WO2014083664A1 - 無線通信システム、基地局、及びセル選択制御方法 - Google Patents

無線通信システム、基地局、及びセル選択制御方法 Download PDF

Info

Publication number
WO2014083664A1
WO2014083664A1 PCT/JP2012/080968 JP2012080968W WO2014083664A1 WO 2014083664 A1 WO2014083664 A1 WO 2014083664A1 JP 2012080968 W JP2012080968 W JP 2012080968W WO 2014083664 A1 WO2014083664 A1 WO 2014083664A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell selection
wireless communication
processing gain
range
Prior art date
Application number
PCT/JP2012/080968
Other languages
English (en)
French (fr)
Inventor
玉木 諭
山本 知史
仁志 石田
栄里子 武田
小野 豪
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/122,784 priority Critical patent/US20150189583A1/en
Priority to JP2013552024A priority patent/JP5766819B2/ja
Priority to PCT/JP2012/080968 priority patent/WO2014083664A1/ja
Publication of WO2014083664A1 publication Critical patent/WO2014083664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a radio communication system, and more particularly to a technique for controlling cell selection in a cellular radio communication system.
  • a multi-carrier communication scheme is used in which transmission information is divided into a plurality of frequency bands called subcarriers for communication.
  • the OFDM (Orthogonal Frequency Division Multiplexing) method uses signal orthogonality while improving resistance to delayed waves by narrowing the bandwidth per subcarrier. As a result, it is possible to realize high frequency utilization efficiency without the need for a guard band between subcarriers.
  • OFDMA Orthogonal Frequency ⁇ Division Multiple Access: Orthogonal Frequency Division Multiple Access
  • Method is adopted in wireless communication systems called WiMAX (Worldwide Interoperability of Microwave Access) and LTE (Long Term Evolution).
  • user terminals can perform wireless communication in a wide range by installing a plurality of base stations called macro cell base stations that have high transmission power and cover an area of base stations ranging from several hundred meters to several kilometers. It can be carried out.
  • macro cell base stations that have high transmission power and cover an area of base stations ranging from several hundred meters to several kilometers. It can be carried out.
  • radio waves used for wireless communication are shielded or attenuated by, for example, buildings, there are places where the radio waves from the macrocell base station are weakened, for example, indoors.
  • the number of user terminals in the area increases as the coverage area of the macro cell base station increases, the radio resources that can be used by each user terminal decrease.
  • a base station having a low transmission power and a small cover area per base station may be installed, which is hereinafter referred to as a small cell base station.
  • a small cell base station By installing a small cell base station, the user terminal can perform stable communication even in a place where the radio wave from the macro cell base station is weakened. Also, since the user terminal belongs to the small cell base station, The number of user terminals can be reduced to increase the radio resources that can be used by each user terminal.
  • Non-Patent Document 1 describes a method and an effect in which a user terminal selects a small cell base station even when the received power is not strongest.
  • 3GPP TSG-RAN WG1 # 59 R1-010701 Importance of Serving Cell Selection in Heterogeneous Networks, "Qualcomm Incorporated, atedJan. 2010.
  • Non-Patent Document 1 describes that a user terminal can obtain the advantage of improving throughput by selecting a small cell base station even when the received power is not strongest.
  • the communication of terminals belonging to small cell base stations interferes with the communication of terminals belonging to macro cell base stations, and the communication speed of terminals belonging to macro cells may decrease. Being affiliated does not necessarily increase the capacity of the entire system.
  • An object of the present invention is to provide a radio communication system, a base station, and a cell selection control method for solving the above-described problems and increasing the system capacity by effectively utilizing a small cell base station.
  • a wireless communication system in which a terminal and a base station perform wireless communication, the base station includes a plurality of antennas, measures a processing gain using the plurality of antennas, Provided is a wireless communication system configured to adjust a range in which a terminal connects to the base station according to a processing gain.
  • a base station of a wireless communication system includes a plurality of antennas, a communication unit that performs wireless communication with a user terminal, and a processing gain using the plurality of antennas.
  • a base station configured to include a processing unit that measures and adjusts a range in which a user terminal connects to the base station according to a processing gain is provided.
  • the present invention provides a cell selection control method for a base station, wherein the base station includes a plurality of antennas, measures processing gains using the plurality of antennas, and measures the measured processing.
  • a cell selection control method for adjusting a range in which a terminal connects to the base station according to a gain is provided.
  • FIG. 6 is a diagram showing a flow of a cell selection bias value correction process in the first embodiment. It is a figure which shows an example of the interference removal information in 1st Example.
  • FIG. 5 is a diagram showing an example of a block diagram of a flow of cell selection bias determination processing in the first embodiment. It is a figure which shows an example of the cell house bias determination in a 1st Example. It is a figure which shows an example of the flow of a process until hand-over execution in a 1st Example. It is a figure which shows the flow of the correction process of the cell selection bias value in a 2nd Example.
  • a pilot signal is a fixed or semi-fixed signal used as a reference signal for amplitude and phase when demodulating a received signal, or as a reference signal for estimating received power or propagation path information. This signal is also called a reference signal. Also, the pilot signal used as a reference signal for demodulation and the pilot signal used as a reference signal for estimating received power or propagation path information may be the same or separate signals. The pilot signal may be used in common by a plurality of user terminals in the cell, or may be used individually for each user terminal.
  • sequence and the flow of processing may be described in a specific order. However, unless there is a dependency on the order in which the result of a certain process is used in the next process, The order may be changed, and processing may be performed in parallel. Further, even when the subsequent process uses the execution result of the preceding process, each process may be executed asynchronously, and the latest process execution result at the time of execution may be used for the subsequent process.
  • a base station that communicates with a wide range of terminals with relatively large transmission power is called a macro cell base station
  • a base station that communicates with terminals with a small transmission power and a narrow range is called a small cell base station.
  • base stations When there is no need to distinguish between a macro cell base station and a small cell base station, they are simply referred to as base stations.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to all the embodiments including the first embodiment.
  • the wireless communication system of this configuration example includes a plurality of macro cell base stations 101, a plurality of small cell base stations 111, a plurality of user terminals 102 and 112, a network 103 connected to the plurality of base stations, and a base station via the network. It has a core network 104 to be connected.
  • a signal or communication from the macro cell base station 101 or the small cell base station 111 to the user terminal 102 or 112 is referred to as a downlink signal or downlink communication.
  • a signal or communication from the user terminal 102 or 112 toward the macro cell base station 101 or the small cell base station 111 is referred to as an uplink signal or uplink communication.
  • the macrocell base station 101 is connected to the core network 104 via the network 103.
  • the macro cell base station 101 transmits a downlink signal to the user terminal 102 and receives an uplink signal transmitted by the user terminal 102.
  • the small cell base station 111 is connected to the core network 104 via the network 103 in the same manner as the macro cell base station 101, transmits a downlink signal to the user terminal 112, and receives an uplink signal transmitted by the user terminal 112.
  • the network 103 to which the macro cell base station 101 is connected and the network 103 to which the small cell base station 111 is connected may be the same network, or may be different networks connected via a gateway.
  • the core network 104 has mobility management and a gateway function with other networks.
  • the user terminal 102 or 112 communicates with the macrocell base station 101 or the small cell base station 111 is selected based on the reception quality or propagation loss of the downlink signal or uplink signal, and the movement of the user terminal, etc.
  • the base station that performs communication via the core network 104 is reselected.
  • the range in which the small cell base station 111 communicates with the user terminal is narrower than the range in which the macro cell base station 101 communicates with the user terminal.
  • the range in which the base station communicates may be an inclusion relationship among a plurality of base stations, or some ranges may overlap.
  • At least one of the macro cell base station 101 and the small cell base station 111 has a plurality of antennas, and the base station uses a gain obtained by signal processing using the plurality of antennas to perform cell selection. Therefore, cell selection and reselection criteria are adjusted by correcting the cell selection bias value added to the reception intensity of the reference signal.
  • the example is later demonstrated using FIG.
  • FIG. 2 is a diagram showing a flow of cell correction bias value correction processing in the first embodiment
  • FIG. 3 is a diagram showing an example of interference removal information in the first embodiment.
  • the base stations perform the same process to notify each other of information, and collect the notified results.
  • the processing for only two base stations is shown on the left and right, but is not limited to two base stations. Since each base station performs the same processing, the following description describes the processing flow for only one simple base station.
  • This cell selection bias correction process is a process performed by a processing unit in the base station, which will be described later.
  • an interference removal value measurement process in other words, interference removal information is created.
  • interference cancellation information of the base station is created based on the received signal quality at the base station and the received signal quality of the terminal reported from the terminal to the base station.
  • the interference cancellation information of this embodiment is a value as shown in FIG. 3, for example, and is configured by a combination of a base station ID 701, an uplink interference cancellation value 702, and a downlink interference cancellation value 703. Note that only one of the uplink interference cancellation value 702 and the downlink interference cancellation value 703 may be used.
  • the uplink interference cancellation value 702 is obtained from the processing gain due to using a plurality of antennas.
  • the processing gain due to the use of a plurality of antennas is, for example, the reception power or reception of a signal received by a single antenna, for example, when receiving an uplink signal from an individual user terminal in the process of reception signal processing in a base station. It can be obtained from the power-to-interference and noise power ratio and the received power or the received power-to-interference and noise power ratio after combining signals received by a plurality of antennas.
  • the average processing gain is obtained by averaging the processing gain for the uplink signal from each user terminal for a plurality of user terminals, and this is used as the uplink interference cancellation value of the base station.
  • FIG. 9 is a functional block diagram showing an example of the flow of received signal processing including processing gain derivation processing in the base station having a plurality of antennas of the present embodiment described above. Each of these functional blocks can be realized by a processing unit in the base station described later.
  • a received signal 900 received from a plurality of antennas (not shown) via an RF (Radio Frequency) module is channel estimation realized by a processing unit in the base station described later.
  • the channel estimation unit 901 uses the above-described pilot signal, which is a known pattern signal included in the received signal, to provide channel information indicating signal fluctuations in the propagation channel for each transmission and reception antenna, for each frequency, and for each time. Is estimated. The channel estimation unit 901 also notifies the demodulation unit 902 of the estimated channel information. Further, the channel estimation unit 901 obtains the received power-to-interference and noise power ratio 905 from the estimated channel information, and notifies the processing gain deriving unit 904 of it.
  • Demodulation section 902 performs demodulation processing on the received signal using the channel information notified from channel estimation section 901.
  • the received signal demodulation process is, for example, an equalization process using the MMSE (Minimum-Mean-Square-Error) method, or, for example, orthogonalization using the result of QR decomposition (QR-decomposition) of channel information It is processing.
  • the result of the demodulation process in the demodulator 902 is sent to the likelihood estimator / decoder 903.
  • the likelihood estimation / decoding unit 903 decodes the error correction code after the likelihood estimation.
  • Demodulation section 903 also estimates signal-to-interference and noise power ratio 906 after demodulation processing of each received signal using the demodulation processing result, and notifies estimation result to processing gain deriving section 904.
  • the processing gain deriving unit 904 processes the ratio between the received power-to-interference and noise power ratio 905 notified from the channel estimating unit 901 and the demodulated received power-to-interference and noise power ratio 906 notified from the demodulating unit 902. Output as gain 907.
  • the uplink interference cancellation value 702 can be used as it is.
  • the frequency difference between the uplink signal and the downlink signal is used, and when there is no or small frequency difference, the uplink interference cancellation value 702 is used as the downlink interference cancellation value 703, and when the frequency difference is large, the uplink interference cancellation value 702 is used.
  • a smaller value may be used as the downlink interference cancellation value 703.
  • the downlink interference cancellation value 703 is also the difference between the reception quality at the user terminal of the signal transmitted by the base station to each user terminal using a plurality of antennas and the reception quality at the user terminal of the signal broadcast by the base station in the cell. May be obtained from a value measured by the user terminal and reported to the base station. In this case, the downlink interference cancellation value 703 increases as the reception quality at the user terminal of the signal transmitted to each user terminal increases.
  • the base stations notify the interference removal information created in the interference removal value measurement processing P101 to the neighboring base stations, and the interference removal notified.
  • the peripheral base stations are, for example, base stations of geographically adjacent cells.
  • the peripheral base stations are, for example, base stations of geographically adjacent cells.
  • the peripheral base stations are, for example, base stations of geographically adjacent cells.
  • the peripheral base stations are, for example, in the case of a small cell base station, one or a plurality of macro cell base stations whose communication ranges overlap with the own base station are selected as surrounding base stations.
  • the peripheral base stations are, for example, in the case of a macro cell base station, one or a plurality of small cell base stations whose communication ranges overlap with the own base station are selected as the peripheral base stations.
  • the communication range overlaps with the own base station, or A macrocell base station with which the communication range is in contact is selected.
  • the interference cancellation information of the own base station created in the interference cancellation value measurement process P101 and the interference of the neighboring base stations notified by the interference cancellation information notification process P102 are shown. Accumulate removal information.
  • the accumulated information is updated with the newly notified information.
  • the uplink interference cancellation value and downlink interference cancellation value of the accumulated interference cancellation information are newly notified. The uplink interference cancellation value and the downlink interference cancellation value of the interference cancellation information are averaged using the forgetting factor.
  • the cell selection bias value is determined based on the interference cancellation information of the own base station and neighboring base stations accumulated in the interference cancellation information aggregation process P103.
  • the downlink interference cancellation value of the own base station is set so that the cell selection bias value becomes smaller as the uplink interference cancellation value of the own base station is larger than the uplink interference cancellation value of the neighboring base station.
  • the cell selection bias value is determined so that the cell selection bias value becomes larger as it is larger than the downlink interference cancellation value of the station.
  • the uplink interference cancellation value or the downlink interference cancellation value of the own base station or the neighboring base station is not acquired, the value is treated as 0.
  • the cell selection bias value used in the base station is updated to the cell selection bias value determined in the cell selection bias determination process P104.
  • the cell selection bias value is used, for example, to create a cell individual offset value broadcasted as part of measurement information in the cell, and is also used as one of the determination conditions when determining the handover of each terminal.
  • the cell individual offset value is created so as to have a positive correlation with the cell selection bias value.
  • the determination condition is corrected so that the base station having a large cell selection bias value can be easily handed over.
  • the interference cancellation information aggregation processing P103 may be executed not only by using the termination of the interference cancellation information notification processing P102 as a trigger, but also by notification of interference cancellation information from surrounding base stations. Further, for example, the cell selection bias determination process P104 may be periodically executed at regular intervals instead of being triggered by the end of the interference removal information aggregation process P103.
  • FIG. 4 is a diagram illustrating an example of a functional block of a flow of the cell selection bias determination process P104 in the cell selection bias correction process of FIG. 2 of the present embodiment described above.
  • the cell selection bias determination process P104 in the process 501, for example, by selecting an averaging process or a median value from the uplink interference values of the neighboring base stations, representative of the uplink interference values of the neighboring base stations. Find the value.
  • the quantized uplink interference removal value 506 is obtained from the representative value of the uplink interference value of the neighboring base station obtained in the process 501 and the uplink interference value of the own base station.
  • the quantized uplink interference removal value 506 tends to increase as the representative value of the uplink interference value of the neighboring base station is larger than the uplink interference value of the own base station, and the representative value of the uplink interference value of the neighboring base station indicates the own base station. The selection is made so that the smaller the uplink interference value of the station, the smaller the tendency.
  • a representative value of the downlink interference values of the neighboring base stations is obtained by selecting, for example, an averaging process or a median value from the downlink interference values of the neighboring base stations in the process 503.
  • a quantized downlink interference cancellation value 507 is obtained from the representative downlink interference value of the neighboring base station obtained in process 503 and the downlink interference value of the own base station.
  • the quantized downlink interference removal value 507 tends to increase as the representative value of the downlink interference value of the neighboring base station is larger than the downlink interference value of the own base station, and the representative value of the downlink interference value of the neighboring base station indicates the own base station. Selection is made such that the smaller the station downlink interference value, the smaller the tendency.
  • the cell selection bias value 508 is determined from the quantized uplink interference cancellation value obtained in process 502 and the quantized downlink interference cancellation value obtained in process 504.
  • FIG. 5 is a diagram for explaining an example of cell selection bias value 508 determination in the present embodiment.
  • the bias value table 509 showing the determination example of FIG. 5 has five values of ⁇ 2, ⁇ 1, 0, 1 and 2 shown in the matrix direction as the quantized uplink interference cancellation value 506 and the quantized downlink interference cancellation value 507, respectively. This shows the relationship with the cell selection bias value 508 when the value is used.
  • the cell selection bias value 508 tends to increase as the removal value 507 increases.
  • FIG. 6 is a diagram illustrating an example of a flow of processing up to execution of a handover in which a user terminal changes a connection destination base station during communication in the wireless communication system according to the present embodiment.
  • FIG. 6 as an example, a sequence until the user terminal 112 connected to the macro cell base station 101 is handed over to the small cell base station 111 is shown.
  • the user terminal 112 is connected to the macro cell base station 101 in the initial state of the sequence in FIG.
  • the macro cell base station 101 and the small cell base station 111 transmit the pilot signal and the broadcast signal 202 within the cell range continuously or periodically.
  • the broadcast information includes a cell individual offset value sent from the base station side to the user terminal, and the cell individual offset value sent to the user terminal by the cell selection bias correction process in the base station as described above has high uplink interference removal capability. The lower the base station, the higher the base station with the higher downlink interference cancellation capability, the higher the correction.
  • the received power is measured from the pilot signal received from the base station, corrected according to the information included in the broadcast signal, and then received, for example, from the macrocell base station 101.
  • the measurement result satisfies a predetermined condition, such as when the signal reception power from the small cell base station 111 exceeds the measurement result report 204 for reporting the measurement result to the connected macro cell base station 101.
  • the reception / measurement processing 203 in the user terminal 112 when the received power is compared, correction is performed by adding the cell individual offset value included in the broadcast signal from the base station to the received power.
  • a signal received from a base station having a high cell individual offset value is handled with a large signal power. For example, even if it is determined to report the measurement result when the signal reception power from another base station exceeds the signal reception power from the connected base station, after adding the cell individual offset value
  • the macro cell base station 101 receives the measurement result report and determines whether or not to execute the handover to the small cell base station 111 by the handover determination process 205.
  • the degree of congestion of the handover source base station and the handover destination base station or the received power difference of the reported measurement result is used.
  • the received power from the handover destination base station is A determination is made so that the larger the value is, the easier the handover is executed.
  • the handover decision is corrected so that the handover is easier to execute as the cell selection bias value of the handover destination base station is larger, and the handover is more difficult to perform as the cell selection bias value of the handover source base station is larger.
  • the handover from the macro cell base station 101 to the small cell base station 111 has been described as an example. However, even if the handover is performed from the macro cell base station 101 to another macro cell base station 101, the small cell base station 111 The same applies to a handover from a small cell base station 111 to another macro cell base station 111.
  • FIG. 7 is a diagram showing a flow of cell selection bias correction processing in the second embodiment.
  • the cell selection bias is determined in each base station.
  • the cell selection bias correction processing in this embodiment the cell selection of a plurality of base stations is performed at the center. Determine the bias value.
  • This cell selection bias correction process is also executed by a processing unit in the base station described later.
  • FIG. 7 shows only one base station among a plurality of base stations, and in the following description, only one base station is described, but each of the plurality of base stations performs the same processing.
  • the center in the present embodiment may exist as an independent center in the core network 104, or a specific base station in addition to the function as a base station will be described below. It may have a function as a center to explain.
  • the interference removal value measurement process P101 in the second embodiment is the same process as the interference removal value measurement process P101 in the first embodiment.
  • the interference removal information notification process P102 of FIG. 7 is the same as the interference removal information communication process P102 in the first embodiment, except that the destination of the notification of the interference removal information is not the neighboring base station but the center. .
  • the interference cancellation information notified from each base station by the interference cancellation information notification process P102 is accumulated.
  • the stored information is updated with the newly notified information.
  • the uplink interference cancellation value and downlink interference cancellation value of the accumulated interference cancellation information are newly notified.
  • the uplink interference cancellation value and the downlink interference cancellation value of the interference cancellation information are averaged using the forgetting factor.
  • the cell selection bias value of each base station is determined based on the interference cancellation information of each base strength accumulated in the interference cancellation information aggregation process P113.
  • the interference cancellation information of the neighboring base stations of the base station is used.
  • the peripheral base stations are, for example, base stations of geographically adjacent cells. Further, for example, in the case of a small cell base station, one or a plurality of macro cell base stations whose communication ranges overlap with the own base station are selected as surrounding base stations.
  • one or a plurality of small cell base stations whose communication ranges overlap with the own base station are selected as the peripheral base stations.
  • the peripheral base stations in addition to one or a plurality of small cell base stations whose communication range overlaps with its own base station as a base station to the periphery, its own base station and its communication range overlap or A macrocell base station with which the communication range is in contact is selected.
  • the downlink interference cancellation value of the own base station is set such that the cell selection bias value becomes smaller as the uplink interference cancellation value of the own base station is larger than the uplink interference cancellation value of the neighboring base station.
  • the cell selection bias value is determined such that the cell selection bias value increases as the downlink interference cancellation value of the neighboring base station increases.
  • the uplink interference cancellation value or the downlink interference cancellation value of the own base station or the neighboring base station is not acquired, the value is treated as 0.
  • the cell selection bias value of each base station determined by the cell selection bias determination process P114 is notified to the base station.
  • the cell selection bias update process P106 in FIG. 7 does not use the value determined in the base station as the cell selection bias value, but uses the value notified from the center, except that the cell selection bias in the first embodiment is used. This is the same as the update process P106.
  • the cell selection bias determination process P114 may be executed periodically at regular intervals instead of being triggered by the end of the interference removal information aggregation process P113.
  • the cell selection bias correction process of the second embodiment described above also increases the downlink interference cancellation capability of the own base station or the uplink of the neighboring base stations.
  • the higher the interference cancellation capability the easier it is for the user terminal to connect to the base station, and the cell range of the base station is expanded. Can be increased.
  • the small cells can be used effectively.
  • FIG. 8 is a base station apparatus in each of the above-described embodiments, mainly including a processing unit including a digital signal processor (DSP), a central processing unit (CPU), and a logic circuit. It is a figure which shows an example of a structure of a base station. 8 includes a CPU and DSP module 401 constituting a processing unit, a memory 402 serving as a storage unit, a logic circuit module 403 constituting a processing unit, a network interface (I / F) 404, one or more An RF module 405 that is a wireless communication unit connected to an antenna is provided, and each is connected via a bus 406.
  • DSP digital signal processor
  • CPU central processing unit
  • a logic circuit 401
  • I / F network interface
  • Each processing in FIG. 2 and FIG. 7 is performed using one or both of the program in the CPU / DSP module 401 and the arithmetic circuit in the logic circuit module 403, and the memory 402 if necessary. .
  • Information necessary for each process for example, interference removal information and cell selection bias values in the above-described embodiments are held in the memory 402.
  • the network interface (I / F) 404 inputs and outputs control signals, transmission signals before signal processing, and reception signals after signal processing.
  • the RF module 405 converts the transmission signal into a radio frequency band signal and transmits the signal via an antenna, and converts the received signal received through the antenna into a baseband signal. To do.
  • each module and bus shown in FIG. For example, a plurality of CPU / DSP modules 401 may be provided, and a plurality of buses 406 may be provided. When there are a plurality of buses 406, it is not always necessary that all the buses are connected to all the modules. For example, in addition to the buses connected to all the modules, only the memory 402 and the logic circuit module 403 are used. There may be a bus connecting them.
  • the logical operation module 403 may be omitted.
  • the logic processing module 403 can execute signal processing computation and signal processing control in all functions, the CPU / DSP module 401 may be omitted.
  • the present invention described above is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 小型セル基地局を有効活用によるシステム容量増加を目的とする無線通信システムのセル選択を制御する方法、及びそれを実現する基地局装置を提供する。マクロセル基地局101及び小型セル基地局111のうち、少なくとも一つの基地局は複数のアンテナを有し、当該基地局が信号処理により、複数のアンテナを用いた処理利得を生成し、この複数のアンテナを用いた処理利得を用いてセル選択バイアス補正処理を行うことにより、セルの選択及び再選択の基準の調整を行う。

Description

無線通信システム、基地局、及びセル選択制御方法
 本発明は無線通信システムに関し、特にセルラ無線通信システムにおいてセル選択を制御する技術に関する。
 無線通信の広帯域化に伴って、以下サブキャリアと称する複数の周波数帯域に送信情報を分割して通信を行うマルチキャリア通信方式が用いられている。マルチキャリア通信方式のうち、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式は、サブキャリアあたりの帯域幅を狭帯域化することで遅延波に対する耐性を向上しつつ、信号の直交性を利用することでサブキャリア間のガードバンドを不要として高い周波数利用効率を実現できることから幅広いシステムで採用されている。またOFDM方式の無線リソースを、1ないしは複数のサブキャリアと一定の時間幅とを持つ以下リソースブロックと称する単位毎に分割して多元接続を行うOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式がWiMAX(Worldwide Interoperability of Microwave Access) やLTE(Long Term Evolution)と呼ばれる無線通信システムで採用されている。
 また無線通信システムでは、送信電力が高く基地局あたりのカバーエリアが例えば数百メートルから数キロメートルに及ぶ以下マクロセル基地局と称する基地局を複数設置することにより、ユーザ端末は広い範囲において無線通信を行うことができる。しかし無線通信に用いる電波は例えば建造物などにより遮蔽され、あるいは減衰するため、例えば屋内などでマクロセル基地局からの電波が弱まる箇所が生じる。またマクロセル基地局のカバーエリアが広いほどエリア内のユーザ端末数が増加するため、ユーザ端末それぞれが利用可能な無線リソースが減少する。
 このため、以下小型セル基地局と称する、送信電力が低く基地局あたりのカバーエリアが狭い基地局を設置することがある。小型セル基地局を設置することにより、ユーザ端末はマクロセル基地局からの電波が弱まる箇所においても安定した通信を行うことができ、またユーザ端末が小型セル基地局に所属することにより基地局あたりのユーザ端末数を減少させてユーザ端末それぞれが利用可能な無線リソースを増加させることができる。
 一般的にはユーザ端末は受信電力が最も強いセルを選択するが、システム全体のトラフィック増加のためには、多くのユーザ端末が小型セル基地局に所属することが望ましい。そのため非特許文献1には、ユーザ端末は受信電力が最も強くない場合でも小型セル基地局を選択する方式及び効果が記載されている。
3GPP TSG-RAN WG1 #59 R1-010701, "Importance of Serving Cell Selection in Heterogeneous Networks", Qualcomm Incorporated, Jan. 2010.
 例えば非特許文献1には、ユーザ端末は受信電力が最も強くない場合でも小型セル基地局を選択することによりスループット向上の利点を得ることができることが記載されているが、例えば上り方向の通信に関しては、小型セル基地局所属端末の通信がマクロセル基地局所属の端末の通信に対して干渉となり、マクロセル所属端末の通信速度が低下してしまうことがあるため、多くの端末を小型セル基地局に所属させることは必ずしもシステム全体の容量増加にはつながらない。
 本発明の目的は、上記課題を解決し、小型セル基地局を有効活用によるシステム容量増加を図る無線通信システム、基地局、セル選択制御方法を提供することにある。
 上記の目的を達成するため、本発明においては、端末と基地局が無線通信を行う無線通信システムであって、基地局は複数のアンテナを備え、複数のアンテナを用いた処理利得を測定し、処理利得に応じて端末が当該基地局に接続する範囲を調整する構成の無線通信システムを提供する。
 また、上記の目的を達成するため、本発明においては、無線通信システムの基地局であって、複数のアンテナと、ユーザ端末と無線通信を行う通信部と、複数のアンテナを用いた処理利得を測定し、処理利得に応じてユーザ端末が当該基地局に接続する範囲を調整する処理部とを備える構成の基地局を提供する。
 更に、上記の目的を達成するため、本発明においては、基地局のセル選択制御方法であって、基地局は複数のアンテナを備え、複数のアンテナを用いた処理利得を測定し、測定した処理利得に応じて端末が当該基地局に接続する範囲を調整するセル選択制御方法を提供する。
 本発明によれば、小型セル基地局を有効に活用し、無線通信システムのシステム容量を増加させることができる。
各実施例の無線通信システムの一構成例を示す図である。 第1の実施例におけるセル選択バイアス値の補正処理の流れを示す図である。 第1の実施例における干渉除去情報の一例を示す図である。 第1の実施例におけるセル選択バイアス決定処理の流れのブロック図の一例を示す図である。 第1の実施例におけるセル宅バイアス判定の一例を示す図である。 第1の実施例におけるハンドオーバ実行までの処理の流れの一例を示す図である。 第2の実施例におけるセル選択バイアス値の補正処理の流れを示す図である。 各実施例に係る、DSPやCPUを主体とした基地局装置の構成の一例を示す図である。 処理利得導出処理を含む受信信号処理の流れのブロック図の一例を示す図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 なお、以下の実施例の説明において、パイロット信号とは受信信号を復調する際の振幅及び位相の基準信号として、あるいは受信電力または伝搬路情報を推定するための基準信号として用いられる固定ないしは半固定のパターンを持つ信号を指し、リファレンス信号とも称される。また復調する際の基準信号として用いるパイロット信号と受信電力または伝搬路情報を推定するための基準信号として用いるパイロット信号とが同一であっても良いし、別個の信号であっても良い。また、パイロット信号はセル内の複数のユーザ端末で共通して用いても良いし、ユーザ端末ごとに個別に用いても良い。
 また、以下の実施例では、シーケンスや処理の流れについて特定の順序で説明を行うことがあるが、ある処理の結果を次の処理で使用するような順序に対する依存性がある場合を除き処理の順序が入れ替わっても良いし、また並行して処理を行っても良い。更に後段の処理が前段の処理の実行結果を用いる場合であっても、それぞれの処理を非同期に実行し、後段処理は実行時点における最新の前段処理実行結果を用いてもよい。
 また、以下の実施例では比較的送信電力が大きく広範囲の端末と通信を行う基地局をマクロセル基地局、送信電力が小さく狭い範囲の端末と通信を行う基地局を小型セル基地局と呼称し、マクロセル基地局と小型セル基地局との区別を行う必要が無い場合には単に基地局と呼称する。
 図1は、第1の実施例を含む全ての実施例に係る無線通信システムの一構成例を示す図である。本構成例の無線通信システムは、複数のマクロセル基地局101、複数の小型セル基地局111、複数のユーザ端末102及び112、複数の基地局と接続されるネットワーク103、ネットワークを介して基地局と接続されるコアネットワーク104を有する。以下ではマクロセル基地局101または小型セル基地局111からユーザ端末102または112に向けた信号や通信を下り信号や下り通信と称する。逆にユーザ端末102または112からマクロセル基地局101または小型セル基地局111に向けた信号や通信を上り信号や上り通信と称する。
 マクロセル基地局101は、ネットワーク103を介してコアネットワーク104と接続される。マクロセル基地局101は、下り信号をユーザ端末102に向けて送信し、ユーザ端末102が送信した上り信号を受信する。小型セル基地局111は、マクロセル基地局101と同様にネットワーク103を介してコアネットワーク104と接続され、下り信号をユーザ端末112に向けて送信し、ユーザ端末112が送信した上り信号を受信する。
 マクロセル基地局101が接続されるネットワーク103と、小型セル基地局111が接続されるネットワーク103とは同一のネットワークであっても良いし、ゲートウェイを介して接続される別のネットワークであっても良い。コアネットワーク104はモビリティ管理や他ネットワークとのゲートウェイ機能を有する。
 ユーザ端末102または112がマクロセル基地局101と通信を行うか、或いは小型セル基地局111と通信を行うかは下り信号または上り信号の受信品質や伝搬損失を基に選択され、ユーザ端末の移動などによって伝搬環境が変化した場合にはコアネットワーク104を介して通信を行う基地局を再選択する。図1では、小型セル基地局111がユーザ端末と通信する範囲は、マクロセル基地局101がユーザ端末と通信する範囲よりも狭い。また、マクロセル基地局及び小型セル基地局を問わず、基地局が通信する範囲は、複数の基地局間で包含関係であってもよいし、一部の範囲が重複していてもよい。
 また、マクロセル基地局101及び小型セル基地局111のうち、少なくとも一の基地局は複数のアンテナを有し、当該基地局が複数のアンテナを用いた信号処理により得られる利得を用い、セル選択のために参照信号の受信強度に加えるセル選択バイアス値の補正処理により、セルの選択及び再選択の基準の調整を行う。なお、実施例に係る基地局の詳細構成については、その一例を後に図8を用いて説明する。
 図2は、第1の実施例におけるセル選択バイアス値の補正処理の流れを示す図、図3は、第1の実施例における干渉除去情報の一例を示す図である。本実施例におけるセル選択バイアス補正処理では、各基地局が同様の処理を行って互いに情報の通知を行い、通知された結果を集約する。図2ではこのうち2基地局のみについての処理を左右に示しているが、2基地局に限定されるものでない。なお、各基地局はそれぞれ同様の処理を行うため、以下の説明は簡単の1基地局についてのみ処理の流れを記述する。なお、このセル選択バイアス補正処理は、後で説明する基地局内の処理部が行う処理である。
 図2において、セル選択バイアス補正処理は、まず処理P101において干渉除去値の測定処理、言い換えるなら干渉除去情報の作成を行う。この干渉除去値測定処理P101では、基地局における受信信号品質や、端末から基地局に報告される端末の受信信号品質に基づき、基地局の干渉除去情報を作成する。本実施例の干渉除去情報は、例えば図3に示すような値であり、基地局ID701と上り干渉除去値702、下り干渉除去値703の組み合わせで構成される。なお、上り干渉除去値702と下り干渉除去値703とはいずれか一方のみであってもよい。
 この上り干渉除去値702は、複数のアンテナを用いたことによる処理利得から求める。複数のアンテナを用いたことによる処理利得は、例えば、基地局における受信信号処理の過程において、個々のユーザ端末からの上り信号を受信する際、例えば単一アンテナで受信した信号の受信電力あるいは受信電力対干渉及び雑音電力比と、複数のアンテナで受信した信号を合成した後の受信電力あるいは受信電力対干渉及び雑音電力比とから求めることができる。そして、個々のユーザ端末からの上り信号に対する処理利得を、複数のユーザ端末分平均化することにより平均処理利得を求め、これを基地局の上り干渉除去値とする。
 図9は上述した本実施例の複数のアンテナを有する基地局における、処理利得の導出処理を含む受信信号処理の流れの一例を示す機能ブロック図である。これらの機能ブロック各々は、後で説明する基地局内の処理部で実現することが可能である。図9の例において、図示を省略した複数のアンテナから無線通信部であるRF(Radio Frequency)モジュールを介して受信した受信信号900は、後で説明する基地局内の処理部で実現されるチャネル推定部901、及び復調部902に渡される。
 チャネル推定部901では、受信信号に含まれる既知パターンの信号である、上述したパイロット信号を利用して、送信及び受信アンテナ毎、周波数毎、時間毎の伝搬チャネルにおける信号変動の様子であるチャネル情報を推定する。チャネル推定部901はまた、推定したチャネル情報を復調部902に通知する。さらにチャネル推定部901は、推定したチャネル情報から受信電力対干渉及び雑音電力比905を求め、処理利得導出部904に通知する。
 復調部902では、チャネル推定部901から通知されたチャネル情報を用いて受信信号の復調処理を行う。受信信号の復調処理とは、例えばMMSE(Minimum Mean Square Error:最小平均2乗誤差)法を用いた等化処理であり、あるいは例えばチャネル情報のQR分解(QR decomposition)の結果を用いた直交化処理である。復調部902における復調処理の結果は尤度推定・復号部903に送られる。尤度推定・復号部903では、尤度推定の後、誤り訂正符号の復号が行われる。復調部903では、また、復調処理の結果を用いて各受信信号の復調処理後の信号対干渉及び雑音電力比906を推定し、推定結果を処理利得導出部904に通知する。
 処理利得導出部904では、チャネル推定部901から通知された受信電力対干渉及び雑音電力比905と、復調部902から通知された復調後の受信電力対干渉及び雑音電力比906との比を処理利得907として出力する。
 図3に示した下り干渉除去値703は、例えば上り干渉除去値702をそのまま用いることができる。あるいは上り信号と下り信号との周波数差とを用い、周波数差が無い場合あるいは小さい場合には上り干渉除去値702を下り干渉除去値703として用い、周波数差が大きい場合には上り干渉除去値702よりも小さい値を下り干渉除去値703として用いてもよい。
 下り干渉除去値703はまた、基地局が複数のアンテナを用いてユーザ端末個別に送信した信号のユーザ端末における受信品質と、基地局がセル内にブロードキャストした信号のユーザ端末における受信品質との差をユーザ端末が測定し、基地局に対して報告した値から求めてもよい。この場合下り干渉除去値703は、ユーザ端末個別に送信した信号のユーザ端末における受信品質が高いほど大きな値となる。
 次いで、図2に戻り、処理P102の干渉除去情報通知処理では、基地局は干渉除去値測定処理P101にて作成した干渉除去情報を互いに周辺の基地局に対して通知し、通知された干渉除去情報を受け取る。ここで、周辺の基地局とは例えば地理的に隣接するセルの基地局である。また、例えば小型セル基地局の場合には周辺の基地局として、自基地局と通信範囲が重複する1ないしは複数のマクロセル基地局を選択する。また例えばマクロセル基地局の場合には、周辺の基地局として自基地局と通信範囲が重複する1ないしは複数の小型セル基地局を選択する。あるいはマクロセル基地局の場合には、周辺の基地局として、自基地局と通信範囲が重複する1ないしは複数の小型セル基地局に加え、自基地局と通信範囲が重複する、あるいは自基地局と通信範囲が接するマクロセル基地局を選択する。
 次いで、図2の処理P103の干渉除去情報集約処理では、干渉除去値測定処理P101にて作成した自基地局の干渉除去情報と、干渉除去情報通知処理P102により通知された周辺の基地局の干渉除去情報とを蓄積する。既に干渉除去情報積している基地局から新規に干渉除去情報が通知された場合には、蓄積された情報を新規に通知された情報で更新する。あるいは既に干渉除去情報を蓄積している基地局から新規に干渉除去情報が通知された場合には、蓄積している干渉除去情報の上り干渉除去値及び下り干渉除去値それぞれと、新規に通知された干渉除去情報の上り干渉除去値及び下り干渉除去値とを、忘却係数を用いて平均化を行う。
 次いで図2の処理P104のセル選択バイアス決定処理では、干渉除去情報集約処理P103にて蓄積した自基地局及び周辺基地局の干渉除去情報に基づき、セル選択バイアス値を決定する。セル選択バイアス決定処理P104では、自基地局の上り干渉除去値が周辺基地局の上り干渉除去値よりも大きいほどセル選択バイアス値が小さくなるように、自基地局の下り干渉除去値が周辺基地局の下り干渉除去値よりも大きいほどセル選択バイアス値が大きくなるように、セル選択バイアス値を決定する。なお、自基地局または周辺基地局の上り干渉除去値あるいは下り干渉除去値が未取得である場合には、当該の値を0として扱う。
 次いで図2の処理P106のセル選択バイアス更新処理では、基地局内で用いるセル選択バイアス値をセル選択バイアス決定処理P104において決定したセル選択バイアス値に更新する。基地局内では、セル選択バイアス値は例えばセル内に測定情報の一部として報知するセル個別オフセット値の作成に用い、また各端末のハンドオーバ判定の際の判断条件の一つとして用いる。セル個別オフセット値はセル選択バイアス値と正の相関を持つように作成される。またハンドオーバ判定の際には、セル選択バイアス値が大きい基地局に対してハンドオーバしやすいように判断条件を補正する。
 以上の処理は、先に説明した複数の基地局でそれぞれ順番に同期して行う必要はない。例えば干渉除去情報集約処理P103は、干渉除去情報通知処理P102の終了をトリガーに実行するのではなく、周辺の基地局からの干渉除去情報の通知をトリガーに実行してもよい。また例えばセル選択バイアス決定処理P104は干渉除去情報集約処理P103の終了をトリガーに実行するのではなく、一定間隔で定期的に実行してもよい。
 上記した本実施例のセル選択バイアス補正処理により、自基地局の下り干渉除去の能力が高いほど、あるいは周辺の基地局の上り干渉除去の能力が高いほど、ユーザ端末が自基地局に接続しやすくなり、自基地局のセル範囲が拡大することにより、セル間干渉による影響を低く保ちつつ、セル間の負荷分散及びシステムスループットの増加を図ることができる。さらにマクロセルと小型セルとが混在する環境においては、小型セルを有効に活用することができる。
 図4は、上述した本実施例の図2のセル選択バイアス補正処理のうち、セル選択バイアス決定処理P104の流れの機能ブロックの一例を示す図である。同図に示すように、セル選択バイアス決定処理P104では、処理501において、周辺基地局の上り干渉値から、例えば平均化処理や中央値を選択することにより、周辺基地局の上り干渉値の代表値を求める。処理502では、処理501で求めた周辺基地局の上り干渉値の代表値と、自基地局の上り干渉値とから、量子化上り干渉除去値506を求める。ここで量子化上り干渉除去値506は、周辺基地局の上り干渉値の代表値が自基地局の上り干渉値よりも大きいほど大きい傾向を、周辺基地局の上り干渉値の代表値が自基地局の上り干渉値よりも小さいほど小さい傾向を持つように選択する。
 セル選択バイアス決定処理ではまた、処理503において周辺基地局の下り干渉値から、例えば平均化処理や中央値を選択することにより、周辺基地局の下り干渉値の代表値を求める。処理504では、処理503で求めた周辺基地局の下り干渉値の代表値と、自基地局の下り干渉値とから、量子化下り干渉除去値507を求める。ここで量子化下り干渉除去値507は、周辺基地局の下り干渉値の代表値が自基地局の下り干渉値よりも大きいほど大きい傾向を、周辺基地局の下り干渉値の代表値が自基地局の下り干渉値よりも小さいほど小さい傾向を持つように選択する。
 セル選択バイアス決定処理では次に判定処理505において、処理502において求めた量子化上り干渉除去値と処理504において求めた量子化下り干渉除去値とから、セル選択バイアス値508の判定を行う。
 図5は本実施例におけるセル選択バイアス値508判定の一例を説明するための図である。図5の判定例を示すバイアス値テーブル509は、量子化上り干渉除去値506及び量子化下り干渉除去値507としてそれぞれ行列方向に示す、-2、-1、0、1、2の5通りの値を用いた際のセル選択バイアス値508との関係を示しており、行側の量子化上り干渉除去値506が大きいほどセル選択バイアス値508は小さい傾向になり、列側の量子化下り干渉除去値507が大きいほどセル選択バイアス値508は大きい傾向なる。
 図6は、本実施例における無線通信システムにおいて、ユーザ端末が通信中に接続先の基地局を変更するハンドオーバ実行までの処理の流れの一例を示す図である。図6では一例として、マクロセル基地局101と接続中のユーザ端末112が小型セル基地局111へハンドオーバするまでのシーケンスを示している。
 図6のシーケンスの初期状態では、ユーザ端末112はマクロセル基地局101に接続している。またマクロセル基地局101及び小型セル基地局111は連続的、あるいは周期的にパイロット信号及び報知信号202をセル範囲内に送信する。報知情報には基地局側からユーザ端末に送るセル個別オフセット値を含み、上記のとおり基地局内でのセル選択バイアス補正処理により、ユーザ端末に送られるセル個別オフセット値は、上り干渉除去能力が高い基地局ほど低く、下り干渉除去能力が高い基地局ほど高く補正されている。
 ユーザ端末112では、受信・測定処理203において、基地局から受信したパイロット信号から受信電力を測定し、報知信号に含まれる情報に従って補正を行った上で、例えばマクロセル基地局101からの信号受信電力よりも小型セル基地局111からの信号受信電力が上回った場合など、測定結果が予め定められた条件を満たした場合には測定結果を接続中のマクロセル基地局101に報告する測定結果報告204を行う。
 ユーザ端末112における受信・測定処理203では、受信電力の比較を行う際に、基地局からの報知信号に含まれるセル個別オフセット値を受信電力に加えて補正を行う。これにより、セル個別オフセット値が高い基地局からの受信信号は信号電力が大きく扱われる。例えば接続中の基地局からの信号受信電力よりも他の基地局からの信号受信電力が上回った場合に測定結果を報告するように定められている場合でも、セル個別オフセット値を加算してから比較することにより、接続中の基地局のセル個別オフセット値が比較的大きい場合には測定結果を報告しづらく、接続中の基地局のセル個別オフセット値が比較的小さい場合には測定結果を報告しやすくなる。
 マクロセル基地局101では、測定結果の報告を受けてハンドオーバ判定処理205により、小型セル基地局111へのハンドオーバを実行するか否かの判定を行う。ハンドオーバの判定には、例えばハンドオーバ元基地局及びハンドオーバ先基地局の混雑度や報告された測定結果の受信電力差等を用い、報告された受信電力のうち、ハンドオーバ先基地局からの受信電力が大きい程ハンドオーバを実行しやすいような判断を行う。このとき、ハンドオーバ先基地局のセル選択バイアス値が大きいほどハンドオーバを実行しやすく、ハンドオーバ元の基地局のセル選択バイアス値が大きいほどハンドオーバを実行しにくくなるよう、ハンドオーバの判断を補正する。
 以上では、マクロセル基地局101から小型セル基地局111へのハンドオーバを例に説明を行ったが、マクロセル基地局101から別のマクロセル基地局101へのハンドオーバであっても、また小型セル基地局111からマクロセル基地局101へのハンドオーバであっても、また小型セル基地局111から別の小型セル基地局111へのハンドオーバであっても同様である。
 また以上ではハンドオーバについて説明を行ったが、ユーザ端末の非通信時におけるセル再選択処理についても同様である。また接続先セルを完全に切り替えるハンドオーバではなく、一部のチャネルのみ送受信先基地局を切り替えるような場合であっても同様である。
 以上説明した実施例1により、小型セル基地局を有効に活用し、無線通信システムのシステム容量を増加させることが可能となる。
 次に第2の実施例として、複数の基地局のセル選択バイアス値の決定をセンタ一括で行う実施例を、図7を用いて説明する。図7は第2の実施例におけるセル選択バイアス補正処理の流れを示す図である。第1の実施例におけるセル選択バイアス補正処理では各基地局でセル選択バイアスの決定を行ったが、本実施例におけるセル選択バイアス補正処理では、センタにて一括して複数の基地局のセル選択バイアス値の決定を行う。このセル選択バイアス補正処理も、後で説明する基地局内の処理部で実行される。
 図7では複数の基地局のうち1基地局のみを図示しており、以下の説明では1基地局について記載するが、複数の基地局のそれぞれは同様の処理を行う。なお、本実施例におけるセンタとは、図1に示したように、コアネットワーク104内に、独立したセンタとして存在してもよいし、特定の基地局が基地局としての機能に加えて以下に説明するセンタとしての機能を持ってもよい。
 同図において、第2の実施例における干渉除去値測定処理P101は、第1の実施例における干渉除去値測定処理P101と同様の処理である。また、図7の干渉除去情報通知処理P102は、干渉除去情報を通知する先が周辺の基地局ではなくセンタである点を除き、第1の実施例における干渉除去情報通信処理P102と同様である。
 干渉除去情報集約処理P113では、各基地局から干渉除去情報通知処理P102により通知された干渉除去情報を蓄積する。既に干渉除去情報を蓄積している基地局から、新規に干渉除去情報が通知された場合には、蓄積された情報を新規に通知された情報で更新する。あるいは既に干渉除去情報を蓄積している基地局から新規に干渉除去情報が通知された場合には、蓄積している干渉除去情報の上り干渉除去値及び下り干渉除去値それぞれと、新規に通知された干渉除去情報の上り干渉除去値及び下り干渉除去値とを、忘却係数を用いて平均化を行う。
 次に、図7のセル選択バイアス決定処理P114では、干渉除去情報集約処理P113にて蓄積した各基地強の干渉除去情報に基づき、各基地局のセル選択バイアス値を決定する。セル選択バイアス決定処理P114において各基地局のセル選択バイアス値を決定する際には、当該基地局の干渉除去情報に加え、当該基地局の周辺基地局の干渉除去情報を用いる。ここで、周辺の基地局とは例えば地理的に隣接するセルの基地局である。また、例えば小型セル基地局の場合には周辺の基地局として、自基地局と通信範囲が重複する1ないしは複数のマクロセル基地局を選択する。また例えばマクロセル基地局の場合には、周辺の基地局として自基地局と通信範囲が重複する1ないしは複数の小型セル基地局を選択する。あるいはマクロセル基地局の場合には、周辺への基地局として自基地局と通信範囲が重複する1ないしは複数の小型セル基地局に加え、自基地局と通信範囲が重複する、あるいは自基地局と通信範囲が接するマクロセル基地局を選択する。
 図7のセル選択バイアス決定処理P114では、自基地局の上り干渉除去値が周辺基地局の上り干渉除去値よりも大きいほどセル選択バイアス値が小さくなるように、自基地局の下り干渉除去値が周辺基地局の下り干渉除去値よりも大きいほどセル選択バイアス値が大きくなるように、セル選択バイアス値を決定する。なお、自基地局または周辺基地局の上り干渉除去値あるいは下り干渉除去値が未取得である場合には、当該の値を0として扱う。
 図7のセル選択バイアス通知処理P115では、セル選択バイアス決定処理P114により決定した各基地局のセル選択バイアス値を当該基地局に対して通知する。
 図7のセル選択バイアス更新処理P106は、セル選択バイアス値として基地局内で決定した値を用いるのではなく、センタから通知を受けた値を用いる点を除き、第1の実施例におけるセル選択バイアス更新処理P106と同様である。
 以上の処理は複数の基地局でそれぞれ順番に同期して行う必要はない。例えばセル選択バイアス決定処理P114は干渉除去情報集約処理P113の終了をトリガーに実行するのではなく、一定間隔で定期的に実行してもよい。
 上述した第2の実施例のセル選択バイアス補正処理により、第1の実施例の場合と同様本実施例においても、自基地局の下り干渉除去の能力が高いほど、あるいは周辺の基地局の上り干渉除去の能力が高いほど、ユーザ端末が自基地局に接続しやすくなり、自基地局のセル範囲が拡大することにより、セル間干渉による影響を低く保ちつつ、セル間の負荷分散及びシステムスループットの増加を図ることができる。さらにマクロセルと小型セルとが混在する環境においては、小型セルを有効に活用することができる。
 図8は、上述した各実施例における基地局装置である、デジタル信号プロセッサ(Digital Signal Processor:DSP)や中央処理部(Central Processing Unit:CPU)や論理回路から構成される処理部を主体とした基地局の構成の一例を示す図である。図8に示す基地局は、処理部を構成するCPU及びDSPモジュール401、記憶部であるメモリ402、処理部を構成する論理回路モジュール403、ネットワークインタフェース(I/F)404、一つまたは複数のアンテナに接続される、無線通信部であるRFモジュール405を有し、それぞれ、バス406を介して接続される。
 図2や図7における各処理は、処理部を構成する、CPU/DSPモジュール401におけるプログラムと、論理回路モジュール403における演算回路との一方もしくは両方、及び必要であればメモリ402を用いて行われる。また各処理が必要とする情報、たとえば、上述した各実施例における干渉除去情報やセル選択バイアス値等はメモリ402に保持される。
 ネットワークインタフェース(I/F)404は、制御信号や信号処理前の送信信号、信号処理後の受信信号の入出力を行う。RFモジュール405は、送信信号に対しては無線周波数帯域の信号に変換してアンテナを経由して送信を行い、受信信号に対してはアンテナを介して受信した信号をベースバンド帯域の信号に変換する。
 なお、図8に示した、各モジュール及びバスはそれぞれ必ずしも単一である必要は無い。例えば複数のCPU/DSPモジュール401があっても良く、また複数のバス406があっても良い。またバス406が複数ある場合には、必ずしもすべてのバスが全てのモジュールと接続している必要は無く、例えば全てのモジュールと接続しているバスの他に、メモリ402と論理回路モジュール403とのみを接続するバスがあっても良い。
 また例えば全ての機能における信号処理演算及び信号処理の制御それぞれを、処理部を構成するCPU/DSPモジュール401において実行可能であれば論理演算モジュール403は無くても良い。逆に例えば全ての機能における信号処理演算及び信号処理の制御それぞれを論理演算モジュール403において実行可能であればCPU/DSPモジュール401は無くても良い。
 以上説明した本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101 マクロセル基地局
102 ユーザ端末
103 ネットワーク
104 コアネットワーク
111 小型セル基地局
112 ユーザ端末
401 CPU/DSPモジュール
402 メモリ
403 論理回路モジュール
404 インタフェース(I/F)
405 RFモジュール
406 バス
506 量子化上り干渉除去値
507 量子化下り干渉除去値
508 セル選択バイアス値
509 バイアス値テーブル
701 基地局ID
702 上り干渉除去値
703 下り干渉除去値

Claims (15)

  1. 端末と基地局が無線通信を行う無線通信システムであって、
    前記基地局は複数のアンテナを備え、
    前記複数のアンテナを用いた処理利得を測定し、前記処理利得に応じて前記端末が当該基地局に接続する範囲を調整する、
    ことを特徴とする無線通信システム。
  2. 請求項1記載の無線通信システムであって、
    前記処理利得のうち上り信号の処理利得が大きいほど、前期端末が接続する範囲を狭くする、
    ことを特徴とする無線通信システム。
  3. 請求項1記載の無線通信システムであって、
    前記処理利得のうち下り信号の処理利得が大きいほど、前期端末が接続する範囲を広くする、
    ことを特徴とする無線通信システム。
  4. 請求項1記載の無線通信システムであって、
    その通信範囲内に報知するセル個別オフセット値を調整することにより前記端末が接続する範囲を調整する、
    ことを特徴とする無線通信システム。
  5. 請求項1記載の無線通信システムであって、
    センタを更に備え、
    前記センタが、複数のアンテナを有する前記基地局の前記処理利得に応じて前記端末が当該基地局に接続する範囲を制御する、
    ことを特徴とする無線通信システム。
  6. 無線通信システムの基地局であって、
    複数のアンテナと、
    ユーザ端末と無線通信を行う通信部と、
    前記複数のアンテナを用いた処理利得を測定し、前記処理利得に応じて前記ユーザ端末が当該基地局に接続する範囲を調整する処理部と、を備える、
    ことを特徴とする基地局。
  7. 請求項6記載の基地局であって、
    前記処理部は、
    前記処理利得のうち上り信号の処理利得が大きいほど、前期ユーザ端末が接続する範囲を狭くする、
    ことを特徴とする基地局。
  8. 請求項6記載の基地局であって、
    前記処理部は、
    前記処理利得のうち下り信号の処理利得が大きいほど、前期ユーザ端末が接続する範囲を広くする、
    ことを特徴とする基地局。
  9. 請求項6記載の基地局であって、
    前記処理部は、
    前記処理利得に基づき決定したセル選択バイアス値を用いて、当該基地局の通信範囲に報知するセル個別オフセット値を作成する、
    ことを特徴とする基地局。
  10. 請求項9記載の基地局であって、
    前記処理部は、
    前記セル個別オフセット値を調整することにより前記ユーザ端末が接続する範囲を調整する、
    ことを特徴とする基地局。
  11. 基地局のセル選択制御方法であって、
    前記基地局は、複数のアンテナを備え、
    前記複数のアンテナを用いた処理利得を測定し、
    測定した前記処理利得に応じて端末が当該基地局に接続する範囲を調整する、
    ことを特徴とするセル選択制御方法。
  12. 請求項11記載のセル選択制御方法であって、
    前記基地局は、
    前記処理利得のうち上り信号の処理利得が大きいほど、前期端末が接続する範囲を狭くするよう制御する、
    ことを特徴とするセル選択制御方法。
  13. 請求項11記載のセル選択制御方法であって、
    前記基地局は、
    前記処理利得のうち下り信号の処理利得が大きいほど、前期端末が接続する範囲を広くするよう制御する、
    ことを特徴とするセル選択制御方法。
  14. 請求項11記載のセル選択制御方法であって、
    前記基地局は、
    前記処理利得に基づき決定したセル選択バイアス値を用いて当該基地局の通信範囲に報知するセル個別オフセット値を作成する、
    ことを特徴とするセル選択制御方法。
  15. 請求項11記載のセル選択制御方法であって、
    前記基地局は、
    ハンドオーバ判定の際に、前記処理利得に基づき決定したセル選択バイアス値が大きい基地局に対してハンドオーバしやすいように判断条件を補正する、
    ことを特徴とするセル選択制御方法。
PCT/JP2012/080968 2012-11-29 2012-11-29 無線通信システム、基地局、及びセル選択制御方法 WO2014083664A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/122,784 US20150189583A1 (en) 2012-11-29 2012-11-29 Radio communication system, base station, and cell selection control method
JP2013552024A JP5766819B2 (ja) 2012-11-29 2012-11-29 無線通信システム、基地局、及びセル選択制御方法
PCT/JP2012/080968 WO2014083664A1 (ja) 2012-11-29 2012-11-29 無線通信システム、基地局、及びセル選択制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080968 WO2014083664A1 (ja) 2012-11-29 2012-11-29 無線通信システム、基地局、及びセル選択制御方法

Publications (1)

Publication Number Publication Date
WO2014083664A1 true WO2014083664A1 (ja) 2014-06-05

Family

ID=50827336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080968 WO2014083664A1 (ja) 2012-11-29 2012-11-29 無線通信システム、基地局、及びセル選択制御方法

Country Status (3)

Country Link
US (1) US20150189583A1 (ja)
JP (1) JP5766819B2 (ja)
WO (1) WO2014083664A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162687A (zh) * 2015-04-01 2016-11-23 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577589A (zh) * 2015-12-23 2016-05-11 浙江昊达电气有限公司 一种提升lte多载波系统可靠性的方法
CN105553901A (zh) * 2015-12-23 2016-05-04 浙江昊达电气有限公司 一种lte多载波系统
CN105577590A (zh) * 2015-12-23 2016-05-11 浙江昊达电气有限公司 一种基于干扰检测的lte多载波系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136083A1 (ja) * 2010-04-28 2011-11-03 京セラ株式会社 無線通信システム、無線基地局、及び通信制御方法
JP2012023519A (ja) * 2010-07-14 2012-02-02 Sharp Corp 基地局、通信システム及び通信方法
WO2012053240A1 (ja) * 2010-10-18 2012-04-26 京セラ株式会社 無線通信システム、低電力基地局及び通信制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405754C (zh) * 2005-05-20 2008-07-23 上海原动力通信科技有限公司 用于终端的下行功率控制的方法
US7869783B2 (en) * 2006-02-24 2011-01-11 Sky Cross, Inc. Extended smart antenna system
US20090041159A1 (en) * 2007-08-06 2009-02-12 Mediaphy Corporation Power control for respective hardware engines in wireless receiver
KR101343899B1 (ko) * 2009-04-27 2013-12-20 후아웨이 테크놀러지 컴퍼니 리미티드 정보를 처리하기 위한 방법, 시스템 및 기기
JP5310401B2 (ja) * 2009-09-01 2013-10-09 富士通株式会社 基地局、通信システムおよび通信方法
US9668187B2 (en) * 2011-12-19 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method in a network node
US8953526B2 (en) * 2012-08-03 2015-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Node for use in a mobile communications network and a method of operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136083A1 (ja) * 2010-04-28 2011-11-03 京セラ株式会社 無線通信システム、無線基地局、及び通信制御方法
JP2012023519A (ja) * 2010-07-14 2012-02-02 Sharp Corp 基地局、通信システム及び通信方法
WO2012053240A1 (ja) * 2010-10-18 2012-04-26 京セラ株式会社 無線通信システム、低電力基地局及び通信制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162687A (zh) * 2015-04-01 2016-11-23 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
JP2018510527A (ja) * 2015-04-01 2018-04-12 ソニー株式会社 無線通信のユーザー機器側用と基地局側用の装置と方法
CN106162687B (zh) * 2015-04-01 2021-06-11 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
JP7066410B2 (ja) 2015-04-01 2022-05-13 ソニーグループ株式会社 無線通信のユーザー機器側用と基地局側用の装置と方法
US11356878B2 (en) 2015-04-01 2022-06-07 Sony Corporation Device and method for user equipment side and base station side in wireless communication

Also Published As

Publication number Publication date
US20150189583A1 (en) 2015-07-02
JP5766819B2 (ja) 2015-08-19
JPWO2014083664A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
US20200162975A1 (en) Mobile communication system, base station and user equipment
CN109075834B (zh) 用于波束管理的系统和方法
KR102010517B1 (ko) 밀리미터파 광대역 통신에서 신뢰도 향상 방법 및 장치
WO2013151127A1 (ja) 無線通信方法、ローカルエリア基地局装置、移動端末装置及び無線通信システム
JP5406939B2 (ja) 分散アンテナシステムにおけるサブセル測定手順
CN113574810A (zh) 防止频繁波束切换
WO2018011777A1 (ja) 通信システム、基地局装置、通信端末装置および通信方法
CN105191443B (zh) 用于传送探测参考信号的用户设备和方法
WO2016036290A1 (en) Beam forming in a wireless communication network
EP3818641A1 (en) A network node and method in a wireless communications network
JP5766819B2 (ja) 無線通信システム、基地局、及びセル選択制御方法
US10004085B2 (en) Scheduling for heterogeneous networks
US20120307639A1 (en) Method and Device for Data Processing in a Network
WO2009102154A2 (en) System and method for handover of mobile station in a wireless mobile communication system
EP2878164B1 (en) Wireless communication network with noise metric based optimization for cellular capacity improvement
EP2824958B1 (en) Wireless telecommunications network nodes and methods
US20220210795A1 (en) Central control unit, radio unit and methods in a wireless communications network
JP5680172B2 (ja) 無線通信システム、無線基地局、無線端末、及び無線通信方法
JP5455581B2 (ja) 無線端末
CN116095805A (zh) 物理小区标识冲突的调节方法、装置及存储介质
JP2011139402A (ja) 基地局、通信システム及び基地局除外判定方法
KR20130065292A (ko) 동적 셀 구성을 갖는 무선 통신 기지국
Gong et al. Dynamic uplink coordinated multi-point scheme based on Range Expansion in Heterogeneous Networks

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122784

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888978

Country of ref document: EP

Kind code of ref document: A1