WO2014083810A1 - Refrigerant cooling device and method - Google Patents

Refrigerant cooling device and method Download PDF

Info

Publication number
WO2014083810A1
WO2014083810A1 PCT/JP2013/006837 JP2013006837W WO2014083810A1 WO 2014083810 A1 WO2014083810 A1 WO 2014083810A1 JP 2013006837 W JP2013006837 W JP 2013006837W WO 2014083810 A1 WO2014083810 A1 WO 2014083810A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
liquefied gas
heat exchanger
pipe
Prior art date
Application number
PCT/JP2013/006837
Other languages
French (fr)
Japanese (ja)
Inventor
高広 石川
英一郎 小林
Original Assignee
日曹エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日曹エンジニアリング株式会社 filed Critical 日曹エンジニアリング株式会社
Priority to JP2014549803A priority Critical patent/JPWO2014083810A1/en
Publication of WO2014083810A1 publication Critical patent/WO2014083810A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor

Definitions

  • the present invention particularly relates to a refrigerant cooling apparatus and method for cooling a refrigerant used as a cooling source for a low-temperature reaction or the like to a target set temperature using cold when vaporizing a low-temperature liquid such as liquid nitrogen.
  • a refrigerant such as methanol, ethanol, acetone, or methylene chloride as a low-temperature refrigerant
  • the refrigerant is cooled by a cryogen in addition to being cooled by a refrigerator.
  • dry ice and various low-temperature liquefied gases such as liquid nitrogen, liquid oxygen, and liquid air are used as cryogens for cooling the refrigerant to a low temperature, for example, ⁇ 50 ° C. or lower, which is difficult with a refrigerator.
  • each device shows two device structures disclosed in Patent Document 1 as refrigerant cooling devices for cooling the refrigerant with a cryogen.
  • the basis of each device is a storage tank 1 storing a cryogenic liquid, a tank or container 2 containing a refrigerant for cooling an object to be cooled, a heat exchanger 5 for exchanging thermal energy between the liquefied gas of the cryogenic liquid and the refrigerant,
  • the low temperature liquid in the storage tank 1 or the liquefied gas thereof is supplied to the heat exchanger 5, the valve means (switching valve) V 1 provided in the supply pipe, and the liquefied gas is discharged from the heat exchanger 5 to the outside of the system.
  • a control means (TIC: temperature indicating controller) 3 is provided for controlling the valve opening and closing of the valve means V1 with respect to the supply of the low temperature liquid or the liquefied gas supplied to the exhaust pipe 12 and the heat exchanger 5 or the supply amount thereof.
  • Reference numeral 4 denotes an evaporator for liquid nitrogen communicated with the storage tank 1 by a pipe 11.
  • the pipe 11 has a valve means (switching valve) V2 that is operated by a signal from the control means 3 in the same manner as the valve means V1.
  • a discharge line 12 of the heat exchanger 5 communicates with the line 11 between the valve means V2 and the evaporator 4.
  • the heat exchanger 5 is disposed in the container 2, and the control means 3 detects the temperature of the refrigerant in the container 2 with a temperature sensor, and based on the detected temperature.
  • the valve means V1 is controlled to open or close to cool the refrigerant to the set temperature.
  • the heat exchanger 5 is attached outside the container 2 and the refrigerant in the container 2 is circulated to the heat exchanger 5 by the pump P, and the control means 3 is in the container 2.
  • the temperature of the refrigerant is detected by a temperature sensor, and the valve means V1 is controlled to open or close based on the detected temperature to cool the refrigerant to a set temperature.
  • the liquid nitrogen sent from the storage tank 1 exchanges heat with the refrigerant by the heat exchanger 5 to cool the refrigerant (methane dichloride).
  • the temperature indicating controller which is the control means 3 is operated to operate the valve means V1 and V2, that is, the valve means V1 is closed and the valve means V2 is opened.
  • the evaporator 4 where it is vaporized and sent out of the system where it is used.
  • the refrigerant is used for cooling outside the container 2 and returned to the container 2 again.
  • the control means 3 When the refrigerant temperature in the container 2 rises, the control means 3 is actuated again, the valve means V1 is opened, the valve means V2 is closed, and the liquid nitrogen in the storage tank 1 is in the container 2 or a heat exchanger outside the container 2. Through 5, the refrigerant is cooled to the set temperature.
  • the control means detects the temperature of the refrigerant in the container with a temperature sensor, and opens and closes the valve means and adjusts and controls the valve opening based on the detected temperature.
  • this control method it has been considered that it is appropriate to directly detect the temperature of the refrigerant to be cooled and control the valve means on the supply line side based on the detected temperature (for example, Japanese Patent Laid-Open No. 9-4954). Temperature control method).
  • an object of the present invention is to make it possible to realize a temperature controllability of ⁇ 1 ° C. as a target refrigerant in a refrigerant cooling device and method with a simple configuration, thereby improving quality and contributing to expanded applications.
  • the present invention includes a storage tank storing a low-temperature liquid such as liquid nitrogen, a container containing a refrigerant for cooling an object to be cooled, a liquefied gas of the low-temperature liquid, and the refrigerant.
  • the exhaust pipe for discharging the liquefied gas from the exchanger to the outside of the system, the low-temperature liquid supplied to the heat exchanger or the supply of the liquefied gas, or the supply amount thereof, the valve opening / closing of the valve means or the valve opening degree is controlled.
  • the control means has a temperature sensor provided in a discharge pipe portion in the container, and the discharge pipe is detected by the temperature sensor. Based on the detected temperature of spent liquefied gas flowing through It is characterized in that it allows maintaining the refrigerant by controlling the valve means to the set temperature Te.
  • the heat exchanger 3 is not limited to the configuration provided in the container containing the refrigerant as shown in FIG. 1 and FIG. 5 (a), but outside the container as shown in FIG. 5 (b).
  • a configuration may be employed in which the refrigerant in the container is circulated by a pump or the like.
  • the valve means 6 may be either an inexpensive switching valve that switches between opening and closing or an expensive flow rate adjusting valve that adjusts the valve opening.
  • a configuration in which the used liquefied gas discharged from the exhaust pipe 11 is exhausted into the air, and a structure in which the used liquefied gas is transferred from the evaporator communicated to the storage tank via the pipe and the valve means as illustrated in FIG. But you can.
  • the container containing the refrigerant of the present invention has a configuration in which an object to be cooled such as a reactor is immersed in the refrigerant in the container as shown in FIG. 1 and is cooled.
  • Any configuration may be employed in which it is sent to an evaporator (see, for example, FIG. 1 and FIG. 2 of Japanese Patent No. 4666347 and FIG. 2 of Japanese Patent No. 4679199) and cooled.
  • the present invention as described above is more preferably embodied as follows.
  • the heat exchanger has a liquefied gas conduit wound in a coil shape or a spiral shape as in claim 2.
  • the pipe line is composed of a copper pipe as in claim 3 and has a plurality of grooves formed along the longitudinal direction of the pipe on the inner surface of the copper pipe.
  • a refrigerant cooling method uses the refrigerant cooling device according to any one of the first to third aspects to heat a liquefied gas of liquid nitrogen and a refrigerant that cools an object to be cooled by a heat exchanger. It is characterized by keeping the refrigerant at a constant temperature by exchanging.
  • the control means has a temperature sensor provided in the exhaust pipe portion of the exhaust pipe in the exhaust pipe, and detection of the used liquefied gas flowing through the exhaust pipe detected by the temperature sensor.
  • the valve means attached to the supply pipe line is controlled to open and close based on the temperature, or the valve opening degree is controlled so as to maintain the refrigerant at the set temperature, as illustrated in FIG.
  • a temperature controllability of ⁇ 1 ° C. can be easily realized, thereby improving the refrigerant quality.
  • the heat exchanger is a liquefied gas pipe wound in a coil shape or a spiral shape, that is, a general-purpose product that is generally used, simplicity can be maintained.
  • the conduit is made of a copper tube and has a plurality of grooves formed along the longitudinal direction of the tube on the inner surface of the copper tube, the smooth tube is evident from the comparison of FIG.
  • the use efficiency of the low temperature liquid such as liquid nitrogen can be improved by the function of the droplet separation by centrifugal force and the increase of the heat transfer coefficient.
  • the above-described advantages can be provided as a refrigerant cooling method, and since liquid nitrogen is used as the low-temperature liquid, the refrigerant can be controlled at any temperature from 0 to ⁇ 120 ° C. and with an automatic temperature controllability of ⁇ 1 ° C. It becomes possible.
  • FIG. 1 It is a block diagram which shows typically the refrigerant
  • (A) is the A section enlarged view of FIG. 1
  • (b) is sectional drawing of the piping part in a container among the exhaust pipe paths of FIG.
  • (A) And (b) is a graph which shows the relationship between heat-medium temperature and time when it controls by the control means of this invention, and the conventional control means.
  • (A) And (b) is a graph when the cooling capacity when investigating a smooth pipe and a grooved pipe as a pipe line which forms the heat exchanger of Drawing 1 is examined.
  • (A) And (b) has shown two structures of patent document 1.
  • the refrigerant cooling apparatus of FIG. 1 includes a storage tank 1 storing liquid nitrogen as a cryogen or a low-temperature liquid, a container 2 containing a refrigerant for cooling an object to be cooled 4, a liquefied gas of liquid nitrogen, and a refrigerant.
  • the exhaust pipe 11 for discharging the liquefied gas from the heat exchanger 3 to the outside of the system, and the supply or supply amount of liquid nitrogen or the liquefied gas supplied to the heat exchanger 3 are controlled by opening and closing the valve means 6.
  • a control unit 7 is provided. And as for the principal part, the control part 7 has the temperature sensor 8a provided in the exhaust pipe part 11a in the container 2 among the exhaust pipe paths 11, and flows through the exhaust pipe path 11 detected by this temperature sensor 8a.
  • the valve means 6 is controlled based on the detected temperature of the used liquefied gas (nitrogen gas) so that the refrigerant in the container 2 can be maintained at the set temperature.
  • the storage tank 1 is called a self-pressurized container, and a tank 1A storing liquid nitrogen is disposed in a protective tank 1B on the outside while maintaining a high vacuum.
  • the tank 1A includes a replenishing port 10a, a pressurizing pipe 14, a discharge pipe 15, and the like. And structurally, when the gas release valve 16 is closed and the pressurization valve 17 is opened, the liquid nitrogen evaporates in the pressurization pipe 14, and the internal pressure rises to push the internal liquid nitrogen toward the supply pipe line 10. It has become. In order to stop pumping out liquid nitrogen, the gas release valve 16 is opened, and the pressurizing valve 17 and the liquid take-out switching valve as the valve means 5 are closed. The gas release valve 16 is normally opened.
  • the tank 1A is additionally provided with a pressure gauge 19 indicating internal pressure, safety valves 18a and 18b for releasing gas when the internal pressure rises excessively, and the like.
  • Reference numeral 13 denotes a carriage.
  • the container 2 includes a main body 20 that is large enough to accommodate the refrigerant and the heat exchanger 3 in the inner space, an upper cover 21 that closes the upper opening of the main body 20, and a door 22 provided on the upper cover 21.
  • a heat insulating material 24 is attached to the outer peripheral wall of the main body 20.
  • the door 22 opens and closes an opening provided in the upper cover 21 so that the object to be cooled 4 can be taken in and out of the refrigerant in the main body 20.
  • the heat exchanger 3 is installed in a state of being held by a plurality of support members 23 and the like.
  • the heat exchanger 3 has a liquefied gas conduit 30 in which a copper pipe excellent in heat conduction is wound in a coil shape or a spiral shape.
  • a plurality of grooves 31 extending along the pipe longitudinal direction as shown in FIG. 2B are provided on the inner peripheral surface of the pipe 30 so as to equally divide the periphery.
  • the inlet side of the pipe line 30 constituting the heat exchanger 3 is connected to a corresponding end of the supply pipe line 10 for supplying liquid nitrogen in the storage tank side tank 1A.
  • the outlet side of the conduit 30 is connected to the corresponding end of the exhaust conduit 11.
  • the supply pipe line 10 and the discharge pipe line 11 are disposed inside and outside the container through the upper cover 21 together.
  • the supply pipe line 10 has a liquid take-out switching valve which is a valve means 5 provided on the tank 1A side, and a valve means 6 which is provided on the downstream side of the supply pipe 10 and operates according to a signal from the control unit 7. ing.
  • the valve means 6 is an example of a switching valve that switches between opening and closing, but may be replaced with a flow rate adjusting valve that variably adjusts the valve opening.
  • the exhaust pipe 11 is a pipe for exhausting used nitrogen gas, but it may be sent to a use location through a processing system as shown in FIG.
  • a temperature sensor 8 a is attached to the inside of the exhaust pipe portion 11 a in the container 2 in the exhaust pipe path 11. The temperature sensor 8 a detects the temperature of the used nitrogen gas flowing through the exhaust pipe portion 11 a and transmits it to the control unit 7.
  • the control unit 7 controls the opening / closing or When a flow rate adjusting valve is used as the means 6, the valve opening degree is controlled.
  • a commercially available temperature indicating controller or the like can be used. In the examples described later, a temperature indicating controller manufactured by Nisso Engineering Co., Ltd. was used.
  • a pipe-type flow mixing device or a reaction bottle for a low temperature reaction test is placed in the refrigerant in the container 2 as shown in FIG. It is assumed that it is cooled to a set temperature in a state where it is supported by immersion.
  • the reaction bottle shown in the figure is provided with a stirrer 9 for mixing the reaction solution in the bottle, a temperature sensor 8c for detecting temperature, and the like.
  • the usage is not limited to this, and for example, the refrigerant cooled to the set temperature in the container 2 may be circulated and supplied to other use locations by a pump or the like.
  • FIG. 3 shows the following Table 1 obtained in a test as a method of controlling the temperature using the above-described refrigerant cooling device and using hydrofluoroether (hereinafter referred to as a heat medium) as a refrigerant.
  • the graph shows the relationship between the passage of time and the heat medium temperature.
  • (A) shows the test result when controlled by the control means of the present invention
  • (b) shows the test result when controlled by the conventional control means.
  • Each graph of (a) and (b) plots the time (min) on the horizontal axis and the heat medium temperature (° C.) on the vertical axis on judging the superiority or inferiority of the temperature controllability. .
  • the heat medium was filled in the stirring tank as the container 2, the above-described coiled pipe line was used as the heat exchanger 3, and a switching valve was used as the valve means 6.
  • the temperature indicating controller is the valve means 6 based on the detected temperature of the used nitrogen gas flowing through the exhaust pipe portion 11a detected by the temperature sensor 8a attached to the exhaust pipe portion 11a. Is automatically controlled to open or close the switching valve.
  • the temperature indicating controller is the valve means 6 based on the detected temperature of the refrigerant in the container 2 detected by the sensor 8b provided in the container 2 shown in FIG. A signal was sent to the valve to automatically control the switching valve to open or close.
  • cryogen liquid nitrogen or its liquefied gas
  • FIG. 3 (b) shows the result when liquid nitrogen is used as a cryogen according to the above-mentioned conventional concept.
  • This result shows that it is not easy to achieve the target temperature controllability of ⁇ 1 ° C.
  • Qc latent heat and sensible heat
  • TS the set temperature of the heat medium
  • TV the temperature of the nitrogen gas flowing through the exhaust pipe portion 11a, ° C)
  • TV-TS TV-TS.
  • FIG. 3 (a) shows the results when liquid nitrogen is used as a cryogen in accordance with the above-described concept of the present invention, and it can be seen that the intended temperature controllability of ⁇ 1 ° C. is obtained.
  • the residence time in the pipe 30 of the vaporized nitrogen gas and the exhaust pipe 11 is about 0.2 seconds.
  • the temperature TV of nitrogen gas is considered to be a Qc index having a quick response, and the valve opening / closing operation by the detection of TV results in an operation that leads to Qc control.
  • FIG. 4 is a test in which the above-described refrigerant cooling device is used and the cooling capacity is examined, that is, a normal copper smooth tube is used as the conduit 30 of the heat exchanger 3, and FIG.
  • Each cooling capacity curve of (a) and (b) plots time (min) on the horizontal axis and temperature (° C.) on the vertical axis in evaluating the cooling capacity.
  • the heat medium was ethanol, and 2.6 kg of ethanol was filled in the stirring tank as the container 2 in the same manner as in Example 1.
  • Liquid nitrogen is supplied at a supply rate of 4.95 kg / hr in the case of a smooth tube and at a supply rate of 8.67 kg / hr in the case of a grooved tube.
  • the grooved tube is improved in response by several steps compared to the smooth tube, and the liquid nitrogen utilization efficiency calculated as follows is also excellent. Yes. This is presumably because a grooved tube has the function of splash separation by centrifugal force and an increase in heat transfer coefficient.
  • the liquid nitrogen utilization efficiency was defined as follows.
  • the cooling heat amount A of ethanol is obtained by (temperature at the time of final cooling ⁇ temperature at the start) ⁇ specific heat (0.52 kcal / kg / ° C.) ⁇ ethanol amount.
  • the calorific value B of liquid nitrogen is obtained by latent heat (47.6 kcal / kg) + (temperature at the time of final cooling ⁇ vaporization temperature ( ⁇ 196 ° C.) ⁇ specific heat (0.25 kcal / kg / ° C.) ⁇ liquid nitrogen supply amount
  • Liquid nitrogen utilization efficiency (calculated heat amount of ethanol A / heat amount B of liquid nitrogen) x 100.
  • the result shows that the utilization efficiency of liquid nitrogen is 76.6% in the smooth tube (liquid nitrogen supply rate) 4.95 kg / hr), and the grooved tube was 87.4% (liquid nitrogen supply rate 8.67 kg / hr).
  • the low temperature liquid is not limited to liquid nitrogen in the device structure, and the refrigerant or thermal refrigerant may be other than ethanol.
  • Storage tank for storing cryogenic liquid (1A is tank, 1B is protection tank) 2 ...

Abstract

[Problem] To enable, by means of a simple configuration, temperature controllability of ±1°C for a target refrigerant in a refrigerant cooling device and method. [Solution] A refrigerant cooling device equipped with a reservoir (1) storing a low-temperature liquid, a container (2) containing a refrigerant that cools an object to be cooled, a heat exchanger (3) that exchanges heat energy between a liquefied gas of the low-temperature liquid and the refrigerant, a supply pipeline (10) that supplies the low-temperature liquid in the reservoir (1) or a liquefied gas thereof to the heat exchanger (3), a valve means (6) provided in the supply pipeline (10), a discharge pipeline (11) that discharges liquefied gas from the heat exchanger (3) to outside of the system, and a control means (7) that controls the supply of the low-temperature liquid or the liquefied gas thereof to the heat exchanger (3), or the amount supplied, by controlling the opening/closing of or the degree of opening of the valve means (6), the refrigerant cooling device being characterized in that the control means (7) has a temperature sensor (8) provided on a discharge pipe section (11a) of the discharge pipeline (11) which is inside the container, with the valve means (6) being controlled and the refrigerant being maintained at a set temperature on the basis of the temperature of the used liquefied gas flowing in the discharge pipeline (11), as detected by the temperature sensor (8).

Description

冷媒冷却装置及び方法Refrigerant cooling apparatus and method
 本発明は、特に、低温反応などのための冷却源として用いられる冷媒を、液体窒素等の低温液体を気化する際の寒冷を利用して目的の設定温度に冷却する冷媒冷却装置及び方法に関する。 The present invention particularly relates to a refrigerant cooling apparatus and method for cooling a refrigerant used as a cooling source for a low-temperature reaction or the like to a target set temperature using cold when vaporizing a low-temperature liquid such as liquid nitrogen.
 例えば、物質を設定温度に冷却したり、化学反応を低い設定温度で行う場合は、冷媒(低温冷媒としてはメタノール,エタノール,アセトン,塩化メチレン等)が多く用いられる。その冷媒は、冷凍機で冷却される以外に寒剤で冷却される。また、冷媒を冷凍機では困難な低温、例えば-50℃以下に冷却するための寒剤としては、ドライアイスや各種の低温液化ガス、例えば液体窒素、液体酸素、液体空気等が用いられている。 For example, when a substance is cooled to a set temperature or a chemical reaction is performed at a low set temperature, a refrigerant (such as methanol, ethanol, acetone, or methylene chloride as a low-temperature refrigerant) is often used. The refrigerant is cooled by a cryogen in addition to being cooled by a refrigerator. In addition, dry ice and various low-temperature liquefied gases such as liquid nitrogen, liquid oxygen, and liquid air are used as cryogens for cooling the refrigerant to a low temperature, for example, −50 ° C. or lower, which is difficult with a refrigerator.
 図5(a)及び(b)は前記冷媒を寒剤により冷却する冷媒冷却装置として、特許文献1に開示された2つの装置構造を示している。各装置の基本は、低温液体を貯蔵した貯槽1、被冷却物を冷却する冷媒を入れたタンクないしは容器2、低温液体の液化ガスと冷媒との間で熱エネルギーを交換する熱交換器5、貯槽1の低温液体ないしはその液化ガスを熱交換器5に供給する供給管路10、供給管路に設けられた弁手段(切換弁)V1、熱交換器5から液化ガスを系外へ排出する排管路12、熱交換器5に供給する低温液体ないしはその液化ガスの供給、或いは供給量を弁手段V1の弁開閉を制御する制御手段(TIC:温度指示調節計)3を備えている。また、符号4は、貯槽1と管路11により連通された液体窒素用蒸発器である。管路11には弁手段V1と同様に制御手段3からの信号により作動する弁手段(切換弁)V2を有している。弁手段V2と蒸発器4との間の管路11には、熱交換器5の排出側管路12が連通されている。 5 (a) and 5 (b) show two device structures disclosed in Patent Document 1 as refrigerant cooling devices for cooling the refrigerant with a cryogen. The basis of each device is a storage tank 1 storing a cryogenic liquid, a tank or container 2 containing a refrigerant for cooling an object to be cooled, a heat exchanger 5 for exchanging thermal energy between the liquefied gas of the cryogenic liquid and the refrigerant, The low temperature liquid in the storage tank 1 or the liquefied gas thereof is supplied to the heat exchanger 5, the valve means (switching valve) V 1 provided in the supply pipe, and the liquefied gas is discharged from the heat exchanger 5 to the outside of the system. A control means (TIC: temperature indicating controller) 3 is provided for controlling the valve opening and closing of the valve means V1 with respect to the supply of the low temperature liquid or the liquefied gas supplied to the exhaust pipe 12 and the heat exchanger 5 or the supply amount thereof. Reference numeral 4 denotes an evaporator for liquid nitrogen communicated with the storage tank 1 by a pipe 11. The pipe 11 has a valve means (switching valve) V2 that is operated by a signal from the control means 3 in the same manner as the valve means V1. A discharge line 12 of the heat exchanger 5 communicates with the line 11 between the valve means V2 and the evaporator 4.
 図5(a)の装置構造では、熱交換器5が容器2内に配設されていると共に、制御手段3が容器2内の冷媒の温度を温度センサで検出し、該検出温度に基づいて弁手段V1を開又は閉に制御して冷媒を設定温度に冷却する。一方、図5(b)の装置構造では、熱交換器5が容器2外に付設されていて容器2内の冷媒をポンプPにより熱交換器5に循環させると共に、制御手段3が容器2内の冷媒の温度を温度センサで検出し、該検出温度に基づいて弁手段V1を開又は閉に制御して冷媒を設定温度に冷却する。 5A, the heat exchanger 5 is disposed in the container 2, and the control means 3 detects the temperature of the refrigerant in the container 2 with a temperature sensor, and based on the detected temperature. The valve means V1 is controlled to open or close to cool the refrigerant to the set temperature. On the other hand, in the apparatus structure of FIG. 5B, the heat exchanger 5 is attached outside the container 2 and the refrigerant in the container 2 is circulated to the heat exchanger 5 by the pump P, and the control means 3 is in the container 2. The temperature of the refrigerant is detected by a temperature sensor, and the valve means V1 is controlled to open or close based on the detected temperature to cool the refrigerant to a set temperature.
 より具体的には、低温液体が液体窒素の例だと、貯槽1から送られた液体窒素は、熱交換器5により冷媒と熱交換して冷媒(二塩化メタン)を冷却する。その冷媒が所定温度まで冷却されると、制御手段3である温度指示調節計が作動して、弁手段V1,V2を作動、つまり弁手段V1を閉じ、弁手段V2を開き、液体窒素は直に蒸発器4に供給され、そこで気化されて使用先である系外へ送られる。一方、冷媒は容器2外で冷却用に用いられ、再び容器2に戻される。容器2の冷媒温度が上昇すれば、再び制御手段3が作動して、弁手段V1が開、弁手段V2が閉となり、貯槽1の液体窒素が容器2内、又は容器2外の熱交換器5を介して冷媒を設定温度まで冷却することになる。 More specifically, if the low-temperature liquid is liquid nitrogen, the liquid nitrogen sent from the storage tank 1 exchanges heat with the refrigerant by the heat exchanger 5 to cool the refrigerant (methane dichloride). When the refrigerant is cooled to a predetermined temperature, the temperature indicating controller which is the control means 3 is operated to operate the valve means V1 and V2, that is, the valve means V1 is closed and the valve means V2 is opened. To the evaporator 4 where it is vaporized and sent out of the system where it is used. On the other hand, the refrigerant is used for cooling outside the container 2 and returned to the container 2 again. When the refrigerant temperature in the container 2 rises, the control means 3 is actuated again, the valve means V1 is opened, the valve means V2 is closed, and the liquid nitrogen in the storage tank 1 is in the container 2 or a heat exchanger outside the container 2. Through 5, the refrigerant is cooled to the set temperature.
実公昭60-4049号公報Japanese Utility Model Publication No. 60-4049
 上記冷媒冷却装置において、制御手段は容器内の冷媒の温度を温度センサにより検出し、該検出温度に基づいて弁手段を弁開閉したり、弁開度を調整制御するようにしていた。この制御方法は、冷却対象である冷媒の温度を直に検出し、該検出温度に基づいて供給管路側の弁手段を制御することは妥当なものとして考えられていた(例えば特開平9-4954号公報の温度制御方法)。 In the above refrigerant cooling apparatus, the control means detects the temperature of the refrigerant in the container with a temperature sensor, and opens and closes the valve means and adjusts and controls the valve opening based on the detected temperature. In this control method, it has been considered that it is appropriate to directly detect the temperature of the refrigerant to be cooled and control the valve means on the supply line side based on the detected temperature (for example, Japanese Patent Laid-Open No. 9-4954). Temperature control method).
 本発明者らは図1に示されるような冷媒冷却装置を使用して、容器内の媒体の温度を制御する方法として上記従来方法を検証してきた結果、本発明の比較例として示した図3(b)のごとく冷媒の温度として、±1℃の温度制御性を達成することは難しいことが分かった。そこで、本発明の目的は、冷媒冷却装置及び方法において、対象の冷媒として±1℃の温度制御性を簡易な構成により実現可能にし、それにより品質を向上し用途拡大に寄与することにある。 As a result of verifying the above conventional method as a method for controlling the temperature of the medium in the container using the refrigerant cooling device as shown in FIG. 1, the present inventors have shown FIG. 3 as a comparative example of the present invention. As shown in (b), it was found difficult to achieve temperature controllability of ± 1 ° C. as the temperature of the refrigerant. Accordingly, an object of the present invention is to make it possible to realize a temperature controllability of ± 1 ° C. as a target refrigerant in a refrigerant cooling device and method with a simple configuration, thereby improving quality and contributing to expanded applications.
 上記目的を達成するために、請求項1の本発明は、液体窒素等の低温液体を貯蔵した貯槽と、被冷却物を冷却する冷媒を入れた容器と、前記低温液体の液化ガスと前記冷媒との間で熱エネルギーを交換する熱交換器と、前記貯槽の低温液体ないしはその液化ガスを前記熱交換器に供給する供給管路と、前記供給管路に設けられた弁手段と、前記熱交換器から前記液化ガスを系外へ排出する排管路と、前記熱交換器に供給する低温液体ないしはその液化ガスの供給、或いは供給量を前記弁手段の弁開閉、或いは弁開度を制御する制御手段を備えた冷媒冷却装置において、前記制御手段は、前記排管路のうち、前記容器内の排管部分に設けられた温度センサを有し、該温度センサで検出される排管路を流れる使用済み液化ガスの検出温度に基づいて前記弁手段を制御して前記冷媒を設定温度に維持可能にすることを特徴としている。 In order to achieve the above object, the present invention according to claim 1 includes a storage tank storing a low-temperature liquid such as liquid nitrogen, a container containing a refrigerant for cooling an object to be cooled, a liquefied gas of the low-temperature liquid, and the refrigerant. A heat exchanger for exchanging thermal energy with the heat exchanger, a supply line for supplying the low-temperature liquid of the storage tank or the liquefied gas thereof to the heat exchanger, valve means provided in the supply line, and the heat The exhaust pipe for discharging the liquefied gas from the exchanger to the outside of the system, the low-temperature liquid supplied to the heat exchanger or the supply of the liquefied gas, or the supply amount thereof, the valve opening / closing of the valve means or the valve opening degree is controlled. In the refrigerant cooling apparatus provided with the control means, the control means has a temperature sensor provided in a discharge pipe portion in the container, and the discharge pipe is detected by the temperature sensor. Based on the detected temperature of spent liquefied gas flowing through It is characterized in that it allows maintaining the refrigerant by controlling the valve means to the set temperature Te.
 図1に示した本発明の構成例において、熱交換器3は図1や図5(a)のごとく冷媒を入れた容器内に設ける構成に限られず、図5(b)のごとく容器外に配設して容器内の冷媒をポンプ等により循環する構成でもよい。弁手段6は、開と閉とを切り換える安価な切換弁、弁開度を調整する高価な流量調整弁の何れであってもよい。排管路11から排出される使用済み液化ガスは、空気中に排気する構成、図5に例示されるごとく貯槽に管路及び弁手段を介して連通された蒸発器から使用箇所へ移送する構成でもよい。なお、本発明の冷媒を入れた容器は、図1に例示されるごとく容器内の冷媒に反応器等の被冷却物を浸漬して冷却する構成、容器内の冷媒を循環式に反応器や蒸発缶(例えば特許第4666347号公報図1や図2、特許第4679199号公報図2を参照)などに送って冷却する構成の何れであってもよい。 In the configuration example of the present invention shown in FIG. 1, the heat exchanger 3 is not limited to the configuration provided in the container containing the refrigerant as shown in FIG. 1 and FIG. 5 (a), but outside the container as shown in FIG. 5 (b). A configuration may be employed in which the refrigerant in the container is circulated by a pump or the like. The valve means 6 may be either an inexpensive switching valve that switches between opening and closing or an expensive flow rate adjusting valve that adjusts the valve opening. A configuration in which the used liquefied gas discharged from the exhaust pipe 11 is exhausted into the air, and a structure in which the used liquefied gas is transferred from the evaporator communicated to the storage tank via the pipe and the valve means as illustrated in FIG. But you can. In addition, the container containing the refrigerant of the present invention has a configuration in which an object to be cooled such as a reactor is immersed in the refrigerant in the container as shown in FIG. 1 and is cooled. Any configuration may be employed in which it is sent to an evaporator (see, for example, FIG. 1 and FIG. 2 of Japanese Patent No. 4666347 and FIG. 2 of Japanese Patent No. 4679199) and cooled.
 以上の本発明は次のように具体化されることがより好ましい。
(ア)前記熱交換器は、請求項2のごとくコイル状ないしは渦巻き状に巻かれた液化ガス用管路を有している構成である。
(イ)前記管路は、請求項3のごとく銅管からなると共に、銅管内面に管長手方向に沿って形成された複数の溝を有している構成である。
(ウ)請求項4の冷媒冷却方法は、請求項1から3の何れかに記載の冷媒冷却装置を用いて、液体窒素の液化ガスと被冷却物を冷却する冷媒とを熱交換器により熱交換させて前記冷媒を一定温度に保つことを特徴としている。
The present invention as described above is more preferably embodied as follows.
(A) The heat exchanger has a liquefied gas conduit wound in a coil shape or a spiral shape as in claim 2.
(A) The pipe line is composed of a copper pipe as in claim 3 and has a plurality of grooves formed along the longitudinal direction of the pipe on the inner surface of the copper pipe.
(C) A refrigerant cooling method according to a fourth aspect uses the refrigerant cooling device according to any one of the first to third aspects to heat a liquefied gas of liquid nitrogen and a refrigerant that cools an object to be cooled by a heat exchanger. It is characterized by keeping the refrigerant at a constant temperature by exchanging.
 請求項1の発明では、制御手段が排管路のうち、容器内の排管部分に設けられた温度センサを有し、該温度センサで検出される排管路を流れる使用済み液化ガスの検出温度に基づいて供給管路に付設された弁手段を開・閉制御したり、弁開度を制御して冷媒を設定温度に維持するように制御すると、図3(a)に例示されるごとく対象の冷媒として、±1℃の温度制御性を容易に実現でき、それにより冷媒品質を向上できる。 According to the first aspect of the present invention, the control means has a temperature sensor provided in the exhaust pipe portion of the exhaust pipe in the exhaust pipe, and detection of the used liquefied gas flowing through the exhaust pipe detected by the temperature sensor. When the valve means attached to the supply pipe line is controlled to open and close based on the temperature, or the valve opening degree is controlled so as to maintain the refrigerant at the set temperature, as illustrated in FIG. As the target refrigerant, a temperature controllability of ± 1 ° C. can be easily realized, thereby improving the refrigerant quality.
 請求項2の発明では、熱交換器がコイル状ないしは渦巻き状に巻かれた液化ガス用管路、つまり一般的に用いられている汎用品であるため簡易性を維持できる。 In the invention of claim 2, since the heat exchanger is a liquefied gas pipe wound in a coil shape or a spiral shape, that is, a general-purpose product that is generally used, simplicity can be maintained.
 請求項3の発明では、前記管路が銅管からなると共に、銅管内面に管長手方向に沿って形成された複数の溝を有しているため、図4の比較から明らかなごとく平滑管に比べて遠心力による飛沫分離及び伝熱係数増大の機能によって液体窒素等の低温液体の利用効率を向上できる。 In the invention of claim 3, since the conduit is made of a copper tube and has a plurality of grooves formed along the longitudinal direction of the tube on the inner surface of the copper tube, the smooth tube is evident from the comparison of FIG. Compared with the above, the use efficiency of the low temperature liquid such as liquid nitrogen can be improved by the function of the droplet separation by centrifugal force and the increase of the heat transfer coefficient.
 請求項4の発明では、冷媒冷却方法として以上の利点を具備でき、低温液体として液体窒素を用いるので冷媒を0~-120℃までの任意の温度で、かつ±1℃の自動温度制御性が可能となる。 In the invention of claim 4, the above-described advantages can be provided as a refrigerant cooling method, and since liquid nitrogen is used as the low-temperature liquid, the refrigerant can be controlled at any temperature from 0 to −120 ° C. and with an automatic temperature controllability of ± 1 ° C. It becomes possible.
形態例の冷媒冷却装置を模式的に示す構成図である。It is a block diagram which shows typically the refrigerant | coolant cooling device of an example. (a)は図1のA部拡大図、(b)は図1の排管路のうち、容器内にある配管部分の断面図である。(A) is the A section enlarged view of FIG. 1, (b) is sectional drawing of the piping part in a container among the exhaust pipe paths of FIG. (a)及び(b)は本発明の制御手段と従来の制御手段により制御したときの熱媒体温度と時間との関係を示すグラフである。(A) And (b) is a graph which shows the relationship between heat-medium temperature and time when it controls by the control means of this invention, and the conventional control means. (a)及び(b)は図1の熱交換器を形成している管路として、平滑管と溝付き管を使用したときの冷却能力を調べたときのグラフである。(A) And (b) is a graph when the cooling capacity when investigating a smooth pipe and a grooved pipe as a pipe line which forms the heat exchanger of Drawing 1 is examined. (a)及び(b)は特許文献1の2つの構造を示している。(A) And (b) has shown two structures of patent document 1. FIG.
(装置構造)図1の冷媒冷却装置は、寒剤ないしは低温液体として液体窒素を貯蔵した貯槽1と、被冷却物4を冷却する冷媒を入れた容器2と、液体窒素の液化ガスと冷媒との間で熱エネルギーを交換する熱交換器3と、貯槽1の液体窒素ないしはその液化ガスを熱交換器3に供給する供給管路10と、供給管路10に設けられた弁手段5,6と、熱交換器3から液化ガスを系外へ排出する排管路11と、熱交換器3に供給する液体窒素ないしはその液化ガスの供給、或いは供給量を弁手段6の弁開閉にて制御する制御部7を備えている。そして、要部は、制御部7が排管路11のうち、容器2内の排管部分11aに設けられた温度センサ8aを有し、該温度センサ8aで検出される排管路11を流れる使用済み液化ガス(窒素ガス)の検出温度に基づいて弁手段6を制御して容器2内の冷媒を設定温度に維持可能にする構成にある。 (Apparatus structure) The refrigerant cooling apparatus of FIG. 1 includes a storage tank 1 storing liquid nitrogen as a cryogen or a low-temperature liquid, a container 2 containing a refrigerant for cooling an object to be cooled 4, a liquefied gas of liquid nitrogen, and a refrigerant. A heat exchanger 3 for exchanging heat energy between them, a supply line 10 for supplying liquid nitrogen in the storage tank 1 or its liquefied gas to the heat exchanger 3, and valve means 5 and 6 provided in the supply line 10; The exhaust pipe 11 for discharging the liquefied gas from the heat exchanger 3 to the outside of the system, and the supply or supply amount of liquid nitrogen or the liquefied gas supplied to the heat exchanger 3 are controlled by opening and closing the valve means 6. A control unit 7 is provided. And as for the principal part, the control part 7 has the temperature sensor 8a provided in the exhaust pipe part 11a in the container 2 among the exhaust pipe paths 11, and flows through the exhaust pipe path 11 detected by this temperature sensor 8a. The valve means 6 is controlled based on the detected temperature of the used liquefied gas (nitrogen gas) so that the refrigerant in the container 2 can be maintained at the set temperature.
 貯槽1は、自加圧型容器と称されているもので、液体窒素を貯蔵したタンク1Aが外側の保護槽1Bに高真空を保って配置されている。タンク1Aは、補給口10aと加圧管14及び放出管15などを有している。そして、構造的には、ガス放出弁16を閉じ、加圧弁17を開けると、液体窒素が加圧管14内で蒸発し、内圧が上がって内部の液体窒素を供給管路10側へ押し出すようになっている。液体窒素の汲み出しを止めるには、ガス放出弁16を開け、加圧弁17と弁手段5である液取出用切換弁とを閉じる。ガス放出弁16は普段は開けておく。また、タンク1Aには、内圧を示す圧力計19、内圧が過剰に上昇したときにガスを放出する安全弁18a,18bなどが付設されている。符号13は台車である。 The storage tank 1 is called a self-pressurized container, and a tank 1A storing liquid nitrogen is disposed in a protective tank 1B on the outside while maintaining a high vacuum. The tank 1A includes a replenishing port 10a, a pressurizing pipe 14, a discharge pipe 15, and the like. And structurally, when the gas release valve 16 is closed and the pressurization valve 17 is opened, the liquid nitrogen evaporates in the pressurization pipe 14, and the internal pressure rises to push the internal liquid nitrogen toward the supply pipe line 10. It has become. In order to stop pumping out liquid nitrogen, the gas release valve 16 is opened, and the pressurizing valve 17 and the liquid take-out switching valve as the valve means 5 are closed. The gas release valve 16 is normally opened. The tank 1A is additionally provided with a pressure gauge 19 indicating internal pressure, safety valves 18a and 18b for releasing gas when the internal pressure rises excessively, and the like. Reference numeral 13 denotes a carriage.
 容器2は、冷媒及び熱交換器3を内空間に収容する大きさの本体20と、本体20の上開口を閉じる上カバー21と、上カバー21に設けられた扉22からなる。本体20には断熱材24が外周壁に装着されている。扉22は、上カバー21に設けられた開口を開閉することで、本体20内の冷媒内に被冷却物4を出し入れ可能にする。本体20内には、熱交換器3が複数の支持材23などに保持した状態で設置されている。 The container 2 includes a main body 20 that is large enough to accommodate the refrigerant and the heat exchanger 3 in the inner space, an upper cover 21 that closes the upper opening of the main body 20, and a door 22 provided on the upper cover 21. A heat insulating material 24 is attached to the outer peripheral wall of the main body 20. The door 22 opens and closes an opening provided in the upper cover 21 so that the object to be cooled 4 can be taken in and out of the refrigerant in the main body 20. Inside the main body 20, the heat exchanger 3 is installed in a state of being held by a plurality of support members 23 and the like.
 熱交換器3は、熱伝導に優れている銅製のパイプをコイル状ないしは渦巻き状に巻いた液化ガス用管路30を有している。管路30の内周面には、図2(b)に示されるごとく管長手方向に沿って延びている溝31が周囲を等分するよう複数設けられている。熱交換器3を構成している管路30の入口側は、貯槽側タンク1Aの液体窒素を供給する供給管路10の対応端と連結されている。管路30の出口側は排管路11の対応端と連結されている。 The heat exchanger 3 has a liquefied gas conduit 30 in which a copper pipe excellent in heat conduction is wound in a coil shape or a spiral shape. A plurality of grooves 31 extending along the pipe longitudinal direction as shown in FIG. 2B are provided on the inner peripheral surface of the pipe 30 so as to equally divide the periphery. The inlet side of the pipe line 30 constituting the heat exchanger 3 is connected to a corresponding end of the supply pipe line 10 for supplying liquid nitrogen in the storage tank side tank 1A. The outlet side of the conduit 30 is connected to the corresponding end of the exhaust conduit 11.
 供給管路10及び排管路11は、上カバー21を共に貫通して容器内外に配置されている。供給管路10は、タンク1A側に設けられた弁手段5である液取出用切換弁と、それよりも下流側に設けられて制御部7からの信号により作動する弁手段6とを有している。弁手段6は、開と閉とを切り換える切換弁の例であるが、弁開度を可変調整する流量調整弁に代えてもよい。 The supply pipe line 10 and the discharge pipe line 11 are disposed inside and outside the container through the upper cover 21 together. The supply pipe line 10 has a liquid take-out switching valve which is a valve means 5 provided on the tank 1A side, and a valve means 6 which is provided on the downstream side of the supply pipe 10 and operates according to a signal from the control unit 7. ing. The valve means 6 is an example of a switching valve that switches between opening and closing, but may be replaced with a flow rate adjusting valve that variably adjusts the valve opening.
 排管路11は、使用済みの窒素ガスを排気する管路であるが、図5のような処理系を介して使用箇所へ送るようにしてもよい。排管路11のうち、容器2内にある排管部分11aの内側には温度センサ8aが付設されている。この温度センサ8aは、排管部分11aを流れる使用済みの窒素ガスの温度を検出し、それを制御部7に送信するようになっている。 The exhaust pipe 11 is a pipe for exhausting used nitrogen gas, but it may be sent to a use location through a processing system as shown in FIG. A temperature sensor 8 a is attached to the inside of the exhaust pipe portion 11 a in the container 2 in the exhaust pipe path 11. The temperature sensor 8 a detects the temperature of the used nitrogen gas flowing through the exhaust pipe portion 11 a and transmits it to the control unit 7.
 すなわち、制御部7は、温度センサ8aで検出される排管部分11aを流れる使用済み窒素ガスの検出温度に基づいて弁手段6として切換弁を用いたときは開閉を制御したり、或いは、弁手段6として流量調整弁を用いたときは弁開度を制御する。制御機器としては、市販品の温度指示調節計などを用いることができる。後述の実施例では、日曹エンジニアリング株式会社製の温度指示調節計を用いた。 That is, when the switching valve is used as the valve means 6 on the basis of the detected temperature of the used nitrogen gas flowing through the exhaust pipe portion 11a detected by the temperature sensor 8a, the control unit 7 controls the opening / closing or When a flow rate adjusting valve is used as the means 6, the valve opening degree is controlled. As the control device, a commercially available temperature indicating controller or the like can be used. In the examples described later, a temperature indicating controller manufactured by Nisso Engineering Co., Ltd. was used.
 以上の冷媒冷却装置は、被冷却物4として、図2(a)に示されるごとく管型流通式混合装置や低温反応試験用反応瓶を容器2内の冷媒中に不図示の保持部材などを介して浸漬支持した状態で設定温度に冷却することを想定している。同図の反応瓶には、瓶内の反応溶液を混ぜる攪拌機9、温度を検出する温度センサ8cなどが付設されている。但し、使い方はこれに限られず、例えば、容器2で設定温度に冷却した冷媒をポンプ等により他の使用箇所に循環式に供給することでもよい。 In the above refrigerant cooling device, as the object to be cooled 4, a pipe-type flow mixing device or a reaction bottle for a low temperature reaction test is placed in the refrigerant in the container 2 as shown in FIG. It is assumed that it is cooled to a set temperature in a state where it is supported by immersion. The reaction bottle shown in the figure is provided with a stirrer 9 for mixing the reaction solution in the bottle, a temperature sensor 8c for detecting temperature, and the like. However, the usage is not limited to this, and for example, the refrigerant cooled to the set temperature in the container 2 may be circulated and supplied to other use locations by a pump or the like.
(実施例1)図3は以上の冷媒冷却装置を使用し、冷媒としてハイドロフルオロエーテル(以下、これを熱媒体という)を用いてその温度を制御する方法として、試験で得られた下記表1の時間経過と熱媒体温度との関係をグラフに示したものである。(a)は本発明の制御手段にて制御したときの試験結果、(b)は従来の制御手段にて制御したときの試験結果を示している。(a)及び(b)の各グラフは、温度制御性の優劣を判断する上で、横軸に時間(min)を、縦軸に実側された熱媒体温度(℃)をプロットしている。 (Example 1) FIG. 3 shows the following Table 1 obtained in a test as a method of controlling the temperature using the above-described refrigerant cooling device and using hydrofluoroether (hereinafter referred to as a heat medium) as a refrigerant. The graph shows the relationship between the passage of time and the heat medium temperature. (A) shows the test result when controlled by the control means of the present invention, and (b) shows the test result when controlled by the conventional control means. Each graph of (a) and (b) plots the time (min) on the horizontal axis and the heat medium temperature (° C.) on the vertical axis on judging the superiority or inferiority of the temperature controllability. .
 この試験例において、熱媒体は容器2として攪拌槽に充填し、熱交換器3として上記したコイル状に巻いた管路を用い、弁手段6として切換弁を使用した。また、制御部7として温度指示調節計を使用し、容器2内の熱媒体が設定温度TS=-120°に保たれるよう設定したときのものである。本発明の温度制御は、排管部分11aに付設された温度センサ8aで検出した排管部分11aを流れる使用済み窒素ガスの検出温度に基づいて、温度指示調節計が弁手段6である切換弁に信号を送り切換弁を開又は閉に自動制御した。これに対し、従来の温度制御は、図1に示した容器2内に設けられたセンサ8bで検出した容器2内の冷媒の検出温度に基づいて、温度指示調節計が弁手段6である切換弁に信号を送り切換弁を開又は閉に自動制御した。 In this test example, the heat medium was filled in the stirring tank as the container 2, the above-described coiled pipe line was used as the heat exchanger 3, and a switching valve was used as the valve means 6. In addition, the temperature indicating controller is used as the control unit 7 and the heat medium in the container 2 is set to be kept at the set temperature TS = −120 °. In the temperature control of the present invention, the temperature indicating controller is the valve means 6 based on the detected temperature of the used nitrogen gas flowing through the exhaust pipe portion 11a detected by the temperature sensor 8a attached to the exhaust pipe portion 11a. Is automatically controlled to open or close the switching valve. On the other hand, in the conventional temperature control, the temperature indicating controller is the valve means 6 based on the detected temperature of the refrigerant in the container 2 detected by the sensor 8b provided in the container 2 shown in FIG. A signal was sent to the valve to automatically control the switching valve to open or close.
 ここで、従来の温度制御は、熱媒体の設定温度TS(℃)、熱媒体の温度TE(℃)、温度差を△T(℃)=TE-TSとする。そして、△Tの値により液体窒素ないしはその液化ガス(以下、これを寒剤という)の流量としては、△Tが大きい場合は寒剤の流量を大きくする。△Tが小さい場合は寒剤の流量を小さくする。△T≦0の場合は寒剤の流量を止める。また、切換弁(開閉弁)の場合は△Tの値により開閉時間で調整する。流量調整弁の場合は△Tの値により弁開度で調整する。 Here, in the conventional temperature control, the set temperature TS (° C.) of the heat medium, the temperature TE (° C.) of the heat medium, and the temperature difference are ΔT (° C.) = TE−TS. Then, depending on the value of ΔT, the flow rate of liquid nitrogen or its liquefied gas (hereinafter referred to as cryogen) is increased when ΔT is large. If ΔT is small, reduce the flow rate of the cryogen. When ΔT ≦ 0, the cryogen flow is stopped. In the case of a switching valve (open / close valve), the open / close time is adjusted according to the value of ΔT. In the case of a flow rate adjustment valve, the valve opening is adjusted by the value of ΔT.
 図3(b)は以上の従来の考え方に従って寒剤として液体窒素を用いたときの結果である。この結果からは、目的とする±1℃の温度制御性を達成することは容易でないことが分かる。なお、±1℃の温度制御性を達成することは容易でない原因としては次のように考えられる。液化窒素による冷却は潜熱及び気化ガス顕熱を用いて行われるので、熱交換器3の管路30内に存在する冷却熱量Qc(潜熱及び顕熱)を考慮ないしは反映した制御が必要となる。すなわち、△Tの検出と共にQcを考慮した弁開閉操作を行うことが必要となるが、次の事情から実際は容易でない。第1に、TSが低くなるとQcは大きくなるので、これを考慮した△Tの検出と弁開閉操作方法が更に必要となる。第2に、液化窒素圧力に変動がある場合はQcも変動するので温度制御性に影響する。 FIG. 3 (b) shows the result when liquid nitrogen is used as a cryogen according to the above-mentioned conventional concept. This result shows that it is not easy to achieve the target temperature controllability of ± 1 ° C. In addition, it is considered as follows that it is not easy to achieve the temperature controllability of ± 1 ° C. Since cooling with liquefied nitrogen is performed using latent heat and sensible heat of vaporized gas, control that takes into account or reflects the amount of cooling heat Qc (latent heat and sensible heat) present in the conduit 30 of the heat exchanger 3 is required. That is, it is necessary to perform the valve opening / closing operation in consideration of Qc together with the detection of ΔT, but it is actually not easy due to the following circumstances. First, since Qc increases as TS decreases, further detection of ΔT and valve opening / closing operation methods that take this into account are required. Second, when the liquefied nitrogen pressure varies, Qc also varies, which affects the temperature controllability.
 これに対し、本発明の温度制御は、熱媒体の設定温度TS(℃)、液体窒素の使用済み窒素ガスつまり排管部分11aを流れる窒素ガスの温度TV(℃)、温度差を△T(℃)=TV-TSとする。例として、切換弁(開閉弁)だと、△T>0の場合は弁開とする。△T≦0の場合は弁閉とする。 On the other hand, the temperature control of the present invention is performed by setting the set temperature TS (° C.) of the heat medium, the used nitrogen gas of liquid nitrogen, that is, the temperature TV (° C.) of the nitrogen gas flowing through the exhaust pipe portion 11a, ° C) = TV-TS. For example, in the case of a switching valve (open / close valve), when ΔT> 0, the valve is opened. When ΔT ≦ 0, the valve is closed.
 図3(a)は以上の本発明の考え方に従って寒剤として液体窒素を用いたときの結果であり、目的とする±1℃の温度制御性を得ることが分かる。この達成要因としては、気化した窒素ガスの管路30及び排管路11の管内滞留時間は0.2秒程度である。これにより、窒素ガスの温度TVは、応答性の速いQc指標となると共に、TVの検出で弁開閉操作することは結果的にQc制御に繋がる操作になるためと考えられる。 FIG. 3 (a) shows the results when liquid nitrogen is used as a cryogen in accordance with the above-described concept of the present invention, and it can be seen that the intended temperature controllability of ± 1 ° C. is obtained. As the achievement factor, the residence time in the pipe 30 of the vaporized nitrogen gas and the exhaust pipe 11 is about 0.2 seconds. Thereby, the temperature TV of nitrogen gas is considered to be a Qc index having a quick response, and the valve opening / closing operation by the detection of TV results in an operation that leads to Qc control.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)図4は以上の冷媒冷却装置を使用し、冷却能力を調べた試験つまり熱交換器3の管路30として通常の銅製の平滑管を使用して場合と、図2(b)の銅製の溝付き管を使用した場合で得られた下記表2の時間経過と温度との関係を冷却能力曲線として示したものである。(a)及び(b)の各冷却能力曲線は、冷却能力を評価する上で、横軸に時間(min)を、縦軸に温度(℃)をプロットしている。 (Embodiment 2) FIG. 4 is a test in which the above-described refrigerant cooling device is used and the cooling capacity is examined, that is, a normal copper smooth tube is used as the conduit 30 of the heat exchanger 3, and FIG. The relationship between the passage of time and the temperature shown in Table 2 below, obtained when the copper grooved pipe of No. 1) is used, is shown as a cooling capacity curve. Each cooling capacity curve of (a) and (b) plots time (min) on the horizontal axis and temperature (° C.) on the vertical axis in evaluating the cooling capacity.
 この試験では、熱媒体はエタノールであり、エタノール2.6kgを実施例1と同じく容器2として攪拌槽に充填した。また、液体窒素は、平滑管の場合は供給速度4.95kg/hrで、溝付き管の場合は供給速度8.67kg/hrで流したときのものである。この試験結果では、各冷却能力曲線から分かるごとく、溝付き管の方は平滑管に比較して、応答性が数段向上されると共に、以下のように算出される液体窒素利用効率も優れている。これは、溝付き管だと、遠心力による飛沫分離及び伝熱係数増大の機能があるためと推察される。 In this test, the heat medium was ethanol, and 2.6 kg of ethanol was filled in the stirring tank as the container 2 in the same manner as in Example 1. Liquid nitrogen is supplied at a supply rate of 4.95 kg / hr in the case of a smooth tube and at a supply rate of 8.67 kg / hr in the case of a grooved tube. In this test result, as can be seen from each cooling capacity curve, the grooved tube is improved in response by several steps compared to the smooth tube, and the liquid nitrogen utilization efficiency calculated as follows is also excellent. Yes. This is presumably because a grooved tube has the function of splash separation by centrifugal force and an increase in heat transfer coefficient.
 液体窒素利用効率は次のように定義した。エタノールの冷却熱量Aは(最終冷却時の温度-開始時の温度)×比熱(0.52kcal/kg/℃)×エタノール量で求められる。液体窒素の熱量Bは潜熱(47.6のkcal/kg)+(最終冷却時の温度-気化温度(-196℃)×比熱(0.25kcal/kg/℃)×液体窒素の供給量で求められる。そして、液体窒素利用効率=(エタノールの冷却熱量A/液体窒素の熱量B)×100より算出。その結果は、液体窒素の利用効率は、平滑管では76.6%(液体窒素供給速度4.95kg/hr)、溝付き管では87.4%(液体窒素供給速度8.67kg/hr)であった。 The liquid nitrogen utilization efficiency was defined as follows. The cooling heat amount A of ethanol is obtained by (temperature at the time of final cooling−temperature at the start) × specific heat (0.52 kcal / kg / ° C.) × ethanol amount. The calorific value B of liquid nitrogen is obtained by latent heat (47.6 kcal / kg) + (temperature at the time of final cooling−vaporization temperature (−196 ° C.) × specific heat (0.25 kcal / kg / ° C.) × liquid nitrogen supply amount Liquid nitrogen utilization efficiency = (calculated heat amount of ethanol A / heat amount B of liquid nitrogen) x 100. The result shows that the utilization efficiency of liquid nitrogen is 76.6% in the smooth tube (liquid nitrogen supply rate) 4.95 kg / hr), and the grooved tube was 87.4% (liquid nitrogen supply rate 8.67 kg / hr).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、本発明は、請求項で特定される構成を備えておればよく、細部は形態例などを参考にして変更したり展開可能なものである。その一例として、装置構造としては低温液体は液体窒素に限られず、冷媒又は熱冷媒はエタノール以外でも差し支えない。 It should be noted that the present invention is only required to have the configuration specified in the claims, and the details can be changed or developed with reference to form examples. As an example, the low temperature liquid is not limited to liquid nitrogen in the device structure, and the refrigerant or thermal refrigerant may be other than ethanol.
 1・・・低温液体を貯蔵した貯槽(1Aはタンク、1Bは保護槽)
 2・・・冷媒を入れた容器(20は本体、21は上カバー、22は扉)
 3・・・熱交換器(30は管路)
 4・・・被冷却物
 5・・・切換弁
 6・・・切換弁(弁手段)
 7・・・制御部(制御手段)
 8a,8b,8c・・・温度センサ
 10・・・供給管路
 11・・・排管路(11aは容器内にある排管部分)
1 ... Storage tank for storing cryogenic liquid (1A is tank, 1B is protection tank)
2 ... Container with refrigerant (20 is main body, 21 is upper cover, 22 is door)
3 ... Heat exchanger (30 is pipe line)
4 ... object to be cooled 5 ... switching valve 6 ... switching valve (valve means)
7. Control unit (control means)
8a, 8b, 8c ... Temperature sensor 10 ... Supply pipe 11 ... Drain pipe (11a is a drain pipe part in the container)

Claims (4)

  1.  液体窒素等の低温液体を貯蔵した貯槽と、被冷却物を冷却する冷媒を入れた容器と、前記低温液体の液化ガスと前記冷媒との間で熱エネルギーを交換する熱交換器と、前記貯槽の低温液体ないしはその液化ガスを前記熱交換器に供給する供給管路と、前記供給管路に設けられた弁手段と、前記熱交換器から前記液化ガスを系外へ排出する排管路と、前記熱交換器に供給する低温液体ないしはその液化ガスの供給、或いは供給量を前記弁手段の弁開閉、或いは弁開度を制御する制御手段を備えた冷媒冷却装置において、
     前記制御手段は、前記排管路のうち、前記容器内の排管部分に設けられた温度センサを有し、該温度センサで検出される排管路を流れる使用済み液化ガスの検出温度に基づいて前記弁手段を制御して前記冷媒を設定温度に維持可能にすることを特徴とする冷媒冷却装置。
    A storage tank storing a low-temperature liquid such as liquid nitrogen, a container containing a refrigerant for cooling an object to be cooled, a heat exchanger for exchanging thermal energy between the liquefied gas of the low-temperature liquid and the refrigerant, and the storage tank Supply line for supplying the low-temperature liquid or liquefied gas thereof to the heat exchanger, valve means provided in the supply line, and an exhaust line for discharging the liquefied gas out of the system from the heat exchanger In the refrigerant cooling device comprising a low temperature liquid supplied to the heat exchanger or a supply of the liquefied gas, or a control means for controlling the valve opening / closing of the valve means or the valve opening degree,
    The control means has a temperature sensor provided in a discharge pipe portion in the container of the discharge pipe, and is based on a detected temperature of the used liquefied gas flowing through the discharge pipe detected by the temperature sensor. The refrigerant cooling device is characterized in that the valve means is controlled so that the refrigerant can be maintained at a set temperature.
  2.  前記熱交換器はコイル状ないしは渦巻き状に巻かれた液化ガス用管路を有していることを特徴とする請求項1に記載の冷媒冷却装置。 The refrigerant cooling apparatus according to claim 1, wherein the heat exchanger has a liquefied gas pipe wound in a coil shape or a spiral shape.
  3.  前記管路は、銅管からなると共に、銅管内面に管長手方向に沿って形成された複数の溝を有していることを特徴とする請求項2に記載の冷媒冷却装置。 3. The refrigerant cooling apparatus according to claim 2, wherein the pipe is made of a copper pipe and has a plurality of grooves formed along the pipe longitudinal direction on the inner surface of the copper pipe.
  4.  請求項1から3の何れかに記載の冷媒冷却装置を用いて、液体窒素の液化ガスと被冷却物を冷却する冷媒とを熱交換器により熱交換させて前記冷媒を一定温度に保つことを特徴とする冷媒冷却方法。 Using the refrigerant cooling device according to any one of claims 1 to 3, heat exchange is performed between a liquefied gas of liquid nitrogen and a refrigerant that cools an object to be cooled by a heat exchanger, and the refrigerant is kept at a constant temperature. A refrigerant cooling method.
PCT/JP2013/006837 2012-11-27 2013-11-21 Refrigerant cooling device and method WO2014083810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549803A JPWO2014083810A1 (en) 2012-11-27 2013-11-21 Refrigerant cooling apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-258286 2012-11-27
JP2012258286 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014083810A1 true WO2014083810A1 (en) 2014-06-05

Family

ID=50827471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006837 WO2014083810A1 (en) 2012-11-27 2013-11-21 Refrigerant cooling device and method

Country Status (2)

Country Link
JP (1) JPWO2014083810A1 (en)
WO (1) WO2014083810A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511518A (en) * 2015-12-14 2016-04-20 丹东通达科技有限公司 Intelligent temperature control method used for liquid nitrogen cryogenic device
WO2018186095A1 (en) * 2017-04-05 2018-10-11 富士通株式会社 Cooling system, cooling device, and electronic system
CN110134162A (en) * 2019-05-23 2019-08-16 上海友尹化工装备有限公司 A kind of chemical reaction temperature automatic control system of ultralow temperature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156775U (en) * 1981-03-30 1982-10-01
JPH0521657A (en) * 1991-07-15 1993-01-29 Fujitsu Ltd Refrigerant constant temperature control device and control method thereof
JPH07127958A (en) * 1993-11-09 1995-05-19 Iwatani Internatl Corp Cooling method for liquefied argon storage tank
JPH09196528A (en) * 1996-01-11 1997-07-31 Horiba Ltd Heat exchanger for high-efficiency cooling
JP2002039692A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Heat exchanger and heat exchange system for liquefied natural gas
JP2005177563A (en) * 2003-12-17 2005-07-07 Mitsubishi Electric Corp Apparatus for recovering vapor of gasoline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156775U (en) * 1981-03-30 1982-10-01
JPH0521657A (en) * 1991-07-15 1993-01-29 Fujitsu Ltd Refrigerant constant temperature control device and control method thereof
JPH07127958A (en) * 1993-11-09 1995-05-19 Iwatani Internatl Corp Cooling method for liquefied argon storage tank
JPH09196528A (en) * 1996-01-11 1997-07-31 Horiba Ltd Heat exchanger for high-efficiency cooling
JP2002039692A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Heat exchanger and heat exchange system for liquefied natural gas
JP2005177563A (en) * 2003-12-17 2005-07-07 Mitsubishi Electric Corp Apparatus for recovering vapor of gasoline

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511518A (en) * 2015-12-14 2016-04-20 丹东通达科技有限公司 Intelligent temperature control method used for liquid nitrogen cryogenic device
CN105511518B (en) * 2015-12-14 2017-05-31 丹东通达科技有限公司 A kind of intelligent temperature control method for liquid nitrogen cryogenics device
WO2018186095A1 (en) * 2017-04-05 2018-10-11 富士通株式会社 Cooling system, cooling device, and electronic system
US10912222B2 (en) 2017-04-05 2021-02-02 Fujitsu Limited Cooling system, cooling device, and electronic system
CN110134162A (en) * 2019-05-23 2019-08-16 上海友尹化工装备有限公司 A kind of chemical reaction temperature automatic control system of ultralow temperature
CN110134162B (en) * 2019-05-23 2024-01-16 上海友尹化工装备有限公司 Ultralow-temperature automatic control system for chemical reaction temperature

Also Published As

Publication number Publication date
JPWO2014083810A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
US8573962B2 (en) High-pressure treatment apparatus
KR101486925B1 (en) Gas supply device
JP5806486B2 (en) Freezer and method using liquid cryogen refrigerant
US20080289720A1 (en) Apparatus and method for filling fuel
US20140007975A1 (en) Method for Dispensing a Gas
WO2014083810A1 (en) Refrigerant cooling device and method
JP5306708B2 (en) Refrigerant cooling device
JP2017067178A (en) Pre-cooler of hydrogen gas filling facility and pre-cooling method
US11542147B2 (en) Beverage dispensers with heat exchangers
JP7228983B2 (en) A BOG recondenser and LNG supply system comprising the same.
JP5319906B2 (en) Cryogenic liquid heating method and apparatus
JP5266455B2 (en) Temperature control device
JP5111962B2 (en) Liquefied gas supply method and apparatus
JP3839915B2 (en) Refrigerant cooling device
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
JP2005058873A (en) Low temperature liquid heating method and apparatus therefor
JP5958241B2 (en) Heat pump heat source machine
KR102136007B1 (en) Liquid nitrogen auto supply device using mass sensor
CN218568899U (en) Water-gas tank and fuel cell system test bench
JP2010007958A (en) Temperature adjusting device
WO2013190842A1 (en) Cooling method and cooling device
CN115903951A (en) Temperature control system and temperature control method
JP2011002215A (en) Heat pump type hot water supply device
KR101884025B1 (en) Device and method of control of suction drum for liquefied gas pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859478

Country of ref document: EP

Kind code of ref document: A1