WO2014081118A1 - 자기장 차폐재 - Google Patents

자기장 차폐재 Download PDF

Info

Publication number
WO2014081118A1
WO2014081118A1 PCT/KR2013/009060 KR2013009060W WO2014081118A1 WO 2014081118 A1 WO2014081118 A1 WO 2014081118A1 KR 2013009060 W KR2013009060 W KR 2013009060W WO 2014081118 A1 WO2014081118 A1 WO 2014081118A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
slits
shielding material
field shielding
soft magnetic
Prior art date
Application number
PCT/KR2013/009060
Other languages
English (en)
French (fr)
Inventor
김정오
Original Assignee
주식회사 씨에이디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨에이디 filed Critical 주식회사 씨에이디
Publication of WO2014081118A1 publication Critical patent/WO2014081118A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials

Definitions

  • the present invention relates to a magnetic field shielding material applied to an electronic device that transmits signals and energy by using an alternating magnetic field, and more particularly, to a magnetic field shielding material which is useful as a magnetic field shielding material in a high frequency band by a split pattern.
  • a plate-shaped magnetic field shielding material made of a metal magnetic material having high permeability and high saturation magnetic flux density is widely used.
  • the magnetic field passes through the shielding material of the magnetic metal material, electric induction occurs inside the shielding material, and the magnetic field loses energy. Therefore, the magnetic field is greatly reduced after passing through the shield.
  • Conventional magnetic field shielding materials can be usefully used in low frequency bands which are mainly affected by hysteresis loss due to high magnetic permeability and high magnetic flux density, but due to eddy current loss due to low resistance There is a limit to shielding a magnetic field having a high frequency.
  • the present invention has been proposed to solve the problems of the prior art, by dividing the surface of the soft magnetic material metal plate to a certain size to reduce the eddy current loss in the high frequency band, to provide a magnetic field shielding material to adjust the permeability through the control of the size of the division It is.
  • a magnetic field shield of an electronic device for transmitting signals and energy using an alternating magnetic field comprising a first side and a second side opposite the first side;
  • the metal soft magnetic material plate is formed of Fe-based nanocrystalline soft magnetic material (Fe-based nanocrystalline soft magnetic material).
  • the plurality of cell regions are formed by the first slits and the second slits that cross each other to form a grid.
  • each of the plurality of cell regions has a square, rectangular or rhombic shape.
  • the plurality of cell regions may be formed in a stripe shape by a plurality of slits formed side by side at regular intervals.
  • the slits are formed by patterning by etching, laser patterning, patterning by punch or press or patterning by cutting.
  • the slits are formed to penetrate through the metal soft magnetic material plate so that each of the plurality of cell regions is separated from an adjacent cell region.
  • a magnetic field shielding material formed by dividing a surface of a soft magnetic material metal plate into a predetermined size, and the magnetic field shielding material can reduce eddy current loss in a high frequency band by the division, thereby having an excellent effect on magnetic field shielding in a high frequency band.
  • the control of the partition size has the advantage that the permeability can be adjusted.
  • FIG. 1 is a perspective view showing a magnetic shielding material according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a magnetic field shield according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the magnetic field shield taken along I-I of FIG. 2,
  • FIGS 4 and 5 are plan views of the magnetic field shielding material according to other embodiments in which the pattern shape is modified.
  • FIGS. 6A and 6B are perspective views illustrating various modified forms of the magnetic field shielding material according to the present invention as an example
  • FIG. 7 is a cross-sectional view for describing a shielding material according to another embodiment of the present invention.
  • FIG. 8 is a graph showing a change in magnetic shielding characteristics according to the division of the magnetic shielding material while changing the frequency.
  • FIG. 1 is a perspective view illustrating a magnetic field shield according to an embodiment of the present invention
  • FIG. 2 is a plan view illustrating a magnetic field shield according to an embodiment of the present invention
  • FIG. 3 is a magnetic field shield taken along II in FIG. 2. It is a cross section of.
  • the magnetic field shielding material according to the embodiment of the present invention includes a soft magnetic metal plate 1 having a magnetic permeability of 5000 to 150000.
  • the soft magnetic material metal plate 1 is preferably formed of a Fe-based nanocrystalline soft magnetic material, and more preferably, includes at least one of Fe, Si, Cu, Nb, and B. It is formed of a soft magnetic material.
  • the soft magnetic metal plate 1 includes a first surface 1a and a second surface 1b that face each other, and the first surface 1a has first and second slits 10a having a predetermined depth. 10b) is divided into a plurality of lattice cell regions 12.
  • the soft magnetic material metal plate 1 has a higher resistance due to the above-described division, and can reduce eddy current loss in the high frequency band due to the increased resistance, thereby providing shielding against the high frequency region magnetic field.
  • patterning processing by wet or dry etching laser patterning processing, patterning processing or cutting by punch or press Patterning by means may be used.
  • the plurality of first slits 10a are formed in a direction perpendicular to the first surface 1a and the plurality of second slits 10b are formed in the horizontal direction on the first surface 1a.
  • the spacing A of the first slits 10a that is, the longitudinal length of each of the grid cell regions 12 is constant, and the spacing B of the second slits 10b, i.e., the grid cell region 12
  • Each width is also constant.
  • the interval A of the first slits 10a that determines the longitudinal length of the grid cell region 12 and the second slits 10b that define the horizontal length of the grid cell region 12 are spaced apart. (B) may be equal, whereby each of the grid cell regions 12 may have a square.
  • the magnetic field shielding material has a divided length, i.e., the spacing or division of the slits 10a and 10b with respect to a unit area of the soft magnetic material plate 1, under conditions in which the width or depth of each of the slits 10a and 10b is constant.
  • the available frequency band is widened by shifting at a high frequency. Therefore, by adjusting the number of divided cell regions 12 per unit area according to the frequency, it becomes possible to implement a magnetic field shielding material having a shielding characteristic suitable for the frequency.
  • Eddy current loss is mainly affected in the high frequency band, so it is not suitable for magnetic field shielding material due to high eddy current loss due to low resistance when applying metal magnetic material.
  • the magnetic field shielding material applied by dividing the metal magnetic material, in particular, the region of the soft magnetic material plate 1 can reduce the eddy current loss by the increased resistance.
  • the permeability at high frequencies can be adjusted by appropriately controlling the size of the grid cell region 12 divided in the design, here, the longitudinal length A or the horizontal length B in the range of about 0.5 mm to 5 mm. Therefore, it is possible to easily make a magnetic field shield useful in the high frequency band.
  • 4 and 5 are plan views of magnetic field shielding materials according to other embodiments in which a pattern shape is modified.
  • first and second slits 20a and 20b intersect diagonally on one surface of the soft magnetic material plate 2, so that an entire area of one surface of the soft magnetic material plate 1 has a rhombic shape. It is divided into a plurality of grid cell regions 22 having.
  • the spacing between the first slits 20a is constant and the spacing between the second slits 20b is constant.
  • the division size ie the spacing of the slits or the size of the grid cell region
  • the number of divided grid cell regions 22 per unit area can be increased or decreased.
  • horizontal slits 30 are formed side by side and at regular intervals on one surface of the soft magnetic material plate 3, so that the entire area of one surface of the soft magnetic material plate 1 has a stripe shape. It is divided into stripe cell regions 32. By adjusting the spacing between the slits or the size (here, width) of the stripe cell region, the number of the stripe cells can be increased or decreased, whereby a magnetic field shield having magnetic field shielding properties optimized for a specific high frequency. It is possible to implement. The rest of the configuration or the operation and effect is the same as the previous embodiments, so description is omitted to avoid duplication.
  • the soft magnetic material plates 1, 2, and 3 include a plurality of divided regions while maintaining the shape of a flat plate. And the like.
  • the soft magnetic material plate 4 or 5 may be applied to the electronic device in the form or other form as shown in Figs. 6A and 6B.
  • the division pattern is formed on only one of the two opposing surfaces of the plate
  • the division pattern can be formed on both opposing surfaces of the soft magnetic material plate 6.
  • the positions of the cell region 62a on one surface and the cell region 62b on the other surface do not coincide.
  • the slit and the other surface cell region defining one surface cell region are inconsistent. Due to the inconsistency of the slits 60a and 60b defining them, complete cutting of the soft magnetic material plate may not occur.
  • FIG. 8 is a graph showing changes in magnetic permeability and magnetic field shielding characteristics according to frequency change.
  • a magnetic field shielding material formed to have a divided region according to the present invention shows excellent magnetic shielding characteristics at a high frequency of a predetermined frequency or more. Shows well.
  • the slits 10a, 10b, 20a, 20b, 30, 60a, and 60b formed in the soft magnetic material plates 1, 2, 3, 4, 5, and 6 are formed of the soft magnetic material plate 1,. 2, 3, 4, 5, and 6 are formed so as not to penetrate (cut), but according to another embodiment of the present invention, formed on the soft magnetic material plate (1, 2, 3, 4, 5, 6)
  • the slits 10a, 10b, 20a, 20b, 30, 60a, and 60b may be formed to penetrate (cut) the soft magnetic material plates 1, 2, 3, 4, 5, and 6.
  • each of the plurality of cell regions in order to increase resistance or to have excellent shielding characteristics, it is possible to form each of the plurality of cell regions to be separated from adjacent cell regions to function as independent soft magnetic material plates. Since the soft magnetic material plates 1, 2, 3, 4, 5, and 6 are attached to at least one surface with an adhesive tape or a shielding tape, the soft magnetic material plates 1, 2, 3, 4, 5, and 6 may be fixed even when the plurality of cell regions are separated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

교류 자기장을 이용하여 신호와 에너지를 전달하는 전자 디바이스의 자기장 차폐재가 개시된다. 상기 자기장 차폐재는, 제1면과 상기 제1면에 대향하는 제2면을 포함하고 투자율 5000 ~ 150000을 갖는 금속 연자성재 판을 포함하고, 상기 연자성재 판의 제1면과 상기 제2면 중 적어도 한 면은 슬릿들에 의해 분할되어 복수의 셀 영역들이 형성된다.

Description

자기장 차폐재
본 발명은 교류 자기장을 이용하여 신호와 에너지를 전달하는 전자 디바이스에 적용되어 자기장을 차폐하는 자기장 차폐재에 관한 것으로서, 더 상세하게는, 분할 패턴에 의해 고주파 대역에서의 자기장 차폐재로 유용하게 이용할 수 있는 금속 소재의 자기장 차폐재에 관한 것이다.
교류 자기장을 이용하여 신호와 에너지를 전달하는 다양한 종류의 전자 디바이스가 알려져 있다. 이러한 전자 디바이스의 주위에는 강한 자기장이 형성되는데, 이러한 자기장은 인체에 유해하며 또한 유도전류를 발생시켜 전자 디바이스의 오작동을 야기할 수 있다. 이러한 이유로 전자 디바이스에는 자기장 차단을 위한 자기장 차폐재가 이용된다.
자기장 차폐재로는 투자율 및 포화자속밀도가 높은 금속 자성체로 된 판형 자기장 차폐재가 많이 이용되고 있다. 금속 자성체 소재의 차폐재를 자기장이 통과할 때, 차폐재 내부에서 전기유도현상이 일어나, 자기장은 에너지를 잃게 된다. 따라서, 차폐재를 통과한 후 자기장은 크게 줄어든다.
종래 자기장 차폐재는, 투자율이 및 포화자속밀도가 높은 금속 자성체의 특성으로 인해, 자기이력손실(Hysteresis Loss)에 의해 주로 영향받는 저주파수 대역에서 유용하게 이용될 수 있지만, 낮은 저항으로 인한 와전류 손실로 인하여 고주파수를 갖는 자기장의 차폐에는 한계가 있었다.
본 발명은, 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 연자성재 금속판 표면을 일정 크기로 분할하여 고주파수 대역에서 와전류 손실을 줄이고, 분할 크기의 제어를 통해 투자율을 조절할 수 있도록 한 자기장 차폐재를 제공하는 것이다.
본 발명의 일 측면에 따라, 교류 자기장을 이용하여 신호와 에너지를 전달하는 전자 디바이스의 자기장 차폐재가 제공되며, 상기 자기장 차폐재는, 제1면과 상기 제1면에 대향하는 제2면을 포함하고 투자율 5000 ~ 150000을 갖는 금속 연자성재 판을 포함하고, 상기 연자성재 판의 제1면과 상기 제2면 중 적어도 한 면은 슬릿들에 의해 분할되어 복수의 셀 영역들이 형성된다.
일 실시예에 따라, 상기 금속 연자성재 판은 Fe계 나노결정 연자성재(Fe based nanocrystalline soft magnetic material)로 형성된다.
일 실시예에 따라, 상기 복수의 셀 영역들은 서로 교차하는 제1 슬릿들과 제2 슬릿들에 의해 형성되어 격자 형태로 형성된다.
일 실시예에 따라, 상기 복수의 셀 영역들 각각은 정사각형, 직사각형 또는 마름모꼴 형태를 갖는다.
일 실시예에 따라, 상기 복수의 셀 영역들은 일정 간격으로 나란하게 형성된 복수의 슬릿들에 의해 스트라이프(stripe) 형태로 형성된다.
일 실시예에 따라, 상기 슬릿들은 에칭에 의한 패터닝(patterning) 가공, 레이저 패터닝 가공, 펀치 또는 프레스에 의한 패터닝 가공 또는 커팅에 의한 패터닝 가공에 의해 형성된다.
일 실시예에 따라, 상기 복수의 셀 영역들 각각은 인접 셀 영역과 분리되도록 하기 위해 상기 슬릿들은 상기 금속 연자성재 판을 관통하도록 형성된다.
본 발명에 따라 연자성재 금속판 표면을 일정 크기로 분할하여 형성된 자기장 차폐재가 제공되며, 상기 자기장 차폐재는 상기 분할에 의해 고주파수 대역에서 와전류 손실을 줄일 수 있어서 고주파수 대역에서의 자기장 차폐에 탁월한 효과를 가지며, 분할 크기의 제어를 통해 투자율을 조절할 수 있다는 이점을 갖는다.
도 1은 본 발명의 일 실시예에 따른 자기장 차폐재를 도시한 사시도이고,
도 2는 본 발명의 일 실시예에 따른 자기장 차폐재를 도시한 평면도이고,
도 3은 도 2의 I-I를 따라 취해진 자기장 차폐재의 단면도이고,
도 4 및 도 5는 패턴 형상이 변형된 다른 실시예들에 따른 자기장 차폐재의 평면도들이고,
도 6의 (a), (b)는 본 발명에 따른 자기장 차폐재의 여러 변형된 형태들을 예로서 설명한 사시도들이고,
도 7은 본 발명의 다른 실시예에 따른 차폐재를 설명하기 위한 단면도이며,
도 8은 주파수를 변화시키면서 자기장 차폐재 분할에 따른 자기장 차폐 특성 변화를 보여주는 그래프이다.
이하 첨부된 도면들을 참조로 하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 자기장 차폐재를 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 자기장 차폐재를 도시한 평면도이고, 도 3은 도 2의 I-I를 따라 취해진 자기장 차폐재의 단면도이다.
도 1 내지 도 3을 참조하면 본 발명의 일 실시예에 따른 자기장 차폐재는 투자율 5000 ~ 150000의 연자성재 금속판(1)을 포함한다. 상기 연자성재 금속판(1)은 Fe계 나노결정 연자성재(Fe based nanocrystalline soft magnetic material)로 형성된 것이 바람직하며, 더 바람직하게는, Fe, Si, Cu, Nb, 및 B 중 적어도 하나의 원소를 포함하는 연자성재로 형성된다.
상기 연자성재 금속판(1)은 서로 대향하는 제1면(1a)과 제2면(1b)을 포함하며, 상기 제1면(1a)은 일정 깊이를 갖는 제1 및 제2 슬릿들(10a, 10b)들에 의해 다수의 격자 셀 영역(12)으로 분할된다. 상기 연자성재 금속판(1)은 위와 같은 분할에 의해 저항이 높아지며, 높아진 저항에 의해 고주파 대역에서 와전류 손실을 줄일 수 있고, 따라서, 고주파 영역 자기장에 대한 차폐성을 갖게 된다.
상기 슬릿(10a, 10b)들을 형성하여 연자성재 금속판(1)의 영역을 분할하는 가공방법으로는 습식 또는 건식 에칭에 의한 패터닝(patterning) 가공, 레이저 패터닝 가공, 펀치 또는 프레스에 의한 패터닝 가공 또는 커팅에 의한 패터닝 가공이 이용될 수 있다.
본 실시예에서, 복수의 제1 슬릿(10a)들은 상기 제1면(1a)에 수직 방향으로 형성되고 복수의 제2 슬릿(10b)들은 상기 제1면(1a)에 수평 방향으로 형성된다. 상기 제1 슬릿(10a)들의 간격(A), 즉 상기 격자 셀 영역(12) 각각의 세로 길이는 일정하며 또한 상기 제2 슬릿(10b)들의 간격(B), 즉 상기 격자 셀 영역(12) 각각의 가로 길이 또한 일정하다. 본 실시예에서는, 상기 격자 셀 영역(12)의 세로 길이를 결정하는 제1 슬릿(10a)들의 간격(A)과 상기 격자 셀 영역(12)의 가로 길이를 정하는 제2 슬릿(10b)들이 간격(B)이 같게 정해질 수 있으며, 이에 의해, 상기 격자 셀 영역(12) 각각은 정사각형을 가질 수 있다.
상기 자기장 차폐재는, 슬릿(10a, 10b) 각각의 폭 또는 깊이가 일정한 조건에서, 상기 연자성재 판(1)의 단위 면적에 대한, 분할 길이, 즉, 슬릿(10a, 10b)들의 간격 또는 분할된 격자 셀 영역(12)의 세로 길이(A) 또는 가로 길이(B)가 감소함에 따라, 고주파수로 시프팅 됨으로써 가용 주파수 대역이 넓어지게 된다. 따라서 주파수에 따라 단위 면적당 분할 셀 영역(12)의 개수를 조절함으로써 해당 주파수에 적합한 차폐 특성을 갖는 자기장 차폐재의 구현이 가능해진다.
고주파수 대역에서는 와전류 손실(Eddy current Loss)이 주로 영향을 미치므로 금속 자성체 적용시 저항이 낮아 높은 와전류 손실로 인해 자기장 차폐재로 적합하지가 않다.
그러나 본 발명에 따라, 금속 자성체, 특히, 연자성재 판(1)의 영역을 분할해 적용한 자기장 차폐재는, 높아진 저항에 의해 와전류 손실을 낮출 수 있다. 또한, 설계시 분할된 격자 셀 영역(12)의 크기, 여기에서는, 세로 길이(A) 또는 가로 길이(B)를 대략 0.5mm ~ 5mm 범위에서 적절히 제어함으로써, 고파수에서의 투자율을 조정할 수 있고, 따라서, 고주파 대역에서 유용한 자기장 차폐재를 용이하게 만들 수 있다.
도 4 및 도 5는 패턴 형상이 변형된 다른 실시예들에 따른 자기장 차폐재의 평면도들이다.
먼저 도 4를 참조하면, 연자성재 판(2)의 일면에 제1 및 제2 슬릿(20a, 20b)들이 사선으로 교차하도록 형성되어, 상기 연자성재 판(1)의 일면 전체 영역은 마름모꼴 형태를 갖는 복수의 격자 셀 영역(22)들로 분할된다. 상기 제1 슬릿(20a)들 사이의 간격은 일정하고 상기 제2 슬릿(20b)들 사이의 간격도 일정하다. 분할 크기, 즉, 슬릿들의 간격 또는 격자 셀 영역의 크기를 달리함으로써, 단위 면적당 분할된 격자 셀 영역(22)들의 개수를 늘리거나 줄일 수 있으며. 이에 의해, 특정 고주파수에 최적화된 자기장 차폐 특성을 갖는 자기장 차폐재의 구현이 가능하다. 나머지 구성이나, 작용 효과는 앞선 실시예와 동일하므로 중복을 피하기 위해 설명이 생략된다.
다음 도 5를 참조하면, 연자성재 판(3)의 일면에 수평 방향 슬릿(30)들이 나란하게 그리고 일정 간격으로 형성되어, 상기 연자성재 판(1)의 일면 전체 영역은 스트라이프 형태를 갖는 복수의 스트라이프 셀 영역(32)들로 분할된다. 상기 슬릿들 사이의 간격 또는 상기 스트라이프 셀 영역의 크기(여기에서는, 폭)을 조절하여, 상기 스트라이프 셀의 개수를 늘리거나 줄일 수 있으며, 이에 의해, 특정 고주파수에 최적화된 자기장 차폐 특성을 갖는 자기장 차폐재의 구현이 가능하다. 나머지 구성이나, 작용 효과는 앞선 실시예들과 동일하므로 중복을 피하기 위해 설명이 생략된다.
본 발명에 따른 자기장 차폐재는 도 1 내지 도 3 그리고 도 4 및 도 5에 도시된 것과 같이 연자성재 판(1, 2, 3)이 복수의 분할 영역들을 포함하되 평판의 형태를 그대로 유지하면서 전자 디바이스 등에 적용될 수 있다. 하지만, 설치 조건이나 용도에 따라, 연자성재 판(4 또는 5)이 도 6의 (a) 및 (b)에 도시된 것과 같은 형태 또는 다른 형태로 전자 디바이스에 적용될 수 있다.
위에서는 판의 두 대향면 중 어느 한 면에만 분할 패턴이 형성되는 것으로 설명되었지만, 연자성재 판(6)의 두 대향면 모두에 분할 패턴을 형성할 수 있다. 이 경우, 도 7에 도시된 것과 같이, 일면의 셀 영역(62a)과 타면의 셀 영역(62b)의 위치가 일치하지 않도록 하는 것이 좋으며, 이 경우, 일면 셀 영역들을 한정하는 슬릿과 타면 셀 영역들을 한정하는 슬릿(60a, 60b)의 불일치로 인해 연자성재 판의 완전한 절단이 일어나지 않을 수 있다.
도 8은 주파수 변화에 따른 투자율의 변화 및 자기장 차폐 특성 변화를 보여주는 그래프이며, 도 8을 참조하면, 본 발명에 따라 분할 영역을 갖도록 형성된 자기장 차폐재가 일정 주파수 이상의 고주파수에서 우수한 자기장 차폐특성을 보여줌을 잘 보여준다.
상술한 실시예들은 상기 연자성재 판(1, 2, 3, 4, 5, 6)에 형성되는 슬릿들(10a, 10b, 20a, 20b, 30, 60a, 60b)이 상기 연자성재 판(1, 2, 3, 4, 5, 6)을 관통(절단)하지 않도록 형성되고 있으나, 본 발명의 다른 실시예에 따르면, 상기 연자성재 판(1, 2, 3, 4, 5, 6)에 형성되는 슬릿들(10a, 10b, 20a, 20b, 30, 60a, 60b)은 상기 연자성재 판(1, 2, 3, 4, 5, 6)을 관통(절단)하도록 형성될 수 있다.
즉 저항을 높이거나 우수한 차폐특성을 가지도록 하기 위해 상기 복수의 셀영역들 각각이 인접 셀영역과 분리되어 독립적인 연자성재 판들로 기능하도록 형성하는 것이 가능하다. 상기 연자성재 판(1, 2, 3, 4, 5, 6)은 적어도 일면에 접착테이프나 차폐테이프 등이 부착되기 때문에, 상기 복수의 셀영역들이 독립적으로 분리되어도 고정이 가능하다.

Claims (7)

  1. 교류 자기장을 이용하여 신호와 에너지를 전달하는 전자 디바이스의 자기장 차폐재로서,
    제1면과 상기 제1면에 대향하는 제2면을 포함하고 투자율 5000 ~ 150000을 갖는 금속 연자성재 판을 포함하고,
    상기 연자성재 판의 제1면과 상기 제2면 중 적어도 한 면은 슬릿들에 의해 분할되어 복수의 셀 영역들이 형성된 것을 특징으로 하는 자기장 차폐재.
  2. 청구항 1에 있어서, 상기 금속 연자성재 판은 Fe계 나노결정 연자성재(Fe based nanocrystalline soft magnetic material)로 형성된 것을 특징으로 하는 자기장 차폐재.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 복수의 셀 영역들은 서로 교차하는 제1 슬릿들과 제2 슬릿들에 의해 형성되어 격자 형태로 형성된 것을 특징으로 하는 자기장 차폐재.
  4. 청구항 3에 있어서, 상기 복수의 셀 영역들 각각은 정사각형, 직사각형 또는 마름모꼴 형태를 갖는 것을 특징으로 하는 자기장 차폐재.
  5. 청구항 1 또는 청구항 2에 있어서, 상기 복수의 셀 영역들은 일정 간격으로 나란하게 형성된 복수의 슬릿들에 의해 스트라이프 형태로 형성된 것을 특징으로 하는 자기장 차폐재.
  6. 청구항 1에 있어서, 상기 슬릿들은 에칭에 의한 패터닝(patterning) 가공, 레이저 패터닝 가공, 펀치 또는 프레스에 의한 패터닝 가공 또는 커팅에 의한 패터닝 가공에 의해 형성된 것을 특징으로 하는 자기장 차폐재.
  7. 청구항 1에 있어서, 상기 복수의 셀 영역들 각각은 인접 셀 영역과 분리되고, 상기 슬릿들은 상기 금속 연자성재 판을 관통하도록 형성됨을 특징으로 하는 자기장 차폐재.
PCT/KR2013/009060 2012-11-20 2013-10-10 자기장 차폐재 WO2014081118A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0131682 2012-11-20
KR1020120131682A KR101474479B1 (ko) 2012-11-20 2012-11-20 자기장 차폐재

Publications (1)

Publication Number Publication Date
WO2014081118A1 true WO2014081118A1 (ko) 2014-05-30

Family

ID=50776261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009060 WO2014081118A1 (ko) 2012-11-20 2013-10-10 자기장 차폐재

Country Status (2)

Country Link
KR (1) KR101474479B1 (ko)
WO (1) WO2014081118A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316448A4 (en) * 2015-06-25 2019-01-23 LG Innotek Co., Ltd. DEVICE FOR WIRELESS POWER RECEPTION AND SYSTEM FOR WIRELESS POWER TRANSMISSION THEREWITH

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102302150B1 (ko) 2015-02-16 2021-09-16 한국전자통신연구원 자기장 차폐 시트 및 그 제조 방법
JP6773770B2 (ja) * 2015-09-04 2020-10-21 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. 磁気共振方式無線電力転送用磁場遮蔽ユニット、これを含む無線電力転送モジュール及び電子装置
KR101926634B1 (ko) * 2015-09-30 2018-12-11 주식회사 아모센스 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 휴대용 기기
KR101901765B1 (ko) 2015-12-15 2018-09-28 두산중공업 주식회사 분할된 구조를 포함하는 플럭스 쉴드 및 이를 포함하는 발전기
KR101907800B1 (ko) * 2017-10-20 2018-10-12 주식회사 엔에프디 단일 차폐시트 및 이의 제조방법
KR101947321B1 (ko) * 2018-08-08 2019-02-11 주식회사 엔에프디 단일 차폐시트
KR102076912B1 (ko) * 2018-08-27 2020-02-12 주식회사 엔에프디 이동 단말기용 단일 차폐시트

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354973A (ja) * 1998-06-04 1999-12-24 Hitachi Metals Ltd 電磁波吸収体
JP2001035711A (ja) * 1999-07-16 2001-02-09 Kyocera Corp 電波吸収体用合成樹脂基板
JP2009099895A (ja) * 2007-10-19 2009-05-07 Fdk Corp ノイズ対策用フェライトシート
JP4277596B2 (ja) * 2003-06-27 2009-06-10 戸田工業株式会社 焼結フェライト基板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264393A (ja) * 2002-03-11 2003-09-19 Univ Osaka 電磁波シールドおよびそれを備えた装置
KR101429530B1 (ko) * 2009-04-07 2014-08-18 한양대학교 에리카산학협력단 전자파 흡수체용 편상분말 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354973A (ja) * 1998-06-04 1999-12-24 Hitachi Metals Ltd 電磁波吸収体
JP2001035711A (ja) * 1999-07-16 2001-02-09 Kyocera Corp 電波吸収体用合成樹脂基板
JP4277596B2 (ja) * 2003-06-27 2009-06-10 戸田工業株式会社 焼結フェライト基板
JP2009099895A (ja) * 2007-10-19 2009-05-07 Fdk Corp ノイズ対策用フェライトシート

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316448A4 (en) * 2015-06-25 2019-01-23 LG Innotek Co., Ltd. DEVICE FOR WIRELESS POWER RECEPTION AND SYSTEM FOR WIRELESS POWER TRANSMISSION THEREWITH
US10297380B2 (en) * 2015-06-25 2019-05-21 Lg Innotek Co., Ltd. Wireless power reception apparatus and wireless power transmission system including the same
US11127522B2 (en) 2015-06-25 2021-09-21 Scramoge Technology Limited Magnetic sheet and wireless power reception apparatus
US11749440B2 (en) 2015-06-25 2023-09-05 Scramoge Technology Limited Magnetic sheet and wireless power reception apparatus

Also Published As

Publication number Publication date
KR101474479B1 (ko) 2014-12-23
KR20140065702A (ko) 2014-05-30

Similar Documents

Publication Publication Date Title
WO2014081118A1 (ko) 자기장 차폐재
DE102013109458A1 (de) E-Feld-Abschirmung für kabelloses Ladegerät
KR101401769B1 (ko) 편광각 의존형 다중 밴드 전자기파 흡수체
DE112014001790B4 (de) Magnetischer Abschirmungskörper für einen Strommesswertgeber und Strommesswertgebervorrichtung
JP2002164686A5 (ko)
EP2941861B1 (de) Gehäusewand
RU2012137107A (ru) Устройство индукционного нагрева с поперечным потоком
WO1999059222A3 (en) Method of manufacturing an antenna structure and an antenna structure manufactured according to the said method
CN107591238B (zh) 磁性片及磁性片的制造方法
DE10157678A1 (de) Hochfrequenzfestes Folienkabel für Datenleitungen
CN107819195B (zh) 基站天线及其隔离板
KR20130004736A (ko) 다중 주파수 대역용 주파수 선택 반사기
WO2012093766A1 (en) Mimo antenna with no phase change
CN115799838B (zh) 一种基于二极管-二氧化钒的复合能量选择表面
EP2108973B1 (en) Process for manufacturing pole pieces of nuclear magnetic resonance imaging magnets
KR102302150B1 (ko) 자기장 차폐 시트 및 그 제조 방법
CN102738590B (zh) 一种高介电常数超材料
TW201803209A (zh) 抗電磁干擾單元
KR20130021263A (ko) 전자기장 차폐망
CN208062247U (zh) 多频共口径宽带辐射体
KR101505030B1 (ko) 비정형 크랙을 갖는 자기장 차폐재 및 그 제조방법
DE102017127459A1 (de) Induktive Ladeanordnung
CN104246490B (zh) 用于化学分析的方法和结构
DE102005015006A1 (de) Magnetkern
MX2022007964A (es) Sistema de monitoreo super modular.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857416

Country of ref document: EP

Kind code of ref document: A1