JP2017067178A - Pre-cooler of hydrogen gas filling facility and pre-cooling method - Google Patents

Pre-cooler of hydrogen gas filling facility and pre-cooling method Download PDF

Info

Publication number
JP2017067178A
JP2017067178A JP2015193613A JP2015193613A JP2017067178A JP 2017067178 A JP2017067178 A JP 2017067178A JP 2015193613 A JP2015193613 A JP 2015193613A JP 2015193613 A JP2015193613 A JP 2015193613A JP 2017067178 A JP2017067178 A JP 2017067178A
Authority
JP
Japan
Prior art keywords
refrigerant
hydrogen gas
hydrogen
pressure
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015193613A
Other languages
Japanese (ja)
Other versions
JP6586338B2 (en
Inventor
静一 藤川
Seiichi Fujikawa
静一 藤川
暁子 遠藤
Akiko Endo
暁子 遠藤
尚久 牧平
Naohisa Makihira
尚久 牧平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2015193613A priority Critical patent/JP6586338B2/en
Publication of JP2017067178A publication Critical patent/JP2017067178A/en
Application granted granted Critical
Publication of JP6586338B2 publication Critical patent/JP6586338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

PROBLEM TO BE SOLVED: To keep a cooling temperature constant where hydrogen gas is cooled even if its configuration is simplified and its energy saving is carried out.SOLUTION: This invention relates to a pre-cooler 21 of hydrogen gas filling facility for cooling hydrogen gas prior to its filling where there is provided a refrigerant circulation passage 22 having liquid refrigerant R having a boiling point under a specified pressure as a temperature suitable for a cooling temperature of hydrogen gas filled in sealed state therein. A heat exchanging part 23 for evaporating refrigerant is provided in a liquid phase portion Ra of the refrigerant R in the refrigerant circulation passage 22 to cool the hydrogen gas through heat exchanging between the hydrogen gas to be cooled and the liquid-phase-refrigerant R to be evaporated. A heat exchanging part 24 for condensing refrigerant is provided in a gaseous phase portion Rb of the refrigerant R in the refrigerant circulation passage 22 to condense the gaseous-phase-refrigerant R through heat exchanging with the liquefied hydrogen. In addition, there is provided pressure adjustment means 29 for adjusting a pressure of refrigerant R in the refrigerant circulation passage 22 to a prescribed specific pressure to keep a temperature of the refrigerant R constant.SELECTED DRAWING: Figure 1

Description

この発明は、たとえば燃料電池自動車等の水素ガスタンクに水素ガスを充填するための水素ガス充填設備に関し、より詳しくは、充填に先立って水素ガスを冷却するプレクーラー及びプレクール方法に関する。   The present invention relates to a hydrogen gas filling facility for filling a hydrogen gas tank of a fuel cell vehicle or the like, for example, and more particularly to a precooler and a precooling method for cooling hydrogen gas prior to filling.

燃料電池自動車等の水素ガスタンクには、水素ガスが高圧で充填される。   Hydrogen gas tanks such as fuel cell vehicles are filled with hydrogen gas at high pressure.

しかし、水素ガスの充填に際しては断熱圧縮による温度上昇が起こる。またそもそも水素ガスは一般的なガスとは異なり、断熱膨張させるとジュールトムソン効果により温度が上昇する性質がある。   However, a temperature rise occurs due to adiabatic compression when filling with hydrogen gas. In the first place, unlike general gases, hydrogen gas has the property that the temperature rises due to the Joule-Thompson effect when adiabatically expanded.

このため、充填中に水素ガスタンク内のガス温度の過上昇を防止するためには、充填に先立って圧縮水素ガスをあらかじめ低温にしておく必要がある。これはプレクールと称され、−40℃〜−33℃が圧縮水素充填技術基準(JPEC-S 0003(2012))で規定される温度範囲である。   For this reason, in order to prevent an excessive increase in the gas temperature in the hydrogen gas tank during filling, it is necessary to make the compressed hydrogen gas low in advance prior to filling. This is called pre-cooling, and −40 ° C. to −33 ° C. is a temperature range defined by the compressed hydrogen filling technical standard (JPEC-S 0003 (2012)).

プレクールを行う冷却装置として、たとえば下記特許文献1に開示されたものが提案されている。   As a cooling device that performs precooling, for example, a cooling device disclosed in Patent Document 1 below has been proposed.

特許文献1の冷却装置は、ブラインのような冷却媒体を貯留する容器を備え、この中に水素ガスを導いて熱交換、つまり冷却を行う構成である。冷却媒体は、前述の容器と、これとは別に設けられたフロン冷凍機との間を循環させられ、フロン冷凍機で冷却されて、熱交換を行う前述の容器に供給される。冷却媒体の供給は、水素ガスや冷媒の温度検知に基づいて制御され、水素ガスを所定の温度に冷却する。   The cooling device of Patent Document 1 includes a container that stores a cooling medium such as brine, and has a configuration in which hydrogen gas is guided therein to perform heat exchange, that is, cooling. The cooling medium is circulated between the aforementioned container and a Freon refrigerator provided separately from the container, cooled by the Freon refrigerator, and supplied to the aforementioned container that performs heat exchange. The supply of the cooling medium is controlled based on the temperature detection of the hydrogen gas or the refrigerant, and cools the hydrogen gas to a predetermined temperature.

しかし、冷却媒体を循環させるためにポンプが必要であるうえに冷凍機も必要であって、装置が大きく、駆動に伴う音がうるさい、起動に時間がかかる、消費電力が大きいなどの難点がある。しかも、温度計による温度検知に基づいて冷却媒体を供給して冷却温度を制御する構成であるので、冷却温度を一定することが難しい。   However, in order to circulate the cooling medium, a pump is required and a refrigerator is also required. The apparatus is large, the sound generated by driving is noisy, startup takes time, and power consumption is high. . Moreover, since the cooling medium is controlled by supplying the cooling medium based on temperature detection by the thermometer, it is difficult to keep the cooling temperature constant.

この点、冷却媒体に液体窒素を用いてポンプを不要とする冷却装置が特許文献2に開示されている。   In this regard, Patent Document 2 discloses a cooling device that uses liquid nitrogen as a cooling medium and does not require a pump.

特許文献2の冷却装置は、補助熱交換器と主熱交換器を上流側から順に備え、これらを二重管構造として内部に水素ガスを流し、主熱交換器では液化窒素を、補助熱交換器では気化した液化窒素を供給して水素ガスの冷却を行う。   The cooling device of Patent Document 2 is provided with an auxiliary heat exchanger and a main heat exchanger in order from the upstream side, and these are made into a double-pipe structure to flow hydrogen gas therein. In the main heat exchanger, liquefied nitrogen is exchanged for auxiliary heat exchange. In the vessel, vaporized liquefied nitrogen is supplied to cool the hydrogen gas.

この構成では、ポンプが不要であるとともに熱交換器の小型化をはかることができる。   With this configuration, a pump is not required and the heat exchanger can be downsized.

しかし、この冷却装置においても、水素ガスの温度制御は水素ガスの温度を温度計により検知して、この検知に基づいて行うというものである。つまり水素ガスの温度が目的温度から逸脱した場合に、流量調整弁の開度を調整し、冷却されるべき水素ガスの流量を調整して目的温度の冷却水素ガスを得るという制御が行われる。   However, also in this cooling device, the temperature control of the hydrogen gas is performed by detecting the temperature of the hydrogen gas with a thermometer and based on this detection. That is, when the temperature of the hydrogen gas deviates from the target temperature, control is performed to adjust the opening of the flow rate adjusting valve and adjust the flow rate of the hydrogen gas to be cooled to obtain the cooled hydrogen gas at the target temperature.

このため、冷却温度を一定することは難しい。また冷却に液化窒素を直接用いるので、冷えすぎになる懸念もある。   For this reason, it is difficult to keep the cooling temperature constant. Moreover, since liquefied nitrogen is directly used for cooling, there is a concern that it may become too cold.

特開2005−83567号公報JP 2005-83567 A 特開2011−127754号公報JP 2011-127754 A

そこで、この発明は、構成の簡素化をはかるとともに、冷却温度を一定にすることが容易に行えるようにすることを主な目的とする。   Accordingly, the main object of the present invention is to simplify the configuration and to make it easy to keep the cooling temperature constant.

そのための手段は、充填に先立って水素ガスを冷却する、水素ガス充填設備のプレクーラーであって、ある特定圧力での沸点が前記水素ガスの冷却温度にふさわしい温度である液状の冷媒が封入された冷媒循環路が設けられ、前記冷媒循環路における前記冷媒の液相部分に、冷却される前記水素ガスと熱交換して前記水素ガスを冷却する一方、液相の前記冷媒を蒸発させる冷媒蒸発用熱交換部を備え、前記冷媒循環路における前記冷媒の気相部分に、液化水素と熱交換して気相の前記冷媒を凝縮させる冷媒凝縮用熱交換部を備え、前記冷媒循環路内の前記冷媒の圧力を、前記特定圧力に調整する圧力調整手段を備えた水素ガス充填設備のプレクーラーである。   The means for this is a precooler of a hydrogen gas filling facility that cools the hydrogen gas prior to filling, and a liquid refrigerant whose boiling point at a specific pressure is suitable for the cooling temperature of the hydrogen gas is enclosed. The refrigerant circulation path is provided, and in the liquid phase portion of the refrigerant in the refrigerant circulation path, heat exchange with the hydrogen gas to be cooled is performed to cool the hydrogen gas, while the refrigerant in the liquid phase evaporates. A heat exchange part for refrigerant, and a gas exchange part of the refrigerant in the refrigerant circuit includes a heat exchange part for refrigerant condensation that exchanges heat with liquefied hydrogen to condense the refrigerant in the gas phase, It is the precooler of the hydrogen gas filling equipment provided with the pressure adjustment means which adjusts the pressure of the said refrigerant | coolant to the said specific pressure.

別の手段は、充填に先立って水素ガスを冷却する、水素ガス充填設備のプレクール方法であって、ある特定圧力での沸点が前記水素ガスの冷却温度にふさわしい温度である液状の冷媒が封入された冷媒循環路を備えて、前記冷媒循環路における前記冷媒の液相部分に冷却する前記水素ガスを導いて前記冷媒との間で熱交換を行い、前記水素ガスを冷却する一方、液相の前記冷媒を蒸発させる蒸発工程と、前記冷媒循環路における前記冷媒の気相部分に液化水素を導いて前記冷媒との間で熱交換を行い、気相の前記冷媒を凝縮させる凝縮工程と、前記冷媒循環路内の前記冷媒の圧力を前記特定圧力に調整する調圧工程を有する水素ガス充填設備のプレクール方法である。   Another means is a pre-cooling method for hydrogen gas filling equipment that cools hydrogen gas prior to filling, and a liquid refrigerant having a boiling point at a specific pressure suitable for the cooling temperature of the hydrogen gas is enclosed. A refrigerant circulation path, conducting the hydrogen gas to be cooled to the liquid phase portion of the refrigerant in the refrigerant circulation path, exchanging heat with the refrigerant, and cooling the hydrogen gas, An evaporating step for evaporating the refrigerant, a condensing step for conducting liquefied hydrogen to a gas phase portion of the refrigerant in the refrigerant circuit and exchanging heat with the refrigerant, and condensing the gas phase refrigerant, It is the precooling method of the hydrogen gas filling equipment which has the pressure regulation process which adjusts the pressure of the said refrigerant | coolant in a refrigerant circuit to the said specific pressure.

これらの構成では、冷媒循環路に封入された冷媒は、冷却されるべき水素ガスと熱交換する液相部分(冷媒蒸発用熱交換部)で蒸発し、液化水素と熱交換する気相部分(冷媒凝縮用熱交換部)で凝縮して、冷媒循環路を循環する。冷媒循環路内の冷媒の圧力は、水素ガスの冷却温度にふさわしい温度を沸点とする特定圧力に調整(圧力調整手段)される。この圧力調整により、冷媒が気化する際の潜熱変化で冷媒の温度が一定となる。   In these configurations, the refrigerant sealed in the refrigerant circulation path evaporates in the liquid phase part (heat exchange part for refrigerant evaporation) that exchanges heat with the hydrogen gas to be cooled, and the gas phase part that exchanges heat with liquefied hydrogen ( The refrigerant is condensed in the refrigerant condensing heat exchange section) and circulated in the refrigerant circulation path. The pressure of the refrigerant in the refrigerant circuit is adjusted (pressure adjusting means) to a specific pressure whose boiling point is a temperature suitable for the cooling temperature of hydrogen gas. By adjusting the pressure, the temperature of the refrigerant becomes constant due to a change in latent heat when the refrigerant is vaporized.

この発明によれば、冷媒は蒸発と凝縮により循環するのでポンプを不要とすることができて構成の簡素化などをはかることができる。しかも、循環する冷媒の圧力を調整することによって冷媒の温度を沸点にし、潜熱を利用して冷媒の温度を一定にするので、温度検知によってフィードバック制御するよりも高精度で冷却温度を一定に保つことができる。   According to the present invention, since the refrigerant circulates by evaporation and condensation, a pump can be dispensed with and the configuration can be simplified. In addition, by adjusting the pressure of the circulating refrigerant, the temperature of the refrigerant is brought to the boiling point, and the temperature of the refrigerant is made constant by using latent heat, so the cooling temperature is kept constant with higher accuracy than feedback control by temperature detection. be able to.

プレクーラーを備えた水素ガス充電設備の説明図。Explanatory drawing of the hydrogen gas charging equipment provided with the precooler. 他の例に係るプレクーラーを備えた水素ガス充填設備の説明図。Explanatory drawing of the hydrogen gas filling equipment provided with the precooler which concerns on another example.

この発明を実施するための一形態を、以下図面を用いて説明する。
図1は、水素ガス充填設備11、具体的には主に燃料電池自動車Xへの水素ガス供給を行う、いわゆる水素ステーションの説明図である。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view of a so-called hydrogen station that supplies hydrogen gas to a hydrogen gas filling facility 11, specifically, a fuel cell vehicle X mainly.

水素ガス充填設備11は、液化水素を貯留する液化水素貯槽12と、液化水素を気化する気化器13と、気化した水素ガスを圧縮する圧縮機14と、水素ガスを高圧で蓄える高圧蓄圧器15と、燃料電池自動車Xの水素ガスタンクXaに水素を供給する水素ディスペンサ16を順に備えるとともに、気化器13で気化される前の液化水素と水素ディスペンサ16に供給される前の圧縮水素ガスを導いて構成されるプレクーラー21を備えている。   The hydrogen gas filling facility 11 includes a liquefied hydrogen storage tank 12 for storing liquefied hydrogen, a vaporizer 13 for vaporizing liquefied hydrogen, a compressor 14 for compressing the vaporized hydrogen gas, and a high pressure accumulator 15 for storing hydrogen gas at a high pressure. And a hydrogen dispenser 16 for supplying hydrogen to the hydrogen gas tank Xa of the fuel cell vehicle X in order, and guiding the liquefied hydrogen before being vaporized by the vaporizer 13 and the compressed hydrogen gas before being supplied to the hydrogen dispenser 16. The precooler 21 comprised is provided.

プレクーラー21は、充填に先立って圧縮水素ガスを冷却するもので、冷媒Rを循環させる冷媒循環路22を備えている。冷媒循環路22は閉じた系、つまり閉鎖系であり、冷媒Rが封入されている。   The precooler 21 cools the compressed hydrogen gas prior to filling, and includes a refrigerant circulation path 22 for circulating the refrigerant R. The refrigerant circulation path 22 is a closed system, that is, a closed system, and the refrigerant R is sealed therein.

冷媒Rには、ある特定圧力での沸点が水素ガスの冷却温度にふさわしい温度である液状の冷媒が使用される。水素ガスの冷却温度は−40℃〜−33℃程度であるので、冷媒Rにはたとえば二酸化炭素(CO)を使用する。二酸化炭素は、0.9MPaで沸点が−40℃である。 As the refrigerant R, a liquid refrigerant whose boiling point at a specific pressure is a temperature suitable for the cooling temperature of hydrogen gas is used. Since the cooling temperature of hydrogen gas is about −40 ° C. to −33 ° C., for example, carbon dioxide (CO 2 ) is used as the refrigerant R. Carbon dioxide has a boiling point of −40 ° C. at 0.9 MPa.

冷媒循環路22は、縦長の容器22aと、この容器22aの上端と下端を容器22a外で連通する連通路22bで構成され、冷媒Rが前述の特定圧力で封入されることによって、容器22aと連通路22bの下部には冷媒Rの液相部分Raが、上部には冷媒Rの気相部分Rbができる。連通路22bは容器22aの太さよりも細く形成されている。   The refrigerant circulation path 22 is configured by a vertically long container 22a and a communication path 22b that communicates the upper and lower ends of the container 22a outside the container 22a, and the refrigerant R is sealed at the above-described specific pressure. A liquid phase portion Ra of the refrigerant R is formed at the lower portion of the communication path 22b, and a gas phase portion Rb of the refrigerant R is formed at the upper portion. The communication path 22b is formed thinner than the thickness of the container 22a.

このような冷媒循環路22の連通路22bにおける冷媒Rの液相部分Raに冷媒蒸発用熱交換部23が備えられ、冷媒循環路22の容器22aにおける冷媒Rの気相部分Rbに冷媒凝縮用熱交換部24が備えられる。冷媒蒸発用熱交換部23は冷却される圧縮水素ガスと熱交換して圧縮水素ガスを冷却する一方、液相の冷媒Rを蒸発させる部分である。冷媒凝縮用熱交換部24は液化水素と熱交換して気相の冷媒Rを凝縮させる部分である。冷媒Rの蒸発と凝縮によって、冷媒Rは冷媒循環路22をポンプなしで循環可能である。   The refrigerant evaporation heat exchange section 23 is provided in the liquid phase portion Ra of the refrigerant R in the communication passage 22b of the refrigerant circulation path 22, and the refrigerant condensation phase is provided in the gas phase portion Rb of the refrigerant R in the container 22a of the refrigerant circulation path 22. A heat exchange unit 24 is provided. The refrigerant evaporation heat exchanging unit 23 is a part that exchanges heat with the cooled compressed hydrogen gas to cool the compressed hydrogen gas, while evaporating the liquid-phase refrigerant R. The heat exchanger 24 for condensing refrigerant condenses the gas-phase refrigerant R by exchanging heat with liquefied hydrogen. By evaporating and condensing the refrigerant R, the refrigerant R can circulate in the refrigerant circuit 22 without a pump.

冷媒蒸発用熱交換部23は、連通路22bの下部に形成され、液相の冷媒Rを蒸発させるための熱源としての冷却される圧縮水素ガスが導入される熱交換パイプ23aを備えている。熱交換パイプ23aの一端には高圧蓄圧器15から延びる圧縮水素ガス導入路25が接続され、熱交換パイプ23aの他端には、水素ディスペンサ16に向けて延びる冷却水素ガス導出路26が接続されている。圧縮水素ガス導入路25には、プレクーラー21へ圧縮水素ガスの供給を行うガス供給用開閉弁25aが備えられる。   The refrigerant evaporation heat exchange section 23 includes a heat exchange pipe 23a that is formed below the communication path 22b and into which compressed hydrogen gas to be cooled is introduced as a heat source for evaporating the liquid-phase refrigerant R. A compressed hydrogen gas introduction path 25 extending from the high pressure accumulator 15 is connected to one end of the heat exchange pipe 23a, and a cooling hydrogen gas outlet path 26 extending toward the hydrogen dispenser 16 is connected to the other end of the heat exchange pipe 23a. ing. The compressed hydrogen gas introduction path 25 is provided with a gas supply opening / closing valve 25 a for supplying compressed hydrogen gas to the precooler 21.

冷媒凝縮用熱交換部24は、容器22aの上部に形成され、気相の冷媒Rを凝縮させるための冷熱源としての液化水素が導入される熱交換パイプ24aを備えている。熱交換パイプ24aの一端には、液化水素貯槽12から気化器13に向けて延びる液化水素供給路17から分岐され、液化水素を導入するための液化水素導入路27が接続され、熱交換パイプ24aの他端には、液化水素を液化水素供給路17の気化器13の手前に還流させる液化水素導出路28が接続されている。このように、冷媒蒸発用熱交換部23への水素ガス導入路である圧縮水素ガス導入路25の源と、冷媒凝縮用熱交換部24への液化水素導入路27の源は同一であり、液化水素を貯留する液化水素貯槽12に接続されている。   The refrigerant condensing heat exchanging section 24 includes a heat exchanging pipe 24a that is formed in the upper part of the container 22a and into which liquefied hydrogen as a cold heat source for condensing the gas-phase refrigerant R is introduced. One end of the heat exchange pipe 24a is branched from a liquefied hydrogen supply path 17 that extends from the liquefied hydrogen storage tank 12 toward the vaporizer 13, and is connected to a liquefied hydrogen introduction path 27 for introducing liquefied hydrogen. The heat exchange pipe 24a A liquefied hydrogen lead-out path 28 is connected to the other end of the liquefied hydrogen to reflux the liquefied hydrogen before the vaporizer 13 in the liquefied hydrogen supply path 17. Thus, the source of the compressed hydrogen gas introduction path 25 that is the hydrogen gas introduction path to the refrigerant evaporation heat exchange section 23 and the source of the liquefied hydrogen introduction path 27 to the refrigerant condensation heat exchange section 24 are the same, It is connected to a liquefied hydrogen storage tank 12 for storing liquefied hydrogen.

液化水素供給路17における液化水素導入路27への分岐点と液化水素導出路28からの合流点との間には切り替え用開閉弁17aが備えられ、液化水素導入路27には冷熱供給用開閉弁27aが備えられている。たとえば切り替え用開閉弁17aを閉じて冷熱供給用開閉弁27aを開き、液化水素を冷媒凝縮用熱交換部24への供給することで、冷媒凝縮用熱交換部24における気相の冷媒Rは冷却されて凝縮して液化し、供給前よりも容器22a内の冷媒Rの圧力が下がる。   A switching on / off valve 17a is provided between a branch point of the liquefied hydrogen supply path 17 to the liquefied hydrogen introduction path 27 and a junction point from the liquefied hydrogen lead-out path 28, and the liquefied hydrogen introduction path 27 is opened and closed for supplying cold heat. A valve 27a is provided. For example, by closing the switching on / off valve 17a and opening the on / off valve 27a for supplying cold heat and supplying liquefied hydrogen to the heat exchange unit 24 for refrigerant condensation, the refrigerant R in the gas phase in the heat exchange unit 24 for refrigerant condensation is cooled. Then, it is condensed and liquefied, and the pressure of the refrigerant R in the container 22a is lower than before supply.

このほか冷媒循環路22は、内部の冷媒Rの圧力を前述の特定圧力に調整する圧力調整手段29を備えている。圧力調整手段29は、容器22a内の上部と下部を容器22a外で接続する調圧通路29aを備え、この調圧通路29a上に、圧力調整器29bと気化器29cが備えられている。圧力調整器29bは調整通路29aの上流側に設けられ、たとえばダイヤフラム弁など公知の圧力調整弁で構成される。圧力調整器29bは、上流側の圧力に応じて開度調整を行い、上流側が特定圧力に満たないときに冷媒を通過させる。気化器29cは、圧力調整器29bより下流側に設けられ、通過する冷媒Rを熱交換により気化して容器22a内に送り込み、容器22a内の冷媒Rの圧力を高める。   In addition, the refrigerant circulation path 22 includes pressure adjusting means 29 that adjusts the pressure of the internal refrigerant R to the above-described specific pressure. The pressure adjusting means 29 includes a pressure adjusting passage 29a that connects an upper portion and a lower portion in the container 22a outside the container 22a, and a pressure adjuster 29b and a vaporizer 29c are provided on the pressure adjusting passage 29a. The pressure regulator 29b is provided on the upstream side of the regulation passage 29a, and is constituted by a known pressure regulation valve such as a diaphragm valve. The pressure regulator 29b adjusts the opening according to the pressure on the upstream side, and allows the refrigerant to pass when the upstream side is less than the specific pressure. The vaporizer 29c is provided on the downstream side of the pressure regulator 29b, vaporizes the passing refrigerant R by heat exchange, and sends it into the container 22a to increase the pressure of the refrigerant R in the container 22a.

また冷媒循環路22を構成する容器22aの上部には安全弁30が設けられている。この安全弁30は内部の圧力が過剰に上昇した場合に冷媒Rを放出する機能を有する。   A safety valve 30 is provided at the upper part of the container 22a constituting the refrigerant circulation path 22. The safety valve 30 has a function of releasing the refrigerant R when the internal pressure rises excessively.

前述の圧力調整器29b、切り替え用開閉弁17a、冷熱供給用開閉弁27a、ガス供給用開閉弁25aなどの必要部材は図示しない制御部で駆動制御される。制御部による制御で、冷媒循環路22における冷媒Rの液相部分Raである冷媒蒸発用熱交換部23に冷却する圧縮水素ガスを導いて冷媒Rとの間で熱交換を行い、圧縮水素ガスを冷却する一方、液相の冷媒Rを蒸発させる蒸発工程と、冷媒循環路22における冷媒Rの気相部分Rbである冷媒凝縮用熱交換部24に液化水素を導いて冷媒Rとの間で熱交換を行い、気相の冷媒Rを凝縮させる凝縮工程と、冷媒循環路22内の冷媒Rの圧力を前述の特定圧力に調整する調圧工程が行われる。   Necessary members such as the pressure regulator 29b, the switching on-off valve 17a, the cold supply on-off valve 27a, and the gas supply on-off valve 25a are driven and controlled by a control unit (not shown). Under the control of the control unit, the compressed hydrogen gas to be cooled is guided to the refrigerant evaporating heat exchange unit 23 which is the liquid phase portion Ra of the refrigerant R in the refrigerant circuit 22 to exchange heat with the refrigerant R, and the compressed hydrogen gas Between the refrigerant R and the evaporating step for evaporating the liquid-phase refrigerant R, and the refrigerant R by introducing the liquefied hydrogen to the refrigerant condensation heat exchanging portion 24 which is the gas phase portion Rb of the refrigerant R in the refrigerant circuit 22. A condensation process for performing heat exchange and condensing the refrigerant R in the gas phase and a pressure adjusting process for adjusting the pressure of the refrigerant R in the refrigerant circulation path 22 to the specific pressure are performed.

なお、前述のとおり冷媒蒸発用熱交換部23への水素ガス導入路である圧縮水素ガス導入路25の源と、冷媒凝縮用熱交換部24への液化水素導入路27の源は同一であるので、制御部による制御に際し、冷却する圧縮水素ガスは液化水素を気化して生成されるとともに、冷媒凝縮用熱交換部24に導入する液化水素に、圧縮水素ガスの源である液化水素と同一の、水素ガス充填設備11における液化水素貯槽12内の液化水素が用いられる。   As described above, the source of the compressed hydrogen gas introduction path 25 that is the hydrogen gas introduction path to the refrigerant evaporation heat exchange section 23 and the source of the liquefied hydrogen introduction path 27 to the refrigerant condensation heat exchange section 24 are the same. Therefore, in the control by the control unit, the compressed hydrogen gas to be cooled is generated by vaporizing the liquefied hydrogen, and the liquefied hydrogen introduced into the heat exchange unit 24 for refrigerant condensation is the same as the liquefied hydrogen that is the source of the compressed hydrogen gas. The liquefied hydrogen in the liquefied hydrogen storage tank 12 in the hydrogen gas filling equipment 11 is used.

以上のような構成のプレクーラー21では、次のようにしてプレクールを行う。   In the precooler 21 configured as described above, precooling is performed as follows.

冷媒循環路22内の冷媒Rは、圧力調整手段29が冷媒Rの圧力を一定にするように自動的に制御する。冷媒である二酸化炭素は、圧力が0.9MPaであるときに沸点が−40℃であるので、圧力調整手段29で圧力を0.9MPaに調整する。この圧力制御により冷媒Rの温度が一定に保たれる。このため、圧縮水素ガスを冷却する冷却温度は一定に保たれる。   The refrigerant R in the refrigerant circuit 22 is automatically controlled by the pressure adjusting means 29 so that the pressure of the refrigerant R is constant. Since carbon dioxide as a refrigerant has a boiling point of −40 ° C. when the pressure is 0.9 MPa, the pressure is adjusted to 0.9 MPa by the pressure adjusting means 29. By this pressure control, the temperature of the refrigerant R is kept constant. For this reason, the cooling temperature for cooling the compressed hydrogen gas is kept constant.

冷媒Rの圧力が調整値よりも高い場合には、切り替え用開閉弁17aを閉じて冷熱供給用開閉弁27aを開き、液化水素を冷媒凝縮用熱交換部24に流してその部分で気化している冷媒Rを凝縮させて液化し、体積を小さくする。これによって冷媒Rの圧力が下がり冷媒Rの液面が上がる。逆に、冷媒Rの圧力が調整値よりも低い場合には、圧力調整器29bを開いて冷媒Rを気化器29cに送って気化させる。気化した冷媒Rは冷媒循環路22の容器22aに導入される。これによって冷媒Rの圧力が上がり冷媒Rの液面が下がる。このような調圧工程により、冷媒Rの温度は、潜熱変化する沸点温度に保たれる。つまり温度変化を伴わない潜熱を利用して一定温度に保つ。   When the pressure of the refrigerant R is higher than the adjustment value, the switching on / off valve 17a is closed and the cold heat supply on / off valve 27a is opened, and the liquefied hydrogen is caused to flow through the refrigerant condensing heat exchange unit 24 to be vaporized at that portion. The refrigerant R is condensed and liquefied to reduce the volume. As a result, the pressure of the refrigerant R decreases and the liquid level of the refrigerant R increases. Conversely, when the pressure of the refrigerant R is lower than the adjustment value, the pressure regulator 29b is opened and the refrigerant R is sent to the vaporizer 29c to be vaporized. The vaporized refrigerant R is introduced into the container 22 a of the refrigerant circuit 22. As a result, the pressure of the refrigerant R increases and the liquid level of the refrigerant R decreases. By such a pressure adjusting process, the temperature of the refrigerant R is kept at the boiling point temperature where the latent heat changes. In other words, it is kept at a constant temperature by using latent heat that is not accompanied by a temperature change.

水素ディスペンサ16から水素ガスを供給するために、圧縮水素ガス導入路25のガス供給用開閉弁25aを開けると、圧縮水素ガスは高圧蓄圧器15から出て、冷媒蒸発用熱交換部23に送られる。ここにおいて圧縮水素ガスは一定温度に保たれている冷媒Rと熱交換を行い冷却されたうえで、冷却水素ガス導出路26を経て水素ディスペンサ16に供給され、水素ガスタンクXaに充填される。冷媒Rの温度が−40℃であるので、圧縮水素ガスの流量などの条件にもよるが、充填中に水素ガスタンクXa内の水素ガス温度を−40℃〜−33℃程度の所定範囲の温度にできる。   In order to supply hydrogen gas from the hydrogen dispenser 16, when the gas supply opening / closing valve 25 a of the compressed hydrogen gas introduction path 25 is opened, the compressed hydrogen gas exits from the high pressure accumulator 15 and is sent to the refrigerant evaporation heat exchanger 23. It is done. Here, the compressed hydrogen gas is cooled by exchanging heat with the refrigerant R maintained at a constant temperature, supplied to the hydrogen dispenser 16 through the cooling hydrogen gas lead-out path 26, and filled in the hydrogen gas tank Xa. Since the temperature of the refrigerant R is −40 ° C., depending on conditions such as the flow rate of compressed hydrogen gas, the temperature of the hydrogen gas in the hydrogen gas tank Xa during filling is a temperature within a predetermined range of about −40 ° C. to −33 ° C. Can be.

冷媒蒸発用熱交換部23で圧縮水素ガスを冷却して冷媒Rの温度が上がり蒸発すると、冷媒Rの圧力が高まる。このとき、前述のように切り替え用開閉弁17aを閉じて冷熱供給用開閉弁27aを開き、液化水素を冷媒凝縮用熱交換部24に流して冷媒Rの圧力を調整値まで下げる。   When the compressed hydrogen gas is cooled by the refrigerant evaporation heat exchanger 23 and the temperature of the refrigerant R rises and evaporates, the pressure of the refrigerant R increases. At this time, as described above, the switching on-off valve 17a is closed and the cold heat supply on-off valve 27a is opened, and liquefied hydrogen is caused to flow through the refrigerant condensing heat exchanging portion 24 to lower the pressure of the refrigerant R to the adjusted value.

冷媒循環路22内の冷媒Rは、冷媒蒸発用熱交換部23での蒸発と冷媒凝縮用熱交換部24での凝縮によって循環する。   The refrigerant R in the refrigerant circulation path 22 circulates by evaporation in the refrigerant evaporation heat exchange section 23 and condensation in the refrigerant condensation heat exchange section 24.

以上のように、冷却温度は、温度計での検知結果に基づいて制御する場合とは異なり、冷媒が気化する際の潜熱を利用するので一定に保て、所定の温度範囲内への冷却が安定して行える。しかも、潜熱利用を冷媒Rの圧力制御によって行うので、電気も必要なく自動ででき、構成が至って簡素である。そのうえ、冷媒Rは自然に循環するので、前述のようにポンプを用いる必要がない。このため、消費電力を大幅に削減でき、省エネを実現できる。また装置の簡素化や小型化が可能で、騒音の発生を抑えることもできる。   As described above, unlike the case where the cooling temperature is controlled based on the detection result of the thermometer, the cooling heat uses the latent heat when the refrigerant evaporates, so that the cooling temperature is kept constant, and cooling to a predetermined temperature range is possible. It can be done stably. Moreover, since the latent heat is used by controlling the pressure of the refrigerant R, electricity can be automatically generated without necessity, and the configuration is simple and simple. Moreover, since the refrigerant R circulates naturally, it is not necessary to use a pump as described above. For this reason, power consumption can be significantly reduced and energy saving can be realized. In addition, the apparatus can be simplified and miniaturized, and noise generation can be suppressed.

しかも、冷凍機を用いずに、供給する水素ガスのもとである液化水素をプレクールに利用するので、冷熱の有効利用ができる。そのうえ前述のように構成が簡素であることも相まって、メンテナンスも容易である。   Moreover, since the liquefied hydrogen that is the source of the supplied hydrogen gas is used pre-cooling without using a refrigerator, it is possible to effectively use cold energy. In addition, the simple configuration as described above facilitates maintenance.

また、冷媒Rの温度は冷媒Rの圧力を調整することで一定に保ち、温度変化を伴わない沸点における冷媒Rの潜熱を利用するので、冷媒Rの温度を精度よく制御できる。冷媒Rの冷却に用いる液化水素は低温であるので、冷熱の有効利用として単に液化水素を直接冷却に用いると冷やし過ぎをおこす難点がある。この点、前述のようにプレクーラー21は冷媒Rの沸点と潜熱を利用するうえ、気化器29cを備えた圧力調整手段29で圧力調整を行うので、万が一冷え過ぎた場合でも即座に対応でき、圧縮水素ガスの適切な冷却が行える。   Further, the temperature of the refrigerant R is kept constant by adjusting the pressure of the refrigerant R, and since the latent heat of the refrigerant R at the boiling point without temperature change is used, the temperature of the refrigerant R can be accurately controlled. Since the liquefied hydrogen used for cooling the refrigerant R is at a low temperature, if the liquefied hydrogen is simply used for direct cooling as an effective use of the cold heat, there is a difficulty in overcooling. In this regard, as described above, the precooler 21 uses the boiling point and latent heat of the refrigerant R and adjusts the pressure by the pressure adjusting means 29 provided with the vaporizer 29c. Therefore, even if the precooler 21 is too cold, it can respond immediately. Proper cooling of compressed hydrogen gas can be performed.

つぎに、他の例を説明する。この説明において、前述の構成と同一又は同等の部位については同一の符号を付してその詳しい説明を省略する。   Next, another example will be described. In this description, parts that are the same as or equivalent to those in the above-described configuration are given the same reference numerals, and detailed descriptions thereof are omitted.

図2に示したように、水素ガス充填設備11のプレクーラー21は、冷媒循環路22を、冷媒Rを貯留する2個の容器(第1容器22cおよび第2容器22d)と、液状の冷媒Rが流れる液状冷媒流路31と、液状の冷媒Rが気化する冷媒蒸発用熱交換部23の熱交換パイプ23bと、気化された冷媒Rが流れる気化冷媒流路32と、気化された冷媒を凝縮させる冷媒凝縮用熱交換部24の熱交換パイプ24bで構成されている。第1容器22cと第2容器22dには前述と同じ圧力調整手段29が備えられている。   As shown in FIG. 2, the precooler 21 of the hydrogen gas filling equipment 11 includes a refrigerant circulation path 22, two containers (a first container 22 c and a second container 22 d) that store the refrigerant R, and a liquid refrigerant. The liquid refrigerant flow path 31 through which R flows, the heat exchange pipe 23b of the refrigerant evaporation heat exchange section 23 in which the liquid refrigerant R vaporizes, the vaporized refrigerant flow path 32 through which the vaporized refrigerant R flows, and the vaporized refrigerant The heat exchange pipe 24b of the heat exchange unit 24 for condensing refrigerant to be condensed is configured. The first container 22c and the second container 22d are provided with the same pressure adjusting means 29 as described above.

第1容器22cと第2容器22dは、液状冷媒流路31の途中に配置され、液状冷媒流路31と液状冷媒流路31から第1容器22cと第2容器22dにそれぞれ接続する分岐路33c,33dとの間に、切り替えスイッチ34を備えている。液状冷媒流路31における切り替えスイッチ34より上流側が導入路31aで、下流側が導出路31bであり、冷媒Rは上流側から下流側に自然流下するように各部が配置されている。   The first container 22c and the second container 22d are disposed in the middle of the liquid refrigerant flow path 31, and are branched from the liquid refrigerant flow path 31 and the liquid refrigerant flow path 31 to the first container 22c and the second container 22d, respectively. , 33d, a changeover switch 34 is provided. The upstream side of the changeover switch 34 in the liquid refrigerant flow path 31 is the introduction path 31a, the downstream side is the lead-out path 31b, and each part of the refrigerant R is arranged so as to naturally flow from the upstream side to the downstream side.

切り替えスイッチ34は、冷媒凝縮用熱交換部24から液状冷媒流路31の導入部31aを通る冷媒Rを第1容器22c又は第2容器22dのうちのいずれか一方に流し、冷媒Rを受け入れる方とは別の、他方の容器(第1容器22c又は第2容器22d)の冷媒Rを冷媒蒸発用熱交換部23に流すように切り替えを行うもので、例えば冷媒凝縮用熱交換部24から冷媒Rが第1容器22cに入るように切り替えた場合には、第2容器22dの冷媒Rが冷媒蒸発用熱交換部23に向けて流され、冷媒凝縮用熱交換部24から冷媒Rが第2容器22dに入るようにした場合には、第1容器22cの冷媒Rが冷媒蒸発用熱交換部23に向けて導出されることになる。このように切り替えスイッチ34はあるものの、冷媒Rは冷媒循環路22を循環する。   The changeover switch 34 allows the refrigerant R that passes through the introduction part 31a of the liquid refrigerant flow path 31 from the refrigerant condensation heat exchanging part 24 to flow into either the first container 22c or the second container 22d and receives the refrigerant R. Is switched so that the refrigerant R of the other container (the first container 22c or the second container 22d) flows to the refrigerant evaporation heat exchange section 23, for example, from the refrigerant condensation heat exchange section 24 to the refrigerant. When switching is made so that R enters the first container 22c, the refrigerant R in the second container 22d flows toward the refrigerant evaporation heat exchange unit 23, and the refrigerant R is transferred from the refrigerant condensation heat exchange unit 24 to the second. When entering the container 22d, the refrigerant R in the first container 22c is led out toward the refrigerant evaporation heat exchange section 23. Thus, although there is the changeover switch 34, the refrigerant R circulates in the refrigerant circuit 22.

冷媒蒸発用熱交換部23の熱交換パイプ23bは、冷却される圧縮水素ガスを通す熱交換パイプ23aと共に冷媒蒸発用熱交換部23を構成している。つまり、熱交換パイプ23bを通る液相の冷媒Rは、圧縮水素ガスとの間で熱交換をして圧縮水素ガスを冷却する一方、気化させられる。   The heat exchange pipe 23b of the refrigerant evaporation heat exchange section 23 constitutes the refrigerant evaporation heat exchange section 23 together with the heat exchange pipe 23a through which the compressed hydrogen gas to be cooled passes. That is, the liquid-phase refrigerant R passing through the heat exchange pipe 23b is vaporized while heat-exchanged with the compressed hydrogen gas to cool the compressed hydrogen gas.

気化冷媒流路32は、途中に上流側の圧力に応じて所定の圧力に圧力調整を行う圧力調整器35を備えている。   The vaporized refrigerant flow path 32 includes a pressure regulator 35 that adjusts the pressure to a predetermined pressure according to the upstream pressure.

冷媒凝縮用熱交換部24の熱交換パイプ24bは、冷熱源としての液化水素を通す熱交換パイプ24aと共に冷媒凝縮用熱交換部24を構成している。つまり、熱交換パイプ24を通る気化された冷媒Rは、液化水素との間で熱交換をして、凝縮され液化する。   The heat exchanging pipe 24b of the refrigerant condensing heat exchanging section 24 constitutes the refrigerant condensing heat exchanging section 24 together with the heat exchanging pipe 24a through which liquefied hydrogen as a cold heat source passes. That is, the vaporized refrigerant R passing through the heat exchange pipe 24 exchanges heat with liquefied hydrogen, and is condensed and liquefied.

前述の切り替えスイッチ部34、圧力調整器35、圧力調整手段29の圧力調整器29bなどの必要部材は図示しない制御部で前述と同様に駆動制御される。   Necessary members such as the changeover switch 34, the pressure regulator 35, and the pressure regulator 29b of the pressure regulating means 29 are driven and controlled in the same manner as described above by a control unit (not shown).

具体的にはつぎのとおりである。
切り替えスイッチ34をあらかじめいずれか一方の容器、つまり第1容器22cか第2容器22dに向けて冷媒Rが流れるように設定しておく。ここでは、第2容器22cへの分岐路33dに流れるように設定した例を示す。
Specifically, it is as follows.
The changeover switch 34 is set in advance so that the refrigerant R flows toward one of the containers, that is, the first container 22c or the second container 22d. Here, an example is shown in which the flow is set to flow in the branch path 33d to the second container 22c.

第2容器22d内の冷媒Rは、圧力調整手段29によって所定の圧力に保たれており、圧縮水素ガス導入路25のガス供給用開閉弁25aが開けられると、圧縮水素ガスは高圧蓄圧器15から出て、冷媒蒸発用熱交換部23の熱交換パイプ23aに送られる。すると熱交換パイプ23b内の冷媒Rと熱交換パイプ23a内の圧縮水素ガスとの間で熱交換が行われ、圧縮水素ガスは一定温度に保たれている冷媒Rと熱交換を行い冷却されたうえで、冷却水素ガス導出路26を経て水素ディスペンサ16に供給され、水素ガスタンクXaに充填される。   The refrigerant R in the second container 22d is maintained at a predetermined pressure by the pressure adjusting means 29. When the gas supply opening / closing valve 25a of the compressed hydrogen gas introduction path 25 is opened, the compressed hydrogen gas is stored in the high-pressure accumulator 15. And is sent to the heat exchange pipe 23a of the refrigerant evaporation heat exchange section 23. Then, heat exchange was performed between the refrigerant R in the heat exchange pipe 23b and the compressed hydrogen gas in the heat exchange pipe 23a, and the compressed hydrogen gas was cooled by exchanging heat with the refrigerant R maintained at a constant temperature. In addition, the hydrogen gas is supplied to the hydrogen dispenser 16 through the cooling hydrogen gas lead-out path 26 and filled in the hydrogen gas tank Xa.

一方、熱交換パイプ23b内の液状の冷媒Rは、熱交換によって蒸発する。気化した冷媒Rは、気化冷媒流路32をとおって、冷媒凝縮用熱交換部24に流れ込む。気化冷媒流路32の冷媒Rの圧力は圧力調整器35によって一定に保とうとされる。   On the other hand, the liquid refrigerant R in the heat exchange pipe 23b evaporates by heat exchange. The vaporized refrigerant R flows through the vaporized refrigerant flow path 32 into the refrigerant condensation heat exchange unit 24. The pressure of the refrigerant R in the vaporized refrigerant flow path 32 is kept constant by the pressure regulator 35.

冷媒Rの気化で冷媒Rの圧力が高まるので、液化水素供給路17の切り替え用開閉弁17aを閉じて液化水素導入路27の冷熱供給用開閉弁27aを開き、液化水素を冷媒凝縮用熱交換部24に流す。これによって、冷媒凝縮用熱交換部24の熱交換パイプ24b内の冷媒Rは凝縮され液化し、冷媒Rの圧力を調整値まで下げる。   Since the pressure of the refrigerant R increases due to the vaporization of the refrigerant R, the switching open / close valve 17a of the liquefied hydrogen supply path 17 is closed and the cold heat supply on / off valve 27a of the liquefied hydrogen introduction path 27 is opened to exchange heat of the liquefied hydrogen for refrigerant condensation. Flow to section 24. As a result, the refrigerant R in the heat exchange pipe 24b of the refrigerant condensation heat exchange section 24 is condensed and liquefied, and the pressure of the refrigerant R is lowered to the adjustment value.

液化した冷媒Rは、液状冷媒流路31の導入路31aから分岐路33cを通って第1容器22c内に入る。   The liquefied refrigerant R enters the first container 22c from the introduction path 31a of the liquid refrigerant flow path 31 through the branch path 33c.

第1容器22cに冷媒Rが十分に満たされると、切り替えスイッチ34が切り替わり、第1容器22cの冷媒Rが冷媒蒸発用熱交換部23に流れ、冷媒凝縮用熱交換部24で液化した冷媒Rが第2容器22d内に流れることになる。   When the refrigerant R is sufficiently filled in the first container 22c, the changeover switch 34 is switched, and the refrigerant R in the first container 22c flows into the refrigerant evaporation heat exchange unit 23 and is liquefied by the refrigerant condensation heat exchange unit 24. Will flow into the second container 22d.

このようにして前述と同様に圧縮水素ガスは冷却される。   In this way, the compressed hydrogen gas is cooled as described above.

以上の構成はこの発明を実施するための一形態であって、この発明は前述の構成のみに限定されるものではなく、その他の構成を採用することもできる。   The above configuration is one form for carrying out the present invention, and the present invention is not limited to the above-described configuration, and other configurations can be adopted.

たとえば、冷媒としては、二酸化炭素のほか、たとえば0.01MPaで沸点が−42.09℃であるプロパンや、0.04MPaで沸点が−47.6℃であるプロピレンなども使用できる。   For example, in addition to carbon dioxide, for example, propane having a boiling point of 0.01 MPa and a boiling point of −42.09 ° C., propylene having a boiling point of −47.6 ° C. and a pressure of 0.04 MPa can be used as the refrigerant.

11…水素ガス充填設備
12…液化水素貯槽
21…プレクーラー
22…冷媒循環路
23…冷媒蒸発用熱交換部
24…冷媒凝縮用熱交換部
29…圧力調整手段
29b…圧力調整器
29c…気化器
25…圧縮水素ガス導入路
27…液化水素導入路
DESCRIPTION OF SYMBOLS 11 ... Hydrogen gas filling equipment 12 ... Liquefied hydrogen storage tank 21 ... Precooler 22 ... Refrigerant circulation path 23 ... Refrigerant evaporation heat exchange part 24 ... Refrigerant condensation heat exchange part 29 ... Pressure adjustment means 29b ... Pressure regulator 29c ... Vaporizer 25 ... Compressed hydrogen gas introduction path 27 ... Liquid hydrogen introduction path

Claims (5)

充填に先立って水素ガスを冷却する、水素ガス充填設備のプレクーラーであって、
ある特定圧力での沸点が前記水素ガスの冷却温度にふさわしい温度である液状の冷媒が封入された冷媒循環路が設けられ、
前記冷媒循環路における前記冷媒の液相部分に、冷却される前記水素ガスと熱交換して前記水素ガスを冷却する一方、液相の前記冷媒を蒸発させる冷媒蒸発用熱交換部を備え、
前記冷媒循環路における前記冷媒の気相部分に、液化水素と熱交換して気相の前記冷媒を凝縮させる冷媒凝縮用熱交換部を備え、
前記冷媒循環路内の前記冷媒の圧力を、前記特定圧力に調整する圧力調整手段を備えた
水素ガス充填設備のプレクーラー。
A precooler for hydrogen gas filling equipment that cools hydrogen gas prior to filling,
A refrigerant circulation path in which a liquid refrigerant having a boiling point at a specific pressure is a temperature suitable for the cooling temperature of the hydrogen gas is provided;
The liquid phase portion of the refrigerant in the refrigerant circuit includes a refrigerant evaporation heat exchanging unit that evaporates the liquid phase refrigerant while cooling the hydrogen gas by exchanging heat with the cooled hydrogen gas,
In the gas phase portion of the refrigerant in the refrigerant circuit, the refrigerant condensing heat exchange section for heat exchange with liquefied hydrogen to condense the gas phase refrigerant,
A precooler for a hydrogen gas filling facility, comprising pressure adjusting means for adjusting the pressure of the refrigerant in the refrigerant circulation path to the specific pressure.
前記圧力調整手段が、圧力調整器と気化器を備えた
請求項1に記載の水素ガス充填設備のプレクーラー。
The precooler of the hydrogen gas filling equipment according to claim 1, wherein the pressure adjusting means includes a pressure regulator and a vaporizer.
前記冷媒蒸発用熱交換部への水素ガス導入路の源と、前記冷媒凝縮用熱交換部への液化水素導入路の源が同一であり、液化水素を貯留する液化水素貯槽に接続されている
請求項1または請求項2に記載の水素ガス充填設備のプレクーラー。
The source of the hydrogen gas introduction path to the refrigerant evaporation heat exchange section and the source of the liquefied hydrogen introduction path to the refrigerant condensation heat exchange section are the same and are connected to a liquefied hydrogen storage tank for storing liquefied hydrogen. The precooler of the hydrogen gas filling equipment according to claim 1 or 2.
充填に先立って水素ガスを冷却する、水素ガス充填設備のプレクール方法であって、
ある特定圧力での沸点が前記水素ガスの冷却温度にふさわしい温度である液状の冷媒が封入された冷媒循環路を備えて、
前記冷媒循環路における前記冷媒の液相部分に冷却する前記水素ガスを導いて前記冷媒との間で熱交換を行い、前記水素ガスを冷却する一方、液相の前記冷媒を蒸発させる蒸発工程と、
前記冷媒循環路における前記冷媒の気相部分に液化水素を導いて前記冷媒との間で熱交換を行い、気相の前記冷媒を凝縮させる凝縮工程と、
前記冷媒循環路内の前記冷媒の圧力を前記特定圧力に調整する調圧工程を有する
水素ガス充填設備のプレクール方法。
A pre-cooling method for hydrogen gas filling equipment for cooling hydrogen gas prior to filling,
A refrigerant circulation path in which a liquid refrigerant whose boiling point at a specific pressure is a temperature suitable for the cooling temperature of the hydrogen gas is enclosed;
An evaporating step of guiding the hydrogen gas to be cooled to a liquid phase portion of the refrigerant in the refrigerant circulation path, exchanging heat with the refrigerant, cooling the hydrogen gas, and evaporating the liquid phase refrigerant; ,
A condensing step of condensing the refrigerant in the gas phase by conducting liquefied hydrogen to the gas phase portion of the refrigerant in the refrigerant circuit and exchanging heat with the refrigerant;
A precooling method for a hydrogen gas filling facility, comprising a pressure adjusting step of adjusting a pressure of the refrigerant in the refrigerant circulation path to the specific pressure.
前記水素ガスを、液化水素を気化して生成するとともに、
前記冷媒凝縮用熱交換部に導入する前記液化水素に、前記水素ガスの源である液化水素と同一の液化水素を用いる
請求項4に記載の水素ガス充填設備のプレクール方法。
The hydrogen gas is generated by vaporizing liquefied hydrogen,
The precooling method of the hydrogen gas filling equipment according to claim 4, wherein the liquefied hydrogen that is the same as the liquefied hydrogen that is a source of the hydrogen gas is used for the liquefied hydrogen introduced into the heat exchanger for condensing refrigerant.
JP2015193613A 2015-09-30 2015-09-30 Precooler and precooling method for hydrogen gas filling equipment Active JP6586338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193613A JP6586338B2 (en) 2015-09-30 2015-09-30 Precooler and precooling method for hydrogen gas filling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193613A JP6586338B2 (en) 2015-09-30 2015-09-30 Precooler and precooling method for hydrogen gas filling equipment

Publications (2)

Publication Number Publication Date
JP2017067178A true JP2017067178A (en) 2017-04-06
JP6586338B2 JP6586338B2 (en) 2019-10-02

Family

ID=58494363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193613A Active JP6586338B2 (en) 2015-09-30 2015-09-30 Precooler and precooling method for hydrogen gas filling equipment

Country Status (1)

Country Link
JP (1) JP6586338B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194829A (en) * 2017-12-27 2018-06-22 深圳市凯豪达氢能源有限公司 System control method, hydrogen producing hydrogenation station, computer installation and readable storage medium storing program for executing
JP2020521921A (en) * 2017-05-31 2020-07-27 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment and methods for refilling a pressurized gas tank
CN112963733A (en) * 2021-02-25 2021-06-15 中国石油化工股份有限公司 Hydrogenation machine front hydrogen cooling method
KR102386377B1 (en) * 2021-06-15 2022-04-14 주식회사 한국가스기술공사 Hydrogen station using cold energy of the liquid hydrogen
KR20220056809A (en) * 2020-10-28 2022-05-06 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method and system for forming and dispensing a compressed gas
WO2022135109A1 (en) * 2020-12-25 2022-06-30 江苏国富氢能技术装备股份有限公司 Liquid hydrogen storage type hydrogenation apparatus capable of pre-cooling by liquid hydrogen
KR20220114881A (en) * 2021-02-09 2022-08-17 고등기술연구원연구조합 Hydrogen Supply System and Method
WO2024004270A1 (en) * 2022-06-29 2024-01-04 三菱重工業株式会社 Hydrogen station and refrigerator system for hydrogen station
WO2024029605A1 (en) * 2022-08-05 2024-02-08 トキコシステムソリューションズ株式会社 Hydrogen gas cooling device, and dispenser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367535B1 (en) * 2021-08-03 2022-02-25 하이에어코리아 주식회사 The brine circuit of the low-temperature freezer for cooling the hydrogen charger
US11933458B1 (en) * 2022-09-15 2024-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and system for filling tanks of hydrogen-fueled vehicles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127069B2 (en) 2017-05-31 2022-08-29 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment and method for refilling pressurized gas tanks
JP2020521921A (en) * 2017-05-31 2020-07-27 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment and methods for refilling a pressurized gas tank
CN108194829A (en) * 2017-12-27 2018-06-22 深圳市凯豪达氢能源有限公司 System control method, hydrogen producing hydrogenation station, computer installation and readable storage medium storing program for executing
KR102624377B1 (en) * 2020-10-28 2024-01-11 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method and system for forming and dispensing a compressed gas
JP7297843B2 (en) 2020-10-28 2023-06-26 エア プロダクツ アンド ケミカルズ インコーポレイテッド Method and system for forming and distributing compressed gas
KR20220056809A (en) * 2020-10-28 2022-05-06 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method and system for forming and dispensing a compressed gas
JP2022071841A (en) * 2020-10-28 2022-05-16 エア プロダクツ アンド ケミカルズ インコーポレイテッド Method and system for forming and dispensing compressed gas
WO2022135109A1 (en) * 2020-12-25 2022-06-30 江苏国富氢能技术装备股份有限公司 Liquid hydrogen storage type hydrogenation apparatus capable of pre-cooling by liquid hydrogen
KR20220114881A (en) * 2021-02-09 2022-08-17 고등기술연구원연구조합 Hydrogen Supply System and Method
KR102575379B1 (en) * 2021-02-09 2023-09-06 고등기술연구원연구조합 Hydrogen Supply System and Method
CN112963733A (en) * 2021-02-25 2021-06-15 中国石油化工股份有限公司 Hydrogenation machine front hydrogen cooling method
KR102386377B1 (en) * 2021-06-15 2022-04-14 주식회사 한국가스기술공사 Hydrogen station using cold energy of the liquid hydrogen
WO2024004270A1 (en) * 2022-06-29 2024-01-04 三菱重工業株式会社 Hydrogen station and refrigerator system for hydrogen station
WO2024029605A1 (en) * 2022-08-05 2024-02-08 トキコシステムソリューションズ株式会社 Hydrogen gas cooling device, and dispenser

Also Published As

Publication number Publication date
JP6586338B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6586338B2 (en) Precooler and precooling method for hydrogen gas filling equipment
RU2648312C2 (en) Device for cooling a consumer with super-cooled liquid in cooling circuit
US10920933B2 (en) Device and process for refueling containers with pressurized gas
JP6845918B2 (en) Hydrogen gas supply device and its method
US11499765B2 (en) Device and process for refueling containers with pressurized gas
US11287087B2 (en) Device and process for refueling containers with pressurized gas
CN105378370A (en) Gas vaporization device having cold heat recovery function, and cold heat recovery device
JP2013088031A (en) Cooling system, and method for controlling the same
JP2017190829A (en) System that integrates gas supply facility and cooling facility
US11953158B2 (en) Device and process for refueling containers with pressurized gas
KR20150015792A (en) Apparatus and Method for Regasification of Liquefied Gas
JP2020024064A (en) Liquid hydrogen producing facility
WO2021070806A1 (en) Hydrogen cooling device, hydrogen supply system, and refrigerator
JP6390908B2 (en) Fluid cooling method
WO2016158610A1 (en) Cryogenic energy recovering gas vaporizer, and gas vaporizing apparatus with cryogenic energy recovering function
JP5840938B2 (en) Heat medium cooling device and operation method of heat medium cooling device
JP2013015308A (en) Recovery device for vaporization heat of liquefied gas
JP2011127754A (en) Hydrogen gas cooling device
KR100997762B1 (en) Temperature control unit having precooling and preheating function
JP7227710B2 (en) Apparatus and method for refilling a container with pressurized gas
JP2003120897A (en) Storage and supply device for carbon dioxide
JP4621379B2 (en) Evaporator
JP2000283395A (en) Liquefied gas storage and supply facility
JP6371881B1 (en) Gas cooling system
JP7175353B1 (en) Secondary refrigerant cooling circulation device and cooling circulation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6586338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250