WO2014084209A1 - Organic light emitting element, method for manufacturing organic light emitting element, display device and lighting device - Google Patents

Organic light emitting element, method for manufacturing organic light emitting element, display device and lighting device Download PDF

Info

Publication number
WO2014084209A1
WO2014084209A1 PCT/JP2013/081781 JP2013081781W WO2014084209A1 WO 2014084209 A1 WO2014084209 A1 WO 2014084209A1 JP 2013081781 W JP2013081781 W JP 2013081781W WO 2014084209 A1 WO2014084209 A1 WO 2014084209A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
hole
organic
refractive index
Prior art date
Application number
PCT/JP2013/081781
Other languages
French (fr)
Japanese (ja)
Inventor
白根 浩朗
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014084209A1 publication Critical patent/WO2014084209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to, for example, an organic light emitting element used for a display device or a lighting device.
  • a typical structure of the organic light emitting element is formed by sequentially laminating a transparent first electrode 112, an organic layer 115 including a light emitting layer, and a reflective second electrode 116 on a transparent substrate 111.
  • typical refractive indexes of the respective layers are, for example, 1.5 for the transparent substrate 111, 1.9 for the first transparent electrode 112, and 1.7 for the organic layer 115.
  • the incident angle is the critical angle. The above light cannot be totally reflected and transmitted through the interface.
  • FIG. 19 shows how light travels differently depending on the emission angle of light emitted from the light emission position P in the organic layer 115 (the angle with respect to the normal to the substrate plane).
  • light having a radiation angle of 36 ° from the light emission position P corresponds to light having an incident angle at the light-transmitting transparent substrate 111 / air interface having a critical angle (42 °).
  • light having an emission angle of 62 ° from the light emission position P corresponds to light having an incident angle at the interface of the translucent first electrode 112 / substrate 111 that is a critical angle (52 °). Accordingly, light having a radiation angle from the light emission position P of 36 ° or less (for example, the light beam L1 and the radiation angle 30 °) is transmitted from the transparent substrate 111 to the outside. However, light having a radiation angle from 36 ° to 62 ° from the light emission position P (for example, light ray L2, radiation angle 40 °) is confined between the outer surface of the transparent substrate 111 and the interface between the organic layer 115 and the second electrode 116. It becomes a guided mode.
  • light having a radiation angle of 62 ° or more from the light emission position P is a translucent first electrode 112 / substrate 111 interface and an organic layer 115 / second electrode 116 interface. It becomes a waveguide mode confined between.
  • Patent Documents 1 to 7 In order to improve the light extraction efficiency, it is necessary to reduce the total reflected light, and many attempts have been made for this purpose (see, for example, Patent Documents 1 to 7).
  • an object of the present invention is directed to an organic light-emitting device that suppresses total reflection by changing a light distribution of light generated in a light-emitting layer, and has high light extraction efficiency and excellent durability. It is to provide an element or the like.
  • the organic light emitting device of the present invention is formed through the first electrode layer formed on the substrate, the insulating low refractive index layer formed on the first electrode layer, and at least the low refractive index layer.
  • a light-transmitting conductive layer formed along only the entire bottom surface of the hole portion, or at least along the entire bottom surface and side surfaces of the hole portion and in electrical contact with the first electrode layer, and a light emitting layer
  • An organic semiconductor layer formed on the translucent conductive layer and formed so that at least a part of the hole enters the inside of the hole, and a second electrode layer formed on the organic semiconductor layer,
  • the low refractive index layer has a refractive index smaller than that of the light-transmitting conductive layer and the organic semiconductor layer, and has a maximum width of 3 ⁇ m or less when the hole is viewed in plan.
  • the organic semiconductor layer is located at the position where the hole is formed. It is characterized by being formed with a uniform thickness.
  • the light emitting layer of the organic semiconductor layer is preferably formed so that at least part of the light emitting layer enters the inside of the hole, and the surface of the translucent conductive layer on the organic semiconductor layer side is a position where the hole is formed. It is preferable to make a shape that is recessed toward the first electrode layer, and it is more preferable that the shape that is recessed toward the first electrode layer is a curved surface.
  • the translucent conductive layer is preferably formed to extend on the low refractive index layer, and the translucent conductive layer is preferably formed with a uniform thickness along the inner surface of the hole. .
  • the first electrode layer may reflect light emitted from the light emitting layer of the organic semiconductor layer
  • the second electrode layer may transmit light emitted from the light emitting layer
  • the first electrode layer may be organic semiconductor.
  • the light emitted from the light emitting layer may be transmitted
  • the second electrode layer may reflect the light emitted from the light emitting layer.
  • the hole is preferably formed by further drilling at least a part of the first electrode layer, and the hole is preferably formed by further drilling a part of the substrate.
  • the method for producing an organic light emitting device of the present invention includes a first electrode layer forming step for forming a first electrode layer on a substrate, and a low refractive index layer for forming an insulating low refractive index layer on the first electrode layer.
  • the display device of the present invention includes the above organic light emitting element.
  • the lighting device of the present invention includes the above organic light emitting element.
  • (A)-(f) is a figure explaining the manufacturing method of the organic light emitting element to which this Embodiment is applied. It is a figure explaining an example of the display apparatus using the organic light emitting element in this Embodiment. It is a figure explaining an example of an illuminating device provided with the organic light emitting element in embodiment. It is the figure explaining the light extraction in the organic light emitting element of a prior art. It is an example of the first prior art, and is a diagram illustrating an organic light emitting device in which a light emitting side surface is processed into an uneven shape. It is a figure explaining the organic light emitting element of the prior art. It is a figure explaining the organic light emitting element of the prior art.
  • a flat interface where total reflection occurs is processed to make the flat surface less likely to cause total reflection.
  • the first conventional technique include those obtained by processing the light emitting side surface of the organic light-emitting element into a concavo-convex shape as exemplified in Patent Document 1 (Prior Art 1-1) and those described in Patent Document 2.
  • An organic light emitting device having a microlens on the light emitting side surface is mentioned (conventional technology 1-2). With these methods, light that could not be extracted to the outside can be extracted. However, when the interface is a flat surface, a part of the light extracted to the outside is not extracted, and a great improvement in light extraction efficiency cannot be obtained.
  • FIG. 20 is a diagram illustrating an organic light-emitting element that is an example of the first prior art and has a light emitting side surface processed into a concavo-convex shape.
  • the organic light emitting device 100 has the same configuration as the organic light emitting device 100 shown in FIG. 19 except that the outer surface of the transparent substrate 111 has a concavo-convex structure having a slope of 45 °.
  • the light beam L2 emitted from the light emission position P is totally reflected on the outer surface of the transparent substrate 111, but the light of the organic light emitting device 100 of FIG.
  • the light is incident on the inclined surface having an inclination angle of 45 ° on the outer surface of the transparent substrate 111 and transmitted therethrough.
  • the light beam L4 emitted from the light emission position P at an emission angle of 0 ° is extracted by the organic light emitting device 100 of FIG. 19, but 45 ° with respect to the slope of the outer surface of the transparent substrate 111 in the organic light emitting device 100 of FIG. Since it is incident at an incident angle of 1, it is totally reflected and is not taken out to the outside.
  • the interface causing total reflection is left flat and the light distribution of light incident on this interface is distributed.
  • Patent Document 3 there is a technique exemplified in Patent Document 3 described above, in which a minute protrusion is provided on an electrode located on the light emission surface side, thereby imparting a concave shape to the counter electrode (conventional technique 2-1). Since the traveling direction of light changes due to the reflection on the concave inclined mirror surface of the counter electrode, the light extraction efficiency is easily improved.
  • the technique of forming the diffraction grating which consists of SiO which has a periodic structure in the direction parallel to a substrate surface between the organic thin film layer and the electrode of the light emission side illustrated by the said patent document 4 is mentioned (conventionally).
  • Technology 2-2 With this periodic structure, light emitted from the light-emitting layer in the direction close to the horizontal direction (in-plane direction of the substrate) is efficiently extracted to the outside and the light emission efficiency is easily improved.
  • Patent Document 5 there is a cavity electroluminescent device exemplified in the above-mentioned Patent Document 5 in which a cavity penetrating a dielectric layer is provided and an organic layer is filled in the cavity for the purpose of increasing the area of the light emitting region relative to the device area ( Conventional technique 2-3).
  • the refractive index of the dielectric layer is not mentioned, but the use of a material (such as silicon oxide) having a lower refractive index than the organic layer is also disclosed. Therefore, the cavity electroluminescent device disclosed in Patent Document 5 has the light extraction effect disclosed in Patent Document 6 described later when a material having a lower refractive index than the organic layer is used as the material of the dielectric layer. It is thought to have.
  • Patent Document 7 a technique exemplified by the above-mentioned Patent Document 7 is provided with mode conversion means for converting from the waveguide mode to the radiation mode in order to extract light that is confined as a waveguide mode in the light emitting element and is not extracted to the outside.
  • This mode conversion means is formed with a periodic structure having a refractive index that prohibits propagation of light in a waveguide mode.
  • an anode layer 122 and a dielectric layer 123 are sequentially laminated on a substrate 121, and a plurality of holes (cavities) 127 penetrating through the dielectric layer 123 are formed.
  • an organic layer 125 including a light emitting layer is formed thereon.
  • a polymer material is formed as an organic layer 125 by coating, the organic layer 125 is formed into a shape that falls into the hole 127.
  • the cathode layer 126 formed thereon is also formed in a shape along the drop of the organic layer 125.
  • the organic layer 125 When the organic layer 125 is formed with a non-uniform thickness between the anode layer 122 and the cathode layer 126 in this way, the current flows in the center portion (C1) of the hole portion 127 where the distance between the electrodes is the shortest. Flow part). Accordingly, the organic light emitting device 100 shown in FIG. 21A emits light only in the vicinity of the center of the hole 127, and the utilization efficiency of the light emitting material in the hole 127 is low, and as a result, high luminance cannot be achieved. Furthermore, since the deterioration locally proceeds in the portion where the current flows in a concentrated manner, the durability of the organic light emitting device 100 is likely to be lowered.
  • the organic light emitting device 100 shown in FIG. 21-2 is different from the organic light emitting device 100 shown in FIG. 21-1 only in that the hole 127 penetrates not only the dielectric layer 123 but also the anode layer 122.
  • the organic layer 125 is formed into a shape that falls into the hole 127.
  • the anode layer 122 is in contact with the organic layer 125 at the end face.
  • the current flows in the vicinity of the side surface of the hole 127 (portion C2). Accordingly, the organic light emitting device 100 shown in FIG. 21-2 emits light only in the vicinity of the side surface of the hole 127, and high luminance cannot be achieved like the organic light emitting device 100 shown in FIG. It is easy to deteriorate.
  • Patent Document 5 it is important to dispose the light emitting layer (light emitting position) in the hole 127 particularly when the refractive index of the dielectric layer 123 is smaller than the organic layer 125. Conceivable. However, Patent Document 5 does not disclose any relative positional relationship between the light emitting layer (light emitting position) in the organic layer 125 and the hole 127.
  • a hexagonal grid or a rectangular grid (low refractive index) in a plane parallel to the substrate is arranged in a repeating pattern such as a grid frame part).
  • the dimension of the organic light emitting region inside the grid is disclosed as 4 ⁇ m to 10 ⁇ m. Since the extinction coefficient of the organic light emitting layer material is generally about 0.01 to 0.1, assuming that light with a wavelength of 555 nm (maximum visibility) travels 4 ⁇ m, the light intensity has an extinction coefficient of 0.
  • Patent Document 6 discloses that a cavity electroluminescent element can have a structure in which a plurality of organic layers are stacked in parallel with a substrate as an organic light emitting region (the thickness of each layer is uniform). . However, a specific method for actually realizing this is not shown.
  • the mode conversion means of the organic light emitting device disclosed in Patent Document 7 which is an example of the prior art 2-5 has a refractive index periodic structure that prohibits the propagation of light in a waveguide mode. It is based on the principle of so-called photonic crystals. As a structure of this photonic crystal, a fine periodic structure whose refractive index changes with a period of about the effective wavelength of light (emission wavelength / medium refractive index: submicron order) is necessary. However, it is extremely difficult to process such a submicron structure with the strict dimensional accuracy required for the function of the photonic crystal. Therefore, it is not easy to manufacture an organic light emitting device that uses a photonic crystal and has high light extraction efficiency.
  • Patent Document 7 does not disclose any relative positional relationship between the light emitting layer (light emitting position) in the organic layer and the concavo-convex structure.
  • the organic layer has a uniform thickness in the concave portion of the concavo-convex structure that changes the light distribution of the light generated in the light emitting layer.
  • the inventors paid attention to the following points in a conventional organic light emitting device having a cavity and a low refractive index layer. That is, in the organic light emitting device of the prior art, in order to improve the light extraction efficiency, the base surface on which the organic layer is formed has cavities and irregularities due to regions having a refractive index different from that of the organic layer. The organic layer and the upper electrode (electrode on the side away from the substrate) are formed in the recess. Therefore, the distance between the upper electrode and the lower electrode (substrate-side electrode) is not uniform. It was considered that this caused non-uniform light emission, the light extraction efficiency was lowered, and the life was shortened.
  • the inventors have formed the cavity inner surface in order to make the gap between the upper electrode and the lower electrode uniform without changing the inner surface of the cavity (interface having different refractive indexes) involved in light extraction.
  • the inventors have conceived that a substantial lower electrode surface is provided separately from the side electrode surface, and have completed the present invention.
  • both the lower electrode surface and the refractive index interface that refracts light emitted from the light emitting layer in a direction in which it is easily extracted to the outside are provided on the inner surface of the cavity.
  • the present embodiment is characterized in that the lower electrode surface is separated from the cavity inner surface. That is, by forming a translucent conductive layer having the same refractive index as the organic layer in contact with the lower electrode exposed on the inner surface of the cavity, the refractive index interface remains on the inner surface of the cavity, but the surface of the translucent conductive layer becomes a substantial lower electrode surface.
  • the light emitting layer is optimized to a position where the light extraction efficiency is high in the cavity.
  • uniform light emission in the cavity can be obtained by making the surface shape of the translucent conductive layer so that the film thickness of the organic layer formed thereon is likely to be uniform.
  • either the upper electrode or the lower electrode may be an anode or a cathode.
  • at least one of the electrodes may be translucent.
  • FIG. 1-1 is a partial cross-sectional view illustrating a first example of an organic light emitting device to which the present embodiment is applied.
  • the actual organic light emitting element 10 takes a form in which this structure is repeated in the horizontal direction in the figure.
  • 1-1 includes a substrate 11, an anode layer 12 formed on the substrate 11 as a first electrode layer for injecting holes, and a second electrode for injecting electrons.
  • a structure in which a cathode layer 16 as a layer and an insulating low refractive index layer 13 formed between the anode layer 12 and the cathode layer 16 are laminated is adopted.
  • the anode layer 12 is translucent, and light is extracted from the substrate 11 side.
  • the organic light emitting device 10 has a hole 17 formed so as to penetrate at least the low refractive index layer 13. Further, the organic light emitting element 10 includes a light transmissive conductive layer 14 and an organic semiconductor layer 15. The translucent conductive layer 14 is formed in the hole 17 and is in electrical contact with the anode layer 12. The organic semiconductor layer 15 includes the light emitting layer 15 a, is formed on the translucent conductive layer 14, and is formed so that at least a part thereof enters the hole 17.
  • the organic light emitting element 10 forms a light emitting surface when the light emitting layer 15a of the organic semiconductor layer 15 emits light.
  • the translucent conductive layer 14 and the organic semiconductor layer 15 are formed not only at the positions of the holes 17 but also extending on the low refractive index layer 13. Therefore, the cathode layer 16 is formed so as to be located on the organic semiconductor layer 15 over the entire surface of the organic semiconductor layer 15.
  • “the position of the hole portion 17” and “the position where the hole portion 17 is formed” mean the position of the hole portion 17 as viewed from the upper side where the above layers are stacked. Shall.
  • the substrate 11 serves as a support for forming the anode layer 12, the low refractive index layer 13, the translucent conductive layer 14, the organic semiconductor layer 15, and the cathode layer 16.
  • a material that satisfies the mechanical strength required for the organic light emitting device 10 is used for the substrate 11.
  • the material of the substrate 11 when light is extracted from the substrate 11 side of the organic light emitting element 10 as in the first example, it is necessary to be light transmissive with respect to the light emitted from the light emitting layer 15 a.
  • Specific materials include: glass such as sapphire glass, soda glass, and quartz glass; transparent resin such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon resin, and silicone resin; metal nitride such as aluminum nitride, Examples thereof include transparent metal oxides such as alumina.
  • the resin film etc. which consist of the said transparent resin as the board
  • a resin film or the like having high gas permeability it is preferable to form a barrier thin film that suppresses gas permeation as long as light permeability is not impaired.
  • the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
  • the anode layer 12 injects holes into the organic semiconductor layer 15 by applying a voltage between the anode layer 12 and the cathode layer 16.
  • the material of the anode layer 12 since light is extracted from the substrate 11 side, the material of the anode layer 12 needs to be light transmissive with respect to the light emitted from the light emitting layer 15a.
  • the anode layer 12 is preferably formed in a planar shape along the substrate 11 and the upper surface is a smooth surface that contains as little as possible fine irregularities.
  • the material used for the anode layer 12 needs to have electrical conductivity. Specifically, it has a high work function, and the work function is preferably 4.5 eV or more. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution.
  • a light-transmitting metal oxide can be used as a material satisfying such conditions.
  • Specific examples of the compound include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • the anode layer 12 can be formed with a thickness of 2 nm to 2 ⁇ m, for example.
  • the work function can be measured by, for example, ultraviolet photoelectron spectroscopy.
  • the low refractive index layer 13 is for making it easy to be extracted outside by refracting light emitted from the organic semiconductor layer 15. Therefore, the low refractive index layer 13 has a refractive index lower than that of the translucent conductive layer 14 and the organic semiconductor layer 15. More specifically, the refractive index of the low refractive index layer 13 is preferably 0.1 or more smaller than the refractive indexes of the translucent conductive layer 14 and the organic semiconductor layer 15, more preferably 0.2 or smaller. More preferably, it is smaller than 0.3.
  • the light L1 reaching the anode layer 12 and the substrate 11 causes total reflection at the interface between the anode layer 12 and the substrate 11 and the outer surface of the substrate 11. It becomes difficult. Therefore, by providing the low refractive index layer 13, more light emitted from the organic semiconductor layer 15 can be extracted from the substrate 11 side, and the light extraction efficiency is improved.
  • the low refractive index layer 13 is insulative. Thereby, since the low refractive index layer 13 insulates the anode layer 12 and the cathode layer 16 from each other at a predetermined interval, the organic semiconductor layer 15 can emit light by applying a voltage. For this reason, the low refractive index layer 13 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 ⁇ cm or more, preferably 10 12 ⁇ cm or more.
  • metal nitrides such as silicon nitride, boron nitride, and aluminum nitride
  • metal oxides such as silicon oxide (silicon dioxide) and aluminum oxide
  • sodium fluoride lithium fluoride
  • magnesium fluoride magnesium fluoride
  • fluoride metal fluorides
  • Metal fluorides such as calcium and barium fluoride can be mentioned, but also polyimide, polyvinylidene fluoride, polymer compounds such as parylene, coating type silicone such as poly (phenylsilsesquioxane), spin-on-glass (SOG) can also be used.
  • the thickness of the low refractive index layer 13 is preferably as thick as possible.
  • the thickness of the low refractive index layer 13 preferably does not exceed 1 ⁇ m.
  • the narrower the gap between the anode layer 12 and the cathode layer 16 the lower the voltage required for light emission. From this point of view, the thinner the low refractive index layer 13 is more preferable. However, if it is too thin, the dielectric strength may not be sufficient with respect to the voltage for driving the organic light emitting element 10.
  • the dielectric strength when a rated driving voltage is applied in a state where the low refractive index layer 13 in which the hole 17 is not formed is directly sandwiched between the anode layer 12 and the cathode layer 16, the anode layer 12 and the cathode layer 16 are applied.
  • the current density flowing between is preferably at 0.1 mA / cm 2 or less, and more preferably 0.01 mA / cm 2 or less.
  • the lower limit of the thickness of the low refractive index layer 13 that satisfies this is preferably 750 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. Further, the lower limit is preferably 15 nm or more, more preferably 30 nm or more, and even more preferably 50 nm or more.
  • the translucent conductive layer 14 is not necessarily formed in the conventional organic light emitting device structure.
  • the translucent conductive layer 14 is essential in the organic light emitting device 10 of the present invention, and plays the following three roles.
  • (I) Functions as a substantially lower electrode for applying a voltage to the organic semiconductor layer 15
  • (ii) When the hole 17 is formed through the lower electrode layer, the center of the hole 17
  • the translucent conductive layer 14 By forming the translucent conductive layer 14 in the hole 17 so that the surface thereof is concave, the film thickness of the organic semiconductor layer 15 formed thereon is made uniform. thing
  • the translucent conductive layer 14 is transparent and conductive with respect to light emitted from the light emitting layer 15 a of the organic semiconductor layer 15. Furthermore, it is preferable that the hole injection barrier to the organic semiconductor layer 15 is further lowered to increase the hole injection efficiency.
  • translucent conductive layer 14 is formed in electrical contact with anode layer 12.
  • the translucent conductive layer 14 has a higher conductivity than the organic semiconductor layer 15.
  • the conductivity of the translucent conductive layer 14 is preferably 1 ⁇ 10 ⁇ 3 S / cm or more, and more preferably 1 S / cm or more.
  • the difference between the refractive index of the translucent conductive layer 14 and the refractive index of the organic semiconductor layer 15 is preferably 0.1 or less.
  • the translucent conductive layer 14 functions electrically as a substantial anode, since the refractive index is optically almost the same as the organic semiconductor layer 15, the organic semiconductor layer is from the viewpoint of the refractive index.
  • 15 functions as an integral layer.
  • the integral layer and the low refractive index layer 13 form a high refractive index / low refractive index interface, which contributes to an improvement in light extraction efficiency.
  • the difference in refractive index between the translucent conductive layer 14 and the organic semiconductor layer 15 is greater than 0.1, a new refractive index interface is formed between the two layers.
  • the light incident on the low refractive index layer 13 through this extra interface has a sufficient light extraction effect at the high refractive index / low refractive index interface between the integral layer and the low refractive index layer 13. I can't get it.
  • a conductive polymer material or the like can be used as a material used for the translucent conductive layer 14 to satisfy such a condition. More specifically, copper phthalocyanine, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT: PSS), fluorocarbon, and the like can be given.
  • An inorganic translucent conductive material can also be used. Examples thereof include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • the translucent conductive layer 14 of the present embodiment is formed inside the hole 17. And especially when arrange
  • the substantially lower electrode surface is an interface between the translucent conductive layer 14 and the organic semiconductor layer 15. In this case, since the translucent conductive layer 14 is disposed on the bottom surface of the hole portion 17, no light is emitted in the vicinity of the bottom surface of the hole portion 17, and the organic semiconductor layer formed further above the translucent conductive layer 14.
  • Light emission occurs in the 15 light emitting layers 15a. That is, by providing the translucent conductive layer 14, the light emission location in the hole 17 can be moved relatively upward. As a result, light incident at a low incident angle on the side surface 13a of the hole 17 of the low refractive index layer 13 increases. That is, when the light-transmitting conductive layer 14 is not disposed and light is emitted in the vicinity of the bottom surface of the hole portion 17, the light that travels at a near-horizontal angle parallel to the surface of the substrate 11 and is difficult to be extracted to the outside. Since the light does not effectively enter 13a, the degree of improvement in light extraction efficiency is small.
  • the translucent conductive layer 14 when the translucent conductive layer 14 is provided as in the present embodiment, most of the light traveling at a horizontal angle parallel to the surface of the substrate 11 is incident on the side surface 13a of the hole 17 and the light travels. Since the direction changes closer to the normal line of the substrate 11, total reflection is less likely to occur at the interface between the anode layer 12 and the substrate 11 and the outer surface of the substrate 11, and the light extracted outside increases.
  • the translucent conductive layer 14 of the present embodiment is formed not only along the entire bottom surface of the hole portion 17 but also along the side surface 13a.
  • the upper surface (the surface on the organic semiconductor layer 15 side) of the translucent conductive layer 14 has a shape recessed toward the anode layer 12 at the position where the hole 17 is formed.
  • the shape of the upper surface of the translucent conductive layer 14 is more preferably a concave curved surface whose curvature changes gently. With this shape, the film thickness of the organic semiconductor layer 15 formed thereon becomes relatively uniform. Accordingly, the light emission is uniformly performed and the light emitting area is widened, so that the luminance is improved, and the current flows uniformly without being concentrated locally, so that the durability is also improved.
  • the translucent conductive layer 14 can be formed by a coating method.
  • the translucent conductive layer 14 is formed by a coating method, it is easier to make the upper surface of the translucent conductive layer 14 into a concave curved surface shape, so that the organic light emitting device 10 can be manufactured more easily.
  • the translucent conductive layer 14 may be formed extending on the low refractive index layer 13.
  • the entire organic semiconductor layer 15 is compared with the case where it is formed only inside the hole 17. Therefore, local heat generation is suppressed, and the durability of the organic light emitting element 10 is improved.
  • the organic semiconductor layer 15 is composed of one layer including the light emitting layer 15 a or a layer made of a plurality of stacked organic compounds, and is formed on the translucent conductive layer 14. At this time, the organic semiconductor layer 15 is formed so that at least a part thereof enters the hole 17. By doing in this way, among the light emitted from the light emitting layer 15 a included in the organic semiconductor layer 15, the light that travels in a horizontal direction parallel to the surface of the substrate 11 and is difficult to be extracted to the outside is transmitted to the side surface of the hole 17. More incident light can enter the low refractive index layer 13 from 13a.
  • the light emitting layer 15 a of the organic semiconductor layer 15 is formed so that at least a part thereof enters the hole portion 17.
  • FIG. 1-1 shows a case where at least a part of the light emitting layer 15a enters the inside of the hole portion 17, but FIG. 1-2 shows an example where the light emitting layer 15a does not enter the inside of the hole portion 17. It was. That is, in the present embodiment, the hole portion 17 is a portion below the dotted line shown in FIGS. 1-1 and 1-2. In FIG.
  • a part of the light emitting layer 15a enters a part below the dotted line.
  • a part of the organic semiconductor layer 15 enters a portion below the dotted line, but the light emitting layer 15a is formed at a portion above the dotted line.
  • the organic semiconductor layer 15 is preferably formed with a uniform thickness at the position where the hole 17 is formed. As a result, light emission can be generated more uniformly in the light emitting layer 15a at the positions of the holes 17. In other words, if the film thickness of the organic semiconductor layer 15 is not uniform at the position where the hole 17 is formed, current tends to flow in the thinner part than in the thicker part, and light emission is more likely to occur in this part. , Non-uniform light emission. In this case, the current is locally concentrated and heat is generated, so that the organic semiconductor layer 15 is likely to be deteriorated, and the durability of the organic light emitting element 10 is lowered.
  • the film thickness of the organic semiconductor layer 15 is uniform at the position where the hole 17 is formed, the current flows uniformly, so that the light emission is uniform. In this case, since the current does not flow locally, the durability of the organic light emitting element 10 can be improved. Further, since the light emitting region is widely distributed in or above the hole portion 17, the amount of light incident on the side surface 13a of the low refractive index layer 13 increases, and the light extraction efficiency is improved.
  • the variation in the thickness of the organic semiconductor layer 15 is preferably (minimum value of film thickness) / (maximum value of film thickness) ⁇ 0.7.
  • the uniform thickness of the organic semiconductor layer 15 means that the variation in film thickness is within this range.
  • the thickness of the organic semiconductor layer 15 can be measured by taking an SEM photograph of a vertical cross-sectional sample of the organic light emitting element 10.
  • the cross section for measurement is a cross section that divides the hole portion 17 into two substantially in plan view.
  • the planar shape of the hole part 17 is a rectangle, it is set as the cross section which does not cross a corner
  • FIG. 1-3 shows an example of measuring the film thickness of the organic semiconductor layer 15. The sample was produced as follows.
  • an anode layer 12 ITO
  • a low refractive index layer 13 SiO 2
  • PEDOT polyethylene dioxythiophene
  • PSS polystyrene sulfonic acid
  • Alq 3 is formed by vacuum deposition.
  • the maximum value of the film thickness in the hole 17 region of the organic semiconductor layer 15 is about 80 nm
  • the minimum value is about 60 nm
  • the ratio of the minimum value / maximum value is 0.75.
  • the light emitting layer 15 a included in the organic semiconductor layer 15 includes a light emitting material that emits light when a voltage is applied between the anode layer 12 and the cathode layer 16.
  • a light emitting material that emits light when a voltage is applied between the anode layer 12 and the cathode layer 16.
  • the light emitting material both low molecular compounds and high molecular compounds can be used.
  • Examples of cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like.
  • Examples of the complex include Ir, Pd and Pt having a ligand, and an iridium (Ir) complex is particularly preferable.
  • the cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex.
  • the cyclometalated complex includes a compound that emits light from triplet excitons, which is preferable from the viewpoint of improving luminous efficiency.
  • the light-emitting polymer compound examples include poly-p-phenylene vinylene (PPV) derivatives such as MEH-PPV; ⁇ -conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives; low molecular dyes and tetraphenyldiamine; And a polymer in which triphenylamine is introduced into the main chain or side chain.
  • PPV poly-p-phenylene vinylene
  • ⁇ -conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives
  • low molecular dyes and tetraphenyldiamine and a polymer in which triphenylamine is introduced into the main chain or side chain.
  • a light emitting high molecular compound and a light emitting low molecular weight compound can also be used in combination.
  • the light emitting layer 15a includes a host material together with the light emitting material, and the light emitting material may be dispersed in the host
  • the organic semiconductor layer 15 may include a hole transport layer for receiving holes from the translucent conductive layer 14 and transporting them to the light emitting layer 15a.
  • the hole transport layer is disposed between the translucent conductive layer 14 and the light emitting layer 15a.
  • a hole transport material for forming such a hole transport layer a known material can be used, for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl)- ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl); m-MTDATA (4,4 ′, 1,1′-biphenyl-4,4′diamine); Low molecular weight triphenylamine derivatives such as 4 ′′ -tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; polymer compounds obtained by introducing a polymerizable substituent into the above triphenylamine derivative,
  • the above hole transport materials may be used singly or in combination of two or more, or different hole transport materials may be laminated and used.
  • the thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 ⁇ m, more preferably 5 nm to 1 ⁇ m, and particularly preferably 10 nm to 500 nm. Is desirable.
  • the organic semiconductor layer 15 may include an electron transport layer for receiving electrons from the cathode layer 16 and transporting them to the light emitting layer 15a.
  • the electron transport layer is disposed between the cathode layer 16 and the light emitting layer 15a.
  • Examples of materials that can be used for such an electron transport layer include quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like.
  • tris (8-quinolinolato) aluminum (abbreviation: Alq)
  • tris (4-methyl-8-quinolinolato) aluminum bis (10-hydroxybenzo [h] quinolinato) beryllium
  • bis (2-methyl-) 8-quinolinolato) (4-phenylphenolato) aluminum bis [2- (2-hydroxyphenyl) benzoxazolate] zinc
  • bis [2- (2-hydroxyphenyl) benzothiazolate] zinc 2- (4-biphenylyl) ) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole and 1,3-bis [5- (p-tert-butylphenyl) -1,3,4-oxadiazole -2-yl] benzene
  • 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4 Triazole (abbreviation: TAZ)
  • a hole blocking layer may be provided between the electron transport layer and the light emitting layer 15a.
  • this hole blocking layer it is possible to prevent holes from passing through the light emitting layer 15a and to efficiently recombine holes and electrons in the light emitting layer 15a.
  • a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative is used.
  • the cathode layer 16 injects electrons into the organic semiconductor layer 15 by applying a voltage between the cathode layer 16 and the anode layer 12.
  • the cathode layer 16 is continuously formed along with the organic semiconductor layer 15 over the entire light emitting surface.
  • the material used for the cathode layer 16 is not particularly limited as long as it has electrical conductivity in the same manner as the anode layer 12. However, a material having a low work function and being chemically stable is preferable. .
  • the work function is preferably 2.9 eV or less in consideration of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified.
  • the thickness of the cathode layer 16 is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
  • the cathode layer 16 may be made of an opaque material.
  • the material of the cathode layer 16 is preferably a material that is reflective to the light emitted from the light emitting layer 15a.
  • a cathode buffer layer may be provided adjacent to the cathode layer 16 for the purpose of lowering the electron injection barrier from the cathode layer 16 to the organic semiconductor layer 15 and increasing the electron injection efficiency.
  • a metal material having a work function lower than that of the cathode layer 16 is preferably used.
  • alkali metals Na, K, Rb, Cs
  • alkaline earth metals Sr, Ba, Ca, Mg
  • rare earth metals Pr, Sm, Eu, Yb
  • fluorides or chlorides of these metals A simple substance selected from oxides or a mixture of two or more can be used.
  • the thickness of the cathode buffer layer is preferably from 0.05 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
  • the hole 17 is for extracting light emitted from the organic semiconductor layer 15, and is formed so as to penetrate the low refractive index layer 13 in the present embodiment.
  • the light emitted from the organic semiconductor layer 15 by providing the hole portion 17 mainly propagates through the inside of the hole portion 17 and the low refractive index layer 13 and is extracted from the substrate 11 side and the cathode layer 16 side. Can do.
  • the shape of the hole portion 17 is not particularly limited, but is preferably a polygonal column shape such as a cylindrical shape or a quadrangular column, or a stripe shape from the viewpoint of easy shape control.
  • the in-plane shape of the low refractive index layer 13 may change in the thickness direction of the low refractive index layer 13, or the size of the shape may change. That is, for example, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, and the like may be used.
  • the size of the hole portion 17 When the size of the hole portion 17 is large, the light emitted in the hole portion 17 travels directly or while being reflected on the surface of the cathode layer 16 or the surface of the low refractive index layer 13 and enters the side surface 13a of the low refractive index layer 13. By the time, it is absorbed and attenuated by the organic semiconductor layer 15 or the translucent conductive layer 14.
  • the size of the hole portion 17 In order to reduce the absorption loss due to the organic semiconductor layer 15 or the translucent conductive layer 14, the size of the hole portion 17 is 3 ⁇ m in maximum when viewed from the normal direction of the substrate 11, that is, in plan view.
  • the maximum width is the maximum value of the distance between two parallel straight lines that touch the plane figure of the hole 17 and sandwich it.
  • the maximum width is 1 micrometer or less by planar view.
  • the side surface 13a of the low refractive index layer 13 is formed perpendicular to the surface of the substrate 11, and in this case, the inclination angle of the side surface 13a of the hole 17 (with respect to the plane of the substrate 11). Angle) is 90 °.
  • the inclination angle is not limited to this, and can be changed as appropriate depending on the material used for the low refractive index layer 13 to increase the efficiency of extracting light emitted from the organic semiconductor layer 15 to the outside.
  • the inclination angle is preferably 45 ° or more, and more preferably 60 ° or more.
  • the side surface 13a was planar shape, it is not restricted to this, A curved surface shape may be sufficient.
  • the arrangement of the holes 17 viewed from the upper side on which the respective layers constituting the organic light emitting element 10 are laminated is not particularly limited, and may be regular or irregular.
  • a square (square) arrangement in which the holes 17 are arranged in a repeating unit as a square as shown in FIG. 1-4 (a), or as shown in FIG. 1-4 (b).
  • a triangular arrangement hexagonal arrangement, staggered arrangement in which each hole portion 17 is arranged as a regular triangle or a regular hexagon is exemplified.
  • FIG. 2 is a partial cross-sectional view illustrating a second example of an organic light emitting device to which the present embodiment is applied.
  • the light transmitting conductive layer 14 is also formed on the low refractive index layer 13 in the organic light emitting device 10 shown in FIG.
  • the layer 14 is not formed on the low refractive index layer 13 but is selectively formed inside the hole 17.
  • the transport of holes by the translucent conductive layer 14 is difficult to reach the portion of the organic semiconductor layer 15 formed on the low refractive index layer 13. Therefore, the light emitting region of the organic semiconductor layer 15 by the light emitting layer 15a is almost limited to the position of the hole 17, and the whole or most of the light emitting region is present in the hole 17, so that the light extraction efficiency tends to be high.
  • FIG. 3 is a partial cross-sectional view illustrating a third example of the organic light emitting device to which the present embodiment is applied.
  • the organic semiconductor layer 15 is also formed on the low refractive index layer 13 in the organic light emitting device 10 shown in FIG. It is not formed on the layer 13 but is selectively formed inside the hole 17.
  • the light-emitting region of the organic semiconductor layer 15 by the light-emitting layer 15a is further limited to the inside of the hole 17 than the organic light-emitting element 10 shown in FIG.
  • the organic semiconductor layer 15 is also present in a region adjacent to the side surface 13a of the hole 17, more light enters the low refractive index layer 13 through the side surface 13a, and light extraction efficiency is improved.
  • FIG. 4 is different from the organic light emitting device 10 shown in FIG. 1-1 in that the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is at a position where the hole 17 is formed.
  • the only difference is that it is recessed in a rectangular shape on the anode layer 12 side.
  • the organic light emitting device 10 shown in FIG. 5 is different from the organic light emitting device 10 shown in FIG. 2 in that the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is an anode at a position where the hole 17 is formed.
  • the only difference is that the layer 12 is recessed in a rectangular shape.
  • the organic light-emitting device 10 shown in FIG. 5 differs from the organic light-emitting device 10 shown in FIG. 5 only in that the light-transmitting conductive layer 14 is formed only on the bottom surface of the hole 17. In this case, the place where the translucent conductive layer 14 and the side surface 13 a of the low refractive index layer 13 are in contact is limited to the periphery of the bottom surface of the hole portion 17. Further, the organic light emitting device 10 shown in FIG. 7 is different from the organic light emitting device 10 shown in FIG. 3 in that the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is recessed at the position where the hole 17 is formed. The only difference is that it is flat.
  • the translucent conductive layer 14 is preferably formed with a uniform thickness along the inner surface of the hole 17.
  • the light emitting region is positioned in the vicinity of the side surface 13a of the low refractive index layer 13 as compared with the case where the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is recessed in a curved shape. Therefore, more light is incident on the side surface 13a, and the light extraction efficiency is further improved.
  • the uniform thickness of the light-transmitting conductive layer 14 means that the film thickness of the light-transmitting conductive layer 14 is (minimum value of film thickness) / (maximum value of film thickness) ⁇ 0.7. Means that.
  • FIG. 8 is a partial cross-sectional view illustrating an eighth example of an organic light emitting device to which the present embodiment is applied.
  • the organic light emitting device 10 shown in FIG. 8 has a hole 17 not only penetrating through the low refractive index layer 13 but also the anode layer 12 through the organic light emitting device 10 shown in FIG. Yes.
  • the hole 17 does not have to be formed through the anode layer 12 and may be formed halfway. That is, it may be formed by piercing a part of the anode layer 12.
  • FIG. 9 is a partial cross-sectional view illustrating a ninth example of an organic light emitting device to which the present embodiment is applied.
  • the substrate 11 has a perforated portion 18 that is recessed at a position where the hole 17 is formed.
  • the boundary portion between the hole portion 17 and the perforated portion 18 is illustrated by the lower dotted line in the drawing.
  • the organic light emitting device 10 shown in FIG. 8 the light reflected from the upper surface of the substrate 11, which is the bottom surface of the hole portion 17, also enters the substrate 11 on the side surface 18 a of the hole portion 18. Can invade. Therefore, the light extraction efficiency is further improved.
  • the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side has a rectangular shape on the anode layer 12 side at the position where the hole 17 is formed. Although recessed, this interface may be recessed in a curved surface shape.
  • FIG. 10 to 11 are partial cross-sectional views illustrating tenth to eleventh examples of the organic light emitting device to which the present embodiment is applied.
  • the translucent conductive layer 14 protrudes above the upper surface of the low refractive index layer 13 in the outer peripheral portion of the hole portion 17 as compared with the organic light emitting device 10 shown in FIG. 2. Is formed.
  • the organic semiconductor layer 15 and the cathode layer 16 formed on the translucent conductive layer 14 also have a shape that rises in the vicinity of the outer peripheral portion of the hole portion 17 corresponding to the shape of the translucent conductive layer 14. Yes.
  • the hole 17 has a shape that protrudes at or near the outer periphery.
  • the reason why the translucent conductive layer 14 takes such a form is likely to occur when the translucent conductive layer 14 is formed using a mask in the manufacture of the organic light emitting element 10.
  • the translucent conductive layer 14 is formed by forming a hole 17 in the low refractive index layer 13 and then filling the hole 17 with a material for forming the translucent conductive layer 14. .
  • the mask used when forming the hole 17 in the low refractive index layer 13 is left as it is. May be used to form the translucent conductive layer 14 in the hole 17.
  • the translucent conductive layer 14 remains on the outer peripheral portion of the hole 17 in a raised form.
  • the organic semiconductor layer 15 and the cathode layer 16 are formed thereon, whereby the organic light emitting device 10 shown in FIGS. 10 to 11 is manufactured.
  • the hole 17 is formed only in the low refractive index layer 13, but the hole 17 may be formed through the anode layer 12. . Further, the hole portion 17 may be formed by further drilling the substrate 11.
  • FIG. 12 is a partial cross-sectional view illustrating a twelfth example of an organic light emitting device to which the present embodiment is applied.
  • This is an application example of one embodiment having a different electrode configuration, and the electrode layer on the side opposite to the substrate 11 is a translucent cathode layer 16 and has a structure for extracting light from the side opposite to the substrate 11.
  • the application examples of the embodiments having different electrode configurations shown as the twelfth example exist corresponding to all the structures shown in FIGS. 1-1 to 11.
  • FIG. 12 corresponding to FIG. 1-1 will be representatively described, but the present embodiment can be similarly applied to other structures shown in FIGS. 1-2 to 11. 8 and 9, even when the opaque anode layer 12 is used, since the hole 17 penetrates the opaque anode layer 12 on the substrate 11 side, light is emitted also from the substrate 11 side. To do.
  • a conductive transparent metal oxide can be used as a material of the light-transmitting cathode layer 16.
  • the conductive transparent oxide include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • a cathode buffer layer (not shown) between the light-transmitting cathode layer 16 and the organic semiconductor layer 15 to improve the efficiency of electron injection into the organic semiconductor layer 15.
  • examples of materials applicable to the cathode buffer layer include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), and rare earth metals (Pr, Sm, Eu, Yb). Or a single substance or a mixture of two or more selected from fluorides, chlorides and oxides of these metals.
  • the thickness of the cathode buffer layer is preferably 10 nm or less in order to suppress transmission loss.
  • the material of the substrate 11 is not limited to one that is transparent to visible light, but is opaque. Things can also be used. Specifically, silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) A simple substance of these, alloys thereof, stainless steel, or the like can also be used.
  • the material used for the anode layer 12 needs to have electrical conductivity. Specifically, it has a high work function, and the work function is preferably 4.5 eV or more. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution.
  • a light-transmitting metal oxide can be used as a material that satisfies such conditions. Specific examples of the compound include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • the material of the anode layer 12 on the substrate 11 side is preferably a material that is reflective to the light emitted from the light emitting layer 15a.
  • a light-reflective material is used for the anode layer 12
  • light emitted from the light-emitting layer 15a toward the anode layer 12 is reflected by the surface of the anode layer 12 and extracted from the side opposite to the substrate 11, so that the light extraction efficiency Will improve.
  • the light extraction efficiency improves as the reflectance of the material used for the anode layer 12 increases.
  • Examples of materials applicable to the reflective anode layer 12 include high reflectivity metals such as Al, Ag, Mo, W, Ni, and Cr, high reflectivity amorphous alloys such as NiP, NiB, CrP, and CrB, and NiAl. Examples thereof include a microcrystalline alloy having a high reflectance such as.
  • anode buffer layer (not shown) between the reflective anode layer 12 and the organic semiconductor layer 15 to improve the efficiency of hole injection into the organic semiconductor layer 15.
  • materials applicable to the anode buffer layer include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • FIG. 13 is a partial cross-sectional view illustrating a thirteenth example of an organic light emitting device to which the present embodiment is applied.
  • the application examples of the embodiments having different electrode configurations shown as the thirteenth example exist corresponding to all the structures shown in FIGS.
  • the description will be made with reference to FIG. 13 corresponding to FIG. 1-1.
  • the present embodiment can be similarly applied to other structures shown in FIGS. 1-2 to 11.
  • the hole 17 penetrates the opaque cathode layer 16 on the substrate 11 side, so that light is also emitted from the substrate 11 side. .
  • the structure of the organic light emitting device 10 shown in FIG. 13 is a structure in which the positions of the light-transmitting anode layer 12 and the cathode layer 16 are interchanged in the organic light emitting device 10 of FIG. 1-1.
  • a conductive transparent metal oxide can be used as a material for the light-transmitting anode layer 12.
  • the conductive transparent oxide include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • the translucent conductive layer 14 in the thirteenth example has transparency and conductivity with respect to light emitted from the light emitting layer 15a of the organic semiconductor layer 15. Further, it is preferable to have a function of lowering the electron injection barrier to the organic semiconductor layer 15 and increasing the electron injection efficiency.
  • an n-type doped conductive polymer can be used as a material used for the translucent conductive layer 14 in order to satisfy such a condition.
  • the n-type doped conductive polymer include polyparaphenylene and polyparaphenylene vinylene.
  • the n-type doped conductive polymer can be formed by coating, a curved surface in which the interface between the organic semiconductor layer 15 and the translucent conductive layer 14 is recessed toward the substrate 11 at the position where the hole 17 is formed. It is easy to form.
  • the description of other matters regarding the embodiment of the light-transmitting conductive layer of the thirteenth example is the same as the description of the first example.
  • the material of the substrate 11 is not limited to a material that is transparent to visible light, but is opaque. You can also use anything. Specifically, silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) A simple substance of these, alloys thereof, stainless steel, or the like can also be used.
  • the material used for the cathode layer 16 is not particularly limited as long as it has electrical conductivity in the same manner as the anode layer 12. However, a material having a low work function and being chemically stable is preferable. .
  • the work function is preferably 2.9 eV or less in consideration of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified.
  • the thickness of the cathode layer 16 is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
  • the material of the cathode layer 16 is preferably a material that is reflective to the light emitted from the light emitting layer 15a.
  • a light-reflective material is used for the cathode layer 16
  • light emitted from the light emitting layer 15a toward the cathode layer 16 is reflected by the surface of the cathode layer 16 and is extracted from the substrate 11, so that the light extraction efficiency is improved.
  • the higher the reflectance of the material used for the cathode layer 16 the more the light extraction efficiency is improved.
  • a cathode buffer layer (not shown) between the light-transmitting cathode layer 16 and the organic semiconductor layer 15 to improve the efficiency of electron injection into the organic semiconductor layer 15.
  • materials applicable to the cathode buffer layer include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), and rare earth metals (Pr, Sm, Eu, Yb). Or a single substance or a mixture of two or more selected from fluorides, chlorides and oxides of these metals.
  • the thickness of the cathode buffer layer is preferably 10 nm or less in order to suppress transmission loss.
  • FIG. 14 is a partial cross-sectional view illustrating a fourteenth example of an organic light emitting device to which the present embodiment is applied.
  • This is an application example of still another embodiment having a different electrode configuration, and the electrode layer on the side in contact with the substrate 11 is a translucent cathode layer 16 and has a structure for extracting light from the substrate 11 side.
  • the application examples of the embodiments having different electrode configurations shown as the fourteenth example exist corresponding to all the structures shown in FIGS.
  • description will be made representatively with reference to FIG. 14 corresponding to FIG. 1-1, but the present embodiment can be similarly applied to other structures shown in FIG. 1-2 to FIG.
  • a conductive transparent metal oxide can be used as a material of the light-transmitting cathode layer 16.
  • the conductive transparent oxide include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • a cathode buffer layer (not shown) between the light-transmitting cathode layer 16 and the organic semiconductor layer 15 to improve the efficiency of electron injection into the organic semiconductor layer 15.
  • examples of materials applicable to the cathode buffer layer include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), and rare earth metals (Pr, Sm, Eu, Yb). Or a single substance or a mixture of two or more selected from fluorides, chlorides and oxides of these metals.
  • the thickness of the cathode buffer layer is preferably 10 nm or less in order to suppress transmission loss.
  • the translucent conductive layer 14 in the fourteenth example has transparency and conductivity with respect to light emitted from the light emitting layer 15a of the organic semiconductor layer 15. Further, it is preferable to have a function of lowering the electron injection barrier to the organic semiconductor layer 15 and increasing the electron injection efficiency.
  • an n-type doped conductive polymer can be used as a material used for the translucent conductive layer 14 in order to satisfy such a condition.
  • the n-type doped conductive polymer include polyparaphenylene and polyparaphenylene vinylene.
  • the n-type doped conductive polymer can be formed by coating, a curved surface in which the interface between the organic semiconductor layer 15 and the translucent conductive layer 14 is recessed toward the substrate 11 at the position where the hole 17 is formed. It is easy to form.
  • the description of other matters regarding the embodiment of the light-transmitting conductive layer of the fourteenth example is the same as the description of the first example.
  • the material of the substrate 11 when light is extracted from the substrate 11 side of the organic light emitting element 10 as in the first example, it is necessary to be light transmissive with respect to the light emitted from the light emitting layer 15 a.
  • Specific materials include: glass such as sapphire glass, soda glass, and quartz glass; transparent resin such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon resin, and silicone resin; metal nitride such as aluminum nitride, Examples thereof include transparent metal oxides such as alumina.
  • the resin film etc. which consist of the said transparent resin as the board
  • a resin film or the like having high gas permeability it is preferable to form a barrier thin film that suppresses gas permeation as long as light permeability is not impaired.
  • the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
  • the material of the anode layer 12 on the side opposite to the substrate 11 is preferably a material that is reflective to the light emitted from the light emitting layer 15a.
  • a light-reflective material is used for the anode layer 12
  • light emitted from the light emitting layer 15a toward the anode layer 12 is reflected by the surface of the anode layer 12 and is extracted from the substrate 11, so that the light extraction efficiency is improved.
  • the light extraction efficiency improves as the reflectance of the material used for the anode layer 12 increases.
  • Materials applicable to the reflective anode layer include high reflectivity metals such as Al, Ag, Mo, W, Ni, Cr, high reflectivity amorphous alloys such as NiP, NiB, CrP, CrB, NiAl, etc. And a highly crystalline microcrystalline alloy.
  • anode buffer layer (not shown) between the reflective anode layer 12 and the organic semiconductor layer 15 to improve the efficiency of hole injection into the organic semiconductor layer 15.
  • materials applicable to the anode buffer layer include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
  • any one of the lower electrode adjacent to the substrate 11 and the upper electrode far from the substrate 11 is from the light emitting layer.
  • the element structure having translucency with respect to the emitted light has been mainly described.
  • an element structure in which both electrodes have translucency and light is extracted from both the upper and lower surfaces of the organic light emitting element 10 may be used.
  • FIG. 15A shows the structure of the organic light emitting device 100 of the same prior art as in FIG. 19, in which a transparent first electrode 112, an organic layer 115 including a light emitting layer, a reflective property are sequentially formed on a transparent substrate 111.
  • a structure in which the second electrode 116 is stacked is shown.
  • the state of light propagation varies depending on the radiation angle from the light emission position P (the angle with respect to the normal to the substrate plane). While the radiation angle is small, the light is extracted outside as indicated by the light beam L1.
  • FIG. 15-2 employs a structure in which a part of the organic layer 115 of the organic light emitting device 100 of FIG. 15-1 is replaced with a low refractive index layer 113 having a refractive index lower than that of the organic layer 115.
  • FIG. 15-2 shows a case where the interface between the organic layer 115 and the low refractive index layer 113 is perpendicular to the plane of the transparent substrate 111.
  • the path of the light beam L1 is changed by providing the low refractive index layer 113 at a position where the light beam L1 does not enter the low refractive index layer 113 and the light beams L2 and L3 enter the low refractive index layer 113.
  • the light beam L2 and the light beam L3 are refracted toward the normal direction of the plane of the transparent substrate 111.
  • the light beam L2 and the light beam L3 are refracted at the interface of the low refractive index layer 113 / translucent first electrode 112, they are also refracted at the interface of the organic layer 115 / translucent first electrode 112. Compared to the normal direction of the plane of the transparent substrate 111, the light is refracted.
  • the path along which the light beam L2 and the light beam L3 travel after the first transparent electrode 112 changes largely toward the normal direction of the plane of the transparent substrate 111 as compared with the case where the low refractive index layer 113 is not provided.
  • the extent to which the path of the light beam L2 and the light beam L3 changes toward the normal direction of the plane of the transparent substrate 111 depends on the refractive index of the low refractive index layer 113, and specifically for the given light beam L2 and light beam L3.
  • the organic light emitting element 10 of this Embodiment has the low-refractive-index layer 13 and the organic-semiconductor layer 15 which have the some through-hole 17 between the anode layer 12 and the cathode layer 16.
  • FIG. 1 When a voltage is applied, since the low refractive index layer 13 is insulative, current flows only through the organic semiconductor layer 15 disposed in the hole portion 17 (however, a conductive buffer layer such as PEDOT is disposed outside the hole portion). In this case, the current flows also in the region outside the hole portion 17).
  • the film thickness of the organic semiconductor layer 15 is uniform in the hole portion 17, uniform light emission is obtained in the hole portion 17, and the low refractive index layer is obtained.
  • the light incident on the side surface 13a of the 13 is increased. Since the traveling direction of the light incident on the low refractive index layer 13 changes toward the normal direction of the plane of the substrate 11, the light is extracted outside and the extraction efficiency is improved. In addition, since current does not flow locally, durability is improved.
  • the translucent conductive layer 14 is formed only on the entire bottom surface of the hole portion 17 of the low refractive index layer 13 or along the entire bottom surface and the side surface 13a.
  • the probability that the light emission position is located in the hole portion 17 is increased. Therefore, more light is emitted from the light emitting position and incident on the side surface 13a of the low refractive index layer 13. Since the traveling direction of the light incident on the low refractive index layer 13 changes toward the normal direction of the plane of the substrate 11, the light is extracted outside and the extraction efficiency is improved.
  • the maximum width in a plan view of the hole portion 17 formed in the low refractive index layer 13 is 3 ⁇ m or less.
  • the absorption loss by the translucent conductive layer 14 through which the light emitted from the light emitting position passes before entering the side surface 13a of the low refractive index layer 13 can be suppressed to a low level.
  • the wavelength is assumed to be 555 nm (maximum visibility), and the light emission position is the center of the hole 17.
  • the light when the light travels 1.5 ⁇ m in the in-plane direction of the substrate 11, the light enters the low refractive index layer 13.
  • the light intensity at this time is 71% of the original light intensity when the extinction coefficient is 0.01. Yes, when the extinction coefficient is 0.1, it is 3% of the original light intensity. Therefore, in the organic light emitting device 10 of the present embodiment, the light emitted from the center of the hole 17 does not become at least several percent or less of the original light intensity before entering the low refractive index layer 13. Transmission loss due to the conductive layer 14 is suppressed.
  • FIG. 16 (a) to 16 (f) are diagrams illustrating a method for manufacturing the organic light emitting device 10 to which the present exemplary embodiment is applied.
  • the anode layer 12 as the first electrode layer is formed on the substrate 11 (FIG. 16A: first electrode layer forming step), and then the insulating low refractive index layer 13 is formed on the anode layer 12.
  • FIG. 16B Low refractive index layer forming step.
  • a glass substrate is used as the substrate 11.
  • ITO is used as a material for forming the anode layer 12
  • silicon dioxide (SiO 2 ) is used as a material for forming the low refractive index layer 13.
  • a resistance heating vapor deposition method an electron beam vapor deposition method, a sputtering method, an ion plating method, a dry method such as a CVD method, a spin coating method, a dip coating, etc.
  • a wet method such as a method, an inkjet method, a printing method, a spray method, or a dispenser method can be used.
  • the process of forming the anode layer 12 can be omitted by using a so-called electrode-attached substrate in which ITO is already formed as the anode layer 12 on the substrate 11.
  • FIG. 16C hole forming step
  • a method of forming the hole 17 in the low refractive index layer 13 for example, a method using lithography can be used. In order to do this, first, a resist solution is applied onto the low refractive index layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer. Next, when a mask on which a predetermined pattern for forming the hole 17 is formed is covered and exposed with ultraviolet (UV), electron beam (EB) or the like, the hole 17 is formed in the resist layer. A predetermined pattern corresponding to is exposed. Then, when the exposed portion of the resist layer is removed using a developer, the resist layer in the exposed pattern portion is removed. Thus, the surface of the low refractive index layer 13 is exposed corresponding to the exposed pattern portion.
  • UV ultraviolet
  • EB electron beam
  • the exposed portion of the low refractive index layer 13 is etched away using the remaining resist layer as a mask.
  • the etching either dry etching or wet etching can be used.
  • the shape of the hole 17 can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE) or inductively coupled plasma etching can be used.
  • RIE reactive ion etching
  • wet etching a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used.
  • the hole 17 is formed in the low refractive index layer 13 by removing the remaining resist layer with a resist removing solution or the like.
  • the hole 17 can be formed by a nanoimprint method. Specifically, after forming the resist layer, a mask on which a predetermined convex pattern for forming a pattern is drawn is pressed against the surface of the resist layer while applying pressure. In this state, the resist layer is cured by irradiating the resist layer with heat and / or light. Next, by removing the mask, a pattern of the hole 17 corresponding to the convex pattern is formed on the resist layer surface. Subsequently, the hole 17 can be formed by performing the etching described above.
  • a translucent conductive layer 14 that is formed at least in the hole 17 and is in electrical contact with the anode layer 12 is formed (FIG. 16D: translucent conductive layer forming step).
  • the same technique as that used to form the anode layer 12 and the low refractive index layer 13 can be used.
  • a coating method is particularly preferable.
  • film formation is performed by a coating method, a coating solution in which the material constituting the translucent conductive layer 14 is dispersed in a predetermined solvent such as an organic solvent or water is applied.
  • various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used.
  • the translucent conductive layer 14 is formed by drying the application solution by heating or vacuuming.
  • the organic semiconductor layer 15 including the light emitting layer 15a is formed on the light-transmitting conductive layer 14 so that at least a part thereof enters the hole 17 (FIG. 16E: organic semiconductor layer forming step).
  • FOG. 16E organic semiconductor layer forming step.
  • the same technique as that used to form the translucent conductive layer 14 can be used.
  • the cathode layer 16 that is the second electrode layer is formed on the organic semiconductor layer 15 (FIG. 16F: second electrode layer forming step).
  • the same technique as that used to form the anode layer 12 and the low refractive index layer 13 can be used.
  • the light-transmitting conductive layer 14 and the organic semiconductor layer 15 are formed with a uniform thickness along the side surface of the hole portion 17 (as shown in FIGS. 4, 5, 6, 8, 9, and 11).
  • dry methods vacuum evaporation, electron beam evaporation, sputtering, ion plating, etc.
  • the particles of the component to be deposited are emitted obliquely from the evaporation source or target to the substrate surface.
  • the organic light emitting device 10 can be manufactured through the above steps. In addition, it is preferable to use the organic light emitting element 10 stably for a long period of time and to attach a protective layer or a protective cover (not shown) for protecting the organic light emitting element 10 from the outside.
  • a protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
  • a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used.
  • the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate.
  • a spacer because a predetermined space can be maintained and the organic light emitting element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon or helium is sealed in this space, it becomes easy to prevent the upper cathode layer 16 from being oxidized. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic light emitting element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic light emitting element 10.
  • the organic light emitting device 10 of the present embodiment is suitably used for a display device as, for example, a matrix or segment pixel. Further, it can be suitably used as a surface emitting light source without forming pixels. Specifically, computers, televisions, mobile terminals, mobile phones, car navigation systems, signs, signboards, video camera viewfinders, display devices, backlights, electrophotography, illumination, resist exposure, readers, interior lighting, light It is suitably used for a surface emitting light source in a communication system or the like.
  • FIG. 17 is a diagram illustrating an example of a display device using the organic light emitting element 10 in the present embodiment.
  • the display device 200 shown in FIG. 17 is a so-called passive matrix display device, and includes a display device substrate 202, an anode wiring 204, an anode auxiliary wiring 206, a cathode wiring 208, an insulating film 210, a cathode partition wall 212, and the organic light emitting element 10. , A sealing plate 216, and a sealing material 218.
  • the display device substrate 202 for example, a transparent substrate such as a rectangular glass substrate can be used.
  • the thickness of the display device substrate 202 is not particularly limited, but for example, a thickness of 0.1 mm to 1 mm can be used.
  • a plurality of anode wirings 204 are formed on the display device substrate 202.
  • the anode wirings 204 are arranged in parallel at a constant interval.
  • the anode wiring 204 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used.
  • the thickness of the anode wiring 204 can be set to 100 nm to 150 nm, for example.
  • An anode auxiliary wiring 206 is formed on the end of each anode wiring 204.
  • the anode auxiliary wiring 206 is electrically connected to the anode wiring 204.
  • the anode auxiliary wiring 206 functions as a terminal for connecting to the external wiring on the end portion side of the display device substrate 202, and the anode auxiliary wiring 206 is connected from an external driving circuit (not shown). A current can be supplied to the anode wiring 204 through the wiring.
  • the anode auxiliary wiring 206 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
  • a plurality of cathode wirings 208 are provided on the organic light emitting element 10.
  • the plurality of cathode wirings 208 are arranged so as to be parallel to each other and orthogonal to the anode wiring 204.
  • As the cathode wiring 208 Al or an Al alloy can be used.
  • the thickness of the cathode wiring 208 is, for example, 100 nm to 150 nm.
  • a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 208 and is electrically connected to the cathode wiring 208. Therefore, current can flow between the cathode wiring 208 and the cathode auxiliary wiring.
  • An insulating film 210 is formed on the display device substrate 202 so as to cover the anode wiring 204.
  • the insulating film 210 is provided with a rectangular opening 220 so as to expose a part of the anode wiring 204.
  • the plurality of openings 220 are arranged in a matrix on the anode wiring 204.
  • the organic light emitting element 10 is provided between the anode wiring 204 and the cathode wiring 208 as described later. That is, each opening 220 is a pixel. Accordingly, a display area is formed corresponding to the opening 220.
  • the film thickness of the insulating film 210 can be, for example, 200 nm to 300 nm, and the size of the opening 220 can be, for example, 300 ⁇ m ⁇ 300 ⁇ m.
  • the organic light emitting element 10 is formed at a location corresponding to the position of the opening 220 on the anode wiring 204.
  • the organic light emitting device 10 is sandwiched between the anode wiring 204 and the cathode wiring 208 in the opening 220. That is, the anode layer 12 (see FIG. 1-1) of the organic light emitting device 10 is in contact with the anode wiring 204, and the cathode layer 16 (see FIG. 1-1) is in contact with the cathode wiring 208.
  • the thickness of the organic light emitting element 10 can be set to, for example, 150 nm to 200 nm.
  • a plurality of cathode partitions 212 are formed on the insulating film 210 along a direction perpendicular to the anode wiring 204.
  • the cathode partition 212 plays a role of spatially separating the plurality of cathode wirings 208 so that the wirings of the cathode wirings 208 do not conduct with each other. Accordingly, the cathode wiring 208 is disposed between the adjacent cathode partition walls 212.
  • a cathode partition with a height of 2 to 3 ⁇ m and a width of 10 ⁇ m can be used.
  • the display device substrate 202 is bonded through a sealing plate 216 and a sealing material 218. Thereby, the space in which the organic light emitting element 10 is provided can be sealed, and the organic light emitting element 10 can be prevented from being deteriorated by moisture in the air.
  • a sealing plate 216 for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
  • a current is supplied to the organic light emitting element 10 by a driving device (not shown) via the anode auxiliary wiring 206 and the cathode auxiliary wiring (not shown), and the light emitting layer 15a (see FIG. 1-1). Can emit light and emit light.
  • An image can be displayed on the display device 200 by controlling light emission and non-light emission of the organic light emitting element 10 corresponding to the above-described pixel by the control device.
  • FIG. 18 is a diagram illustrating an example of an illumination device including the organic light emitting element 10 according to the present embodiment.
  • the lighting device 300 shown in FIG. 18 includes the organic light emitting element 10 described above, and a terminal 302 that is installed at one end of the substrate 11 of the organic light emitting element 10 and connected to the anode layer 12 (see FIG. 1-1).
  • the terminal 303 installed at the other end of the substrate 11 and connected to the cathode layer 16 (see FIG. 1-1) of the organic light emitting device 10 is connected to the terminal 302 and the terminal 303 to drive the organic light emitting device 10.
  • a lighting circuit 301 for the purpose.
  • the lighting circuit 301 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode layer 16 of the organic light emitting element 10 through the terminal 302 and the terminal 303. Then, the organic light emitting device 10 is driven to cause the light emitting layer 15a (see FIG. 1-1) to emit light, and the substrate from the hole 17 (see FIG. 1-1) and the low refractive index layer 13 (see FIG. 1-1). 11, light is emitted and used as illumination light.
  • the light emitting layer 15a may be made of a light emitting material that emits white light, and the organic light emitting element 10 using a light emitting material that emits green light (G), blue light (B), and red light (R). A plurality of them may be provided, and the combined light may be white.
  • G green light
  • B blue light
  • R red light
  • the illumination device 300 of the present embodiment when light is emitted with the diameter and interval of the hole portions 17 being reduced, it appears that surface light is emitted to the human eye.

Abstract

An organic light emitting element (10) which is characterized by being provided with: a positive electrode layer (12) that is formed on a substrate (11); an insulating low-refractive-index layer (13) that is formed on the positive electrode layer (12); a hole (17) that is formed so as to penetrate through at least the low-refractive-index layer (13); a light transmitting conductive layer (14) that is formed only along the entire bottom surface of the hole (17) or at least along the entire bottom surface and the lateral surface of the hole (17), and is electrically connected to the positive electrode layer (12); an organic semiconductor layer (15) that contains a light emitting layer (15a) and is formed on the light transmitting conductive layer (14) such that at least a part of the organic semiconductor layer (15) enters into the hole (17); and a negative electrode layer (16) that is formed on the organic semiconductor layer (15). The organic light emitting element (10) is also characterized in that: the low-refractive-index layer (13) has a lower refractive index than the light transmitting conductive layer (14) and the organic semiconductor layer (15); the hole (17) has a maximum width of 3 μm or less when viewed in plan; and the organic semiconductor layer (15) is formed to have a uniform thickness at a position where the hole (17) is formed.

Description

有機発光素子、有機発光素子の製造方法、表示装置および照明装置ORGANIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
 本発明は、例えば、表示装置や照明装置に用いられる有機発光素子等に関する。 The present invention relates to, for example, an organic light emitting element used for a display device or a lighting device.
 有機発光素子の代表的な構成は、図19に示すように、透明基板111上に順に透光性の第1電極112、発光層を含む有機層115、反射性の第2電極116が積層された構造である。ここで、各層の代表的な屈折率は、例えば、透明基板111が1.5、透光性の第1電極112が1.9、有機層115が1.7である。このような積層構造において、光の進行方向に沿って屈折率が高い方から低い方へと変化している界面では、入射角(入射光線と入射する界面の法線がなす角度)が臨界角以上の光は全反射して界面を透過することができない。 As shown in FIG. 19, a typical structure of the organic light emitting element is formed by sequentially laminating a transparent first electrode 112, an organic layer 115 including a light emitting layer, and a reflective second electrode 116 on a transparent substrate 111. Structure. Here, typical refractive indexes of the respective layers are, for example, 1.5 for the transparent substrate 111, 1.9 for the first transparent electrode 112, and 1.7 for the organic layer 115. In such a laminated structure, at the interface where the refractive index changes from high to low along the light traveling direction, the incident angle (the angle formed between the incident ray and the normal of the incident interface) is the critical angle. The above light cannot be totally reflected and transmitted through the interface.
 ところで、屈折率がnの媒質から屈折率がnの媒質に光が進行する場合、界面の法線に対する入射角θと出射角θの間には(1)式で表されるSnellの法則、
    sinθ/sinθ=n/n     (1)
が成り立つ。また、全反射が起こる臨界角θcrは出射角θが90°となるときの入射角であり、(2)式で表される。
     θcr=sin-1(n/n)     (2)
By the way, when light travels from a medium having a refractive index of n 1 to a medium having a refractive index of n 2 , the angle between the incident angle θ 1 and the outgoing angle θ 2 with respect to the normal of the interface is expressed by the equation (1). Snell's law,
sin θ 1 / sin θ 2 = n 2 / n 1 (1)
Holds. The critical angle θ cr at which total reflection occurs is an incident angle when the emission angle θ 2 is 90 °, and is expressed by the equation (2).
θ cr = sin −1 (n 2 / n 1 ) (2)
 図19で示される有機発光素子100では、透明基板111/空気の界面、および透光性の第1電極112/透明基板111の界面で全反射が起こる。ここで、各層の屈折率が上記の代表的な値の場合、これらの界面における臨界角はそれぞれ42°と52°である。図19に、有機層115中の発光位置Pから発する光の放射角(基板平面の法線に対する角度)によって光の進行が異なる様子を示す。ここで、発光位置Pからの放射角が36°の光は、透光性の透明基板111/空気の界面での入射角が臨界角(42°)となる光に対応する。また、発光位置Pからの放射角が62°の光は、透光性の第1電極112/基板111の界面での入射角が臨界角(52°)となる光に対応する。従って、発光位置Pからの放射角が36°以下の光(例えば光線L1、放射角30°)は透明基板111から外部へ透過する。しかし、発光位置Pからの放射角が36°~62°の光(例えば光線L2、放射角40°)は透明基板111の外表面と有機層115/第2電極116の界面の間に閉じ込められる導波モードとなる。また、発光位置Pからの放射角が62°以上の光(例えば光線L3、放射角70°)は透光性の第1電極112/基板111の界面と有機層115/第2電極116の界面の間に閉じ込められる導波モードとなる。 In the organic light emitting device 100 shown in FIG. 19, total reflection occurs at the transparent substrate 111 / air interface and the translucent first electrode 112 / transparent substrate 111 interface. Here, when the refractive index of each layer is the above representative value, the critical angles at these interfaces are 42 ° and 52 °, respectively. FIG. 19 shows how light travels differently depending on the emission angle of light emitted from the light emission position P in the organic layer 115 (the angle with respect to the normal to the substrate plane). Here, light having a radiation angle of 36 ° from the light emission position P corresponds to light having an incident angle at the light-transmitting transparent substrate 111 / air interface having a critical angle (42 °). In addition, light having an emission angle of 62 ° from the light emission position P corresponds to light having an incident angle at the interface of the translucent first electrode 112 / substrate 111 that is a critical angle (52 °). Accordingly, light having a radiation angle from the light emission position P of 36 ° or less (for example, the light beam L1 and the radiation angle 30 °) is transmitted from the transparent substrate 111 to the outside. However, light having a radiation angle from 36 ° to 62 ° from the light emission position P (for example, light ray L2, radiation angle 40 °) is confined between the outer surface of the transparent substrate 111 and the interface between the organic layer 115 and the second electrode 116. It becomes a guided mode. In addition, light having a radiation angle of 62 ° or more from the light emission position P (for example, light beam L3, radiation angle 70 °) is a translucent first electrode 112 / substrate 111 interface and an organic layer 115 / second electrode 116 interface. It becomes a waveguide mode confined between.
 このように、一般的な有機発光素子100の構成では、発光層で発生した光の大部分は全反射により素子内に閉じ込められ、外部に取り出される光は全体の20%程度であることが知られている。 As described above, in the configuration of the general organic light emitting device 100, most of the light generated in the light emitting layer is confined in the device by total reflection, and about 20% of the light extracted outside is known. It has been.
 光取り出し効率を向上させるには全反射光を減少させることが必要であり、このための多くの試みがなされている(例えば、特許文献1~7参照)。 In order to improve the light extraction efficiency, it is necessary to reduce the total reflected light, and many attempts have been made for this purpose (see, for example, Patent Documents 1 to 7).
特開2003-036969号公報JP 2003-036969 A 特開2002-260845号公報JP 2002-260845 A 特開平11-214162号公報JP-A-11-214162 特開2001-230069公報Japanese Patent Laid-Open No. 2001-230069 特表2010-509729号公報Special table 2010-509729 特表2010-524153号公報Special table 2010-524153 特開2004-311419号公報JP 2004-311419 A
 本発明は、従来の技術が有する上記の問題点に鑑みてなされたものである。
 即ち、本発明の目的は、特に発光層で発生した光の配光分布を変化させることにより全反射を抑制する有機発光素子を対象とし、光の取り出し効率が高いとともに耐久性に優れた有機発光素子等を提供することである。
The present invention has been made in view of the above-described problems of conventional techniques.
That is, an object of the present invention is directed to an organic light-emitting device that suppresses total reflection by changing a light distribution of light generated in a light-emitting layer, and has high light extraction efficiency and excellent durability. It is to provide an element or the like.
 かくして本発明の有機発光素子は、基板上に形成される第1電極層と、第1電極層上に形成される絶縁性の低屈折率層と、少なくとも低屈折率層を貫通して形成される穴部と、穴部の底面全体のみ、または少なくとも穴部の底面全体と側面に沿って形成されるとともに第1電極層と電気的に接して形成される透光性導電層と、発光層を含み、透光性導電層上に形成されるとともに穴部内部に少なくとも一部が入り込むように形成される有機半導体層と、有機半導体層上に形成される第2電極層と、を備え、低屈折率層は、透光性導電層および有機半導体層より屈折率が小さく、穴部を平面視したときの最大幅が3μm以下であり、有機半導体層は、穴部が形成される位置において均一な厚さで形成されることを特徴とする。 Thus, the organic light emitting device of the present invention is formed through the first electrode layer formed on the substrate, the insulating low refractive index layer formed on the first electrode layer, and at least the low refractive index layer. A light-transmitting conductive layer formed along only the entire bottom surface of the hole portion, or at least along the entire bottom surface and side surfaces of the hole portion and in electrical contact with the first electrode layer, and a light emitting layer An organic semiconductor layer formed on the translucent conductive layer and formed so that at least a part of the hole enters the inside of the hole, and a second electrode layer formed on the organic semiconductor layer, The low refractive index layer has a refractive index smaller than that of the light-transmitting conductive layer and the organic semiconductor layer, and has a maximum width of 3 μm or less when the hole is viewed in plan. The organic semiconductor layer is located at the position where the hole is formed. It is characterized by being formed with a uniform thickness.
 ここで、有機半導体層の発光層は、穴部内部に少なくとも一部が入り込むように形成されることが好ましく、透光性導電層の有機半導体層側の表面は、穴部が形成される位置において第1電極層側に凹む形状をなすことが好ましく、第1電極層側に凹む形状は、曲面形状であることがさらに好ましい。
 また透光性導電層は、低屈折率層上に延在して形成されることが好ましく、透光性導電層は、穴部の内面に沿って均一な厚さで形成されることが好ましい。
 そして第1電極層は、有機半導体層の発光層から発した光を反射し、第2電極層は、発光層から発した光を透過するようにしてもよく、第1電極層は、有機半導体層の発光層から発した光を透過し、第2電極層は、発光層から発した光を反射するようにしてもよい。
 さらに穴部は、第1電極層の少なくとも一部をさらに穿って形成されるが好ましく、穴部は、基板の一部をさらに穿って形成されることが好ましい。
Here, the light emitting layer of the organic semiconductor layer is preferably formed so that at least part of the light emitting layer enters the inside of the hole, and the surface of the translucent conductive layer on the organic semiconductor layer side is a position where the hole is formed. It is preferable to make a shape that is recessed toward the first electrode layer, and it is more preferable that the shape that is recessed toward the first electrode layer is a curved surface.
The translucent conductive layer is preferably formed to extend on the low refractive index layer, and the translucent conductive layer is preferably formed with a uniform thickness along the inner surface of the hole. .
The first electrode layer may reflect light emitted from the light emitting layer of the organic semiconductor layer, the second electrode layer may transmit light emitted from the light emitting layer, and the first electrode layer may be organic semiconductor. The light emitted from the light emitting layer may be transmitted, and the second electrode layer may reflect the light emitted from the light emitting layer.
Furthermore, the hole is preferably formed by further drilling at least a part of the first electrode layer, and the hole is preferably formed by further drilling a part of the substrate.
 また本発明の有機発光素子の製造方法は、基板上に第1電極層を形成する第1電極層形成工程と、第1電極層上に絶縁性の低屈折率層を形成する低屈折率層形成工程と、少なくとも低屈折率層を貫通し、平面視したときの最大幅が3μm以下の穴部を形成する穴部形成工程と、少なくとも穴部の内部に形成されるとともに第1電極層と電気的に接する透光性導電層を塗布法により形成する透光性導電層形成工程と、透光性導電層上であって穴部内部に少なくとも一部が入り込むように発光層を含む有機半導体層を形成する有機半導体層層形成工程と、有機半導体層上に第2電極層を形成する第2電極層形成工程と、を備え、低屈折率層は、透光性導電層および有機半導体層より屈折率が小さいことを特徴とする。 The method for producing an organic light emitting device of the present invention includes a first electrode layer forming step for forming a first electrode layer on a substrate, and a low refractive index layer for forming an insulating low refractive index layer on the first electrode layer. A forming step, a hole forming step of forming a hole having a maximum width of 3 μm or less penetrating at least through the low refractive index layer, and being formed at least inside the hole and the first electrode layer, An organic semiconductor including a light-transmitting conductive layer forming step of forming a light-transmitting conductive layer that is in electrical contact by a coating method, and a light-emitting layer on the light-transmitting conductive layer so that at least a part of the light-transmitting conductive layer enters inside the hole An organic semiconductor layer layer forming step for forming a layer, and a second electrode layer forming step for forming a second electrode layer on the organic semiconductor layer, wherein the low refractive index layer comprises a light-transmitting conductive layer and an organic semiconductor layer It is characterized by a lower refractive index.
 また本発明の表示装置は、上記の有機発光素子を備える。 The display device of the present invention includes the above organic light emitting element.
 また本発明の照明装置は、上記の有機発光素子を備える。 The lighting device of the present invention includes the above organic light emitting element.
 本発明によれば、光の取り出し効率が高いとともに耐久性に優れた有機発光素子等を提供することができる。 According to the present invention, it is possible to provide an organic light emitting device having high light extraction efficiency and excellent durability.
本実施の形態が適用される有機発光素子の第1の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 1st example of the organic light emitting element to which this Embodiment is applied. 発光層が穴部内部に入り込まない場合の一例を示した図である。It is the figure which showed an example in case a light emitting layer does not enter inside a hole part. 有機半導体層の膜厚の測定例を示した図である。It is the figure which showed the example of a measurement of the film thickness of an organic-semiconductor layer. (a)~(b)は、有機発光素子を構成する各層が積層される上側から見た穴部の配置の例を説明した図である。(A)-(b) is the figure explaining the example of arrangement | positioning of the hole part seen from the upper side on which each layer which comprises an organic light emitting element is laminated | stacked. 本実施の形態が適用される有機発光素子の第2の例を説明した部分断面図である。It is a fragmentary sectional view explaining the 2nd example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第3の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 3rd example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第4の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 4th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第5の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 5th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第6の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 6th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第7の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 7th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第8の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 8th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第9の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 9th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第10の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 10th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第11の例を説明した部分断面図である。It is a fragmentary sectional view explaining the 11th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第12の例を説明した部分断面図である。It is a fragmentary sectional view explaining the 12th example of the organic light emitting element to which this Embodiment is applied. 本実施の形態が適用される有機発光素子の第13の例を説明した部分断面図である。It is a fragmentary sectional view explaining the 13th example of the organic light emitting element to which this embodiment is applied. 本実施の形態が適用される有機発光素子の第14の例を説明した部分断面図である。It is the fragmentary sectional view explaining the 14th example of the organic light emitting element to which this Embodiment is applied. 従来技術の有機発光素子における光取り出しについて説明した図である。It is the figure explaining the light extraction in the organic light emitting element of a prior art. 本実施の形態が適用される有機発光素子における低屈折率層による光取り出しについて説明した図である。It is the figure explaining the light extraction by the low refractive index layer in the organic light emitting element to which this Embodiment is applied. (a)~(f)は、本実施の形態が適用される有機発光素子の製造方法について説明した図である。(A)-(f) is a figure explaining the manufacturing method of the organic light emitting element to which this Embodiment is applied. 本実施の形態における有機発光素子を用いた表示装置の一例を説明した図である。It is a figure explaining an example of the display apparatus using the organic light emitting element in this Embodiment. 実施の形態における有機発光素子を備える照明装置の一例を説明した図である。It is a figure explaining an example of an illuminating device provided with the organic light emitting element in embodiment. 従来技術の有機発光素子における光取り出しについて説明した図である。It is the figure explaining the light extraction in the organic light emitting element of a prior art. 第1の従来技術の一例であって、光出射側表面を凹凸形状に加工した有機発光素子について説明した図である。It is an example of the first prior art, and is a diagram illustrating an organic light emitting device in which a light emitting side surface is processed into an uneven shape. 従来技術の有機発光素子について説明した図である。It is a figure explaining the organic light emitting element of the prior art. 従来技術の有機発光素子について説明した図である。It is a figure explaining the organic light emitting element of the prior art.
 光取り出し効率を向上させるための第1の従来技術として、全反射が起こる平坦な界面に加工を施して平坦面を崩すことにより全反射を起こりにくくする方法が挙げられる。この第1の従来技術としては、上記特許文献1に例示される、有機発光素子の光出射側表面を凹凸形状に加工したもの(従来技術1-1)や、上記特許文献2に例示される、光出射側表面に微小レンズを設けた有機発光素子が挙げられる(従来技術1-2)。これらの方法では、これまで外部へ取り出せなかった光が取り出せるようになる。しかし、界面が平坦面の場合には外部へ取り出されていた光の一部が取り出されなくなり、光取り出し効率の大きな改善は得られない。 As a first conventional technique for improving the light extraction efficiency, there is a method in which a flat interface where total reflection occurs is processed to make the flat surface less likely to cause total reflection. Examples of the first conventional technique include those obtained by processing the light emitting side surface of the organic light-emitting element into a concavo-convex shape as exemplified in Patent Document 1 (Prior Art 1-1) and those described in Patent Document 2. An organic light emitting device having a microlens on the light emitting side surface is mentioned (conventional technology 1-2). With these methods, light that could not be extracted to the outside can be extracted. However, when the interface is a flat surface, a part of the light extracted to the outside is not extracted, and a great improvement in light extraction efficiency cannot be obtained.
 図20は、第1の従来技術の一例であって、光出射側表面を凹凸形状に加工した有機発光素子について説明した図である。
 この有機発光素子100は透明基板111の外表面に傾斜角45°の斜面からなる凹凸構造を有する以外は図19に示される有機発光素子100と同じ構成である。ここで、発光位置Pから放射角40°で放射される光線L2は、図19の有機発光素子100の場合には透明基板111の外表面で全反射するが、図20の有機発光素子100の場合には透明基板111の外表面の傾斜角45°の斜面に対し入射角2°で入射して透過する。しかし、発光位置Pから放射角0°で放射される光線L4は、図19の有機発光素子100では取り出されるが、図20の有機発光素子100では透明基板111の外表面の斜面に対し45°の入射角で入射するため全反射し、外部へは取り出されない。
FIG. 20 is a diagram illustrating an organic light-emitting element that is an example of the first prior art and has a light emitting side surface processed into a concavo-convex shape.
The organic light emitting device 100 has the same configuration as the organic light emitting device 100 shown in FIG. 19 except that the outer surface of the transparent substrate 111 has a concavo-convex structure having a slope of 45 °. Here, in the case of the organic light emitting device 100 of FIG. 19, the light beam L2 emitted from the light emission position P is totally reflected on the outer surface of the transparent substrate 111, but the light of the organic light emitting device 100 of FIG. In this case, the light is incident on the inclined surface having an inclination angle of 45 ° on the outer surface of the transparent substrate 111 and transmitted therethrough. However, the light beam L4 emitted from the light emission position P at an emission angle of 0 ° is extracted by the organic light emitting device 100 of FIG. 19, but 45 ° with respect to the slope of the outer surface of the transparent substrate 111 in the organic light emitting device 100 of FIG. Since it is incident at an incident angle of 1, it is totally reflected and is not taken out to the outside.
 上記第1の従来技術の問題点に対し、光取り出し効率を向上させる第2の従来技術として、全反射を起こす界面は平坦面のままにしておき、この界面に入射する光の配光分布を変化させて、界面への入射角が臨界角より小さい光を増加させる方法が挙げられる。以下に具体的な方法を例示する。 As a second conventional technique for improving the light extraction efficiency with respect to the problems of the first conventional technique, the interface causing total reflection is left flat and the light distribution of light incident on this interface is distributed. There is a method of increasing the light whose incident angle to the interface is smaller than the critical angle by changing. A specific method is illustrated below.
 例えば、上記特許文献3に例示される、光の出射面側に位置する電極に微小な突起を設け、これにより対向電極に凹面形状を付与させる技術が挙げられる(従来技術2-1)。この対向電極の凹面形状の傾斜鏡面での反射により光の進行方向が変化するため、光の取り出し効率が向上しやすくなる。 For example, there is a technique exemplified in Patent Document 3 described above, in which a minute protrusion is provided on an electrode located on the light emission surface side, thereby imparting a concave shape to the counter electrode (conventional technique 2-1). Since the traveling direction of light changes due to the reflection on the concave inclined mirror surface of the counter electrode, the light extraction efficiency is easily improved.
 また上記特許文献4に例示される、有機薄膜層と光の出射側の電極との間に、基板面に平行な方向に周期構造を有するSiOからなる回折格子を形成させる技術が挙げられる(従来技術2-2)。この周期構造により、特に発光層から水平方向(基板面内方向)に近い方向に発せられる光が効率よく外部に取り出されて発光効率が向上しやすくなる。 Moreover, the technique of forming the diffraction grating which consists of SiO which has a periodic structure in the direction parallel to a substrate surface between the organic thin film layer and the electrode of the light emission side illustrated by the said patent document 4 is mentioned (conventionally). Technology 2-2). With this periodic structure, light emitted from the light-emitting layer in the direction close to the horizontal direction (in-plane direction of the substrate) is efficiently extracted to the outside and the light emission efficiency is easily improved.
 さらに上記特許文献5に例示される、素子面積に対する発光域の面積を増加させる目的で、誘電体層を貫通するキャビティを設け、キャビティ内に有機層を充填したキャビティエレクトロルミネセント素子が挙げられる(従来技術2-3)。尚、特許文献5においては、誘電体層の屈折率については言及していないが、有機層より低屈折率の材料(酸化ケイ素等)の使用も開示されている。従って、特許文献5に開示されたキャビティエレクトロルミネセント素子は、誘電体層の材料として有機層より低屈折率の材料を用いた場合には、後述の特許文献6に開示された光取り出し効果を有すると考えられる。 Furthermore, there is a cavity electroluminescent device exemplified in the above-mentioned Patent Document 5 in which a cavity penetrating a dielectric layer is provided and an organic layer is filled in the cavity for the purpose of increasing the area of the light emitting region relative to the device area ( Conventional technique 2-3). In Patent Document 5, the refractive index of the dielectric layer is not mentioned, but the use of a material (such as silicon oxide) having a lower refractive index than the organic layer is also disclosed. Therefore, the cavity electroluminescent device disclosed in Patent Document 5 has the light extraction effect disclosed in Patent Document 6 described later when a material having a lower refractive index than the organic layer is used as the material of the dielectric layer. It is thought to have.
 またさらに上記特許文献6に例示される、2つの電極間の有機発光材料を含む領域内にこれより低屈折率の透明材料の領域を設ける技術が挙げられる(従来技術2-4)。この低屈折率領域があることにより、これがない場合には導波モードとなって取り出されない光が低屈折率領域に入射する際に屈折して取り出されやすくなる。 Furthermore, there is a technique of providing a transparent material region having a lower refractive index in a region including an organic light emitting material between two electrodes, as exemplified in Patent Document 6 (Prior Art 2-4). The presence of this low refractive index region makes it easy to refract and extract light that is not extracted and enters the low refractive index region when it does not exist.
 またさらに上記特許文献7に例示される、発光素子内に導波モードとして閉じ込められ、外部へ取り出されない光を取り出すために、導波モードから放射モードへ変換するモード変換手段を設ける技術が挙げられる(従来技術2-5)。このモード変換手段は、導波モードとなる光の伝搬が禁止されるような屈折率の周期構造を形成したものである。 Furthermore, a technique exemplified by the above-mentioned Patent Document 7 is provided with mode conversion means for converting from the waveguide mode to the radiation mode in order to extract light that is confined as a waveguide mode in the light emitting element and is not extracted to the outside. (Prior art 2-5). This mode conversion means is formed with a periodic structure having a refractive index that prohibits propagation of light in a waveguide mode.
 しかし、上記のうち従来技術2-1および従来技術2-2の有機発光素子では、これまで外部へ取り出せなかった光が取り出せるようになる一方で、凹面形状の反射面や回折格子等の配光分布を変化させる手段がない場合に外部へ取り出されていた光の一部が取り出されなくなり、光取り出し効率の大きな改善は得られない。 However, in the organic light emitting devices of the conventional technology 2-1 and the conventional technology 2-2 among the above, light that could not be extracted to the outside can be extracted, but light distribution such as a concave reflecting surface or a diffraction grating is possible. When there is no means for changing the distribution, a part of the light extracted to the outside is not extracted, and a great improvement in light extraction efficiency cannot be obtained.
 また上記従来技術2-3~従来技術2-5の方法は、従来技術2-1および従来技術2-2の方法に見られた、配光分布を変化させる手段がない場合に外部へ取り出されていた光の一部が取り出されなくなるという問題点はかなり解消される一方で、新たに次のような問題が生じる。
 すなわち、従来技術2-3の一例である特許文献5に開示されたキャビティエレクトロルミネセント素子では、実際に有機層を成膜する際に、凹凸構造があるために有機層の膜厚が不均一になりやすい。以下、例を挙げて具体的に説明する。
In addition, the above-described conventional techniques 2-3 to 2-5 are extracted to the outside when there is no means for changing the light distribution as seen in the conventional techniques 2-1 and 2-2. While the problem that a part of the light that has been lost cannot be extracted is considerably solved, the following new problem arises.
That is, in the cavity electroluminescent device disclosed in Patent Document 5 which is an example of the prior art 2-3, the film thickness of the organic layer is not uniform due to the uneven structure when the organic layer is actually formed. It is easy to become. Hereinafter, specific examples will be described.
 図21-1に示す有機発光素子100においては、基板121上に陽極層122、誘電体層123が順に積層され、誘電体層123にはこれを貫通する複数の穴部(キャビティ)127が形成されている。そして、この上に発光層を含む有機層125を形成する。ここで、特許文献5に開示されているように有機層125としてポリマー材料を塗布により成膜すると、有機層125が穴部127内に落ち込んだ形状に成膜される。この上に形成する陰極層126も有機層125の落ち込みに沿った形に成膜される。 In the organic light emitting device 100 shown in FIG. 21A, an anode layer 122 and a dielectric layer 123 are sequentially laminated on a substrate 121, and a plurality of holes (cavities) 127 penetrating through the dielectric layer 123 are formed. Has been. Then, an organic layer 125 including a light emitting layer is formed thereon. Here, as disclosed in Patent Document 5, when a polymer material is formed as an organic layer 125 by coating, the organic layer 125 is formed into a shape that falls into the hole 127. The cathode layer 126 formed thereon is also formed in a shape along the drop of the organic layer 125.
 このように陽極層122と陰極層126の間で有機層125が不均一な厚さで成膜されると、電流は両電極間の距離が最短の部分である穴部127の中央部(C1の部分)を流れる。従って、図21-1に示す有機発光素子100は穴部127の中心付近のみが発光し、穴部127内にある発光材料の利用効率が低く、結果として高輝度が達成できない。更に、電流が集中して流れる部分では劣化が局所的に進行するため、有機発光素子100の耐久性が低下しやすい。 When the organic layer 125 is formed with a non-uniform thickness between the anode layer 122 and the cathode layer 126 in this way, the current flows in the center portion (C1) of the hole portion 127 where the distance between the electrodes is the shortest. Flow part). Accordingly, the organic light emitting device 100 shown in FIG. 21A emits light only in the vicinity of the center of the hole 127, and the utilization efficiency of the light emitting material in the hole 127 is low, and as a result, high luminance cannot be achieved. Furthermore, since the deterioration locally proceeds in the portion where the current flows in a concentrated manner, the durability of the organic light emitting device 100 is likely to be lowered.
 一方、図21-2に示す有機発光素子100は、穴部127が誘電体層123のみならず陽極層122も貫通している点のみが図21-1に示す有機発光素子100と異なる。この場合も同様に、有機層125が穴部127内に落ち込んだ形状に成膜される。
 図21-2の有機発光素子100では、有機層125の膜厚が不均一であることに加え、陽極層122が端面で有機層125に接する。これにより、電流は穴部127の側面近傍(C2の部分)を流れる。従って、図21-2に示す有機発光素子100は穴部127の側面付近のみが発光し、図21-1に示す有機発光素子100と同様に高輝度が達成できず、有機発光素子100の耐久性も低下しやすい。
On the other hand, the organic light emitting device 100 shown in FIG. 21-2 is different from the organic light emitting device 100 shown in FIG. 21-1 only in that the hole 127 penetrates not only the dielectric layer 123 but also the anode layer 122. In this case as well, the organic layer 125 is formed into a shape that falls into the hole 127.
In the organic light emitting device 100 of FIG. 21-2, in addition to the non-uniform thickness of the organic layer 125, the anode layer 122 is in contact with the organic layer 125 at the end face. As a result, the current flows in the vicinity of the side surface of the hole 127 (portion C2). Accordingly, the organic light emitting device 100 shown in FIG. 21-2 emits light only in the vicinity of the side surface of the hole 127, and high luminance cannot be achieved like the organic light emitting device 100 shown in FIG. It is easy to deteriorate.
 また、特許文献5に例示される有機発光素子100においては、特に誘電体層123の屈折率が有機層125より小さい場合、穴部127内に発光層(発光位置)を配置することが重要と考えられる。しかし、特許文献5には、有機層125中の発光層(発光位置)と穴部127の相対的な位置関係について何ら開示がない。 Further, in the organic light emitting device 100 exemplified in Patent Document 5, it is important to dispose the light emitting layer (light emitting position) in the hole 127 particularly when the refractive index of the dielectric layer 123 is smaller than the organic layer 125. Conceivable. However, Patent Document 5 does not disclose any relative positional relationship between the light emitting layer (light emitting position) in the organic layer 125 and the hole 127.
 さらに従来技術2-4の一例である特許文献6に開示された低屈折率領域を有する有機発光素子では、低屈折率領域が基板に平行な面内において六角形グリッドや長方形グリッド(低屈折率領域がグリッドの枠の部分)のような繰り返しパターンで配置されている。ここで、グリッド内部の有機発光領域の寸法としては4μm~10μmが開示されている。有機発光層材料の消衰係数が一般に0.01~0.1程度であることから、仮に波長555nm(視感度最大)の光が4μm進んだ場合を想定すると、光強度は消衰係数が0.01の場合は元の0.01%に減衰し、消衰係数が0.1の場合は元の40%に減衰する。従って、特許文献6に開示された構造の有機発光素子では導波光の大部分は低屈折率領域に入射する前に減衰し、低屈折率領域による光取り出し効果は十分に発揮されないと推測される。 Furthermore, in the organic light-emitting device having a low refractive index region disclosed in Patent Document 6 as an example of the prior art 2-4, a hexagonal grid or a rectangular grid (low refractive index) in a plane parallel to the substrate. The area is arranged in a repeating pattern such as a grid frame part). Here, the dimension of the organic light emitting region inside the grid is disclosed as 4 μm to 10 μm. Since the extinction coefficient of the organic light emitting layer material is generally about 0.01 to 0.1, assuming that light with a wavelength of 555 nm (maximum visibility) travels 4 μm, the light intensity has an extinction coefficient of 0. In the case of .01, it attenuates to the original 0.01%, and when the extinction coefficient is 0.1, it attenuates to the original 40%. Therefore, in the organic light emitting device having the structure disclosed in Patent Document 6, it is assumed that most of the guided light is attenuated before entering the low refractive index region, and the light extraction effect by the low refractive index region is not sufficiently exhibited. .
 また、特許文献6には、キャビティエレクトロルミネセント素子では有機発光領域として複数の有機層を基板に平行に積層した構造(各層の膜厚が均一)を取ることが可能なことが開示されている。しかし、実際にこれを実現する具体的な方法は示されていない。 Patent Document 6 discloses that a cavity electroluminescent element can have a structure in which a plurality of organic layers are stacked in parallel with a substrate as an organic light emitting region (the thickness of each layer is uniform). . However, a specific method for actually realizing this is not shown.
 またさらに従来技術2-5の一例である特許文献7に開示された有機発光素子のモード変換手段は、導波モードとなるような光の伝搬が禁止されるような屈折率の周期構造を有するもので、所謂フォトニック結晶の原理に基づくものである。このフォトニック結晶の構造としては、光の実効波長(発光波長/媒質の屈折率:サブミクロンのオーダーとなる)程度の周期で屈折率が変化する微細な周期構造が必要である。しかし、このようなサブミクロンの構造をフォトニック結晶の機能に要求される厳しい寸法精度で加工することは極めて困難である。従って、フォトニック結晶を利用した光の取り出し効率の高い有機発光素子を製造することは容易ではない。また、仮にフォトニック結晶として機能する周期構造が製造できたとしても、特許文献5に開示された有機発光素子の場合と同様に、凹凸部に有機層を形成する際に有機層の膜厚が不均一になりやすいという問題点を有している。また、特許文献7には、有機層中の発光層(発光位置)と凹凸構造との相対的な位置関係についても何ら開示されていない。 Further, the mode conversion means of the organic light emitting device disclosed in Patent Document 7 which is an example of the prior art 2-5 has a refractive index periodic structure that prohibits the propagation of light in a waveguide mode. It is based on the principle of so-called photonic crystals. As a structure of this photonic crystal, a fine periodic structure whose refractive index changes with a period of about the effective wavelength of light (emission wavelength / medium refractive index: submicron order) is necessary. However, it is extremely difficult to process such a submicron structure with the strict dimensional accuracy required for the function of the photonic crystal. Therefore, it is not easy to manufacture an organic light emitting device that uses a photonic crystal and has high light extraction efficiency. Even if a periodic structure that functions as a photonic crystal can be manufactured, the thickness of the organic layer when the organic layer is formed on the concavo-convex portion is the same as in the case of the organic light emitting device disclosed in Patent Document 5. There is a problem that it tends to be non-uniform. Further, Patent Document 7 does not disclose any relative positional relationship between the light emitting layer (light emitting position) in the organic layer and the concavo-convex structure.
 以上のように、従来技術2-3~従来技術2-5の有機発光素子についても、発光層で発生した光の配光分布を変化させる凹凸構造の凹部内に有機層を均一な膜厚で成膜すること、および有機発光領域から発した光が有機発光領域中で減衰する前に低屈折率領域に取り出すことが可能な構成は開示されていない。 As described above, in the organic light emitting devices of the conventional technology 2-3 to the conventional technology 2-5, the organic layer has a uniform thickness in the concave portion of the concavo-convex structure that changes the light distribution of the light generated in the light emitting layer. There is no disclosure of a film formation and a configuration that allows light emitted from the organic light emitting region to be extracted into the low refractive index region before being attenuated in the organic light emitting region.
 発明者らは本発明を考案するに当たり、キャビティや低屈折率層を有する従来技術の有機発光素子において以下の点に着目した。すなわち、従来技術の有機発光素子においては、光取り出し効率を向上させるために、有機層が形成される下地面にキャビティや、有機層と屈折率の異なる領域による凹凸があり、この上に形成される有機層および上側電極(基板から離れた側の電極)は凹部に落ち込んで形成される。従って、上側電極と下側電極(基板側の電極)の間隔は均一にはならない。そしてこのことにより不均一な発光が起こり、光取り出し効率も低下し、寿命も短くなると考えた。そこで、発明者らは、光取り出しに関わるキャビティの内面(屈折率が異なる界面)は変化させずに、上側電極と下側電極との間隔を均一にするために、キャビティの内面を形成する下側電極面とは別に実質的な下側電極面を設けることに想到し、本発明を完成するに至った。 Inventing the present invention, the inventors paid attention to the following points in a conventional organic light emitting device having a cavity and a low refractive index layer. That is, in the organic light emitting device of the prior art, in order to improve the light extraction efficiency, the base surface on which the organic layer is formed has cavities and irregularities due to regions having a refractive index different from that of the organic layer. The organic layer and the upper electrode (electrode on the side away from the substrate) are formed in the recess. Therefore, the distance between the upper electrode and the lower electrode (substrate-side electrode) is not uniform. It was considered that this caused non-uniform light emission, the light extraction efficiency was lowered, and the life was shortened. In view of this, the inventors have formed the cavity inner surface in order to make the gap between the upper electrode and the lower electrode uniform without changing the inner surface of the cavity (interface having different refractive indexes) involved in light extraction. The inventors have conceived that a substantial lower electrode surface is provided separately from the side electrode surface, and have completed the present invention.
 上記のキャビティや低屈折率層を有する従来技術の有機発光素子においては、下側電極面と、発光層からの発光を外部に取り出されやすい方向に屈折させる屈折率の界面のいずれもがキャビティ内面に存在する。これに対し、本実施の形態においては、下側電極面をキャビティ内面から分離したことを特徴とする。すなわち、キャビティ内面に露出した下側電極に接して有機層とほぼ同じ屈折率を有する透光性導電層を形成することにより、屈折率界面はキャビティ内面に留まるが、透光性導電層の表面が実質的な下側電極面となる。ここで、キャビティ内における透光性導電層の形成位置(透光性導電層/有機層の界面の位置)を制御することにより、発光層がキャビティ内で光取り出し効率の高い位置に最適化される。また、透光性導電層の表面形状を、この上に形成する有機層の膜厚が均一になりやすい形状とすることにより、キャビティ内での均一な発光が得られる。 In the organic light emitting device of the prior art having the above-described cavity and low refractive index layer, both the lower electrode surface and the refractive index interface that refracts light emitted from the light emitting layer in a direction in which it is easily extracted to the outside are provided on the inner surface of the cavity. Exists. On the other hand, the present embodiment is characterized in that the lower electrode surface is separated from the cavity inner surface. That is, by forming a translucent conductive layer having the same refractive index as the organic layer in contact with the lower electrode exposed on the inner surface of the cavity, the refractive index interface remains on the inner surface of the cavity, but the surface of the translucent conductive layer Becomes a substantial lower electrode surface. Here, by controlling the formation position of the light-transmitting conductive layer in the cavity (the position of the interface between the light-transmitting conductive layer and the organic layer), the light emitting layer is optimized to a position where the light extraction efficiency is high in the cavity. The Further, uniform light emission in the cavity can be obtained by making the surface shape of the translucent conductive layer so that the film thickness of the organic layer formed thereon is likely to be uniform.
 本実施の形態の有機発光素子においては、上側電極と下側電極は、いずれが陽極であっても陰極であってもよい。また、少なくともいずれかの電極が透光性であればよい。以下、本発明の具体的な実施の形態について説明を行う。 In the organic light emitting device of the present embodiment, either the upper electrode or the lower electrode may be an anode or a cathode. In addition, at least one of the electrodes may be translucent. Hereinafter, specific embodiments of the present invention will be described.
[下側電極が透光性の陽極層である有機発光素子]
(有機発光素子)
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1-1は、本実施の形態が適用される有機発光素子の第1の例を説明した部分断面図である。なお実際の有機発光素子10は、この構造が図中横方向に繰り返された形態を採る。
 図1-1に示した有機発光素子10は、基板11と、基板11上に形成され正孔を注入するための第1電極層としての陽極層12と、電子を注入するための第2電極層としての陰極層16と、陽極層12と陰極層16の間に形成される絶縁性の低屈折率層13とが積層された構造を採る。ここで、陽極層12は透光性であり、基板11側から光が取り出される。
[Organic light emitting device in which lower electrode is translucent anode layer]
(Organic light emitting device)
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1-1 is a partial cross-sectional view illustrating a first example of an organic light emitting device to which the present embodiment is applied. The actual organic light emitting element 10 takes a form in which this structure is repeated in the horizontal direction in the figure.
1-1 includes a substrate 11, an anode layer 12 formed on the substrate 11 as a first electrode layer for injecting holes, and a second electrode for injecting electrons. A structure in which a cathode layer 16 as a layer and an insulating low refractive index layer 13 formed between the anode layer 12 and the cathode layer 16 are laminated is adopted. Here, the anode layer 12 is translucent, and light is extracted from the substrate 11 side.
 また有機発光素子10は、少なくとも低屈折率層13を貫通して形成される穴部17を有する。さらに、有機発光素子10は、透光性導電層14と、有機半導体層15とを有する。透光性導電層14は、穴部17の内部に形成されるとともに、陽極層12と電気的に接して形成される。有機半導体層15は、発光層15aを含み、透光性導電層14上に形成されるとともに、穴部17内部に少なくとも一部が入り込むように形成される。 The organic light emitting device 10 has a hole 17 formed so as to penetrate at least the low refractive index layer 13. Further, the organic light emitting element 10 includes a light transmissive conductive layer 14 and an organic semiconductor layer 15. The translucent conductive layer 14 is formed in the hole 17 and is in electrical contact with the anode layer 12. The organic semiconductor layer 15 includes the light emitting layer 15 a, is formed on the translucent conductive layer 14, and is formed so that at least a part thereof enters the hole 17.
 有機発光素子10は、有機半導体層15の発光層15aが発光を行なうことにより発光面を形成する。また本実施の形態では、透光性導電層14および有機半導体層15は、穴部17の位置において形成されるだけでなく、低屈折率層13上に延在して形成される。そのため陰極層16は、有機半導体層15の全面にわたって、有機半導体層15上に位置するように形成される。なお本実施の形態において、「穴部17の位置」および「穴部17が形成される位置」と言った場合、上記各層が積層される上側から見た穴部17の位置のことを意味するものとする。 The organic light emitting element 10 forms a light emitting surface when the light emitting layer 15a of the organic semiconductor layer 15 emits light. In the present embodiment, the translucent conductive layer 14 and the organic semiconductor layer 15 are formed not only at the positions of the holes 17 but also extending on the low refractive index layer 13. Therefore, the cathode layer 16 is formed so as to be located on the organic semiconductor layer 15 over the entire surface of the organic semiconductor layer 15. In the present embodiment, “the position of the hole portion 17” and “the position where the hole portion 17 is formed” mean the position of the hole portion 17 as viewed from the upper side where the above layers are stacked. Shall.
(基板)
 基板11は、陽極層12、低屈折率層13、透光性導電層14、有機半導体層15および陰極層16を形成する支持体となるものである。基板11には、有機発光素子10に要求される機械的強度を満たす材料が用いられる。
(substrate)
The substrate 11 serves as a support for forming the anode layer 12, the low refractive index layer 13, the translucent conductive layer 14, the organic semiconductor layer 15, and the cathode layer 16. A material that satisfies the mechanical strength required for the organic light emitting device 10 is used for the substrate 11.
 基板11の材料としては、本第1の例のように有機発光素子10の基板11側から光を取り出す場合は、発光層15aから出る光に対して光透過性であることが必要である。具体的な材料としては、サファイアガラス、ソーダガラス、石英ガラス等のガラス類;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂、シリコーン樹脂等の透明樹脂;窒化アルミ等の金属窒化物、アルミナ等の透明金属酸化物等が挙げられる。なお基板11として、上記透明樹脂からなる樹脂フィルム等を使用する場合は、水、酸素などのガスに対するガス透過性が低いことが好ましい。ガス透過性が高い樹脂フィルム等を使用する場合は、光の透過性を損なわない範囲でガスの透過を抑制するバリア性薄膜を形成することが好ましい。 As the material of the substrate 11, when light is extracted from the substrate 11 side of the organic light emitting element 10 as in the first example, it is necessary to be light transmissive with respect to the light emitted from the light emitting layer 15 a. Specific materials include: glass such as sapphire glass, soda glass, and quartz glass; transparent resin such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon resin, and silicone resin; metal nitride such as aluminum nitride, Examples thereof include transparent metal oxides such as alumina. In addition, when using the resin film etc. which consist of the said transparent resin as the board | substrate 11, it is preferable that the gas permeability with respect to gas, such as water and oxygen, is low. When using a resin film or the like having high gas permeability, it is preferable to form a barrier thin film that suppresses gas permeation as long as light permeability is not impaired.
 基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。 The thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
(陽極層)
 陽極層12は、陰極層16との間に電圧を印加することにより、有機半導体層15に正孔を注入する。本第1の例では基板11側から光を取り出すため、陽極層12の材料としては発光層15aから出る光に対して光透過性であることが必要である。また、陽極層12は、基板11上に沿って面状に形成され、上面が微細な凹凸などを極力含まない平滑面であることが好ましい。陽極層12に使用される材料としては、電気伝導性を有するものであることが必要である。具体的には仕事関数の高いものであり、仕事関数は、4.5eV以上であることが好ましい。加えて、アルカリ性水溶液に対し、電気抵抗が顕著に変化しないことが好ましい。
(Anode layer)
The anode layer 12 injects holes into the organic semiconductor layer 15 by applying a voltage between the anode layer 12 and the cathode layer 16. In the first example, since light is extracted from the substrate 11 side, the material of the anode layer 12 needs to be light transmissive with respect to the light emitted from the light emitting layer 15a. Further, the anode layer 12 is preferably formed in a planar shape along the substrate 11 and the upper surface is a smooth surface that contains as little as possible fine irregularities. The material used for the anode layer 12 needs to have electrical conductivity. Specifically, it has a high work function, and the work function is preferably 4.5 eV or more. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution.
 このような条件を満たす材料として、透光性の金属酸化物が使用できる。具体的な化合物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。陽極層12の厚さは、例えば、2nm~2μmで形成することができる。なお仕事関数は、例えば、紫外線光電子分光分析法により測定することができる。 A light-transmitting metal oxide can be used as a material satisfying such conditions. Specific examples of the compound include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide. The anode layer 12 can be formed with a thickness of 2 nm to 2 μm, for example. The work function can be measured by, for example, ultraviolet photoelectron spectroscopy.
(低屈折率層)
 低屈折率層13は、有機半導体層15から発した光を屈折させることで外部に取り出されやすくするためのものである。そのため低屈折率層13は、透光性導電層14および有機半導体層15より屈折率が小さい。より具体的には、低屈折率層13の屈折率は、透光性導電層14および有機半導体層15の屈折率より0.1以上小さいことが好ましく、0.2以上小さいことがより好ましく、0.3以上小さいことがより一層好ましい。
(Low refractive index layer)
The low refractive index layer 13 is for making it easy to be extracted outside by refracting light emitted from the organic semiconductor layer 15. Therefore, the low refractive index layer 13 has a refractive index lower than that of the translucent conductive layer 14 and the organic semiconductor layer 15. More specifically, the refractive index of the low refractive index layer 13 is preferably 0.1 or more smaller than the refractive indexes of the translucent conductive layer 14 and the organic semiconductor layer 15, more preferably 0.2 or smaller. More preferably, it is smaller than 0.3.
 そして低屈折率層13の屈折率を透光性導電層14および有機半導体層15の屈折率より低くすることで、有機半導体層15から発した光L1(低屈折率層13および穴部17のない従来構造の有機発光素子では内部で全反射を起こし外部に取り出されない光)は、例えば、図1-1に示す経路を辿る。つまり図1-1に示すように、低屈折率層13の穴部17が形成される面である側面13aに入射して、より基板11の法線方向寄りの角度に屈折する。その結果、低屈折率層13を設けない場合に比較して、陽極層12や基板11に達した光L1は、陽極層12と基板11の界面、および基板11の外表面において全反射を生じにくくなる。そのため、低屈折率層13を設けることにより、有機半導体層15から発した光を基板11側から、より多く取り出すことができ、光の取り出し効率が向上する。 Then, by making the refractive index of the low refractive index layer 13 lower than the refractive indexes of the translucent conductive layer 14 and the organic semiconductor layer 15, light L1 emitted from the organic semiconductor layer 15 (of the low refractive index layer 13 and the hole portion 17). In a conventional organic light-emitting device having no conventional structure, light that undergoes total internal reflection and is not extracted to the outside follows the path shown in FIG. 1-1, for example. That is, as shown in FIG. 1A, the light is incident on the side surface 13a, which is the surface where the hole portion 17 of the low refractive index layer 13 is formed, and is refracted at an angle closer to the normal direction of the substrate 11. As a result, compared with the case where the low refractive index layer 13 is not provided, the light L1 reaching the anode layer 12 and the substrate 11 causes total reflection at the interface between the anode layer 12 and the substrate 11 and the outer surface of the substrate 11. It becomes difficult. Therefore, by providing the low refractive index layer 13, more light emitted from the organic semiconductor layer 15 can be extracted from the substrate 11 side, and the light extraction efficiency is improved.
 本実施の形態では、低屈折率層13は絶縁性である。これにより、低屈折率層13は、陽極層12と陰極層16とを所定の間隔にて分離して絶縁するため、有機半導体層15に電圧を印加して発光させることができる。このため低屈折率層13は高抵抗率材料であることが必要で、電気抵抗率が10Ωcm以上、好ましくは1012Ωcm以上であることが要求される。具体的な材料としては、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の金属窒化物;酸化ケイ素(二酸化ケイ素)、酸化アルミニウム等の金属酸化物、フッ化ナトリウム、フッ化リチウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウムなどの金属フッ化物が挙げられるが、他にポリイミド、ポリフッ化ビニリデン、パリレン等の高分子化合物、ポリフェニルシルセスキオキサン(Poly(phenylsilsesquioxane))等の塗布型シリコーン、スピンオングラス(SOG)も使用可能である。 In the present embodiment, the low refractive index layer 13 is insulative. Thereby, since the low refractive index layer 13 insulates the anode layer 12 and the cathode layer 16 from each other at a predetermined interval, the organic semiconductor layer 15 can emit light by applying a voltage. For this reason, the low refractive index layer 13 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 Ωcm or more, preferably 10 12 Ωcm or more. Specific materials include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide (silicon dioxide) and aluminum oxide, sodium fluoride, lithium fluoride, magnesium fluoride, and fluoride. Metal fluorides such as calcium and barium fluoride can be mentioned, but also polyimide, polyvinylidene fluoride, polymer compounds such as parylene, coating type silicone such as poly (phenylsilsesquioxane), spin-on-glass (SOG) can also be used.
 ここで、短絡・電流リークを生じにくい有機発光素子10を再現よく製造するためには、低屈折率層13の厚さは厚いほど好ましいが、一方で有機発光素子10全体の厚さを抑えるために低屈折率層13の厚さは、1μmを越えないことが好ましい。また、陽極層12と陰極層16との間隔が狭い方が、発光のために必要な電圧が低くて済むので、この観点からは低屈折率層13は薄い方がより好ましい。但し、薄すぎると有機発光素子10を駆動するための電圧に対し、絶縁耐力が十分でなくなるおそれがある。ここで絶縁耐力については、穴部17が形成されない低屈折率層13を直接陽極層12と陰極層16で挟んだ状態で、定格の駆動電圧を印加した場合に、陽極層12と陰極層16の間に流れる電流密度が、0.1mA/cm以下であることが好ましく、0.01mA/cm以下であることがより好ましい。また有機発光素子10の定格の駆動電圧より、2V高い電圧に耐えることが好ましいため、例えば、定格の駆動電圧が5Vである場合は、低屈折率層13の両面に接して形成した陽極と陰極の間に約7Vの電圧を印加した場合に上記の電流密度を満たすことが必要である。これを満たす低屈折率層13の厚さは、上限としては、750nm以下であることが好ましく、400nm以下であることがより好ましく、200nm以下であることがより一層好ましい。また下限としては15nm以上であることが好ましく、30nm以上であることがより好ましく、50nm以上であることがより一層好ましい。 Here, in order to manufacture the organic light emitting device 10 that is less likely to cause short circuit and current leakage with good reproducibility, the thickness of the low refractive index layer 13 is preferably as thick as possible. On the other hand, in order to suppress the thickness of the organic light emitting device 10 as a whole. In particular, the thickness of the low refractive index layer 13 preferably does not exceed 1 μm. Further, the narrower the gap between the anode layer 12 and the cathode layer 16, the lower the voltage required for light emission. From this point of view, the thinner the low refractive index layer 13 is more preferable. However, if it is too thin, the dielectric strength may not be sufficient with respect to the voltage for driving the organic light emitting element 10. Here, regarding the dielectric strength, when a rated driving voltage is applied in a state where the low refractive index layer 13 in which the hole 17 is not formed is directly sandwiched between the anode layer 12 and the cathode layer 16, the anode layer 12 and the cathode layer 16 are applied. the current density flowing between is preferably at 0.1 mA / cm 2 or less, and more preferably 0.01 mA / cm 2 or less. Further, since it is preferable to withstand a voltage 2V higher than the rated driving voltage of the organic light emitting element 10, for example, when the rated driving voltage is 5V, an anode and a cathode formed on both surfaces of the low refractive index layer 13 It is necessary to satisfy the above current density when a voltage of about 7 V is applied between the two. The upper limit of the thickness of the low refractive index layer 13 that satisfies this is preferably 750 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. Further, the lower limit is preferably 15 nm or more, more preferably 30 nm or more, and even more preferably 50 nm or more.
(透光性導電層)
 透光性導電層14は従来技術の有機発光素子構造においては必ずしも形成されてはいない。これに対し、本発明の有機発光素子10において透光性導電層14は必須のものであり、次に挙げる3つの役割を担っている。
 (i)有機半導体層15に電圧を印加するための実質的な下側電極として機能すること
 (ii)穴部17が下側電極層を貫通して形成されている場合に穴部17の中央まで通電すること
 (iii)穴部17内に透光性導電層14を、その表面が凹面状になるように形成することにより、この上に形成する有機半導体層15の膜厚を均一にすること
(Translucent conductive layer)
The translucent conductive layer 14 is not necessarily formed in the conventional organic light emitting device structure. On the other hand, the translucent conductive layer 14 is essential in the organic light emitting device 10 of the present invention, and plays the following three roles.
(I) Functions as a substantially lower electrode for applying a voltage to the organic semiconductor layer 15 (ii) When the hole 17 is formed through the lower electrode layer, the center of the hole 17 (Iii) By forming the translucent conductive layer 14 in the hole 17 so that the surface thereof is concave, the film thickness of the organic semiconductor layer 15 formed thereon is made uniform. thing
 透光性導電層14は、有機半導体層15の発光層15aにおいて発せられる光に対し、透過性を有するとともに導電性を有する。また、更に有機半導体層15への正孔の注入障壁を下げて正孔の注入効率を上げる機能を有することが好ましい。 The translucent conductive layer 14 is transparent and conductive with respect to light emitted from the light emitting layer 15 a of the organic semiconductor layer 15. Furthermore, it is preferable that the hole injection barrier to the organic semiconductor layer 15 is further lowered to increase the hole injection efficiency.
 本実施の形態では、透光性導電層14は、陽極層12と電気的に接して形成される。ここで、透光性導電層14は有機半導体層15に較べて高い導電率を有しており、素子として有機半導体層15に電圧を印加する機能に着目すると、この透光性導電層14が実質的な陽極として機能している。透光性導電層14の導電率は1×10-3S/cm以上であることが好ましく、1S/cm以上であることがより好ましい。 In the present embodiment, translucent conductive layer 14 is formed in electrical contact with anode layer 12. Here, the translucent conductive layer 14 has a higher conductivity than the organic semiconductor layer 15. When attention is paid to the function of applying a voltage to the organic semiconductor layer 15 as an element, the translucent conductive layer 14 is It functions as a substantial anode. The conductivity of the translucent conductive layer 14 is preferably 1 × 10 −3 S / cm or more, and more preferably 1 S / cm or more.
 透光性導電層14の屈折率は有機半導体層15の屈折率との差が0.1以下であることが好ましい。これにより、透光性導電層14は電気的には実質的な陽極として機能するが、光学的には屈折率が有機半導体層15とほぼ同じであるため、屈折率の観点からは有機半導体層15と一体の層として機能する。そして、この一体の層と低屈折率層13が高屈折率/低屈折率の界面を形成し、光取り出し効率の向上に寄与する。一方、透光性導電層14と有機半導体層15の屈折率の差が0.1より大きいと、両層の間に新たな屈折率の界面ができる。この場合、この余分な界面を経由して低屈折率層13に入射する光は上記一体の層と低屈折率層13の間の高屈折率/低屈折率の界面で十分な光取り出し効果が得られない。
 このような条件を満たすために透光性導電層14に使用される材料は、例えば、導電性高分子材料等を用いることができる。さらに具体的には、銅フタロシアニン、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合物(PEDOT:PSS)、フルオロカーボンなどが挙げられる。また、無機の透光性導電材料も使用できる。例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛などが挙げられる。
The difference between the refractive index of the translucent conductive layer 14 and the refractive index of the organic semiconductor layer 15 is preferably 0.1 or less. Thereby, although the translucent conductive layer 14 functions electrically as a substantial anode, since the refractive index is optically almost the same as the organic semiconductor layer 15, the organic semiconductor layer is from the viewpoint of the refractive index. 15 functions as an integral layer. The integral layer and the low refractive index layer 13 form a high refractive index / low refractive index interface, which contributes to an improvement in light extraction efficiency. On the other hand, if the difference in refractive index between the translucent conductive layer 14 and the organic semiconductor layer 15 is greater than 0.1, a new refractive index interface is formed between the two layers. In this case, the light incident on the low refractive index layer 13 through this extra interface has a sufficient light extraction effect at the high refractive index / low refractive index interface between the integral layer and the low refractive index layer 13. I can't get it.
As a material used for the translucent conductive layer 14 to satisfy such a condition, for example, a conductive polymer material or the like can be used. More specifically, copper phthalocyanine, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT: PSS), fluorocarbon, and the like can be given. An inorganic translucent conductive material can also be used. Examples thereof include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
 さらに本実施の形態の透光性導電層14は、穴部17の内部に形成される。そして特に穴部17の底面に沿って配置した場合、透光性導電層14を設けない場合に対して、発光が起こる箇所を相対的に上部にすることができる。つまり透光性導電層14を設けない場合は、下側の電極面は、穴部17の底面にある。そのため穴部17の底面近傍の箇所で発光が生じやすい。これに対して本実施の形態では、実質的な下側の電極面は、透光性導電層14と有機半導体層15との界面となる。そしてこの場合、穴部17の底面に透光性導電層14が配置されるため、穴部17の底面近傍では発光が生じず、透光性導電層14のさらに上部に形成される有機半導体層15の発光層15aにおいて発光が生じる。即ち、透光性導電層14を設けることで、穴部17内における発光箇所を相対的に上方に移動させることができる。そしてこれにより低屈折率層13の穴部17の側面13aには低入射角で入射する光が増加する。つまり透光性導電層14が配置されず、穴部17の底面近傍で発光が生じた場合は、基板11面に平行な水平に近い角度で進み外部に取り出されにくい光が穴部17の側面13aに有効に入射しないため、光取り出し効率の向上の程度は小さい。一方、本実施の形態のように透光性導電層14を設けた場合は、基板11面に平行な水平に近い角度で進む光の多くが穴部17の側面13aに入射し、光の進行方向が基板11の法線寄りに変化するため、陽極層12と基板11の界面、および基板11の外表面において全反射されにくくなり、外部に取り出される光が増加する。 Furthermore, the translucent conductive layer 14 of the present embodiment is formed inside the hole 17. And especially when arrange | positioning along the bottom face of the hole part 17, the location where light emission occurs can be made relatively upper with respect to the case where the translucent conductive layer 14 is not provided. That is, when the translucent conductive layer 14 is not provided, the lower electrode surface is on the bottom surface of the hole 17. Therefore, light emission is likely to occur at a location near the bottom surface of the hole portion 17. In contrast, in the present embodiment, the substantially lower electrode surface is an interface between the translucent conductive layer 14 and the organic semiconductor layer 15. In this case, since the translucent conductive layer 14 is disposed on the bottom surface of the hole portion 17, no light is emitted in the vicinity of the bottom surface of the hole portion 17, and the organic semiconductor layer formed further above the translucent conductive layer 14. Light emission occurs in the 15 light emitting layers 15a. That is, by providing the translucent conductive layer 14, the light emission location in the hole 17 can be moved relatively upward. As a result, light incident at a low incident angle on the side surface 13a of the hole 17 of the low refractive index layer 13 increases. That is, when the light-transmitting conductive layer 14 is not disposed and light is emitted in the vicinity of the bottom surface of the hole portion 17, the light that travels at a near-horizontal angle parallel to the surface of the substrate 11 and is difficult to be extracted to the outside. Since the light does not effectively enter 13a, the degree of improvement in light extraction efficiency is small. On the other hand, when the translucent conductive layer 14 is provided as in the present embodiment, most of the light traveling at a horizontal angle parallel to the surface of the substrate 11 is incident on the side surface 13a of the hole 17 and the light travels. Since the direction changes closer to the normal line of the substrate 11, total reflection is less likely to occur at the interface between the anode layer 12 and the substrate 11 and the outer surface of the substrate 11, and the light extracted outside increases.
 また、本実施形態の透光性導電層14は、穴部17の底面全体のみならず側面13aに沿って形成されることが好ましい。言い換えると、透光性導電層14の上面(有機半導体層15側の表面)が、穴部17が形成される位置において陽極層12側に凹む形状をなすことが好ましい。透光性導電層14が穴部17の側面13aの上にも形成されると、穴部17内の側面13aに近い位置にある有機半導体層15にも電流が供給され、この部分にある発光層15aにおいても発光が起こる。すなわち、穴部17内の広い領域で発光が起こるため、低屈折率層13の側面13aに入射する光が多くなり、光取り出し効率が向上する。また、電流が局所的に流れることを抑制できるため、有機発光素子10の耐久性が向上する。
 そしてこの透光性導電層14の上面の形状はゆるやかに曲率が変化する凹曲面であることが更に好ましい。この形状により、この上に形成する有機半導体層15の膜厚は比較的均一になる。従って、発光が均一に起こり発光領域が広がるため輝度が向上し、電流が局所に集中せず均一に流れるため耐久性も向上する。詳しくは後述するように、透光性導電層14は塗布法で成膜して形成することができる。塗布法で透光性導電層14を形成する場合、透光性導電層14の上面を凹曲面形状とすることはより容易であり、そのため有機発光素子10の製造がより容易になる。
Moreover, it is preferable that the translucent conductive layer 14 of the present embodiment is formed not only along the entire bottom surface of the hole portion 17 but also along the side surface 13a. In other words, it is preferable that the upper surface (the surface on the organic semiconductor layer 15 side) of the translucent conductive layer 14 has a shape recessed toward the anode layer 12 at the position where the hole 17 is formed. When the translucent conductive layer 14 is also formed on the side surface 13a of the hole 17, current is also supplied to the organic semiconductor layer 15 located near the side surface 13a in the hole 17, and the light emission in this portion is emitted. Light emission also occurs in the layer 15a. That is, since light emission occurs in a wide region in the hole portion 17, the amount of light incident on the side surface 13a of the low refractive index layer 13 increases, and the light extraction efficiency is improved. Moreover, since it can suppress that an electric current flows locally, durability of the organic light emitting element 10 improves.
The shape of the upper surface of the translucent conductive layer 14 is more preferably a concave curved surface whose curvature changes gently. With this shape, the film thickness of the organic semiconductor layer 15 formed thereon becomes relatively uniform. Accordingly, the light emission is uniformly performed and the light emitting area is widened, so that the luminance is improved, and the current flows uniformly without being concentrated locally, so that the durability is also improved. As will be described in detail later, the translucent conductive layer 14 can be formed by a coating method. When the translucent conductive layer 14 is formed by a coating method, it is easier to make the upper surface of the translucent conductive layer 14 into a concave curved surface shape, so that the organic light emitting device 10 can be manufactured more easily.
 また本実施の形態では、透光性導電層14は、低屈折率層13上に延在して形成されてもよい。このように透光性導電層14が穴部17の内部のみならず低屈折率層13上の両方に形成されると、穴部17内のみに形成される場合に比べ、有機半導体層15全体に電流が分布するため、局所的な発熱が抑えられ、有機発光素子10の耐久性が向上する。 In the present embodiment, the translucent conductive layer 14 may be formed extending on the low refractive index layer 13. Thus, when the translucent conductive layer 14 is formed not only inside the hole 17 but also both on the low refractive index layer 13, the entire organic semiconductor layer 15 is compared with the case where it is formed only inside the hole 17. Therefore, local heat generation is suppressed, and the durability of the organic light emitting element 10 is improved.
(有機半導体層)
 有機半導体層15は、発光層15aを含む1層または積層された複数の有機化合物からなる層からなり、透光性導電層14上に形成される。そしてこの際に有機半導体層15は、穴部17内部に少なくとも一部が入り込むように形成される。このようにすることで、有機半導体層15に含まれる発光層15aから発した光のうち、基板11面に平行な水平に近い方向に進み、外部に取り出されにくい光を、穴部17の側面13aから低屈折率層13により多く入射させることができる。
 またこれに加え、有機半導体層15の発光層15aは、穴部17内部に少なくとも一部が入り込むように形成されることがさらに好ましい。このようにすることにより、発光する領域がより確実に穴部17内に存在することになり、光取り出し効率がさらに向上する。なお図1-1では、発光層15aが穴部17内部に少なくとも一部が入り込む場合を示しているが、図1-2で、発光層15aが穴部17内部に入り込まない場合の一例を示した。つまり本実施の形態で、穴部17は、図1-1、図1-2で示した点線より図中下側の部分である。そして図1-1では発光層15aの一部分が点線より下側の部分に入り込む。対して、図1-2では、有機半導体層15の一部分は、点線より下側の部分に入り込むものの、発光層15aは点線より上側の部分に形成される。
(Organic semiconductor layer)
The organic semiconductor layer 15 is composed of one layer including the light emitting layer 15 a or a layer made of a plurality of stacked organic compounds, and is formed on the translucent conductive layer 14. At this time, the organic semiconductor layer 15 is formed so that at least a part thereof enters the hole 17. By doing in this way, among the light emitted from the light emitting layer 15 a included in the organic semiconductor layer 15, the light that travels in a horizontal direction parallel to the surface of the substrate 11 and is difficult to be extracted to the outside is transmitted to the side surface of the hole 17. More incident light can enter the low refractive index layer 13 from 13a.
In addition to this, it is more preferable that the light emitting layer 15 a of the organic semiconductor layer 15 is formed so that at least a part thereof enters the hole portion 17. By doing in this way, the area | region which light-emits exists in the hole part 17 more reliably, and light extraction efficiency improves further. FIG. 1-1 shows a case where at least a part of the light emitting layer 15a enters the inside of the hole portion 17, but FIG. 1-2 shows an example where the light emitting layer 15a does not enter the inside of the hole portion 17. It was. That is, in the present embodiment, the hole portion 17 is a portion below the dotted line shown in FIGS. 1-1 and 1-2. In FIG. 1-1, a part of the light emitting layer 15a enters a part below the dotted line. In contrast, in FIG. 1-2, a part of the organic semiconductor layer 15 enters a portion below the dotted line, but the light emitting layer 15a is formed at a portion above the dotted line.
 また有機半導体層15は、穴部17が形成される位置において均一な厚さで形成されることが好ましい。これにより穴部17の位置において、より均一に発光層15aで発光を生じさせることができる。つまり有機半導体層15の膜厚が、穴部17が形成される位置において不均一であると、膜厚が厚い部分より薄い部分の方に電流が流れやすいため、この部分においてより発光が生じやすく、発光が不均一になる。また、この場合、電流が局所的に集中し、発熱が生じるため、有機半導体層15の劣化が生じやすく、有機発光素子10の耐久性が低下する。一方、有機半導体層15の膜厚が穴部17が形成される位置において均一な厚さであると、電流も均一に流れるため、発光も均一になる。そしてこの場合、電流が局所的に流れることがないため、有機発光素子10の耐久性を向上させることができる。また穴部17内またはその上方に発光領域が広く分布するため、低屈折率層13の側面13aに入射する光が多くなり、光取り出し効率が向上する。 The organic semiconductor layer 15 is preferably formed with a uniform thickness at the position where the hole 17 is formed. As a result, light emission can be generated more uniformly in the light emitting layer 15a at the positions of the holes 17. In other words, if the film thickness of the organic semiconductor layer 15 is not uniform at the position where the hole 17 is formed, current tends to flow in the thinner part than in the thicker part, and light emission is more likely to occur in this part. , Non-uniform light emission. In this case, the current is locally concentrated and heat is generated, so that the organic semiconductor layer 15 is likely to be deteriorated, and the durability of the organic light emitting element 10 is lowered. On the other hand, when the film thickness of the organic semiconductor layer 15 is uniform at the position where the hole 17 is formed, the current flows uniformly, so that the light emission is uniform. In this case, since the current does not flow locally, the durability of the organic light emitting element 10 can be improved. Further, since the light emitting region is widely distributed in or above the hole portion 17, the amount of light incident on the side surface 13a of the low refractive index layer 13 increases, and the light extraction efficiency is improved.
 そしてそのために有機半導体層15の厚さのばらつきについては、(膜厚の最小値)/(膜厚の最大値)≧0.7であることが好ましい。本実施の形態において、有機半導体層15の厚さが均一であるとは、膜厚のばらつきがこの範囲内になることを意味する。 For this reason, the variation in the thickness of the organic semiconductor layer 15 is preferably (minimum value of film thickness) / (maximum value of film thickness) ≧ 0.7. In the present embodiment, the uniform thickness of the organic semiconductor layer 15 means that the variation in film thickness is within this range.
 なお本実施の形態において、有機半導体層15の膜厚の測定は、有機発光素子10の縦断面サンプルのSEM写真を撮影することにより行うことができる。ここで、測定を行う断面は、穴部17を平面視でほぼ2等分する断面とする。尚、穴部17の平面形状が矩形の場合は、角部を横切らず、辺をできるだけ垂直に横切る断面とする。
 図1-3に有機半導体層15の膜厚の測定例を示す。サンプルは次のようにして作製されたものである。先ず、ガラス基板上に陽極層12(ITO)と低屈折率層13(SiO)を積層し、この2層を貫通する穴部17を形成する。この凹凸構造の上に、先ず透明導電層としてポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合物(PEDOT:PSS)をスピンコートにより成膜し、続いてこの上に有機半導体層15としてAlqを真空蒸着により成膜する。図1-3の断面写真において、有機半導体層15の穴部17領域における膜厚は最大値が約80nm、最小値が約60nmであり、最小値/最大値の比は0.75である。
In the present embodiment, the thickness of the organic semiconductor layer 15 can be measured by taking an SEM photograph of a vertical cross-sectional sample of the organic light emitting element 10. Here, the cross section for measurement is a cross section that divides the hole portion 17 into two substantially in plan view. In addition, when the planar shape of the hole part 17 is a rectangle, it is set as the cross section which does not cross a corner | angular part and crosses a side as perpendicularly as possible.
FIG. 1-3 shows an example of measuring the film thickness of the organic semiconductor layer 15. The sample was produced as follows. First, an anode layer 12 (ITO) and a low refractive index layer 13 (SiO 2 ) are laminated on a glass substrate, and a hole 17 penetrating these two layers is formed. On this concavo-convex structure, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT: PSS) is first formed as a transparent conductive layer by spin coating, and then the organic semiconductor layer 15 is formed thereon. As a film, Alq 3 is formed by vacuum deposition. In the cross-sectional photograph of FIG. 1-3, the maximum value of the film thickness in the hole 17 region of the organic semiconductor layer 15 is about 80 nm, the minimum value is about 60 nm, and the ratio of the minimum value / maximum value is 0.75.
 有機半導体層15に含まれる発光層15aは、陽極層12と陰極層16の間に電圧を印加することで発光する発光材料を含む。発光材料としては、低分子化合物及び高分子化合物のいずれも使用することができる。本実施の形態では、発光材料として、リン光発光性有機化合物および金属錯体を使用することが好ましい。金属錯体の中にはリン光性を示すものもあり、かかる金属錯体も好ましく用いられる。本実施の形態においては、特にシクロメタル化錯体を用いることが発光効率向上の観点から非常に望ましい。シクロメタル化錯体としては、例えば、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体、2-フェニルキノリン誘導体等の配位子を有するIr、PdおよびPt等の錯体が挙げられるが、イリジウム(Ir)錯体が特に好ましい。シクロメタル化錯体は、シクロメタル化錯体を形成するのに必要な配位子以外に、他の配位子を有していてもよい。なお、シクロメタル化錯体には、三重項励起子から発光する化合物も含まれ、発光効率向上の観点から好ましい。
 また、発光性高分子化合物としては、MEH-PPVなどのポリ-p-フェニレンビニレン(PPV)誘導体;ポリフルオレン誘導体、ポリチオフェン誘導体等のπ共役系の高分子化合物;低分子色素とテトラフェニルジアミンやトリフェニルアミンを主鎖や側鎖に導入したポリマー;等が挙げられる。発光性高分子化合物と発光性低分子化合物とを併用することもできる。
 発光層15aは発光材料とともにホスト材料を含み、ホスト材料中に発光材料が分散されていることもある。このようなホスト材料は電荷輸送性を有していることが好ましく、正孔輸送性化合物や電子輸送性化合物であることが好ましい。
The light emitting layer 15 a included in the organic semiconductor layer 15 includes a light emitting material that emits light when a voltage is applied between the anode layer 12 and the cathode layer 16. As the light emitting material, both low molecular compounds and high molecular compounds can be used. In this embodiment mode, it is preferable to use a phosphorescent organic compound and a metal complex as the light-emitting material. Some metal complexes exhibit phosphorescence, and such metal complexes are also preferably used. In the present embodiment, it is particularly desirable to use a cyclometalated complex from the viewpoint of improving luminous efficiency. Examples of cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like. Examples of the complex include Ir, Pd and Pt having a ligand, and an iridium (Ir) complex is particularly preferable. The cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex. The cyclometalated complex includes a compound that emits light from triplet excitons, which is preferable from the viewpoint of improving luminous efficiency.
Examples of the light-emitting polymer compound include poly-p-phenylene vinylene (PPV) derivatives such as MEH-PPV; π-conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives; low molecular dyes and tetraphenyldiamine; And a polymer in which triphenylamine is introduced into the main chain or side chain. A light emitting high molecular compound and a light emitting low molecular weight compound can also be used in combination.
The light emitting layer 15a includes a host material together with the light emitting material, and the light emitting material may be dispersed in the host material. Such a host material preferably has a charge transporting property, and is preferably a hole transporting compound or an electron transporting compound.
 ここで有機半導体層15は、透光性導電層14から正孔を受け取り発光層15aへ輸送するための正孔輸送層を含んでいてもよい。正孔輸送層は、透光性導電層14と発光層15aの間に配される。
 このような正孔輸送層を形成する正孔輸送材料としては、公知の材料を使用することができ、例えば、TPD(N,N'-ジメチル-N,N'-(3-メチルフェニル)-1,1'-ビフェニル-4,4'ジアミン);α-NPD(4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル);m-MTDATA(4、4',4''-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;上記トリフェニルアミン誘導体に重合性置換基を導入して重合した高分子化合物などが挙げられる。上記正孔輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる正孔輸送材料を積層して用いてもよい。正孔輸送層の厚さは、正孔輸送層の導電性などに依存するため、一概に限定できないが、好ましくは1nm~5μm、より好ましくは5nm~1μm、特に好ましくは10nm~500nmであることが望ましい。
Here, the organic semiconductor layer 15 may include a hole transport layer for receiving holes from the translucent conductive layer 14 and transporting them to the light emitting layer 15a. The hole transport layer is disposed between the translucent conductive layer 14 and the light emitting layer 15a.
As a hole transport material for forming such a hole transport layer, a known material can be used, for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl)- Α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl); m-MTDATA (4,4 ′, 1,1′-biphenyl-4,4′diamine); Low molecular weight triphenylamine derivatives such as 4 ″ -tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; polymer compounds obtained by introducing a polymerizable substituent into the above triphenylamine derivative, and the like. Can be mentioned. The above hole transport materials may be used singly or in combination of two or more, or different hole transport materials may be laminated and used. The thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. Is desirable.
 また有機半導体層15は、陰極層16から電子を受け取り、発光層15aへ輸送するための電子輸送層を含んでいてもよい。電子輸送層は、陰極層16と発光層15aの間に配される。
 このような電子輸送層に用いることができる材料としては、キノリン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体などが挙げられる。更に具体的には、トリス(8-キノリノラト)アルミニウム(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム、ビス[2-(2-ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾールや、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、バソフェナントロリン、バソキュプロイン(略称:BCP)、トリフェニルビスイミダゾール(BPBI)、2,2',2"-(1,3,5-Benzenetriyl)tris[1-phenyl-1H-benzimidazole](略称:TPBI)、3,3'-[5'-[4-(3-Pyridinyl)phenyl][1,1':3',1"-terphenyl]-4,4"-diyl]bispyridine(略称:TPyTPB)、4,4'-[5'-[3-(4-Pyridinyl)phenyl][1,1':3',1"-terphenyl]-3,3"-diyl]bispyridine(略称:m4TPyTPB)、3,3'-[5'-[3-(3-Pyridinyl)phenyl][1,1':3',1"-terphenyl]-3,3"-diyl]bispyridine(略称:mTPyTPB)、2,2'-[5'-[3-(2-Pyridinyl)phenyl][1,1':3',1"-terphenyl]-3,3"-diyl]bispyridine(略称:m2TPyTPB)、3-[4-[Bis(2,4,6-trimethylphenyl)boryl]-3,5-dimethylphenyl]pyridin(略称:Py211B)などである。この中でも、TPBI、TPyTPB、m4TPyTPB、mTPyTPB、m2TPyTPB、Py211Bをより好ましく用いることができる。
The organic semiconductor layer 15 may include an electron transport layer for receiving electrons from the cathode layer 16 and transporting them to the light emitting layer 15a. The electron transport layer is disposed between the cathode layer 16 and the light emitting layer 15a.
Examples of materials that can be used for such an electron transport layer include quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like. More specifically, tris (8-quinolinolato) aluminum (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum, bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (2-methyl-) 8-quinolinolato) (4-phenylphenolato) aluminum, bis [2- (2-hydroxyphenyl) benzoxazolate] zinc, bis [2- (2-hydroxyphenyl) benzothiazolate] zinc, 2- (4-biphenylyl) ) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole and 1,3-bis [5- (p-tert-butylphenyl) -1,3,4-oxadiazole -2-yl] benzene, 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4 Triazole (abbreviation: TAZ), bathophenanthroline, bathocuproin (abbreviation: BCP), triphenylbisimidazole (BPBI), 2,2 ', 2 "-(1,3,5-Benzenetriyl) tris [1-phenyl-1H- benzimidazole] (abbreviation: TPBI), 3,3 '-[5'-[4- (3-Pyridinyl) phenyl] [1,1 ': 3', 1 "-terphenyl] -4,4" -diyl] bispyridine (Abbreviation: TPyTPB), 4,4 '-[5'-[3- (4-Pyridinyl) phenyl] [1,1 ': 3', 1 "-terphenyl] -3,3" -diyl] bispyridine (abbreviation) : M4TPyTPB), 3,3 '-[5'-[3- (3-Pyridinyl) phenyl] [1,1 ': 3', 1 "-terphenyl] -3,3" -diyl] bispyridine (abbreviation: mTPyTPB) ), 2,2 '-[5'-[3- (2-Pyridinyl) phenyl] [1,1 ': 3', 1 "-terphenyl] -3,3" -diyl] bispyridine (abbreviated) Name: m2TPyTPB), 3- [4- [Bis (2,4,6-trimethylphenyl) boryl] -3,5-dimethylphenyl] pyridin (abbreviation: Py211B), etc. Among them, TPBI, TPyTPB, m4TPyTPB, mTPyTPB , M2TPyTPB and Py211B can be used more preferably.
 さらに有機半導体層15は、上記電子輸送層と発光層15aの間に、正孔ブロック層が設けられていてもよい。この正孔ブロック層を設けることで、正孔が発光層15aを通過することを抑え、発光層15a内で正孔と電子とを効率よく再結合させることができる。
 上記正孔ブロック層を形成するために、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体などの公知の材料が用いられる。
Further, in the organic semiconductor layer 15, a hole blocking layer may be provided between the electron transport layer and the light emitting layer 15a. By providing this hole blocking layer, it is possible to prevent holes from passing through the light emitting layer 15a and to efficiently recombine holes and electrons in the light emitting layer 15a.
In order to form the hole blocking layer, a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative is used.
(陰極層)
 陰極層16は、陽極層12との間に電圧を印加することにより、有機半導体層15に電子を注入する。陰極層16は、有機半導体層15とともに、発光面の全面にわたって連続的に形成されている。
 陰極層16に使用される材料としては、陽極層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。仕事関数は、化学的安定性を考慮すると2.9eV以下であることが好ましい。具体的には、Al、MgAg合金、AlLiやAlCaなどのAlとアルカリ金属の合金等の材料を例示することができる。陰極層16の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。本実施の形態の有機発光素子10の場合は、有機半導体層15から発した光を基板11側から取り出す。そのため陰極層16は、不透明材料により形成されていてもよい。更に、光を基板11側のみから取り出す場合は、陰極層16の材料は発光層15aから出る光に対して反射性の材料であることが好ましい。陰極層16に光反射性の材料を用いた場合、発光層15aから発して陰極層16側へ向かう光が陰極層16の表面で反射して基板側から取り出されるため、光取り出し効率が向上する。この場合、陰極層16に用いる材料の反射率が高いほど光取り出し効率が向上する。この観点からは、陰極層16の材料としてAl、Ag、Pt、Rh、およびこれらの合金を用いることが好ましい。
(Cathode layer)
The cathode layer 16 injects electrons into the organic semiconductor layer 15 by applying a voltage between the cathode layer 16 and the anode layer 12. The cathode layer 16 is continuously formed along with the organic semiconductor layer 15 over the entire light emitting surface.
The material used for the cathode layer 16 is not particularly limited as long as it has electrical conductivity in the same manner as the anode layer 12. However, a material having a low work function and being chemically stable is preferable. . The work function is preferably 2.9 eV or less in consideration of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified. The thickness of the cathode layer 16 is preferably 10 nm to 1 μm, more preferably 50 nm to 500 nm. In the case of the organic light emitting device 10 according to the present embodiment, light emitted from the organic semiconductor layer 15 is extracted from the substrate 11 side. Therefore, the cathode layer 16 may be made of an opaque material. Furthermore, when light is extracted only from the substrate 11 side, the material of the cathode layer 16 is preferably a material that is reflective to the light emitted from the light emitting layer 15a. When a light-reflective material is used for the cathode layer 16, light emitted from the light-emitting layer 15a toward the cathode layer 16 is reflected from the surface of the cathode layer 16 and extracted from the substrate side, so that the light extraction efficiency is improved. . In this case, the higher the reflectance of the material used for the cathode layer 16, the more the light extraction efficiency is improved. From this viewpoint, it is preferable to use Al, Ag, Pt, Rh, and alloys thereof as the material of the cathode layer 16.
 また、陰極層16から有機半導体層15への電子の注入障壁を下げて電子の注入効率を上げる目的で、図示しない陰極バッファ層を、陰極層16に隣接して設けてもよい。
 陰極バッファ層は、陰極層16より仕事関数の低い金属材料などが好適に用いられる。例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)、あるいはこれら金属のフッ化物、塩化物、酸化物から選ばれる単体あるいは2つ以上の混合物を使用することができる。陰極バッファ層の厚さは0.05nm~50nmが好ましく、0.1nm~20nmがより好ましく、0.5nm~10nmがより一層好ましい。
Further, a cathode buffer layer (not shown) may be provided adjacent to the cathode layer 16 for the purpose of lowering the electron injection barrier from the cathode layer 16 to the organic semiconductor layer 15 and increasing the electron injection efficiency.
For the cathode buffer layer, a metal material having a work function lower than that of the cathode layer 16 is preferably used. For example, alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), rare earth metals (Pr, Sm, Eu, Yb), or fluorides or chlorides of these metals, A simple substance selected from oxides or a mixture of two or more can be used. The thickness of the cathode buffer layer is preferably from 0.05 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
(穴部)
 穴部17は、有機半導体層15から発した光を取り出すためのものであり、本実施の形態では、低屈折率層13を貫通するように形成する。このように穴部17を設けることにより有機半導体層15から発せられた光は、主に穴部17の内部および低屈折率層13を伝搬し、基板11側および陰極層16の側から取り出すことができる。
(Hole)
The hole 17 is for extracting light emitted from the organic semiconductor layer 15, and is formed so as to penetrate the low refractive index layer 13 in the present embodiment. Thus, the light emitted from the organic semiconductor layer 15 by providing the hole portion 17 mainly propagates through the inside of the hole portion 17 and the low refractive index layer 13 and is extracted from the substrate 11 side and the cathode layer 16 side. Can do.
 穴部17の形状は、特に限定されることはないが、形状制御が行いやすいという観点から例えば円柱形状または四角柱などの多角柱形状、あるいはストライプ形状とすることが好ましい。これらの形状では、低屈折率層13の面内における形状が、低屈折率層13の厚み方向で変化してもよく、あるいは形状の大きさが変化してもよい。即ち、例えば円錐形状、角錐形状、円錐台形状、角錐台形状などであってもよい。穴部17の形状を適宜選択することにより、有機半導体層15で発光した光を外部へ取り出す際の配光分布などを制御することができる。 The shape of the hole portion 17 is not particularly limited, but is preferably a polygonal column shape such as a cylindrical shape or a quadrangular column, or a stripe shape from the viewpoint of easy shape control. In these shapes, the in-plane shape of the low refractive index layer 13 may change in the thickness direction of the low refractive index layer 13, or the size of the shape may change. That is, for example, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, and the like may be used. By appropriately selecting the shape of the hole 17, it is possible to control the light distribution when the light emitted from the organic semiconductor layer 15 is extracted to the outside.
 穴部17の大きさが大きいと、穴部17内で発光した光は、直接あるいは陰極層16表面や低屈折率層13表面で反射しながら進んで低屈折率層13の側面13aに入射するまでに、有機半導体層15または透光性導電層14に吸収されて減衰する。このような有機半導体層15または透光性導電層14による吸収損失を小さくするために、穴部17の大きさは、基板11の法線方向から見た場合、すなわち平面視で最大幅が3μm以下であることが好ましい。ここで、最大幅とは穴部17の平面図形に接してこれを挟む平行な2直線間の距離の最大値である。また、穴部17の大きさは、平面視で最大幅が1μm以下であることが更に好ましい。 When the size of the hole portion 17 is large, the light emitted in the hole portion 17 travels directly or while being reflected on the surface of the cathode layer 16 or the surface of the low refractive index layer 13 and enters the side surface 13a of the low refractive index layer 13. By the time, it is absorbed and attenuated by the organic semiconductor layer 15 or the translucent conductive layer 14. In order to reduce the absorption loss due to the organic semiconductor layer 15 or the translucent conductive layer 14, the size of the hole portion 17 is 3 μm in maximum when viewed from the normal direction of the substrate 11, that is, in plan view. The following is preferable. Here, the maximum width is the maximum value of the distance between two parallel straight lines that touch the plane figure of the hole 17 and sandwich it. Moreover, as for the magnitude | size of the hole part 17, it is more preferable that the maximum width is 1 micrometer or less by planar view.
 図1-1の部分断面図において、低屈折率層13の側面13aは、基板11面に対して垂直に形成されており、この場合の穴部17の側面13aの傾斜角(基板11平面に対する角度)は、90°である。ただし傾斜角は、これに限られるものではなく、低屈折率層13に使用する材料等によって適宜変化させ、有機半導体層15で発光した光を外部へ取り出す効率を高くすることができる。本実施の形態では、傾斜角が45°以上であることが好ましく、60°以上であることがさらに好ましい。また本実施の形態では、側面13aは、平面状であったがこれに限られるものではなく、曲面状であってもよい。 1-1, the side surface 13a of the low refractive index layer 13 is formed perpendicular to the surface of the substrate 11, and in this case, the inclination angle of the side surface 13a of the hole 17 (with respect to the plane of the substrate 11). Angle) is 90 °. However, the inclination angle is not limited to this, and can be changed as appropriate depending on the material used for the low refractive index layer 13 to increase the efficiency of extracting light emitted from the organic semiconductor layer 15 to the outside. In the present embodiment, the inclination angle is preferably 45 ° or more, and more preferably 60 ° or more. Moreover, in this Embodiment, although the side surface 13a was planar shape, it is not restricted to this, A curved surface shape may be sufficient.
 また有機発光素子10を構成する各層が積層される上側から見た穴部17の配置は、特に限定されるものではなく、規則的であっても、不規則であってもよい。典型的な配置の例としては、図1-4(a)に示すように各穴部17が繰り返し単位を正方形として配列する四角(正方)配置や、図1-4(b)に示すように各穴部17が、繰り返し単位を正三角形または正六角形として配置する三角配置(六角配置、千鳥配置)が挙げられる。 Further, the arrangement of the holes 17 viewed from the upper side on which the respective layers constituting the organic light emitting element 10 are laminated is not particularly limited, and may be regular or irregular. As an example of a typical arrangement, a square (square) arrangement in which the holes 17 are arranged in a repeating unit as a square as shown in FIG. 1-4 (a), or as shown in FIG. 1-4 (b). A triangular arrangement (hexagonal arrangement, staggered arrangement) in which each hole portion 17 is arranged as a regular triangle or a regular hexagon is exemplified.
 以上詳述した有機発光素子10では、透光性導電層14は、低屈折率層13上に延在して形成されているが、これに限られるものではない。
 図2は、本実施の形態が適用される有機発光素子の第2の例を説明した部分断面図である。
 図2に示した有機発光素子10は、図1-1に示した有機発光素子10では透光性導電層14が低屈折率層13上にも形成されているのに対し、透光性導電層14が低屈折率層13上には形成されず、穴部17内部に選択的に形成されている。
 この場合、透光性導電層14による正孔の輸送が、低屈折率層13上に形成されている有機半導体層15の部分まで届きにくい。そのため有機半導体層15の発光層15aによる発光領域が穴部17の位置にほぼ限定され、発光領域の全体またはほとんどの部分が穴部17内に存在するため、光取り出し効率が高くなりやすい。
In the organic light emitting device 10 described in detail above, the translucent conductive layer 14 is formed to extend on the low refractive index layer 13, but is not limited thereto.
FIG. 2 is a partial cross-sectional view illustrating a second example of an organic light emitting device to which the present embodiment is applied.
In the organic light emitting device 10 shown in FIG. 2, the light transmitting conductive layer 14 is also formed on the low refractive index layer 13 in the organic light emitting device 10 shown in FIG. The layer 14 is not formed on the low refractive index layer 13 but is selectively formed inside the hole 17.
In this case, the transport of holes by the translucent conductive layer 14 is difficult to reach the portion of the organic semiconductor layer 15 formed on the low refractive index layer 13. Therefore, the light emitting region of the organic semiconductor layer 15 by the light emitting layer 15a is almost limited to the position of the hole 17, and the whole or most of the light emitting region is present in the hole 17, so that the light extraction efficiency tends to be high.
 また更に、有機半導体層15についても、低屈折率層13上に延在して形成される必要はない。
 図3は、本実施の形態が適用される有機発光素子の第3の例を説明した部分断面図である。
 図3に示した有機発光素子10は、図2に示した有機発光素子10では有機半導体層15が低屈折率層13上にも形成されているのに対し、有機半導体層15が低屈折率層13上には形成されず、穴部17内部に選択的に形成されている。これにより図2に示した有機発光素子10よりも有機半導体層15の発光層15aによる発光領域が穴部17の内部に更に限定されることになり、光取り出し効率が更に高くなる。特に、穴部17の側面13aに隣接する領域にも有機半導体層15が存在することから、側面13aを通して低屈折率層13に入射する光が多くなり、光取り出し効率が向上する。
Furthermore, the organic semiconductor layer 15 need not extend over the low refractive index layer 13.
FIG. 3 is a partial cross-sectional view illustrating a third example of the organic light emitting device to which the present embodiment is applied.
In the organic light emitting device 10 shown in FIG. 3, the organic semiconductor layer 15 is also formed on the low refractive index layer 13 in the organic light emitting device 10 shown in FIG. It is not formed on the layer 13 but is selectively formed inside the hole 17. As a result, the light-emitting region of the organic semiconductor layer 15 by the light-emitting layer 15a is further limited to the inside of the hole 17 than the organic light-emitting element 10 shown in FIG. In particular, since the organic semiconductor layer 15 is also present in a region adjacent to the side surface 13a of the hole 17, more light enters the low refractive index layer 13 through the side surface 13a, and light extraction efficiency is improved.
 また上述した例では、穴部17が形成される位置において有機半導体層15の透光性導電層14の有機半導体層15側の表面が陽極層12側に凹む曲面形状をなす場合を挙げたが、以下にその他の場合について説明を行なう。
 図4~図7は、本実施の形態が適用される有機発光素子の第4~第7の例を説明した部分断面図である。
 図4に示した有機発光素子10は、図1-1に示した有機発光素子10とは、透光性導電層14の有機半導体層15側の表面が、穴部17が形成される位置において陽極層12側に矩形形状に凹む点のみが異なる。そして図5に示した有機発光素子10は、図2に示した有機発光素子10とは、透光性導電層14の有機半導体層15側の表面が、穴部17が形成される位置において陽極層12側に矩形形状に凹む点のみが異なる。
Moreover, in the example mentioned above, although the surface by the side of the organic-semiconductor layer 15 of the translucent conductive layer 14 of the organic-semiconductor layer 15 makes the curved surface shape dented in the anode layer 12 side in the position where the hole part 17 is formed, it mentioned. The other cases will be described below.
4 to 7 are partial cross-sectional views illustrating fourth to seventh examples of the organic light emitting device to which the present embodiment is applied.
The organic light emitting device 10 shown in FIG. 4 is different from the organic light emitting device 10 shown in FIG. 1-1 in that the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is at a position where the hole 17 is formed. The only difference is that it is recessed in a rectangular shape on the anode layer 12 side. The organic light emitting device 10 shown in FIG. 5 is different from the organic light emitting device 10 shown in FIG. 2 in that the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is an anode at a position where the hole 17 is formed. The only difference is that the layer 12 is recessed in a rectangular shape.
 そして図6で示した有機発光素子10は、図5に示した有機発光素子10とは、穴部17の底面にのみ透光性導電層14を形成した点のみが異なる。この場合、透光性導電層14と低屈折率層13の側面13aとが接触する箇所は、穴部17の底面の周囲に限られる。
 さらに図7で示した有機発光素子10は、図3に示した有機発光素子10とは、透光性導電層14の有機半導体層15側の表面が、穴部17が形成される位置において凹まず平坦になっている点のみが異なる。
6 differs from the organic light-emitting device 10 shown in FIG. 5 only in that the light-transmitting conductive layer 14 is formed only on the bottom surface of the hole 17. In this case, the place where the translucent conductive layer 14 and the side surface 13 a of the low refractive index layer 13 are in contact is limited to the periphery of the bottom surface of the hole portion 17.
Further, the organic light emitting device 10 shown in FIG. 7 is different from the organic light emitting device 10 shown in FIG. 3 in that the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is recessed at the position where the hole 17 is formed. The only difference is that it is flat.
 図4~図7で示した有機発光素子10の場合、透光性導電層14は、穴部17の内面に沿って均一な厚さで形成されることが好ましい。この場合、透光性導電層14の有機半導体層15側の表面が曲面形状に凹む場合に較べ、低屈折率層13の側面13aの近傍に発光領域が位置することになる。そのため側面13aに入射する光がより多くなり、光取り出し効率がより向上する。ここで透光性導電層14の厚さが均一であるとは、透光性導電層14の膜厚について、(膜厚の最小値)/(膜厚の最大値)≧0.7であることを意味する。 In the case of the organic light emitting device 10 shown in FIGS. 4 to 7, the translucent conductive layer 14 is preferably formed with a uniform thickness along the inner surface of the hole 17. In this case, the light emitting region is positioned in the vicinity of the side surface 13a of the low refractive index layer 13 as compared with the case where the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side is recessed in a curved shape. Therefore, more light is incident on the side surface 13a, and the light extraction efficiency is further improved. Here, the uniform thickness of the light-transmitting conductive layer 14 means that the film thickness of the light-transmitting conductive layer 14 is (minimum value of film thickness) / (maximum value of film thickness) ≧ 0.7. Means that.
 また上述した例では、穴部17は、低屈折率層13のみを貫通して形成されていたが、これに限られるものではない。
 図8は、本実施の形態が適用される有機発光素子の第8の例を説明した部分断面図である。
 図8に示した有機発光素子10は、図4で示した有機発光素子10に対し、穴部17が低屈折率層13を貫通するだけでなく、陽極層12も更に貫通して形成されている。この場合、陽極層12が穴部17の位置で除去されているため、穴部17底部から取り出される光について陽極層12による吸収損失が減る。そのため光取り出し効率が向上する。
 穴部17は、陽極層12を貫通して形成する必要はなく、途中まで穿って形成されていてもよい。つまり陽極層12の一部を穿って形成されていてもよい。
Moreover, in the example mentioned above, although the hole part 17 penetrated only the low-refractive-index layer 13, it is not restricted to this.
FIG. 8 is a partial cross-sectional view illustrating an eighth example of an organic light emitting device to which the present embodiment is applied.
The organic light emitting device 10 shown in FIG. 8 has a hole 17 not only penetrating through the low refractive index layer 13 but also the anode layer 12 through the organic light emitting device 10 shown in FIG. Yes. In this case, since the anode layer 12 is removed at the position of the hole portion 17, the absorption loss by the anode layer 12 with respect to the light extracted from the bottom portion of the hole portion 17 is reduced. Therefore, the light extraction efficiency is improved.
The hole 17 does not have to be formed through the anode layer 12 and may be formed halfway. That is, it may be formed by piercing a part of the anode layer 12.
 また図9は、本実施の形態が適用される有機発光素子の第9の例を説明した部分断面図である。
 図9に示した有機発光素子10は、基板11が、穴部17が形成される位置において窪んだ穿孔部18を有する。図9では、穴部17と穿孔部18の境界部を図中下側の点線で図示している。穿孔部18を設けることで、図8に示した有機発光素子10の場合には、穴部17の底面である基板11の上面において反射する光も、穿孔部18の側面18aにおいて基板11内に侵入することができる。そのため光取り出し効率がより向上する。
 尚、図8および図9に示した有機発光素子10の場合、透光性導電層14の有機半導体層15側の表面が、穴部17が形成される位置において陽極層12側に矩形形状に凹んでいるが、この界面は曲面形状に凹んでいてもよい。
FIG. 9 is a partial cross-sectional view illustrating a ninth example of an organic light emitting device to which the present embodiment is applied.
In the organic light emitting device 10 illustrated in FIG. 9, the substrate 11 has a perforated portion 18 that is recessed at a position where the hole 17 is formed. In FIG. 9, the boundary portion between the hole portion 17 and the perforated portion 18 is illustrated by the lower dotted line in the drawing. In the case of the organic light emitting device 10 shown in FIG. 8, the light reflected from the upper surface of the substrate 11, which is the bottom surface of the hole portion 17, also enters the substrate 11 on the side surface 18 a of the hole portion 18. Can invade. Therefore, the light extraction efficiency is further improved.
In the case of the organic light emitting device 10 shown in FIGS. 8 and 9, the surface of the translucent conductive layer 14 on the organic semiconductor layer 15 side has a rectangular shape on the anode layer 12 side at the position where the hole 17 is formed. Although recessed, this interface may be recessed in a curved surface shape.
 図10~図11は、本実施の形態が適用される有機発光素子の第10~第11の例を説明した部分断面図である。
 図10に示した有機発光素子10は、図2に示した有機発光素子10に較べて、透光性導電層14が、穴部17の外周部において低屈折率層13の上面より上に隆起する形で形成されている。また透光性導電層14上に形成される有機半導体層15および陰極層16についても、上記透光性導電層14の形状に対応して穴部17の外周部近傍において隆起する形状となっている。そして図11に示した有機発光素子10は、図5に示した有機発光素子10に較べて、透光性導電層14、有機半導体層15、および陰極層16が、図10に示した有機発光素子10の場合と同様にして穴部17の外周部または外周部近傍において隆起する形状となっている。
 透光性導電層14が、このような形態を採るのは、有機発光素子10の製造において、透光性導電層14をマスクを使用して形成する場合に生じやすい。詳しくは後述するが、透光性導電層14は、低屈折率層13に穴部17を形成した後に、この穴部17に透光性導電層14を形成する材料を充填することで形成する。ここで穴部17の位置に選択的に透光性導電層14を形成するために、例えば、低屈折率層13に穴部17を形成するときに使用したマスクをそのまま残しておき、このマスクを利用して穴部17に透光性導電層14を形成する方法を採ることがある。このときマスクの上から透光性導電層14を形成した後、マスクを除去すると、透光性導電層14が穴部17の外周部に隆起する形で残存する。続いてこの上に有機半導体層15および陰極層16を形成することにより、図10~図11に示した有機発光素子10が製造される。
10 to 11 are partial cross-sectional views illustrating tenth to eleventh examples of the organic light emitting device to which the present embodiment is applied.
In the organic light emitting device 10 shown in FIG. 10, the translucent conductive layer 14 protrudes above the upper surface of the low refractive index layer 13 in the outer peripheral portion of the hole portion 17 as compared with the organic light emitting device 10 shown in FIG. 2. Is formed. Further, the organic semiconductor layer 15 and the cathode layer 16 formed on the translucent conductive layer 14 also have a shape that rises in the vicinity of the outer peripheral portion of the hole portion 17 corresponding to the shape of the translucent conductive layer 14. Yes. The organic light-emitting element 10 shown in FIG. 11 has a light-transmitting conductive layer 14, an organic semiconductor layer 15, and a cathode layer 16 that are different from the organic light-emitting element 10 shown in FIG. In the same manner as in the case of the element 10, the hole 17 has a shape that protrudes at or near the outer periphery.
The reason why the translucent conductive layer 14 takes such a form is likely to occur when the translucent conductive layer 14 is formed using a mask in the manufacture of the organic light emitting element 10. As will be described in detail later, the translucent conductive layer 14 is formed by forming a hole 17 in the low refractive index layer 13 and then filling the hole 17 with a material for forming the translucent conductive layer 14. . Here, in order to selectively form the transparent conductive layer 14 at the position of the hole 17, for example, the mask used when forming the hole 17 in the low refractive index layer 13 is left as it is. May be used to form the translucent conductive layer 14 in the hole 17. At this time, after forming the translucent conductive layer 14 on the mask and then removing the mask, the translucent conductive layer 14 remains on the outer peripheral portion of the hole 17 in a raised form. Subsequently, the organic semiconductor layer 15 and the cathode layer 16 are formed thereon, whereby the organic light emitting device 10 shown in FIGS. 10 to 11 is manufactured.
 尚、図10および図11に示した有機発光素子10の場合、穴部17は低屈折率層13のみに形成されているが、穴部17が陽極層12を貫通して形成されてもよい。また、穴部17が更に基板11を穿孔して形成されてもよい。 In the case of the organic light emitting device 10 shown in FIGS. 10 and 11, the hole 17 is formed only in the low refractive index layer 13, but the hole 17 may be formed through the anode layer 12. . Further, the hole portion 17 may be formed by further drilling the substrate 11.
[上側電極が透光性の陰極層である有機発光素子]
 図1-1~図11で説明した本発明の有機発光素子10の実施の形態の適用例はすべて透光性の陽極層12が基板11に接して設けられ、基板11側から光を取り出す構造である。これに対し、電極構成が異なる別の実施の形態について、具体的な適用例を示して以下に説明する。
[Organic light emitting device in which upper electrode is translucent cathode layer]
In all of the application examples of the embodiment of the organic light emitting device 10 of the present invention described with reference to FIGS. 1-1 to 11, a light-transmitting anode layer 12 is provided in contact with the substrate 11, and light is extracted from the substrate 11 side. It is. On the other hand, another embodiment having a different electrode configuration will be described below by showing a specific application example.
 図12は、本実施の形態が適用される有機発光素子の第12の例を説明した部分断面図である。これは、電極構成が異なる1つの実施形態の適用例であり、基板11と反対側の電極層が透光性の陰極層16であり、基板11と反対側から光を取り出す構造を有する。この第12の例として示す電極構成が異なる実施の形態の適用例は、図1-1~図11に示すすべての構造について対応して存在する。ここでは図1-1に対応する図12で代表して説明を行うが、図1-2~図11に示される他の構造についても同様に本実施の形態が適用され得る。尚、図8および図9に対応する構造は、不透明な陽極層12を用いた場合でも、穴部17が基板11側の不透明な陽極層12を貫通するため、基板11側からも光が出射する。 FIG. 12 is a partial cross-sectional view illustrating a twelfth example of an organic light emitting device to which the present embodiment is applied. This is an application example of one embodiment having a different electrode configuration, and the electrode layer on the side opposite to the substrate 11 is a translucent cathode layer 16 and has a structure for extracting light from the side opposite to the substrate 11. The application examples of the embodiments having different electrode configurations shown as the twelfth example exist corresponding to all the structures shown in FIGS. 1-1 to 11. Here, FIG. 12 corresponding to FIG. 1-1 will be representatively described, but the present embodiment can be similarly applied to other structures shown in FIGS. 1-2 to 11. 8 and 9, even when the opaque anode layer 12 is used, since the hole 17 penetrates the opaque anode layer 12 on the substrate 11 side, light is emitted also from the substrate 11 side. To do.
 透光性の陰極層16の材料としては導電性透明金属酸化物を用いることができる。この導電性透明酸化物の具体的な化合物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。
 また、透光性の陰極層16と有機半導体層15間に図示しない陰極バッファ層を形成し、有機半導体層15への電子注入効率を向上させることが好ましい。陰極バッファ層に適用可能な材料としては、例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)、あるいはこれら金属のフッ化物、塩化物、酸化物から選ばれる単体あるいは2つ以上の混合物等が挙げられる。陰極バッファ層の膜厚は、透過損失を抑えるために10nm以下とすることが好ましい。
As a material of the light-transmitting cathode layer 16, a conductive transparent metal oxide can be used. Specific examples of the conductive transparent oxide include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
Further, it is preferable to form a cathode buffer layer (not shown) between the light-transmitting cathode layer 16 and the organic semiconductor layer 15 to improve the efficiency of electron injection into the organic semiconductor layer 15. Examples of materials applicable to the cathode buffer layer include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), and rare earth metals (Pr, Sm, Eu, Yb). Or a single substance or a mixture of two or more selected from fluorides, chlorides and oxides of these metals. The thickness of the cathode buffer layer is preferably 10 nm or less in order to suppress transmission loss.
 本第12の例のように、有機発光素子10の基板11側から光を取り出す必要がない場合は、基板11の材料としては、可視光に対して透明であるものには限られず、不透明なものも使用できる。具体的には、シリコン(Si)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)の単体、またはこれらの合金、あるいはステンレス等も使用することができる。 When it is not necessary to extract light from the substrate 11 side of the organic light emitting element 10 as in the twelfth example, the material of the substrate 11 is not limited to one that is transparent to visible light, but is opaque. Things can also be used. Specifically, silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) A simple substance of these, alloys thereof, stainless steel, or the like can also be used.
 陽極層12に使用される材料としては、電気伝導性を有するものであることが必要である。具体的には仕事関数の高いものであり、仕事関数は、4.5eV以上であることが好ましい。加えて、アルカリ性水溶液に対し、電気抵抗が顕著に変化しないことが好ましい。このような条件を満たす材料として、透光性の金属酸化物が使用できる。具体的な化合物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。 The material used for the anode layer 12 needs to have electrical conductivity. Specifically, it has a high work function, and the work function is preferably 4.5 eV or more. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution. A light-transmitting metal oxide can be used as a material that satisfies such conditions. Specific examples of the compound include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
 更に、光を基板11と反対側のみから取り出す場合は、基板11側にある陽極層12の材料は発光層15aから出る光に対して反射性の材料であることが好ましい。陽極層12に光反射性の材料を用いた場合、発光層15aから発して陽極層12側へ向かう光が陽極層12の表面で反射して基板11と反対側から取り出されるため、光取り出し効率が向上する。この場合、陽極層12に用いる材料の反射率が高いほど光取り出し効率が向上する。反射性の陽極層12に適用可能な材料としては、Al、Ag、Mo、W、Ni、Cr等の高反射率の金属、NiP、NiB、CrP、CrB等の高反射率のアモルファス合金、NiAl等の高反射率の微結晶合金等が挙げられる。 Furthermore, when light is extracted only from the side opposite to the substrate 11, the material of the anode layer 12 on the substrate 11 side is preferably a material that is reflective to the light emitted from the light emitting layer 15a. When a light-reflective material is used for the anode layer 12, light emitted from the light-emitting layer 15a toward the anode layer 12 is reflected by the surface of the anode layer 12 and extracted from the side opposite to the substrate 11, so that the light extraction efficiency Will improve. In this case, the light extraction efficiency improves as the reflectance of the material used for the anode layer 12 increases. Examples of materials applicable to the reflective anode layer 12 include high reflectivity metals such as Al, Ag, Mo, W, Ni, and Cr, high reflectivity amorphous alloys such as NiP, NiB, CrP, and CrB, and NiAl. Examples thereof include a microcrystalline alloy having a high reflectance such as.
 また、反射性の陽極層12と有機半導体層15間に図示しない陽極バッファ層を形成し、有機半導体層15への正孔注入効率を向上させることが好ましい。陽極バッファ層に適用可能な材料としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。
 本第12の例の有機発光素子10におけるその他の構成要素の説明は、図1-1で説明した第1の例の説明と同じである。
Further, it is preferable to form an anode buffer layer (not shown) between the reflective anode layer 12 and the organic semiconductor layer 15 to improve the efficiency of hole injection into the organic semiconductor layer 15. Examples of materials applicable to the anode buffer layer include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
The description of the other components in the organic light emitting element 10 of the twelfth example is the same as the description of the first example described with reference to FIG.
[上側電極が透光性の陽極層である有機発光素子]
 図13は、本実施の形態が適用される有機発光素子の第13の例を説明した部分断面図である。この第13の例として示す電極構成が異なる実施の形態の適用例は、図1-1~図11に示すすべての構造について対応して存在する。ここでは図1-1に対応する図13で代表して説明を行うが、図1-2~図11に示される他の構造についても同様に本実施の形態が適用され得る。尚、図8および図9に対応する構造は、不透明な陰極層16を使用した場合でも穴部17が基板11側の不透明な陰極層16を貫通するため、基板11側からも光が出射する。
[Organic light emitting device in which upper electrode is translucent anode layer]
FIG. 13 is a partial cross-sectional view illustrating a thirteenth example of an organic light emitting device to which the present embodiment is applied. The application examples of the embodiments having different electrode configurations shown as the thirteenth example exist corresponding to all the structures shown in FIGS. Here, the description will be made with reference to FIG. 13 corresponding to FIG. 1-1. However, the present embodiment can be similarly applied to other structures shown in FIGS. 1-2 to 11. In the structure corresponding to FIGS. 8 and 9, even when the opaque cathode layer 16 is used, the hole 17 penetrates the opaque cathode layer 16 on the substrate 11 side, so that light is also emitted from the substrate 11 side. .
 図13に示す有機発光素子10の構造は、図1-1の有機発光素子10において透光性の陽極層12と陰極層16の位置を入れ替えた構造である。
 透光性の陽極層12の材料としては導電性透明金属酸化物を用いることができる。この導電性透明酸化物の具体的な化合物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。
The structure of the organic light emitting device 10 shown in FIG. 13 is a structure in which the positions of the light-transmitting anode layer 12 and the cathode layer 16 are interchanged in the organic light emitting device 10 of FIG. 1-1.
As a material for the light-transmitting anode layer 12, a conductive transparent metal oxide can be used. Specific examples of the conductive transparent oxide include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
 本第13の例における透光性導電層14は、有機半導体層15の発光層15aにおいて発せられる光に対し、透過性を有するとともに導電性を有する。また、更に有機半導体層15への電子の注入障壁を下げて電子の注入効率を上げる機能を有することが好ましい。このような条件を満たすために透光性導電層14に使用される材料としては、例えば、n型ドーピングされた導電性高分子等を用いることができる。n型ドーピングされた導電性高分子の具体的な化合物としては、ポリパラフェニレン、ポリパラフェニレンビニレン等が挙げられる。また、n型ドーピングされた導電性高分子は塗布成膜が可能なため、穴部17が形成される位置において、有機半導体層15と透光性導電層14の界面を基板11側に凹む曲面形状とすることが容易である。本第13の例の透光性導電層の実施形態に関するその他の事項の説明は第1の例の説明と同じである。 The translucent conductive layer 14 in the thirteenth example has transparency and conductivity with respect to light emitted from the light emitting layer 15a of the organic semiconductor layer 15. Further, it is preferable to have a function of lowering the electron injection barrier to the organic semiconductor layer 15 and increasing the electron injection efficiency. As a material used for the translucent conductive layer 14 in order to satisfy such a condition, for example, an n-type doped conductive polymer can be used. Specific examples of the n-type doped conductive polymer include polyparaphenylene and polyparaphenylene vinylene. Further, since the n-type doped conductive polymer can be formed by coating, a curved surface in which the interface between the organic semiconductor layer 15 and the translucent conductive layer 14 is recessed toward the substrate 11 at the position where the hole 17 is formed. It is easy to form. The description of other matters regarding the embodiment of the light-transmitting conductive layer of the thirteenth example is the same as the description of the first example.
 本第13の例のように、有機発光素子10の基板11側から光を取り出す必要がない場合には、基板11の材料としては、可視光に対して透明であるものには限られず、不透明なものも使用できる。具体的には、シリコン(Si)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)の単体、またはこれらの合金、あるいはステンレス等も使用することができる。 When it is not necessary to extract light from the substrate 11 side of the organic light emitting element 10 as in the thirteenth example, the material of the substrate 11 is not limited to a material that is transparent to visible light, but is opaque. You can also use anything. Specifically, silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) A simple substance of these, alloys thereof, stainless steel, or the like can also be used.
 陰極層16に使用される材料としては、陽極層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。仕事関数は、化学的安定性を考慮すると2.9eV以下であることが好ましい。具体的には、Al、MgAg合金、AlLiやAlCaなどのAlとアルカリ金属の合金等の材料を例示することができる。陰極層16の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。 The material used for the cathode layer 16 is not particularly limited as long as it has electrical conductivity in the same manner as the anode layer 12. However, a material having a low work function and being chemically stable is preferable. . The work function is preferably 2.9 eV or less in consideration of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified. The thickness of the cathode layer 16 is preferably 10 nm to 1 μm, more preferably 50 nm to 500 nm.
 更に、光を基板11と反対側のみから取り出す場合は、陰極層16の材料は発光層15aから出る光に対して反射性の材料であることが好ましい。陰極層16に光反射性の材料を用いた場合、発光層15aから発して陰極層16側へ向かう光が陰極層16の表面で反射して基板11側から取り出されるため、光取り出し効率が向上する。この場合、陰極層16に用いる材料の反射率が高いほど光取り出し効率が向上する。この観点からは、陰極層16の材料としてAl、Ag、Pt、Rh、およびこれらの合金を用いることが好ましい。 Furthermore, when light is extracted only from the side opposite to the substrate 11, the material of the cathode layer 16 is preferably a material that is reflective to the light emitted from the light emitting layer 15a. When a light-reflective material is used for the cathode layer 16, light emitted from the light emitting layer 15a toward the cathode layer 16 is reflected by the surface of the cathode layer 16 and is extracted from the substrate 11, so that the light extraction efficiency is improved. To do. In this case, the higher the reflectance of the material used for the cathode layer 16, the more the light extraction efficiency is improved. From this viewpoint, it is preferable to use Al, Ag, Pt, Rh, and alloys thereof as the material of the cathode layer 16.
 また、透光性の陰極層16と有機半導体層15間に図示しない陰極バッファ層を形成し、有機半導体層15への電子注入効率を向上させることが好ましい。陰極バッファ層に適用可能な材料としては、例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)、あるいはこれら金属のフッ化物、塩化物、酸化物から選ばれる単体あるいは2つ以上の混合物等が挙げられる。陰極バッファ層の膜厚は、透過損失を抑えるために10nm以下とすることが好ましい。
 本第13の例の有機発光素子10におけるその他の構成要素の説明は、図1-1で説明した第1の例の説明と同じである。
Further, it is preferable to form a cathode buffer layer (not shown) between the light-transmitting cathode layer 16 and the organic semiconductor layer 15 to improve the efficiency of electron injection into the organic semiconductor layer 15. Examples of materials applicable to the cathode buffer layer include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), and rare earth metals (Pr, Sm, Eu, Yb). Or a single substance or a mixture of two or more selected from fluorides, chlorides and oxides of these metals. The thickness of the cathode buffer layer is preferably 10 nm or less in order to suppress transmission loss.
The description of the other components in the organic light emitting element 10 of the thirteenth example is the same as the description of the first example described with reference to FIG.
[下側電極が透光性の陰極層である有機発光素子]
 図14は、本実施の形態が適用される有機発光素子の第14の例を説明した部分断面図である。これは、電極構成が異なる更に別の実施形態の適用例であり、基板11に接する側の電極層が透光性の陰極層16であり、基板11側から光を取り出す構造を有する。この第14の例として示す電極構成が異なる実施の形態の適用例は、図1-1~図11に示すすべての構造について対応して存在する。ここでは図1-1に対応する図14で代表して説明を行うが、図1-2~図11に示される他の構造についても同様に本実施の形態が適用され得る。
[Organic light emitting device in which lower electrode is translucent cathode layer]
FIG. 14 is a partial cross-sectional view illustrating a fourteenth example of an organic light emitting device to which the present embodiment is applied. This is an application example of still another embodiment having a different electrode configuration, and the electrode layer on the side in contact with the substrate 11 is a translucent cathode layer 16 and has a structure for extracting light from the substrate 11 side. The application examples of the embodiments having different electrode configurations shown as the fourteenth example exist corresponding to all the structures shown in FIGS. Here, description will be made representatively with reference to FIG. 14 corresponding to FIG. 1-1, but the present embodiment can be similarly applied to other structures shown in FIG. 1-2 to FIG.
 透光性の陰極層16の材料としては導電性透明金属酸化物を用いることができる。この導電性透明酸化物の具体的な化合物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。
 また、透光性の陰極層16と有機半導体層15間に図示しない陰極バッファ層を形成し、有機半導体層15への電子注入効率を向上させることが好ましい。陰極バッファ層に適用可能な材料としては、例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)、あるいはこれら金属のフッ化物、塩化物、酸化物から選ばれる単体あるいは2つ以上の混合物等が挙げられる。陰極バッファ層の膜厚は、透過損失を抑えるために10nm以下とすることが好ましい。
As a material of the light-transmitting cathode layer 16, a conductive transparent metal oxide can be used. Specific examples of the conductive transparent oxide include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
Further, it is preferable to form a cathode buffer layer (not shown) between the light-transmitting cathode layer 16 and the organic semiconductor layer 15 to improve the efficiency of electron injection into the organic semiconductor layer 15. Examples of materials applicable to the cathode buffer layer include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), and rare earth metals (Pr, Sm, Eu, Yb). Or a single substance or a mixture of two or more selected from fluorides, chlorides and oxides of these metals. The thickness of the cathode buffer layer is preferably 10 nm or less in order to suppress transmission loss.
 本第14の例における透光性導電層14は、有機半導体層15の発光層15aにおいて発せられる光に対し、透過性を有するとともに導電性を有する。また、更に有機半導体層15への電子の注入障壁を下げて電子の注入効率を上げる機能を有することが好ましい。このような条件を満たすために透光性導電層14に使用される材料としては、例えば、n型ドーピングされた導電性高分子等を用いることができる。n型ドーピングされた導電性高分子の具体的な化合物としては、ポリパラフェニレン、ポリパラフェニレンビニレン等が挙げられる。また、n型ドーピングされた導電性高分子は塗布成膜が可能なため、穴部17が形成される位置において、有機半導体層15と透光性導電層14の界面を基板11側に凹む曲面形状とすることが容易である。本第14の例の透光性導電層の実施形態に関するその他の事項の説明は第1の例の説明と同じである。 The translucent conductive layer 14 in the fourteenth example has transparency and conductivity with respect to light emitted from the light emitting layer 15a of the organic semiconductor layer 15. Further, it is preferable to have a function of lowering the electron injection barrier to the organic semiconductor layer 15 and increasing the electron injection efficiency. As a material used for the translucent conductive layer 14 in order to satisfy such a condition, for example, an n-type doped conductive polymer can be used. Specific examples of the n-type doped conductive polymer include polyparaphenylene and polyparaphenylene vinylene. Further, since the n-type doped conductive polymer can be formed by coating, a curved surface in which the interface between the organic semiconductor layer 15 and the translucent conductive layer 14 is recessed toward the substrate 11 at the position where the hole 17 is formed. It is easy to form. The description of other matters regarding the embodiment of the light-transmitting conductive layer of the fourteenth example is the same as the description of the first example.
 基板11の材料としては、本第1の例のように有機発光素子10の基板11側から光を取り出す場合は、発光層15aから出る光に対して光透過性であることが必要である。具体的な材料としては、サファイアガラス、ソーダガラス、石英ガラス等のガラス類;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂、シリコーン樹脂等の透明樹脂;窒化アルミ等の金属窒化物、アルミナ等の透明金属酸化物等が挙げられる。なお基板11として、上記透明樹脂からなる樹脂フィルム等を使用する場合は、水、酸素などのガスに対するガス透過性が低いことが好ましい。ガス透過性が高い樹脂フィルム等を使用する場合は、光の透過性を損なわない範囲でガスの透過を抑制するバリア性薄膜を形成することが好ましい。 As the material of the substrate 11, when light is extracted from the substrate 11 side of the organic light emitting element 10 as in the first example, it is necessary to be light transmissive with respect to the light emitted from the light emitting layer 15 a. Specific materials include: glass such as sapphire glass, soda glass, and quartz glass; transparent resin such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon resin, and silicone resin; metal nitride such as aluminum nitride, Examples thereof include transparent metal oxides such as alumina. In addition, when using the resin film etc. which consist of the said transparent resin as the board | substrate 11, it is preferable that the gas permeability with respect to gas, such as water and oxygen, is low. When using a resin film or the like having high gas permeability, it is preferable to form a barrier thin film that suppresses gas permeation as long as light permeability is not impaired.
 基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
 更に、光を基板11側のみから取り出す場合は、基板11と反対側にある陽極層12の材料は発光層15aから出る光に対して反射性の材料であることが好ましい。陽極層12に光反射性の材料を用いた場合、発光層15aから発して陽極層12側へ向かう光が陽極層12の表面で反射して基板11側から取り出されるため、光取り出し効率が向上する。この場合、陽極層12に用いる材料の反射率が高いほど光取り出し効率が向上する。反射性の陽極層に適用可能な材料としては、Al、Ag、Mo、W、Ni、Cr等の高反射率の金属、NiP、NiB、CrP、CrB等の高反射率のアモルファス合金、NiAl等の高反射率の微結晶合金等が挙げられる。
The thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
Further, when light is extracted only from the substrate 11 side, the material of the anode layer 12 on the side opposite to the substrate 11 is preferably a material that is reflective to the light emitted from the light emitting layer 15a. When a light-reflective material is used for the anode layer 12, light emitted from the light emitting layer 15a toward the anode layer 12 is reflected by the surface of the anode layer 12 and is extracted from the substrate 11, so that the light extraction efficiency is improved. To do. In this case, the light extraction efficiency improves as the reflectance of the material used for the anode layer 12 increases. Materials applicable to the reflective anode layer include high reflectivity metals such as Al, Ag, Mo, W, Ni, Cr, high reflectivity amorphous alloys such as NiP, NiB, CrP, CrB, NiAl, etc. And a highly crystalline microcrystalline alloy.
 また、反射性の陽極層12と有機半導体層15間に図示しない陽極バッファ層を形成し、有機半導体層15への正孔注入効率を向上させることが好ましい。陽極バッファ層に適用可能な材料としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)、酸化インジウム、酸化スズ、酸化亜鉛等が挙げられる。
 本第14の例の有機発光素子10におけるその他の構成要素の説明は、図1-1で説明した第1の例の説明と同じである。
Further, it is preferable to form an anode buffer layer (not shown) between the reflective anode layer 12 and the organic semiconductor layer 15 to improve the efficiency of hole injection into the organic semiconductor layer 15. Examples of materials applicable to the anode buffer layer include ITO (indium tin oxide), IZO (indium-zinc oxide), indium oxide, tin oxide, and zinc oxide.
The description of the other components in the organic light emitting element 10 of the fourteenth example is the same as the description of the first example described with reference to FIG.
 尚、上記の本発明の有機発光素子10の実施の形態の適用例の説明においては、すべて基板11に隣接する下側電極と基板11から離れた側の上側電極のいずれか一方が発光層からの発光光に対し透光性を有する素子構造を中心に説明したが、両方の電極が透光性を有していて有機発光素子10の上下面の両方から光を取り出す素子構造としてもよい。 In the description of the application example of the embodiment of the organic light emitting device 10 of the present invention, any one of the lower electrode adjacent to the substrate 11 and the upper electrode far from the substrate 11 is from the light emitting layer. The element structure having translucency with respect to the emitted light has been mainly described. However, an element structure in which both electrodes have translucency and light is extracted from both the upper and lower surfaces of the organic light emitting element 10 may be used.
(光取り出し効果の説明)
 次に本実施の形態の有機発光素子における低屈折率層による光取り出し効果を図15-1、図15-2により説明する。
 図15-1は図19と同じ従来技術の有機発光素子100の構造を示したものであり、透明基板111上に順に透光性の第1電極112、発光層を含む有機層115、反射性の第2電極116が積層された構造を示す。ここで、発光位置Pからの放射角(基板平面の法線に対する角度)の大きさにより光の進行の様子が異なる。放射角が小さいうちは光線L1で示すように外部に取り出される。しかし、放射角が大きくなると先ず透明基板111の外表面で全反射が起こる(光線L2)。更に放射角が大きくなると透光性の第1電極112/透明基板111の界面で全反射が起こる(光線L3)。これらの全反射光は、反射性の第2電極116の表面でも反射して導波モードとなり、外部へ取り出されることはない。
(Explanation of light extraction effect)
Next, the light extraction effect of the low refractive index layer in the organic light emitting device of this embodiment will be described with reference to FIGS. 15-1 and 15-2.
FIG. 15A shows the structure of the organic light emitting device 100 of the same prior art as in FIG. 19, in which a transparent first electrode 112, an organic layer 115 including a light emitting layer, a reflective property are sequentially formed on a transparent substrate 111. A structure in which the second electrode 116 is stacked is shown. Here, the state of light propagation varies depending on the radiation angle from the light emission position P (the angle with respect to the normal to the substrate plane). While the radiation angle is small, the light is extracted outside as indicated by the light beam L1. However, when the radiation angle increases, total reflection first occurs on the outer surface of the transparent substrate 111 (light ray L2). When the radiation angle further increases, total reflection occurs at the interface between the translucent first electrode 112 / transparent substrate 111 (light ray L3). These totally reflected lights are also reflected on the surface of the reflective second electrode 116 to become a waveguide mode and are not extracted outside.
 一方、図15-2は、図15-1の有機発光素子100の有機層115の一部を有機層115より屈折率が低い低屈折率層113で置き換えた構造を採る。図15-2には有機層115と低屈折率層113の界面が透明基板111平面に垂直な場合を示す。ここで、光線L1が低屈折率層113に入射せず、光線L2と光線L3が低屈折率層113に入射するような位置に低屈折率層113を設けることにより、光線L1の進路を変化させることなしに、光線L2と光線L3を外部へ取り出すことができる。すなわち、光線L2と光線L3は低屈折率層113の側面13aに入射すると透明基板111平面の法線方向寄りに屈折する。また、光線L2と光線L3は低屈折率層113/透光性の第1電極112の界面での屈折する際にも、有機層115/透光性の第1電極112の界面での屈折に較べてより透明基板111平面の法線方向寄りに屈折する。このようにして光線L2と光線L3が透光性の第1電極112以降の部分を進む進路は低屈折率層113がない場合に較べて大きく透明基板111平面の法線方向寄りに変化する。この光線L2と光線L3の進路が透明基板111平面の法線方向寄りに変化する程度は低屈折率層113の屈折率に依存しており、具体的に与えられた光線L2や光線L3に対して低屈折率層113の屈折率を適切に選ぶことにより、透光性の第1電極112/透明基板111の界面および透明基板111の外表面への入射角を臨界角より小さくすることができ、外部へ取り出すことができる。 On the other hand, FIG. 15-2 employs a structure in which a part of the organic layer 115 of the organic light emitting device 100 of FIG. 15-1 is replaced with a low refractive index layer 113 having a refractive index lower than that of the organic layer 115. FIG. 15-2 shows a case where the interface between the organic layer 115 and the low refractive index layer 113 is perpendicular to the plane of the transparent substrate 111. Here, the path of the light beam L1 is changed by providing the low refractive index layer 113 at a position where the light beam L1 does not enter the low refractive index layer 113 and the light beams L2 and L3 enter the low refractive index layer 113. Without causing the light beam L2 and the light beam L3 to be extracted to the outside. That is, when the light rays L2 and L3 are incident on the side surface 13a of the low refractive index layer 113, they are refracted toward the normal direction of the plane of the transparent substrate 111. In addition, when the light beam L2 and the light beam L3 are refracted at the interface of the low refractive index layer 113 / translucent first electrode 112, they are also refracted at the interface of the organic layer 115 / translucent first electrode 112. Compared to the normal direction of the plane of the transparent substrate 111, the light is refracted. In this way, the path along which the light beam L2 and the light beam L3 travel after the first transparent electrode 112 changes largely toward the normal direction of the plane of the transparent substrate 111 as compared with the case where the low refractive index layer 113 is not provided. The extent to which the path of the light beam L2 and the light beam L3 changes toward the normal direction of the plane of the transparent substrate 111 depends on the refractive index of the low refractive index layer 113, and specifically for the given light beam L2 and light beam L3. By appropriately selecting the refractive index of the low-refractive index layer 113, the incident angle to the interface between the transparent first electrode 112 / transparent substrate 111 and the outer surface of the transparent substrate 111 can be made smaller than the critical angle. Can be taken out.
 そして本実施の形態の有機発光素子10は、陽極層12と陰極層16の間に複数の貫通する穴部17を有する低屈折率層13と有機半導体層15を有する。電圧印加時には、低屈折率層13は絶縁性であるため穴部17内に配置された有機半導体層15にしか電流は流れない(但し、PEDOTのような導電性バッファ層を孔部外の領域にまで形成する場合には穴部17外の領域にも電流は流れる)。 And the organic light emitting element 10 of this Embodiment has the low-refractive-index layer 13 and the organic-semiconductor layer 15 which have the some through-hole 17 between the anode layer 12 and the cathode layer 16. FIG. When a voltage is applied, since the low refractive index layer 13 is insulative, current flows only through the organic semiconductor layer 15 disposed in the hole portion 17 (however, a conductive buffer layer such as PEDOT is disposed outside the hole portion). In this case, the current flows also in the region outside the hole portion 17).
 ここで、本実施の形態の有機発光素子10は、穴部17内については有機半導体層15の膜厚が均一であるため、穴部17内では一様な発光が得られ、低屈折率層13の側面13aに入射する光が多くなる。低屈折率層13に入射した光はその進行方向が基板11平面の法線方向寄りに変わるため、外部に取り出され、取り出し効率が向上する。また、電流が局所的に流れることがなくなるため、耐久性が向上する。
 本実施の形態の有機発光素子10は、透光性導電層14が低屈折率層13の穴部17の底面全体のみまたは底面全体と側面13aに沿って形成されている。この構成により、有機発光素子10を断面視した場合に、発光位置が穴部17内に位置する確率が高くなる。従って、発光位置から放射されて低屈折率層13の側面13aに入射する光が多くなる。低屈折率層13に入射した光はその進行方向が基板11平面の法線方向寄りに変わるため、外部に取り出され、取り出し効率が向上する。
Here, in the organic light emitting device 10 of the present embodiment, since the film thickness of the organic semiconductor layer 15 is uniform in the hole portion 17, uniform light emission is obtained in the hole portion 17, and the low refractive index layer is obtained. The light incident on the side surface 13a of the 13 is increased. Since the traveling direction of the light incident on the low refractive index layer 13 changes toward the normal direction of the plane of the substrate 11, the light is extracted outside and the extraction efficiency is improved. In addition, since current does not flow locally, durability is improved.
In the organic light emitting device 10 of the present embodiment, the translucent conductive layer 14 is formed only on the entire bottom surface of the hole portion 17 of the low refractive index layer 13 or along the entire bottom surface and the side surface 13a. With this configuration, when the organic light emitting element 10 is viewed in cross section, the probability that the light emission position is located in the hole portion 17 is increased. Therefore, more light is emitted from the light emitting position and incident on the side surface 13a of the low refractive index layer 13. Since the traveling direction of the light incident on the low refractive index layer 13 changes toward the normal direction of the plane of the substrate 11, the light is extracted outside and the extraction efficiency is improved.
 また本実施の形態の有機発光素子10において、低屈折率層13に形成される穴部17の平面視での最大幅は3μm以下である。これにより、発光位置から発光した光が低屈折率層13の側面13aに入射するまでに通過する透光性導電層14による吸収損失を小さく抑えることができる。例えば、透光性導電層14を形成する材料の消衰係数が一般に0.01~0.1程度であることから、仮に波長を555nm(視感度最大)とし、発光位置が穴部17の中央にある場合を考える。この場合、光は基板11面内方向に1.5μm進むと低屈折率層13に入射するが、このときの光強度は消衰係数が0.01のときは元の光強度の71%であり、消衰係数が0.1のときは元の光強度の3%である。従って、本実施の形態の有機発光素子10では、穴部17の中心から発した光が低屈折率層13に入射するまでに少なくとも元の光強度の数%以下になることはなく、透光性導電層14による透過損失が抑えられる。 Further, in the organic light emitting device 10 of the present embodiment, the maximum width in a plan view of the hole portion 17 formed in the low refractive index layer 13 is 3 μm or less. Thereby, the absorption loss by the translucent conductive layer 14 through which the light emitted from the light emitting position passes before entering the side surface 13a of the low refractive index layer 13 can be suppressed to a low level. For example, since the extinction coefficient of the material forming the translucent conductive layer 14 is generally about 0.01 to 0.1, the wavelength is assumed to be 555 nm (maximum visibility), and the light emission position is the center of the hole 17. Consider the case. In this case, when the light travels 1.5 μm in the in-plane direction of the substrate 11, the light enters the low refractive index layer 13. The light intensity at this time is 71% of the original light intensity when the extinction coefficient is 0.01. Yes, when the extinction coefficient is 0.1, it is 3% of the original light intensity. Therefore, in the organic light emitting device 10 of the present embodiment, the light emitted from the center of the hole 17 does not become at least several percent or less of the original light intensity before entering the low refractive index layer 13. Transmission loss due to the conductive layer 14 is suppressed.
(有機発光素子の製造方法)
 次に、本実施の形態が適用される有機発光素子の製造方法について、図1-1で説明を行った有機発光素子10の場合を例に取り説明を行う。
 図16(a)~(f)は、本実施の形態が適用される有機発光素子10の製造方法について説明した図である。
 まず基板11上に第1電極層である陽極層12を形成し(図16(a):第1電極層形成工程)、続いて陽極層12上に絶縁性の低屈折率層13を形成する(図16(b):低屈折率層形成工程)。本実施の形態では、基板11として、ガラス基板を使用する。また陽極層12を形成する材料としてITOを使用し、また低屈折率層13を形成する材料として二酸化ケイ素(SiO)を使用する。
 陽極層12および低屈折率層13を基板11上に形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などのドライ法、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法などのウェット法を用いることができる。
 なお基板11に陽極層12としてITOが既に形成されているいわゆる電極付き基板を用いることで、陽極層12を形成する工程を省略することができる。
(Method for manufacturing organic light emitting device)
Next, a method for manufacturing an organic light emitting device to which the present embodiment is applied will be described taking the case of the organic light emitting device 10 described in FIG. 1-1 as an example.
16 (a) to 16 (f) are diagrams illustrating a method for manufacturing the organic light emitting device 10 to which the present exemplary embodiment is applied.
First, the anode layer 12 as the first electrode layer is formed on the substrate 11 (FIG. 16A: first electrode layer forming step), and then the insulating low refractive index layer 13 is formed on the anode layer 12. (FIG. 16B: Low refractive index layer forming step). In the present embodiment, a glass substrate is used as the substrate 11. Further, ITO is used as a material for forming the anode layer 12, and silicon dioxide (SiO 2 ) is used as a material for forming the low refractive index layer 13.
In order to form the anode layer 12 and the low refractive index layer 13 on the substrate 11, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a dry method such as a CVD method, a spin coating method, a dip coating, etc. A wet method such as a method, an inkjet method, a printing method, a spray method, or a dispenser method can be used.
In addition, the process of forming the anode layer 12 can be omitted by using a so-called electrode-attached substrate in which ITO is already formed as the anode layer 12 on the substrate 11.
 次に、図16(b)の工程で形成した低屈折率層13を貫通する穴部17を形成する(図16(c):穴部形成工程)。 Next, a hole 17 penetrating the low refractive index layer 13 formed in the step of FIG. 16B is formed (FIG. 16C: hole forming step).
 低屈折率層13に穴部17を形成する方法としては、例えば、リソグラフィを用いた方法が使用できる。これを行うには、まず低屈折率層13の上にレジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層を形成する。次に穴部17を形成するための所定のパターンが描画されたマスクをかぶせ、紫外線(UV:Ultra Violet)、電子線(EB:Electron Beam)等により露光を行うと、レジスト層に穴部17に対応した所定のパターンが露光される。そして現像液を用いてレジスト層の露光部分を除去すると、露光されたパターンの部分のレジスト層が除去される。これにより露光されたパターンの部分に対応して、低屈折率層13の表面が露出する。
 次に、残存したレジスト層をマスクとして、露出した低屈折率層13の部分をエッチング除去する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。またこの際に等方性エッチングと異方性エッチングを組合せることで、穴部17の形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法などが利用できる。最後に残存したレジスト層をレジスト除去液等により除去することで、低屈折率層13に穴部17が形成される。
As a method of forming the hole 17 in the low refractive index layer 13, for example, a method using lithography can be used. In order to do this, first, a resist solution is applied onto the low refractive index layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer. Next, when a mask on which a predetermined pattern for forming the hole 17 is formed is covered and exposed with ultraviolet (UV), electron beam (EB) or the like, the hole 17 is formed in the resist layer. A predetermined pattern corresponding to is exposed. Then, when the exposed portion of the resist layer is removed using a developer, the resist layer in the exposed pattern portion is removed. Thus, the surface of the low refractive index layer 13 is exposed corresponding to the exposed pattern portion.
Next, the exposed portion of the low refractive index layer 13 is etched away using the remaining resist layer as a mask. As the etching, either dry etching or wet etching can be used. In this case, the shape of the hole 17 can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE) or inductively coupled plasma etching can be used. As wet etching, a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used. The hole 17 is formed in the low refractive index layer 13 by removing the remaining resist layer with a resist removing solution or the like.
 また穴部17の形成は、ナノインプリント法によって行うことができる。具体的にはレジスト層を形成した後に、パターンを形成するための所定の凸パターンが描画されたマスクを、レジスト層表面に、圧力をかけて押し当てる。そしてこの状態で、熱および/または光をレジスト層に照射することにより、レジスト層を硬化させる。次にマスクを除去することにより、レジスト層表面に凸パターンに対応する穴部17のパターンが形成される。続いて、前述したエッチングを行うことにより、穴部17を形成することができる。 Further, the hole 17 can be formed by a nanoimprint method. Specifically, after forming the resist layer, a mask on which a predetermined convex pattern for forming a pattern is drawn is pressed against the surface of the resist layer while applying pressure. In this state, the resist layer is cured by irradiating the resist layer with heat and / or light. Next, by removing the mask, a pattern of the hole 17 corresponding to the convex pattern is formed on the resist layer surface. Subsequently, the hole 17 can be formed by performing the etching described above.
 次に少なくとも穴部17の内部に形成されるとともに陽極層12と電気的に接する透光性導電層14を形成する(図16(d):透光性導電層形成工程)。
 透光性導電層14を形成するには、陽極層12や低屈折率層13を形成したのと同様の手法を使用することができる。ただし透光性導電層14として高分子有機化合物が含まれる層を成膜する場合は、特に塗布法が好ましい。塗布法により成膜を行なう場合は、透光性導電層14を構成する材料を、有機溶媒や水等の所定の溶媒に分散させた塗布溶液を塗布する。塗布を行う際にはスピンコーティング、スプレーコーティング、ディップコーティング法、インクジェット法、スリットコーティング法、ディスペンサー法、印刷等の種々の方法を使用することができる。塗布を行った後は、加熱あるいは真空引きを行うことで塗布溶液を乾燥させることで透光性導電層14が形成される。
Next, a translucent conductive layer 14 that is formed at least in the hole 17 and is in electrical contact with the anode layer 12 is formed (FIG. 16D: translucent conductive layer forming step).
In order to form the translucent conductive layer 14, the same technique as that used to form the anode layer 12 and the low refractive index layer 13 can be used. However, when a layer containing a polymer organic compound is formed as the translucent conductive layer 14, a coating method is particularly preferable. When film formation is performed by a coating method, a coating solution in which the material constituting the translucent conductive layer 14 is dispersed in a predetermined solvent such as an organic solvent or water is applied. When applying, various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used. After the application, the translucent conductive layer 14 is formed by drying the application solution by heating or vacuuming.
 透光性導電層14上であって穴部17内部に少なくとも一部が入り込むように発光層15aを含む有機半導体層15を形成する(図16(e):有機半導体層形成工程)。
 有機半導体層15を構成する各層を形成するには、透光性導電層14を形成したのと同様の手法を使用することができる。
The organic semiconductor layer 15 including the light emitting layer 15a is formed on the light-transmitting conductive layer 14 so that at least a part thereof enters the hole 17 (FIG. 16E: organic semiconductor layer forming step).
In order to form each layer constituting the organic semiconductor layer 15, the same technique as that used to form the translucent conductive layer 14 can be used.
 次に有機半導体層15上に第2電極層である陰極層16を形成する(図16(f):第2電極層形成工程)。
 陰極層16を形成するには、陽極層12や低屈折率層13を形成したのと同様の手法を使用することができる。
 また、穴部17の側面に沿って均一な厚さで透光性導電層14や有機半導体層15を形成する場合(図4、図5、図6、図8、図9、図11のような場合)には、ドライ法(真空蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法など)を用い、成膜する成分の粒子が蒸着源またはターゲットから基板面に対して斜めに放出されるようにし、基板を回転させながら成膜することが好ましい。
Next, the cathode layer 16 that is the second electrode layer is formed on the organic semiconductor layer 15 (FIG. 16F: second electrode layer forming step).
In order to form the cathode layer 16, the same technique as that used to form the anode layer 12 and the low refractive index layer 13 can be used.
Further, when the light-transmitting conductive layer 14 and the organic semiconductor layer 15 are formed with a uniform thickness along the side surface of the hole portion 17 (as shown in FIGS. 4, 5, 6, 8, 9, and 11). In this case, dry methods (vacuum evaporation, electron beam evaporation, sputtering, ion plating, etc.) are used, and the particles of the component to be deposited are emitted obliquely from the evaporation source or target to the substrate surface. Thus, it is preferable to form the film while rotating the substrate.
 以上の工程により、有機発光素子10を製造することができる。
 なお有機発光素子10を長期安定的に用い、有機発光素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法を採ることが好ましい。またこの際に、スペーサを用いることで所定の空間を維持することができ、有機発光素子10が傷つくのを防止できるため好ましい。そして、この空間に窒素、アルゴン、ヘリウムのような不活性なガスを封入すれば、上側の陰極層16の酸化を防止しやすくなる。特にヘリウムを用いた場合、熱伝導が高いため、電圧印加時に有機発光素子10より発生する熱を効果的に保護カバーに伝えることができるため、好ましい。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより上記一連の製造工程で吸着した水分が有機発光素子10にダメージを与えるのを抑制しやすくなる。
The organic light emitting device 10 can be manufactured through the above steps.
In addition, it is preferable to use the organic light emitting element 10 stably for a long period of time and to attach a protective layer or a protective cover (not shown) for protecting the organic light emitting element 10 from the outside. As the protective layer, polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used. Further, as the protective cover, a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used. It is preferable that the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate. In this case, it is preferable to use a spacer because a predetermined space can be maintained and the organic light emitting element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon or helium is sealed in this space, it becomes easy to prevent the upper cathode layer 16 from being oxidized. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic light emitting element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic light emitting element 10.
 本実施の形態の有機発光素子10は、例えば、マトリックス方式またはセグメント方式による画素として表示装置に好適に用いられる。また、画素を形成せずに、面発光光源としても好適に用いられる。具体的には、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、標識、看板、ビデオカメラのビューファインダー等における表示装置、バックライト、電子写真、照明、レジスト露光、読み取り装置、インテリア照明、光通信システム等における面発光光源に好適に用いられる。 The organic light emitting device 10 of the present embodiment is suitably used for a display device as, for example, a matrix or segment pixel. Further, it can be suitably used as a surface emitting light source without forming pixels. Specifically, computers, televisions, mobile terminals, mobile phones, car navigation systems, signs, signboards, video camera viewfinders, display devices, backlights, electrophotography, illumination, resist exposure, readers, interior lighting, light It is suitably used for a surface emitting light source in a communication system or the like.
(表示装置)
 次に、以上詳述した有機発光素子10を備える表示装置について説明を行う。
 図17は、本実施の形態における有機発光素子10を用いた表示装置の一例を説明した図である。
 図17に示した表示装置200は、いわゆるパッシブマトリクス型の表示装置であり、表示装置基板202、陽極配線204、陽極補助配線206、陰極配線208、絶縁膜210、陰極隔壁212、有機発光素子10、封止プレート216、シール材218とを備えている。
(Display device)
Next, a display device including the organic light emitting element 10 described in detail above will be described.
FIG. 17 is a diagram illustrating an example of a display device using the organic light emitting element 10 in the present embodiment.
The display device 200 shown in FIG. 17 is a so-called passive matrix display device, and includes a display device substrate 202, an anode wiring 204, an anode auxiliary wiring 206, a cathode wiring 208, an insulating film 210, a cathode partition wall 212, and the organic light emitting element 10. , A sealing plate 216, and a sealing material 218.
 表示装置基板202としては、例えば、矩形状のガラス基板等の透明基板を用いることができる。表示装置基板202の厚みは、特に限定されないが、例えば0.1mm~1mmのものを用いることができる。 As the display device substrate 202, for example, a transparent substrate such as a rectangular glass substrate can be used. The thickness of the display device substrate 202 is not particularly limited, but for example, a thickness of 0.1 mm to 1 mm can be used.
 表示装置基板202上には、複数の陽極配線204が形成されている。陽極配線204は、一定の間隔を隔てて平行に配置される。陽極配線204は、透明導電膜により構成され、例えばITO(Indium Tin Oxide)を用いることができる。また陽極配線204の厚さは例えば、100nm~150nmとすることができる。そして、それぞれの陽極配線204の端部の上には、陽極補助配線206が形成される。陽極補助配線206は陽極配線204と電気的に接続されている。このように構成することにより、陽極補助配線206は、表示装置基板202の端部側において外部配線と接続するための端子として機能し、外部に設けられた図示しない駆動回路から陽極補助配線206を介して陽極配線204に電流を供給することができる。陽極補助配線206は、例えば、厚さ500nm~600nmの金属膜によって構成される。 A plurality of anode wirings 204 are formed on the display device substrate 202. The anode wirings 204 are arranged in parallel at a constant interval. The anode wiring 204 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used. The thickness of the anode wiring 204 can be set to 100 nm to 150 nm, for example. An anode auxiliary wiring 206 is formed on the end of each anode wiring 204. The anode auxiliary wiring 206 is electrically connected to the anode wiring 204. With this configuration, the anode auxiliary wiring 206 functions as a terminal for connecting to the external wiring on the end portion side of the display device substrate 202, and the anode auxiliary wiring 206 is connected from an external driving circuit (not shown). A current can be supplied to the anode wiring 204 through the wiring. The anode auxiliary wiring 206 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
 また、有機発光素子10上には、複数の陰極配線208が設けられている。複数の陰極配線208は、それぞれが平行となるよう、かつ、陽極配線204と直交するように配設されている。陰極配線208には、Al又はAl合金を使用することができる。陰極配線208の厚さは、例えば、100nm~150nmである。また、陰極配線208の端部には、陽極配線204に対する陽極補助配線206と同様に、図示しない陰極補助配線が設けられ、陰極配線208と電気的に接続されている。よって、陰極配線208と陰極補助配線との間に電流を流すことができる。 Further, a plurality of cathode wirings 208 are provided on the organic light emitting element 10. The plurality of cathode wirings 208 are arranged so as to be parallel to each other and orthogonal to the anode wiring 204. As the cathode wiring 208, Al or an Al alloy can be used. The thickness of the cathode wiring 208 is, for example, 100 nm to 150 nm. Further, similarly to the anode auxiliary wiring 206 for the anode wiring 204, a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 208 and is electrically connected to the cathode wiring 208. Therefore, current can flow between the cathode wiring 208 and the cathode auxiliary wiring.
 表示装置基板202上には、陽極配線204を覆うように絶縁膜210が形成される。絶縁膜210には、陽極配線204の一部を露出するように矩形状の開口部220が設けられている。複数の開口部220は、陽極配線204の上にマトリクス状に配置されている。この開口部220において、後述するように陽極配線204と陰極配線208の間に有機発光素子10が設けられる。すなわち、それぞれの開口部220が画素となる。従って、開口部220に対応して表示領域が形成される。ここで、絶縁膜210の膜厚は、例えば、200nm~300nmとすることができ、開口部220の大きさは、例えば、300μm×300μmとすることができる。 An insulating film 210 is formed on the display device substrate 202 so as to cover the anode wiring 204. The insulating film 210 is provided with a rectangular opening 220 so as to expose a part of the anode wiring 204. The plurality of openings 220 are arranged in a matrix on the anode wiring 204. In the opening 220, the organic light emitting element 10 is provided between the anode wiring 204 and the cathode wiring 208 as described later. That is, each opening 220 is a pixel. Accordingly, a display area is formed corresponding to the opening 220. Here, the film thickness of the insulating film 210 can be, for example, 200 nm to 300 nm, and the size of the opening 220 can be, for example, 300 μm × 300 μm.
 陽極配線204上の開口部220の位置に対応した箇所に、有機発光素子10が形成されている。有機発光素子10は、開口部220において陽極配線204と陰極配線208とに挟持されている。すなわち、有機発光素子10の陽極層12(図1-1参照)が陽極配線204と接触し、陰極層16(図1-1参照)が陰極配線208と接触する。有機発光素子10の厚さは、例えば、150nm~200nmとすることができる。 The organic light emitting element 10 is formed at a location corresponding to the position of the opening 220 on the anode wiring 204. The organic light emitting device 10 is sandwiched between the anode wiring 204 and the cathode wiring 208 in the opening 220. That is, the anode layer 12 (see FIG. 1-1) of the organic light emitting device 10 is in contact with the anode wiring 204, and the cathode layer 16 (see FIG. 1-1) is in contact with the cathode wiring 208. The thickness of the organic light emitting element 10 can be set to, for example, 150 nm to 200 nm.
 絶縁膜210の上には、複数の陰極隔壁212が陽極配線204と垂直な方向に沿って形成されている。陰極隔壁212は、陰極配線208の配線同士が導通しないように、複数の陰極配線208を空間的に分離するための役割を担っている。従って、隣接する陰極隔壁212の間にそれぞれ陰極配線208が配置される。陰極隔壁212の大きさとしては、例えば、高さが2μm~3μm、幅が10μmのものを用いることができる。 A plurality of cathode partitions 212 are formed on the insulating film 210 along a direction perpendicular to the anode wiring 204. The cathode partition 212 plays a role of spatially separating the plurality of cathode wirings 208 so that the wirings of the cathode wirings 208 do not conduct with each other. Accordingly, the cathode wiring 208 is disposed between the adjacent cathode partition walls 212. As the size of the cathode partition wall 212, for example, a cathode partition with a height of 2 to 3 μm and a width of 10 μm can be used.
 表示装置基板202は、封止プレート216とシール材218を介して貼り合わせられている。これにより、有機発光素子10が設けられた空間を封止することができ、有機発光素子10が空気中の水分により劣化するのを防ぐことができる。封止プレート216としては、例えば、厚さが0.7mm~1.1mmのガラス基板を使用することができる。 The display device substrate 202 is bonded through a sealing plate 216 and a sealing material 218. Thereby, the space in which the organic light emitting element 10 is provided can be sealed, and the organic light emitting element 10 can be prevented from being deteriorated by moisture in the air. As the sealing plate 216, for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
 このような構造の表示装置200において、図示しない駆動装置により、陽極補助配線206、図示しない陰極補助配線を介して、有機発光素子10に電流を供給し、発光層15a(図1-1参照)を発光させ、光を出射させることができる。そして、上述の画素に対応した有機発光素子10の発光、非発光を制御装置により制御することにより、表示装置200に画像を表示させることができる。 In the display device 200 having such a structure, a current is supplied to the organic light emitting element 10 by a driving device (not shown) via the anode auxiliary wiring 206 and the cathode auxiliary wiring (not shown), and the light emitting layer 15a (see FIG. 1-1). Can emit light and emit light. An image can be displayed on the display device 200 by controlling light emission and non-light emission of the organic light emitting element 10 corresponding to the above-described pixel by the control device.
(照明装置)
 次に、本実施の形態の有機発光素子10を用いた照明装置について説明を行う。
 図18は、本実施の形態における有機発光素子10を備える照明装置の一例を説明した図である。
 図18に示した照明装置300は、上述した有機発光素子10と、有機発光素子10の基板11の1つの端部に設置され陽極層12(図1-1参照)に接続される端子302と、基板11の他の端部に設置され有機発光素子10の陰極層16(図1-1参照)に接続される端子303と、端子302と端子303とに接続し有機発光素子10を駆動するための点灯回路301とから構成される。
(Lighting device)
Next, a lighting device using the organic light emitting element 10 of the present embodiment will be described.
FIG. 18 is a diagram illustrating an example of an illumination device including the organic light emitting element 10 according to the present embodiment.
The lighting device 300 shown in FIG. 18 includes the organic light emitting element 10 described above, and a terminal 302 that is installed at one end of the substrate 11 of the organic light emitting element 10 and connected to the anode layer 12 (see FIG. 1-1). The terminal 303 installed at the other end of the substrate 11 and connected to the cathode layer 16 (see FIG. 1-1) of the organic light emitting device 10 is connected to the terminal 302 and the terminal 303 to drive the organic light emitting device 10. And a lighting circuit 301 for the purpose.
 点灯回路301は、図示しない直流電源と図示しない制御回路を内部に有し、端子302と端子303を通して、有機発光素子10の陽極層12と陰極層16との間に電流を供給する。そして、有機発光素子10を駆動し、発光層15a(図1-1参照)を発光させて、穴部17(図1-1参照)および低屈折率層13(図1-1参照)から基板11を通し、光を出射させ、照明光として利用する。発光層15aは白色光を出射する発光材料より構成されていてもよく、また緑色光(G)、青色光(B)、赤色光(R)を出射する発光材料を使用した有機発光素子10をそれぞれ複数個設け、その合成光が白色となるようにしてもよい。なお、本実施の形態の照明装置300では、穴部17の径と間隔を小さくして発光させた場合、人間の目には面発光しているように見える。 The lighting circuit 301 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode layer 16 of the organic light emitting element 10 through the terminal 302 and the terminal 303. Then, the organic light emitting device 10 is driven to cause the light emitting layer 15a (see FIG. 1-1) to emit light, and the substrate from the hole 17 (see FIG. 1-1) and the low refractive index layer 13 (see FIG. 1-1). 11, light is emitted and used as illumination light. The light emitting layer 15a may be made of a light emitting material that emits white light, and the organic light emitting element 10 using a light emitting material that emits green light (G), blue light (B), and red light (R). A plurality of them may be provided, and the combined light may be white. In the illumination device 300 of the present embodiment, when light is emitted with the diameter and interval of the hole portions 17 being reduced, it appears that surface light is emitted to the human eye.
10,100…有機発光素子、11…基板、12…陽極層、13…低屈折率層、14…透光性導電層、15…有機半導体層、15a…発光層、16…陰極層、17…穴部、200…表示装置、300…照明装置 DESCRIPTION OF SYMBOLS 10,100 ... Organic light emitting element, 11 ... Board | substrate, 12 ... Anode layer, 13 ... Low refractive index layer, 14 ... Translucent conductive layer, 15 ... Organic-semiconductor layer, 15a ... Light emitting layer, 16 ... Cathode layer, 17 ... Hole, 200 ... display device, 300 ... lighting device

Claims (13)

  1.  基板上に形成される第1電極層と、
     前記第1電極層上に形成される絶縁性の低屈折率層と、
     少なくとも前記低屈折率層を貫通して形成される穴部と、
     前記穴部の底面全体のみ、または少なくとも前記穴部の底面全体と側面に沿って形成されるとともに、前記第1電極層と電気的に接して形成される透光性導電層と、
     発光層を含み、前記透光性導電層上に形成されるとともに前記穴部内部に少なくとも一部が入り込むように形成される有機半導体層と、
     前記有機半導体層上に形成される第2電極層と、
     を備え、
     前記低屈折率層は、前記透光性導電層および前記有機半導体層より屈折率が小さく、
     前記穴部を平面視したときの最大幅が3μm以下であり、
     前記有機半導体層は、前記穴部が形成される位置において均一な厚さで形成される
     ことを特徴とする有機発光素子。
    A first electrode layer formed on the substrate;
    An insulating low refractive index layer formed on the first electrode layer;
    A hole formed through at least the low refractive index layer;
    A translucent conductive layer formed only along the entire bottom surface of the hole, or at least along the entire bottom surface and side surface of the hole, and formed in electrical contact with the first electrode layer;
    An organic semiconductor layer that includes a light emitting layer, is formed on the translucent conductive layer, and is formed so that at least part of the hole enters the hole portion;
    A second electrode layer formed on the organic semiconductor layer;
    With
    The low refractive index layer has a refractive index smaller than that of the translucent conductive layer and the organic semiconductor layer,
    The maximum width when the hole is viewed in plan is 3 μm or less,
    The organic semiconductor layer is formed with a uniform thickness at a position where the hole is formed.
  2.  前記有機半導体層の前記発光層は、前記穴部内部に少なくとも一部が入り込むように形成されることを特徴とする請求項1に記載の有機発光素子。 2. The organic light emitting device according to claim 1, wherein the light emitting layer of the organic semiconductor layer is formed so that at least part of the light emitting layer enters the hole.
  3.  前記透光性導電層の前記有機半導体層側の表面は、前記穴部が形成される位置において前記第1電極層側に凹む形状をなすことを特徴とする請求項1または2に記載の有機発光素子。 3. The organic material according to claim 1, wherein a surface of the translucent conductive layer on the organic semiconductor layer side has a shape that is recessed toward the first electrode layer at a position where the hole is formed. Light emitting element.
  4.  前記第1電極層側に凹む形状は、曲面形状であることを特徴とする請求項3に記載の有機発光素子。 4. The organic light emitting device according to claim 3, wherein the shape recessed on the first electrode layer side is a curved shape.
  5.  前記透光性導電層は、前記低屈折率層上に延在して形成されることを特徴とする請求項1乃至4の何れか1項に記載の有機発光素子。 The organic light-emitting element according to any one of claims 1 to 4, wherein the translucent conductive layer is formed to extend on the low refractive index layer.
  6.  前記透光性導電層は、前記穴部の内面に沿って均一な厚さで形成されることを特徴とする請求項1乃至5の何れか1項に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the translucent conductive layer is formed with a uniform thickness along the inner surface of the hole.
  7.  前記第1電極層は、前記有機半導体層の前記発光層から発した光を反射し、前記第2電極層は、前記発光層から発した光を透過することを特徴とする請求項1乃至6の何れか1項に記載の有機発光素子。 The first electrode layer reflects light emitted from the light emitting layer of the organic semiconductor layer, and the second electrode layer transmits light emitted from the light emitting layer. The organic light emitting element of any one of these.
  8.  前記第1電極層は、前記有機半導体層の前記発光層から発した光を透過し、前記第2電極層は、前記発光層から発した光を反射することを特徴とする請求項1乃至6の何れか1項に記載の有機発光素子。 7. The first electrode layer transmits light emitted from the light emitting layer of the organic semiconductor layer, and the second electrode layer reflects light emitted from the light emitting layer. The organic light emitting element of any one of these.
  9.  前記穴部は、前記第1電極層の少なくとも一部をさらに穿って形成されることを特徴とする請求項8に記載の有機発光素子。 The organic light emitting device according to claim 8, wherein the hole is formed by further drilling at least a part of the first electrode layer.
  10.  前記穴部は、前記基板の一部をさらに穿って形成されることを特徴とする請求項9に記載の有機発光素子。 10. The organic light emitting device according to claim 9, wherein the hole is formed by further drilling a part of the substrate.
  11.  基板上に第1電極層を形成する第1電極層形成工程と、
     前記第1電極層上に絶縁性の低屈折率層を形成する低屈折率層形成工程と、
     少なくとも前記低屈折率層を貫通し、平面視したときの最大幅が3μm以下の穴部を形成する穴部形成工程と、
     少なくとも前記穴部の内部に形成されるとともに前記第1電極層と電気的に接する透光性導電層を塗布法により形成する透光性導電層形成工程と、
     前記透光性導電層上であって前記穴部内部に少なくとも一部が入り込むように発光層を含む有機半導体層を形成する有機半導体層形成工程と、
     前記有機半導体層上に第2電極層を形成する第2電極層形成工程と、
     を備え、
     前記低屈折率層は、前記透光性導電層および前記有機半導体層より屈折率が小さいことを特徴とする有機発光素子の製造方法。
    A first electrode layer forming step of forming a first electrode layer on the substrate;
    A low refractive index layer forming step of forming an insulating low refractive index layer on the first electrode layer;
    A hole forming step of forming a hole having a maximum width of 3 μm or less when penetrating at least through the low refractive index layer;
    A translucent conductive layer forming step of forming a translucent conductive layer formed at least inside the hole portion and in electrical contact with the first electrode layer by a coating method;
    An organic semiconductor layer forming step of forming an organic semiconductor layer including a light emitting layer on the translucent conductive layer so that at least part of the hole enters the inside of the hole;
    A second electrode layer forming step of forming a second electrode layer on the organic semiconductor layer;
    With
    The method for manufacturing an organic light-emitting element, wherein the low refractive index layer has a refractive index smaller than those of the translucent conductive layer and the organic semiconductor layer.
  12.  請求項1乃至10の何れか1項に記載の有機発光素子を備える表示装置。 A display device comprising the organic light-emitting element according to any one of claims 1 to 10.
  13.  請求項1乃至10の何れか1項に記載の有機発光素子を備える照明装置。 A lighting device comprising the organic light-emitting element according to any one of claims 1 to 10.
PCT/JP2013/081781 2012-11-27 2013-11-26 Organic light emitting element, method for manufacturing organic light emitting element, display device and lighting device WO2014084209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-258133 2012-11-27
JP2012258133 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084209A1 true WO2014084209A1 (en) 2014-06-05

Family

ID=50827845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081781 WO2014084209A1 (en) 2012-11-27 2013-11-26 Organic light emitting element, method for manufacturing organic light emitting element, display device and lighting device

Country Status (1)

Country Link
WO (1) WO2014084209A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067861A1 (en) * 2008-12-12 2010-06-17 昭和電工株式会社 Organic electroluminescent element, display device, and lighting device
WO2011010503A1 (en) * 2009-07-21 2011-01-27 昭和電工株式会社 Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
WO2011043210A1 (en) * 2009-10-05 2011-04-14 昭和電工株式会社 Electroluminescent element, method for manufacturing electroluminescent element, display device and illumination device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067861A1 (en) * 2008-12-12 2010-06-17 昭和電工株式会社 Organic electroluminescent element, display device, and lighting device
TW201031263A (en) * 2008-12-12 2010-08-16 Showa Denko Kk Organic electroluminescent device, display device, and lighting device
WO2011010503A1 (en) * 2009-07-21 2011-01-27 昭和電工株式会社 Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
JP2011082192A (en) * 2009-07-21 2011-04-21 Showa Denko Kk Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
TW201116150A (en) * 2009-07-21 2011-05-01 Showa Denko Kk Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
CN102474929A (en) * 2009-07-21 2012-05-23 昭和电工株式会社 Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
EP2458937A1 (en) * 2009-07-21 2012-05-30 Showa Denko K.K. Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
US20120267614A1 (en) * 2009-07-21 2012-10-25 Showa Denko K.K. Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
WO2011043210A1 (en) * 2009-10-05 2011-04-14 昭和電工株式会社 Electroluminescent element, method for manufacturing electroluminescent element, display device and illumination device

Similar Documents

Publication Publication Date Title
JP4467931B2 (en) Organic light emitting display assembly
US7564063B2 (en) Composite electrode for light-emitting device
US8232572B2 (en) Light emitting device
JP2009509314A (en) OLED device with improved light output
US9214649B2 (en) Light-emitting device
JP2003036969A (en) Light emitting element, and display unit and illumination device using the same
JP5957962B2 (en) Organic electroluminescence panel
US9461276B2 (en) Organic electroluminescence device and method of fabricating the same
US9093665B2 (en) Light-emitting module and method for manufacturing the same
JP2015090817A (en) Organic light emitting element, organic light emitting element manufacturing method, display device and light device
TW201318241A (en) Light emitting device, display device, and illumination device
WO2012147390A1 (en) Organic light-emitting element, production method for organic light-emitting element, display device, and illumination device
JP5255161B1 (en) ORGANIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2014084209A1 (en) Organic light emitting element, method for manufacturing organic light emitting element, display device and lighting device
WO2014084159A1 (en) Organic el element and method for manufacturing same
JP5145483B2 (en) ORGANIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2005268046A (en) Organic el device and organic el display device
WO2013094375A1 (en) Method for manufacturing organic light emitting element
JP2005183048A (en) Light-emitting element substrate and light-emitting element using the same
JP2012243517A (en) Organic light-emitting element, method for manufacturing the same, display device, and lighting device
WO2023053450A1 (en) Light-emitting element, display device, and method for manufacturing light-emitting element
JP4561935B2 (en) Manufacturing method of organic EL display device
JP2015011893A (en) Organic light-emitting element
WO2009064020A1 (en) Light emitting device
WO2014069396A1 (en) Organic light-emitting element and method for manufacturing organic light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP