WO2014084210A1 - Light emission device - Google Patents

Light emission device Download PDF

Info

Publication number
WO2014084210A1
WO2014084210A1 PCT/JP2013/081782 JP2013081782W WO2014084210A1 WO 2014084210 A1 WO2014084210 A1 WO 2014084210A1 JP 2013081782 W JP2013081782 W JP 2013081782W WO 2014084210 A1 WO2014084210 A1 WO 2014084210A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
electrodes
opening
emitting device
Prior art date
Application number
PCT/JP2013/081782
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 山▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014084210A1 publication Critical patent/WO2014084210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape

Definitions

  • the present invention relates to a light emitting device using an organic light emitting element that emits light by applying a voltage to an organic compound layer including a light emitting layer sandwiched between a pair of electrodes.
  • a planar light-emitting body used as illumination is obtained by forming an organic compound layer with a uniform thickness on a planar electrode having a smooth surface and covering it with a counter electrode.
  • Patent Document 1 discloses an organic light-emitting element in which an insulating layer is provided on an electrode, a non-light-emitting region is formed in a light-emitting surface, and the luminance is controlled by controlling the density of the non-light-emitting region.
  • Patent Document 2 a dielectric layer is disposed between a hole injection electrode layer and an electron injection electrode layer, and an electroluminescent layer is formed inside a cavity formed so as to penetrate the dielectric layer. Arranged light emitting elements are disclosed.
  • the light emitting device described in Patent Document 2 also includes a pseudo surface light emitter that looks like a surface light emitter by arranging a plurality of fine holes (cavities) that are light emitting portions on the hole injection electrode layer. can do.
  • the electrodes are common to the plurality of light emitting units, it is not easy to control the luminance.
  • An object of the present invention is to provide a light-emitting device using an organic light-emitting element that can easily control the luminance distribution in the light-emitting surface of the organic light-emitting element and can be easily produced. More specifically, the present invention provides an organic EL device using an organic EL element that does not require reworking of a mask necessary for the above-described conventional technique in order to eliminate luminance unevenness of the organic EL element having a cavity structure. .
  • the present inventor has disclosed a luminance gradient in a light emitting surface by changing an angle formed by a major axis of the shape of an opening and an electrode in a light emitting device including a plurality of minute light emitting units including an elongated opening and an electrode.
  • the present invention was completed by finding a light-emitting device using an organic light-emitting element that can be easily controlled.
  • a light-emitting device having a light-emitting region composed of a plurality of minute light-emitting portions electrically connected in parallel, wherein the light-emitting device has one planar conductor in the light-emitting region.
  • An insulating layer formed on an upper surface of the planar conductor, a plurality of openings formed in the insulating layer, a plurality of first electrodes formed on the insulating layer, and the plurality of first electrodes
  • An organic compound layer including a light-emitting layer formed over one electrode; and a second electrode formed on the organic compound layer; and a plurality of sections each including two or more first electrodes.
  • the plurality of first electrodes is also formed in the opening and is electrically connected to the conductor so that the organic compound layer is energized in the plurality of minute light emitting portions.
  • the plurality of openings are in plan view.
  • the first major axis and the first minor axis orthogonal to each other have an elongated shape, and the first major axis is formed in parallel with each other in one of the sections, and the plurality of the first major axes are formed.
  • the electrode has an elongated shape having a second major axis and a second minor axis orthogonal to each other in a plan view, and is formed so that the second major axis is parallel to each other in one of the compartments.
  • a distance between the openings in the direction of the first short axis of the opening is shorter than a length of the second long axis of the first electrode, and the first The plurality of sections are longer than the length of the second short axis of one electrode, and the first long axis of the opening and the second long axis of the first electrode are in each of the plurality of sections.
  • the angle formed includes at least two sections that are different from each other among the plurality of sections. Emitting device is provided to symptoms.
  • the first electrode electrically connected to the conductor and the first electrode not electrically connected to the conductor are mixed in the light emitting region.
  • One of the first long axis of the opening and the second long axis of the first electrode is preferably parallel to each other in the light emitting region.
  • the lengths of the first major axis of the opening and the second major axis of the first electrode are respectively the first minor axis of the opening and the second minor axis of the first electrode.
  • the length is preferably 5 times or more.
  • the shapes and sizes of the plurality of openings are the same and / or the shapes and sizes of the plurality of first electrodes are all the same.
  • the arrangement pattern of the plurality of openings and the arrangement pattern of the plurality of first electrodes are the same for each of the plurality of sections, and only the angle formed by the first major axis and the second major axis is different. Is preferred.
  • the length of the first short axis and the length of the second short axis of the opening are preferably 0.1 ⁇ m to 10 ⁇ m, respectively.
  • the opening portion and the first electrode which is preferably respectively 10 2 to 10 8 formed in any 1mm square area of the light emitting region. It is preferable that any one of the plurality of openings and the plurality of first electrodes is formed so that the long axes face each other in parallel and periodically in the light emitting region.
  • the planar conductor is a transparent conductive film made of a metal oxide, and is electrically connected to at least a part of the outer side of the light emitting region with the planar conductor and connected to a power source.
  • the angle formed by the first long axis of the opening and the second long axis of the first electrode is such that the area ratio of the light emitting portion in the section is far from the terminal portion. It is preferable that the section is set to be larger. It is preferable that the angle is larger as the section is farther from the terminal portion.
  • a luminance distribution gradient in the light emitting surface of an organic light emitting element is easily controlled, and a light emitting device using such an organic light emitting element is provided.
  • the light-emitting device to which this embodiment is applied has a plurality of light-emitting portions that are electrically connected in parallel and have a minimum width of 0.1 ⁇ m to 10 ⁇ m, and a light-emitting region that includes all of these light-emitting portions. Have.
  • the light emitting device may have only one light emitting region or two or more light emitting regions.
  • the light emitting device has one planar conductor in each light emitting region. In each light emitting region, the light emitting device to which this embodiment is applied is further formed on the upper surface of a planar conductor, and has an insulating layer having a plurality of openings and a plurality of insulating layers formed on the insulating layer.
  • Each light emitting area is divided into a plurality of sections, and each section includes two or more of the first electrodes.
  • the plurality of sections may be the same or different in area and shape.
  • FIG. 1 is a partial cross-sectional view in the vicinity of a light emitting unit 10 of a light emitting device to which the present embodiment is applied.
  • a light emitting unit 10 of a light emitting device includes a planar conductor 12, an insulating layer 13, a first electrode 14, an organic compound layer 15 including a light emitting layer, and a second electrode 16 stacked on a substrate 11.
  • An opening 17 is provided in the insulating layer 13, and the first electrode 14 is electrically connected to the conductor 12 at a part inside the opening 17.
  • the first electrode 14 and the conductor 12 are electrically connected inside the opening 17, and a voltage is applied between the first electrode 14 and the second electrode 16, the first of the organic compound layer 15. The portion in contact with the electrode 14 emits light.
  • the first electrode 14 may be electrically connected to the conductor 12 throughout the opening 17.
  • the substrate 11 serves as a support for forming the conductor 12, the insulating layer 13, the first electrode 14, the organic compound layer 15, and the second electrode 16.
  • a material that satisfies the mechanical strength required for the light emitting device including the light emitting unit 10 is used for the substrate 11.
  • a material used for the substrate 11 when it is desired to extract light emitted from the light emitting layer from the substrate 11 side, it is necessary to have transparency to this light.
  • glass such as sapphire glass, soda glass, and quartz glass; transparent resin such as polymethyl methacrylate resin, polycarbonate resin, polyester resin, and silicone resin; transparent metal nitride such as aluminum nitride; transparent metal such as alumina An oxide etc. are mentioned.
  • gas permeability with respect to gas such as water and oxygen
  • the material of the substrate 11 is not limited to the transparent material described above, and an opaque material can also be used.
  • such materials include silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), Alternatively, niobium (Nb), aluminum (Al) alone, alloys containing these, stainless steel, and other substrate materials that are usually used in top emission type organic EL elements.
  • the opaque substrate 11 is made of a highly light-reflective metal material or the above-described light transmittance in order to extract more light emitted from the light emitting layer to the outside. You may use what formed the light reflection film which consists of a light reflective metal material in the surface of the material which has. In addition, in order to release heat generated by light emission of the element light emitting unit 10, it is preferable to use a material having high thermal conductivity for the substrate.
  • the thickness of the substrate 11 is appropriately selected depending on the required mechanical strength and is not particularly limited. However, in the present embodiment, it is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm.
  • the conductor 12 is formed in a planar shape continuous over the entire light emitting region on the substrate 11 and supplies power to the first electrode 14 in the light emitting region.
  • the material used for the conductor 12 is not particularly limited as long as it has electrical conductivity. When it is desired to extract light emitted from the light emitting layer from the substrate 11 side, the material forming the conductor 12 needs to be transmissive to this light. As such a material, a metal oxide is preferable.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • transparent inorganic oxides such as tin oxide
  • conductive polymers such as polyaniline
  • conductive polymers doped with any acceptor examples thereof include conductive light transmissive materials such as carbon nanotubes, thin film metals, metal nanowires formed in a thin film shape, and composite materials containing these.
  • the thickness of the conductor 12 can be formed in the range of 2 nm to 2 ⁇ m, for example. However, 50 nm or more is preferable from the viewpoint of high conductivity, and 500 nm or less is preferable in that high light transmittance is maintained.
  • the metal materials mentioned as the opaque material that can be used for the substrate 11 can be used.
  • the conductor 12 can also serve as the substrate 11. Accordingly, the thickness of the conductor 12 made of a metal material is preferably 2 nm to 10 mm, and more preferably 50 nm to 2 mm.
  • the insulating layer 13 is laminated on the conductor 12 and separates and insulates the conductor 12 and the first electrode 14 at locations other than the opening 17.
  • the insulating layer 13 is preferably a material having a high resistivity.
  • the resistivity is preferably 10 8 ⁇ ⁇ cm or more, and more preferably 10 12 ⁇ ⁇ cm or more.
  • Specific examples of the material for the insulating layer 13 include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; and metal oxides such as silicon oxide and aluminum oxide.
  • polymer compounds such as polyimide, polyvinylidene fluoride, and parylene, spin-on glass (SOG), and the like can also be used.
  • the thickness of the insulating layer 13 is preferably not more than 5 ⁇ m so that the electric resistance between the conductor 12 and the first electrode 14 does not become too large. However, if it is too thin, the dielectric strength may not be sufficient. Accordingly, it is preferable to form the film with a thickness of 10 nm to 5 ⁇ m, more preferably 50 nm to 500 nm.
  • the insulating layer 13 extracts light from the surface on the substrate 11 side
  • the light extracted from the substrate 11 can be increased by refracting light incident from the organic compound layer 15 and changing the traveling direction of the light. it can.
  • the material of the insulating layer 13 a material having a high transmittance for emitted light and having a higher refractive index or a lower refractive index than the organic compound layer is used.
  • the absolute value of the difference from the refractive index is preferably larger than 0.1.
  • the opening 17 is formed through the insulating layer 13.
  • at least a part of the plurality of first electrodes 14 formed on the insulating layer 13 is electrically connected to the conductor 12 inside the opening 17, whereby the first electrode 14 is formed from the conductor 12. Is supplied with power.
  • the opening 17 may be formed so as to penetrate through the conductor 12, and in this case, the bottom of the opening 17 is the top surface of the substrate 11, and the first electrode 14 is connected to the side surface of the conductor 12 inside the opening 17. Electrically connected.
  • a voltage is applied between the first electrode 14 and the second electrode 16
  • a current flows between the electrodes, and the light emitter included in the light emitting layer of the organic compound layer 15 emits light. Therefore, at this time, the region on the first electrode 14 in a plan view is a light emitting portion.
  • first electrode 14 In the present embodiment, a plurality of first electrodes 14 exist in one light emitting region.
  • the first electrode 14 is an electrode in which at least a part of the first electrode 14 is also formed in the opening 17 and is electrically connected to the conductor 12, thereby energizing the organic compound layer 15 in a plurality of light emitting portions. Function as. In the present embodiment, the first electrode 14 is an anode.
  • the first electrode 14 is electrically connected to the conductor 12 inside the opening 17, and injects holes into the organic compound layer 15 by applying a voltage between the second electrode 16.
  • the material used for the first electrode 14 is preferably a material having high electrical conductivity and a work function of 4.5 eV or more.
  • examples of such a material include conductive metal oxides such as ITO, IZO, and tin oxide, metals, and the like.
  • the electroconductive material which consists of organic substances, such as a polyaniline derivative, a polythiophene derivative, and the mixture of these polymers, and a polystyrene sulfonic acid.
  • ITO ITO
  • IZO poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid mixture
  • PDOT PSS
  • those listed as opaque materials that can be used for the conductor 12 can be used.
  • the first electrode 14 transmits the emitted light. It is necessary to use materials with a high rate. In this respect, among the above materials, a conductive material made of a conductive metal oxide or an organic material is preferable.
  • the first electrode 14 can be formed with a thickness of 2 nm to 2 ⁇ m, for example. However, 50 nm or more is preferable from the viewpoint of high conductivity, and 500 nm or less is preferable from the viewpoint of easy patterning of the first electrode 14 and formation of the organic compound layer 15.
  • the work function can be measured by a method such as ultraviolet photoelectron spectroscopy.
  • the end of the first electrode 14 is preferably provided with measures for preventing a short circuit between the first electrode 14 and the second electrode 16. Specifically, the end of the first electrode 14 is tapered in an elevational view (the surface on the insulating layer 13 side is larger than the surface on the organic layer compound layer 15 side), or the first electrode in a plan view. It is preferable to form an insulating protective layer on the first electrode 14 so as to overlap with the first electrode 14.
  • the organic compound layer 15 includes a light emitting layer, and includes a single layer or a layer including a plurality of stacked organic compounds. In the present embodiment, the organic compound layer 15 covers the first electrode 14 and is formed as a continuous film on the entire surface of the light emitting region. Is done.
  • the light emitting layer includes a light emitting material that emits light when a voltage is applied between the first electrode 14 and the second electrode 16. As such a light emitting material, a known light emitting material can be used, and any of a light emitting polymer compound and a light emitting non-polymer compound can be used. In this embodiment mode, a phosphorescent organic compound or an organometallic complex is preferably used as the light-emitting material.
  • the organic compound layer 15 is formed as a continuous film over the entire surface of the light emitting region so as to cover the first electrode 14, but the organic compound layer 15 is formed on the first electrode 14.
  • the organic compound layer 15 may not be formed on the insulating layer 13 as long as it is formed.
  • a cyclometalated complex as the light emitting material from the viewpoint of improving the light emission efficiency.
  • cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like.
  • the complex include iridium (Ir) having a ligand; platinum (Pt) and gold (Au). Among these, an Ir complex is particularly preferable.
  • the cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex.
  • the cyclometalated complex includes a compound that emits light from triplet excitons, and such a compound is preferable from the viewpoint of improving luminous efficiency.
  • the light emitting polymer compound examples include poly-p-phenylene vinylene (PPV) derivatives such as (poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene]) (MEH-PPV).
  • PPV poly-p-phenylene vinylene
  • MEH-PPV polymethoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene]
  • MEH-PPV poly-p-phenylene vinylene
  • ⁇ -conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives
  • a light emitting polymer compound and a light emitting non-polymer compound may be used in combination.
  • the light emitting layer may contain a host material together with the light emitting material, and the light emitting material may be dispersed in the host material.
  • a host material preferably has a charge transporting property, and is preferably a hole transporting compound or an electron transporting compound.
  • the organic compound layer 15 may include a hole transport layer (not shown) for receiving holes from the first electrode 14 and transporting them to the light emitting layer.
  • the hole transport layer is provided between the first electrode 14 and the light emitting layer.
  • a hole transport material for forming such a hole transport layer a known material can be used.
  • N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′diamine TPD
  • 4,4′-bis [N- (1- Naphthyl) -N-phenylamino] biphenyl ⁇ -NPD
  • 4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino) triphenylamine m-MTDATA
  • polyvinylcarbazole A polymer compound obtained by polymerizing the above triphenylamine derivative by introducing a polymerizable substituent.
  • the above hole transport materials may be used singly or in combination of two or more, and a plurality of hole transport layers formed from different hole transport materials may be laminated.
  • a hole injection layer (not shown) for relaxing the hole injection barrier may be provided between the hole transport layer and the first electrode 14.
  • the material for forming the hole injection layer include known materials such as copper phthalocyanine, fluorocarbon, and silicon dioxide.
  • a mixture of a hole transport material used for the hole transport layer and an electron acceptor such as 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) may be used. it can.
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane
  • conductive polymers such as PEDOT: PSS, can also be used as a hole injection layer.
  • the organic compound layer 15 includes an electron transport layer (not shown) for receiving electrons from the second electrode 16 serving as a cathode and transporting the electrons to the light emitting layer, between the light emitting layer and the second electrode 16. Also good.
  • Examples of materials that can be used for such an electron transport layer include aluminum complexes, zinc complexes, quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoxaline derivatives, and triarylborane derivatives. And triphenylphosphine oxide derivatives.
  • tris (8-quinolinolato) aluminum abbreviation: Alq
  • bis [2- (2-hydroxyphenyl) benzoxazolate] zinc bis [2- (2-hydroxyphenyl) benzothiazolate] zinc
  • a hole blocking layer (Not shown) may be provided.
  • This hole blocking layer can also be regarded as one of the layers included in the organic compound layer 15.
  • a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative can be used.
  • each of the layers constituting the organic compound layer 15 is appropriately selected in consideration of charge mobility, charge injection balance, interference of emitted light, and the like, and is not particularly limited.
  • the thickness is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and particularly preferably 5 nm to 200 nm.
  • the total thickness of the organic compound layer 15 between the first electrode 14 and the second electrode 16 is preferably 30 nm to 1 ⁇ m, more preferably 50 nm to 500 nm. Note that by controlling the thickness of the organic compound layer 15, a microresonator structure can be formed, and the spectrum and intensity of light extracted outside the light emitting device can be changed.
  • one of the first electrode 14 and the second electrode 16 is a semi-reflective electrode (not shown) made of a metal thin film having a thickness of 5 nm to 50 nm, and the other electrode is a reflective electrode.
  • An electrode (not shown) is used.
  • the second electrode 16 injects electrons into the organic compound layer 15 when a voltage is applied between the second electrode 16 and the first electrode 14. That is, in the present embodiment, the second electrode 16 is a cathode.
  • the second electrode 16 is formed as a continuous film on the entire surface of the light emitting region on the organic compound layer 15.
  • the material used for the second electrode 16 is not particularly limited as long as it has electrical conductivity. In the present embodiment, a material having a low work function and being chemically stable is preferable.
  • the material of the second electrode 16 is preferably a material transparent to visible light, for example, similar to the first electrode 14 when it is desired to extract light emitted from the light emitting layer from the second electrode 16 side.
  • the thickness of the second electrode 16 is preferably 10 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. If the thickness of the second electrode 16 is less than 10 nm, the sheet resistance increases, and the driving voltage of the light emitting unit 10 tends to increase. Easy to accumulate.
  • a cathode buffer layer (not shown) is provided adjacent to the second electrode 16 for the purpose of lowering the electron injection barrier from the second electrode 16 to the organic compound layer 15 and increasing the electron injection efficiency. It may be provided on the 15 side.
  • the cathode buffer layer include alkali metals (Na, K, Rb, Cs), magnesium (Mg), alkaline earth metals (Sr, Ba, Ca), rare earth metals (Pr, Sm, Eu, Yb), or A material selected from fluorides, chlorides and oxides of these metals or a mixture of two or more thereof can be used.
  • the thickness of the cathode buffer layer is preferably from 0.1 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
  • the first electrode 14 formed in contact with the conductor 12 is an anode
  • the second electrode 16 formed on the organic compound layer 15 is although it is a cathode, an anode and a cathode may be reversed. That is, the first electrode 14 may be a cathode and the second electrode 16 may be an anode.
  • an electron injection layer, an electron transport layer, and a hole blocking layer may be provided in the organic compound layer 15 between the first electrode 14 and the light emitting layer. it can.
  • a hole injection layer, a hole transport layer, and an electron blocking layer can be provided in the organic compound layer 15 between the second electrode 16 and the light emitting layer.
  • resistance heating vapor deposition In order to form the conductor 12, the insulating layer 13, the first electrode 14, the organic compound layer 15 and the second electrode 16 formed on the substrate, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion A plating method, a CVD method, or the like can be used.
  • a coating film forming method that is, a method in which a target material is dissolved in a solvent and applied to the substrate 11 and drying
  • a spin coating method a dip coating method, an ink jet method, a printing method
  • FIG. 2 is a diagram illustrating an example of the shape of the opening 17 and the first electrode 14 and their relative arrangement in the light emitting device to which the present embodiment is applied.
  • FIG. 2 shows the shape and relative arrangement of the plurality of openings 17 and the plurality of first electrodes 14 in a plan view in one section in the light emitting region of the light emitting device to which the present embodiment is applied. .
  • FIG. 2A shows a plurality of openings 17 having a rectangular planar shape, and a plurality of rectangular first electrodes 14 having a rectangular shape in the same light emitting region.
  • positioned so that it may cross substantially orthogonally is shown.
  • each of the plurality of openings 17 has an elongated rectangular shape having a first major axis and a first minor axis that are orthogonal to each other, and the first major axis faces each other.
  • the first long axis of the opening 17 indicates the long side of the rectangle
  • the first short axis indicates the short side of the rectangle.
  • the length of the first major axis of the opening 17 is three times or more the length of the first minor axis. Further, it is more preferably 5 times or more the length of the first short axis.
  • the lengths of the first major axis and the first minor axis in the elongated shape are not strictly defined for every shape, but are, for example, the maximum width of the shape in each axial direction. Is defined.
  • each of the plurality of first electrodes 14 has an elongated rectangular shape having a second major axis and a second minor axis that are orthogonal to each other, and each has a certain length and width. It is formed at intervals.
  • the second long axis of the first electrode 14 indicates the long side of the rectangle
  • the second short axis indicates the short side of the rectangle.
  • the planar shapes of the plurality of first electrodes 14 are substantially the same.
  • a plurality of first electrodes 14 are preferably included in one section. In this case, the plurality of first electrodes 14 are formed so that the second major axes are parallel to each other. In FIG. 2A, the positions of the plurality of first electrodes 14 are periodically arranged.
  • the present embodiment is not limited to this, and the first electrodes 14 may be arranged randomly within the above range. good.
  • the plurality of first electrodes 14 need to be distributed with a substantially uniform density.
  • the plurality of first electrodes 14 are preferably arranged so that the ratio of the area where the electrodes are formed to the area of the light emitting region is increased. Specifically, it is preferable that the area occupation ratio of the first electrode 14 in the light emitting region is 50% or more, and by setting it in such a range, it is possible to keep the macroscopic luminance of the light emitting region high. .
  • the organic compound layer As described with reference to FIG. 1, when the first electrode 14 and the conductor 12 are electrically connected inside the opening 17 to apply a voltage to the first electrode 14 and the second electrode 16, the organic compound layer The portion in contact with the first electrode 14 emits light.
  • the angle ( ⁇ ) formed between the direction of the first major axis in the plurality of openings 17 and the direction of the second major axis in the plurality of first electrodes 14 is 90 degrees. It is arranged to be.
  • the angle formed by the first major axis and the second major axis is represented by the angle on the acute side of the angles at which the two straight lines intersect.
  • many first electrodes 14 are in contact with the conductor 12 in any of the openings 17. For this reason, when a voltage is applied between the first electrode 14 and the second electrode 16, the light emitting layer included in the organic compound layer 15 positioned on almost all the first electrodes 14 emits light, and the light emitting layer emits light. The area ratio of the portion to be increased.
  • FIG. 2B shows an example in which the opening 17 having a rectangular planar shape and the first electrode 14 having a rectangular planar shape are arranged with their long axes substantially parallel to each other.
  • the number of first electrodes 14 that are not in contact with the conductor 12 (electrically isolated) in the opening 17 increases. That is, the first electrode 14 that is electrically connected to the conductor 12 in the opening 17 and the first electrode 14 that is not electrically connected to the conductor 12 are mixed. For this reason, since the light emitting layer included in the organic compound layer 15 located on the first electrode 14 not electrically connected to the conductor 12 does not emit light, the area ratio of the light emitting portion in the light emitting layer is reduced.
  • the opening 17 having a rectangular planar shape and the first electrode 14 having a rectangular planar shape are arranged so that the angle formed by the major axes of each other is 45 degrees.
  • An example is shown.
  • the number of the first electrodes 14 electrically connected to the conductor 12 in the opening 17 is intermediate between the case of FIG. 2A and the case of FIG. 2B, and the area of the light emitting portion in the light emitting layer. The ratio is also between them.
  • the present embodiment by changing the relative arrangement of the plurality of openings 17 having an elongated shape and the plurality of first electrodes 14 having an elongated shape in different sections, It is possible to control the area ratio of the light emitting portion in the light emitting layer of the partition. Specifically, by changing the angle ( ⁇ ) formed by the first major axis of the opening 17 and the second major axis of the first electrode 14 within a range of 0 degrees to 90 degrees for each section, The light emission luminance for each section can be changed greatly.
  • FIG. 3 is a diagram for explaining an example in which the direction of the first electrode 14 changes depending on the distance from the terminal portion in the light emitting region in the light emitting device to which the present embodiment is applied.
  • a method is used in which the angle ( ⁇ ) formed by the opening 17 and the first electrode 14 is changed within a range of 0 ° to 90 ° to control the area ratio of the light emitting portion in the light emitting layer.
  • the light emission luminance of the entire light emitting region including a plurality of sections is controlled. Note that the present embodiment is not limited to this.
  • a terminal portion 18 for connecting to a power source is formed at least at a part outside the light emitting region.
  • the conductor 12 is a transparent conductive film made of a metal oxide such as ITO or IZO
  • the voltage drop due to the internal resistance of the conductor 12 causes a portion farther from the terminal portion in the light emitting region per unit area. The brightness decreases.
  • the light emitting region is divided into a plurality of sections (in FIG. 3, three sections (section 1, section 2, section 3)), and the area ratio of the light emitting portion in the light emitting layer becomes larger as the section is farther from the terminal portion 18. Further, by setting the angle ⁇ (that is, the angle formed between the direction of the first major axis in the opening 17 and the direction of the second major axis in the first electrode 14) in each section, The brightness can be made uniform.
  • the preferable size of the shape of the opening 17 and the first electrode 14 viewed from the direction perpendicular to the substrate 11 is visually recognized as a continuous light emitting surface in the plurality of sections, and the light emitting device. Is determined from the viewpoint of easy manufacture.
  • the length of the first short axis of the opening 17 and the length of the second short axis of the first electrode 14 are each preferably in the range of 0.1 ⁇ m to 10 ⁇ m. . From the viewpoint that it is easy to control the luminance by changing the angle ( ⁇ ) formed by the first long axis of the opening 17 and the second long axis of the first electrode 14, the first of the opening 17.
  • the major axis of the first electrode 14 and the length of the second major axis of the first electrode 14 are not less than five times the length of the first minor axis of the opening 17 and the second minor axis of the first electrode 14, respectively. It is preferable. Further, in each of the plurality of sections, the distance between the openings 17 in the first minor axis direction of the openings 17 is shorter than the length of the second major axis of the first electrode 14, and It is preferable that the length is longer than the length of the second short axis because it is easier to control the luminance. In the present embodiment, it is preferable that about 10 2 to 10 8 of these openings 17 and first electrodes 14 are formed in an arbitrary 1 mm square region of the light emitting region.
  • planar shape of the first electrode 14 and the opening 17 is not limited to a rectangle as shown in FIGS. 2A and 2B, but is preferably an elongated shape. Next, examples of the planar shape of the first electrode 14 and the opening 17 will be described.
  • FIG. 4 is a diagram for explaining an example of the planar shape of the first electrode 14 and the opening 17.
  • the planar shape of the first electrode 14 and the opening 17 is not limited to a rectangle, but is preferably an elongated shape.
  • elongated shapes including a rectangle include, for example, a rectangle (FIG. 4A), an ellipse (FIG. 4B), a rhombus (FIG. 4C), and a parallelogram (FIG. 4D). , Triangles (FIGS. 4E and 4F), trapezoids (FIGS. 4G and 4H), and the like.
  • the directions of the first major axis of the opening 17 and the second major axis of the first electrode 14 are strictly defined for all shapes.
  • the shape may be along the longitudinal direction of each shape.
  • the shapes shown in FIGS. 4A to 4H are defined as follows.
  • the first major axis x a a first short axis y a of the opening 17 are each long side and short side, a first long axis x a length and the length of the first short axis y a of is defined as the length of the long and short side of each long side.
  • the second major axis x a and the second short axis y a of the first electrode 14 are each long side and short side, the length and the second short axis y of the second major axis x a the length of a is defined as the length of the long and short side of each long side.
  • the first major axis x c of the opening 17 is a line segment connecting the two acute vertices of the first short axis y c is two obtuse Is defined as the line connecting the vertices.
  • the second is the long axis x c of the first electrode 14, a line segment connecting the two acute vertices of the second short axis y c is, if it is a line segment connecting two obtuse apex of the Defined.
  • the first major axis x d of the opening 17 is long side direction of the first short axis y d in the first major axis x d a direction orthogonal, its length is defined as the width of the parallelogram in the direction of the first short axis y d.
  • the second major axis x d of the first electrode 14 is a long side
  • the direction of the second short axis y d is a direction orthogonal to the first long axis x d
  • the length a it is defined as the width of the parallelogram in the two directions of the minor axis y d.
  • the first major axis x e of the opening 17 a line segment connecting the intersection of the perpendicular bisector and isosceles triangle apex angle
  • the first short axis y e is defined to be the base.
  • the second major axis x e of the first electrode 14 is a line segment connecting the intersection of the perpendicular bisector and isosceles triangle of the apex angle
  • the second short axis y e is the base Is defined.
  • the first long axis x f of the opening 17 is the bottom
  • the midpoint of the first short axis y f vertex and base Is defined as a line segment connecting
  • the second major axis x f of the first electrode 14 is bottom side is defined as a second short axis y f a line segment connecting the midpoint of the vertices and bottom.
  • the first major axis xg of the opening 17 is between the upper base and the lower base among the vertical lines of the upper base (lower base).
  • the first short axis y g is defined as the longer side of the upper and lower bases.
  • the second major axis x g of the first electrode 14 is a line segment existing between the upper base and the lower base among the vertical lines of the upper base (lower base), and the second short axis y g is , The longer side of the upper and lower bases.
  • the first major axis x h of the opening 17 is the longer side of the upper base and the lower base
  • the first minor axis y h of, among the perpendicular of the upper base (lower base) is defined as a line segment that exists between the upper base and the lower base.
  • the second major axis x h of the first electrode 14 is the longer side of the upper and lower bases
  • the second minor axis y h is the perpendicular of the upper base (lower base). Of these, it is defined as a line segment that exists between the upper and lower bases.
  • first major axis or second major axis
  • first minor axis or second minor axis
  • Method for forming opening 17 examples include a method using photolithography. In order to perform this method, first, a resist solution is applied on the insulating layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer. Then, a mask on which a predetermined pattern for forming the opening 17 is drawn is applied, and exposure is performed using ultraviolet (UV), electron beam (EB), or the like.
  • UV ultraviolet
  • EB electron beam
  • a pattern of the opening 17 that is the same size as the mask pattern is formed.
  • reduced exposure for example, exposure using a stepper
  • the pattern of the opening 17 reduced with respect to the mask pattern is formed.
  • the exposed portion of the resist layer is removed using a developer, the resist layer in the pattern portion is removed.
  • the exposed portion of the insulating layer 13 (and the portion of the conductor 12 in some cases) is removed by etching to form an opening 17.
  • etching either dry etching or wet etching can be used.
  • dry etching reactive ion etching (RIE) using inductively coupled plasma or capacitively coupled plasma can be used.
  • wet etching a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used. it can. Note that when etching is performed, a layer through which the opening 17 passes can be selected by adjusting etching conditions (processing time, gas used, pressure, substrate temperature).
  • the patterning of the opening 17 may be performed at the same time as the formation of the insulating layer 13.
  • the film can be formed by a film forming method such as a printing method for drawing the insulating layer 13 while leaving the pattern of the opening 17.
  • Patterning method of the first electrode 14 As a patterning method for the first electrode 14, a method such as photolithography can be used in the same manner as the method for forming the opening 17 described above. The patterning of the first electrode 14 may be performed simultaneously with the film formation or after the film formation.
  • the angle ⁇ formed by the direction of the first major axis in the opening 17 and the direction of the second major axis in the first electrode 14 is within one section. Although constant, the angle ⁇ is not constant over all sections in the light emitting area. That is, the light emitting region includes at least two sections having different angles ⁇ .
  • the angle ⁇ can be easily changed by changing the relative angle between the substrate 11 and the photomask.
  • region can be controlled easily.
  • patterning can be performed more easily by patterning all the light emitting regions at once or by performing the patterning for each section. Further, if the first long axes are formed so as to be parallel to each other in all of the openings 17 in the light emitting region, the patterning of the openings 17 is easy, and the luminance is controlled by changing the angle ⁇ . Is preferable because it is easy.
  • the patterning of the first electrode 14 is easy, and the brightness is obtained by changing the angle ⁇ . Is preferable because it can be easily controlled.
  • each section can be patterned using the same mask. Easy to manufacture.
  • the patterns of the plurality of openings 17 and the plurality of first electrodes 14 are the same between the sections.
  • the interval between the electrodes 14 is the same in any section, and the direction of the first major axis in the opening 17 and the second major axis in the first electrode 14 may be different for each section.
  • a protective layer or a protective cover for protecting the light-emitting device from the outside.
  • a polymer compound, metal oxide, metal fluoride, metal boride, silicon nitride, silicon oxide, or the like can be used. And these laminated bodies can also be used.
  • a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used.
  • a protective cover it is preferable to employ a method in which a thermosetting resin, a photocurable resin, frit glass, or the like is attached to the element substrate and sealed.
  • a spacer between the substrate 11 and the protective cover because a predetermined space can be secured between the light emitting unit 10 and the protective cover and the light emitting unit can be prevented from being damaged. Then, by filling an inert gas such as nitrogen, argon, or helium in such a space, it becomes easy to prevent the upper second electrode 16 from being oxidized. In particular, it is preferable to use helium because heat conduction is high, and thus heat generated from the light emitting device when voltage is applied can be effectively transmitted to the protective cover. Furthermore, by installing a desiccant such as barium oxide in such a space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the light emitting device.
  • an inert gas such as nitrogen, argon, or helium
  • the light emitting device of this embodiment can be used for a surface emitting light source or the like. Specifically, it is suitably used for backlights, electrophotography, illumination, resist exposure, reading devices, interior illumination, optical communication systems and the like in display devices.

Abstract

A light emission device having a light emission region comprising a plurality of minute light emission units electrically connected in parallel, the light emission device including, in the light emission region, a planar conductor, an insulation layer formed on the upper surface of the planar conductor, a plurality of openings formed in the insulation layer, a plurality of first electrodes formed on the insulation layer, an organic compound layer including a light emission layer, the organic compound layer being formed so as to cover the plurality of first electrodes, and a second electrode formed on the organic compound layer, and comprises a plurality of sections each containing at least two of the first electrodes. At least some of the plurality of first electrodes are formed also in the openings and are electrically connected to the conductor, and thereby form electrodes that conduct, in the plurality of minute light emission units, with the organic compound layer. Each of the plurality of openings has a thin shape having a first major axis and a first minor axis orthogonal to each other in plan view, and the openings are formed so that in each section, the first major axes are parallel to each other. Each of the plurality of first electrodes has a thin shape having a second major axis and a second minor axis orthogonal to each other in plan view, and the first electrodes are formed so that in each section, the second major axes are parallel to each other. In each of the plurality of sections, the distance between the openings in the direction of the first minor axes of the openings is less than the length of the second major axes of the first electrodes and greater than the length of the second minor axes of the first electrodes. Each of the plurality of sections includes at least two sections between which the angle between the first major axes of the openings and the second major axes of the first electrodes in each of the sections is different.

Description

発光装置Light emitting device
 本発明は、一対の電極間に挟まれた、発光層を含む有機化合物層に、電圧を印加することにより発光する有機発光素子を用いた発光装置に関する。 The present invention relates to a light emitting device using an organic light emitting element that emits light by applying a voltage to an organic compound layer including a light emitting layer sandwiched between a pair of electrodes.
 有機化合物を発光体として用いる有機発光素子は、発光効率が高く長寿命である特徴から、近年、照明用途への応用が期待されており、大面積化の研究が盛んに行われている。照明として用いられる面状の発光体は、平滑な表面を有する面状の電極上に、有機化合物層を均一な厚さで形成し、その上を対向電極で覆うことによって得られる。 Organic light-emitting elements using organic compounds as light emitters are expected to be applied to lighting applications in recent years because of their high luminous efficiency and long lifetime, and research on increasing the area has been actively conducted. A planar light-emitting body used as illumination is obtained by forming an organic compound layer with a uniform thickness on a planar electrode having a smooth surface and covering it with a counter electrode.
 特許文献1には、電極上に絶縁層を設け、発光面内に非発光領域を形成し、非発光領域の密度を制御することで輝度を制御した有機発光素子が開示されている。
 一方、特許文献2には、正孔注入電極層と電子注入電極層の間に誘電体層が配置され、当該誘電体層を貫通するように形成されたキャビティの内部にエレクトロルミネッセント層が配置された発光素子が開示されている。
Patent Document 1 discloses an organic light-emitting element in which an insulating layer is provided on an electrode, a non-light-emitting region is formed in a light-emitting surface, and the luminance is controlled by controlling the density of the non-light-emitting region.
On the other hand, in Patent Document 2, a dielectric layer is disposed between a hole injection electrode layer and an electron injection electrode layer, and an electroluminescent layer is formed inside a cavity formed so as to penetrate the dielectric layer. Arranged light emitting elements are disclosed.
特開2007-294441JP2007-294441 特表2010-509729Special table 2010-509729
 ところで、面状の発光体では、発光面の大面積化に伴い、電極の内部抵抗に起因する輝度ムラを低減したり、また、逆に、所望の領域の輝度が周囲よりも高くなるようにしたり等、発光面内の輝度分布を容易に制御する必要が生じる。
 しかし、例えば、特許文献1のような手法の場合、特に大面積の面状発光体では、このような複雑な絶縁層のパターンを全面に形成することは容易でない。
 また、特許文献2に記載されたような発光素子も、正孔注入電極層上に発光部である微細な孔部(キャビティ)を複数配列することによって、面発光体に見える疑似面発光体とすることができる。しかし、この場合、複数の発光部に対して電極は共通であるため、輝度の制御は容易ではない。
By the way, in the planar light emitting body, as the area of the light emitting surface is increased, the luminance unevenness due to the internal resistance of the electrode is reduced, and conversely, the luminance of a desired region is made higher than the surroundings. Therefore, it is necessary to easily control the luminance distribution in the light emitting surface.
However, for example, in the case of the technique disclosed in Patent Document 1, it is not easy to form such a complicated insulating layer pattern on the entire surface, particularly in the case of a large-area planar light emitter.
In addition, the light emitting device described in Patent Document 2 also includes a pseudo surface light emitter that looks like a surface light emitter by arranging a plurality of fine holes (cavities) that are light emitting portions on the hole injection electrode layer. can do. However, in this case, since the electrodes are common to the plurality of light emitting units, it is not easy to control the luminance.
 ここで、キャビティの形成密度を変化させて輝度ムラを調整する方法を採用しようとすると、
 (1)輝度分布に対して、これを打ち消すために適切な形成密度の分布、配列を有するキャビティを設計し、
 (2)上記設計したキャビティ構造を有する素子を作製する、
を繰り返すことになり、キャビティ形成の度にマスク等を用意する必要がある。
Here, when trying to adopt a method of adjusting the luminance unevenness by changing the formation density of the cavity,
(1) Designing a cavity having an appropriate distribution of distribution density and arrangement to cancel the luminance distribution,
(2) An element having the designed cavity structure is manufactured.
Therefore, it is necessary to prepare a mask or the like every time the cavity is formed.
 本発明は、有機発光素子の発光面内における輝度分布を容易に制御することができ、且つ作成が容易な有機発光素子を用いた発光装置を提供することを課題としている。より具体的には、キャビティ構造を有する有機EL素子の輝度ムラをなくすために、上述の従来技術には必要なマスクの作り直しが不要な有機EL素子を用いた有機EL装置を提供するものである。 An object of the present invention is to provide a light-emitting device using an organic light-emitting element that can easily control the luminance distribution in the light-emitting surface of the organic light-emitting element and can be easily produced. More specifically, the present invention provides an organic EL device using an organic EL element that does not require reworking of a mask necessary for the above-described conventional technique in order to eliminate luminance unevenness of the organic EL element having a cavity structure. .
 本発明者は、細長い形状の開口部と電極を含む複数の微小な発光部からなる発光装置において、開口部と電極の形状の長軸がなす角度を変化させることで、発光面内の輝度勾配を容易に制御できる有機発光素子を用いた発光装置を見出し、本発明を完成した。 The present inventor has disclosed a luminance gradient in a light emitting surface by changing an angle formed by a major axis of the shape of an opening and an electrode in a light emitting device including a plurality of minute light emitting units including an elongated opening and an electrode. The present invention was completed by finding a light-emitting device using an organic light-emitting element that can be easily controlled.
 すなわち、本発明によれば、電気的に並列接続された複数の微小な発光部からなる発光領域を有する発光装置であって、前記発光装置は、前記発光領域において、1つの面状の導電体と、前記面状の導電体の上面に形成された絶縁層と、前記絶縁層に形成された複数の開口部と、前記絶縁層上に形成された複数の第1電極と、前記複数の第1電極を覆って形成された、発光層を含む有機化合物層と、前記有機化合物層上に形成された第2電極と、を含むとともに、それぞれ前記第1電極を2つ以上含む複数の区画からなり、複数の前記第1電極の内の少なくとも一部は前記開口部内にも形成されて前記導電体と電気的に接続することで、前記複数の微小な発光部において有機化合物層に通電する電極をなし、複数の前記開口部は、平面視で、互いに直交する第1の長軸および第1の短軸を持つ細長い形状を有し、1つの前記区画内において、当該第1の長軸が互いに平行となるように形成され、複数の前記第1電極は、平面視で、互いに直交する第2の長軸および第2の短軸を持つ細長い形状を有し、1つの前記区画内において、当該第2の長軸が互いに平行となるように形成され、前記各複数の区画内において、前記開口部の前記第1の短軸の方向における当該開口部間の距離が、前記第1電極の前記第2の長軸の長さより短く、且つ当該第1電極の前記第2の短軸の長さより長く、前記複数の区画は、当該複数の各区画内における前記開口部の前記第1の長軸と前記第1電極の前記第2の長軸がなす角度が当該複数の区画間で互いに異なる少なくとも2つの区画を含むことを特徴とする発光装置が提供される。 That is, according to the present invention, a light-emitting device having a light-emitting region composed of a plurality of minute light-emitting portions electrically connected in parallel, wherein the light-emitting device has one planar conductor in the light-emitting region. An insulating layer formed on an upper surface of the planar conductor, a plurality of openings formed in the insulating layer, a plurality of first electrodes formed on the insulating layer, and the plurality of first electrodes An organic compound layer including a light-emitting layer formed over one electrode; and a second electrode formed on the organic compound layer; and a plurality of sections each including two or more first electrodes. And at least a part of the plurality of first electrodes is also formed in the opening and is electrically connected to the conductor so that the organic compound layer is energized in the plurality of minute light emitting portions. The plurality of openings are in plan view. The first major axis and the first minor axis orthogonal to each other have an elongated shape, and the first major axis is formed in parallel with each other in one of the sections, and the plurality of the first major axes are formed. The electrode has an elongated shape having a second major axis and a second minor axis orthogonal to each other in a plan view, and is formed so that the second major axis is parallel to each other in one of the compartments. In each of the plurality of sections, a distance between the openings in the direction of the first short axis of the opening is shorter than a length of the second long axis of the first electrode, and the first The plurality of sections are longer than the length of the second short axis of one electrode, and the first long axis of the opening and the second long axis of the first electrode are in each of the plurality of sections. The angle formed includes at least two sections that are different from each other among the plurality of sections. Emitting device is provided to symptoms.
 前記発光領域内において、前記導電体に電気的に接続した前記第1電極と、前記導電体に電気的に接続していない当該第1電極とが混在していることが好ましい。
 前記開口部の前記第1の長軸および前記第1電極の前記第2の長軸のいずれか一方が、前記発光領域内において互いに平行であることが好ましい。
 前記開口部の前記第1の長軸および前記第1電極の前記第2の長軸の長さが、それぞれ当該開口部の前記第1の短軸および当該第1電極の前記第2の短軸の長さの5倍以上であることが好ましい。
 前記発光領域内において、複数の前記開口部の形状および大きさが全て同一および/または複数の前記第1電極の形状および大きさが全て同一であることが好ましい。
 複数の前記開口部の配列パターンおよび複数の前記第1電極の配列パターンが、それぞれ前記複数の区画について同一であり、前記第1の長軸と前記第2の長軸のなす角度のみが異なることが好ましい。
It is preferable that the first electrode electrically connected to the conductor and the first electrode not electrically connected to the conductor are mixed in the light emitting region.
One of the first long axis of the opening and the second long axis of the first electrode is preferably parallel to each other in the light emitting region.
The lengths of the first major axis of the opening and the second major axis of the first electrode are respectively the first minor axis of the opening and the second minor axis of the first electrode. The length is preferably 5 times or more.
In the light emitting region, it is preferable that the shapes and sizes of the plurality of openings are the same and / or the shapes and sizes of the plurality of first electrodes are all the same.
The arrangement pattern of the plurality of openings and the arrangement pattern of the plurality of first electrodes are the same for each of the plurality of sections, and only the angle formed by the first major axis and the second major axis is different. Is preferred.
 前記開口部の前記第1の短軸の長さおよび前記第2の短軸の長さがそれぞれ0.1μm~10μmであることが好ましい。また、当該開口部および前記第1電極が、前記発光領域の任意の1mm四方の領域においてそれぞれ10個~10個形成されていることが好ましい。
 複数の前記開口部および複数の前記第1電極のいずれか一方が、前記発光領域内において長軸が互いに向かい合って平行に、且つ周期的に配列して形成されていることが好ましい。
 前記面状の導電体が金属酸化物からなる透明導電膜であり、前記発光領域の外側の少なくとも一部に、当該面状の導電体と電気的に接続するとともに、これを電源と接続するための端子部が形成され、前記開口部の前記第1の長軸と前記第1電極の前記第2の長軸とのなす角度が、前記区画における前記発光部の面積割合が当該端子部から遠い当該区画ほど大きくなるように設定されていることが好ましい。
 前記角度が前記端子部から遠い前記区画ほど大きいことが好ましい。
The length of the first short axis and the length of the second short axis of the opening are preferably 0.1 μm to 10 μm, respectively. Further, the opening portion and the first electrode, which is preferably respectively 10 2 to 10 8 formed in any 1mm square area of the light emitting region.
It is preferable that any one of the plurality of openings and the plurality of first electrodes is formed so that the long axes face each other in parallel and periodically in the light emitting region.
The planar conductor is a transparent conductive film made of a metal oxide, and is electrically connected to at least a part of the outer side of the light emitting region with the planar conductor and connected to a power source. And the angle formed by the first long axis of the opening and the second long axis of the first electrode is such that the area ratio of the light emitting portion in the section is far from the terminal portion. It is preferable that the section is set to be larger.
It is preferable that the angle is larger as the section is farther from the terminal portion.
 本発明によれば、有機発光素子の発光面内における輝度分布勾配を容易に制御し、このような有機発光素子を用いた発光装置が提供される。 According to the present invention, a luminance distribution gradient in the light emitting surface of an organic light emitting element is easily controlled, and a light emitting device using such an organic light emitting element is provided.
本実施の形態が適用される発光装置の、発光部近傍の部分断面図である。It is a fragmentary sectional view of the light emission part vicinity of the light-emitting device to which this Embodiment is applied. 本実施の形態が適用される発光装置において、開口部および第1電極の形状と相対配置の一例を説明する図である。It is a figure explaining an example of the shape and relative arrangement | positioning of an opening part and a 1st electrode in the light-emitting device to which this Embodiment is applied. 本実施の形態が適用される発光装置における発光領域において、端子部からの距離により第1電極の向きが変化する一例を説明する図である。It is a figure explaining an example in which the direction of a 1st electrode changes with the distance from a terminal part in the light emission area | region in the light-emitting device to which this Embodiment is applied. 第1電極および開口部の平面形状の例を説明する図である。It is a figure explaining the example of the planar shape of a 1st electrode and an opening part.
 以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。すなわち、実施の形態の例に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に記載がない限り本発明の範囲を限定するものではなく、単なる説明例に過ぎない。また、使用する図面は、本実施の形態を説明するための一例であり、実際の大きさを表すものではない。各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。また、本明細書において、「層上」等の「上」は、必ずしも上面に接触して形成される場合に限定されず、離間して上方に形成される場合や、層と層の間に介在層が存在する場合も包含する意味で使用する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary. That is, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. . The drawings used are examples for explaining the present embodiment and do not represent actual sizes. The size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in this specification, “on” such as “on the layer” is not necessarily limited to the case where it is formed in contact with the upper surface, and is formed on the upper side in a separated manner or between layers. It is used in a sense that includes an intervening layer.
(発光装置)
 本実施の形態が適用される発光装置は、電気的に並列接続された複数の最小幅が0.1μm~10μmの発光部を有し、これらの発光部の全てを含む領域である発光領域を有する。発光装置は発光領域を1つだけ有していても、2つ以上有していてもよい。発光装置は各発光領域においてそれぞれ1つの面状の導電体を有する。また、本実施の形態が適用される発光装置は各発光領域において、更に面状の導電体の上面に形成され、複数の開口部を有する絶縁層と、当該絶縁層上に形成された複数の第1電極と、当該複数の第1電極を覆って形成された、発光層を含む有機化合物層と、当該有機化合物層上に形成された第2電極を含む。また、各発光領域は、それぞれ複数の区画に分割されてなり、各区画は上記の第1電極を2つ以上含む。上記複数の区画は、面積や形状が互いに同一でも異なっていてもよい。
(Light emitting device)
The light-emitting device to which this embodiment is applied has a plurality of light-emitting portions that are electrically connected in parallel and have a minimum width of 0.1 μm to 10 μm, and a light-emitting region that includes all of these light-emitting portions. Have. The light emitting device may have only one light emitting region or two or more light emitting regions. The light emitting device has one planar conductor in each light emitting region. In each light emitting region, the light emitting device to which this embodiment is applied is further formed on the upper surface of a planar conductor, and has an insulating layer having a plurality of openings and a plurality of insulating layers formed on the insulating layer. A first electrode; an organic compound layer including a light emitting layer formed to cover the plurality of first electrodes; and a second electrode formed on the organic compound layer. Each light emitting area is divided into a plurality of sections, and each section includes two or more of the first electrodes. The plurality of sections may be the same or different in area and shape.
(発光部10)
 図1は、本実施の形態が適用される発光装置の、発光部10近傍の部分断面図である。図1に示すように、発光装置の発光部10は、基板11上に面状の導電体12、絶縁層13、第1電極14、発光層を含む有機化合物層15および第2電極16が積層されている。絶縁層13には開口部17が設けられ、第1電極14は開口部17の内部の一部で導電体12と電気的に接続している。開口部17の内部で第1電極14と導電体12とが電気的に接続することにより、第1電極14と第2電極16の間に電圧が印加されると、有機化合物層15の第1電極14と接する部分が発光する。尚、第1電極14が開口部17の内部の全体で導電体12に電気的に接続していてもよい。
(Light Emitting Unit 10)
FIG. 1 is a partial cross-sectional view in the vicinity of a light emitting unit 10 of a light emitting device to which the present embodiment is applied. As shown in FIG. 1, a light emitting unit 10 of a light emitting device includes a planar conductor 12, an insulating layer 13, a first electrode 14, an organic compound layer 15 including a light emitting layer, and a second electrode 16 stacked on a substrate 11. Has been. An opening 17 is provided in the insulating layer 13, and the first electrode 14 is electrically connected to the conductor 12 at a part inside the opening 17. When the first electrode 14 and the conductor 12 are electrically connected inside the opening 17, and a voltage is applied between the first electrode 14 and the second electrode 16, the first of the organic compound layer 15. The portion in contact with the electrode 14 emits light. Note that the first electrode 14 may be electrically connected to the conductor 12 throughout the opening 17.
(基板11)
 基板11は、導電体12、絶縁層13、第1電極14、有機化合物層15および第2電極16を形成する支持体となるものである。基板11には、発光部10を含む発光装置に要求される機械的強度を満たす材料が用いられる。
 基板11に用いられる材料としては、発光層から出射する光を基板11側から取り出したい場合は、この光に対して透過性を有することが必要である。具体的には、サファイアガラス、ソーダガラス、石英ガラス等のガラス類;ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、シリコーン樹脂等の透明樹脂;窒化アルミ等の透明金属窒化物;アルミナ等の透明金属酸化物等が挙げられる。尚、基板11として、上記透明樹脂からなる樹脂フィルムを使用する場合は、水、酸素等のガスに対するガス透過性が低いことが好ましく、光の透過性を大きく損なわない範囲で、透明樹脂フィルムにガスの透過を抑制するガスバリア性薄膜を形成することが好ましい。
(Substrate 11)
The substrate 11 serves as a support for forming the conductor 12, the insulating layer 13, the first electrode 14, the organic compound layer 15, and the second electrode 16. A material that satisfies the mechanical strength required for the light emitting device including the light emitting unit 10 is used for the substrate 11.
As a material used for the substrate 11, when it is desired to extract light emitted from the light emitting layer from the substrate 11 side, it is necessary to have transparency to this light. Specifically, glass such as sapphire glass, soda glass, and quartz glass; transparent resin such as polymethyl methacrylate resin, polycarbonate resin, polyester resin, and silicone resin; transparent metal nitride such as aluminum nitride; transparent metal such as alumina An oxide etc. are mentioned. In addition, when using the resin film which consists of the said transparent resin as the board | substrate 11, it is preferable that gas permeability with respect to gas, such as water and oxygen, is low, and in the range which does not impair light permeability largely, it is a transparent resin film. It is preferable to form a gas barrier thin film that suppresses gas permeation.
 発光層から出射する光を基板11側から取り出す必要がない場合は、基板11の材料としては、上記の透明材料に限られず、不透明なものも使用できる。このような材料として具体的には、シリコン(Si)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)、アルミニウム(Al)の単体、またはこれらを含む合金、ステンレス等や、その他のトップエミッション型の有機EL素子で通常用いられる基板材料が挙げられる。導電体12が透明である場合、不透明な基板11の材料としては、発光層で発光した光をより多く外部へ取り出すために、光反射性の高い金属材料を用いるか、上記の光透過性を有する材料の表面に、光反射性の金属材料からなる光反射膜を形成したものを用いてもよい。また、素子発光部10の発光に伴い生じる熱を逃すため、熱伝導率の高い材料を基板に用いることが好ましい。
 基板11の厚さは、要求される機械的強度にもより適宜選択され特に限定されないが、本実施の形態では、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
When it is not necessary to extract light emitted from the light emitting layer from the substrate 11 side, the material of the substrate 11 is not limited to the transparent material described above, and an opaque material can also be used. Specifically, such materials include silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), Alternatively, niobium (Nb), aluminum (Al) alone, alloys containing these, stainless steel, and other substrate materials that are usually used in top emission type organic EL elements. In the case where the conductor 12 is transparent, the opaque substrate 11 is made of a highly light-reflective metal material or the above-described light transmittance in order to extract more light emitted from the light emitting layer to the outside. You may use what formed the light reflection film which consists of a light reflective metal material in the surface of the material which has. In addition, in order to release heat generated by light emission of the element light emitting unit 10, it is preferable to use a material having high thermal conductivity for the substrate.
The thickness of the substrate 11 is appropriately selected depending on the required mechanical strength and is not particularly limited. However, in the present embodiment, it is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm.
(導電体12)
 導電体12は、基板11上の発光領域全面に連続した面状に形成され、発光領域内の第1電極14へ電力を供給する。導電体12に使用される材料としては、電気伝導性を有するものであれば特に限定されない。発光層から出射する光を基板11側から取り出したい場合は、導電体12を形成する材料は、この光に対して透過性を有することが必要である。このような材料としては金属酸化物が好ましい。具体的には、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化スズ等の透明無機酸化物、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料、薄膜金属、薄膜状に形成された金属ナノワイヤ、およびこれらを含む複合材料等が挙げられる。導電体12の厚さは、例えば、2nm~2μmの範囲で形成することができる。但し、導電性が高いという観点では、50nm以上が好ましく、高い光透過性が維持される点では500nm以下であることが好ましい。
(Conductor 12)
The conductor 12 is formed in a planar shape continuous over the entire light emitting region on the substrate 11 and supplies power to the first electrode 14 in the light emitting region. The material used for the conductor 12 is not particularly limited as long as it has electrical conductivity. When it is desired to extract light emitted from the light emitting layer from the substrate 11 side, the material forming the conductor 12 needs to be transmissive to this light. As such a material, a metal oxide is preferable. Specifically, for example, indium tin oxide (ITO), indium zinc oxide (IZO), transparent inorganic oxides such as tin oxide, conductive polymers such as polyaniline, and conductive polymers doped with any acceptor, Examples thereof include conductive light transmissive materials such as carbon nanotubes, thin film metals, metal nanowires formed in a thin film shape, and composite materials containing these. The thickness of the conductor 12 can be formed in the range of 2 nm to 2 μm, for example. However, 50 nm or more is preferable from the viewpoint of high conductivity, and 500 nm or less is preferable in that high light transmittance is maintained.
 発光層から出射する光を基板11側から取り出す必要がない場合は、導電体12の材料としては、上記の基板11に使用可能な不透明材料として挙げた金属材料を用いることができる。また、導電体12は基板11を兼ねることができる。従って、金属材料からなる導電体12の厚さは2nm~10mmが好ましく、50nm~2mmがより好ましい。 When it is not necessary to take out the light emitted from the light emitting layer from the substrate 11 side, as the material of the conductor 12, the metal materials mentioned as the opaque material that can be used for the substrate 11 can be used. Further, the conductor 12 can also serve as the substrate 11. Accordingly, the thickness of the conductor 12 made of a metal material is preferably 2 nm to 10 mm, and more preferably 50 nm to 2 mm.
(絶縁層13)
 絶縁層13は、導電体12上に積層され、開口部17以外の箇所で導電体12と第1電極14とを分離し絶縁する。このため、絶縁層13は高い抵抗率を有する材料であることが好ましい。具体的には、抵抗率としては、10Ω・cm以上が好ましく、1012Ω・cm以上有することがより好ましい。具体的な絶縁層13の材料としては、例えば、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の金属窒化物;酸化珪素、酸化アルミニウム等の金属酸化物が挙げられる。さらに、ポリイミド、ポリフッ化ビニリデン、パリレン等の高分子化合物やスピンオングラス(SOG)等も使用可能である。
(Insulating layer 13)
The insulating layer 13 is laminated on the conductor 12 and separates and insulates the conductor 12 and the first electrode 14 at locations other than the opening 17. For this reason, the insulating layer 13 is preferably a material having a high resistivity. Specifically, the resistivity is preferably 10 8 Ω · cm or more, and more preferably 10 12 Ω · cm or more. Specific examples of the material for the insulating layer 13 include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; and metal oxides such as silicon oxide and aluminum oxide. Furthermore, polymer compounds such as polyimide, polyvinylidene fluoride, and parylene, spin-on glass (SOG), and the like can also be used.
 絶縁層13の厚さとしては、導電体12と第1電極14との間の電気抵抗が大きくなり過ぎないように5μmを超えないことが好ましい。但し、過度に薄いと絶縁耐力が十分でなくなるおそれがある。従って、好ましくは10nm~5μm、更に好ましくは50nm~500nmで形成するのがよい。 The thickness of the insulating layer 13 is preferably not more than 5 μm so that the electric resistance between the conductor 12 and the first electrode 14 does not become too large. However, if it is too thin, the dielectric strength may not be sufficient. Accordingly, it is preferable to form the film with a thickness of 10 nm to 5 μm, more preferably 50 nm to 500 nm.
 また、絶縁層13は、基板11側の面から光を取り出す場合、有機化合物層15から入射する光を屈折して光の進行方向を変えることによって基板11の外へ取り出す光を増加させることができる。このためには、絶縁層13の材料として、発光光に対する透過率が高く、有機化合物層より高屈折率の材料または低屈折率の材料を用い、絶縁層13の屈折率と有機化合物層15の屈折率との差の絶対値を0.1より大きくすることが好ましい。 In addition, when the insulating layer 13 extracts light from the surface on the substrate 11 side, the light extracted from the substrate 11 can be increased by refracting light incident from the organic compound layer 15 and changing the traveling direction of the light. it can. For this purpose, as the material of the insulating layer 13, a material having a high transmittance for emitted light and having a higher refractive index or a lower refractive index than the organic compound layer is used. The absolute value of the difference from the refractive index is preferably larger than 0.1.
(開口部17)
 開口部17は、絶縁層13を貫通して形成されている。また、絶縁層13上に形成された複数の第1電極14のうちの少なくとも一部は、開口部17の内部で導電体12と電気的に接続することにより、導電体12から第1電極14へ電力が供給される。
 開口部17は導電体12をも貫通して形成されていてもよく、この場合、開口部17の底部は基板11の上面となり、第1電極14は開口部17内部の導電体12の側面と電気的に接続される。第1電極14と第2電極16の間に電圧を印加すると、電極間に電流が流れ、有機化合物層15の発光層に含まれる発光体が発光する。従って、このとき、平面視で第1電極14上の領域が発光部となる。
(Opening 17)
The opening 17 is formed through the insulating layer 13. In addition, at least a part of the plurality of first electrodes 14 formed on the insulating layer 13 is electrically connected to the conductor 12 inside the opening 17, whereby the first electrode 14 is formed from the conductor 12. Is supplied with power.
The opening 17 may be formed so as to penetrate through the conductor 12, and in this case, the bottom of the opening 17 is the top surface of the substrate 11, and the first electrode 14 is connected to the side surface of the conductor 12 inside the opening 17. Electrically connected. When a voltage is applied between the first electrode 14 and the second electrode 16, a current flows between the electrodes, and the light emitter included in the light emitting layer of the organic compound layer 15 emits light. Therefore, at this time, the region on the first electrode 14 in a plan view is a light emitting portion.
(第1電極14)
 本実施の形態において、1つの発光領域には複数の第1電極14が存在する。第1電極14は、当該第1電極14の少なくとも一部が開口部17内にも形成されて導電体12と電気的に接続することにより、複数の発光部において有機化合物層15に通電する電極として機能する。本実施の形態において、第1電極14は陽極である。第1電極14は、開口部17の内部で導電体12と電気的に接続し、第2電極16との間で電圧を印加することにより有機化合物層15に正孔を注入する。
(First electrode 14)
In the present embodiment, a plurality of first electrodes 14 exist in one light emitting region. The first electrode 14 is an electrode in which at least a part of the first electrode 14 is also formed in the opening 17 and is electrically connected to the conductor 12, thereby energizing the organic compound layer 15 in a plurality of light emitting portions. Function as. In the present embodiment, the first electrode 14 is an anode. The first electrode 14 is electrically connected to the conductor 12 inside the opening 17, and injects holes into the organic compound layer 15 by applying a voltage between the second electrode 16.
 第1電極14に使用される材料としては、電気伝導性が高く、仕事関数が4.5eV以上であるものが好ましい。発光層から射出出射する光を基板11側から取り出したい場合は、このような材料としては、例えば、ITO、IZO、酸化スズ等の導電性金属酸化物や金属等が挙げられる。また、ポリアニリン誘導体、ポリチオフェン誘導体およびこれらのポリマーとポリスチレンスルホン酸との混合物等の有機物からなる導電材料を用いてもよい。中でも有機化合物層15へ正孔を注入しやすいITO、IZOおよびポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸混合物(PEDOT:PSS)が好ましい。
 発光層から出社射する光を基板11側から取り出す必要がない場合は、導電体12に使用可能な不透明材料として挙られたものを使用することができる。
The material used for the first electrode 14 is preferably a material having high electrical conductivity and a work function of 4.5 eV or more. When it is desired to extract light emitted from the light emitting layer from the substrate 11 side, examples of such a material include conductive metal oxides such as ITO, IZO, and tin oxide, metals, and the like. Moreover, you may use the electroconductive material which consists of organic substances, such as a polyaniline derivative, a polythiophene derivative, and the mixture of these polymers, and a polystyrene sulfonic acid. Of these, ITO, IZO and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid mixture (PEDOT: PSS), which easily inject holes into the organic compound layer 15, are preferable.
When it is not necessary to extract light emitted from the light emitting layer from the substrate 11 side, those listed as opaque materials that can be used for the conductor 12 can be used.
 また、前述のように、光取出し効率を向上させるために、絶縁層13の開口部17の側面に発光光を入射させて光を取り出す場合には、第1電極14は発光光に対して透過率が高い材料を使用する必要がある。この点では、上記の材料うち導電性金属酸化物や有機物からなる導電材料が好ましい。 As described above, in order to improve the light extraction efficiency, when the emitted light is incident on the side surface of the opening 17 of the insulating layer 13 and the light is extracted, the first electrode 14 transmits the emitted light. It is necessary to use materials with a high rate. In this respect, among the above materials, a conductive material made of a conductive metal oxide or an organic material is preferable.
 第1電極14の厚さは、例えば、2nm~2μmで形成することができる。但し、導電性が高いという観点では、50nm以上が好ましく、第1電極14のパターニングや有機化合物層15の形成が容易な観点からは500nm以下であることが好ましい。尚、仕事関数は、紫外線光電子分光分析法等の方法により測定することができる。
 第1電極14の端部は、第1電極14と第2電極16間での短絡を防ぐための措置を取られていることが好ましい。具体的には、第1電極14の端部が立面視でテーパー状(絶縁層13側の表面が有機層化合物層15側の表面よりも大きい)となっているか、平面視で第1電極14に重なるように、第1電極14上に絶縁性の保護層を形成することが好ましい。
The first electrode 14 can be formed with a thickness of 2 nm to 2 μm, for example. However, 50 nm or more is preferable from the viewpoint of high conductivity, and 500 nm or less is preferable from the viewpoint of easy patterning of the first electrode 14 and formation of the organic compound layer 15. The work function can be measured by a method such as ultraviolet photoelectron spectroscopy.
The end of the first electrode 14 is preferably provided with measures for preventing a short circuit between the first electrode 14 and the second electrode 16. Specifically, the end of the first electrode 14 is tapered in an elevational view (the surface on the insulating layer 13 side is larger than the surface on the organic layer compound layer 15 side), or the first electrode in a plan view. It is preferable to form an insulating protective layer on the first electrode 14 so as to overlap with the first electrode 14.
(有機化合物層15)
 有機化合物層15は、発光層を含み、1層または積層された複数層の有機化合物を含む層からなり、本実施の形態においては第1電極14を覆って発光領域の全面に連続膜として形成される。発光層は、第1電極14と第2電極16との間に電圧を印加することにより発光する発光材料を含む。このような発光材料としては、公知の発光材料を使用することができ、発光性ポリマー化合物及び発光性非ポリマー化合物のいずれも使用することができる。本実施の形態では、発光材料として、燐光発光性の有機化合物または有機金属錯体を使用することが好ましい。本実施形態においては、図1に示されるように有機化合物層15が第1電極14を覆って発光領域の全面に連続膜として形成されているが、有機化合物層15は第1電極14上に形成されていればよく、絶縁層13上には有機化合物層15が形成されていなくてもよい。
(Organic compound layer 15)
The organic compound layer 15 includes a light emitting layer, and includes a single layer or a layer including a plurality of stacked organic compounds. In the present embodiment, the organic compound layer 15 covers the first electrode 14 and is formed as a continuous film on the entire surface of the light emitting region. Is done. The light emitting layer includes a light emitting material that emits light when a voltage is applied between the first electrode 14 and the second electrode 16. As such a light emitting material, a known light emitting material can be used, and any of a light emitting polymer compound and a light emitting non-polymer compound can be used. In this embodiment mode, a phosphorescent organic compound or an organometallic complex is preferably used as the light-emitting material. In the present embodiment, as shown in FIG. 1, the organic compound layer 15 is formed as a continuous film over the entire surface of the light emitting region so as to cover the first electrode 14, but the organic compound layer 15 is formed on the first electrode 14. The organic compound layer 15 may not be formed on the insulating layer 13 as long as it is formed.
 さらに、本実施の形態においては、発光材料として、特に、シクロメタル化錯体を用いることが、発光効率向上の観点から非常に望ましい。シクロメタル化錯体としては、例えば、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体、2-フェニルキノリン誘導体等の配位子を有するイリジウム(Ir);白金(Pt)および金(Au)等の錯体が挙げられる。これらの中でもIr錯体が特に好ましい。シクロメタル化錯体は、シクロメタル化錯体を形成するのに必要な配位子以外に、他の配位子を有していてもよい。尚、シクロメタル化錯体には、三重項励起子から発光する化合物も含まれ、このような化合物は発光効率向上の観点から好ましい。 Furthermore, in the present embodiment, it is very desirable to use a cyclometalated complex as the light emitting material from the viewpoint of improving the light emission efficiency. Examples of cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like. Examples of the complex include iridium (Ir) having a ligand; platinum (Pt) and gold (Au). Among these, an Ir complex is particularly preferable. The cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex. The cyclometalated complex includes a compound that emits light from triplet excitons, and such a compound is preferable from the viewpoint of improving luminous efficiency.
 また、発光性ポリマー化合物としては、(ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン])(MEH-PPV)等のポリ-p-フェニレンビニレン(PPV)誘導体、ポリフルオレン誘導体、ポリチオフェン誘導体等のπ共役系のポリマー化合物;色素分子とテトラフェニルジアミン誘導体またはトリフェニルアミン誘導体を主鎖または側鎖に導入した非共役ポリマー等が挙げられる。発光性ポリマー化合物と発光性非ポリマー化合物とを併用してもよい。 Examples of the light emitting polymer compound include poly-p-phenylene vinylene (PPV) derivatives such as (poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene]) (MEH-PPV). Π-conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives; non-conjugated polymers in which a dye molecule and a tetraphenyldiamine derivative or a triphenylamine derivative are introduced into the main chain or side chain. A light emitting polymer compound and a light emitting non-polymer compound may be used in combination.
 発光層は発光材料とともにホスト材料を含み、ホスト材料中に発光材料が分散されていてもよい。このようなホスト材料は、電荷輸送性を有していることが好ましく、正孔輸送性化合物や電子輸送性化合物であることが好ましい。 The light emitting layer may contain a host material together with the light emitting material, and the light emitting material may be dispersed in the host material. Such a host material preferably has a charge transporting property, and is preferably a hole transporting compound or an electron transporting compound.
 有機化合物層15は、第1電極14から正孔を受け取り、発光層へ輸送するための正孔輸送層(図示せず)を含んでいてもよい。正孔輸送層は、第1電極14と発光層との間に設けられる。
 このような正孔輸送層を形成する正孔輸送材料としては、公知の材料を使用することができる。例えば、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-1,1’-ビフェニル-4,4’ジアミン(TPD)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)、4、4’,4’’-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン(m-MTDATA)等のトリフェニルアミン誘導体;ポリビニルカルバゾール;上記トリフェニルアミン誘導体に重合性置換基を導入して重合したポリマー化合物等が挙げられる。上記正孔輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる正孔輸送材料から形成された複数の正孔輸送層を積層してもよい。
The organic compound layer 15 may include a hole transport layer (not shown) for receiving holes from the first electrode 14 and transporting them to the light emitting layer. The hole transport layer is provided between the first electrode 14 and the light emitting layer.
As a hole transport material for forming such a hole transport layer, a known material can be used. For example, N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′diamine (TPD), 4,4′-bis [N- (1- Naphthyl) -N-phenylamino] biphenyl (α-NPD), 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), and the like; polyvinylcarbazole A polymer compound obtained by polymerizing the above triphenylamine derivative by introducing a polymerizable substituent. The above hole transport materials may be used singly or in combination of two or more, and a plurality of hole transport layers formed from different hole transport materials may be laminated.
 また、上記正孔輸送層と第1電極14との間に、正孔注入障壁を緩和するための正孔注入層(図示せず)が設けられていてもよい。上記正孔注入層を形成する材料としては、例えば、銅フタロシアニン、フルオロカーボン、二酸化ケイ素等の公知の材料が挙げられる。さらに、上記正孔輸送層に用いられる正孔輸送材料と2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)等の電子受容体との混合物を用いることもできる。第1電極14がITOやIZO等、導電性ポリマー以外の材料から形成される場合、正孔注入層としては上記の材料に加えて、PEDOT:PSS等の導電性ポリマーを用いることもできる。 Further, a hole injection layer (not shown) for relaxing the hole injection barrier may be provided between the hole transport layer and the first electrode 14. Examples of the material for forming the hole injection layer include known materials such as copper phthalocyanine, fluorocarbon, and silicon dioxide. Further, a mixture of a hole transport material used for the hole transport layer and an electron acceptor such as 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) may be used. it can. When the 1st electrode 14 is formed from materials other than conductive polymers, such as ITO and IZO, in addition to said material, conductive polymers, such as PEDOT: PSS, can also be used as a hole injection layer.
 上記有機化合物層15は、陰極である第2電極16から電子を受け取り、発光層へ輸送するための電子輸送層(図示せず)を、発光層と第2電極16との間に含んでいてもよい。このような電子輸送層に用いることができる材料としては、例えば、アルミニウム錯体、亜鉛錯体、キノリン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノキサリン誘導体、トリアリールボラン誘導体、トリフェニルホスフィンオキサイド誘導体等が挙げられる。更に、具体的には、トリス(8-キノリノラト)アルミニウム(略称:Alq)、ビス[2-(2-ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール等が挙げられる。 The organic compound layer 15 includes an electron transport layer (not shown) for receiving electrons from the second electrode 16 serving as a cathode and transporting the electrons to the light emitting layer, between the light emitting layer and the second electrode 16. Also good. Examples of materials that can be used for such an electron transport layer include aluminum complexes, zinc complexes, quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoxaline derivatives, and triarylborane derivatives. And triphenylphosphine oxide derivatives. More specifically, tris (8-quinolinolato) aluminum (abbreviation: Alq), bis [2- (2-hydroxyphenyl) benzoxazolate] zinc, bis [2- (2-hydroxyphenyl) benzothiazolate] zinc 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole and the like.
 また、上記電子輸送層と発光層との間に、正孔が発光層を通過することを抑制し、発光層内で正孔と電子とを効率よく再結合させる目的で、正孔ブロック層(図示せず)が設けられていてもよい。この正孔ブロック層も有機化合物層15に含まれる層の1つとして捉えることができる。上記正孔ブロック層を形成するために、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体等の公知の材料を用いることができる。 In addition, for the purpose of suppressing the passage of holes through the light emitting layer between the electron transport layer and the light emitting layer and efficiently recombining holes and electrons in the light emitting layer, a hole blocking layer ( (Not shown) may be provided. This hole blocking layer can also be regarded as one of the layers included in the organic compound layer 15. In order to form the hole blocking layer, a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative can be used.
 有機化合物層15を構成する上記の各層の厚さは、電荷の移動度や電荷注入バランス、発光する光の干渉等を考慮して適宜選択され特に限定されない。本実施の形態では、好ましくは1nm~1μm、より好ましくは2nm~500nm、特に好ましくは5nm~200nmである。また、第1電極14と第2電極16の間の各層の膜厚を合計した有機化合物層15の厚さは30nm~1μm、より好ましくは50nm~500nmであることが望ましい。
 尚、有機化合物層15の厚さを制御することで微小共振器構造を形成し、発光装置の外部へ取り出される光のスペクトルや強度を変えることができる。この場合には、第1電極14および第2電極16の内のいずれか一方を、5nm~50nmの厚さの金属薄膜等からなる半反射電極(図示せず)とし、もう一方の電極として反射電極(図示せず)を用いる。
The thickness of each of the layers constituting the organic compound layer 15 is appropriately selected in consideration of charge mobility, charge injection balance, interference of emitted light, and the like, and is not particularly limited. In this embodiment mode, the thickness is preferably 1 nm to 1 μm, more preferably 2 nm to 500 nm, and particularly preferably 5 nm to 200 nm. Further, the total thickness of the organic compound layer 15 between the first electrode 14 and the second electrode 16 is preferably 30 nm to 1 μm, more preferably 50 nm to 500 nm.
Note that by controlling the thickness of the organic compound layer 15, a microresonator structure can be formed, and the spectrum and intensity of light extracted outside the light emitting device can be changed. In this case, one of the first electrode 14 and the second electrode 16 is a semi-reflective electrode (not shown) made of a metal thin film having a thickness of 5 nm to 50 nm, and the other electrode is a reflective electrode. An electrode (not shown) is used.
(第2電極16)
 第2電極16は、第1電極14との間で電圧を印加した際に、有機化合物層15に電子を注入する。即ち、本実施の形態では第2電極16は陰極である。第2電極16は、有機化合物層15上の発光領域の全面に連続膜として形成される。第2電極16に使用される材料としては、電気伝導性を有するものであれば、特に限定されるものではない。本実施の形態では、仕事関数が低く、かつ化学的に安定なものが好ましい。具体的には、アルミニウム(Al)、マグネシウム-銀(MgAg)合金、アルミニウム-リチウム(AlLi)やアルミニウム-カルシウム(AlCa)等のAlまたはAgとアルカリ土類金属(またはアルカリ金属)との合金等の材料が挙げられる。但し、第2電極16の材料は、発光層から出射する光を第2電極16側から取り出したい場合は、例えば第1電極14と同様な可視光に対して透明な材料を用いることが好ましい。
 第2電極16の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。第2電極16の厚さが、10nmより薄いとシート抵抗が上昇して、発光部10の駆動電圧が上昇しやすくなり、1μmより厚いと成膜時の熱や放射線ダメージが有機化合物層15に蓄積するしやすくなる。
(Second electrode 16)
The second electrode 16 injects electrons into the organic compound layer 15 when a voltage is applied between the second electrode 16 and the first electrode 14. That is, in the present embodiment, the second electrode 16 is a cathode. The second electrode 16 is formed as a continuous film on the entire surface of the light emitting region on the organic compound layer 15. The material used for the second electrode 16 is not particularly limited as long as it has electrical conductivity. In the present embodiment, a material having a low work function and being chemically stable is preferable. Specifically, aluminum (Al), magnesium-silver (MgAg) alloy, Al-Ag such as aluminum-lithium (AlLi) and aluminum-calcium (AlCa), and an alloy of alkaline earth metal (or alkali metal), etc. Materials. However, the material of the second electrode 16 is preferably a material transparent to visible light, for example, similar to the first electrode 14 when it is desired to extract light emitted from the light emitting layer from the second electrode 16 side.
The thickness of the second electrode 16 is preferably 10 nm to 1 μm, and more preferably 50 nm to 500 nm. If the thickness of the second electrode 16 is less than 10 nm, the sheet resistance increases, and the driving voltage of the light emitting unit 10 tends to increase. Easy to accumulate.
 また、第2電極16から有機化合物層15への電子の注入障壁を下げて電子の注入効率を上げる目的で、陰極バッファ層(図示せず)を、第2電極16に隣接して有機化合物層15側に設けてもよい。陰極バッファ層としては、例えば、アルカリ金属(Na、K、Rb、Cs)、マグネシウム(Mg)、アルカリ土類金属(Sr、Ba、Ca)、希土類金属(Pr、Sm、Eu、Yb)、またはこれら金属のフッ化物、塩化物、酸化物から選ばれる材料若しくは2つ以上の混合物を使用することができる。陰極バッファ層の厚さは0.1nm~50nmが好ましく、0.1nm~20nmがより好ましく、0.5nm~10nmがより一層好ましい。 Further, a cathode buffer layer (not shown) is provided adjacent to the second electrode 16 for the purpose of lowering the electron injection barrier from the second electrode 16 to the organic compound layer 15 and increasing the electron injection efficiency. It may be provided on the 15 side. Examples of the cathode buffer layer include alkali metals (Na, K, Rb, Cs), magnesium (Mg), alkaline earth metals (Sr, Ba, Ca), rare earth metals (Pr, Sm, Eu, Yb), or A material selected from fluorides, chlorides and oxides of these metals or a mixture of two or more thereof can be used. The thickness of the cathode buffer layer is preferably from 0.1 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
 本実施の形態では、図1に示す発光装置の発光部10において、導電体12に接して形成された第1電極14が陽極であり、有機化合物層15上に形成された第2電極16が陰極であるが、陽極と陰極とが逆であってもよい。すなわち、第1電極14が陰極であり、第2電極16が陽極であってもよい。
 第1電極14、第2電極16をこのような構成とする場合、第1電極14と発光層の間の有機化合物層15中に電子注入層、電子輸送層、正孔ブロック層を設けることができる。また、第2電極16と発光層の間の有機化合物層15中に正孔注入層、正孔輸送層、電子ブロック層を設けることができる。
In the present embodiment, in the light emitting unit 10 of the light emitting device shown in FIG. 1, the first electrode 14 formed in contact with the conductor 12 is an anode, and the second electrode 16 formed on the organic compound layer 15 is Although it is a cathode, an anode and a cathode may be reversed. That is, the first electrode 14 may be a cathode and the second electrode 16 may be an anode.
When the first electrode 14 and the second electrode 16 have such a configuration, an electron injection layer, an electron transport layer, and a hole blocking layer may be provided in the organic compound layer 15 between the first electrode 14 and the light emitting layer. it can. In addition, a hole injection layer, a hole transport layer, and an electron blocking layer can be provided in the organic compound layer 15 between the second electrode 16 and the light emitting layer.
 基板上に形成される上記の導電体12、絶縁層13、第1電極14、有機化合物層15および第2電極16を形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法等を用いることができる。
 また、塗布成膜方法(即ち、目的とする材料を溶剤に溶解させた状態で基板11に塗布し乾燥する方法)が可能な場合は、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法等の方法を用いて成膜することも可能である。これらの中でも、有機化合物層15の形成には、抵抗加熱蒸着法および塗布成膜法を用いることが好ましい。
In order to form the conductor 12, the insulating layer 13, the first electrode 14, the organic compound layer 15 and the second electrode 16 formed on the substrate, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion A plating method, a CVD method, or the like can be used.
In addition, when a coating film forming method (that is, a method in which a target material is dissolved in a solvent and applied to the substrate 11 and drying) is possible, a spin coating method, a dip coating method, an ink jet method, a printing method, It is also possible to form a film using a method such as a spray method or a dispenser method. Among these, it is preferable to use the resistance heating vapor deposition method and the coating film forming method for forming the organic compound layer 15.
(開口部と第1電極の相対配置)
 図2は、本実施の形態が適用される発光装置における、開口部17および第1電極14の形状とそれらの相対配置の一例を説明する図である。
 図2には、本実施の形態が適用される発光装置の発光領域内の1つの区画における、複数の開口部17および複数の第1電極14の形状と相対配置が平面視で示されている。
(Relative arrangement of opening and first electrode)
FIG. 2 is a diagram illustrating an example of the shape of the opening 17 and the first electrode 14 and their relative arrangement in the light emitting device to which the present embodiment is applied.
FIG. 2 shows the shape and relative arrangement of the plurality of openings 17 and the plurality of first electrodes 14 in a plan view in one section in the light emitting region of the light emitting device to which the present embodiment is applied. .
 図2(a)は、発光領域内の1つの区画内で、複数の平面形状が矩形の開口部17と、同様に複数の平面形状が矩形の第1電極14とが、互いの長軸が略直交するように配置された例を示している。
 図2(a)に示すように、複数の開口部17は、それぞれ、互いに直交する第1の長軸および第1の短軸を有する細長い矩形形状を有し、第1の長軸が互いに向かい合って平行に配列し、縦横にそれぞれ一定の間隔で周期的に配列している。ここで開口部17の第1の長軸は矩形の長辺を指し、第1の短軸は矩形の短辺を指す。
FIG. 2A shows a plurality of openings 17 having a rectangular planar shape, and a plurality of rectangular first electrodes 14 having a rectangular shape in the same light emitting region. The example arrange | positioned so that it may cross substantially orthogonally is shown.
As shown in FIG. 2A, each of the plurality of openings 17 has an elongated rectangular shape having a first major axis and a first minor axis that are orthogonal to each other, and the first major axis faces each other. Are arranged in parallel, and are arranged periodically at regular intervals in the vertical and horizontal directions. Here, the first long axis of the opening 17 indicates the long side of the rectangle, and the first short axis indicates the short side of the rectangle.
 本実施の形態では、開口部17の第1の長軸の長さは、第1の短軸の長さの3倍以上であることが好ましい。さらに第1の短軸の長さの5倍以上であることがより好ましい。
 尚、細長い形状における第1の長軸と第1の短軸の長さは、あらゆる形状に対して厳密に定義されるものではないが、例えば、それぞれの軸方向におけるその形状の最大幅であると定義される。
 また、開口部17で最も好ましいのは、長軸の長さ=発光面の長さの場合である。すなわち、1つの開口部17が長軸方向に分割されない。開口部17の面積が大きいと発光層と第1電極14の接触領域が増大し、発光面積が増大する。
In the present embodiment, it is preferable that the length of the first major axis of the opening 17 is three times or more the length of the first minor axis. Further, it is more preferably 5 times or more the length of the first short axis.
Note that the lengths of the first major axis and the first minor axis in the elongated shape are not strictly defined for every shape, but are, for example, the maximum width of the shape in each axial direction. Is defined.
Further, the most preferable case of the opening 17 is when the length of the long axis = the length of the light emitting surface. That is, one opening 17 is not divided in the major axis direction. If the area of the opening 17 is large, the contact area between the light emitting layer and the first electrode 14 increases, and the light emitting area increases.
 また、図2(a)に示すように、複数の第1電極14は、それぞれ、互いに直交する第2の長軸および第2の短軸を有する細長い矩形形状を有し、縦横にそれぞれ一定の間隔で形成されている。ここで第1電極14の第2の長軸は矩形の長辺を指し、第2の短軸は矩形の短辺を指す。 Further, as shown in FIG. 2A, each of the plurality of first electrodes 14 has an elongated rectangular shape having a second major axis and a second minor axis that are orthogonal to each other, and each has a certain length and width. It is formed at intervals. Here, the second long axis of the first electrode 14 indicates the long side of the rectangle, and the second short axis indicates the short side of the rectangle.
 本実施の形態では、複数の第1電極14の平面形状は略同一である。そして、1つの区画内には複数の第1電極14が含まれることが好ましく、この場合は、複数の第1電極14は、第2の長軸が互いに平行となるように形成されている。
 尚、図2(a)では、複数の第1電極14の位置は周期的に配列しているが、本実施の形態ではこれに限定されず、上記の範囲内でランダムに配列していても良い。但し、1つの区画を巨視的に見た場合に、複数の第1電極14はほぼ均一な密度で分布している必要がある。また、複数の第1電極14は、発光領域の面積に対して、電極が形成される面積の割合が大きくなるように配置されることが好ましい。具体的には、発光領域中の第1電極14の面積占有率が50%以上であることが好ましく、このような範囲にすることによって発光領域の巨視的な輝度を高く保つことが可能となる。
In the present embodiment, the planar shapes of the plurality of first electrodes 14 are substantially the same. A plurality of first electrodes 14 are preferably included in one section. In this case, the plurality of first electrodes 14 are formed so that the second major axes are parallel to each other.
In FIG. 2A, the positions of the plurality of first electrodes 14 are periodically arranged. However, the present embodiment is not limited to this, and the first electrodes 14 may be arranged randomly within the above range. good. However, when one section is viewed macroscopically, the plurality of first electrodes 14 need to be distributed with a substantially uniform density. The plurality of first electrodes 14 are preferably arranged so that the ratio of the area where the electrodes are formed to the area of the light emitting region is increased. Specifically, it is preferable that the area occupation ratio of the first electrode 14 in the light emitting region is 50% or more, and by setting it in such a range, it is possible to keep the macroscopic luminance of the light emitting region high. .
 図1において説明したように、開口部17の内部で第1電極14と導電体12とが電気的に接続することにより、第1電極14および第2電極16に電圧を印加すると、有機化合物層15の第1電極14と接する部分が発光する。 As described with reference to FIG. 1, when the first electrode 14 and the conductor 12 are electrically connected inside the opening 17 to apply a voltage to the first electrode 14 and the second electrode 16, the organic compound layer The portion in contact with the first electrode 14 emits light.
 ここで、図2(a)において、複数の開口部17における第1の長軸の方向と、複数の第1電極14における第2の長軸の方向とのなす角度(θ)が90度となるように配置されている。尚、本明細書では、第1の長軸と第2の長軸のなす角度は、2直線が交差する角度のうち鋭角側の角度により表わす。この場合、多くの第1電極14がいずれかの開口部17において導電体12と接触する。このため、第1電極14と第2電極16の間に電圧が印加されると、略全部の第1電極14上に位置する有機化合物層15に含まれる発光層が発光し、発光層において発光する部分の面積割合が高くなる。 Here, in FIG. 2A, the angle (θ) formed between the direction of the first major axis in the plurality of openings 17 and the direction of the second major axis in the plurality of first electrodes 14 is 90 degrees. It is arranged to be. In the present specification, the angle formed by the first major axis and the second major axis is represented by the angle on the acute side of the angles at which the two straight lines intersect. In this case, many first electrodes 14 are in contact with the conductor 12 in any of the openings 17. For this reason, when a voltage is applied between the first electrode 14 and the second electrode 16, the light emitting layer included in the organic compound layer 15 positioned on almost all the first electrodes 14 emits light, and the light emitting layer emits light. The area ratio of the portion to be increased.
 一方、図2(b)は、平面形状が矩形の開口部17と、同様に平面形状が矩形の第1電極14とが、互いの長軸を略平行に配置された例を示している。この場合、開口部17において導電体12と接触しない(電気的に孤立した)第1電極14の数が増大する。すなわち、開口部17において導電体12と電気的に接続した第1電極14と、導電体12と電気的に接続していない第1電極14とが混在していることになる。このため、導電体12と電気的に接続していない第1電極14上に位置する有機化合物層15に含まれる発光層は発光しないため、発光層において発光する部分の面積割合が低くなる。 On the other hand, FIG. 2B shows an example in which the opening 17 having a rectangular planar shape and the first electrode 14 having a rectangular planar shape are arranged with their long axes substantially parallel to each other. In this case, the number of first electrodes 14 that are not in contact with the conductor 12 (electrically isolated) in the opening 17 increases. That is, the first electrode 14 that is electrically connected to the conductor 12 in the opening 17 and the first electrode 14 that is not electrically connected to the conductor 12 are mixed. For this reason, since the light emitting layer included in the organic compound layer 15 located on the first electrode 14 not electrically connected to the conductor 12 does not emit light, the area ratio of the light emitting portion in the light emitting layer is reduced.
 また、図2(c)は、平面形状が矩形の開口部17と、同様に平面形状が矩形の第1電極14とが、互いの長軸のなす角度が45度になるように配置された例を示している。この場合、開口部17において導電体12と電気的に接続した第1電極14の数は図2(a)の場合と図2(b)の場合の中間となり、発光層において発光する部分の面積割合もそれらの中間となる。 Further, in FIG. 2C, the opening 17 having a rectangular planar shape and the first electrode 14 having a rectangular planar shape are arranged so that the angle formed by the major axes of each other is 45 degrees. An example is shown. In this case, the number of the first electrodes 14 electrically connected to the conductor 12 in the opening 17 is intermediate between the case of FIG. 2A and the case of FIG. 2B, and the area of the light emitting portion in the light emitting layer. The ratio is also between them.
 上述したように、本実施の形態では、異なる区画同士において、細長い形状を有する複数の開口部17と、同様に細長い形状を有する複数の第1電極14との相対配置を変化させることにより、その区画の発光層において発光する部分の面積割合を制御することが可能となる。具体的には、開口部17の第1の長軸と第1電極14の第2の長軸がなす角度(θ)を、区画毎に0度~90度の範囲内で変化させることにより、区画毎の発光輝度を大きく変化させることができる。 As described above, in the present embodiment, by changing the relative arrangement of the plurality of openings 17 having an elongated shape and the plurality of first electrodes 14 having an elongated shape in different sections, It is possible to control the area ratio of the light emitting portion in the light emitting layer of the partition. Specifically, by changing the angle (θ) formed by the first major axis of the opening 17 and the second major axis of the first electrode 14 within a range of 0 degrees to 90 degrees for each section, The light emission luminance for each section can be changed greatly.
 図3は、本実施の形態が適用される発光装置における発光領域において、端子部からの距離により第1電極14の向きが変化する一例を説明する図である。本実施の形態では、開口部17と第1電極14とがなす角度(θ)を、0度~90度の範囲内で変化させて発光層において発光する部分の面積割合を制御する手法を用いて、複数の区画を備える発光領域全体の発光輝度の制御が行われる。尚、本実施の形態はこれに限定されるものではない。 FIG. 3 is a diagram for explaining an example in which the direction of the first electrode 14 changes depending on the distance from the terminal portion in the light emitting region in the light emitting device to which the present embodiment is applied. In the present embodiment, a method is used in which the angle (θ) formed by the opening 17 and the first electrode 14 is changed within a range of 0 ° to 90 ° to control the area ratio of the light emitting portion in the light emitting layer. Thus, the light emission luminance of the entire light emitting region including a plurality of sections is controlled. Note that the present embodiment is not limited to this.
 図3に示すように、本実施の形態の発光装置には、発光領域の外側の少なくとも一部に電源と接続するための端子部18が形成される。このとき、導電体12がITOやIZO等の金属酸化物からなる透明導電膜である場合、導電体12の内部抵抗による電圧降下のため、発光領域において端子部から遠い部分ほど、単位面積当たりの輝度が低下する。 As shown in FIG. 3, in the light emitting device according to the present embodiment, a terminal portion 18 for connecting to a power source is formed at least at a part outside the light emitting region. At this time, when the conductor 12 is a transparent conductive film made of a metal oxide such as ITO or IZO, the voltage drop due to the internal resistance of the conductor 12 causes a portion farther from the terminal portion in the light emitting region per unit area. The brightness decreases.
 そこで、発光領域を複数の区画(図3では3つの区画(区画1、区画2、区画3))に分割し、発光層において発光する部分の面積割合が端子部18から遠い区画ほど大きくなるように、各区画において上記角度θ(すなわち、開口部17における第1の長軸の方向と第1電極14における第2の長軸の方向とのなす角度)を設定することにより、発光領域内の輝度を均一にすることができる。 Therefore, the light emitting region is divided into a plurality of sections (in FIG. 3, three sections (section 1, section 2, section 3)), and the area ratio of the light emitting portion in the light emitting layer becomes larger as the section is farther from the terminal portion 18. Further, by setting the angle θ (that is, the angle formed between the direction of the first major axis in the opening 17 and the direction of the second major axis in the first electrode 14) in each section, The brightness can be made uniform.
 例えば、図3の場合は、端子部18に近い方から区画1、区画2、区画3があり、それらの区画における上記角度θは、それぞれ、0度、45度、90度であり、各区画の発光層において発光する部分の面積割合は、この順で大きくなっている。従って、上記角度θを、0度から90度の範囲内で、端子部18から遠い区画ほど大きくすることにより、導電体12の内部抵抗による電圧降下に起因する輝度低下が相殺されて、発光領域内の輝度を均一にすることができる。 For example, in the case of FIG. 3, there are section 1, section 2, and section 3 from the side closer to the terminal portion 18, and the angles θ in these sections are 0 degrees, 45 degrees, and 90 degrees, respectively. The area ratio of the light emitting portion in the light emitting layer increases in this order. Therefore, by increasing the angle θ within the range of 0 ° to 90 °, the farther from the terminal portion 18, the luminance decrease due to the voltage drop due to the internal resistance of the conductor 12 is offset, and the light emitting region The brightness inside can be made uniform.
 基板11に垂直な方向から見た開口部17および第1電極14の形状の好ましい大きさは、複数の区画において、上記の複数の発光部10が連続した発光面として視認され、また、発光装置の製造が容易である観点から決められる。本実施の形態では、例えば、開口部17の第1の短軸の長さ及び第1電極14の第2の短軸の長さは、それぞれ、0.1μm~10μmの範囲であることが好ましい。
 開口部17の第1の長軸と第1電極14の第2の長軸とがなす角度(θ)を変化させることにより輝度を制御することが容易である観点から、開口部17の第1の長軸と第1電極14の第2の長軸の長さは、それぞれ、開口部17の第1の短軸と第1電極14の第2の短軸の長さの5倍以上であることが好ましい。
 さらに、複数の各区画内において、開口部17の第1の短軸方向における開口部17間の距離が、第1電極14の第2の長軸の長さよりも短く、且つ第1電極14の第2の短軸の長さよりも長いことが、より輝度の制御が容易であることから好ましい。
 また、本実施の形態において、これらの開口部17と第1電極14は、発光領域の任意の1mm四方の領域に、10~10個程度形成されていることが好ましい。
The preferable size of the shape of the opening 17 and the first electrode 14 viewed from the direction perpendicular to the substrate 11 is visually recognized as a continuous light emitting surface in the plurality of sections, and the light emitting device. Is determined from the viewpoint of easy manufacture. In the present embodiment, for example, the length of the first short axis of the opening 17 and the length of the second short axis of the first electrode 14 are each preferably in the range of 0.1 μm to 10 μm. .
From the viewpoint that it is easy to control the luminance by changing the angle (θ) formed by the first long axis of the opening 17 and the second long axis of the first electrode 14, the first of the opening 17. The major axis of the first electrode 14 and the length of the second major axis of the first electrode 14 are not less than five times the length of the first minor axis of the opening 17 and the second minor axis of the first electrode 14, respectively. It is preferable.
Further, in each of the plurality of sections, the distance between the openings 17 in the first minor axis direction of the openings 17 is shorter than the length of the second major axis of the first electrode 14, and It is preferable that the length is longer than the length of the second short axis because it is easier to control the luminance.
In the present embodiment, it is preferable that about 10 2 to 10 8 of these openings 17 and first electrodes 14 are formed in an arbitrary 1 mm square region of the light emitting region.
(第1電極14および開口部17の平面形状)
 ここで、第1電極14および開口部17の平面形状は、図2(a)および図2(b)において示したような矩形に限定されないが、細長い形状であることが好ましい。次に、第1電極14および開口部17の平面形状の例について説明する。
(Planar shape of the first electrode 14 and the opening 17)
Here, the planar shape of the first electrode 14 and the opening 17 is not limited to a rectangle as shown in FIGS. 2A and 2B, but is preferably an elongated shape. Next, examples of the planar shape of the first electrode 14 and the opening 17 will be described.
 図4は、第1電極14および開口部17の平面形状の例を説明する図である。
 前述したように、第1電極14および開口部17の平面形状は矩形に限定されないが、細長い形状であることが好ましい。矩形を含む細長い形状の例としては、例えば、矩形(図4(a))、楕円形(図4(b))、ひし形(図4(c))、平行四辺形(図4(d))、三角形(図4(e)、図4(f))、台形(図4(g)、図4(h))等が挙げられる。
 第1電極14および開口部17が、このような細長い形状の場合、開口部17の第1の長軸と第1電極14の第2の長軸の方向は、あらゆる形状に対して厳密に定義されるものではないが、各形状の長手方向に沿っていればよく、例えば、図4(a)~図4(h)に示した形状では次のように定義される。
FIG. 4 is a diagram for explaining an example of the planar shape of the first electrode 14 and the opening 17.
As described above, the planar shape of the first electrode 14 and the opening 17 is not limited to a rectangle, but is preferably an elongated shape. Examples of elongated shapes including a rectangle include, for example, a rectangle (FIG. 4A), an ellipse (FIG. 4B), a rhombus (FIG. 4C), and a parallelogram (FIG. 4D). , Triangles (FIGS. 4E and 4F), trapezoids (FIGS. 4G and 4H), and the like.
When the first electrode 14 and the opening 17 have such an elongated shape, the directions of the first major axis of the opening 17 and the second major axis of the first electrode 14 are strictly defined for all shapes. Although not necessarily required, the shape may be along the longitudinal direction of each shape. For example, the shapes shown in FIGS. 4A to 4H are defined as follows.
 図4(a)に示した細長い矩形の場合、開口部17の第1の長軸xと第1の短軸yは、それぞれ長辺および短辺であり、第1の長軸xの長さと第1の短軸yの長さは、それぞれ長辺の長さと短辺の長さであると定義される。
 同様に、第1電極14の第2の長軸xと第2の短軸yは、それぞれ長辺および短辺であり、第2の長軸xの長さと第2の短軸yの長さは、それぞれ長辺の長さと短辺の長さであると定義される。
For elongated rectangular as shown in FIG. 4 (a), the first major axis x a a first short axis y a of the opening 17 are each long side and short side, a first long axis x a length and the length of the first short axis y a of is defined as the length of the long and short side of each long side.
Similarly, the second major axis x a and the second short axis y a of the first electrode 14 are each long side and short side, the length and the second short axis y of the second major axis x a the length of a is defined as the length of the long and short side of each long side.
 図4(b)に示した楕円形の場合、開口部17の第1の長軸xと第1の短軸yは、それぞれ楕円の長軸と短軸に一致し、第1の長軸xの長さと第1の短軸yの長さは、それぞれ長径と短径であると定義される。
 同様に、第1電極14の第2の長軸xと第2の短軸yは、それぞれ楕円の長軸と短軸に一致し、第2の長軸xの長さと第2の短軸yの長さは、それぞれ長径と短径であると定義される。
For oval shown in FIG. 4 (b), the first major axis x b and the first short axis y b of the opening 17, respectively coincide with the major and minor axes of the ellipse, the first length the length of the axis x b of the length of the first short axis y b are defined respectively major axis and a minor axis.
Similarly, the second major axis x b and the second short axis y b of the first electrode 14, respectively coincide with the major and minor axes of the ellipse, the second major axis x b length and the second the length of the minor axis y b are defined respectively major axis and a minor axis.
 図4(c)に示した細長いひし形の場合、開口部17の第1の長軸xは、2つの鋭角の頂点を結ぶ線分であり、第1の短軸yは、2つの鈍角の頂点を結ぶ線分であると定義される。
 同様に、第1電極14の第2の長軸xは、2つの鋭角の頂点を結ぶ線分であり、第2の短軸yは、2つの鈍角の頂点を結ぶ線分であると定義される。
For elongated rhombus shown in FIG. 4 (c), the first major axis x c of the opening 17 is a line segment connecting the two acute vertices of the first short axis y c is two obtuse Is defined as the line connecting the vertices.
Similarly, the second is the long axis x c of the first electrode 14, a line segment connecting the two acute vertices of the second short axis y c is, if it is a line segment connecting two obtuse apex of the Defined.
 図4(d)に示した細長い平行四辺形の場合、開口部17の第1の長軸xは長辺であり、第1の短軸yの方向は第1の長軸xに直交する方向であり、その長さは第1の短軸yの方向における平行四辺形の幅であると定義される。
 同様に、第1電極14の第2の長軸xは長辺であり、第2の短軸yの方向は第1の長軸xに直交する方向であり、その長さは第2の短軸yの方向における平行四辺形の幅であると定義される。
For elongated parallelogram shown in FIG. 4 (d), the first major axis x d of the opening 17 is long side direction of the first short axis y d in the first major axis x d a direction orthogonal, its length is defined as the width of the parallelogram in the direction of the first short axis y d.
Similarly, the second major axis x d of the first electrode 14 is a long side, the direction of the second short axis y d is a direction orthogonal to the first long axis x d, the length a it is defined as the width of the parallelogram in the two directions of the minor axis y d.
 図4(e)に示した底辺の短い細長い二等辺三角形の場合、開口部17の第1の長軸xは、頂角の垂直二等分線と二等辺三角形との交点を結ぶ線分であり、第1の短軸yは底辺であると定義される。
 同様に、第1電極14の第2の長軸xは、頂角の垂直二等分線と二等辺三角形との交点を結ぶ線分であり、第2の短軸yは底辺であると定義される。
For base short elongated isosceles triangle shown in FIG. 4 (e), the first major axis x e of the opening 17, a line segment connecting the intersection of the perpendicular bisector and isosceles triangle apex angle , and the first short axis y e is defined to be the base.
Similarly, the second major axis x e of the first electrode 14 is a line segment connecting the intersection of the perpendicular bisector and isosceles triangle of the apex angle, the second short axis y e is the base Is defined.
 図4(f)に示した頂角が鈍角の細長い二等辺三角形の場合、開口部17の第1の長軸xは底辺であり、第1の短軸yは頂点と底辺の中点を結ぶ線分であると定義される。
 同様に、第1電極14の第2の長軸xは底辺であり、第2の短軸yは頂点と底辺の中点を結ぶ線分であると定義される。
If the apex angle as shown in FIG. 4 (f) is obtuse elongated isosceles triangle, the first long axis x f of the opening 17 is the bottom, the midpoint of the first short axis y f vertex and base Is defined as a line segment connecting
Similarly, the second major axis x f of the first electrode 14 is bottom side is defined as a second short axis y f a line segment connecting the midpoint of the vertices and bottom.
 図4(g)に示した上底と下底が短い細長い台形の場合、開口部17の第1の長軸xは、上底(下底)の垂線のうち上底と下底の間に存在する線分であり、第1の短軸yは、上底および下底のうちの長い方の辺であると定義される。
 同様に、第1電極14の第2の長軸xは、上底(下底)の垂線のうち上底と下底の間に存在する線分であり、第2の短軸yは、上底および下底のうちの長い方の辺であると定義される。
In the case of an elongated trapezoidal shape having a short upper base and lower bottom as shown in FIG. 4G, the first major axis xg of the opening 17 is between the upper base and the lower base among the vertical lines of the upper base (lower base). And the first short axis y g is defined as the longer side of the upper and lower bases.
Similarly, the second major axis x g of the first electrode 14 is a line segment existing between the upper base and the lower base among the vertical lines of the upper base (lower base), and the second short axis y g is , The longer side of the upper and lower bases.
 図4(h)に示した上底と下底が長い細長い台形の場合、開口部17の第1の長軸xは、上底および下底のうちの長い方の辺であり、第1の短軸yは、上底(下底)の垂線のうち、上底と下底の間に存在する線分であると定義される。
 同様に、第1電極14の第2の長軸xは、上底および下底のうちの長い方の辺であり、第2の短軸yは、上底(下底)の垂線のうち、上底と下底の間に存在する線分であると定義される。
In the case of an elongated trapezoid with a long upper base and lower base shown in FIG. 4H, the first major axis x h of the opening 17 is the longer side of the upper base and the lower base, and the first minor axis y h of, among the perpendicular of the upper base (lower base) is defined as a line segment that exists between the upper base and the lower base.
Similarly, the second major axis x h of the first electrode 14 is the longer side of the upper and lower bases, and the second minor axis y h is the perpendicular of the upper base (lower base). Of these, it is defined as a line segment that exists between the upper and lower bases.
 尚、図4に示した形状以外の細長い形状における第1の長軸(又は第2の長軸)と第1の短軸(又は第2の短軸)の長さは、あらゆる形状に対して厳密に定義されるものではないが、例えば、それぞれの軸方向における形状の最大幅であると定義される。 Note that the lengths of the first major axis (or second major axis) and the first minor axis (or second minor axis) in an elongated shape other than the shape shown in FIG. Although not strictly defined, for example, it is defined as the maximum width of the shape in each axial direction.
(開口部17の形成方法)
 開口部17の形成方法としては、例えば、フォトリソグラフィーを用いる方法が挙げられる。この方法を行うには、まず、絶縁層13の上にレジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層を形成する。そして、開口部17を形成するための所定のパターンが描画されたマスクをかぶせ、紫外線(UV:Ultra Violet)、電子線(EB:Electron Beam)等により露光を行う。
(Method for forming opening 17)
Examples of the method for forming the opening 17 include a method using photolithography. In order to perform this method, first, a resist solution is applied on the insulating layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer. Then, a mask on which a predetermined pattern for forming the opening 17 is drawn is applied, and exposure is performed using ultraviolet (UV), electron beam (EB), or the like.
 ここで、等倍露光(例えば、接触露光やプロキシミティ露光の場合)を行えばマスクパターンと等倍の開口部17のパターンが形成される。また、縮小露光(例えば、ステッパーを使用した露光の場合)を行えば、マスクパターンに対して縮小された開口部17のパターンが形成される。次に、現像液を用いてレジスト層の露光部分を除去すると、パターンの部分のレジスト層が除去される。 Here, if the same-size exposure (for example, in the case of contact exposure or proximity exposure) is performed, a pattern of the opening 17 that is the same size as the mask pattern is formed. If reduced exposure (for example, exposure using a stepper) is performed, the pattern of the opening 17 reduced with respect to the mask pattern is formed. Next, when the exposed portion of the resist layer is removed using a developer, the resist layer in the pattern portion is removed.
 次に、露出した絶縁層13の部分を(場合によっては導電体12の部分も)エッチング除去し、開口部17を形成する。エッチングは、ドライエッチングとウェットエッチングの何れをも使用することができる。ドライエッチングとしては、誘導結合プラズマや容量結合プラズマを用いた反応性イオンエッチング(RIE:Reactive Ion Etching)等が利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法等が利用できる。尚、エッチングを行う際に、エッチングの条件(処理時間、使用ガス、圧力、基板温度)を調節することにより、開口部17が貫通する層を選択することができる。 Next, the exposed portion of the insulating layer 13 (and the portion of the conductor 12 in some cases) is removed by etching to form an opening 17. As the etching, either dry etching or wet etching can be used. As dry etching, reactive ion etching (RIE) using inductively coupled plasma or capacitively coupled plasma can be used. As wet etching, a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used. it can. Note that when etching is performed, a layer through which the opening 17 passes can be selected by adjusting etching conditions (processing time, gas used, pressure, substrate temperature).
 開口部17のパターニングは絶縁層13の成膜と同時に行ってもよく、この場合には、絶縁層13を開口部17のパターンと同一のパターンが形成されたマスクを用いた抵抗加熱蒸着法や、開口部17のパターンを残して絶縁層13を描画する印刷法等の成膜法により形成することができる。 The patterning of the opening 17 may be performed at the same time as the formation of the insulating layer 13. The film can be formed by a film forming method such as a printing method for drawing the insulating layer 13 while leaving the pattern of the opening 17.
(第1電極14のパターニング方法)
 尚、第1電極14のパターニング方法としては、前述した開口部17の形成方法と同様に、フォトリソグラフィー等の方法を用いることができる。また、第1電極14のパターニングは成膜と同時に行ってもよく、成膜後に行ってもよい。
(Patterning method of the first electrode 14)
As a patterning method for the first electrode 14, a method such as photolithography can be used in the same manner as the method for forming the opening 17 described above. The patterning of the first electrode 14 may be performed simultaneously with the film formation or after the film formation.
 本実施の形態が適用される発光装置において、1つの上記区画内では上記開口部17における第1の長軸の方向と上記第1電極14における第2の長軸の方向とのなす角度θは一定であるが、発光領域内の全ての区画に亘っては、角度θは一定ではない。すなわち、発光領域は、互いに角度θの異なる少なくとも2つの区画を含む。 In the light emitting device to which the present embodiment is applied, the angle θ formed by the direction of the first major axis in the opening 17 and the direction of the second major axis in the first electrode 14 is within one section. Although constant, the angle θ is not constant over all sections in the light emitting area. That is, the light emitting region includes at least two sections having different angles θ.
 例えば、フォトリソグラフィーを用いて第1電極14または開口部17のパターニングを行う場合、基板11とフォトマスクの相対角度を変えることで角度θを容易に変化させることができる。これにより、本実施の形態の発光装置では、発光領域内の輝度を容易に制御することができる。 For example, when patterning the first electrode 14 or the opening 17 using photolithography, the angle θ can be easily changed by changing the relative angle between the substrate 11 and the photomask. Thereby, in the light-emitting device of this Embodiment, the brightness | luminance in a light emission area | region can be controlled easily.
 すなわち、パターニングは、全ての発光領域のパターニングを一度に行うか、または、区画毎に行うことにより、発光装置をより容易に製造することができる。また、発光領域内の開口部17の全てにおいて第1の長軸が互いに平行となるように形成されていれば、開口部17のパターニングが容易であり、角度θを変えて輝度を制御することが容易であるため好ましい。 That is, patterning can be performed more easily by patterning all the light emitting regions at once or by performing the patterning for each section. Further, if the first long axes are formed so as to be parallel to each other in all of the openings 17 in the light emitting region, the patterning of the openings 17 is easy, and the luminance is controlled by changing the angle θ. Is preferable because it is easy.
 逆に、発光領域内の第1電極14の全てにおいて第2の長軸が互いに平行となるように形成されている場合も、第1電極14のパターニングが容易であり、角度θを変えて輝度を容易に制御できるため好ましい。 Conversely, when all the first electrodes 14 in the light emitting region are formed so that the second major axes are parallel to each other, the patterning of the first electrode 14 is easy, and the brightness is obtained by changing the angle θ. Is preferable because it can be easily controlled.
 フォトリソグラフィー等のマスクを用いたパターニングにおいて、複数の開口部17と複数の第1電極14のパターンを複数の区画について同一とすることにより、各区画を同一のマスクを用いてパターニングすることができ、製造が容易になる。
 ここで、各区画の間で複数の開口部17や複数の第1電極14のパターンが同一であるとは、開口部17や第1電極14の形状や大きさ、開口部17同士や第1電極14同士の間隔がいずれの区画でも同一であることを指し、開口部17における第1の長軸や第1電極14における第2の長軸の方向は、区画毎に異なっていてもよい。
In patterning using a mask such as photolithography, by making the pattern of the plurality of openings 17 and the plurality of first electrodes 14 the same for a plurality of sections, each section can be patterned using the same mask. Easy to manufacture.
Here, the patterns of the plurality of openings 17 and the plurality of first electrodes 14 are the same between the sections. The shape and size of the openings 17 and the first electrodes 14, the positions of the openings 17 and the first The interval between the electrodes 14 is the same in any section, and the direction of the first major axis in the opening 17 and the second major axis in the first electrode 14 may be different for each section.
 尚、本実施の形態の発光装置を長期安定的に用いるため、発光装置を外部から保護するための保護層や保護カバーを装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等を用いることができる。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属等を用いることができる。このような保護カバーは、熱硬化性樹脂や光硬化性樹脂、フリットガラス等で素子基板と貼り合わせて密閉する方法を採ることが好ましい。 In addition, in order to use the light-emitting device of this embodiment stably for a long period of time, it is preferable to attach a protective layer or a protective cover for protecting the light-emitting device from the outside. As the protective layer, a polymer compound, metal oxide, metal fluoride, metal boride, silicon nitride, silicon oxide, or the like can be used. And these laminated bodies can also be used. Further, as the protective cover, a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used. For such a protective cover, it is preferable to employ a method in which a thermosetting resin, a photocurable resin, frit glass, or the like is attached to the element substrate and sealed.
 また、この際、基板11と保護カバーとの間にスペーサーを配置すると、発光部10と保護カバーとの間に所定の空間を確保することができ、発光部が傷つくのを防止できるため好ましい。そして、このような空間に窒素、アルゴン、ヘリウムのような不活性なガスを封入すれことにより、上側の第2電極16の酸化を防止しやすくなる。特に、ヘリウムを用いた場合、熱伝導が高いため、電圧印加時に発光装置より発生する熱を効果的に保護カバーに伝えることができるので好ましい。更に、酸化バリウム等の乾燥剤をこのような空間内に設置することにより、上記一連の製造工程で吸着した水分が発光装置にダメージを与えるのを抑制しやすくなる。 Further, at this time, it is preferable to arrange a spacer between the substrate 11 and the protective cover because a predetermined space can be secured between the light emitting unit 10 and the protective cover and the light emitting unit can be prevented from being damaged. Then, by filling an inert gas such as nitrogen, argon, or helium in such a space, it becomes easy to prevent the upper second electrode 16 from being oxidized. In particular, it is preferable to use helium because heat conduction is high, and thus heat generated from the light emitting device when voltage is applied can be effectively transmitted to the protective cover. Furthermore, by installing a desiccant such as barium oxide in such a space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the light emitting device.
 本実施の形態の発光装置は、面発光光源等に用いることができる。具体的には、表示装置におけるバックライト、電子写真、照明、レジスト露光、読み取り装置、インテリア照明、光通信システム等に好適に用いられる。 The light emitting device of this embodiment can be used for a surface emitting light source or the like. Specifically, it is suitably used for backlights, electrophotography, illumination, resist exposure, reading devices, interior illumination, optical communication systems and the like in display devices.
10…発光部、11…基板、12…導電体、13…絶縁層、14…第1電極、15…有機化合物層、16…第2電極、17…開口部、18…端子部 DESCRIPTION OF SYMBOLS 10 ... Light emission part, 11 ... Board | substrate, 12 ... Conductor, 13 ... Insulating layer, 14 ... 1st electrode, 15 ... Organic compound layer, 16 ... 2nd electrode, 17 ... Opening part, 18 ... Terminal part

Claims (10)

  1.  電気的に並列接続された複数の微小な発光部からなる発光領域を有する発光装置であって、
     前記発光装置は、前記発光領域において、
     1つの面状の導電体と、
     前記面状の導電体の上面に形成された絶縁層と、
     前記絶縁層に形成された複数の開口部と、
     前記絶縁層上に形成された複数の第1電極と、
     前記複数の第1電極を覆って形成された、発光層を含む有機化合物層と、
     前記有機化合物層上に形成された第2電極と、を含むとともに、
     それぞれ前記第1電極を2つ以上含む複数の区画からなり、
     複数の前記第1電極の少なくとも一部は前記開口部内にも形成されて前記導電体と電気的に接続することで、前記複数の微小な発光部において前記有機化合物層に通電する電極をなし、
     複数の前記開口部は、平面視で、互いに直交する第1の長軸および第1の短軸を持つ細長い形状を有し、1つの前記区画内において、当該第1の長軸が互いに平行となるように形成され、
     複数の前記第1電極は、平面視で、互いに直交する第2の長軸および第2の短軸を持つ細長い形状を有し、1つの前記区画内において、当該第2の長軸が互いに平行となるように形成され、
     前記各複数の区画内において、前記開口部の前記第1の短軸の方向における当該開口部間の距離が、前記第1電極の前記第2の長軸の長さより短く、且つ当該第1電極の前記第2の短軸の長さより長く、
     前記複数の区画は、当該複数の各区画内における前記開口部の前記第1の長軸と前記第1電極の前記第2の長軸がなす角度が当該複数の区画間で互いに異なる少なくとも2つの区画を含む
     ことを特徴とする発光装置。
    A light emitting device having a light emitting region composed of a plurality of minute light emitting units electrically connected in parallel,
    In the light emitting region, the light emitting device includes:
    One planar conductor;
    An insulating layer formed on the upper surface of the planar conductor;
    A plurality of openings formed in the insulating layer;
    A plurality of first electrodes formed on the insulating layer;
    An organic compound layer including a light emitting layer formed to cover the plurality of first electrodes;
    A second electrode formed on the organic compound layer,
    Each comprising a plurality of compartments including two or more of the first electrodes,
    At least a part of the plurality of first electrodes is also formed in the opening and electrically connected to the conductor, thereby forming an electrode for energizing the organic compound layer in the plurality of minute light emitting portions,
    The plurality of openings have an elongated shape having a first major axis and a first minor axis that are orthogonal to each other in a plan view, and the first major axes are parallel to each other in one of the compartments. Formed to be
    The plurality of first electrodes have an elongated shape having a second major axis and a second minor axis that are orthogonal to each other in plan view, and the second major axes are parallel to each other in one of the compartments. Formed to be
    In each of the plurality of sections, a distance between the openings in the direction of the first short axis of the opening is shorter than a length of the second long axis of the first electrode, and the first electrode Longer than the length of the second short axis of
    The plurality of sections include at least two different angles between the first major axis of the opening and the second major axis of the first electrode in each of the plurality of sections. A light emitting device comprising a compartment.
  2.  前記発光領域内において、前記導電体に電気的に接続した前記第1電極と、前記導電体に電気的に接続していない当該第1電極とが混在していることを特徴とする請求項1に記載の発光装置。 2. The first electrode electrically connected to the conductor and the first electrode not electrically connected to the conductor are mixed in the light emitting region. The light emitting device according to 1.
  3.  前記開口部の前記第1の長軸および前記第1電極の前記第2の長軸のいずれか一方が、前記発光領域内において互いに平行であることを特徴とする請求項1または2に記載の発光装置。 3. The device according to claim 1, wherein one of the first long axis of the opening and the second long axis of the first electrode is parallel to each other in the light emitting region. Light emitting device.
  4.  前記開口部の前記第1の長軸および前記第1電極の前記第2の長軸の長さが、それぞれ当該開口部の前記第1の短軸および当該第1電極の前記第2の短軸の長さの5倍以上であることを特徴とする請求項1乃至3のいずれか1項に記載の発光装置。 The lengths of the first major axis of the opening and the second major axis of the first electrode are respectively the first minor axis of the opening and the second minor axis of the first electrode. The light emitting device according to any one of claims 1 to 3, wherein the light emitting device is at least five times the length of the light emitting device.
  5.  前記発光領域内において、複数の前記開口部の形状および大きさが全て同一および/または複数の前記第1電極の形状および大きさが全て同一であることを特徴とする請求項1乃至4のいずれか1項に記載の発光装置。 The shape and size of the plurality of openings are all the same and / or the shape and size of the plurality of first electrodes are all the same in the light emitting region. The light emitting device according to claim 1.
  6.  複数の前記開口部の配列パターンおよび複数の前記第1電極の配列パターンが、それぞれ前記複数の区画について同一であり、前記第1の長軸と前記第2の長軸のなす角度のみが異なることを特徴とする請求項5に記載の発光装置。 The arrangement pattern of the plurality of openings and the arrangement pattern of the plurality of first electrodes are the same for each of the plurality of sections, and only the angle formed by the first major axis and the second major axis is different. The light-emitting device according to claim 5.
  7.  前記開口部の前記第1の短軸の長さおよび前記第2の短軸の長さがそれぞれ0.1μm~10μmであり、当該開口部および前記第1電極が、前記発光領域の任意の1mm四方の領域においてそれぞれ10個~10個形成されていることを特徴とする請求項1乃至6のいずれか1項に記載の発光装置。 The length of the first short axis and the length of the second short axis of the opening are 0.1 μm to 10 μm, respectively, and the opening and the first electrode are each 1 mm of the light emitting region. the light emitting device according to any one of claims 1 to 6, characterized in that it is 10 2, respectively to 10 8 formed in the square region.
  8.  複数の前記開口部および複数の前記第1電極のいずれか一方が、前記発光領域内において長軸が互いに向かい合って平行に、且つ周期的に配列して形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の発光装置。 The one of the plurality of openings and the plurality of first electrodes is formed in such a manner that the long axes face each other in parallel and periodically in the light emitting region. 8. The light emitting device according to any one of 1 to 7.
  9.  前記面状の導電体が金属酸化物からなる透明導電膜であり、前記発光領域の外側の少なくとも一部に、当該面状の導電体と電気的に接続するとともに、これを電源と接続するための端子部が形成され、前記開口部の前記第1の長軸と前記第1電極の前記第2の長軸とのなす角度が、前記区画における前記発光部の面積割合が当該端子部から遠い当該区画ほど大きくなるように設定されていることを特徴とする請求項1乃至8のいずれか1項に記載の発光装置。 The planar conductor is a transparent conductive film made of a metal oxide, and is electrically connected to at least a part of the outer side of the light emitting region with the planar conductor and connected to a power source. And the angle formed by the first long axis of the opening and the second long axis of the first electrode is such that the area ratio of the light emitting portion in the section is far from the terminal portion. The light-emitting device according to claim 1, wherein the light-emitting device is set to be larger as the section is larger.
  10.  前記角度が前記端子部から遠い前記区画ほど大きいことを特徴とする請求項9に記載の発光装置。 10. The light emitting device according to claim 9, wherein the angle is larger as the section is farther from the terminal portion.
PCT/JP2013/081782 2012-11-28 2013-11-26 Light emission device WO2014084210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-260240 2012-11-28
JP2012260240 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014084210A1 true WO2014084210A1 (en) 2014-06-05

Family

ID=50827846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081782 WO2014084210A1 (en) 2012-11-28 2013-11-26 Light emission device

Country Status (1)

Country Link
WO (1) WO2014084210A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034586A1 (en) * 2003-10-02 2005-04-14 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
JP2006253302A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Organic electroluminescence element
US20070228368A1 (en) * 2006-03-31 2007-10-04 Fujifilm Corporation Functional device
JP2007294441A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Functional element
JP2008243396A (en) * 2007-03-26 2008-10-09 Optrex Corp Plane light emitting apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034586A1 (en) * 2003-10-02 2005-04-14 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
KR20060039949A (en) * 2003-10-02 2006-05-09 가부시키가이샤 도요다 지도숏키 Electric field light emitting element
EP1684550A1 (en) * 2003-10-02 2006-07-26 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
CN1864440A (en) * 2003-10-02 2006-11-15 株式会社丰田自动织机 Electric field light emitting element
US20070210700A1 (en) * 2003-10-02 2007-09-13 Yoshifumi Kato Electric Field Light Emitting Element
TWI300314B (en) * 2003-10-02 2008-08-21 Toyota Jidoshokki Kk Electroluminescence device
JP4400570B2 (en) * 2003-10-02 2010-01-20 株式会社豊田自動織機 Electroluminescent device
JP2006253302A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Organic electroluminescence element
US20070228368A1 (en) * 2006-03-31 2007-10-04 Fujifilm Corporation Functional device
JP2007294441A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Functional element
JP2008243396A (en) * 2007-03-26 2008-10-09 Optrex Corp Plane light emitting apparatus

Similar Documents

Publication Publication Date Title
JP4470627B2 (en) Optical substrate, light emitting element, and display device
US9099598B2 (en) Light-emitting device and method for manufacturing light-emitting device
KR101408463B1 (en) Electroluminescent element, display device and lighting device
WO2013153700A1 (en) Organic el illumination panel substrate, organic el illumination panel and organic el illumination device
JP2011048962A (en) Organic el display device
WO2013146350A1 (en) Light emitting apparatus and method for manufacturing light emitting apparatus
JP2015037168A (en) Organic light-emitting element
WO2012147390A1 (en) Organic light-emitting element, production method for organic light-emitting element, display device, and illumination device
JP2015090817A (en) Organic light emitting element, organic light emitting element manufacturing method, display device and light device
JP5435522B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
JP2000286060A (en) Organic light-emitting device and its manufacture
JP5255161B1 (en) ORGANIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2014084210A1 (en) Light emission device
US9054332B2 (en) Organic electroluminescent device and light emitting apparatus
JP4893816B2 (en) OPTICAL SUBSTRATE, LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND METHOD FOR PRODUCING THEM
WO2013094375A1 (en) Method for manufacturing organic light emitting element
JP2014107173A (en) Light-emitting device and method for reducing luminance distribution of light-emitting device
JP5145483B2 (en) ORGANIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2012243517A (en) Organic light-emitting element, method for manufacturing the same, display device, and lighting device
KR20130017088A (en) Light-emitting element, image display device, and lighting device
WO2014069396A1 (en) Organic light-emitting element and method for manufacturing organic light-emitting element
JP2002246181A (en) Organic light-emitting element
JP2015011893A (en) Organic light-emitting element
WO2014084209A1 (en) Organic light emitting element, method for manufacturing organic light emitting element, display device and lighting device
WO2012161057A1 (en) Organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP