtained by reacting an aromatic azomethine compound (A) having at least one aldehyde group with a siloxane compound (B) having at least two primary amino groups at the molecular ends. Amino-modified siloxane compound.
  2.  請求項1に記載のアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを反応させて得られる、芳香族アゾメチンを有する変性イミド樹脂。 A modified imide resin having an aromatic azomethine obtained by reacting the amino-modified siloxane compound according to claim 1 with a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule.
  3.  さらに、酸性置換基を有し、該酸性置換基が下記一般式(1)に示すアミン化合物(D)の酸性置換基に由来する請求項2に記載の変性イミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を、R2は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示し、xは1~5の整数、yは0~4の整数で、且つxとyの和は5である。)
    The modified imide resin according to claim 2, further comprising an acidic substituent, wherein the acidic substituent is derived from the acidic substituent of the amine compound (D) represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
  4.  請求項1に記載の芳香族アゾメチンを有するアミノ変性シロキサン化合物と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(C)とを含有する熱硬化性樹脂組成物。 A thermosetting resin composition comprising the amino-modified siloxane compound having an aromatic azomethine according to claim 1 and a maleimide compound (C) having at least two N-substituted maleimide groups in one molecule.
  5.  さらに、下記一般式(1)に示す酸性置換基を有するアミン化合物(D)を含有する請求項4に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を、R2は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示し、xは1~5の整数、yは0~4の整数で、且つxとyの和は5である。)
    Furthermore, the thermosetting resin composition of Claim 4 containing the amine compound (D) which has an acidic substituent shown to following General formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (1), each R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and each R 2 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Or a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
  6.  さらに、熱可塑性エラストマー(E)を含有する請求項4又は5に記載の熱硬化性樹脂組成物。 Furthermore, the thermosetting resin composition of Claim 4 or 5 containing a thermoplastic elastomer (E).
  7.  さらに、エポキシ樹脂及びシアネート樹脂から選ばれた少なくとも一種の熱硬化性樹脂(F)を含有する請求項4~6のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 4 to 6, further comprising at least one thermosetting resin (F) selected from an epoxy resin and a cyanate resin.
  8.  さらに、無機充填材(G)を含有する請求項4~7のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 4 to 7, further comprising an inorganic filler (G).
  9.  さらに、硬化促進剤(H)を含有する請求項4~8のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 4 to 8, further comprising a curing accelerator (H).
  10.  請求項4~9のいずれか1項に記載の熱硬化性樹脂組成物を基材に含浸してなるプリプレグ。 A prepreg obtained by impregnating a base material with the thermosetting resin composition according to any one of claims 4 to 9.
  11.  請求項4~9のいずれか1項に記載の熱硬化性樹脂組成物を支持体上に層形成してなる樹脂付フィルム。 A film with a resin obtained by forming a layer of the thermosetting resin composition according to any one of claims 4 to 9 on a support.
  12.  請求項10記載のプリプレグを積層成形し得られる積層板。 A laminate obtained by laminating the prepreg according to claim 10.
  13.  請求項11記載の樹脂付フィルムを積層成形して得られる積層板。 A laminate obtained by laminating the film with resin according to claim 11.
  14.  請求項12又は13記載の積層板を用いて製造される多層プリント配線板。 A multilayer printed wiring board manufactured using the laminated board according to claim 12 or 13.
  15.  請求項14記載の多層プリント配線板に半導体素子を搭載してなる半導体パッケージ。 A semiconductor package comprising a semiconductor element mounted on the multilayer printed wiring board according to claim 14.
PCT/JP2013/082054 2012-11-28 2013-11-28 Amino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, resin-equipped film, laminated plate, multilayer printed circuit board, and semiconductor package WO2014084310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549892A JP6375951B2 (en) 2012-11-28 2013-11-28 Amino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-259686 2012-11-28
JP2012259686 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014084310A1 true WO2014084310A1 (en) 2014-06-05

Family

ID=50827941

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082054 WO2014084310A1 (en) 2012-11-28 2013-11-28 Amino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, resin-equipped film, laminated plate, multilayer printed circuit board, and semiconductor package
PCT/JP2013/082072 WO2014084318A1 (en) 2012-11-28 2013-11-28 Siloxane compound, modified imide resin, thermosetting resin composition, prepreg, resin-equipped film, laminated plate, multilayer printed circuit board, and semiconductor package

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082072 WO2014084318A1 (en) 2012-11-28 2013-11-28 Siloxane compound, modified imide resin, thermosetting resin composition, prepreg, resin-equipped film, laminated plate, multilayer printed circuit board, and semiconductor package

Country Status (5)

Country Link
JP (3) JP6747655B2 (en)
KR (1) KR102166235B1 (en)
CN (3) CN107254049A (en)
TW (2) TWI614286B (en)
WO (2) WO2014084310A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129521A (en) * 2012-11-28 2014-07-10 Hitachi Chemical Co Ltd Modified siloxane compound, thermosetting resin composition, prepreg, resin-clad film, laminate sheet, multilayer printed wiring board, and semiconductor package
JP2015224303A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2015224304A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2015224306A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2016030757A (en) * 2014-07-25 2016-03-07 日立化成株式会社 Thermosetting resin composition, and prepreg, film with resin, laminate, multilayer printed wiring board and semiconductor package using the same
JP2016132738A (en) * 2015-01-20 2016-07-25 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JPWO2014084318A1 (en) * 2012-11-28 2017-01-05 日立化成株式会社 Siloxane compounds, modified imide resins, thermosetting resin compositions, prepregs, films with resins, laminates, multilayer printed wiring boards and semiconductor packages
JP2017008174A (en) * 2015-06-19 2017-01-12 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and multilayer printed board
JP2017132858A (en) * 2016-01-26 2017-08-03 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate and multilayer printed board
JP2018130938A (en) * 2017-02-17 2018-08-23 日立化成株式会社 Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package and method for manufacturing coreless substrate
US10323126B2 (en) 2012-11-28 2019-06-18 Hitachi Chemical Company, Ltd. Siloxane compound, modified imide resin, thermosetting resin composition, prepreg, film with resin, laminated plate, multilayer printed wiring board, and semiconductor package
JP2019518813A (en) * 2016-04-15 2019-07-04 エコール・シュペリュール・ドゥ・フィシック・エ・ドゥ・シミー・アンデュストリエル・ドゥ・ラ・ヴィル・ドゥ・パリ Polymer composition comprising a crosslinked silicone with exchangeable crosslinking points, preparation method and use
JP2019192343A (en) * 2018-04-18 2019-10-31 日立化成株式会社 Resin film for interlayer insulating layer, laminate, printed wiring board, semiconductor device, and method of manufacturing laminate
EP3489308A4 (en) * 2016-07-19 2019-12-18 Hitachi Chemical Company, Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
CN116120560A (en) * 2022-10-11 2023-05-16 苏州生益科技有限公司 Preparation method of modified bismaleimide prepolymer, resin composition and application of resin composition

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493745B2 (en) * 2015-03-31 2019-04-03 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate, printed wiring board and semiconductor package
JP6696113B2 (en) * 2015-04-03 2020-05-20 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal-clad laminate, printed wiring board, and semiconductor device
JP6785422B2 (en) * 2015-12-22 2020-11-18 昭和電工マテリアルズ株式会社 Thermosetting resin composition, prepreg, film with resin, laminated board, multilayer printed wiring board and semiconductor package
WO2017130947A1 (en) * 2016-01-26 2017-08-03 パナソニックIpマネジメント株式会社 Resin-clad metal foil and flexible printed wiring board
CN109312156B (en) * 2016-06-02 2022-02-22 昭和电工材料株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board, and module for high-speed communication
JP6922167B2 (en) * 2016-07-20 2021-08-18 昭和電工マテリアルズ株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and its manufacturing method
TWI582136B (en) * 2016-07-25 2017-05-11 Chin Yee Chemical Industres Co Ltd Thermosetting resin and its composition, use
DE112017003987T5 (en) * 2016-08-10 2019-04-18 Panasonic Intellectual Property Management Co., Ltd. ACRYLIC COMPOSITION FOR SEALING, FOIL MATERIAL, MULTILAYER FILM, HARDENED PRODUCT, SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING SEMICONDUCTOR DEVICE
TWI723211B (en) * 2016-09-23 2021-04-01 日商住友電木股份有限公司 Thermosetting resin composition, resin encapsulating substrate and electronic device
JP6950699B2 (en) * 2016-09-26 2021-10-13 昭和電工マテリアルズ株式会社 Resin composition, wiring layer laminate for semiconductors and semiconductor devices
JP6955329B2 (en) * 2016-10-28 2021-10-27 株式会社日本触媒 Curable resin composition, encapsulant and semiconductor device using it
WO2018088477A1 (en) * 2016-11-09 2018-05-17 日立化成株式会社 Method for producing frp precursor, method for producing laminate, method for producing printed circuit board, and method for producing semiconductor package
CN110268008B (en) * 2017-02-17 2022-07-08 昭和电工材料株式会社 Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package, and method for manufacturing coreless substrate
KR102463619B1 (en) * 2017-03-29 2022-11-03 쇼와덴코머티리얼즈가부시끼가이샤 Prepreg for coreless substrate, coreless substrate, method for manufacturing coreless substrate and semiconductor package
JP7130922B2 (en) * 2017-06-21 2022-09-06 昭和電工マテリアルズ株式会社 Printed wiring boards, prepregs, laminates and semiconductor packages
JP2020138996A (en) * 2019-02-26 2020-09-03 味の素株式会社 Resin composition
JP6797356B1 (en) * 2019-04-26 2020-12-09 Dic株式会社 Maleimide, curable resin composition, and cured product
CN110277559B (en) * 2019-06-17 2022-02-01 南开大学 Polyimide conductive binder for silicon-based negative electrode of lithium ion battery
CN110218330A (en) * 2019-06-18 2019-09-10 刘涛 A kind of selfreparing modified silicon rubber and preparation method thereof
JPWO2021039832A1 (en) 2019-08-27 2021-03-04
CN111499866B (en) * 2020-06-04 2022-02-18 哈尔滨工业大学 Preparation method of high-efficiency catalytic curing phenylacetylene-terminated polyimide resin system
CN114507176B (en) * 2020-11-16 2024-05-24 广东生益科技股份有限公司 Modified maleimide compound, and preparation method and application thereof
JP7124898B2 (en) * 2021-01-13 2022-08-24 昭和電工マテリアルズ株式会社 Thermosetting resin compositions, prepregs, laminates, printed wiring boards and semiconductor packages
CN117795016A (en) * 2021-08-05 2024-03-29 三菱瓦斯化学株式会社 Resin composition, resin sheet, prepreg, metal foil-clad laminate, and printed wiring board
DE102022202324A1 (en) 2022-03-08 2023-09-14 Siemens Aktiengesellschaft Prepreg, partial conductor insulation and electrical rotating machine with partial conductor insulation
WO2024077887A1 (en) * 2022-10-11 2024-04-18 苏州生益科技有限公司 Modified bismaleimide prepolymer, resin composition, and use of resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158037A (en) * 1987-09-11 1989-06-21 Kuraray Co Ltd Production of polyazomethyne
US20060269868A1 (en) * 2005-05-24 2006-11-30 Sony Chemicals Corp. Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
JP2010280857A (en) * 2009-06-05 2010-12-16 Sekisui Chem Co Ltd Method for producing aromatic azomethine resin
WO2012099133A1 (en) * 2011-01-18 2012-07-26 日立化成工業株式会社 Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
JP2012255059A (en) * 2011-06-07 2012-12-27 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2014019758A (en) * 2012-07-13 2014-02-03 Hitachi Chemical Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048148A (en) 1975-05-09 1977-09-13 E. I. Du Pont De Nemours And Company Polyazomethine fibers and films
JPS60101123A (en) 1983-11-07 1985-06-05 Agency Of Ind Science & Technol Aromatic-containing heterocyclic polyazomethine
JPS60181127A (en) 1984-02-28 1985-09-14 Tokyo Inst Of Technol Polyazomethine resin and its production
JPS63193925A (en) 1987-02-09 1988-08-11 Teijin Ltd Aromatic polyazomethine
JPS63264635A (en) * 1987-04-21 1988-11-01 Teijin Ltd Azomethine-containing polyorganosiloxane
JPS6469631A (en) 1987-09-10 1989-03-15 Kuraray Co Production of polyazomethine
JPS6479233A (en) 1987-09-21 1989-03-24 Teijin Ltd Preparation of wholly aromatic polyazomethine
FR2647456B1 (en) * 1989-05-26 1991-08-23 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF LINEAR THERMOTROPIC COPOLYMERS CONSISTING OF MESOGENIC UNITS OF THE AROMATIC AZOMETHINE TYPE AND POLYSILOXANE SPACERS
FR2647455A1 (en) * 1989-05-26 1990-11-30 Rhone Poulenc Chimie Linear thermotropic copolymers consisting of mesogenic units of the aromatic azomethine type and polysiloxane spacers and process for their manufacture
JPH05140067A (en) 1991-11-20 1993-06-08 Showa Highpolymer Co Ltd Unsaturated group-containing aromatic polyazomethine oligomer and its production
JP2001207055A (en) * 2000-01-25 2001-07-31 Nitto Denko Corp Carbodiimide resin composition
JP2003073470A (en) 2001-08-31 2003-03-12 Keio Gijuku Acid decomposable polyazomethine
US7173322B2 (en) * 2002-03-13 2007-02-06 Mitsui Mining & Smelting Co., Ltd. COF flexible printed wiring board and method of producing the wiring board
CN101348576A (en) * 2004-03-04 2009-01-21 日立化成工业株式会社 Prepreg and metal foil-clad laminate and printed circuit board obtained by using the same
WO2007100329A1 (en) * 2006-03-02 2007-09-07 Designer Molecules, Inc. Adhesive composition containing cyclic siloxanes
JP2007246628A (en) * 2006-03-14 2007-09-27 Jsr Corp Resin composition for forming cover film
CN101070387A (en) * 2007-06-06 2007-11-14 北京化工大学 Low-dielectric resin containing low-poly-sesqui-silicone and its preparing method
TWI443167B (en) * 2008-02-19 2014-07-01 Lintec Corp And a polyorganosiloxane compound as a main component
JP5589470B2 (en) * 2010-03-18 2014-09-17 日立化成株式会社 Bismaleimide derivative and method for producing the same, thermosetting resin composition, prepreg and laminate
JP5866999B2 (en) * 2011-01-11 2016-02-24 Jsr株式会社 Liquid crystal alignment agent, liquid crystal display element, liquid crystal alignment film, and polyorganosiloxane compound
JP5668517B2 (en) * 2011-02-16 2015-02-12 日立化成株式会社 Thermosetting resin composition, prepreg and laminate
JP6043494B2 (en) * 2012-03-26 2016-12-14 株式会社タダノ Assembly structure of work vehicle exterior
TWI614286B (en) * 2012-11-28 2018-02-11 Hitachi Chemical Co Ltd Amine-based modified oxoxane compound, modified quinone imine resin, thermosetting resin composition, prepreg, resin-attached film, laminated board, multilayer printed wiring board, and semiconductor package

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158037A (en) * 1987-09-11 1989-06-21 Kuraray Co Ltd Production of polyazomethyne
US20060269868A1 (en) * 2005-05-24 2006-11-30 Sony Chemicals Corp. Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
JP2007106779A (en) * 2005-05-24 2007-04-26 Sony Chemical & Information Device Corp Ester group-containing poly(imide-azomethine) copolymer, ester group-containing poly(amide acid-azomethine) copolymer, and positive photosensitive resin composition
JP2010280857A (en) * 2009-06-05 2010-12-16 Sekisui Chem Co Ltd Method for producing aromatic azomethine resin
WO2012099133A1 (en) * 2011-01-18 2012-07-26 日立化成工業株式会社 Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
TW201245284A (en) * 2011-01-18 2012-11-16 Hitachi Chemical Co Ltd Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
JP2012255059A (en) * 2011-06-07 2012-12-27 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2014019758A (en) * 2012-07-13 2014-02-03 Hitachi Chemical Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323126B2 (en) 2012-11-28 2019-06-18 Hitachi Chemical Company, Ltd. Siloxane compound, modified imide resin, thermosetting resin composition, prepreg, film with resin, laminated plate, multilayer printed wiring board, and semiconductor package
JPWO2014084318A1 (en) * 2012-11-28 2017-01-05 日立化成株式会社 Siloxane compounds, modified imide resins, thermosetting resin compositions, prepregs, films with resins, laminates, multilayer printed wiring boards and semiconductor packages
JP2014129521A (en) * 2012-11-28 2014-07-10 Hitachi Chemical Co Ltd Modified siloxane compound, thermosetting resin composition, prepreg, resin-clad film, laminate sheet, multilayer printed wiring board, and semiconductor package
JP2015224303A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2015224304A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2015224306A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2016030757A (en) * 2014-07-25 2016-03-07 日立化成株式会社 Thermosetting resin composition, and prepreg, film with resin, laminate, multilayer printed wiring board and semiconductor package using the same
JP2016132738A (en) * 2015-01-20 2016-07-25 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP2017008174A (en) * 2015-06-19 2017-01-12 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and multilayer printed board
JP2017132858A (en) * 2016-01-26 2017-08-03 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate and multilayer printed board
JP2019518813A (en) * 2016-04-15 2019-07-04 エコール・シュペリュール・ドゥ・フィシック・エ・ドゥ・シミー・アンデュストリエル・ドゥ・ラ・ヴィル・ドゥ・パリ Polymer composition comprising a crosslinked silicone with exchangeable crosslinking points, preparation method and use
JP7097817B2 (en) 2016-04-15 2022-07-08 エコール・シュペリュール・ドゥ・フィシック・エ・ドゥ・シミー・アンデュストリエル・ドゥ・ラ・ヴィル・ドゥ・パリ Polymer compositions, preparation methods and uses containing crosslinked silicones with interchangeable crosslink points.
EP3489308A4 (en) * 2016-07-19 2019-12-18 Hitachi Chemical Company, Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
US11377546B2 (en) 2016-07-19 2022-07-05 Showa Denko Materials Co., Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
JP2018130938A (en) * 2017-02-17 2018-08-23 日立化成株式会社 Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package and method for manufacturing coreless substrate
JP2019192343A (en) * 2018-04-18 2019-10-31 日立化成株式会社 Resin film for interlayer insulating layer, laminate, printed wiring board, semiconductor device, and method of manufacturing laminate
JP7124410B2 (en) 2018-04-18 2022-08-24 昭和電工マテリアルズ株式会社 Resin film for interlayer insulating layer, laminate, printed wiring board, semiconductor device, and method for producing laminate
CN116120560A (en) * 2022-10-11 2023-05-16 苏州生益科技有限公司 Preparation method of modified bismaleimide prepolymer, resin composition and application of resin composition
CN116120560B (en) * 2022-10-11 2024-04-12 苏州生益科技有限公司 Preparation method of modified bismaleimide prepolymer, resin composition and application of resin composition

Also Published As

Publication number Publication date
JP6747655B2 (en) 2020-08-26
KR20150089017A (en) 2015-08-04
TW201434850A (en) 2014-09-16
JPWO2014084318A1 (en) 2017-01-05
TW201428030A (en) 2014-07-16
JP6372071B2 (en) 2018-08-15
TWI614286B (en) 2018-02-11
JPWO2014084310A1 (en) 2017-01-05
JP6375951B2 (en) 2018-08-22
CN106973490B (en) 2020-07-07
CN107254049A (en) 2017-10-17
JP2014129520A (en) 2014-07-10
KR102166235B1 (en) 2020-10-15
TWI614262B (en) 2018-02-11
CN106973490A (en) 2017-07-21
CN104812805B (en) 2017-06-30
WO2014084318A1 (en) 2014-06-05
CN104812805A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6375951B2 (en) Amino-modified siloxane compound, modified imide resin, thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP6160675B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP6167850B2 (en) Thermosetting resin composition, prepreg using the same, film with resin, laminate, printed wiring board, and semiconductor package
JP6357762B2 (en) Modified siloxane compound, thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board and semiconductor package
JP6379675B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP6503754B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board and semiconductor package
US10323126B2 (en) Siloxane compound, modified imide resin, thermosetting resin composition, prepreg, film with resin, laminated plate, multilayer printed wiring board, and semiconductor package
JP6596811B2 (en) Thermosetting resin composition, prepreg using the same, film with resin, laminated board, multilayer printed wiring board, and semiconductor package
JP6828242B2 (en) Thermosetting resin composition, prepreg, film with resin, laminated board and multilayer printed wiring board
JP6427959B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP6259557B2 (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP6299434B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP6299433B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP6819062B2 (en) Thermosetting resin composition, prepreg using it, film with resin, laminated board, printed wiring board and semiconductor package, and imide resin and its manufacturing method.
JP6597721B2 (en) Thermosetting resin composition, prepreg using the same, film with resin, laminate, printed wiring board, and semiconductor package
JP6369134B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP2017114964A (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed bord and semiconductor package
JP2017071794A (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2015224289A (en) Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858596

Country of ref document: EP

Kind code of ref document: A1