WO2014080985A1 - Vehicular hydraulic brake device - Google Patents

Vehicular hydraulic brake device Download PDF

Info

Publication number
WO2014080985A1
WO2014080985A1 PCT/JP2013/081404 JP2013081404W WO2014080985A1 WO 2014080985 A1 WO2014080985 A1 WO 2014080985A1 JP 2013081404 W JP2013081404 W JP 2013081404W WO 2014080985 A1 WO2014080985 A1 WO 2014080985A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
hydraulic
hydraulic pressure
fluid
chamber
Prior art date
Application number
PCT/JP2013/081404
Other languages
French (fr)
Japanese (ja)
Inventor
聡 石田
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2014080985A1 publication Critical patent/WO2014080985A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/161Systems with master cylinder
    • B60T13/165Master cylinder integrated or hydraulically coupled with booster
    • B60T13/166Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof

Definitions

  • the present invention relates to a vehicle hydraulic brake device, and more particularly to a vehicle hydraulic brake device that can be used together with a regenerative braking device in a vehicle such as an electric vehicle or a hybrid vehicle.
  • This type of vehicle hydraulic brake device is described in, for example, Japanese Patent Application Laid-Open No. 2012-20707.
  • the hydraulic brake device for a vehicle described in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-20707 is assembled with a cylinder body having a cylinder inner hole and the cylinder inner hole of the cylinder body so as to be movable in the cylinder axial direction.
  • An input piston that can be driven by a brake operating member (for example, a brake pedal) and is formed coaxially with the input piston.
  • a drive fluid chamber capable of supplying and discharging hydraulic fluid and a pressure chamber capable of supplying and discharging hydraulic fluid are formed in the cylinder body so as to be movable in the cylinder axial direction in the cylinder bore, and the input piston or the drive According to a master cylinder having a master piston driven by hydraulic fluid supplied to the liquid chamber, and an operation amount (operation amount) of the brake operation member Said that the reaction force liquid chamber of the liquid pressure and the driving liquid chamber of the liquid pressure with a separate controllable hydraulic control circuit.
  • the hydraulic pressure control circuit includes one electric hydraulic pressure source (pump / motor), a reservoir connected to the suction path of the electric hydraulic pressure source and connected to the return path, and containing hydraulic fluid; A first supply path connecting the discharge path of the electric hydraulic pressure source and the reaction force liquid chamber, a first discharge path connecting the first supply path and the return path, and an electric hydraulic pressure source A second supply path connecting the discharge path and the driving liquid chamber; a second discharge path connecting the second supply path and the reflux path; A normally open electromagnetic first on-off valve interposed in the first supply path upstream from a connection portion between the first supply path and the first discharge path, the second supply path, and the second discharge A normally-open electromagnetic second on-off valve interposed in the second supply path upstream from the connection portion of the path, and arranged in parallel with the first on-off valve in the first supply path.
  • one electric hydraulic pressure source pump / motor
  • a first supply path connecting the discharge path of the electric hydraulic pressure source and the reaction force liquid chamber, a first discharge path connecting the first supply path and the return path,
  • a second discharge check valve is provided which is arranged in parallel with the two control valves and allows upstream flow.
  • the hydraulic fluid discharged / supplied from one electric hydraulic pressure source (pump / motor) is supplied as a reaction force liquid chamber.
  • the hydraulic pressure control circuit is configured simply and inexpensively.
  • the electric hydraulic pressure source (pump / motor) is always kept in operation while the brake operation member is being operated (brake operation). There is a need.
  • the present invention has been made to solve the above problems, Brake operation by forming a cylinder body having a cylinder inner hole and a reaction force liquid chamber that is assembled to the cylinder inner hole of the cylinder body so as to be movable in the axial direction of the cylinder so that hydraulic fluid can be supplied and discharged in the cylinder body.
  • An input piston that can be driven by a member, and a drive that is coaxially arranged with respect to the input piston and that is assembled in the cylinder bore so as to be movable in the cylinder axial direction, so that hydraulic fluid can be supplied to and discharged from the cylinder body.
  • a master cylinder that includes a liquid chamber and a master piston that forms a pressure chamber capable of supplying and discharging hydraulic fluid and is driven by the hydraulic fluid supplied to the input piston or the driving fluid chamber;
  • An electric hydraulic pressure source (pump / motor) whose operation is controlled by an electric control device according to the operating amount of the brake operating member and an electromagnetic valve are provided, and the electric hydraulic pressure source is the reaction force liquid chamber
  • a hydraulic pressure control circuit capable of supplying hydraulic fluid to the driving fluid chamber, and wherein the solenoid valve can separately control or maintain the hydraulic pressure in the reaction fluid chamber and the hydraulic pressure in the driving fluid chamber.
  • the electrical control device Mode determination means for determining a brake maintenance condition that the brake operation member is maintained in a predetermined operation state for a set time or longer based on an operation amount and an operation elapsed time of the brake operation member; When it is determined by the mode determining means that the brake maintenance condition is not satisfied, the electric hydraulic pressure source (pump / motor) is held in an operating state, and the electromagnetic valve is operated by the operating amount of the brake operating member. And normal mode control means for controlling the hydraulic pressure in the reaction liquid chamber and the hydraulic pressure in the driving fluid chamber, When the mode determination means determines that the brake maintenance condition is satisfied, the electric hydraulic pressure source (pump / motor) is held in a stopped state, and the electromagnetic valve is maintained in a set state.
  • the vehicle hydraulic brake device includes an eco mode control means for maintaining the hydraulic pressure in the reaction fluid chamber and the hydraulic pressure in the driving fluid chamber.
  • the brake maintenance condition can be changed as appropriate.
  • a vehicle speed zero that can be detected by the output of the vehicle speed sensor is added, or can be detected by the output of the shift position sensor. It is possible to change that the shift position is in the P or N range, or that an obstacle that can be detected by the output of the vehicle front obstacle detection sensor is added. .
  • the electric control device includes the mode determining means, the normal mode control means, and the eco mode control means. Therefore, when it is determined that the brake maintenance condition is not satisfied, the electric hydraulic pressure source (pump / motor) is held in an operating state, and the electromagnetic valve is controlled according to the operating amount of the brake operating member. Thus, the hydraulic pressure in the reaction liquid chamber and the hydraulic pressure in the driving fluid chamber are controlled.
  • the electric hydraulic pressure source (pump / motor) is held in a stopped state, the electromagnetic valve is maintained in a set state, and the reaction force fluid is The hydraulic pressure in the chamber and the hydraulic pressure in the driving fluid chamber are maintained, and the brake is held.
  • the vehicle hydraulic brake device of the present invention when a predetermined brake operation is maintained (for example, when the brake operation is maintained for a set time or more due to a signal stop, a level crossing stop, a traffic jam stop, etc.).
  • the electric hydraulic pressure source (pump / motor) is held in a stopped state, so that it is possible to eliminate the power consumption of the electric hydraulic pressure source (pump / motor) and the electric hydraulic pressure source (pump / motor). ⁇ It is possible to eliminate vibration and noise associated with the operation of the motor.
  • the electric hydraulic pressure source (pump / motor) is held in a stopped state (unnecessary driving is eliminated), the mechanism of the electric hydraulic pressure source (pump / motor) is reduced. The effect can also be expected for the durability and life of the parts.
  • FIG. 1 is an overall configuration diagram schematically illustrating an embodiment of a vehicle hydraulic brake device according to the present invention. It is a partial block diagram which shows the non-operation state of the principal part of the hydraulic brake device for vehicles shown in FIG. It is a partial block diagram which shows the normal brake operating state of the principal part of the hydraulic brake device for vehicles shown in FIG. It is a partial block diagram which shows the brake holding state of the principal part of the hydraulic brake device for vehicles shown in FIG. It is a partial block diagram which shows the brake operation state at the time of the electric system failure of the principal part of the hydraulic brake device for vehicles shown in FIG. It is a flowchart of the brake operation control program which brake ECU shown in FIG. 1 performs. It is a flowchart of the eco mode control program shown in FIG.
  • FIG. 1 schematically shows an embodiment of a vehicle hydraulic brake device (hereinafter simply referred to as a brake device) according to the present invention.
  • the brake device 100 includes a brake pedal 10 as a brake operation member, The master cylinder 20 that can be operated based on the depression operation of the brake pedal 10, the wheel cylinders FL, FR, RL, RR, the brake hydraulic pressure control actuator 30, the hydraulic pressure control circuit 40, the brake ECU (electric control device) 50, etc. It has.
  • the brake pedal 10 is configured to be able to drive (push) the input piston 22 assembled to the cylinder body 21 of the master cylinder 20 by being depressed by a driver.
  • the operation amount (actuation amount) of the brake pedal 10 is configured to be detected by the stroke sensor S1 and the pedaling force sensor S2.
  • the detection signals of the stroke sensor S1 and the pedal force sensor S2 are configured to be transmitted to the brake ECU 50, so that the brake ECU 50 can grasp the stroke sensor value S and the pedal force sensor value F.
  • the brake operation member is not limited to the brake pedal 10 and can be implemented by, for example, a brake lever or the like.
  • the master cylinder 20 is connected to a reservoir R and has a cylinder body 21 having a cylinder bore 21a connected to an actuator 30 for brake fluid pressure control and a fluid pressure control circuit 40, and an input piston assembled to the cylinder body 21. 22, a pair of front and rear master pistons 23 and 24, a pair of front and rear springs 25 and 26, and the like.
  • the input piston 22 is assembled in the cylinder bore 21a of the cylinder body 21 so as to be movable in the cylinder axial direction, and forms a reaction force liquid chamber C1 capable of supplying and discharging hydraulic fluid (brake fluid) in the cylinder body 21a.
  • the rear end protrudes out of the cylinder body 22 and can be driven by the brake pedal 10.
  • the input piston 22 has a small-diameter portion 22a that can be engaged with and disengaged from the rear master piston 23. In the state of FIG. Away in the direction.
  • the rear master piston 23 is coaxially arranged with respect to the input piston 22 and is assembled in the cylinder inner hole 21a so as to be movable in the cylinder axial direction.
  • a driving fluid chamber C2 capable of supplying and discharging hydraulic fluid is formed, and a pressure chamber C3 capable of supplying and discharging hydraulic fluid is formed in the cylinder body 21 between the front master piston 24.
  • the rear master piston 23 is biased toward the position (return position) of FIG. 1 by a spring 25, and the spring 25 is supplied by the hydraulic fluid supplied to the small diameter portion 22a of the input piston 22 or the driving fluid chamber C2. It is configured to be driven against the urging force.
  • the front master piston 24 is coaxially disposed with respect to the input piston 22 and the rear master piston 23 and is assembled to the cylinder inner hole 21a so as to be movable in the cylinder axial direction.
  • a pressure chamber C4 in which hydraulic fluid can be supplied and discharged is formed in the cylinder body 21.
  • the front master piston 24 is urged toward the position (return position) in FIG. 1 by a spring 26, and is driven against the urging force of the spring 26 by the hydraulic fluid in the spring 25 or the pressure chamber C3. It is configured to be.
  • the reaction force liquid chamber C1 and the driving liquid chamber C2 are connected to the hydraulic pressure control circuit 40.
  • each of the pressure chambers C3 and C4 is connected to a brake fluid pressure control actuator 30.
  • the reaction force liquid chamber C1 and the pressure chambers C3 and C4 communicate with the reservoir R when the pistons 22, 23 and 24 are at the return positions in FIG. By moving forward from the return position by a predetermined amount or more, communication with the reservoir R is blocked.
  • the configuration of the master cylinder 20 other than the above is the same as the configuration of the master cylinder in the vehicle hydraulic brake device described in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-20707.
  • Each configuration of the wheel cylinders FL, FR, RL, and RR and the brake hydraulic pressure control actuator 30 is the same as that of the wheel cylinder in the hydraulic brake device for a vehicle described in FIG. 1 of Japanese Patent Laid-Open No. 2012-20707. Since it is the same as each structure of the brake fluid pressure control actuator, its description is omitted.
  • the hydraulic pressure control circuit 40 of this embodiment includes one electric hydraulic pressure source 41 (pump P and motor M) capable of supplying hydraulic fluid to the reaction force hydraulic chamber C1 and the driving hydraulic chamber C2, and this electric type.
  • a reservoir R that is connected to the suction path 411 of the hydraulic pressure source 41 and is connected to the reflux path 412 to store the working fluid, and the discharge path 413 of the electric hydraulic pressure source 41 and the reaction force liquid chamber C1 are connected.
  • a second discharge path 417 that connects the second supply path 416 and the reflux path 412.
  • the hydraulic pressure control circuit 40 includes a first on-off valve V1, a second on-off valve V2, a main check valve V3, a first check valve V4, a second check valve V5, and a first control valve.
  • V6 and the second control valve V7 are provided, and a pair of pressure sensors S3 and S4 are provided.
  • the first on-off valve V1 is a normally open type electromagnetic on-off valve, and is interposed in the first supply path 414 upstream from the connection portion X1 between the first supply path 414 and the first discharge path 415.
  • the second on-off valve V2 is a normally open type electromagnetic on-off valve, and is interposed in the second supply path 416 upstream of the connection portion X2 between the second supply path 416 and the second discharge path 417.
  • the main check valve V3 is interposed in the discharge passage 413 of the electric hydraulic pressure source 41, and is configured to restrict the flow of hydraulic fluid upstream.
  • the first check valve V4 is arranged in parallel with the first on-off valve V1 in the first supply path 414, and is configured to restrict the flow of the hydraulic fluid to the downstream side.
  • the second check valve V5 is arranged in parallel with the second on-off valve V2 in the second supply path 416, and is configured to regulate the flow of the hydraulic fluid to the downstream side.
  • the first control valve V6 is interposed in the first discharge path 415, and controls the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the reaction force hydraulic chamber C1 according to the operation amount of the brake pedal 10. It is configured.
  • the second control valve V7 is interposed in the second discharge path 417, and controls the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the driving fluid chamber C2 according to the operation amount of the brake pedal 10. It is configured.
  • the pressure sensor S3 is a sensor that detects the pressure in the first supply path 414, and the detection signal is transmitted to the brake ECU 50 so that the brake ECU 50 can grasp the pressure Pr in the first supply path 414.
  • the pressure sensor S4 is a sensor that detects the pressure in the second supply path 416, and the detection signal is transmitted to the brake ECU 50 so that the brake ECU 50 can grasp the pressure Ps in the second supply path 416. It is configured.
  • the above-described electric hydraulic pressure source 41, the first on-off valve V1, the second on-off valve V2, the first control valve V6, the second control valve V7, etc. are connected to the sensors S1 to S4. Each operation is controlled by a brake ECU (electric control device) 50 on the basis of the detection signal.
  • the hydraulic pressure in the drive fluid chamber C2 (electric hydraulic pressure source 41) during normal brake operation (when the brake operation is changed without maintaining the operation amount of the brake pedal 10).
  • the hydraulic fluid discharged from the discharge passage 413 and supplied to the second supply passage 416 by the pressure reduction control by the second control valve V7 is the hydraulic pressure (electric hydraulic pressure) in the reaction force liquid chamber C1.
  • the hydraulic fluid discharged from the source 41 to the discharge passage 413 and supplied to the first supply passage 414 is set to be higher than the hydraulic pressure obtained by pressure reduction control by the first control valve V6. Whether or not the operation amount of the brake pedal 10 is maintained is determined by the brake ECU 50 based on detection signals from the stroke sensor S1 and the pedal force sensor S2.
  • the brake ECU 50 includes the brake operation control program shown in FIG. 6 and the eco mode control program shown in FIG.
  • the brake operation control program shown in FIG. 6 is repeatedly executed every predetermined calculation cycle (for example, several milliseconds), and when the pedal force sensor value F detected by the pedal force sensor S2 exceeds the threshold value F1.
  • execution of the program is started (step 201), and the stroke sensor value S and the pedaling force sensor value F are read in step 202.
  • step 203 the change amounts of the stroke sensor value S and the pedal force sensor value F are calculated, and it is determined whether or not each is equal to or less than a specified value (A, B).
  • Step 204 and Step 205 are executed and Step 206 is performed.
  • Step 204 the count of the elapsed time t1 from the start of “Yes” in step 203 is reset to zero.
  • step 205 a normal mode control program (details omitted) is executed, and the brake pedal
  • the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the reaction liquid chamber C1 and the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the drive hydraulic chamber C2 are controlled according to the operation amount of 10. .
  • Step 207 and Step 208 are executed.
  • step 207 the count of the elapsed time t1 from the start of “Yes” in step 203 is incremented, and in step 208, it is determined whether the elapsed time t1 is equal to or greater than the set time To from the count value of the elapsed time t1. Is done.
  • step 205 is executed, and the execution of the program ends in step 206.
  • step 210 is executed, and the execution of the program is ended in step 206.
  • step 210 the eco mode control program shown in FIG. 7 is executed, and after the execution of the eco mode control program is started in step 211, step 212 is executed and the pressure Ps in the second supply path 416 is increased. It is determined whether or not the pressure Pr in the first supply path 414 is equal to or higher.
  • Step 213 and Step 214 are executed.
  • step 213 a signal for turning on the first on-off valve V1 (energized state) is output, and the second on-off valve V2, the first control valve V6, the second control valve V7, the motor M, etc. are turned off (non-energized). State) is output, and the electrical equipment of the hydraulic pressure control circuit 40 is as shown in FIG.
  • step 214 the program that returns to step 206 is executed.
  • step 215 and step 214 are executed.
  • step 215 a signal for turning on the second on-off valve V2 (energized state) is output, and the first on-off valve V1, the first control valve V6, the second control valve V7, the motor M, etc. are turned off (non-energized). State) is output.
  • step 214 the program that returns to step 206 is executed.
  • the hydraulic pressure in the reaction fluid chamber C1 and the hydraulic pressure in the drive fluid chamber C2 are controlled separately according to the 10 actuation amounts (operation amounts). Therefore, in this case, the hydraulic pressure (the hydraulic pressure in the reaction force hydraulic chamber C1 and the hydraulic pressure in the driving fluid chamber C2) corresponding to the operation amount (operation amount) of the brake pedal 10 is obtained, Reaction force and braking force can be obtained.
  • the electric hydraulic pressure source (pump / motor) 41 is stopped and the first on-off valve V1 and the second on-off valve V2 are opened, and the first control valve V6 and the second control valve V7 are closed (see FIG. 5).
  • the reaction force liquid chamber C1 is connected to the first on-off valve V1 and the first open / close valve V1 in a state where the discharge path 413 of the electric hydraulic pressure source 41 is restricted from flowing upstream by the main check valve V3.
  • the drive fluid chamber C2 is communicatively connected through a first supply path 414 in which the check valve V4 is interposed, and a second supply path 416 in which the second on-off valve V2 and the second check valve V5 are interposed.
  • the working fluid in the reaction force fluid chamber C1 is, as shown in FIG.
  • the oil is supplied to the driving fluid chamber C2 without delay, and the master pistons 23 and 24 operate without any invalid stroke. For this reason, it is possible for the master cylinder 20 to operate accurately and to generate the desired braking force.
  • the hydraulic fluid discharged / supplied from one electric hydraulic pressure source (pump / motor) 41 can be distributed and supplied to the reaction force liquid chamber C1 and the driving fluid chamber C2.
  • the hydraulic control circuit 40 is configured simply and inexpensively.
  • the brake operation is maintained (for example, signal stop or level crossing stop).
  • the electric hydraulic pressure source (pump / motor) 41 is held in a stopped state, and each solenoid valve V1, V2, V6, and V7 are maintained in the set state (the state shown in FIG. 4), the hydraulic pressure in the reaction force liquid chamber C1 and the hydraulic pressure in the driving fluid chamber C2 are maintained, and the brake is held. .
  • the electric hydraulic pressure source (pump / motor) 41 when a predetermined brake operation is maintained, the electric hydraulic pressure source (pump / motor) 41 is held in a stopped state and consumed by the electric hydraulic pressure source (pump / motor) 41. Electric power can be eliminated, and vibration and noise associated with the operation of the electric hydraulic pressure source (pump / motor) 41 can be eliminated. Further, as described above, since the electric hydraulic pressure source (pump / motor) 41 is held in a stopped state (unnecessary driving is eliminated), the electric hydraulic pressure source (pump / motor) 41. It is also expected to have an effect on the durability and life of mechanical parts.
  • the second on-off valve V2 if the second on-off valve V2 is set to be energized in a state where regenerative braking is required during normal braking operation (see FIG. 3), the second on-off valve V2 is set. Closes the second supply path 416 and shuts off the hydraulic pressure supply from the electric hydraulic pressure source (pump / motor) 41 to the driving hydraulic pressure chamber C2. Therefore, in this case, a braking force can be obtained by a regenerative braking device (not shown), and a braking operation reaction force can be obtained by the master cylinder 20, but a braking force cannot be obtained. In addition, it is possible to obtain a brake operation that ensures high regeneration efficiency.
  • the first on-off valve V1 if the first on-off valve V1 is set to be energized in a state where automatic brake operation (brake operation not depending on the operation (operation) of the brake pedal 10) is required,
  • the 1 on-off valve V1 closes the first supply path 414 and shuts off the hydraulic pressure supply from the electric hydraulic pressure source (pump / motor) 41 to the reaction force hydraulic chamber C1.
  • the first on-off valve V1 is energized, the electric hydraulic pressure source (pump / motor) 41 is driven, and the second control valve V7 is controlled. State. Therefore, the hydraulic pressure is supplied from the electric hydraulic pressure source (pump / motor) 41 to the driving hydraulic pressure chamber C2, and the hydraulic pressure is controlled by the second control valve V7, so that a desired brake operation is obtained. .
  • the hydraulic pressure in the reaction force liquid chamber (C1) is set to be higher than the hydraulic pressure in the driving fluid chamber (C2).
  • the first on-off valve (V1), the first control valve (V6), and the second control valve (V7) are maintained in the non-operating state when the brake operation is maintained, and the second on-off valve ( V2) is held in the operating state (closed state by energization), and the electric hydraulic pressure source (pump / motor) 41 is held in the stopped state.
  • the brake maintenance condition that the brake pedal (brake operation member) 10 is maintained for a set time or more in a predetermined operating state is determined by steps 203 and 208 shown in FIG. Configured and implemented.
  • the step of determining the vehicle speed zero detectable by the output of the vehicle speed sensor, or the output of the shift position sensor may be added as appropriate.
  • the brake maintaining condition that the brake pedal (brake operating member) 10 is maintained in a predetermined operating state for a set time or longer is that the vehicle speed is zero, or the shift position is in the P or N range. Or that there is an obstacle in front of the vehicle is added as appropriate.
  • the hydraulic pressure control circuit 40 has the configuration shown in FIGS. 1 to 5 (one electric hydraulic pressure source (pump / motor) 41 and four solenoid valves V1, V2).
  • the configuration of the hydraulic pressure control circuit is activated by the electric control device in accordance with the operation amount of the brake operation member.
  • the hydraulic pressure in the reaction fluid chamber and the hydraulic pressure in the drive fluid chamber need only be controllable or maintainable, and the number and configuration of the electric hydraulic pressure sources (pumps / motors) and solenoid valves are appropriately determined. It can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

A hydraulic-pressure control circuit (40) in this vehicular hydraulic brake device (100) is provided with an electrical hydraulic-pressure source (41) and solenoid valves (V1, V2, V6, V7) that an electric control device (50) controls in accordance with the actuation amount of a brake-operating member (10). Said electric control device (50) is provided with the following: a mode determination means that determines whether or not a condition under which to keep the brake applied is met; a normal-mode control means that, if said condition is not met, keeps the electrical hydraulic-pressure source operating, controls the solenoid valves in accordance with the actuation amount of the brake-operating member, and controls the pressure inside a resistance-generating hydraulic chamber (C1) and the pressure inside a brake-driving hydraulic chamber (C2); and an economy-mode control means that, if the aforementioned condition is met, keeps the electrical hydraulic-pressure source stopped, maintains the solenoid valves in a set state, and maintains the pressure inside the resistance-generating hydraulic chamber (C1) and the pressure inside the brake-driving hydraulic chamber (C2) as is. This makes it possible, when a given brake actuation has been maintained for a duration greater than or equal to a set duration, to keep the brake applied with the electrical hydraulic-pressure source in the hydraulic-pressure control circuit stopped.

Description

車両用液圧ブレーキ装置Hydraulic brake device for vehicles
 本発明は、車両用液圧ブレーキ装置に関し、例えば、電気自動車、ハイブリッド車両等の車両において回生制動装置とともに使用可能な車両用液圧ブレーキ装置に関する。 The present invention relates to a vehicle hydraulic brake device, and more particularly to a vehicle hydraulic brake device that can be used together with a regenerative braking device in a vehicle such as an electric vehicle or a hybrid vehicle.
 この種の車両用液圧ブレーキ装置は、例えば、特開2012-20707号公報に記載されている。特開2012-20707号公報の図1に記載されている車両用液圧ブレーキ装置は、シリンダ内孔を有するシリンダボディと、このシリンダボディの前記シリンダ内孔にシリンダ軸方向に移動可能に組付けられて前記シリンダボディ内に作動液を給排可能な反力液室を形成しブレーキ操作部材(例えば、ブレーキペダル)によって駆動可能な入力ピストンと、この入力ピストンに対して同軸的に配置されかつ前記シリンダ内孔にシリンダ軸方向に移動可能に組付けられて前記シリンダボディ内に作動液を給排可能な駆動液室と作動液を給排可能な圧力室を形成し前記入力ピストンまたは前記駆動液室に供給される作動液によって駆動されるマスタピストンとを備えているマスタシリンダと、前記ブレーキ操作部材の作動量(操作量)に応じて前記反力液室内の液圧と前記駆動液室内の液圧を別個に制御可能な液圧制御回路を備えている。 This type of vehicle hydraulic brake device is described in, for example, Japanese Patent Application Laid-Open No. 2012-20707. The hydraulic brake device for a vehicle described in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-20707 is assembled with a cylinder body having a cylinder inner hole and the cylinder inner hole of the cylinder body so as to be movable in the cylinder axial direction. An input piston that can be driven by a brake operating member (for example, a brake pedal) and is formed coaxially with the input piston. A drive fluid chamber capable of supplying and discharging hydraulic fluid and a pressure chamber capable of supplying and discharging hydraulic fluid are formed in the cylinder body so as to be movable in the cylinder axial direction in the cylinder bore, and the input piston or the drive According to a master cylinder having a master piston driven by hydraulic fluid supplied to the liquid chamber, and an operation amount (operation amount) of the brake operation member Said that the reaction force liquid chamber of the liquid pressure and the driving liquid chamber of the liquid pressure with a separate controllable hydraulic control circuit.
 特開2012-20707号公報の図1に記載されている車両用液圧ブレーキ装置では、
 前記液圧制御回路が、一つの電動式液圧源(ポンプ・モータ)と、この電動式液圧源の吸入路に接続されているとともに還流路に接続されていて作動液を収容するリザーバと、前記電動式液圧源の吐出路と前記反力液室を接続する第1供給経路と、この第1供給経路と前記還流路を接続する第1排出経路と、前記電動式液圧源の吐出路と前記駆動液室を接続する第2供給経路と、この第2供給経路と前記還流路を接続する第2排出経路とを備えるとともに、
 前記第1供給経路と前記第1排出経路の接続部より上流にて前記第1供給経路に介装された常開型電磁式の第1開閉弁と、前記第2供給経路と前記第2排出経路の接続部より上流にて前記第2供給経路に介装された常開型電磁式の第2開閉弁と、前記第1供給経路にて前記第1開閉弁に対して並列に配置されて上流側への流れを許容する第1供給逆止弁と、前記第2供給経路にて前記第2開閉弁に対して並列に配置されて上流側への流れを許容する第2供給逆止弁と、前記第1排出経路に介装されて前記反力液室に供給される液圧を前記ブレーキ操作部材の作動量に応じて制御する常閉型電磁式の第1制御弁と、前記第2排出経路に介装されて前記駆動液室に供給される液圧を前記ブレーキ操作部材の作動量に応じて制御する常閉型電磁式の第2制御弁と、前記第1排出経路にて前記第1制御弁に対して並列に配置されて上流側への流れを許容する第1排出逆止弁と、前記第2排出経路にて前記第2制御弁に対して並列に配置されて上流側への流れを許容する第2排出逆止弁を備えている。
In the hydraulic brake device for a vehicle described in FIG. 1 of JP 2012-20707 A,
The hydraulic pressure control circuit includes one electric hydraulic pressure source (pump / motor), a reservoir connected to the suction path of the electric hydraulic pressure source and connected to the return path, and containing hydraulic fluid; A first supply path connecting the discharge path of the electric hydraulic pressure source and the reaction force liquid chamber, a first discharge path connecting the first supply path and the return path, and an electric hydraulic pressure source A second supply path connecting the discharge path and the driving liquid chamber; a second discharge path connecting the second supply path and the reflux path;
A normally open electromagnetic first on-off valve interposed in the first supply path upstream from a connection portion between the first supply path and the first discharge path, the second supply path, and the second discharge A normally-open electromagnetic second on-off valve interposed in the second supply path upstream from the connection portion of the path, and arranged in parallel with the first on-off valve in the first supply path. A first supply check valve that allows flow to the upstream side, and a second supply check valve that is arranged in parallel to the second on-off valve in the second supply path and allows flow to the upstream side A normally closed electromagnetic first control valve that controls the hydraulic pressure that is interposed in the first discharge path and is supplied to the reaction force liquid chamber according to the amount of operation of the brake operation member; 2 A normally closed electromagnetic type that controls the hydraulic pressure supplied to the driving fluid chamber interposed in the discharge path in accordance with the operating amount of the brake operating member. Two control valves, a first discharge check valve that is arranged in parallel with the first control valve in the first discharge path and allows upstream flow, and the first discharge check valve in the second discharge path. A second discharge check valve is provided which is arranged in parallel with the two control valves and allows upstream flow.
 ところで、特開2012-20707号公報の図1に記載されている車両用液圧ブレーキ装置では、一つの電動式液圧源(ポンプ・モータ)から吐出・供給される作動液を反力液室と駆動液室に分配供給可能に構成されていて、液圧制御回路がシンプルかつ安価に構成されている。しかし、当該車両用液圧ブレーキ装置においては、アキュムレータが設けられていないため、ブレーキ操作部材の操作中(ブレーキ作動中)は、常に電動式液圧源(ポンプ・モータ)を作動状態で保持する必要がある。このため、当該車両用液圧ブレーキ装置において、ブレーキ作動が維持されるとき(例えば、信号停止や踏切停止や渋滞停止等により、ブレーキ作動が設定時間以上に維持されるとき)には、消費電力が嵩むのみならず、電動式液圧源(ポンプ・モータ)の作動に伴う振動・騒音が課題となることがある。 Incidentally, in the hydraulic brake device for a vehicle described in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-20707, the hydraulic fluid discharged / supplied from one electric hydraulic pressure source (pump / motor) is supplied as a reaction force liquid chamber. The hydraulic pressure control circuit is configured simply and inexpensively. However, since the accumulator is not provided in the vehicle hydraulic brake device, the electric hydraulic pressure source (pump / motor) is always kept in operation while the brake operation member is being operated (brake operation). There is a need. Therefore, when the brake operation is maintained in the hydraulic brake device for the vehicle (for example, when the brake operation is maintained for a set time or more due to signal stop, railroad crossing stop, traffic jam stop, etc.), power consumption However, vibration and noise associated with the operation of the electric hydraulic pressure source (pump / motor) may become a problem.
 本発明は、上記した課題を解消すべくなされたものであり、
 シリンダ内孔を有するシリンダボディと、このシリンダボディの前記シリンダ内孔にシリンダ軸方向に移動可能に組付けられて前記シリンダボディ内に作動液を給排可能な反力液室を形成しブレーキ操作部材によって駆動可能な入力ピストンと、この入力ピストンに対して同軸的に配置されかつ前記シリンダ内孔にシリンダ軸方向に移動可能に組付けられて前記シリンダボディ内に作動液を給排可能な駆動液室と作動液を給排可能な圧力室を形成し前記入力ピストンまたは前記駆動液室に供給される作動液によって駆動されるマスタピストンとを備えているマスタシリンダと、
 前記ブレーキ操作部材の作動量に応じて、電気制御装置によって作動を制御される電動式液圧源(ポンプ・モータ)と電磁弁を備えていて、前記電動式液圧源が前記反力液室と前記駆動液室に作動液を供給可能であり、前記電磁弁が前記反力液室内の液圧と前記駆動液室内の液圧を別個に制御可能または維持可能である液圧制御回路を備えていて、
 前記電気制御装置は、
 前記ブレーキ操作部材の作動量と作動経過時間に基づいて、前記ブレーキ操作部材が所定の作動状態で設定時間以上に維持されているとのブレーキ維持条件を判定するモード判定手段と、
 このモード判定手段により、前記ブレーキ維持条件が不成立であると判定されたときに、前記電動式液圧源(ポンプ・モータ)を作動状態で保持し、前記電磁弁を前記ブレーキ操作部材の作動量に応じて制御して、前記反力液室内の液圧と前記駆動液室内の液圧を制御する通常モード制御手段と、
 前記モード判定手段により、前記ブレーキ維持条件が成立していると判定されたときに、前記電動式液圧源(ポンプ・モータ)を停止状態で保持し、前記電磁弁を設定状態に維持して、前記反力液室内の液圧と前記駆動液室内の液圧を維持するエコモード制御手段
を備えている車両用液圧ブレーキ装置
に特徴がある。
The present invention has been made to solve the above problems,
Brake operation by forming a cylinder body having a cylinder inner hole and a reaction force liquid chamber that is assembled to the cylinder inner hole of the cylinder body so as to be movable in the axial direction of the cylinder so that hydraulic fluid can be supplied and discharged in the cylinder body. An input piston that can be driven by a member, and a drive that is coaxially arranged with respect to the input piston and that is assembled in the cylinder bore so as to be movable in the cylinder axial direction, so that hydraulic fluid can be supplied to and discharged from the cylinder body. A master cylinder that includes a liquid chamber and a master piston that forms a pressure chamber capable of supplying and discharging hydraulic fluid and is driven by the hydraulic fluid supplied to the input piston or the driving fluid chamber;
An electric hydraulic pressure source (pump / motor) whose operation is controlled by an electric control device according to the operating amount of the brake operating member and an electromagnetic valve are provided, and the electric hydraulic pressure source is the reaction force liquid chamber A hydraulic pressure control circuit capable of supplying hydraulic fluid to the driving fluid chamber, and wherein the solenoid valve can separately control or maintain the hydraulic pressure in the reaction fluid chamber and the hydraulic pressure in the driving fluid chamber. And
The electrical control device
Mode determination means for determining a brake maintenance condition that the brake operation member is maintained in a predetermined operation state for a set time or longer based on an operation amount and an operation elapsed time of the brake operation member;
When it is determined by the mode determining means that the brake maintenance condition is not satisfied, the electric hydraulic pressure source (pump / motor) is held in an operating state, and the electromagnetic valve is operated by the operating amount of the brake operating member. And normal mode control means for controlling the hydraulic pressure in the reaction liquid chamber and the hydraulic pressure in the driving fluid chamber,
When the mode determination means determines that the brake maintenance condition is satisfied, the electric hydraulic pressure source (pump / motor) is held in a stopped state, and the electromagnetic valve is maintained in a set state. The vehicle hydraulic brake device includes an eco mode control means for maintaining the hydraulic pressure in the reaction fluid chamber and the hydraulic pressure in the driving fluid chamber.
 上記した本発明の実施に際して、前記ブレーキ維持条件は、適宜変更が可能であり、例えば、車速センサの出力によって検出可能な車速ゼロが追加されていること、または、シフトポジションセンサの出力によって検出可能であるシフトポジションがPまたはNレンジであることが追加されていること、或いは、車両前方障害物検出センサの出力によって検出可能である障害物有が追加されていること等の変更も可能である。 In implementing the present invention described above, the brake maintenance condition can be changed as appropriate. For example, a vehicle speed zero that can be detected by the output of the vehicle speed sensor is added, or can be detected by the output of the shift position sensor. It is possible to change that the shift position is in the P or N range, or that an obstacle that can be detected by the output of the vehicle front obstacle detection sensor is added. .
 上記した本発明の車両用液圧ブレーキ装置においては、前記電気制御装置が、前記モード判定手段と、前記通常モード制御手段と、前記エコモード制御手段を備えている。このため、前記ブレーキ維持条件が不成立であると判定されたときには、前記電動式液圧源(ポンプ・モータ)が作動状態で保持され、前記電磁弁が前記ブレーキ操作部材の作動量に応じて制御されて、前記反力液室内の液圧と前記駆動液室内の液圧が制御される。また、前記ブレーキ維持条件が成立していると判定されたときには、前記電動式液圧源(ポンプ・モータ)が停止状態で保持され、前記電磁弁が設定状態に維持されて、前記反力液室内の液圧と前記駆動液室内の液圧が維持され、ブレーキが保持される。 In the vehicle hydraulic brake device of the present invention described above, the electric control device includes the mode determining means, the normal mode control means, and the eco mode control means. Therefore, when it is determined that the brake maintenance condition is not satisfied, the electric hydraulic pressure source (pump / motor) is held in an operating state, and the electromagnetic valve is controlled according to the operating amount of the brake operating member. Thus, the hydraulic pressure in the reaction liquid chamber and the hydraulic pressure in the driving fluid chamber are controlled. When it is determined that the brake maintenance condition is satisfied, the electric hydraulic pressure source (pump / motor) is held in a stopped state, the electromagnetic valve is maintained in a set state, and the reaction force fluid is The hydraulic pressure in the chamber and the hydraulic pressure in the driving fluid chamber are maintained, and the brake is held.
 したがって、本発明の車両用液圧ブレーキ装置においては、所定のブレーキ作動が維持されるとき(例えば、信号停止や踏切停止や渋滞停止等により、ブレーキ作動が設定時間以上に維持されるとき)には、電動式液圧源(ポンプ・モータ)が停止状態で保持されて、電動式液圧源(ポンプ・モータ)での消費電力を無くすことが可能であるとともに、電動式液圧源(ポンプ・モータ)の作動に伴う振動・騒音を無くすことが可能である。また、上述したように電動式液圧源(ポンプ・モータ)が停止状態で保持されるようにしたため(不必要な駆動を無くすようにしたため)、電動式液圧源(ポンプ・モータ)におけるメカ部品の耐久・寿命にも効果が期待できる。 Therefore, in the vehicle hydraulic brake device of the present invention, when a predetermined brake operation is maintained (for example, when the brake operation is maintained for a set time or more due to a signal stop, a level crossing stop, a traffic jam stop, etc.). The electric hydraulic pressure source (pump / motor) is held in a stopped state, so that it is possible to eliminate the power consumption of the electric hydraulic pressure source (pump / motor) and the electric hydraulic pressure source (pump / motor).・ It is possible to eliminate vibration and noise associated with the operation of the motor. In addition, as described above, since the electric hydraulic pressure source (pump / motor) is held in a stopped state (unnecessary driving is eliminated), the mechanism of the electric hydraulic pressure source (pump / motor) is reduced. The effect can also be expected for the durability and life of the parts.
本発明による車両用液圧ブレーキ装置の一実施形態を概略的に示す全体構成図である。1 is an overall configuration diagram schematically illustrating an embodiment of a vehicle hydraulic brake device according to the present invention. 図1に示した車両用液圧ブレーキ装置の要部の非作動状態を示す部分構成図である。It is a partial block diagram which shows the non-operation state of the principal part of the hydraulic brake device for vehicles shown in FIG. 図1に示した車両用液圧ブレーキ装置の要部の通常ブレーキ作動状態を示す部分構成図である。It is a partial block diagram which shows the normal brake operating state of the principal part of the hydraulic brake device for vehicles shown in FIG. 図1に示した車両用液圧ブレーキ装置の要部のブレーキ保持状態を示す部分構成図である。It is a partial block diagram which shows the brake holding state of the principal part of the hydraulic brake device for vehicles shown in FIG. 図1に示した車両用液圧ブレーキ装置の要部の電気系失陥時におけるブレーキ作動状態を示す部分構成図である。It is a partial block diagram which shows the brake operation state at the time of the electric system failure of the principal part of the hydraulic brake device for vehicles shown in FIG. 図1に示したブレーキECUが実行するブレーキ作動制御プログラムのフローチャートである。It is a flowchart of the brake operation control program which brake ECU shown in FIG. 1 performs. 図6に示したエコモード制御プログラムのフローチャートである。It is a flowchart of the eco mode control program shown in FIG.
 以下に、本発明の実施形態を図面に基づいて説明する。図1は本発明による車両用液圧ブレーキ装置(以下、単にブレーキ装置という)の一実施形態を概略的に示したものであり、このブレーキ装置100は、ブレーキ操作部材としてのブレーキペダル10と、このブレーキペダル10の踏込操作に基づいて作動可能なマスタシリンダ20、ホイールシリンダFL・FR・RL・RR、ブレーキ液圧制御用アクチュエータ30、液圧制御回路40およびブレーキECU(電気制御装置)50等を備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an embodiment of a vehicle hydraulic brake device (hereinafter simply referred to as a brake device) according to the present invention. The brake device 100 includes a brake pedal 10 as a brake operation member, The master cylinder 20 that can be operated based on the depression operation of the brake pedal 10, the wheel cylinders FL, FR, RL, RR, the brake hydraulic pressure control actuator 30, the hydraulic pressure control circuit 40, the brake ECU (electric control device) 50, etc. It has.
 ブレーキペダル10は、ドライバによって踏み込まれることにより、マスタシリンダ20のシリンダボディ21に組付けられている入力ピストン22を駆動(押動)可能に構成されている。ブレーキペダル10の操作量(作動量)は、ストロークセンサS1と踏力センサS2によって検出されるように構成されている。ストロークセンサS1と踏力センサS2の検出信号はブレーキECU50に伝えられるように構成されていて、ブレーキECU50でストロークセンサ値Sと踏力センサ値Fが把握できるように構成されている。なお、ブレーキ操作部材は、ブレーキペダル10に限定されるものではなく、例えば、ブレーキレバー等であっても実施可能である。 The brake pedal 10 is configured to be able to drive (push) the input piston 22 assembled to the cylinder body 21 of the master cylinder 20 by being depressed by a driver. The operation amount (actuation amount) of the brake pedal 10 is configured to be detected by the stroke sensor S1 and the pedaling force sensor S2. The detection signals of the stroke sensor S1 and the pedal force sensor S2 are configured to be transmitted to the brake ECU 50, so that the brake ECU 50 can grasp the stroke sensor value S and the pedal force sensor value F. Note that the brake operation member is not limited to the brake pedal 10 and can be implemented by, for example, a brake lever or the like.
 マスタシリンダ20は、リザーバRに接続されるとともにブレーキ液圧制御用アクチュエータ30と液圧制御回路40に接続されるシリンダ内孔21aを有するシリンダボディ21と、このシリンダボディ21に組付けた入力ピストン22と前後一対のマスタピストン23、24と前後一対のスプリング25、26等を備えている。 The master cylinder 20 is connected to a reservoir R and has a cylinder body 21 having a cylinder bore 21a connected to an actuator 30 for brake fluid pressure control and a fluid pressure control circuit 40, and an input piston assembled to the cylinder body 21. 22, a pair of front and rear master pistons 23 and 24, a pair of front and rear springs 25 and 26, and the like.
 入力ピストン22は、シリンダボディ21のシリンダ内孔21aにシリンダ軸方向に移動可能に組付けられていて、シリンダボディ21a内に作動液(ブレーキ液)を給排可能な反力液室C1を形成しており、後端部がシリンダボディ22外に突出していてブレーキペダル10によって駆動可能とされている。また、入力ピストン22は、後方のマスタピストン23に係合・離脱可能な小径部22aを有していて、図1の状態(復帰位置状態)では後方のマスタピストン23に対して所定量Lo軸方向に離れている。 The input piston 22 is assembled in the cylinder bore 21a of the cylinder body 21 so as to be movable in the cylinder axial direction, and forms a reaction force liquid chamber C1 capable of supplying and discharging hydraulic fluid (brake fluid) in the cylinder body 21a. The rear end protrudes out of the cylinder body 22 and can be driven by the brake pedal 10. Further, the input piston 22 has a small-diameter portion 22a that can be engaged with and disengaged from the rear master piston 23. In the state of FIG. Away in the direction.
 後方のマスタピストン23は、入力ピストン22に対して同軸的に配置されかつシリンダ内孔21aにシリンダ軸方向に移動可能に組付けられていて、入力ピストン22との間にあるシリンダボディ21内に作動液を給排可能な駆動液室C2を形成し、前方のマスタピストン24との間にあるシリンダボディ21内に作動液を給排可能な圧力室C3を形成している。また、後方のマスタピストン23は、スプリング25によって図1の位置(復帰位置)に向けて付勢されていて、入力ピストン22の小径部22aまたは駆動液室C2に供給される作動液によってスプリング25の付勢力に抗して駆動されるように構成されている。 The rear master piston 23 is coaxially arranged with respect to the input piston 22 and is assembled in the cylinder inner hole 21a so as to be movable in the cylinder axial direction. A driving fluid chamber C2 capable of supplying and discharging hydraulic fluid is formed, and a pressure chamber C3 capable of supplying and discharging hydraulic fluid is formed in the cylinder body 21 between the front master piston 24. Further, the rear master piston 23 is biased toward the position (return position) of FIG. 1 by a spring 25, and the spring 25 is supplied by the hydraulic fluid supplied to the small diameter portion 22a of the input piston 22 or the driving fluid chamber C2. It is configured to be driven against the urging force.
 前方のマスタピストン24は、入力ピストン22および後方のマスタピストン23に対して同軸的に配置されかつシリンダ内孔21aにシリンダ軸方向に移動可能に組付けられていて、シリンダボディ21の底壁間にあるシリンダボディ21内に作動液を給排可能な圧力室C4を形成している。また、前方のマスタピストン24は、スプリング26によって図1の位置(復帰位置)に向けて付勢されていて、スプリング25または圧力室C3内の作動液によってスプリング26の付勢力に抗して駆動されるように構成されている。 The front master piston 24 is coaxially disposed with respect to the input piston 22 and the rear master piston 23 and is assembled to the cylinder inner hole 21a so as to be movable in the cylinder axial direction. A pressure chamber C4 in which hydraulic fluid can be supplied and discharged is formed in the cylinder body 21. The front master piston 24 is urged toward the position (return position) in FIG. 1 by a spring 26, and is driven against the urging force of the spring 26 by the hydraulic fluid in the spring 25 or the pressure chamber C3. It is configured to be.
 上記した反力液室C1と駆動液室C2は、液圧制御回路40に接続されている。一方、各圧力室C3、C4は、ブレーキ液圧制御用アクチュエータ30に接続されている。なお、反力液室C1と各圧力室C3、C4は、各ピストン22、23、24が図1の復帰位置にあるとき、リザーバRに連通しているものの、各ピストン22、23、24が復帰位置から所定量以上に前方へ移動することにより、リザーバRとの連通が遮断されるように構成されている。 The reaction force liquid chamber C1 and the driving liquid chamber C2 are connected to the hydraulic pressure control circuit 40. On the other hand, each of the pressure chambers C3 and C4 is connected to a brake fluid pressure control actuator 30. The reaction force liquid chamber C1 and the pressure chambers C3 and C4 communicate with the reservoir R when the pistons 22, 23 and 24 are at the return positions in FIG. By moving forward from the return position by a predetermined amount or more, communication with the reservoir R is blocked.
 なお、マスタシリンダ20の上述以外の構成は、特開2012-20707号公報の図1に記載されている車両用液圧ブレーキ装置におけるマスタシリンダの構成と同じであるため、その説明は省略する。また、ホイールシリンダFL・FR・RL・RRと、ブレーキ液圧制御用アクチュエータ30の各構成は、特開2012-20707号公報の図1に記載されている車両用液圧ブレーキ装置におけるホイールシリンダと、ブレーキ液圧制御用アクチュエータの各構成と同じであるため、その説明は省略する。 The configuration of the master cylinder 20 other than the above is the same as the configuration of the master cylinder in the vehicle hydraulic brake device described in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-20707. Each configuration of the wheel cylinders FL, FR, RL, and RR and the brake hydraulic pressure control actuator 30 is the same as that of the wheel cylinder in the hydraulic brake device for a vehicle described in FIG. 1 of Japanese Patent Laid-Open No. 2012-20707. Since it is the same as each structure of the brake fluid pressure control actuator, its description is omitted.
 ところで、この実施形態の液圧制御回路40は、反力液室C1と駆動液室C2に作動液を供給可能な一つの電動式液圧源41(ポンプPとモータM)と、この電動式液圧源41の吸入路411に接続されているとともに還流路412に接続されていて作動液を収容するリザーバRと、電動式液圧源41の吐出路413と反力液室C1を接続する第1供給経路414と、この第1供給経路414と還流路412を接続する第1排出経路415と、電動式液圧源41の吐出路413と駆動液室C2を接続する第2供給経路416と、この第2供給経路416と還流路412を接続する第2排出経路417とを備えている。 By the way, the hydraulic pressure control circuit 40 of this embodiment includes one electric hydraulic pressure source 41 (pump P and motor M) capable of supplying hydraulic fluid to the reaction force hydraulic chamber C1 and the driving hydraulic chamber C2, and this electric type. A reservoir R that is connected to the suction path 411 of the hydraulic pressure source 41 and is connected to the reflux path 412 to store the working fluid, and the discharge path 413 of the electric hydraulic pressure source 41 and the reaction force liquid chamber C1 are connected. The first supply path 414, the first discharge path 415 that connects the first supply path 414 and the reflux path 412, and the second supply path 416 that connects the discharge path 413 of the electric hydraulic pressure source 41 and the driving fluid chamber C2. And a second discharge path 417 that connects the second supply path 416 and the reflux path 412.
 また、液圧制御回路40は、第1開閉弁V1と、第2開閉弁V2と、メイン逆止弁V3と、第1逆止弁V4と、第2逆止弁V5と、第1制御弁V6と、第2制御弁V7を備えているとともに、一対の圧力センサS3、S4を備えている。第1開閉弁V1は、常開型で電磁式の開閉弁であり、第1供給経路414と第1排出経路415の接続部X1より上流にて第1供給経路414に介装されている。第2開閉弁V2は、常開型で電磁式の開閉弁であり、第2供給経路416と第2排出経路417の接続部X2より上流にて第2供給経路416に介装されている。 The hydraulic pressure control circuit 40 includes a first on-off valve V1, a second on-off valve V2, a main check valve V3, a first check valve V4, a second check valve V5, and a first control valve. V6 and the second control valve V7 are provided, and a pair of pressure sensors S3 and S4 are provided. The first on-off valve V1 is a normally open type electromagnetic on-off valve, and is interposed in the first supply path 414 upstream from the connection portion X1 between the first supply path 414 and the first discharge path 415. The second on-off valve V2 is a normally open type electromagnetic on-off valve, and is interposed in the second supply path 416 upstream of the connection portion X2 between the second supply path 416 and the second discharge path 417.
 メイン逆止弁V3は、電動式液圧源41の吐出路413に介装されていて、上流側への作動液の流れを規制するように構成されている。第1逆止弁V4は、第1供給経路414にて第1開閉弁V1に対して並列に配置されていて、下流側への作動液の流れを規制するように構成されている。第2逆止弁V5は、第2供給経路416にて第2開閉弁V2に対して並列に配置されていて、下流側への作動液の流れを規制するように構成されている。第1制御弁V6は、第1排出経路415に介装されていて、電動式液圧源41から反力液室C1に供給される液圧をブレーキペダル10の作動量に応じて制御するように構成されている。第2制御弁V7は、第2排出経路417に介装されていて、電動式液圧源41から駆動液室C2に供給される液圧をブレーキペダル10の作動量に応じて制御するように構成されている。 The main check valve V3 is interposed in the discharge passage 413 of the electric hydraulic pressure source 41, and is configured to restrict the flow of hydraulic fluid upstream. The first check valve V4 is arranged in parallel with the first on-off valve V1 in the first supply path 414, and is configured to restrict the flow of the hydraulic fluid to the downstream side. The second check valve V5 is arranged in parallel with the second on-off valve V2 in the second supply path 416, and is configured to regulate the flow of the hydraulic fluid to the downstream side. The first control valve V6 is interposed in the first discharge path 415, and controls the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the reaction force hydraulic chamber C1 according to the operation amount of the brake pedal 10. It is configured. The second control valve V7 is interposed in the second discharge path 417, and controls the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the driving fluid chamber C2 according to the operation amount of the brake pedal 10. It is configured.
 圧力センサS3は、第1供給経路414内の圧力を検出するセンサであり、その検出信号はブレーキECU50に伝えられることで、ブレーキECU50で第1供給経路414内の圧力Prが把握できるように構成されている。一方、圧力センサS4は、第2供給経路416内の圧力を検出するセンサであり、その検出信号はブレーキECU50に伝えられることで、ブレーキECU50で第2供給経路416内の圧力Psが把握できるように構成されている。 The pressure sensor S3 is a sensor that detects the pressure in the first supply path 414, and the detection signal is transmitted to the brake ECU 50 so that the brake ECU 50 can grasp the pressure Pr in the first supply path 414. Has been. On the other hand, the pressure sensor S4 is a sensor that detects the pressure in the second supply path 416, and the detection signal is transmitted to the brake ECU 50 so that the brake ECU 50 can grasp the pressure Ps in the second supply path 416. It is configured.
 上記した電動式液圧源41と第1開閉弁V1、第2開閉弁V2、第1制御弁V6、第2制御弁V7等(液圧制御回路40の電気機器)は、各センサS1~S4の検出信号等に基づいて、ブレーキECU(電気制御装置)50によって各作動を制御されるように構成されている。 The above-described electric hydraulic pressure source 41, the first on-off valve V1, the second on-off valve V2, the first control valve V6, the second control valve V7, etc. (electrical devices of the hydraulic pressure control circuit 40) are connected to the sensors S1 to S4. Each operation is controlled by a brake ECU (electric control device) 50 on the basis of the detection signal.
 また、この実施形態では、通常のブレーキ作動時(ブレーキペダル10の作動量が維持されることなく変化しているブレーキ作動時)において、駆動液室C2内の液圧(電動式液圧源41から吐出路413に吐出されて第2供給経路416に供給される作動液が第2制御弁V7によって減圧制御されて得られる液圧)が反力液室C1内の液圧(電動式液圧源41から吐出路413に吐出されて第1供給経路414に供給される作動液が第1制御弁V6によって減圧制御されて得られる液圧)に比して高くなるように設定されている。なお、ブレーキペダル10の作動量が維持されているか否かの判定は、ストロークセンサS1と踏力センサS2の検出信号に基づいて、ブレーキECU50にて実行される。 Further, in this embodiment, the hydraulic pressure in the drive fluid chamber C2 (electric hydraulic pressure source 41) during normal brake operation (when the brake operation is changed without maintaining the operation amount of the brake pedal 10). The hydraulic fluid discharged from the discharge passage 413 and supplied to the second supply passage 416 by the pressure reduction control by the second control valve V7 is the hydraulic pressure (electric hydraulic pressure) in the reaction force liquid chamber C1. The hydraulic fluid discharged from the source 41 to the discharge passage 413 and supplied to the first supply passage 414 is set to be higher than the hydraulic pressure obtained by pressure reduction control by the first control valve V6. Whether or not the operation amount of the brake pedal 10 is maintained is determined by the brake ECU 50 based on detection signals from the stroke sensor S1 and the pedal force sensor S2.
 ブレーキECU50は、図6に示したブレーキ作動制御プログラムを備えるとともに、図7に示したエコモード制御プログラムを備えている。図6に示したブレーキ作動制御プログラムは、所定の演算周期(例えば、数msec)毎に繰り返し実行されるものであり、踏力センサS2によって検出される踏力センサ値Fが閾値F1を超えているとき(ブレーキペダル10の作動量(操作量)が所定量以上であるとき)に、プログラムの実行が開始され(ステップ201)、ステップ202にてストロークセンサ値Sと踏力センサ値Fが読み込まれる。また、ステップ203にて、ストロークセンサ値Sと踏力センサ値Fの変化量が演算されて、それぞれが規定値(A、B)以下か否かが判定される。 The brake ECU 50 includes the brake operation control program shown in FIG. 6 and the eco mode control program shown in FIG. The brake operation control program shown in FIG. 6 is repeatedly executed every predetermined calculation cycle (for example, several milliseconds), and when the pedal force sensor value F detected by the pedal force sensor S2 exceeds the threshold value F1. When the operation amount (operation amount) of the brake pedal 10 is equal to or greater than a predetermined amount, execution of the program is started (step 201), and the stroke sensor value S and the pedaling force sensor value F are read in step 202. In step 203, the change amounts of the stroke sensor value S and the pedal force sensor value F are calculated, and it is determined whether or not each is equal to or less than a specified value (A, B).
 ステップ203にて「No」と判定される場合(例えば、ブレーキペダル10の操作量(作動量)が変化している通常のブレーキ作動時)には、ステップ204とステップ205が実行されてステップ206にてプログラムの実行が終了する。なお、ステップ204では、ステップ203にて「Yes」と判定され始めてからの経過時間t1のカウントがゼロにリセットされ、ステップ205では、通常モード制御プログラム(詳細は省略)が実行されて、ブレーキペダル10の作動量に応じて、電動式液圧源41から反力液室C1に供給される液圧と、電動式液圧源41から駆動液室C2に供給される液圧がそれぞれ制御される。 When it is determined as “No” in Step 203 (for example, during normal brake operation in which the operation amount (operation amount) of the brake pedal 10 is changing), Step 204 and Step 205 are executed and Step 206 is performed. At the end of program execution. In step 204, the count of the elapsed time t1 from the start of “Yes” in step 203 is reset to zero. In step 205, a normal mode control program (details omitted) is executed, and the brake pedal The hydraulic pressure supplied from the electric hydraulic pressure source 41 to the reaction liquid chamber C1 and the hydraulic pressure supplied from the electric hydraulic pressure source 41 to the drive hydraulic chamber C2 are controlled according to the operation amount of 10. .
 また、ステップ203にて「Yes」と判定される場合(例えば、ブレーキペダル10の操作量(作動量)が維持されているブレーキ作動時)には、ステップ207とステップ208が実行される。ステップ207では、ステップ203にて「Yes」と判定され始めてからの経過時間t1のカウントがアップされ、ステップ208では、経過時間t1のカウント値から経過時間t1が設定時間To以上か否かが判定される。 Further, when it is determined as “Yes” in Step 203 (for example, when the brake is operated while the operation amount (operation amount) of the brake pedal 10 is maintained), Step 207 and Step 208 are executed. In step 207, the count of the elapsed time t1 from the start of “Yes” in step 203 is incremented, and in step 208, it is determined whether the elapsed time t1 is equal to or greater than the set time To from the count value of the elapsed time t1. Is done.
 ステップ208にて「No」と判定される場合(ブレーキ維持条件が不成立である場合)には、ステップ205が実行されてステップ206にてプログラムの実行が終了する。また、ステップ208にて「Yes」と判定される場合(ブレーキ維持条件が成立している場合)には、ステップ210が実行されてステップ206にてプログラムの実行が終了する。ステップ210では、図7に示したエコモード制御プログラムが実行され、ステップ211にてエコモード制御プログラムの実行が開始された後に、ステップ212が実行されて、第2供給経路416内の圧力Psが第1供給経路414内の圧力Pr以上か否かが判定される。 If it is determined as “No” in step 208 (when the brake maintenance condition is not satisfied), step 205 is executed, and the execution of the program ends in step 206. On the other hand, if “Yes” is determined in step 208 (when the brake maintenance condition is satisfied), step 210 is executed, and the execution of the program is ended in step 206. In step 210, the eco mode control program shown in FIG. 7 is executed, and after the execution of the eco mode control program is started in step 211, step 212 is executed and the pressure Ps in the second supply path 416 is increased. It is determined whether or not the pressure Pr in the first supply path 414 is equal to or higher.
 ステップ212にて「Yes」と判定される場合には、ステップ213とステップ214が実行される。ステップ213では、第1開閉弁V1をON(通電状態)とする信号が出力されるとともに、第2開閉弁V2、第1制御弁V6、第2制御弁V7、モータM等をOFF(非通電状態)とする信号が出力されて、液圧制御回路40の電気機器が図4に示したようになる。ステップ214では、ステップ206に戻るプログラムが実行される。 If it is determined as “Yes” in Step 212, Step 213 and Step 214 are executed. In step 213, a signal for turning on the first on-off valve V1 (energized state) is output, and the second on-off valve V2, the first control valve V6, the second control valve V7, the motor M, etc. are turned off (non-energized). State) is output, and the electrical equipment of the hydraulic pressure control circuit 40 is as shown in FIG. In step 214, the program that returns to step 206 is executed.
 また、ステップ212にて「No」と判定される場合には、ステップ215とステップ214が実行される。ステップ215では、第2開閉弁V2をON(通電状態)とする信号が出力されるとともに、第1開閉弁V1、第1制御弁V6、第2制御弁V7、モータM等をOFF(非通電状態)とする信号が出力される。ステップ214では、ステップ206に戻るプログラムが実行される。 If it is determined “No” in step 212, step 215 and step 214 are executed. In step 215, a signal for turning on the second on-off valve V2 (energized state) is output, and the first on-off valve V1, the first control valve V6, the second control valve V7, the motor M, etc. are turned off (non-energized). State) is output. In step 214, the program that returns to step 206 is executed.
 上記のように構成したこの実施形態においては、電気系が正常である場合、液圧制御回路40における電動式液圧源(ポンプ・モータ)41、第1開閉弁V1、第2開閉弁V2、第1制御弁V6、第2制御弁V7等の電気機器が正常に作動可能である。このため、ブレーキペダル10の作動量(操作量)が所定量以上であるときにおいて、ブレーキペダル10の作動量が維持されることなく変化しているブレーキ作動時(通常のブレーキ作動時)には、図6のステップ201,202、203、204、205、206が実行されて、図3に示したように、液圧制御回路40の第1制御弁V6と第2制御弁V7が、ブレーキペダル10の作動量(操作量)に応じて、反力液室C1内の液圧と駆動液室C2内の液圧を別個に制御する。したがって、この場合には、ブレーキペダル10の作動量(操作量)に応じた液圧(反力液室C1内の液圧と駆動液室C2内の液圧)が得られて、所期の反力と制動力が得られる。 In this embodiment configured as described above, when the electrical system is normal, the electric hydraulic pressure source (pump / motor) 41, the first on-off valve V1, the second on-off valve V2 in the hydraulic pressure control circuit 40, Electrical devices such as the first control valve V6 and the second control valve V7 can operate normally. For this reason, when the amount of operation (operation amount) of the brake pedal 10 is equal to or greater than a predetermined amount, when the brake operation is changing without maintaining the amount of operation of the brake pedal 10 (at the time of normal brake operation). 6, steps 201, 202, 203, 204, 205, and 206 are executed, and as shown in FIG. 3, the first control valve V6 and the second control valve V7 of the hydraulic pressure control circuit 40 are brake pedals. The hydraulic pressure in the reaction fluid chamber C1 and the hydraulic pressure in the drive fluid chamber C2 are controlled separately according to the 10 actuation amounts (operation amounts). Therefore, in this case, the hydraulic pressure (the hydraulic pressure in the reaction force hydraulic chamber C1 and the hydraulic pressure in the driving fluid chamber C2) corresponding to the operation amount (operation amount) of the brake pedal 10 is obtained, Reaction force and braking force can be obtained.
 また、この実施形態では、電気系が失陥した場合(例えば、電源失陥時)、液圧制御回路40において、電動式液圧源(ポンプ・モータ)41が停止状態となり、第1開閉弁V1と第2開閉弁V2が開状態となり、第1制御弁V6と第2制御弁V7が閉状態となる(図5参照)。このため、メイン逆止弁V3により電動式液圧源41の吐出路413が上流側への作動液の流れを規制された状態で、反力液室C1が、第1開閉弁V1と第1チェック弁V4が介装されている第1供給経路414と、第2開閉弁V2と第2チェック弁V5が介装されている第2供給経路416を通して、駆動液室C2に連通接続される。 In this embodiment, when the electric system fails (for example, when the power supply fails), in the hydraulic control circuit 40, the electric hydraulic pressure source (pump / motor) 41 is stopped and the first on-off valve V1 and the second on-off valve V2 are opened, and the first control valve V6 and the second control valve V7 are closed (see FIG. 5). For this reason, the reaction force liquid chamber C1 is connected to the first on-off valve V1 and the first open / close valve V1 in a state where the discharge path 413 of the electric hydraulic pressure source 41 is restricted from flowing upstream by the main check valve V3. The drive fluid chamber C2 is communicatively connected through a first supply path 414 in which the check valve V4 is interposed, and a second supply path 416 in which the second on-off valve V2 and the second check valve V5 are interposed.
 したがって、この場合には、ブレーキペダル10の作動量(操作量)に応じて、反力液室C1内の作動液が、図5に示したように、上述した第1供給経路414と第2供給経路416を通して、駆動液室C2に遅れなく供給されて、マスタピストン23、24が無効ストロークなく作動する。このため、マスタシリンダ20が的確に作動し、所期の制動力を発生させることが可能である。 Therefore, in this case, according to the operation amount (operation amount) of the brake pedal 10, the working fluid in the reaction force fluid chamber C1 is, as shown in FIG. Through the supply path 416, the oil is supplied to the driving fluid chamber C2 without delay, and the master pistons 23 and 24 operate without any invalid stroke. For this reason, it is possible for the master cylinder 20 to operate accurately and to generate the desired braking force.
 ところで、この実施形態では、一つの電動式液圧源(ポンプ・モータ)41から吐出・供給される作動液を反力液室C1と駆動液室C2に分配供給可能に構成されていて、従来の車両用液圧ブレーキ装置(特開2012-20707号公報の図1に記載されている車両用液圧ブレーキ装置)と同様に、液圧制御回路40がシンプルかつ安価に構成されている。 By the way, in this embodiment, the hydraulic fluid discharged / supplied from one electric hydraulic pressure source (pump / motor) 41 can be distributed and supplied to the reaction force liquid chamber C1 and the driving fluid chamber C2. Similar to the vehicle hydraulic brake device (the vehicle hydraulic brake device described in FIG. 1 of Japanese Patent Application Laid-Open No. 2012-20707), the hydraulic control circuit 40 is configured simply and inexpensively.
 また、この実施形態では、電気系が正常である場合、ブレーキペダル10の作動量(操作量)が所定量以上であるときにおいて、同ブレーキ作動が維持されるとき(例えば、信号停止や踏切停止や渋滞停止等により、ブレーキ作動が設定時間(秒単位にて設定可能である)以上に維持されるとき)、電動式液圧源(ポンプ・モータ)41が停止状態で保持され、各電磁弁V1、V2、V6、V7が設定状態(図4に示した状態)に維持されて、反力液室C1内の液圧と駆動液室C2内の液圧が維持され、ブレーキが保持される。 Further, in this embodiment, when the electric system is normal, when the brake pedal 10 is operated in an amount (operation amount) equal to or greater than a predetermined amount, the brake operation is maintained (for example, signal stop or level crossing stop). When the brake operation is maintained for longer than the set time (can be set in seconds) due to traffic jams, etc.), the electric hydraulic pressure source (pump / motor) 41 is held in a stopped state, and each solenoid valve V1, V2, V6, and V7 are maintained in the set state (the state shown in FIG. 4), the hydraulic pressure in the reaction force liquid chamber C1 and the hydraulic pressure in the driving fluid chamber C2 are maintained, and the brake is held. .
 したがって、この実施形態において、所定のブレーキ作動が維持されるときには、電動式液圧源(ポンプ・モータ)41が停止状態で保持されて、電動式液圧源(ポンプ・モータ)41での消費電力を無くすことが可能であるとともに、電動式液圧源(ポンプ・モータ)41の作動に伴う振動・騒音を無くすことが可能である。また、上述したように電動式液圧源(ポンプ・モータ)41が停止状態で保持されるようにしたため(不必要な駆動を無くすようにしたため)、電動式液圧源(ポンプ・モータ)41におけるメカ部品の耐久・寿命にも効果が期待できる。 Therefore, in this embodiment, when a predetermined brake operation is maintained, the electric hydraulic pressure source (pump / motor) 41 is held in a stopped state and consumed by the electric hydraulic pressure source (pump / motor) 41. Electric power can be eliminated, and vibration and noise associated with the operation of the electric hydraulic pressure source (pump / motor) 41 can be eliminated. Further, as described above, since the electric hydraulic pressure source (pump / motor) 41 is held in a stopped state (unnecessary driving is eliminated), the electric hydraulic pressure source (pump / motor) 41. It is also expected to have an effect on the durability and life of mechanical parts.
 なお、上記した実施形態において、通常のブレーキ作動時(図3参照)に、回生制動が要求される状態にて、第2開閉弁V2が通電されるように設定すれば、第2開閉弁V2は第2供給経路416を閉じて、電動式液圧源(ポンプ・モータ)41から駆動液圧室C2への液圧供給を遮断する。このため、この場合には、回生制動装置(図示省略)にて制動力が得られ、マスタシリンダ20にてブレーキ操作反力は得られるものの制動力が得られない状態とすることが可能であり、高い回生効率を確保したブレーキ作動を得ることが可能である。 In the above-described embodiment, if the second on-off valve V2 is set to be energized in a state where regenerative braking is required during normal braking operation (see FIG. 3), the second on-off valve V2 is set. Closes the second supply path 416 and shuts off the hydraulic pressure supply from the electric hydraulic pressure source (pump / motor) 41 to the driving hydraulic pressure chamber C2. Therefore, in this case, a braking force can be obtained by a regenerative braking device (not shown), and a braking operation reaction force can be obtained by the master cylinder 20, but a braking force cannot be obtained. In addition, it is possible to obtain a brake operation that ensures high regeneration efficiency.
 また、上記した実施形態において、自動ブレーキ作動(ブレーキペダル10の作動(操作)によらないブレーキ作動)が要求される状態にて、第1開閉弁V1が通電されるように設定すれば、第1開閉弁V1は第1供給経路414を閉じて、電動式液圧源(ポンプ・モータ)41から反力液圧室C1への液圧供給を遮断する。なお、自動ブレーキ作動が要求される状態では、第1開閉弁V1が通電状態とされる他に、電動式液圧源(ポンプ・モータ)41が駆動状態とされ、第2制御弁V7が制御状態とされる。このため、電動式液圧源(ポンプ・モータ)41から駆動液圧室C2に液圧が供給されるとともに、同液圧が第2制御弁V7によって制御されて、所望のブレーキ作動が得られる。 In the above-described embodiment, if the first on-off valve V1 is set to be energized in a state where automatic brake operation (brake operation not depending on the operation (operation) of the brake pedal 10) is required, The 1 on-off valve V1 closes the first supply path 414 and shuts off the hydraulic pressure supply from the electric hydraulic pressure source (pump / motor) 41 to the reaction force hydraulic chamber C1. In the state where the automatic brake operation is required, the first on-off valve V1 is energized, the electric hydraulic pressure source (pump / motor) 41 is driven, and the second control valve V7 is controlled. State. Therefore, the hydraulic pressure is supplied from the electric hydraulic pressure source (pump / motor) 41 to the driving hydraulic pressure chamber C2, and the hydraulic pressure is controlled by the second control valve V7, so that a desired brake operation is obtained. .
 なお、上記した実施形態において、通常のブレーキ作動が得られているとき、反力液室(C1)内の液圧が駆動液室(C2)内の液圧に比して高くなるように設定されておれば、上述したブレーキ作動の維持時において、第1開閉弁(V1)、第1制御弁(V6)、第2制御弁(V7)が非作動状態に保持され、第2開閉弁(V2)が作動状態(通電による閉状態)に保持され、電動式液圧源(ポンプ・モータ)41が停止状態で保持される。したがって、このときにも、上述した作用効果と同様の作用効果を得ること(電動式液圧源(ポンプ・モータ)41での消費電力を無くすこと、電動式液圧源(ポンプ・モータ)41の作動に伴う振動・騒音を無くすこと、電動式液圧源(ポンプ・モータ)41におけるメカ部品の耐久・寿命を高めること)が可能である。 In the above-described embodiment, when normal brake operation is obtained, the hydraulic pressure in the reaction force liquid chamber (C1) is set to be higher than the hydraulic pressure in the driving fluid chamber (C2). In this case, the first on-off valve (V1), the first control valve (V6), and the second control valve (V7) are maintained in the non-operating state when the brake operation is maintained, and the second on-off valve ( V2) is held in the operating state (closed state by energization), and the electric hydraulic pressure source (pump / motor) 41 is held in the stopped state. Therefore, at this time as well, it is possible to obtain the same effects as the above-described effects (eliminating power consumption in the electric hydraulic pressure source (pump / motor) 41, electric hydraulic pressure source (pump / motor) 41. It is possible to eliminate vibrations and noises associated with the operation of the motor, and to increase the durability and life of the mechanical parts in the electric hydraulic pressure source (pump / motor) 41.
 上記した実施形態においては、図6に示したステップ203と208によって、ブレーキペダル(ブレーキ操作部材)10が所定の作動状態で設定時間以上に維持されているとのブレーキ維持条件を判定するように構成して実施した。 In the embodiment described above, the brake maintenance condition that the brake pedal (brake operation member) 10 is maintained for a set time or more in a predetermined operating state is determined by steps 203 and 208 shown in FIG. Configured and implemented.
 しかし、本発明の実施に際しては、図6に示したステップ203~210間に、例えば、車速センサの出力によって検出可能な車速ゼロを判定するステップ、または、シフトポジションセンサの出力によって検出可能であるシフトポジションがPまたはNレンジであることを判定するステップ、或いは、車両前方障害物検出センサの出力によって検出可能である障害物有を判定するステップを適宜に追加して実施することも可能である。これらの場合には、ブレーキペダル(ブレーキ操作部材)10が所定の作動状態で設定時間以上に維持されているとのブレーキ維持条件に、車速ゼロであること、または、シフトポジションがPまたはNレンジであること、或いは、車両前方に障害物が有ること等が適宜に追加される。 However, in the implementation of the present invention, it is possible to detect between the steps 203 to 210 shown in FIG. 6, for example, the step of determining the vehicle speed zero detectable by the output of the vehicle speed sensor, or the output of the shift position sensor. A step of determining that the shift position is in the P or N range or a step of determining whether there is an obstacle that can be detected by the output of the vehicle front obstacle detection sensor may be added as appropriate. . In these cases, the brake maintaining condition that the brake pedal (brake operating member) 10 is maintained in a predetermined operating state for a set time or longer is that the vehicle speed is zero, or the shift position is in the P or N range. Or that there is an obstacle in front of the vehicle is added as appropriate.
 また、上記した実施形態においては、液圧制御回路40の構成が図1~図5に示した構成(一つの電動式液圧源(ポンプ・モータ)41と、4個の電磁弁V1、V2、V6、V7を備えている構成)である実施形態について説明したが、本発明の実施に際して、液圧制御回路の構成は、前記ブレーキ操作部材の作動量に応じて、電気制御装置によって作動を制御される電動式液圧源(ポンプ・モータ)と電磁弁を備えていて、前記電動式液圧源が前記反力液室と前記駆動液室に作動液を供給可能であり、前記電磁弁が前記反力液室内の液圧と前記駆動液室内の液圧を別個に制御可能または維持可能であればよく、電動式液圧源(ポンプ・モータ)と電磁弁の個数や構成は、適宜変更が可能である。 In the embodiment described above, the hydraulic pressure control circuit 40 has the configuration shown in FIGS. 1 to 5 (one electric hydraulic pressure source (pump / motor) 41 and four solenoid valves V1, V2). In the embodiment of the present invention, the configuration of the hydraulic pressure control circuit is activated by the electric control device in accordance with the operation amount of the brake operation member. An electric hydraulic pressure source (pump / motor) to be controlled and an electromagnetic valve, the electric hydraulic pressure source being capable of supplying hydraulic fluid to the reaction force liquid chamber and the driving liquid chamber; However, the hydraulic pressure in the reaction fluid chamber and the hydraulic pressure in the drive fluid chamber need only be controllable or maintainable, and the number and configuration of the electric hydraulic pressure sources (pumps / motors) and solenoid valves are appropriately determined. It can be changed.

Claims (4)

  1.  シリンダ内孔を有するシリンダボディと、このシリンダボディの前記シリンダ内孔にシリンダ軸方向に移動可能に組付けられて前記シリンダボディ内に作動液を給排可能な反力液室を形成しブレーキ操作部材によって駆動可能な入力ピストンと、この入力ピストンに対して同軸的に配置されかつ前記シリンダ内孔にシリンダ軸方向に移動可能に組付けられて前記シリンダボディ内に作動液を給排可能な駆動液室と作動液を給排可能な圧力室を形成し前記入力ピストンまたは前記駆動液室に供給される作動液によって駆動されるマスタピストンとを備えているマスタシリンダと、
     前記ブレーキ操作部材の作動量に応じて、電気制御装置によって作動を制御される電動式液圧源と電磁弁を備えていて、前記電動式液圧源が前記反力液室と前記駆動液室に作動液を供給可能であり、前記電磁弁が前記反力液室内の液圧と前記駆動液室内の液圧を別個に制御可能または維持可能である液圧制御回路を備えていて、
     前記電気制御装置は、
     前記ブレーキ操作部材の作動量と作動経過時間に基づいて、前記ブレーキ操作部材が所定の作動状態で設定時間以上に維持されているとのブレーキ維持条件を判定するモード判定手段と、
     このモード判定手段により、前記ブレーキ維持条件が不成立であると判定されたときに、前記電動式液圧源を作動状態で保持し、前記電磁弁を前記ブレーキ操作部材の作動量に応じて制御して、前記反力液室内の液圧と前記駆動液室内の液圧を制御する通常モード制御手段と、
     前記モード判定手段により、前記ブレーキ維持条件が成立していると判定されたときに、前記電動式液圧源を停止状態で保持し、前記電磁弁を設定状態に維持して、前記反力液室内の液圧と前記駆動液室内の液圧を維持するエコモード制御手段
    を備えている車両用液圧ブレーキ装置。
    Brake operation by forming a cylinder body having a cylinder inner hole and a reaction force liquid chamber that is assembled to the cylinder inner hole of the cylinder body so as to be movable in the axial direction of the cylinder and capable of supplying and discharging hydraulic fluid in the cylinder body An input piston that can be driven by a member, and a drive that is coaxially arranged with respect to the input piston and that is assembled in the cylinder bore so as to be movable in the cylinder axial direction, and can supply and discharge hydraulic fluid into the cylinder body A master cylinder that includes a liquid chamber and a master piston that forms a pressure chamber capable of supplying and discharging hydraulic fluid and is driven by the hydraulic fluid supplied to the input piston or the driving fluid chamber;
    An electric hydraulic pressure source and an electromagnetic valve whose operation is controlled by an electric control device in accordance with an operation amount of the brake operation member are provided, and the electric hydraulic pressure source includes the reaction force liquid chamber and the driving liquid chamber. A hydraulic pressure control circuit capable of separately supplying or controlling the hydraulic pressure in the reaction liquid chamber and the hydraulic pressure in the driving fluid chamber;
    The electrical control device
    Mode determination means for determining a brake maintenance condition that the brake operation member is maintained in a predetermined operation state for a set time or longer based on an operation amount and an operation elapsed time of the brake operation member;
    When it is determined by the mode determination means that the brake maintenance condition is not satisfied, the electric hydraulic pressure source is held in an operating state, and the electromagnetic valve is controlled in accordance with the operation amount of the brake operation member. Normal mode control means for controlling the fluid pressure in the reaction force fluid chamber and the fluid pressure in the drive fluid chamber;
    When it is determined by the mode determination means that the brake maintenance condition is satisfied, the electric hydraulic pressure source is held in a stopped state, the electromagnetic valve is maintained in a set state, and the reaction force liquid A vehicular hydraulic brake device comprising eco-mode control means for maintaining the hydraulic pressure in the room and the hydraulic pressure in the driving liquid chamber.
  2.  請求項1に記載の車両用液圧ブレーキ装置において、前記ブレーキ維持条件として、車速センサの出力によって検出可能な車速ゼロが追加されている車両用液圧ブレーキ装置。 2. The vehicle hydraulic brake device according to claim 1, wherein a vehicle speed zero that can be detected by an output of a vehicle speed sensor is added as the brake maintenance condition.
  3.  請求項1または2に記載の車両用液圧ブレーキ装置において、前記ブレーキ維持条件として、シフトポジションセンサの出力によって検出可能であるシフトポジションがPまたはNレンジであることが追加されている車両用液圧ブレーキ装置。 3. The vehicle hydraulic brake device according to claim 1, wherein a shift position that can be detected by an output of a shift position sensor is added to the P or N range as the brake maintenance condition. 4. Pressure brake device.
  4.  請求項1~3の何れか一項に記載の車両用液圧ブレーキ装置において、前記ブレーキ維持条件として、車両前方障害物検出センサの出力によって検出可能である障害物有が追加されている車両用液圧ブレーキ装置。 The hydraulic brake device for a vehicle according to any one of claims 1 to 3, wherein the presence of an obstacle that can be detected by an output of a vehicle front obstacle detection sensor is added as the brake maintenance condition. Hydraulic brake device.
PCT/JP2013/081404 2012-11-22 2013-11-21 Vehicular hydraulic brake device WO2014080985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-256091 2012-11-22
JP2012256091A JP5846111B2 (en) 2012-11-22 2012-11-22 Hydraulic brake device for vehicles

Publications (1)

Publication Number Publication Date
WO2014080985A1 true WO2014080985A1 (en) 2014-05-30

Family

ID=50776163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081404 WO2014080985A1 (en) 2012-11-22 2013-11-21 Vehicular hydraulic brake device

Country Status (2)

Country Link
JP (1) JP5846111B2 (en)
WO (1) WO2014080985A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240872A (en) * 2010-05-20 2011-12-01 Advics Co Ltd Brake device
JP2012020707A (en) * 2010-07-16 2012-02-02 Advics Co Ltd Brake device
JP2012071681A (en) * 2010-09-28 2012-04-12 Advics Co Ltd Braking device for vehicle
JP2012214209A (en) * 2011-03-29 2012-11-08 Advics Co Ltd Braking controller for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240872A (en) * 2010-05-20 2011-12-01 Advics Co Ltd Brake device
JP2012020707A (en) * 2010-07-16 2012-02-02 Advics Co Ltd Brake device
JP2012071681A (en) * 2010-09-28 2012-04-12 Advics Co Ltd Braking device for vehicle
JP2012214209A (en) * 2011-03-29 2012-11-08 Advics Co Ltd Braking controller for vehicle

Also Published As

Publication number Publication date
JP5846111B2 (en) 2016-01-20
JP2014101095A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5220827B2 (en) Brake device for vehicle
JP5892706B2 (en) Brake fluid pressure generator
JP5352669B2 (en) Brake device for vehicle
JP6678996B2 (en) Hydraulic control device and brake system
US20110215638A1 (en) Brake system
JP4717779B2 (en) Brake device
JP5871139B2 (en) Hydraulic brake device for vehicles
JP6245696B2 (en) Brake fluid pressure generator
JP2008265450A (en) Vehicular brake device
JP2010089599A (en) Vehicular brake device
JP5871138B2 (en) Hydraulic brake device for vehicles
JP2012522676A (en) Brake actuator unit for operating brake-by-wire automotive brake systems
JP5846111B2 (en) Hydraulic brake device for vehicles
JP2006056449A (en) Brake system
JP7206834B2 (en) vehicle braking device
JP5853938B2 (en) Hydraulic brake device for vehicles
JP5006243B2 (en) Brake control device
JP4625444B2 (en) Brake device
JP6261078B2 (en) Brake fluid pressure generator
JP6111920B2 (en) Hydraulic brake device for vehicles
JP7367372B2 (en) Vehicle braking device
JP6724470B2 (en) Vehicle braking system
JP6197440B2 (en) Hydraulic brake device for vehicles
JP6128317B2 (en) Brake device
JPWO2020026051A1 (en) Brake control device and brake control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857265

Country of ref document: EP

Kind code of ref document: A1