WO2014080819A1 - Wiring forming apparatus - Google Patents

Wiring forming apparatus Download PDF

Info

Publication number
WO2014080819A1
WO2014080819A1 PCT/JP2013/080663 JP2013080663W WO2014080819A1 WO 2014080819 A1 WO2014080819 A1 WO 2014080819A1 JP 2013080663 W JP2013080663 W JP 2013080663W WO 2014080819 A1 WO2014080819 A1 WO 2014080819A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask film
substrate
mask
nozzle
band
Prior art date
Application number
PCT/JP2013/080663
Other languages
French (fr)
Japanese (ja)
Inventor
智也 三澤
靖 佐野
正志 西亀
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2014080819A1 publication Critical patent/WO2014080819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Definitions

  • the present invention relates to a wiring forming apparatus for forming a wiring pattern on a substrate.
  • the present invention relates to a wiring forming apparatus suitable for use in forming an electrode pattern in a solar cell element.
  • Patent Document 1 As an example of an element in which a wiring pattern is formed on a substrate, a pair of substrate surfaces of a semiconductor substrate formed by bonding a p-type and an n-type semiconductor layer are provided. A single-sided light receiving solar cell element in which a light receiving surface electrode (front surface electrode) and a back surface electrode are formed is described. In addition, Patent Document 1 describes that a screen printing method is used as a method of forming these electrode patterns on the substrate surface.
  • Patent Document 2 discloses, as a method for forming an electrode pattern in a solar cell element, a paste-like coating liquid (electrode material) containing a pattern material (wiring material) from a nozzle continuously. And a method of drawing an electrode pattern on a substrate surface.
  • Patent Document 2 in particular, when a large number of thin electrodes called finger electrodes are formed on a substrate, a plurality of fluid electrodes communicated with the liquid storage space along the direction intersecting the relative movement direction with the substrate.
  • a rigid thin plate substrate such as a silicon wafer is used as a semiconductor substrate on which an electrode pattern is formed.
  • the semiconductor substrate may be broken by the printing pressure of the squeegee, which causes a decrease in yield in the manufacture of solar cell elements.
  • the screen printing plate in which the electrode pattern is imitated needs to be periodically cleaned and replaced, which causes a cost increase.
  • an electrode pattern in the method for forming an electrode pattern in a solar cell element described in Patent Document 2, an electrode pattern can be formed with a nozzle in a non-contact state with respect to the substrate surface. Substrate cracking does not occur. In addition, costs resulting from cleaning and replacement of special consumables such as screen printing plates can be reduced.
  • the discharge control of the electrode material from each discharge port is batch control in units of nozzles.
  • the length of the wiring pattern of the finger electrode is the same corresponding to the relative movement amount between the nozzle and the substrate.
  • a wafer obtained by slicing a thin silicon ingot is used to create a semiconductor substrate for a solar cell element.
  • the shape of the wafer can be made square when a polycrystalline silicon wafer is used, but when a single crystal silicon wafer is used, the wafer becomes a circular wafer in terms of manufacturing a silicon ingot for cutting out the wafer. Therefore, when a single crystal silicon wafer is used as a semiconductor substrate of a solar cell element, a useless gap is made as small as possible when the solar cell elements are arranged on a panel while cutting a substrate having a large area from a circular wafer. Therefore, a circular wafer is used after being processed into an octagonal substrate in which the four corners of the rectangle are slightly cut off.
  • the discharge of the electrode material from each discharge port of the nozzle is performed. Since the control is batch control in units of nozzles, finger electrodes cannot be formed on the octagonal semiconductor substrate surface without excess or deficiency. If the finger electrodes are formed on the octagonal semiconductor substrate surface without excess or deficiency, the electrode material is also discharged to the edge portion of the four corners of the rectangle and the peripheral device portion. As a result, the electrode material for forming the finger electrode may adhere to the electrode pattern or the semiconductor layer on the opposite side, which may cause a failure such as a short circuit.
  • the present invention uses a nozzle in which a plurality of discharge ports are arranged along the direction intersecting the moving direction of the substrate, and discharges the electrode material from each discharge port at the same time.
  • the special substrate such as the octagonal semiconductor substrate of the solar cell element described above is related to a wiring forming apparatus that simultaneously forms a number of thin electrodes extending along the relative movement direction on the substrate surface by one relative movement of Even so, it is an object of the present invention to provide a wiring forming apparatus capable of forming a wiring pattern on a substrate without excess and deficiency and reducing defects.
  • the special substrate is not limited to an octagonal substrate, and is related to the relative movement between the nozzle and the substrate, intersects with the relative movement direction, and the arrangement direction of the plurality of discharge ports formed in the nozzle.
  • Substrates having intersecting edge portions and substrates having edge portions that cannot pass through a plurality of discharge ports formed in the nozzle at the same time and do not follow the relative movement direction between the nozzle and the substrate are applicable.
  • the present invention uses a nozzle in which a plurality of discharge ports are arranged along a direction intersecting the relative movement direction with respect to the substrate, and simultaneously supplies an electrode material (coating liquid) from each discharge port.
  • the wiring forming apparatus that simultaneously forms a plurality of thin electrodes extending along the relative movement direction on the substrate surface by one relative movement between the nozzle and the substrate, the relative movement direction And a mask unit that prevents the electrode material from adhering to the edge of the substrate that intersects with the arrangement direction of the plurality of ejection openings formed in the nozzle.
  • the wiring forming apparatus discharges the coating liquid containing the wiring material to the substrate mounting table on which the substrate is mounted and the substrate surface of the substrate mounted on the substrate mounting table.
  • the coating nozzle has a plurality of ejection openings arranged along the direction intersecting the relative movement direction by the relative movement mechanism, and the mask unit is a relative of the substrate placed on the substrate placement table by the relative movement mechanism.
  • the mask film is formed of a long band-shaped mask film
  • the mask unit includes a mask film supply unit in which a band-length portion to which the coating liquid for the band-shaped mask film is not attached and the application of the band-shaped mask film
  • a predetermined amount of the band length portion of the band-shaped mask film is derived from the mask film recovery unit where the band length portion to which the liquid is attached is arranged, and the mask film supply unit, and between the edge portion and a part of the discharge ports.
  • a mask film moving mechanism for introducing a predetermined length of the band length portion of the belt-shaped mask film already interposed between the edge portion and a part of the discharge ports into the mask film collecting portion. It is characterized by being.
  • the relative movement between the nozzle and the substrate, the substrate having an edge that intersects the relative movement direction and also intersects the arrangement direction of a plurality of discharge ports formed in the nozzle A wiring pattern can be formed on the substrate without excess or deficiency even on a substrate that cannot pass through the multiple ejection openings formed in the nozzle at the same time and has a peripheral portion that does not follow the relative movement direction between the nozzle and the substrate. It is possible to reduce defects.
  • FIG. 2 is a view of the wiring forming apparatus shown in FIG. 1 as viewed in the direction of arrows YY described in FIG.
  • FIG. 2 is a configuration diagram of the wiring forming apparatus shown in FIG. 1 viewed in the direction of arrows XX described in FIG.
  • coating object It is a top view of the board
  • FIG. 7 is a front view of the mask unit of the mask mechanism as viewed in the direction of arrow VII-VII in FIG. 6.
  • a wiring device that forms a finger electrode on the substrate surface of a semiconductor substrate will be described as an example, but a wiring device that forms a bus bar electrode across the finger electrode may be used.
  • the wiring forming apparatus is not limited to the manufacturing of the solar cell element, and may be a wiring forming apparatus that simultaneously forms a large number of wiring patterns extending along a predetermined direction on the substrate surface.
  • FIG. 1 is a plan view of the wiring forming apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a view of the wiring forming apparatus shown in FIG. 1 as viewed in the direction of arrows YY described in FIG.
  • FIG. 3 is also a configuration diagram viewed in the direction of arrows XX described in FIG.
  • the wiring forming apparatus 1-1 includes a substrate mounting table 20, a substrate transport mechanism 30, a coating nozzle 40, a nozzle lifting mechanism 50, and a coating liquid supply.
  • a mechanism 60, a mask mechanism 70, and a control device 100 are included.
  • the substrate mounting table 20 has a top surface to which the electrode material (coating liquid) 15 is applied on the column portion 22 that is erected and fixed at the center of the surface of the disk-shaped base 21.
  • a mounting plate 23 on which the semiconductor substrate (substrate) 10 is mounted is attached and fixed.
  • the substrate mounting table 20 has a plate-shaped base 21 mounted and fixed to a substrate transport stage 32 of the substrate transport mechanism 30 with the substrate mounting surface 24 of the mounting plate 23 horizontal.
  • the substrate transport mechanism 30 includes a substrate transport stage 32 installed on the apparatus base 31 and extending along the substrate transport direction (x-axis direction).
  • a driving source for example, a motor
  • the substrate transport stage 32 is extended and extended from the substrate transport stage 32.
  • the semiconductor substrate 10 which moves along the direction (x-axis direction) and is placed and held on the substrate placement surface 24 is transported.
  • the substrate transport mechanism 30 is not limited to the transport mechanism including the substrate transport stage 32 described above, and may be any transport mechanism that can linearly move the substrate mounting table 20.
  • the substrate transport mechanism 30 is configured to move and displace the substrate mounting table 20 on a horizontal plane along the y-axis direction (width direction of the substrate transport stage 32) perpendicular to the transport direction (x-axis direction),
  • a rotation mechanism that rotates and displaces the substrate mounting table 20 in a horizontal plane defined by the x-axis and the y-axis may be provided.
  • the moving mechanism the relative position of the semiconductor substrate 10 in the y-axis direction with respect to the coating nozzle 40 when the semiconductor substrate 10 passes below the coating nozzle 40 can be adjusted.
  • the relative orientation of the semiconductor substrate 10 with respect to the coating nozzle 40 when the semiconductor substrate 10 passes below the coating nozzle 40 can be adjusted.
  • a nozzle support frame 51 is installed.
  • the nozzle support frame 51 has a column part 52 and a beam part 53, and the semiconductor substrate 10 mounted and held on the substrate mounting table 20 is located on the side of the column part 52 and below the beam part 53.
  • a passage space in the width direction (y-axis direction) and the height direction (z-axis direction) is secured.
  • a nozzle raising / lowering mechanism 50 including a nozzle raising / lowering stage 54 extending in the height direction (z-axis direction) is installed on the beam portion 53 of the nozzle support frame 51.
  • the application nozzle 40 is attached and fixed to the nozzle raising / lowering stage 54 with its discharge port 44 facing downward.
  • the application nozzle 40 attached and fixed to the nozzle elevating stage 54 extends in the extending direction of the nozzle elevating stage 54. It moves along (z-axis direction) and is configured to move the application nozzle 40 up and down.
  • the nozzle raising / lowering mechanism 50 includes the discharge port 44 of the coating nozzle 40 and the substrate surface of the semiconductor substrate 10 when the semiconductor substrate 10 placed and held on the substrate mounting table 20 by the substrate transport mechanism 30 passes below the coating nozzle 40. The distance in the height direction (z-axis direction) from 11 is adjusted by moving the application nozzle 40 up and down.
  • the nozzle raising / lowering mechanism 50 arranges the coating nozzle 40 at a height in accordance with the set gap between the two when the electrode material 15 is applied.
  • the nozzle raising / lowering mechanism 50 is not limited to the raising / lowering configuration provided with the nozzle raising / lowering stage 54 described above, and may be any nozzle moving mechanism that can move the application nozzle 40 up and down.
  • FIG. 4 is an explanatory diagram of the internal structure of the coating nozzle.
  • the coating nozzle 40 is configured such that an introduction port 43 for the electrode material 15 and a plurality of discharge ports 44 are provided in a nozzle body 41 in which a cavity (a liquid storage space) 42 is formed.
  • the coating nozzle 40 discharges the electrode material 15 stored in the cavity 42 through the introduction port 43 from each discharge port 44, and the substrate mounting table 20 moves and passes under the nozzle by the substrate transport mechanism 30.
  • the electrode material 15 is applied to the substrate surface 11 of the semiconductor substrate 10 placed and held on the substrate placement surface 24 of the table 20.
  • a plurality of discharge ports 44 are formed on the lower surface of the nozzle body 41 by the number of finger wires 16 to be formed so that a plurality of thin electrodes extending along the lines, that is, finger wires (finger electrodes) 16 of the solar cell element can be formed. These are provided in a row at intervals corresponding to the formation interval (wiring pitch) of the finger wirings 16.
  • the application nozzle 40 has the plurality of discharge ports 44 arranged in the downward direction so that the arrangement direction of the plurality of discharge ports 44 is along the width direction (y-axis direction) of the substrate transport stage 32.
  • the nozzle body 41 is attached and fixed to the nozzle lifting / lowering stage 54 of the nozzle lifting / lowering mechanism 50.
  • the coating liquid supply mechanism 60 supplies an electrode material (coating liquid) 15 to the coating nozzle 40, an electrode material tank 61 that stores the electrode material 15, and a valve that performs supply / supply stop of the electrode material 15 to the coating nozzle 40. 67.
  • the electrode material tank 61 has a sealed structure in which a supply port 63 and a pressure adjustment port 64 are formed in a tank body 62 in which a tank chamber in which the electrode material 15 is stored is formed.
  • the piping 65 which connects between the supply port 63 and the inlet 43 of the application nozzle 40 is connected.
  • a high pressure gas is supplied to the pressure adjusting port 64 via a regulator 66, the pressure (back pressure) in the tank chamber is controlled by the regulator 66, and the electrode material 15 supplied to the application nozzle 40 via the pipe 65 is supplied.
  • the speed is controlled, and the discharge amount (discharge speed) of the electrode material 15 discharged from each discharge port 44 of the application nozzle 40 can be adjusted.
  • the valve 67 is installed in the middle of the pipe 65, for example, and the supply / stop of the supply of the electrode material 15 to the application nozzle 40 can be performed by opening / closing the valve 67.
  • the application / application stop of the electrode material 15 to the substrate surface 11 can be performed.
  • the coating liquid supply mechanism 60 is configured to pump the electrode material 15 with the high-pressure gas from the high-pressure gas source, and to open / close the valve 67 to apply the electrode material 15 to the cavity 42 of the coating nozzle 40. According to the supply control, the discharge / discharge stop of the electrode material 15 from each discharge port 44 of the coating nozzle 40 is controlled.
  • the present invention is not limited to this, and the cylinder pump, the mono pump, the piston pump, the plunger pump, and the diaphragm pump are not limited thereto.
  • Various liquid feed pumps such as a reciprocating pump can be used as the coating liquid supply mechanism 60 for control.
  • the mask mechanism 70 is a semiconductor mounted and held on the substrate mounting table 20 that intersects the substrate transport direction (x-axis direction) by the substrate transport mechanism 30 and also intersects the arrangement direction of the plurality of ejection ports 44 in the coating nozzle 40.
  • the electrode material 15 discharged from the discharge port 44 of the application nozzle 40 is prevented from adhering to the edge portion 12 of the substrate 10.
  • the substrate surface 11 of the semiconductor substrate 10 on which the finger wiring 16 is formed by the wiring forming apparatus 1-1 according to the present embodiment in connection with the manufacture of the solar cell element. 5 will be described.
  • FIG. 5 is an explanatory view of the substrate surface of the semiconductor substrate to be coated.
  • the substrate surface 11 of the semiconductor substrate 10 has an octagonal shape with four corners cut out.
  • the finger wiring 16 is formed on the substrate surface 11, for example, occurrence of defects as a solar cell element such as a short circuit between the front surface electrode and the back surface electrode formed on the front surface and the back surface of the semiconductor substrate 10, respectively.
  • the finger wiring (finger electrode) 16 is surrounded by the non-wiring installation area A, leaving a non-wiring installation area A in which the finger wiring 16 having a predetermined width is not formed at the periphery of the substrate surface of the semiconductor substrate 10. It is formed in the inner wiring installation area B.
  • the finger wiring (finger electrode) 16 is formed by the wiring forming device 1-1 in the boundary portion 10f between the non-wiring forming area A and the wiring forming area B on the front side in the transport direction in the substrate transporting direction (x-axis direction).
  • the discharge of the electrode material 15 from the discharge port 44 of the coating nozzle 40 is started.
  • the boundary portion 10r between the non-wiring formation area A and the wiring formation area B on the rear side in the transport direction passes under the nozzle, the discharge of the electrode material 15 from the discharge port 44 of the coating nozzle 40 is finished, thereby completing the substrate surface.
  • a plurality of finger wirings (finger electrodes) 16 extending along the substrate transport direction (x-axis direction) are formed in the wiring forming region B of 11.
  • the substrate 10 is arranged in the substrate transport direction (x-axis direction) and the arrangement direction of the plurality of discharge ports 44 of the coating nozzle 40 (y-axis direction).
  • the discharge of the electrode material 11 from each discharge port 44 of the application nozzle 40 is collectively controlled in units of nozzles by the valve 67.
  • the finger wiring 16 cannot be formed in the wiring forming region B without excess or deficiency.
  • the region width along the substrate transport direction (x-axis direction) of the non-wiring formation region A before and after the transport direction is the region width along the width direction (y-axis direction) of the substrate transport stage 32. Will be bigger than. Also, when trying to match the area width along the substrate conveyance direction (x-axis direction) of the non-wiring formation area A before and after the conveyance direction with the area width along the width direction (y-axis direction) of the substrate conveyance stage 32, The electrode material 11 will also adhere to the peripheral vicinity C of the edge 12.
  • the mask mechanism 70 prevents the electrode material 11 from adhering to the peripheral edge portion 12, preferably the peripheral vicinity portion C including the non-wiring formation region A portion of the peripheral edge portion 12. Even in the case of the semiconductor substrate 10, the finger wirings (finger electrodes) 16 are formed in the wiring forming region B without excess or deficiency.
  • FIG. 6 is a plan view of the substrate mounting table portion of the wiring forming apparatus in which the mask mechanism is installed.
  • FIG. 7 is a front view of the mask unit of the mask mechanism as viewed in the direction of arrows VII-VII in FIG.
  • the mask mechanism 70 includes a mask unit 71, a mask unit lifting mechanism 90, and a mask unit moving mechanism 95 (not shown in FIG. 6). Yes.
  • a supply roller 73, guide rollers 74 and 75, and a collection roller 76 are rotatably supported on the front surface of the support plate 72, and the collection roller 76 is provided on the back surface of the plate.
  • the motor 77 can be rotated. Thereby, the long strip-shaped mask film 18 wound around the supply roller 73 is guided by the guide rollers 74 and 75 by the drive of the motor 77, and then wound around the collection roller 76. It has become.
  • the lead-out amount (drawing length) of the mask film 18 from the supply roller 73 is adjusted according to the driving / stopping of the motor 77.
  • the guide rollers 74 and 75 are provided apart from each other with an interval that is appropriately larger than the dimension L of the edge portion 12 of the semiconductor substrate 10 illustrated in FIG. A length portion of the mask film 18 longer than the length L of the edge portion 12 is stretched between the guide rollers 74 and 75 to form a mask portion 19.
  • a long strip-like PET (Polyethylene terephthalate) film is used for the mask film 18.
  • resin films such as nylon, vinyl chloride, and polyester, and metal films such as stainless steel, aluminum, and copper can also be used.
  • the mask film 18 has a width dimension larger than the width dimension W of the non-wiring installation area A of the semiconductor substrate 10 shown in FIG. In the illustrated example, the mask film 18 has a width dimension that can cover the vicinity C of the peripheral edge portion 12 shown in FIG.
  • the mask unit 71 is provided for each of the edge portions 12 of the semiconductor substrate 10 placed and held on the substrate mounting table 20, and the front portion of the support plate 72 on the mask portion 19 side is opposed to the corresponding edge portion 12. In this way, the height direction (z-axis direction) of the mask portion 19 can be adjusted so as to be close to / separated from the edge portion 12, and the semiconductor substrate 10 to be coated and the substrate transport direction (x-axis direction) ) So as to be integrally movable.
  • a pair of masks on the front and rear sides in the transport direction on both sides in the width direction (y-axis direction) of the substrate transport stage 32 a pair of masks on the front and rear sides in the transport direction on both sides in the width direction (y-axis direction) of the substrate transport stage 32.
  • the unit 71 is attached and fixed to unit support bases 81 located on both sides in the width direction (y-axis direction) of the substrate transport stage 32.
  • the direction of the front portion of each of the pair of mask units 71 in each unit support base 81 is such that it faces the corresponding edge portion 12 of the semiconductor substrate 10 placed and held on the substrate placement surface 24 of the substrate placement table 20. It has been adjusted.
  • each unit support base 81 is attached and fixed to a unit elevating stage 91 (see FIG. 3) of the mask unit elevating mechanism 90.
  • the mask unit elevating mechanism 90 corresponds to each unit support base 81, and a support base elevating stage 91 is placed on the support base 82 provided below each unit support base 81 in the height direction (z It is installed and fixed so as to extend along the axial direction.
  • the mask unit elevating mechanism 90 moves and operates the support platform elevating stage 91 by driving a drive source (not shown) (not shown) (not shown)
  • the unit support platform 81 attached and fixed to the support platform elevating stage 91 is moved in the height direction (
  • the mask portion 19 of each mask unit 71 is moved up and down by moving in the z-axis direction).
  • each support base 82 is attached and fixed to a unit moving stage 96 (see FIGS. 1 and 2) of the mask unit moving mechanism 95.
  • the mask unit moving mechanism 95 is arranged so that the unit moving stage 96 of the substrate transfer stage 32 is moved to the plate-like base 21 of the substrate mount 20 so that it can move integrally with the substrate mount 20 in the substrate transfer direction (x-axis direction). It is installed and fixed so as to extend along the width direction (y-axis direction).
  • the unit moving stage 96 is moved by driving a driving source (for example, a motor) (not shown)
  • the mask unit moving mechanism 95 moves the support base 82 attached and fixed to the unit moving stage 96 in the width direction (y-axis direction).
  • the mask portion 19 of each mask unit 71 is configured to be close to / separated from the edge portion 12 of the semiconductor substrate 10 mounted and held on the substrate mounting surface 24 of the substrate mounting table 20. It has become.
  • the pair of mask units 71 on the front side and the rear side in the width direction (y-axis direction) on both sides in the width direction (y-axis direction) of the substrate transfer stage 32 are united by the unit support base 81 common to the units.
  • the mask portion 19 can be moved up and down by a common mask unit lifting mechanism 90 and mask unit moving mechanism 95 so that the mask portion 19 can approach / separate from the edge 12 of the semiconductor substrate 10.
  • a pair of mask units 71 on the both sides in the width direction (y-axis direction) of the substrate transfer stage 32 are attached and fixed to a unit support base 81 common to the units.
  • the mask portion 19 can be moved up and down so as to be close to / separated from the edge portion 12 of the semiconductor substrate 10.
  • the control device 100 is constituted by a microcomputer or the like.
  • the control device 100 executes the wiring formation program stored in the memory based on the recipe set and input in advance, so that the substrate mounting table 20, the substrate transport mechanism 30, the coating nozzle 40, the nozzle lifting mechanism 50, the coating liquid supply The operation of each part of the device such as the mechanism 60 and the mask mechanism 70 is controlled.
  • FIG. 8 is a flowchart of an example of finger wiring formation processing by the wiring forming apparatus of the present embodiment.
  • the wiring forming device 1-1 is configured so that the mask mechanism 70 does not overlap the application target semiconductor substrate 10 in the height direction (z-axis direction) by the operation of the mask unit moving mechanism 95 in advance.
  • the mask unit 71 of the mask mechanism 70 is located at the end on the separation side in the extending direction of the unit moving stage 96, and the mask lifting / lowering mechanism 90 operates in advance according to the extending direction of the unit lifting stage 91. Assume that it is located at the upper end. Further, it is assumed that the application nozzle 40 is positioned in the upper end portion in the extending direction of the nozzle lifting / lowering stage 54 by the operation of the nozzle lifting / lowering mechanism 50 in advance.
  • the substrate transport direction (x-axis direction) and the substrate transport are used instead of the octagonal semiconductor substrate 10. Even when the rectangular semiconductor substrates having the same length along the width direction (y-axis direction) of the stage 32 are mounted on the substrate mounting table 20, the mask portion 19 of the mask unit 71 is The rectangular semiconductor substrate 10 is not overlapped in the height direction (z-axis direction).
  • each part of the apparatus is in a standby state as described below by setting the recipe related to the octagonal semiconductor substrate 10 to be coated with respect to such an initialization state.
  • the mask unit 71 does not overlap in the height direction (z-axis direction) with the edge 12 of the octagonal semiconductor substrate 10 to which the mask portion 19 is to be applied, by the operation of the mask unit moving mechanism 95.
  • FIG. It is in the state moved and arranged in the horizontal standby position as shown in FIG. Further, the mask unit 71 has a sufficient height so that the mask portion 19 of the mask film 71 does not contact the electrode material 15 applied to the substrate surface 11 in the height direction (z-axis direction) by the operation of the mask unit lifting mechanism 90. It is in a state of being moved and arranged at the height direction standby position.
  • the application nozzle 40 is moved to the discharge work height arrangement by adjusting the gap between the discharge port 44 and the substrate surface 11 of the semiconductor substrate 10 when applying the electrode material 15 by the operation of the nozzle lifting mechanism 50. It has been placed.
  • the substrate mounting table 20 includes the semiconductor substrate 10 mounted and held on the substrate mounting surface 24 in the transfer section along the extending direction (x-axis direction) of the substrate transfer stage 32 by the operation of the substrate transfer mechanism 30. In the height direction (z-axis direction), it is in a state of being moved and arranged at a substrate attachment / detachment movement position that does not overlap the coating nozzle 40.
  • step S10 the octagon-shaped semiconductor substrate 10 to be coated is carried from the outside of the apparatus to the substrate mounting surface 24 of the substrate mounting table 20 with respect to the wiring forming apparatus 1-1 in such a standby state. ⁇ It is placed.
  • step S20 when the wiring forming apparatus 1-1 detects the placement of the semiconductor substrate 10 on the substrate placement surface 24 by a sensor (not shown), the mask forming mechanism 95 is actuated to control the mask mechanism. 70 is moved from the horizontal standby position as shown in FIG. 6 to the horizontal application work position as shown in FIG.
  • the mask unit 71 In the state where the mask mechanism 70 shown in FIG. 1 is moved to the horizontal application work position, the mask unit 71 has the edge portion shown in FIG. 5 of the octagonal semiconductor substrate 10 whose mask portion 19 is the application target. 12 in the vicinity of the peripheral vicinity C in the height direction (z-axis direction).
  • step S30 the wiring forming apparatus 1-1 now controls the operation of the mask unit lifting mechanism 90, and the mask mechanism 19 in which the mask portion 19 of the mask unit 71 is moved to the standby position in the height direction is arranged. 70 is lowered so that the mask portion 19 is at a predetermined height direction application work position.
  • the coating operation position in the height direction means that the mask portion 19 of the mask unit 71 is placed and held on the discharge port 44 of the coating nozzle 40 that is moved to the discharge work height arrangement and the substrate placement surface 24.
  • the height position of the surface of the mask film 18 of the mask portion 19 is a certain amount with reference to the height position of the discharge port 44 of the coating nozzle 40. It shall refer to the lower position.
  • step S40 the wiring forming device 1-1 uses the electrode material with respect to the substrate surface 11 of the semiconductor substrate 10. 15 is applied.
  • the wiring forming apparatus 1-1 controls the operation of the substrate transport mechanism 30 and the substrate transport stage 32.
  • the substrate mounting table 20 in a state of being arranged at the substrate attachment / detachment movement position in the transport section along the extending direction (x-axis direction) is moved along the transport direction to pass below the coating nozzle 40.
  • the wiring forming device 1-1 opens / closes the valve 67 of the coating liquid supply mechanism 60 (application / stop of application of the electrode material 15) to form non-wiring on the substrate surface 11 shown in FIG.
  • the wiring formation area B on the substrate surface is not excessive and insufficient, and a large number of substrates Finger wirings (finger electrodes) 16 extending along the transport direction (x-axis direction) are collectively formed. Thereafter, if the entire semiconductor substrate 10 passes below the coating nozzle 40 and the substrate mounting table 20 reaches the substrate attachment / detachment movement position in the transfer section along the extending direction (x-axis direction) of the substrate transfer stage 32, The wiring forming apparatus 1-1 controls the operation of the substrate transport mechanism 30 and stops the movement of the substrate mounting table 20.
  • the substrate attachment / detachment movement position in step S40 may be the movement position of the transfer section on the opposite side by positioning the application nozzle 40 in the center of the substrate attachment / detachment movement position before application in step S10.
  • the substrate mounting table 20 can be moved back and forth in the transport section while passing under the coating nozzle 40, so that the same position as the substrate attachment / detachment movement position before coating can be obtained. In this way, when the substrate attachment / detachment movement position is the same position, the application of the electrode material 15 to the substrate surface 11 by the application nozzle 40 is performed when the substrate mounting table 20 reciprocates and passes below the application nozzle 40. It is good also as a structure to perform, and it is good also as a structure performed when the semiconductor substrate 10 passes the downward direction of the application nozzle 40 by either forward movement or backward movement.
  • step S50 the wiring forming device 1-1 controls the operation of the mask unit lifting mechanism 90 so that the mask portion 19 of the mask unit 71 is applied in a predetermined height direction.
  • the mask mechanism 70 which is moved and arranged so as to be in the position is raised so that the mask portion 19 is in the height direction standby position.
  • step S60 the wiring forming apparatus 1-1 controls the operation of the mask unit moving mechanism 95 to move the mask mechanism 70 from the horizontal application work position to the horizontal standby position, and at the same time, each mask unit 71.
  • the motor 77 is controlled to recover the mask film 18 of the mask portion 19 by a predetermined amount to the collecting roller 76 side, and the mask film 18 is led out from the supply roller 73 side corresponding to the predetermined amount, and the mask Located in portion 19.
  • the mask film 18 is collected and led out by rotating the collection roller 76 by a motor 77, so that the mask film 18 can be masked without bending the mask film between the supply roller 73 and the collection roller 76.
  • a portion 19 is stretched.
  • the recovered amount and the derived amount of the mask film 18 are not affected by the film winding thicknesses of the supply roller 73 and the recovery roller 76, for example, by detecting the rotation amount of the guide roller 74 or 75 by a sensor (not shown). Can be managed accurately.
  • step S70 when the mask mechanism 70 moves to the horizontal standby position, the wiring forming apparatus 1-1 collects a plurality of finger wirings (finger electrodes) 16 that are placed and held on the substrate placement surface 24 in a lump.
  • the semiconductor substrate 10 formed in this manner is carried out of the apparatus from the substrate mounting table 20. Thereby, the formation process of the plurality of finger wirings 16 on the substrate surface 11 of one semiconductor substrate 10 is completed.
  • the wiring forming apparatus 1-1 sequentially forms a plurality of finger wirings (finger electrodes) 16 on the semiconductor substrate 10 by repeatedly executing the series of finger wiring forming processes in steps S10 to S70 described above. it can.
  • FIG. 9 is an explanatory diagram of an example of collection and derivation of a predetermined amount in step S60.
  • the predetermined amount m related to the collection and derivation of the mask film 18 in the mask unit 71 described in step S60 will be described in relation to the semiconductor substrate 10 ′ as the next application target.
  • Step S10 the semiconductor substrate 10 ′ as the next application target is carried in and placed on the substrate placement surface 24 of the substrate placement table 20 (Step S10), and the mask mechanism 70 is moved to the horizontal application work position ( Step S20) schematically shows a state in which the mask portion 19 is further lowered so as to be in the height direction application work position (Step S30), that is, before the electrode material 15 is applied (Step S40). It shows.
  • the predetermined amount m relating to the recovery and derivation of the mask film 18 in the mask unit 71 described in step S60 is the adhering portion D of the electrode material 15 in the mask portion 19 of the mask film 18 recovered in step S60. However, it does not remain as the mask portion 19 ′ of the mask film 18 with respect to the semiconductor substrate 10 ′, and the adhering portion D is a predetermined amount m1 that does not overlap the peripheral vicinity portion C of the edge portion 12 of the semiconductor substrate 10 ′.
  • the mask mechanism 70 is set to the height direction standby position at the substrate attachment / detachment movement position where the entire semiconductor substrate 10 passes under the nozzle. Even if the mask film 18 approaches the substrate surface 11 in the height direction because of the gap between the discharge port 44 of the coating nozzle 40 and the substrate surface 11 of the semiconductor substrate 10, since it is performed after being raised. The movement of the mask film 18 with the recovery and derivation does not cause the adjacent finger wirings 16 applied to the substrate surface 11 to be short-circuited.
  • the throughput at the substrate attachment / detachment movement position can be shortened.
  • the mask film 18 is collected and extracted in the mask unit 71 at the substrate attachment / detachment movement position, and the mask mechanism 19 is placed in the height standby position in the mask mechanism 70.
  • the height direction application work position is set to a sufficient height direction position that does not come into contact with the substrate surface 11 and the applied electrode material 15.
  • the mask mechanism 70 may remain fixed at the height application work position, and the mask unit elevating mechanism 90 and the elevating process of the mask portion 19 in steps S30 and S50 shown in FIG. 8 may be omitted.
  • the mask film 18 is recovered and led out in step S60. If a sufficient gap is secured between the mask film 18 and the discharge port 44 of the coating nozzle 40 later, the mask film 18 is collected and led out in step S60, not every time the electrode material 15 is applied once. It can also be performed each time coating is performed.
  • the wiring forming apparatus 1-1 As described above, according to the wiring forming apparatus 1-1 according to the present embodiment, even with the octagonal semiconductor substrate 10 obtained by cutting off the four corners of the quadrangle, the substrate surface 11 serving as the light-receiving surface of the solar cell element. A plurality of finger wirings 16 can be formed in a lump without excess or deficiency, and defects can be reduced.
  • the mask unit 71 attached and fixed to the unit support base 81 is attached to the mask film 18 in the wiring forming apparatus 1-1 according to the first embodiment.
  • the electrode material recovery mechanism 110 for recovering the electrode material 15 is provided.
  • the configuration of each part of the wiring forming apparatus 1-2 other than the mask unit 71 and the operation control thereof are described in the wiring forming apparatus 1 according to the first embodiment. Since it is the same as or similar to -1, the same reference numerals are used for the same or similar components, and the description thereof is omitted.
  • FIG. 10 is a front view of the mask unit in the wiring forming apparatus according to the second embodiment of the present invention.
  • the electrode material recovery mechanism 110 includes a recovery tool 111 for scraping the electrode material 15 adhering to the mask film 18 recovered to the recovery roller 76 side from the surface of the mask film 18, and an electrode recovered by the recovery tool 111.
  • a recovery container 112 for storing the material 15 is provided.
  • the collection tool 111 has a spatula-like portion that is thin and flat on the tip side.
  • the collection tool 111 has its spatula portion in close contact with the surface of the mask film 18, and the base end side is pivotally supported by the support plate 72 so as to be swingable.
  • the spatula-like portion on the tip side is brought into close contact with the surface of the mask film 18 wound around the collection roller 76, so that the spatula-like portion is not affected by the winding thickness of the mask film 18.
  • Biasing means (not shown) for pressing against the surface of the mask film 18 is also provided.
  • a spring or the like is used as the biasing means.
  • the collection container 112 is arranged on the lower side so as to overlap the collection tool 111 in the height direction.
  • the collection container 112 is made of an open top container and is detachably or fixedly attached to the support plate 72 or the unit support base 81.
  • the electrode material 15 attached to the mask film 18 collected toward the collection roller 76 such as the attached portion D shown in FIG.
  • the collection tool 111 When the film 18 is wound around the collection roller 76, it can be scraped off from the film surface by the collection tool 111.
  • the electrode material 15 that is scraped and dropped is stored in the collection container 112.
  • the collected electrode material 15 can be exchanged as a recycled material, and a volatile solvent can be added and reused as the electrode material 15.
  • the collection tool 111 is disposed with respect to the collection roller 76.
  • the collection unit is a collection unit from the guide roller 75 to the collection roller 76 to which the mask film 18 to which the electrode material 15 is attached is transported, It can be arranged appropriately.
  • the wiring forming apparatus 1-3 according to the present embodiment is the same as the wiring forming apparatus 1-1 according to the first embodiment, except that the mask film 18 in the mask unit 71 is a loop-shaped mask film 18 ′.
  • the electrode material recovery mechanism 110 and the cleaning mechanism 120 are arranged on the return path from the recovery side to the supply side of the mask film 18 ′.
  • the configuration of each part of the wiring forming apparatus 1-3 other than the mask unit 71 and the operation control thereof are described in the wiring forming apparatus 1 according to the first embodiment. Since it is the same as or similar to -1, the same reference numerals are used for the same or similar components, and the description thereof is omitted.
  • FIG. 11 is a front view of the mask unit in the wiring forming apparatus according to the third embodiment of the present invention.
  • the mask film 18 ′ provided in the mask unit 71 is used for the wiring forming apparatuses 1-1 and 1-2 according to the first and second embodiments. Unlike the mask film 18, the mask film 18 does not have a starting end and a terminal end, and has a loop shape.
  • the mask film 18 ′ is guided by guide rollers 74 and 75 on both sides of the mask portion 19, and a return portion from the guide roller 75 to the guide roller 74 is a cleaning mechanism 120 described later in the illustrated example.
  • the guide roller 131 is disposed on the introduction side of the cleaning mechanism, the pair of sandwiching guide rollers 121 and 122 provided on the cleaning mechanism 120, and the guide roller 132 disposed on the outlet side of the cleaning mechanism 120 are sequentially guided. Yes.
  • a mask film transport motor 77 ′ disposed on the back surface of the support plate 72 is provided in guide rollers 74, 131, 132, 75 and a pair of clamping guide rollers 121, 122 that guide the mask film 18 ′ while being stretched. Any one or a plurality of these are rotated so that the loop-shaped mask film 18 ′ moves around these rollers.
  • motor 77 ' demonstrates as a structure which rotates the guide roller 121 for clamping among these rollers.
  • the electrode material recovery mechanism 110 is provided in the recovery portion on the introduction side of the cleaning mechanism 120 where the mask film 18 ′ is conveyed.
  • the electrode material recovery mechanism 110 is provided in a guide roller 131 disposed on the introduction side of the cleaning mechanism 120. ing.
  • the structure of the electrode material recovery mechanism 110 is that the recovery tool 111 ′ is pivotally supported by the support plate 72 at the center, and both end sides of the center are both spatula-shaped and can swing.
  • the electrode material recovery mechanism 110 according to the second embodiment is arranged except that the position in the height direction of one spatula-like portion pressed against the surface of the film 18 'is higher than the other part. The configuration is the same.
  • the cleaning mechanism 120 includes a pair of clamping guide rollers 121 and 122, a pair of waste supply rollers 125 and 126 around which unused long belt-like cleaning wastes 123 and 124 are wound, and waste supply rollers 125 and 126.
  • the waste waste rollers 127 and 128 are wound and collected, and the waste recovery rollers 127 and 128 are disposed on the rear surface of the support plate 72.
  • a motor 129 that rotationally drives the motor 129.
  • the pair of clamping guide rollers 121 and 122 integrally clamps the mask film 18 'between the cleaning wastes 123 and 124 while arranging them. Then, by the rotation, the mask film 18 ′ and the cleaning wastes 123 and 124 are introduced from the collection unit side where the guide roller 75 is arranged, and these are led out to the supply unit side where the guide roller 74 is arranged. It can be done.
  • the clamping guide roller 121 of the pair of clamping guide rollers 121 and 122 is rotated by a predetermined amount by the motor 77 ′.
  • the mask film 18 ′ of the mask portion 19 is recovered by a predetermined amount to the recovery portion side where the guide roller 75 is disposed, and the predetermined amount from the supply portion side where the guide roller 74 is disposed.
  • the corresponding mask film 18 ′ is derived and positioned on the mask portion 19.
  • the cleaning wastes 123 and 124 are also led out from the waste supply rollers 125 and 126 by a predetermined amount by the pair of sandwiching guide rollers 121 and 122, and are led out toward the waste collection rollers 127 and 128.
  • the waste collecting rollers 127 and 128 are rotated by the drive of the motor 129 by an amount corresponding to the amount of the cleaning wastes 123 and 124 derived from the pair of sandwiching guide rollers 121 and 122, and a pair of sandwiching guides.
  • the cleaning wastes 123 and 124 led out from the rollers 121 and 122 are collected so as not to come into contact with the mask film 18 'on the supply side.
  • the cleaning mechanism 120 in order to cope with repeated use as the mask portion 19 by the loop-shaped mask film 18 ′, the cleaning mechanism 120 has a pair of mask films 18 ′.
  • the cleaning wastes 123 and 124 that are passed together with the mask film 18 'while being integrally held are pressed against both surfaces of the mask film 18', and are applied to the surface of the mask film 18 '.
  • the remaining electrode material 15 and dirt are wiped off.
  • a wiping configuration using the cleaning wastes 123 and 124 is employed as the cleaning mechanism 120.
  • the cleaning mechanism 120 is not limited to this, and a cleaning liquid is used for the cleaning mechanism 120.
  • Various film cleaning mechanisms such as a cleaning mechanism can be used.
  • the wiring forming apparatus 1-4 according to the present embodiment is similar to the wiring forming apparatus 1-1 according to the first embodiment, in which the mask unit 71 is attached and fixed to the unit support base 81 for each mask unit, and the mask unit is moved up and down.
  • the mechanism 90 and the mask unit moving mechanism 95 are individual mask units.
  • FIG. 12 is a plan view of a wiring forming apparatus according to the fourth embodiment of the present invention.
  • the mask unit 71 is attached and fixed to the unit support base 81 for each mask unit, and the mask unit elevating mechanism 90 and the mask unit moving mechanism 95 correspond to each mask unit. Is provided.
  • the numbers of the mask unit elevating mechanism 90 and the mask unit moving mechanism 95 increase, but in particular, since the mask unit moving mechanism 95 is provided individually for the mask unit 71, the semiconductor substrate 10 to be coated is applied. It is possible to deal with a wider range of size and shape types.
  • the wiring forming apparatus 1-5 according to the present embodiment is different from the wiring forming apparatus 1-1 according to the first embodiment in that the mask film 18 in the mask unit 71 shown in FIG.
  • the fixed quantity m is different.
  • the configuration of each part of the wiring forming apparatus 1-5 other than the mask unit 71 and the operation control thereof are described in the wiring forming apparatus 1 according to the first embodiment. Since it is the same as or similar to -1, the same reference numerals are used for the same or similar components, and the description thereof is omitted.
  • FIG. 13 is an explanatory view of an example of collection and derivation of a predetermined amount, related to the mask film of the mask portion in the wiring forming apparatus according to the fifth embodiment of the present invention.
  • FIGS. 13A to 13C show the movement position state of the mask film 18 in the first to third coating when the coating is sequentially repeated.
  • the mask film 18 used in the application work of the electrode material 15 to the semiconductor substrate 10-1 as the formation target of the first finger wiring 16 is the same as that shown in FIG.
  • the mask film collection process shown in step S60 the film is collected up to the position shown in FIG.
  • the mask portion of the mask film 18 to which the electrode material 15 is adhered in the application work of the electrode material 15 on the first semiconductor substrate 10-1 is the semiconductor substrate.
  • the attached electrode material 15 is in a position not overlapping with the finger wiring 16 formed on the substrate surface 11 of the semiconductor substrate 10-2.
  • the electrode material 15 and the finger wiring 16 formed on the substrate surface 11 of the semiconductor substrate 10-3 are in positions that do not overlap.
  • the mask film collection amount m is set to the finger wiring 16 of the semiconductor substrate 10 on which the electrode material 15 is applied the next time the electrode attachment position on the mask film 18 is applied. Since the insulation state is set so as to be positioned between the two, the mask film collection amount m can be efficiently reduced, and the cost reduction effect is achieved.
  • the present invention is not limited to this.
  • various modifications of the form and number of mask units are possible depending on the arrangement form and orientation of the mask portion.
  • 1 Wiring forming device 10 Semiconductor substrate (substrate), 11 Substrate surface, 12 edge, 15 electrode material (coating solution), 16 finger wiring (finger electrode), 18 Mask film, 19 Mask part, 20 substrate mounting table, 21 board base, 22 pillars, 23 mounting plate, 24 substrate mounting surface, 30 substrate transport mechanism, 31 device base, 32 substrate transfer stage, 40 coating nozzle, 41 Nozzle body, 42 cavities, 43 Introduction port, 44 Discharge port, 50 nozzle lifting mechanism, 51 nozzle support frame, 52 Pillars, 53 Beam, 54 Nozzle lift stage, 60 coating liquid supply mechanism, 61 electrode material tank, 62 tank body, 63 Supply port, 64 Pressure adjustment port, 65 piping, 66 regulator, 67 valves, 70 mask mechanism, 71 mask unit, 72 support plates, 73 Feeding roller, 74,75 guide rollers, 76 collection roller, 77 motor

Abstract

The present invention pertains to a wiring forming apparatus (1) wherein, by using a nozzle (40) having a plurality of discharge ports (44) arranged in a direction that intersects the direction of relative movement of a substrate (10), and simultaneously discharging an electrode material (a coating liquid) (15) from the discharge ports (44), a large number of fine electrodes (16) that extend in the direction of relative movement are simultaneously formed on the substrate surface (11) in a single relative movement between the nozzle (40) and the substrate (10). A mask unit (71), which prevents the electrode material (15) from adhering, is disposed on the periphery (12) of the substrate (10), which intersects the direction of relative movement and also intersects the arrangement direction of the plurality of discharge ports (44) formed in the nozzle (40). A wiring forming apparatus that enables wiring patterns to be formed in proper quantities on the substrate and enables defects to be reduced can thus be provided.

Description

配線形成装置Wiring forming device
 本発明は、基板上に配線パターンを形成する配線形成装置に関する。特に、太陽電池素子における電極パターンの形成に用いて好適な配線形成装置に関する。 The present invention relates to a wiring forming apparatus for forming a wiring pattern on a substrate. In particular, the present invention relates to a wiring forming apparatus suitable for use in forming an electrode pattern in a solar cell element.
 特開2005-353851号公報(特許文献1)には、基板上に配線パターンを形成した素子の一例として、p型とn型の半導体層を接合してなる半導体基板の一対の基板面に、受光面電極(おもて面電極),裏面電極を形成した片面受光型の太陽電池素子が記載されている。加えて、特許文献1には、これら電極パターンの基板面に対する形成方法として、スクリーン印刷法が用いられることが記載されている。 In JP 2005-353851 A (Patent Document 1), as an example of an element in which a wiring pattern is formed on a substrate, a pair of substrate surfaces of a semiconductor substrate formed by bonding a p-type and an n-type semiconductor layer are provided. A single-sided light receiving solar cell element in which a light receiving surface electrode (front surface electrode) and a back surface electrode are formed is described. In addition, Patent Document 1 describes that a screen printing method is used as a method of forming these electrode patterns on the substrate surface.
 また、特開2011-198982号公報(特許文献2)には、太陽電池素子における電極パターンの形成方法として、ノズルからパターン材料(配線材料)を含むペースト状の塗布液(電極材料)を連続的に吐出して、基板面に電極パターンを描画する方法が記載されている。加えて、特許文献2には、特にフィンガー電極と称される多数本の細い電極を基板上に形成する場合は、基板との相対移動方向と交差する方向に沿って液溜め空間に連通した複数の吐出口が配列されているノズルを用い、各吐出口から電極材料を一斉に吐出することによって、ノズルと基板との間の1回の相対移動で、基板面に相対移動方向に沿って延びる多数本の細い電極を一括形成する方法が記載されている。 Japanese Patent Laid-Open No. 2011-198982 (Patent Document 2) discloses, as a method for forming an electrode pattern in a solar cell element, a paste-like coating liquid (electrode material) containing a pattern material (wiring material) from a nozzle continuously. And a method of drawing an electrode pattern on a substrate surface. In addition, in Patent Document 2, in particular, when a large number of thin electrodes called finger electrodes are formed on a substrate, a plurality of fluid electrodes communicated with the liquid storage space along the direction intersecting the relative movement direction with the substrate. By using a nozzle in which the discharge ports are arranged and discharging the electrode material from each discharge port all at once, the relative movement in one direction between the nozzle and the substrate extends along the relative movement direction. A method for forming a large number of thin electrodes at once is described.
特開2005-353851号公報Japanese Patent Laid-Open No. 2005-353851 特開2011-198982号公報JP 2011-198982 A
 ところで、特許文献1に記載されているような太陽電池素子では、電極パターンを形成する半導体基板には、例えばシリコンウェハーのようなリジッドな薄板基板が利用される。そのため、電極パターンの半導体基板に対するスクリーン印刷中に、そのスキージの印圧によって半導体基板が割れることがあり、太陽電池素子の製造では、歩留まり低下の要因となっている。また、電極パターンが模られているスクリーン印刷版は、定期的に洗浄・交換する必要があり、コスト上昇の要因となっている。 Incidentally, in the solar cell element described in Patent Document 1, a rigid thin plate substrate such as a silicon wafer is used as a semiconductor substrate on which an electrode pattern is formed. For this reason, during screen printing of the electrode pattern on the semiconductor substrate, the semiconductor substrate may be broken by the printing pressure of the squeegee, which causes a decrease in yield in the manufacture of solar cell elements. Further, the screen printing plate in which the electrode pattern is imitated needs to be periodically cleaned and replaced, which causes a cost increase.
 これに対して、特許文献2に記載されている太陽電池素子における電極パターンの形成方法では、基板面に対しノズルを非接触状態にして電極パターンを形成できるので、スクリーン印刷法の場合のような基板割れは生じない。また、スクリーン印刷版のような特殊な消耗品の洗浄・交換に起因するコストも抑えられる。 On the other hand, in the method for forming an electrode pattern in a solar cell element described in Patent Document 2, an electrode pattern can be formed with a nozzle in a non-contact state with respect to the substrate surface. Substrate cracking does not occur. In addition, costs resulting from cleaning and replacement of special consumables such as screen printing plates can be reduced.
 しかし、その一方で、特許文献2に記載されている電極パターンの形成方法では、各吐出口からの電極材料の吐出制御はノズル単位の一括制御となるため、基板上に同時に形成される全てのフィンガー電極の配線パターンの長さは、ノズルと基板との間の相対移動量に対応して同一となる。 However, on the other hand, in the electrode pattern forming method described in Patent Document 2, the discharge control of the electrode material from each discharge port is batch control in units of nozzles. The length of the wiring pattern of the finger electrode is the same corresponding to the relative movement amount between the nozzle and the substrate.
 また、太陽電池素子の半導体基板の作成には、シリコン・インゴットを薄くスライスしたウェハーが利用される。その際、ウェハーの形状は、多結晶のシリコンウェハーを用いる場合は四角形にできるが、単結晶のシリコンウェハーを用いる場合は、ウェハーを切り出すシリコン・インゴットの製造上から、円形のウェハーになる。そこで、単結晶のシリコンウェハーを太陽電池素子の半導体基板に利用する場合は、円形のウェハーからできるだけ面積の大きな基板を切り取りながら、太陽電池素子をパネルに並べたときには無駄な隙間を可能なかぎり小さくするため、円形のウェハーは四角形の四隅を少しだけ切り取られた八角形の基板に加工されて利用される。 In addition, a wafer obtained by slicing a thin silicon ingot is used to create a semiconductor substrate for a solar cell element. In this case, the shape of the wafer can be made square when a polycrystalline silicon wafer is used, but when a single crystal silicon wafer is used, the wafer becomes a circular wafer in terms of manufacturing a silicon ingot for cutting out the wafer. Therefore, when a single crystal silicon wafer is used as a semiconductor substrate of a solar cell element, a useless gap is made as small as possible when the solar cell elements are arranged on a panel while cutting a substrate having a large area from a circular wafer. Therefore, a circular wafer is used after being processed into an octagonal substrate in which the four corners of the rectangle are slightly cut off.
 そのため、特許文献2に記載されている電極パターンの形成方法を用いて、このような八角形の半導体基板にフィンガー電極のパターンを形成しようとした場合、ノズルの各吐出口からの電極材料の吐出制御がノズル単位の一括制御になっているため、八角形の半導体基板面に過不足無くフィンガー電極を形成することができない。仮に、八角形の半導体基板面に過不足無くフィンガー電極を形成しようとすると、その四角形の四隅を切り取った辺縁部やその周辺の装置部分にも電極材料が吐出されてしまうことになる。この結果、フィンガー電極を形成するための電極材料がその反対面側の電極パターンや半導体層にも付着してしまう虞があり、短絡等の不良発生原因になりかねない。ノズルの各吐出口からの電極材料の吐出制御をノズル単位の一括制御ではなく吐出口毎に個別制御することも考えられるが、その場合は、ノズルの構造が複雑になり大型化するばかりか、電極材料の吐出制御も複雑化する。 Therefore, when the finger electrode pattern is formed on such an octagonal semiconductor substrate using the electrode pattern forming method described in Patent Document 2, the discharge of the electrode material from each discharge port of the nozzle is performed. Since the control is batch control in units of nozzles, finger electrodes cannot be formed on the octagonal semiconductor substrate surface without excess or deficiency. If the finger electrodes are formed on the octagonal semiconductor substrate surface without excess or deficiency, the electrode material is also discharged to the edge portion of the four corners of the rectangle and the peripheral device portion. As a result, the electrode material for forming the finger electrode may adhere to the electrode pattern or the semiconductor layer on the opposite side, which may cause a failure such as a short circuit. It is conceivable that the discharge control of the electrode material from each discharge port of the nozzle is controlled individually for each discharge port instead of batch control in units of nozzles, but in that case, the structure of the nozzle becomes complicated and the size increases. The discharge control of the electrode material is also complicated.
 そこで、本発明は、基板の移動方向と交差する方向に沿って複数の吐出口が配列されているノズルを用い、各吐出口から電極材料を一斉に吐出することによって、ノズルと基板との間の1回の相対移動で、基板面に相対移動方向に沿って延びる多数本の細い電極を一斉に形成する配線形成装置に係り、上述した太陽電池素子の八角形の半導体基板のような特殊基板であっても、基板上に過不足無く配線パターンを形成することができ、不良の低減をはかれる配線形成装置を提供することを目的とする。 Therefore, the present invention uses a nozzle in which a plurality of discharge ports are arranged along the direction intersecting the moving direction of the substrate, and discharges the electrode material from each discharge port at the same time. The special substrate such as the octagonal semiconductor substrate of the solar cell element described above is related to a wiring forming apparatus that simultaneously forms a number of thin electrodes extending along the relative movement direction on the substrate surface by one relative movement of Even so, it is an object of the present invention to provide a wiring forming apparatus capable of forming a wiring pattern on a substrate without excess and deficiency and reducing defects.
 この場合、特殊基板としては、八角形の基板に限らず、ノズルと基板との間の相対移動に係り、その相対移動方向と交差するとともに、ノズルに形成された複数の吐出口の配列方向とも交差する辺縁部を有する基板や、ノズルに形成された複数の吐出口を同時に通過できず、ノズルと基板との間の相対移動方向にも沿わない辺縁部を有する基板が該当する。 In this case, the special substrate is not limited to an octagonal substrate, and is related to the relative movement between the nozzle and the substrate, intersects with the relative movement direction, and the arrangement direction of the plurality of discharge ports formed in the nozzle. Substrates having intersecting edge portions and substrates having edge portions that cannot pass through a plurality of discharge ports formed in the nozzle at the same time and do not follow the relative movement direction between the nozzle and the substrate are applicable.
 本発明は、上記課題を解決するために、基板との相対移動方向と交差する方向に沿って複数の吐出口が配列されているノズルを用い、各吐出口から電極材料(塗布液)を一斉に吐出することによって、ノズルと基板との間の1回の相対移動で、基板面に相対移動方向に沿って延びる多数本の細い電極を一斉に形成する配線形成装置に係り、その相対移動方向と交差するとともに、ノズルに形成された複数の吐出口の配列方向とも交差する基板の辺縁部に、電極材料が付着するのを防ぐマスクユニットを設けたことを特徴とする。 In order to solve the above problems, the present invention uses a nozzle in which a plurality of discharge ports are arranged along a direction intersecting the relative movement direction with respect to the substrate, and simultaneously supplies an electrode material (coating liquid) from each discharge port. In the wiring forming apparatus that simultaneously forms a plurality of thin electrodes extending along the relative movement direction on the substrate surface by one relative movement between the nozzle and the substrate, the relative movement direction And a mask unit that prevents the electrode material from adhering to the edge of the substrate that intersects with the arrangement direction of the plurality of ejection openings formed in the nozzle.
 より具体的には、本発明に係る配線形成装置は、基板が載置される基板載置台と、基板載置台に載置された基板の基板面に対して配線材料を含む塗布液を吐出する塗布ノズルと、塗布ノズルと基板載置台との中の一方を他方に対して相対移動させる相対移動機構と、塗布ノズルに対して基板載置台とともに相対移動可能に設けられたマスクユニットとを有し、塗布ノズルは、相対移動機構による相対移動方向と交差する方向に沿って配列された複数の吐出口を有し、マスクユニットは、基板載置台に載置された基板の、相対移動機構による相対移動方向と交差するとともに前記塗布ノズルにおける前記複数の吐出口の配列方向とも交差する辺縁部が、相対移動機構による相対移動によって複数の吐出口の一部の下方を通過する際に、当該一部の吐出口との間に介在され、当該一部の吐出口から吐出される塗布液が前記辺縁部に付着するのを防ぐマスクフィルムを備えていることを特徴とする。 More specifically, the wiring forming apparatus according to the present invention discharges the coating liquid containing the wiring material to the substrate mounting table on which the substrate is mounted and the substrate surface of the substrate mounted on the substrate mounting table. A coating nozzle; a relative movement mechanism that relatively moves one of the coating nozzle and the substrate mounting table with respect to the other; and a mask unit that is relatively movable with the substrate mounting table with respect to the coating nozzle. The coating nozzle has a plurality of ejection openings arranged along the direction intersecting the relative movement direction by the relative movement mechanism, and the mask unit is a relative of the substrate placed on the substrate placement table by the relative movement mechanism. When the edge portion that intersects the moving direction and also intersects the arrangement direction of the plurality of discharge ports in the coating nozzle passes under a part of the plurality of discharge ports by relative movement by a relative movement mechanism, It is interposed between the discharge port, wherein the coating liquid discharged from said portion of the discharge port is provided with a mask film to prevent sticking to the edge portion.
 加えて、マスクフィルムは、長尺の帯状マスクフィルムにより形成され、マスクユニットは、帯状マスクフィルムの塗布液が付着していない帯長部分が配置されるマスクフィルム供給部と、帯状マスクフィルムの塗布液が付着している帯長部分が配置されるマスクフィルム回収部と、マスクフィルム供給部から帯状マスクフィルムの帯長部分を所定量だけ導出し、辺縁部と一部の吐出口との間に新たに介在させるとともに、辺縁部と一部の吐出口との間に既に介在する帯状マスクフィルムの帯長部分を当該所定量だけマスクフィルム回収部に導入するマスクフィルム移動機構とを備えていることを特徴とする。 In addition, the mask film is formed of a long band-shaped mask film, and the mask unit includes a mask film supply unit in which a band-length portion to which the coating liquid for the band-shaped mask film is not attached and the application of the band-shaped mask film A predetermined amount of the band length portion of the band-shaped mask film is derived from the mask film recovery unit where the band length portion to which the liquid is attached is arranged, and the mask film supply unit, and between the edge portion and a part of the discharge ports. And a mask film moving mechanism for introducing a predetermined length of the band length portion of the belt-shaped mask film already interposed between the edge portion and a part of the discharge ports into the mask film collecting portion. It is characterized by being.
 本明細書は本願の優先権の基礎である日本国特許出願2012-256609号の明細書及び/又は図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2012-256609 which is the basis of the priority of the present application.
 本発明によれば、ノズルと基板との間の相対移動に係り、その相対移動方向と交差するとともに、ノズルに形成された複数の吐出口の配列方向とも交差する辺縁部を有する基板や、ノズルに形成された複数の吐出口を同時に通過できず、ノズルと基板との間の相対移動方向にも沿わない辺縁部を有する基板に対しても、基板上に過不足無く配線パターンを形成することができ、不良の低減をはかることができる。 According to the present invention, the relative movement between the nozzle and the substrate, the substrate having an edge that intersects the relative movement direction and also intersects the arrangement direction of a plurality of discharge ports formed in the nozzle, A wiring pattern can be formed on the substrate without excess or deficiency even on a substrate that cannot pass through the multiple ejection openings formed in the nozzle at the same time and has a peripheral portion that does not follow the relative movement direction between the nozzle and the substrate. It is possible to reduce defects.
 上記した以外の、課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の第1の実施の形態に係る配線形成装置の平面構成図である。It is a plane lineblock diagram of the wiring formation device concerning a 1st embodiment of the present invention. 図1に示した配線形成装置を、図1中に記載したY-Y矢視方向に眺めた図である。FIG. 2 is a view of the wiring forming apparatus shown in FIG. 1 as viewed in the direction of arrows YY described in FIG. 図1に示した配線形成装置を、図1中に記載したX-X矢視方向に眺めた構成図である。FIG. 2 is a configuration diagram of the wiring forming apparatus shown in FIG. 1 viewed in the direction of arrows XX described in FIG. 塗布ノズルの内部構造の説明図である。It is explanatory drawing of the internal structure of a coating nozzle. 塗布対象の半導体基板の基板面の説明図である。It is explanatory drawing of the substrate surface of the semiconductor substrate of application | coating object. マスク機構が設置された配線形成装置の基板載置台部分の平面図である。It is a top view of the board | substrate mounting base part of the wiring formation apparatus in which the mask mechanism was installed. 図6においてVII-VII矢視方向に眺めたマスク機構のマスクユニットの正面図である。FIG. 7 is a front view of the mask unit of the mask mechanism as viewed in the direction of arrow VII-VII in FIG. 6. 本実施の形態の配線形成装置によるフィンガー配線の形成処理の実施例のフローチャートである。It is a flowchart of the Example of the formation process of the finger wiring by the wiring formation apparatus of this Embodiment. マスク部分のマスクフィルムに係り、その所定量の回収及び導出の一実施例についての説明図である。It is explanatory drawing about one Example related to the mask film of a mask part, collection | recovery of the predetermined amount, and derivation | leading-out. 本発明の第2の実施の形態に係る配線形成装置におけるマスクユニットの正面図である。It is a front view of the mask unit in the wiring formation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る配線形成装置におけるマスクユニットの正面図である。It is a front view of the mask unit in the wiring formation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る配線形成装置の平面構成図である。It is a plane block diagram of the wiring formation apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る配線形成装置におけるマスク部分のマスクフィルムに係り、所定量の回収及び導出の一実施例についての説明図である。It is explanatory drawing about one Example of collection | recovery and derivation | leading-out of predetermined amount regarding the mask film of the mask part in the wiring formation apparatus which concerns on the 5th Embodiment of this invention.
 以下、本発明に係る配線形成装置の実施の形態について、図面を基に説明する。なお、説明に当たっては、太陽電池素子の製造で、半導体基板の基板面にフィンガー電極を形成する配線装置を例に説明するが、フィンガー電極を横断するバスバー電極を形成する配線装置でもよく、ひいては、太陽電池素子の製造に限らず、基板面に所定方向に沿って延びる多数本の配線パターンを一斉に形成する配線形成装置でありさえすればよい。 Hereinafter, embodiments of a wiring forming apparatus according to the present invention will be described with reference to the drawings. In the description, in the manufacture of solar cell elements, a wiring device that forms a finger electrode on the substrate surface of a semiconductor substrate will be described as an example, but a wiring device that forms a bus bar electrode across the finger electrode may be used. The wiring forming apparatus is not limited to the manufacturing of the solar cell element, and may be a wiring forming apparatus that simultaneously forms a large number of wiring patterns extending along a predetermined direction on the substrate surface.
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態に係る配線形成装置の平面構成図である。
<First Embodiment>
FIG. 1 is a plan view of the wiring forming apparatus according to the first embodiment of the present invention.
 図2は、図1に示した配線形成装置を、図1中に記載したY-Y矢視方向に眺めた図である。 FIG. 2 is a view of the wiring forming apparatus shown in FIG. 1 as viewed in the direction of arrows YY described in FIG.
 図3は、同じく、図1中に記載したX-X矢視方向に眺めた構成図である。 FIG. 3 is also a configuration diagram viewed in the direction of arrows XX described in FIG.
 図1~図3に示すように、本実施の形態に係る配線形成装置1-1は、基板載置台20と、基板搬送機構30と、塗布ノズル40と、ノズル昇降機構50と、塗布液供給機構60と、マスク機構70と、制御装置100とを有する。 As shown in FIGS. 1 to 3, the wiring forming apparatus 1-1 according to the present embodiment includes a substrate mounting table 20, a substrate transport mechanism 30, a coating nozzle 40, a nozzle lifting mechanism 50, and a coating liquid supply. A mechanism 60, a mask mechanism 70, and a control device 100 are included.
 基板載置台20は、図2及び図3に表れているように、盤状ベース21の盤面中央に立設固定された柱部22に、上面が電極材料(塗布液)15の塗布対象である半導体基板(基板)10が載置される載置板23が取り付け固定された構成になっている。 As shown in FIGS. 2 and 3, the substrate mounting table 20 has a top surface to which the electrode material (coating liquid) 15 is applied on the column portion 22 that is erected and fixed at the center of the surface of the disk-shaped base 21. A mounting plate 23 on which the semiconductor substrate (substrate) 10 is mounted is attached and fixed.
 基板載置台20は、載置板23の基板載置面24を水平にして、盤状ベース21が基板搬送機構30の基板搬送ステージ32に取り付け固定されている。 The substrate mounting table 20 has a plate-shaped base 21 mounted and fixed to a substrate transport stage 32 of the substrate transport mechanism 30 with the substrate mounting surface 24 of the mounting plate 23 horizontal.
 基板搬送機構30は、装置基台31に設置され、基板搬送方向(x軸方向)に沿って延設された基板搬送ステージ32を備えている。基板搬送機構30は、図示せぬ駆動源(例えば、モータ)の駆動によって基板搬送ステージ32を移動作動させると、基板搬送ステージ32に取り付け固定された基板載置台20を基板搬送ステージ32の延設方向(x軸方向)に沿って移動し、基板載置面24に載置保持された半導体基板10が搬送される構成になっている。基板搬送機構30は、上述した基板搬送ステージ32を備えた搬送機構に限らず、基板載置台20を直線移動させることができる搬送機構であればよい。 The substrate transport mechanism 30 includes a substrate transport stage 32 installed on the apparatus base 31 and extending along the substrate transport direction (x-axis direction). When the substrate transport mechanism 30 moves and operates the substrate transport stage 32 by driving a driving source (not shown) (for example, a motor), the substrate transport stage 32 is extended and extended from the substrate transport stage 32. The semiconductor substrate 10 which moves along the direction (x-axis direction) and is placed and held on the substrate placement surface 24 is transported. The substrate transport mechanism 30 is not limited to the transport mechanism including the substrate transport stage 32 described above, and may be any transport mechanism that can linearly move the substrate mounting table 20.
 また、基板搬送機構30は、基板載置台20を搬送方向(x軸方向)に対して垂直なy軸方向(基板搬送ステージ32の幅方向)に沿った水平面上で移動変位させる移動機構や、基板載置台20をx軸及びy軸により規定される水平面内で回動変位させる回動機構も備えていてもよい。移動機構によれば、半導体基板10が塗布ノズル40下方を通過する際の、塗布ノズル40に対しての半導体基板10のy軸方向相対位置を調整することができ、回動機構によれば、半導体基板10が塗布ノズル40下方を通過する際の、塗布ノズル40に対しての半導体基板10の相対向きを調整することができる。 Further, the substrate transport mechanism 30 is configured to move and displace the substrate mounting table 20 on a horizontal plane along the y-axis direction (width direction of the substrate transport stage 32) perpendicular to the transport direction (x-axis direction), A rotation mechanism that rotates and displaces the substrate mounting table 20 in a horizontal plane defined by the x-axis and the y-axis may be provided. According to the moving mechanism, the relative position of the semiconductor substrate 10 in the y-axis direction with respect to the coating nozzle 40 when the semiconductor substrate 10 passes below the coating nozzle 40 can be adjusted. The relative orientation of the semiconductor substrate 10 with respect to the coating nozzle 40 when the semiconductor substrate 10 passes below the coating nozzle 40 can be adjusted.
 基板搬送ステージ32の延設方向(x軸方向)に沿った搬送区間の途中には、基板載置台20に載置保持された半導体基板10の搬送の邪魔ならないように、塗布ノズル40を支持するためのノズル支持フレーム51が設置されている。図示の例では、ノズル支持フレーム51は柱部52と梁部53とを有し、柱部52の側方及び梁部53の下方に、基板載置台20に載置保持された半導体基板10の幅方向(y軸方向)及び高さ方向(z軸方向)に係る通過スペースを確保する。 In the middle of the transfer section along the extending direction (x-axis direction) of the substrate transfer stage 32, the coating nozzle 40 is supported so as not to interfere with the transfer of the semiconductor substrate 10 placed and held on the substrate mounting table 20. A nozzle support frame 51 is installed. In the illustrated example, the nozzle support frame 51 has a column part 52 and a beam part 53, and the semiconductor substrate 10 mounted and held on the substrate mounting table 20 is located on the side of the column part 52 and below the beam part 53. A passage space in the width direction (y-axis direction) and the height direction (z-axis direction) is secured.
 ノズル支持フレーム51の梁部53には、高さ方向(z軸方向)に延設されたノズル昇降ステージ54を備えたノズル昇降機構50が設置されている。ノズル昇降ステージ54には、塗布ノズル40がその吐出口44を下方に向けて取り付け固定される。 A nozzle raising / lowering mechanism 50 including a nozzle raising / lowering stage 54 extending in the height direction (z-axis direction) is installed on the beam portion 53 of the nozzle support frame 51. The application nozzle 40 is attached and fixed to the nozzle raising / lowering stage 54 with its discharge port 44 facing downward.
 ノズル昇降機構50は、図示せぬ駆動源(例えば、モータ)の駆動によってノズル昇降ステージ54を移動作動させると、ノズル昇降ステージ54に取り付け固定された塗布ノズル40がノズル昇降ステージ54の延設方向(z軸方向)に沿って移動し、塗布ノズル40を昇降させる構成になっている。ノズル昇降機構50は、基板搬送機構30によって基板載置台20に載置保持された半導体基板10が塗布ノズル40の下方を通過する際の、塗布ノズル40の吐出口44と半導体基板10の基板面11との間の高さ方向(z軸方向)の距離を、塗布ノズル40を昇降させて調整する。ノズル昇降機構50は、電極材料15の塗布時における両者間のギャップを設定値に合わせて、塗布ノズル40を高さ配置する。なお、ノズル昇降機構50としては、上述したノズル昇降ステージ54を備えた昇降構成に限らず、塗布ノズル40を昇降移動させることができるノズル移動機構であればよい。 When the nozzle elevating mechanism 50 moves and operates the nozzle elevating stage 54 by driving a drive source (not shown) (for example, a motor), the application nozzle 40 attached and fixed to the nozzle elevating stage 54 extends in the extending direction of the nozzle elevating stage 54. It moves along (z-axis direction) and is configured to move the application nozzle 40 up and down. The nozzle raising / lowering mechanism 50 includes the discharge port 44 of the coating nozzle 40 and the substrate surface of the semiconductor substrate 10 when the semiconductor substrate 10 placed and held on the substrate mounting table 20 by the substrate transport mechanism 30 passes below the coating nozzle 40. The distance in the height direction (z-axis direction) from 11 is adjusted by moving the application nozzle 40 up and down. The nozzle raising / lowering mechanism 50 arranges the coating nozzle 40 at a height in accordance with the set gap between the two when the electrode material 15 is applied. The nozzle raising / lowering mechanism 50 is not limited to the raising / lowering configuration provided with the nozzle raising / lowering stage 54 described above, and may be any nozzle moving mechanism that can move the application nozzle 40 up and down.
 図4は、塗布ノズルの内部構造の説明図である。 FIG. 4 is an explanatory diagram of the internal structure of the coating nozzle.
 塗布ノズル40は、内部にキャビティ(液溜め空間)42が形成されたノズル本体41に、電極材料15の導入口43及び複数の吐出口44が設けられて構成されている。塗布ノズル40は、導入口43を介してキャビティ42に溜められた電極材料15を各吐出口44から吐出して、基板搬送機構30によってノズル下方を基板載置台20が移動通過する際、基板載置台20の基板載置面24に載置保持されている半導体基板10の基板面11に、電極材料15を塗布する。 The coating nozzle 40 is configured such that an introduction port 43 for the electrode material 15 and a plurality of discharge ports 44 are provided in a nozzle body 41 in which a cavity (a liquid storage space) 42 is formed. The coating nozzle 40 discharges the electrode material 15 stored in the cavity 42 through the introduction port 43 from each discharge port 44, and the substrate mounting table 20 moves and passes under the nozzle by the substrate transport mechanism 30. The electrode material 15 is applied to the substrate surface 11 of the semiconductor substrate 10 placed and held on the substrate placement surface 24 of the table 20.
 その際、基板搬送方向(x軸方向)に沿った塗布ノズル40と半導体基板10との間の1回の相対移動で、半導体基板10の基板面11に、相対移動方向(x軸方向)に沿って延びる複数本の細い電極、すなわち太陽電池素子のフィンガー配線(フィンガー電極)16を形成できるように、複数の吐出口44は、ノズル本体41の下面に、形成すべきフィンガー配線16の本数分、フィンガー配線16の形成間隔(配線ピッチ)に対応する間隔を置いて、列状に設けられている。 At that time, in one relative movement between the coating nozzle 40 and the semiconductor substrate 10 along the substrate conveyance direction (x-axis direction), the substrate surface 11 of the semiconductor substrate 10 is moved in the relative movement direction (x-axis direction). A plurality of discharge ports 44 are formed on the lower surface of the nozzle body 41 by the number of finger wires 16 to be formed so that a plurality of thin electrodes extending along the lines, that is, finger wires (finger electrodes) 16 of the solar cell element can be formed. These are provided in a row at intervals corresponding to the formation interval (wiring pitch) of the finger wirings 16.
 図示の例では、塗布ノズル40は、この列設された複数の吐出口44を下方に向けて、複数の吐出口44の配列方向が基板搬送ステージ32の幅方向(y軸方向)に沿うようにして、ノズル本体41がノズル昇降機構50のノズル昇降ステージ54に取り付けられて固定されている。 In the illustrated example, the application nozzle 40 has the plurality of discharge ports 44 arranged in the downward direction so that the arrangement direction of the plurality of discharge ports 44 is along the width direction (y-axis direction) of the substrate transport stage 32. Thus, the nozzle body 41 is attached and fixed to the nozzle lifting / lowering stage 54 of the nozzle lifting / lowering mechanism 50.
 塗布液供給機構60は、塗布ノズル40に電極材料(塗布液)15を供給し、電極材料15を貯留する電極材料タンク61と、塗布ノズル40への電極材料15の供給/供給停止を行うバルブ67とを備えている。 The coating liquid supply mechanism 60 supplies an electrode material (coating liquid) 15 to the coating nozzle 40, an electrode material tank 61 that stores the electrode material 15, and a valve that performs supply / supply stop of the electrode material 15 to the coating nozzle 40. 67.
 電極材料タンク61は、内部に電極材料15が貯留されるタンク室が形成されたタンク本体62に、供給口63、圧力調整口64が形成された密閉構造になっている。 The electrode material tank 61 has a sealed structure in which a supply port 63 and a pressure adjustment port 64 are formed in a tank body 62 in which a tank chamber in which the electrode material 15 is stored is formed.
 供給口63には、塗布ノズル40の導入口43との間を連通する配管65が接続されている。圧力調整口64には、レギュレータ66を介して高圧ガスが供給され、レギュレータ66によってタンク室内の圧力(背圧)を制御し、配管65を介して塗布ノズル40へ供給される電極材料15の供給速度を制御し、塗布ノズル40の各吐出口44から吐出される電極材料15の吐出量(吐出速度)を調整できる構成になっている。 The piping 65 which connects between the supply port 63 and the inlet 43 of the application nozzle 40 is connected. A high pressure gas is supplied to the pressure adjusting port 64 via a regulator 66, the pressure (back pressure) in the tank chamber is controlled by the regulator 66, and the electrode material 15 supplied to the application nozzle 40 via the pipe 65 is supplied. The speed is controlled, and the discharge amount (discharge speed) of the electrode material 15 discharged from each discharge port 44 of the application nozzle 40 can be adjusted.
 バルブ67は、例えば配管65の途中に設置され、その開弁/閉弁により塗布ノズル40への電極材料15の供給/供給停止が行える。半導体基板10が載置保持された基板載置台20の下方通過に合わせてバルブ67のON/OFF制御を行うことによって、基板面11に対しての電極材料15の塗布/塗布停止が行える。 The valve 67 is installed in the middle of the pipe 65, for example, and the supply / stop of the supply of the electrode material 15 to the application nozzle 40 can be performed by opening / closing the valve 67. By performing ON / OFF control of the valve 67 in accordance with the lower passage of the substrate mounting table 20 on which the semiconductor substrate 10 is mounted and held, the application / application stop of the electrode material 15 to the substrate surface 11 can be performed.
 なお、図示の例では、塗布液供給機構60は、高圧ガス源からの高圧ガスによる電極材料15の圧送と、バルブ67の開弁/閉弁による塗布ノズル40のキャビティ42への電極材料15の供給制御とにより、塗布ノズル40の各吐出口44からの電極材料15の吐出/吐出停止を制御する構成としたが、これに限らず、シリンダポンプ,モーノポンプ,ピストンポンプ,プランジャーポンプ,ダイヤフラムポンプ,レシプロポンプ等の各種液送ポンプを、塗布液供給機構60として使用して制御することもできる。 In the illustrated example, the coating liquid supply mechanism 60 is configured to pump the electrode material 15 with the high-pressure gas from the high-pressure gas source, and to open / close the valve 67 to apply the electrode material 15 to the cavity 42 of the coating nozzle 40. According to the supply control, the discharge / discharge stop of the electrode material 15 from each discharge port 44 of the coating nozzle 40 is controlled. However, the present invention is not limited to this, and the cylinder pump, the mono pump, the piston pump, the plunger pump, and the diaphragm pump are not limited thereto. Various liquid feed pumps such as a reciprocating pump can be used as the coating liquid supply mechanism 60 for control.
 マスク機構70は、基板搬送機構30による基板搬送方向(x軸方向)と交差するとともに、塗布ノズル40における複数の吐出口44の配列方向とも交差する、基板載置台20に載置保持された半導体基板10の辺縁部12に、塗布ノズル40の吐出口44から吐出された電極材料15が付着してしまうのを防ぐ。 The mask mechanism 70 is a semiconductor mounted and held on the substrate mounting table 20 that intersects the substrate transport direction (x-axis direction) by the substrate transport mechanism 30 and also intersects the arrangement direction of the plurality of ejection ports 44 in the coating nozzle 40. The electrode material 15 discharged from the discharge port 44 of the application nozzle 40 is prevented from adhering to the edge portion 12 of the substrate 10.
 ここで、マスク機構70の詳細を説明するのに当たって、太陽電池素子の製造に係り、本実施の形態の配線形成装置1-1によりフィンガー配線16を形成する半導体基板10の基板面11について、図5に基づき説明しておく。 Here, in describing the details of the mask mechanism 70, the substrate surface 11 of the semiconductor substrate 10 on which the finger wiring 16 is formed by the wiring forming apparatus 1-1 according to the present embodiment in connection with the manufacture of the solar cell element. 5 will be described.
 図5は、塗布対象の半導体基板の基板面の説明図である。 FIG. 5 is an explanatory view of the substrate surface of the semiconductor substrate to be coated.
 図示の例では、半導体基板10の基板面11は、四角形の四隅を切り取った八角形形状になっている。 In the illustrated example, the substrate surface 11 of the semiconductor substrate 10 has an octagonal shape with four corners cut out.
 ここで、基板面11にフィンガー配線16を形成するに当たり、例えば半導体基板10の基板おもて面、裏面にそれぞれ形成したおもて面電極、裏面電極の短絡等の太陽電池素子としての不良発生を防ぐため、フィンガー配線(フィンガー電極)16は、半導体基板10の基板面の周縁部に所定幅のフィンガー配線16が形成されない非配線設置領域Aを残し、この非配線設置領域Aで囲まれた内方の配線設置領域Bに形成される。 Here, when the finger wiring 16 is formed on the substrate surface 11, for example, occurrence of defects as a solar cell element such as a short circuit between the front surface electrode and the back surface electrode formed on the front surface and the back surface of the semiconductor substrate 10, respectively. In order to prevent this, the finger wiring (finger electrode) 16 is surrounded by the non-wiring installation area A, leaving a non-wiring installation area A in which the finger wiring 16 having a predetermined width is not formed at the periphery of the substrate surface of the semiconductor substrate 10. It is formed in the inner wiring installation area B.
 配線形成装置1-1によるフィンガー配線(フィンガー電極)16の形成は、基板搬送方向(x軸方向)の搬送方向前方側の非配線形成領域Aと配線形成領域Bとの境界部分10fがノズル下方を通過する際、塗布ノズル40の吐出口44からの電極材料15の吐出を開始させ。搬送方向後方側の非配線形成領域Aと配線形成領域Bとの境界部分10rがノズル下方を通過する際、塗布ノズル40の吐出口44からの電極材料15の吐出を終了することによって、基板面11の配線形成領域Bに、多数本の基板搬送方向(x軸方向)に沿って延びるフィンガー配線(フィンガー電極)16を形成する。 The finger wiring (finger electrode) 16 is formed by the wiring forming device 1-1 in the boundary portion 10f between the non-wiring forming area A and the wiring forming area B on the front side in the transport direction in the substrate transporting direction (x-axis direction). When passing, the discharge of the electrode material 15 from the discharge port 44 of the coating nozzle 40 is started. When the boundary portion 10r between the non-wiring formation area A and the wiring formation area B on the rear side in the transport direction passes under the nozzle, the discharge of the electrode material 15 from the discharge port 44 of the coating nozzle 40 is finished, thereby completing the substrate surface. A plurality of finger wirings (finger electrodes) 16 extending along the substrate transport direction (x-axis direction) are formed in the wiring forming region B of 11.
 ところで、図示した四角形の四隅を切り取った八角形形状の半導体基板10のように、基板10が、基板搬送方向(x軸方向)と塗布ノズル40の複数の吐出口44の配列方向(y軸方向)とのいずれにも交差するように延びる辺縁部12を有していると、塗布ノズル40の各吐出口44からの電極材料11の吐出がバルブ67によってノズル単位で一括制御されるため、配線形成領域Bに過不足無くフィンガー配線16を形成することができない。例えば、はみ出し防止を優先すると、搬送方向前後の非配線形成領域Aの基板搬送方向(x軸方向)に沿った領域幅が、基板搬送ステージ32の幅方向(y軸方向)に沿った領域幅よりも大きくなってしまう。また、搬送方向前後の非配線形成領域Aの基板搬送方向(x軸方向)に沿った領域幅を、基板搬送ステージ32の幅方向(y軸方向)に沿った領域幅に合わせようとすると、辺縁部12の周辺近傍部分Cにも電極材料11が付着してしまうことになる。 By the way, like the octagonal semiconductor substrate 10 in which the four corners of the quadrangle shown in the figure are cut, the substrate 10 is arranged in the substrate transport direction (x-axis direction) and the arrangement direction of the plurality of discharge ports 44 of the coating nozzle 40 (y-axis direction). ), The discharge of the electrode material 11 from each discharge port 44 of the application nozzle 40 is collectively controlled in units of nozzles by the valve 67. The finger wiring 16 cannot be formed in the wiring forming region B without excess or deficiency. For example, when priority is given to preventing protrusion, the region width along the substrate transport direction (x-axis direction) of the non-wiring formation region A before and after the transport direction is the region width along the width direction (y-axis direction) of the substrate transport stage 32. Will be bigger than. Also, when trying to match the area width along the substrate conveyance direction (x-axis direction) of the non-wiring formation area A before and after the conveyance direction with the area width along the width direction (y-axis direction) of the substrate conveyance stage 32, The electrode material 11 will also adhere to the peripheral vicinity C of the edge 12.
 マスク機構70は、このような辺縁部12や、好ましくは辺縁部12の非配線形成領域A部分を含めた周辺近傍部分Cに電極材料11が付着するのを防ぎ、辺縁部12を有する半導体基板10であっても、配線形成領域Bにフィンガー配線(フィンガー電極)16を過不足無く形成させる。 The mask mechanism 70 prevents the electrode material 11 from adhering to the peripheral edge portion 12, preferably the peripheral vicinity portion C including the non-wiring formation region A portion of the peripheral edge portion 12. Even in the case of the semiconductor substrate 10, the finger wirings (finger electrodes) 16 are formed in the wiring forming region B without excess or deficiency.
 図6は、マスク機構が設置された配線形成装置の基板載置台部分の平面図である。 FIG. 6 is a plan view of the substrate mounting table portion of the wiring forming apparatus in which the mask mechanism is installed.
 図7は、図6においてVII-VII矢視方向に眺めたマスク機構のマスクユニットの正面図である。 FIG. 7 is a front view of the mask unit of the mask mechanism as viewed in the direction of arrows VII-VII in FIG.
 図1~図3及び図6に示すように、マスク機構70は、マスクユニット71と、マスクユニット昇降機構90と、マスクユニット移動機構95(図6では表れていない)とを備えて構成されている。 As shown in FIGS. 1 to 3 and 6, the mask mechanism 70 includes a mask unit 71, a mask unit lifting mechanism 90, and a mask unit moving mechanism 95 (not shown in FIG. 6). Yes.
 マスクユニット71は、図7に示すように、支持プレート72の正面に、供給ローラー73、ガイドローラー74,75、回収ローラー76がそれぞれ回転可能に軸支され、回収ローラー76はプレート背面に設けられたモータ77によって回動可能になっている。これにより、供給ローラー73に巻回された長尺の帯状のマスクフィルム18は、モータ77の駆動によって、ガイドローラー74,75に案内されて導出された後、回収ローラー76に巻回される構成になっている。供給ローラー73からのマスクフィルム18の導出量(引き出し長さ)は、モータ77の駆動/停止に応じて調整される構成になっている。その上で、図示の例では、ガイドローラー74,75が、図5に示した半導体基板10の辺縁部12の寸法Lよりも適宜大きな間隔を有して互いに離間して設けられており、ガイドローラー74,75間に、辺縁部12の長さLよりも長いマスクフィルム18の長さ部分が張設され、マスク部分19を形成するようになっている。 As shown in FIG. 7, in the mask unit 71, a supply roller 73, guide rollers 74 and 75, and a collection roller 76 are rotatably supported on the front surface of the support plate 72, and the collection roller 76 is provided on the back surface of the plate. The motor 77 can be rotated. Thereby, the long strip-shaped mask film 18 wound around the supply roller 73 is guided by the guide rollers 74 and 75 by the drive of the motor 77, and then wound around the collection roller 76. It has become. The lead-out amount (drawing length) of the mask film 18 from the supply roller 73 is adjusted according to the driving / stopping of the motor 77. In addition, in the illustrated example, the guide rollers 74 and 75 are provided apart from each other with an interval that is appropriately larger than the dimension L of the edge portion 12 of the semiconductor substrate 10 illustrated in FIG. A length portion of the mask film 18 longer than the length L of the edge portion 12 is stretched between the guide rollers 74 and 75 to form a mask portion 19.
 マスクフィルム18には、例えば長尺の帯状のPET(Polyethylene terephthalate)フィルムが用いられている。なお、PETフィルムに限らずとも、ナイロン、塩ビ、ポリエステル等の樹脂フィルムや、ステンレス、アルミ、銅等の金属フィルム等も利用することができる。また、マスクフィルム18は、図5に示した半導体基板10の非配線設置領域Aの幅寸法Wよりも大きな幅寸法を有するようになっている。図示の例では、マスクフィルム18は、図5に示した辺縁部12の周辺近傍部分Cを覆うことができる幅寸法になっている。 For example, a long strip-like PET (Polyethylene terephthalate) film is used for the mask film 18. In addition to the PET film, resin films such as nylon, vinyl chloride, and polyester, and metal films such as stainless steel, aluminum, and copper can also be used. Moreover, the mask film 18 has a width dimension larger than the width dimension W of the non-wiring installation area A of the semiconductor substrate 10 shown in FIG. In the illustrated example, the mask film 18 has a width dimension that can cover the vicinity C of the peripheral edge portion 12 shown in FIG.
 マスクユニット71は、基板載置台20に載置保持された半導体基板10の辺縁部12毎に設けられ、そのマスク部分19側の支持プレート72の正面部を対応する辺縁部12に対向させるようにして、辺縁部12に対して近接/離間可能に、マスク部分19の高さ方向(z軸方向)を調整可能にして、塗布対象である半導体基板10と基板搬送方向(x軸方向)に一体的に移動可能に設けられる。 The mask unit 71 is provided for each of the edge portions 12 of the semiconductor substrate 10 placed and held on the substrate mounting table 20, and the front portion of the support plate 72 on the mask portion 19 side is opposed to the corresponding edge portion 12. In this way, the height direction (z-axis direction) of the mask portion 19 can be adjusted so as to be close to / separated from the edge portion 12, and the semiconductor substrate 10 to be coated and the substrate transport direction (x-axis direction) ) So as to be integrally movable.
 八角形形状の半導体基板10にフィンガー配線16を形成する配線形成装置1-1の場合、基板搬送ステージ32の幅方向(y軸方向)両側それぞれの、搬送方向前方側及び後方側の一対のマスクユニット71は、基板搬送ステージ32の幅方向(y軸方向)両側それぞれに位置するユニット支持台81に取り付け固定されている。各ユニット支持台81における一対のマスクユニット71それぞれの正面部の向きは、基板載置台20の基板載置面24に載置保持される半導体基板10の対応する辺縁部12に対向するように調整されている。 In the case of the wiring forming apparatus 1-1 that forms the finger wiring 16 on the octagonal semiconductor substrate 10, a pair of masks on the front and rear sides in the transport direction on both sides in the width direction (y-axis direction) of the substrate transport stage 32. The unit 71 is attached and fixed to unit support bases 81 located on both sides in the width direction (y-axis direction) of the substrate transport stage 32. The direction of the front portion of each of the pair of mask units 71 in each unit support base 81 is such that it faces the corresponding edge portion 12 of the semiconductor substrate 10 placed and held on the substrate placement surface 24 of the substrate placement table 20. It has been adjusted.
 その上で、各ユニット支持台81は、マスクユニット昇降機構90のユニット昇降ステージ91(図3参照)に取り付けられて固定されている。マスクユニット昇降機構90は、各ユニット支持台81に対応させて、各ユニット支持台81の下方に設けられた支持基台82に、支持台昇降ステージ91が基板載置台20の高さ方向(z軸方向)に沿って延びるようにして設置固定されている。マスクユニット昇降機構90は、図示せぬ駆動源(例えば、モータ)の駆動によって支持台昇降ステージ91を移動作動させると、支持台昇降ステージ91に取り付け固定されたユニット支持台81を高さ方向(z軸方向)に移動させ、各マスクユニット71のマスク部分19を昇降させる構成になっている。 Further, each unit support base 81 is attached and fixed to a unit elevating stage 91 (see FIG. 3) of the mask unit elevating mechanism 90. The mask unit elevating mechanism 90 corresponds to each unit support base 81, and a support base elevating stage 91 is placed on the support base 82 provided below each unit support base 81 in the height direction (z It is installed and fixed so as to extend along the axial direction. When the mask unit elevating mechanism 90 moves and operates the support platform elevating stage 91 by driving a drive source (not shown) (not shown), the unit support platform 81 attached and fixed to the support platform elevating stage 91 is moved in the height direction ( The mask portion 19 of each mask unit 71 is moved up and down by moving in the z-axis direction).
 加えて、各支持基台82は、マスクユニット移動機構95のユニット移動ステージ96(図1,図2参照)に取り付け固定されている。マスクユニット移動機構95は、基板搬送方向(x軸方向)に基板載置台20と一体的に移動できるように、基板載置台20の盤状ベース21に、ユニット移動ステージ96が基板搬送ステージ32の幅方向(y軸方向)に沿って延びるようにして設置固定されている。マスクユニット移動機構95は、図示せぬ駆動源(例えば、モータ)の駆動によってユニット移動ステージ96を移動作動させると、ユニット移動ステージ96に取り付け固定された支持基台82を幅方向(y軸方向)に移動させ、各マスクユニット71のマスク部分19が、基板載置台20の基板載置面24に載置保持された半導体基板10の辺縁部12に対して、近接/離間される構成になっている。 In addition, each support base 82 is attached and fixed to a unit moving stage 96 (see FIGS. 1 and 2) of the mask unit moving mechanism 95. The mask unit moving mechanism 95 is arranged so that the unit moving stage 96 of the substrate transfer stage 32 is moved to the plate-like base 21 of the substrate mount 20 so that it can move integrally with the substrate mount 20 in the substrate transfer direction (x-axis direction). It is installed and fixed so as to extend along the width direction (y-axis direction). When the unit moving stage 96 is moved by driving a driving source (for example, a motor) (not shown), the mask unit moving mechanism 95 moves the support base 82 attached and fixed to the unit moving stage 96 in the width direction (y-axis direction). ) And the mask portion 19 of each mask unit 71 is configured to be close to / separated from the edge portion 12 of the semiconductor substrate 10 mounted and held on the substrate mounting surface 24 of the substrate mounting table 20. It has become.
 このように、図示の例では、基板搬送ステージ32の幅方向(y軸方向)両側それぞれの、搬送方向前方側及び後方側の一対のマスクユニット71は、ユニット共通のユニット支持台81により、ユニット共通のマスクユニット昇降機構90及びマスクユニット移動機構95によって、マスク部分19を昇降させ、半導体基板10の辺縁部12に対して、近接/離間できるようになっている。なお、図示の例では、基板搬送ステージ32の幅方向(y軸方向)両側それぞれの、搬送方向前方側及び後方側の一対のマスクユニット71をユニット共通のユニット支持台81に取り付け固定する構成としたが、基板搬送ステージ32の搬送方向前方側及び後方側それぞれの、基板搬送ステージ32の幅方向(y軸方向)両側の一対のマスクユニット71を、ユニット共通のユニット支持台に取り付け固定する構成であっても、同様にして、マスク部分19を昇降させ、半導体基板10の辺縁部12に対して近接/離間させることができる。 Thus, in the illustrated example, the pair of mask units 71 on the front side and the rear side in the width direction (y-axis direction) on both sides in the width direction (y-axis direction) of the substrate transfer stage 32 are united by the unit support base 81 common to the units. The mask portion 19 can be moved up and down by a common mask unit lifting mechanism 90 and mask unit moving mechanism 95 so that the mask portion 19 can approach / separate from the edge 12 of the semiconductor substrate 10. In the illustrated example, a pair of mask units 71 on the both sides in the width direction (y-axis direction) of the substrate transfer stage 32 are attached and fixed to a unit support base 81 common to the units. However, a configuration in which a pair of mask units 71 on both sides in the width direction (y-axis direction) of the substrate transfer stage 32 on the front side and the rear side in the transfer direction of the substrate transfer stage 32 are attached and fixed to a unit support base common to the units. However, in the same manner, the mask portion 19 can be moved up and down so as to be close to / separated from the edge portion 12 of the semiconductor substrate 10.
 制御装置100は、マイクロコンピュータ等によって構成される。制御装置100は、予め設定入力されたレシピに基づいてメモリに記憶された配線形成プログラムを実行することにより、基板載置台20,基板搬送機構30,塗布ノズル40,ノズル昇降機構50,塗布液供給機構60,マスク機構70等の装置各部の作動を制御する。 The control device 100 is constituted by a microcomputer or the like. The control device 100 executes the wiring formation program stored in the memory based on the recipe set and input in advance, so that the substrate mounting table 20, the substrate transport mechanism 30, the coating nozzle 40, the nozzle lifting mechanism 50, the coating liquid supply The operation of each part of the device such as the mechanism 60 and the mask mechanism 70 is controlled.
 次に、上述した構成の配線形成装置1-1に係り、制御装置100の装置各部に対しての作動制御に基づいた、半導体基板10に対してのフィンガー配線16の形成処理の実施例を、図8に基づいて説明する。 Next, according to the wiring forming apparatus 1-1 having the above-described configuration, an example of the processing for forming the finger wiring 16 on the semiconductor substrate 10 based on the operation control for each part of the control device 100 is described. This will be described with reference to FIG.
 図8は、本実施の形態の配線形成装置によるフィンガー配線の形成処理の実施例のフローチャートである。 FIG. 8 is a flowchart of an example of finger wiring formation processing by the wiring forming apparatus of the present embodiment.
 説明に当たって、配線形成装置1-1は、初期化状態では、マスク機構70は、予めマスクユニット移動機構95の作動によって、塗布対象の半導体基板10と高さ方向(z軸方向)に重ならないように、ユニット移動ステージ96の延設方向に係る離間側の端部に位置し、マスク機構70のマスクユニット71は、予めマスクユニット昇降機構90の作動によって、ユニット昇降ステージ91の延設方向に係る上端部に位置しているものとする。また、塗布ノズル40は、予めノズル昇降機構50の作動によって、ノズル昇降ステージ54の延設方向に係る上端部に位置しているものとする。 In the description, in the initial state, the wiring forming device 1-1 is configured so that the mask mechanism 70 does not overlap the application target semiconductor substrate 10 in the height direction (z-axis direction) by the operation of the mask unit moving mechanism 95 in advance. In addition, the mask unit 71 of the mask mechanism 70 is located at the end on the separation side in the extending direction of the unit moving stage 96, and the mask lifting / lowering mechanism 90 operates in advance according to the extending direction of the unit lifting stage 91. Assume that it is located at the upper end. Further, it is assumed that the application nozzle 40 is positioned in the upper end portion in the extending direction of the nozzle lifting / lowering stage 54 by the operation of the nozzle lifting / lowering mechanism 50 in advance.
 このマスク機構70がユニット移動ステージ96の延設方向に係る離間側の端部に位置している状態では、八角形形状の半導体基板10の代わりに、基板搬送方向(x軸方向)及び基板搬送ステージ32の幅方向(y軸方向)にそれぞれ沿った長さが同じ四角形形状の半導体基板が基板載置台20に載置されている状態であっても、マスクユニット71のマスク部分19は、この四角形形状の半導体基板10と高さ方向(z軸方向)に重ならないようになっている。 In a state where the mask mechanism 70 is located at the end on the separation side in the extending direction of the unit moving stage 96, the substrate transport direction (x-axis direction) and the substrate transport are used instead of the octagonal semiconductor substrate 10. Even when the rectangular semiconductor substrates having the same length along the width direction (y-axis direction) of the stage 32 are mounted on the substrate mounting table 20, the mask portion 19 of the mask unit 71 is The rectangular semiconductor substrate 10 is not overlapped in the height direction (z-axis direction).
 本実施例の配線形成装置1-1では、このような初期化状態に対し、塗布対象の八角形形状の半導体基板10に係るレシピの設定によって、装置各部は次のような待機状態になるものとする。 In the wiring forming apparatus 1-1 of the present embodiment, each part of the apparatus is in a standby state as described below by setting the recipe related to the octagonal semiconductor substrate 10 to be coated with respect to such an initialization state. And
 マスクユニット71は、マスクユニット移動機構95の作動によって、マスク部分19が塗布対象である八角形形状の半導体基板10の辺縁部12とは高さ方向(z軸方向)に重ならない、図6に示すような水平方向待機位置に移動配置された状態になっている。また、マスクユニット71は、マスクユニット昇降機構90の作動によって、マスクフィルム71のマスク部分19が基板面11に塗布された電極材料15と高さ方向(z軸方向)に接触しない十分な高さ位置である高さ方向待機位置に移動配置された状態になっている。塗布ノズル40は、ノズル昇降機構50の作動によって、電極材料15の塗布時における吐出口44と半導体基板10の基板面11との間のギャップを設定値に合わせて、吐出作業高さ配置に移動配置された状態になっている。基板載置台20は、基板搬送機構30の作動によって、基板搬送ステージ32の延設方向(x軸方向)に沿った搬送区間の、基板載置面24に載置保持されている半導体基板10が高さ方向(z軸方向)に塗布ノズル40とは重ならない基板着脱移動位置に移動配置された状態になっている。 The mask unit 71 does not overlap in the height direction (z-axis direction) with the edge 12 of the octagonal semiconductor substrate 10 to which the mask portion 19 is to be applied, by the operation of the mask unit moving mechanism 95. FIG. It is in the state moved and arranged in the horizontal standby position as shown in FIG. Further, the mask unit 71 has a sufficient height so that the mask portion 19 of the mask film 71 does not contact the electrode material 15 applied to the substrate surface 11 in the height direction (z-axis direction) by the operation of the mask unit lifting mechanism 90. It is in a state of being moved and arranged at the height direction standby position. The application nozzle 40 is moved to the discharge work height arrangement by adjusting the gap between the discharge port 44 and the substrate surface 11 of the semiconductor substrate 10 when applying the electrode material 15 by the operation of the nozzle lifting mechanism 50. It has been placed. The substrate mounting table 20 includes the semiconductor substrate 10 mounted and held on the substrate mounting surface 24 in the transfer section along the extending direction (x-axis direction) of the substrate transfer stage 32 by the operation of the substrate transfer mechanism 30. In the height direction (z-axis direction), it is in a state of being moved and arranged at a substrate attachment / detachment movement position that does not overlap the coating nozzle 40.
 このような待機状態になっている配線形成装置1-1に対し、ステップS10においては、基板載置台20の基板載置面24に、塗布対象の八角形形状の半導体基板10が装置外部から搬入・載置される。 In step S10, the octagon-shaped semiconductor substrate 10 to be coated is carried from the outside of the apparatus to the substrate mounting surface 24 of the substrate mounting table 20 with respect to the wiring forming apparatus 1-1 in such a standby state.・ It is placed.
 次に、ステップS20において、配線形成装置1-1は、図示せぬセンサにより基板載置面24への半導体基板10の載置を検知すると、マスクユニット移動機構95を作動制御して、マスク機構70を、図6に示したような水平方向待機位置から図1に示すような水平方向塗布作業位置に移動させる。 Next, in step S20, when the wiring forming apparatus 1-1 detects the placement of the semiconductor substrate 10 on the substrate placement surface 24 by a sensor (not shown), the mask forming mechanism 95 is actuated to control the mask mechanism. 70 is moved from the horizontal standby position as shown in FIG. 6 to the horizontal application work position as shown in FIG.
 図1に示すマスク機構70が水平方向塗布作業位置に移動された状態においては、マスクユニット71は、マスク部分19が塗布対象である八角形形状の半導体基板10の図5に示した辺縁部12の周辺近傍部分Cと高さ方向(z軸方向)に重なり合った状態になっている。 In the state where the mask mechanism 70 shown in FIG. 1 is moved to the horizontal application work position, the mask unit 71 has the edge portion shown in FIG. 5 of the octagonal semiconductor substrate 10 whose mask portion 19 is the application target. 12 in the vicinity of the peripheral vicinity C in the height direction (z-axis direction).
 次に、ステップS30において、配線形成装置1-1は、今度は、マスクユニット昇降機構90を作動制御して、マスクユニット71のマスク部分19が高さ方向待機位置に移動配置されているマスク機構70を、マスク部分19が所定の高さ方向塗布作業位置になるように下降させる。ここで、高さ方向塗布作業位置とは、マスクユニット71のマスク部分19が、吐出作業高さ配置に移動配置された塗布ノズル40の吐出口44と、基板載置面24に載置保持されている半導体基板10の基板面11との間の高さ位置にあり、マスク部分19のマスクフィルム18の表面の高さ位置が、塗布ノズル40の吐出口44の高さ位置を基準として一定量下方となる位置を指すものとする。 Next, in step S30, the wiring forming apparatus 1-1 now controls the operation of the mask unit lifting mechanism 90, and the mask mechanism 19 in which the mask portion 19 of the mask unit 71 is moved to the standby position in the height direction is arranged. 70 is lowered so that the mask portion 19 is at a predetermined height direction application work position. Here, the coating operation position in the height direction means that the mask portion 19 of the mask unit 71 is placed and held on the discharge port 44 of the coating nozzle 40 that is moved to the discharge work height arrangement and the substrate placement surface 24. The height position of the surface of the mask film 18 of the mask portion 19 is a certain amount with reference to the height position of the discharge port 44 of the coating nozzle 40. It shall refer to the lower position.
 このようにして、マスクフィルム18による半導体基板10の辺縁部12のマスキングが完了したならば、ステップS40において、配線形成装置1-1は、半導体基板10の基板面11に対して、電極材料15の塗布を行う。 Thus, if masking of the edge part 12 of the semiconductor substrate 10 by the mask film 18 is completed, in step S40, the wiring forming device 1-1 uses the electrode material with respect to the substrate surface 11 of the semiconductor substrate 10. 15 is applied.
 本実施例の配線形成処理の場合は、既に塗布ノズル40は吐出作業高さ配置に配置されているので、配線形成装置1-1は、基板搬送機構30を作動制御して、基板搬送ステージ32の延設方向(x軸方向)に沿った搬送区間の基板着脱移動位置に配置された状態になっている基板載置台20を搬送方向に沿って移動させて、塗布ノズル40の下方を通過させる。配線形成装置1-1は、その際に、塗布液供給機構60のバルブ67の開弁/閉弁(電極材料15の塗布/塗布停止)を、図5に示した基板面11における非配線形成領域Aと配線形成領域Bとの搬送方向に係る前方側境界部分10f/後方側境界部分10rの通過に同期させて行うことで、基板面の配線形成領域Bに過不足なく、多数本の基板搬送方向(x軸方向)に沿って延びるフィンガー配線(フィンガー電極)16を一括して形成する。その後、半導体基板10全体が塗布ノズル40の下方を通過し、基板載置台20が基板搬送ステージ32の延設方向(x軸方向)に沿った搬送区間の基板着脱移動位置に到達したならば、配線形成装置1-1は、基板搬送機構30を作動制御して、基板載置台20の移動を停止する。 In the case of the wiring forming process of this embodiment, since the coating nozzle 40 has already been arranged at the discharge work height arrangement, the wiring forming apparatus 1-1 controls the operation of the substrate transport mechanism 30 and the substrate transport stage 32. The substrate mounting table 20 in a state of being arranged at the substrate attachment / detachment movement position in the transport section along the extending direction (x-axis direction) is moved along the transport direction to pass below the coating nozzle 40. . At that time, the wiring forming device 1-1 opens / closes the valve 67 of the coating liquid supply mechanism 60 (application / stop of application of the electrode material 15) to form non-wiring on the substrate surface 11 shown in FIG. By performing in synchronism with the passage of the front boundary portion 10f / rear boundary portion 10r in the transport direction between the area A and the wiring formation area B, the wiring formation area B on the substrate surface is not excessive and insufficient, and a large number of substrates Finger wirings (finger electrodes) 16 extending along the transport direction (x-axis direction) are collectively formed. Thereafter, if the entire semiconductor substrate 10 passes below the coating nozzle 40 and the substrate mounting table 20 reaches the substrate attachment / detachment movement position in the transfer section along the extending direction (x-axis direction) of the substrate transfer stage 32, The wiring forming apparatus 1-1 controls the operation of the substrate transport mechanism 30 and stops the movement of the substrate mounting table 20.
 なお、ステップS40での基板着脱移動位置は、ステップS10における塗布前の基板着脱移動位置とは塗布ノズル40を中央に位置させて反対側の搬送区間の移動位置とすることも、半導体基板10全体を塗布ノズル40の下方を通過させながら、基板載置台20を搬送区間で往復移動させることにより、塗布前の基板着脱移動位置と同じ位置とすることも可能である。このように基板着脱移動位置を同じ位置とする場合は、塗布ノズル40による基板面11への電極材料15の塗布は、基板載置台20の往復移動それぞれで塗布ノズル40の下方を通過する際に行う構成としてもよいし、往動又は復動いずれか一方で塗布ノズル40の下方を半導体基板10が通過する際に行う構成としてもよい。 The substrate attachment / detachment movement position in step S40 may be the movement position of the transfer section on the opposite side by positioning the application nozzle 40 in the center of the substrate attachment / detachment movement position before application in step S10. The substrate mounting table 20 can be moved back and forth in the transport section while passing under the coating nozzle 40, so that the same position as the substrate attachment / detachment movement position before coating can be obtained. In this way, when the substrate attachment / detachment movement position is the same position, the application of the electrode material 15 to the substrate surface 11 by the application nozzle 40 is performed when the substrate mounting table 20 reciprocates and passes below the application nozzle 40. It is good also as a structure to perform, and it is good also as a structure performed when the semiconductor substrate 10 passes the downward direction of the application nozzle 40 by either forward movement or backward movement.
 電極材料15の塗布が行われたならば、ステップS50において、配線形成装置1-1は、マスクユニット昇降機構90を作動制御して、マスクユニット71のマスク部分19が所定の高さ方向塗布作業位置になるように移動配置されているマスク機構70を、マスク部分19が高さ方向待機位置になるように上昇させる。 If the application of the electrode material 15 is performed, in step S50, the wiring forming device 1-1 controls the operation of the mask unit lifting mechanism 90 so that the mask portion 19 of the mask unit 71 is applied in a predetermined height direction. The mask mechanism 70 which is moved and arranged so as to be in the position is raised so that the mask portion 19 is in the height direction standby position.
 そして、ステップS60において、配線形成装置1-1は、マスクユニット移動機構95を作動制御して、マスク機構70を、水平方向塗布作業位置から水平方向待機位置に移動させると同時に、各マスクユニット71のモータ77を作動制御して、マスク部分19のマスクフィルム18を所定量だけ回収ローラー76側へ回収するとともに、この所定量分に対応するだけマスクフィルム18を供給ローラー73側から導出し、マスク部分19に位置させる。その際におけるマスクフィルム18の回収及び導出は、回収ローラー76をモータ77によって回動することによって、マスクフィルム18は、供給ローラー73と回収ローラー76との間のマスクフィルムを撓ませることなく、マスク部分19が張設されるようになっている。マスクフィルム18の回収量及び導出量は、例えば図示せぬセンサによってガイドローラー74又は75の回転量を検出することによって、供給ローラー73及び回収ローラー76それぞれのフィルム巻回厚さに影響されずに、正確に管理することができる。 In step S60, the wiring forming apparatus 1-1 controls the operation of the mask unit moving mechanism 95 to move the mask mechanism 70 from the horizontal application work position to the horizontal standby position, and at the same time, each mask unit 71. The motor 77 is controlled to recover the mask film 18 of the mask portion 19 by a predetermined amount to the collecting roller 76 side, and the mask film 18 is led out from the supply roller 73 side corresponding to the predetermined amount, and the mask Located in portion 19. In this case, the mask film 18 is collected and led out by rotating the collection roller 76 by a motor 77, so that the mask film 18 can be masked without bending the mask film between the supply roller 73 and the collection roller 76. A portion 19 is stretched. The recovered amount and the derived amount of the mask film 18 are not affected by the film winding thicknesses of the supply roller 73 and the recovery roller 76, for example, by detecting the rotation amount of the guide roller 74 or 75 by a sensor (not shown). Can be managed accurately.
 ステップS70において、配線形成装置1-1は、マスク機構70が水平方向待機位置に移動すると、基板載置面24に載置保持されている、複数本のフィンガー配線(フィンガー電極)16が一括して形成された半導体基板10は、基板載置台20から装置外部へ搬出される。これにより、一の半導体基板10の基板面11に対する複数本のフィンガー配線16の形成処理が終了する。 In step S70, when the mask mechanism 70 moves to the horizontal standby position, the wiring forming apparatus 1-1 collects a plurality of finger wirings (finger electrodes) 16 that are placed and held on the substrate placement surface 24 in a lump. The semiconductor substrate 10 formed in this manner is carried out of the apparatus from the substrate mounting table 20. Thereby, the formation process of the plurality of finger wirings 16 on the substrate surface 11 of one semiconductor substrate 10 is completed.
 この結果、配線形成装置1-1は、上述したステップS10~S70の一連のフィンガー配線の形成処理を繰り返し実行することによって、逐次、半導体基板10に複数本のフィンガー配線(フィンガー電極)16を形成できる。 As a result, the wiring forming apparatus 1-1 sequentially forms a plurality of finger wirings (finger electrodes) 16 on the semiconductor substrate 10 by repeatedly executing the series of finger wiring forming processes in steps S10 to S70 described above. it can.
 図9は、ステップS60での所定量の回収及び導出の一実施例についての説明図である。 FIG. 9 is an explanatory diagram of an example of collection and derivation of a predetermined amount in step S60.
 図9では、ステップS60に記載したマスクユニット71におけるマスクフィルム18の回収及び導出に係る所定量mを、次の塗布対象としての半導体基板10'との関係で説明するものである。 In FIG. 9, the predetermined amount m related to the collection and derivation of the mask film 18 in the mask unit 71 described in step S60 will be described in relation to the semiconductor substrate 10 ′ as the next application target.
 図9では、次の塗布対象としての半導体基板10'が、基板載置台20の基板載置面24に搬入・載置され(ステップS10)、マスク機構70は水平方向塗布作業位置に移動され(ステップS20)、さらにマスク部分19が高さ方向塗布作業位置になるように下降された(ステップS30)状態で、すなわち、電極材料15の塗布(ステップS40)が行われる前の状態を、模式的に示している。 In FIG. 9, the semiconductor substrate 10 ′ as the next application target is carried in and placed on the substrate placement surface 24 of the substrate placement table 20 (Step S10), and the mask mechanism 70 is moved to the horizontal application work position ( Step S20) schematically shows a state in which the mask portion 19 is further lowered so as to be in the height direction application work position (Step S30), that is, before the electrode material 15 is applied (Step S40). It shows.
 図9に示すように、ステップS60に記載したマスクユニット71におけるマスクフィルム18の回収及び導出に係る所定量mは、ステップS60で回収するマスクフィルム18のマスク部分19における電極材料15の付着部分Dが、半導体基板10'に対するマスクフィルム18のマスク部分19'として残らず、付着部分Dが半導体基板10'の辺縁部12の周辺近傍部分Cに重ならない所定量m1になっている。 As shown in FIG. 9, the predetermined amount m relating to the recovery and derivation of the mask film 18 in the mask unit 71 described in step S60 is the adhering portion D of the electrode material 15 in the mask portion 19 of the mask film 18 recovered in step S60. However, it does not remain as the mask portion 19 ′ of the mask film 18 with respect to the semiconductor substrate 10 ′, and the adhering portion D is a predetermined amount m1 that does not overlap the peripheral vicinity portion C of the edge portion 12 of the semiconductor substrate 10 ′.
 このように、マスクユニット71におけるマスクフィルム18の回収及び導出では、半導体基板10全体がノズル下方を通過した基板着脱移動位置で、マスク機構70をマスク部分19が高さ方向待機位置になるように上昇させてから行われるので、塗布ノズル40の吐出口44と半導体基板10の基板面11との間のギャップの関係でマスクフィルム18が基板面11に高さ方向に接近する場合であっても、マスクフィルム18の回収及び導出に伴う移動によって、基板面11に塗布された隣り合うフィンガー配線16同士を短絡させてしまうこともない。 As described above, in the recovery and extraction of the mask film 18 in the mask unit 71, the mask mechanism 70 is set to the height direction standby position at the substrate attachment / detachment movement position where the entire semiconductor substrate 10 passes under the nozzle. Even if the mask film 18 approaches the substrate surface 11 in the height direction because of the gap between the discharge port 44 of the coating nozzle 40 and the substrate surface 11 of the semiconductor substrate 10, since it is performed after being raised. The movement of the mask film 18 with the recovery and derivation does not cause the adjacent finger wirings 16 applied to the substrate surface 11 to be short-circuited.
 また、マスク機構70の水平方向塗布作業位置から水平方向待機位置への移動とマスクフィルム18の回収及び導出とは、同時に行われるので、基板着脱移動位置でのスループットを短縮できる。 Further, since the movement of the mask mechanism 70 from the horizontal application work position to the horizontal standby position and the recovery and withdrawal of the mask film 18 are performed simultaneously, the throughput at the substrate attachment / detachment movement position can be shortened.
 なお、本実施の形態に係る配線形成装置1-1では、マスクユニット71におけるマスクフィルム18の回収及び導出を、基板着脱移動位置で、マスク機構70をマスク部分19が高さ方向待機位置になるように上昇させてから行うようにしたが、高さ方向塗布作業位置が、基板面11やその塗布された電極材料15に対して接触しない、十分な高さ方向位置に設定されている場合は、マスク機構70を高さ方向塗布作業位置に固定したままにし、マスクユニット昇降機構90、及び図8に示したステップS30,S50のマスク部分19の昇降処理を省略することもできる。 In the wiring forming apparatus 1-1 according to the present embodiment, the mask film 18 is collected and extracted in the mask unit 71 at the substrate attachment / detachment movement position, and the mask mechanism 19 is placed in the height standby position in the mask mechanism 70. In the case where the height direction application work position is set to a sufficient height direction position that does not come into contact with the substrate surface 11 and the applied electrode material 15. The mask mechanism 70 may remain fixed at the height application work position, and the mask unit elevating mechanism 90 and the elevating process of the mask portion 19 in steps S30 and S50 shown in FIG. 8 may be omitted.
 また、本実施の形態に係る配線形成装置1-1では、基板面11に対して電極材料15を1回塗布する毎に、ステップS60でマスクフィルム18の回収及び導出を行っているが、塗布後におけるマスクフィルム18と塗布ノズル40の吐出口44とのギャップが十分に確保されていれば、ステップS60でマスクフィルム18の回収及び導出を、電極材料15を1回塗布する毎ではなく、複数回塗布する毎に行うようにすることもできる。 Further, in the wiring forming apparatus 1-1 according to the present embodiment, each time the electrode material 15 is applied to the substrate surface 11 once, the mask film 18 is recovered and led out in step S60. If a sufficient gap is secured between the mask film 18 and the discharge port 44 of the coating nozzle 40 later, the mask film 18 is collected and led out in step S60, not every time the electrode material 15 is applied once. It can also be performed each time coating is performed.
 以上、本実施の形態に係る配線形成装置1-1によれば、四角形の四隅を切り取った八角形形状の半導体基板10であっても、太陽電池素子の受光面になる基板面11に対して、過不足無く複数本のフィンガー配線16を一括して形成することができ、不良の低減をはかることができる。 As described above, according to the wiring forming apparatus 1-1 according to the present embodiment, even with the octagonal semiconductor substrate 10 obtained by cutting off the four corners of the quadrangle, the substrate surface 11 serving as the light-receiving surface of the solar cell element. A plurality of finger wirings 16 can be formed in a lump without excess or deficiency, and defects can be reduced.
 <第2の実施の形態>
 本実施の形態に係る配線形成装置1-2は、第1の実施の形態に係る配線形成装置1-1において、ユニット支持台81に取り付け固定されているマスクユニット71がマスクフィルム18に付着している電極材料15を回収する電極材料回収機構110を備えた構成になっている。
<Second Embodiment>
In the wiring forming apparatus 1-2 according to the present embodiment, the mask unit 71 attached and fixed to the unit support base 81 is attached to the mask film 18 in the wiring forming apparatus 1-1 according to the first embodiment. The electrode material recovery mechanism 110 for recovering the electrode material 15 is provided.
 なお、本実施の形態に係る配線形成装置1-2では、マスクユニット71以外の、配線形成装置1-2の各部の構成やその作動制御については第1の実施の形態に係る配線形成装置1-1と同一又は同様なので、以下では、同一又は同様な構成部については同一符号を用い、その説明は省略する。 In the wiring forming apparatus 1-2 according to the present embodiment, the configuration of each part of the wiring forming apparatus 1-2 other than the mask unit 71 and the operation control thereof are described in the wiring forming apparatus 1 according to the first embodiment. Since it is the same as or similar to -1, the same reference numerals are used for the same or similar components, and the description thereof is omitted.
 図10は、本発明の第2の実施の形態に係る配線形成装置におけるマスクユニットの正面図である。 FIG. 10 is a front view of the mask unit in the wiring forming apparatus according to the second embodiment of the present invention.
 電極材料回収機構110は、回収ローラー76側へ回収するマスクフィルム18に付着している電極材料15をマスクフィルム18の表面から掻き取るための回収具111と、この回収具111によって回収される電極材料15を貯留しておく回収容器112とを備えて構成されている。 The electrode material recovery mechanism 110 includes a recovery tool 111 for scraping the electrode material 15 adhering to the mask film 18 recovered to the recovery roller 76 side from the surface of the mask film 18, and an electrode recovered by the recovery tool 111. A recovery container 112 for storing the material 15 is provided.
 回収具111は、先端側に薄く扁平になったヘラ状部を有する。回収具111は、このヘラ状部をマスクフィルム18の表面に密接させて、基端側が支持プレート72に軸支されて揺動可能になっている。加えて、図示の例では、先端側のヘラ状部を回収ローラー76に巻回されるマスクフィルム18の表面に密接させるため、マスクフィルム18の巻回厚さに影響されずにヘラ状部をマスクフィルム18の表面に押し当てるための付勢手段(図示せぬ)も設けられている。この付勢手段としては、例えばバネ等が利用される。 The collection tool 111 has a spatula-like portion that is thin and flat on the tip side. The collection tool 111 has its spatula portion in close contact with the surface of the mask film 18, and the base end side is pivotally supported by the support plate 72 so as to be swingable. In addition, in the illustrated example, the spatula-like portion on the tip side is brought into close contact with the surface of the mask film 18 wound around the collection roller 76, so that the spatula-like portion is not affected by the winding thickness of the mask film 18. Biasing means (not shown) for pressing against the surface of the mask film 18 is also provided. For example, a spring or the like is used as the biasing means.
 回収容器112は、回収具111に対して高さ方向に重なるようにその下方側に配置されている。回収容器112は、上面開放容器からなり、支持プレート72又はユニット支持台81に対して、取り外し自在に又は固定されて取り付けられている。 The collection container 112 is arranged on the lower side so as to overlap the collection tool 111 in the height direction. The collection container 112 is made of an open top container and is detachably or fixedly attached to the support plate 72 or the unit support base 81.
 本実施の形態に係る配線形成装置1-2によれば、例えば図9に示した付着部分Dのような、回収ローラー76側へ回収するマスクフィルム18に付着している電極材料15を、マスクフィルム18が回収ローラー76に巻回される際に、回収具111によってフィルム表面から掻き取ることができる。そして、掻き取られて落下する電極材料15は、回収容器112に貯留される。この回収された電極材料15は、リサイクル素材として換金し、揮発分の溶剤を添加して電極材料15として再利用することができる。 According to the wiring forming apparatus 1-2 according to the present embodiment, for example, the electrode material 15 attached to the mask film 18 collected toward the collection roller 76, such as the attached portion D shown in FIG. When the film 18 is wound around the collection roller 76, it can be scraped off from the film surface by the collection tool 111. The electrode material 15 that is scraped and dropped is stored in the collection container 112. The collected electrode material 15 can be exchanged as a recycled material, and a volatile solvent can be added and reused as the electrode material 15.
 なお、図示の例では、回収具111は、回収ローラー76に対して配置したが、電極材料15が付着したマスクフィルム18が搬送されるガイドローラー75から回収ローラー76までの回収部であれば、適宜配置可能である。 In the illustrated example, the collection tool 111 is disposed with respect to the collection roller 76. However, if the collection unit is a collection unit from the guide roller 75 to the collection roller 76 to which the mask film 18 to which the electrode material 15 is attached is transported, It can be arranged appropriately.
 <第3の実施の形態>
 本実施の形態に係る配線形成装置1-3は、第1の実施の形態に係る配線形成装置1-1において、マスクユニット71におけるマスクフィルム18をループ状のマスクフィルム18'とし、ループ状のマスクフィルム18'の回収側から供給側への戻り経路に、電極材料回収機構110と洗浄機構120とが配置された構成になっている。
<Third Embodiment>
The wiring forming apparatus 1-3 according to the present embodiment is the same as the wiring forming apparatus 1-1 according to the first embodiment, except that the mask film 18 in the mask unit 71 is a loop-shaped mask film 18 ′. The electrode material recovery mechanism 110 and the cleaning mechanism 120 are arranged on the return path from the recovery side to the supply side of the mask film 18 ′.
 なお、本実施の形態に係る配線形成装置1-3では、マスクユニット71以外の、配線形成装置1-3の各部の構成やその作動制御については第1の実施の形態に係る配線形成装置1-1と同一又は同様なので、以下では、同一又は同様な構成部については同一符号を用い、その説明は省略する。 In the wiring forming apparatus 1-3 according to the present embodiment, the configuration of each part of the wiring forming apparatus 1-3 other than the mask unit 71 and the operation control thereof are described in the wiring forming apparatus 1 according to the first embodiment. Since it is the same as or similar to -1, the same reference numerals are used for the same or similar components, and the description thereof is omitted.
 図11は、本発明の第3の実施の形態に係る配線形成装置におけるマスクユニットの正面図である。 FIG. 11 is a front view of the mask unit in the wiring forming apparatus according to the third embodiment of the present invention.
 本実施の形態に係る配線形成装置1-3においては、マスクユニット71に設けられたマスクフィルム18'が、第1,第2の形態に係る配線形成装置1-1,1-2に利用されたマスクフィルム18のように始端と終端とを有した構成になっておらず、ループ状になっている。そして、マスクフィルム18'は、マスク部分19の両側で、それぞれガイドローラー74,75によって案内されるとともに、ガイドローラー75からガイドローラー74への戻り部分は、図示の例では、後述する洗浄機構120の導入側に配置されたガイドローラー131,洗浄機構120に設けられた一対の挟持用ガイドローラー121・122,洗浄機構120の導出側に配置されたガイドローラー132によって順次案内される構成になっている。 In the wiring forming apparatus 1-3 according to the present embodiment, the mask film 18 ′ provided in the mask unit 71 is used for the wiring forming apparatuses 1-1 and 1-2 according to the first and second embodiments. Unlike the mask film 18, the mask film 18 does not have a starting end and a terminal end, and has a loop shape. The mask film 18 ′ is guided by guide rollers 74 and 75 on both sides of the mask portion 19, and a return portion from the guide roller 75 to the guide roller 74 is a cleaning mechanism 120 described later in the illustrated example. The guide roller 131 is disposed on the introduction side of the cleaning mechanism, the pair of sandwiching guide rollers 121 and 122 provided on the cleaning mechanism 120, and the guide roller 132 disposed on the outlet side of the cleaning mechanism 120 are sequentially guided. Yes.
 支持プレート72背面に配置されたマスクフィルム搬送用のモータ77'は、マスクフィルム18'を張設しながら案内するガイドローラー74,131,132,75,一対の挟持用ガイドローラー121・122の中のいずれか又は複数を回動して、ループ状のマスクフィルム18'をこれらローラーに沿って移動周回させる。以下では、モータ77'は、これらローラーの中、挟持用ガイドローラー121を回動する構成として説明する。 A mask film transport motor 77 ′ disposed on the back surface of the support plate 72 is provided in guide rollers 74, 131, 132, 75 and a pair of clamping guide rollers 121, 122 that guide the mask film 18 ′ while being stretched. Any one or a plurality of these are rotated so that the loop-shaped mask film 18 ′ moves around these rollers. Below, motor 77 'demonstrates as a structure which rotates the guide roller 121 for clamping among these rollers.
 電極材料回収機構110は、洗浄機構120の導入側の、マスクフィルム18'が搬送される回収部に設けられ、図示の例では、洗浄機構120の導入側に配置されたガイドローラー131に設けられている。 The electrode material recovery mechanism 110 is provided in the recovery portion on the introduction side of the cleaning mechanism 120 where the mask film 18 ′ is conveyed. In the illustrated example, the electrode material recovery mechanism 110 is provided in a guide roller 131 disposed on the introduction side of the cleaning mechanism 120. ing.
 電極材料回収機構110の構成は、回収具111'が、支持プレート72に中央部を軸支され、この中央部の両側の両端側がそれぞれヘラ状部になって揺動可能になっており、マスクフィルム18'の表面に押し当てられる一方のヘラ状部の高さ方向位置が他の部位に対して高くなるように配置されている以外は、第2の実施の形態における電極材料回収機構110の構成と同様である。 The structure of the electrode material recovery mechanism 110 is that the recovery tool 111 ′ is pivotally supported by the support plate 72 at the center, and both end sides of the center are both spatula-shaped and can swing. The electrode material recovery mechanism 110 according to the second embodiment is arranged except that the position in the height direction of one spatula-like portion pressed against the surface of the film 18 'is higher than the other part. The configuration is the same.
 洗浄機構120は、一対の挟持用ガイドローラー121・122と、未使用の長尺の帯状洗浄ウエス123,124が巻回されている一対のウエス供給ローラー125,126と、ウエス供給ローラー125,126から導出され、一対の挟持用ガイドローラー121・122間を通過した洗浄ウエス123,124が巻回回収されるウエス回収ローラー127,128と、支持プレート72背面に配置され、ウエス回収ローラー127,128を回動駆動するモータ129とを備えた構成になっている。 The cleaning mechanism 120 includes a pair of clamping guide rollers 121 and 122, a pair of waste supply rollers 125 and 126 around which unused long belt-like cleaning wastes 123 and 124 are wound, and waste supply rollers 125 and 126. The waste waste rollers 127 and 128 are wound and collected, and the waste recovery rollers 127 and 128 are disposed on the rear surface of the support plate 72. And a motor 129 that rotationally drives the motor 129.
 一対の挟持用ガイドローラー121・122は、洗浄ウエス123,124間にマスクフィルム18'を配置させながら、これらを一体的に挟持する。そして、その回動により、ガイドローラー75が配置された側の回収部側からマスクフィルム18'及び洗浄ウエス123,124を導入し、これらをガイドローラー74が配置された側の供給部側へ導出できるようになっている。 The pair of clamping guide rollers 121 and 122 integrally clamps the mask film 18 'between the cleaning wastes 123 and 124 while arranging them. Then, by the rotation, the mask film 18 ′ and the cleaning wastes 123 and 124 are introduced from the collection unit side where the guide roller 75 is arranged, and these are led out to the supply unit side where the guide roller 74 is arranged. It can be done.
 図示の例では、例えば基板面11に対して電極材料15を1回塗布する毎に、一対の挟持用ガイドローラー121・122の中の挟持用ガイドローラー121は、モータ77'により所定量だけ回動され、マスク部分19のマスクフィルム18'を所定量だけガイドローラー75が配置された側の回収部側に回収するとともに、ガイドローラー74が配置された側の供給部側からこの所定量分に対応するだけマスクフィルム18'を導出し、マスク部分19に位置させる。その際、一対の挟持用ガイドローラー121・122によって、洗浄ウエス123,124もウエス供給ローラー125,126から所定量だけ導出され、ウエス回収ローラー127,128側へ導出される。 In the illustrated example, for example, every time the electrode material 15 is applied to the substrate surface 11, the clamping guide roller 121 of the pair of clamping guide rollers 121 and 122 is rotated by a predetermined amount by the motor 77 ′. The mask film 18 ′ of the mask portion 19 is recovered by a predetermined amount to the recovery portion side where the guide roller 75 is disposed, and the predetermined amount from the supply portion side where the guide roller 74 is disposed. The corresponding mask film 18 ′ is derived and positioned on the mask portion 19. At that time, the cleaning wastes 123 and 124 are also led out from the waste supply rollers 125 and 126 by a predetermined amount by the pair of sandwiching guide rollers 121 and 122, and are led out toward the waste collection rollers 127 and 128.
 ウエス回収ローラー127,128は、その際、一対の挟持用ガイドローラー121・122からの洗浄ウエス123,124の導出量に対応する分だけ、モータ129の駆動によって回動され、一対の挟持用ガイドローラー121・122から導出された洗浄ウエス123,124を回収して供給部側のマスクフィルム18'に接触しないようにする。 At this time, the waste collecting rollers 127 and 128 are rotated by the drive of the motor 129 by an amount corresponding to the amount of the cleaning wastes 123 and 124 derived from the pair of sandwiching guide rollers 121 and 122, and a pair of sandwiching guides. The cleaning wastes 123 and 124 led out from the rollers 121 and 122 are collected so as not to come into contact with the mask film 18 'on the supply side.
 すなわち、本実施の形態に係る配線形成装置1-3によれば、ループ状のマスクフィルム18'によるマスク部分19としての繰り返し使用に対応するため、洗浄機構120が、マスクフィルム18'が一対の挟持用ガイドローラー121・122間を通過する際、マスクフィルム18'とともに一体的に挟持されながら通過する洗浄ウエス123,124をマスクフィルム18'の両面に押し当てて、マスクフィルム18'の表面に残留している電極材料15や汚れを拭き取る構成になっている。 That is, according to the wiring forming apparatus 1-3 according to the present embodiment, in order to cope with repeated use as the mask portion 19 by the loop-shaped mask film 18 ′, the cleaning mechanism 120 has a pair of mask films 18 ′. When passing between the holding guide rollers 121 and 122, the cleaning wastes 123 and 124 that are passed together with the mask film 18 'while being integrally held are pressed against both surfaces of the mask film 18', and are applied to the surface of the mask film 18 '. The remaining electrode material 15 and dirt are wiped off.
 なお、本実施の形態に係る配線形成装置1-3では、洗浄機構120として洗浄ウエス123,124を用いた拭き取り構成を採用したが、これに限らず、洗浄機構120には、洗浄液を用いた洗浄機構等、各種のフィルム洗浄機構を利用することができる。 In the wiring forming apparatus 1-3 according to the present embodiment, a wiping configuration using the cleaning wastes 123 and 124 is employed as the cleaning mechanism 120. However, the cleaning mechanism 120 is not limited to this, and a cleaning liquid is used for the cleaning mechanism 120. Various film cleaning mechanisms such as a cleaning mechanism can be used.
 <第4の実施の形態>
 本実施の形態に係る配線形成装置1-4は、第1の実施の形態に係る配線形成装置1-1において、マスクユニット71がマスクユニット個別のユニット支持台81に取り付け固定され、マスクユニット昇降機構90及びマスクユニット移動機構95がマスクユニット個別になっている。
<Fourth embodiment>
The wiring forming apparatus 1-4 according to the present embodiment is similar to the wiring forming apparatus 1-1 according to the first embodiment, in which the mask unit 71 is attached and fixed to the unit support base 81 for each mask unit, and the mask unit is moved up and down. The mechanism 90 and the mask unit moving mechanism 95 are individual mask units.
 図12は、本発明の第4の実施の形態に係る配線形成装置の平面構成図である。 FIG. 12 is a plan view of a wiring forming apparatus according to the fourth embodiment of the present invention.
 本実施の形態に係る配線形成装置1-4は、マスクユニット71がマスクユニット個別のユニット支持台81に取り付け固定され、マスクユニット昇降機構90及びマスクユニット移動機構95がマスクユニット個別に対応して設けられている。 In the wiring forming apparatus 1-4 according to the present embodiment, the mask unit 71 is attached and fixed to the unit support base 81 for each mask unit, and the mask unit elevating mechanism 90 and the mask unit moving mechanism 95 correspond to each mask unit. Is provided.
 本実施の形態によれば、マスクユニット昇降機構90及びマスクユニット移動機構95の個数は増加するが、特にマスクユニット移動機構95がマスクユニット71個別に設けられているので、塗布対象の半導体基板10の大きさや形状の種類に対して、より広範に対応することができる。 According to the present embodiment, the numbers of the mask unit elevating mechanism 90 and the mask unit moving mechanism 95 increase, but in particular, since the mask unit moving mechanism 95 is provided individually for the mask unit 71, the semiconductor substrate 10 to be coated is applied. It is possible to deal with a wider range of size and shape types.
 <第5の実施の形態>
 本実施の形態に係る配線形成装置1-5は、第1の実施の形態に係る配線形成装置1-1とは、図9に示したマスクユニット71におけるマスクフィルム18の回収及び導出に係る所定量mが異なるようになっている。
<Fifth embodiment>
The wiring forming apparatus 1-5 according to the present embodiment is different from the wiring forming apparatus 1-1 according to the first embodiment in that the mask film 18 in the mask unit 71 shown in FIG. The fixed quantity m is different.
 なお、本実施の形態に係る配線形成装置1-5では、マスクユニット71以外の、配線形成装置1-5の各部の構成やその作動制御については第1の実施の形態に係る配線形成装置1-1と同一又は同様なので、以下では、同一又は同様な構成部については同一符号を用い、その説明は省略する。 In the wiring forming apparatus 1-5 according to the present embodiment, the configuration of each part of the wiring forming apparatus 1-5 other than the mask unit 71 and the operation control thereof are described in the wiring forming apparatus 1 according to the first embodiment. Since it is the same as or similar to -1, the same reference numerals are used for the same or similar components, and the description thereof is omitted.
 図13は、本発明の第5の実施の形態に係る配線形成装置におけるマスク部分のマスクフィルムに係り、所定量の回収及び導出の一実施例についての説明図である。 FIG. 13 is an explanatory view of an example of collection and derivation of a predetermined amount, related to the mask film of the mask portion in the wiring forming apparatus according to the fifth embodiment of the present invention.
 図13(A)~(C)は、順次塗布を繰り返したときの1回目~3回目の塗布におけるマスクフィルム18の移動位置状態を示している。 FIGS. 13A to 13C show the movement position state of the mask film 18 in the first to third coating when the coating is sequentially repeated.
 図13(A)に示すように、最初のフィンガー配線16の形成対象としての半導体基板10-1に対する電極材料15の塗布作業で使用されたマスクフィルム18は、塗布作業の終了後、図8のステップS60で示したマスクフィルム回収処理で、図13(B)に示す位置まで回収される。 As shown in FIG. 13A, the mask film 18 used in the application work of the electrode material 15 to the semiconductor substrate 10-1 as the formation target of the first finger wiring 16 is the same as that shown in FIG. In the mask film collection process shown in step S60, the film is collected up to the position shown in FIG.
 ここで、基板面11の配線設置領域Bにおけるフィンガー配線16の線太さやフィンガー配線16の形成間隔(配線ピッチ)との関係で支障が生じない場合は、図13(B)に示すようなマスク部分19の区間長さよりも小さなマスクフィルム回収量m(=m2<m1)で、次のフィンガー配線16の形成対象としての半導体基板10-2に対する電極材料15の塗布作業を行うことができる。 Here, when there is no problem in relation to the thickness of the finger wiring 16 in the wiring installation region B of the substrate surface 11 and the formation interval (wiring pitch) of the finger wiring 16, a mask as shown in FIG. With the mask film collection amount m (= m2 <m1) smaller than the section length of the portion 19, the application work of the electrode material 15 to the semiconductor substrate 10-2 as the formation target of the next finger wiring 16 can be performed.
 この場合、次の半導体基板10-2の電極材料15の塗布作業に当たって、最初の半導体基板10-1に対する電極材料15の塗布作業で電極材料15が付着したマスクフィルム18のマスク部分は、半導体基板10-2と重なる領域部分に残っているものの、付着した電極材料15は、半導体基板10-2の基板面11に形成されるフィンガー配線16とは重ならない位置にある。 In this case, in the application work of the electrode material 15 on the next semiconductor substrate 10-2, the mask portion of the mask film 18 to which the electrode material 15 is adhered in the application work of the electrode material 15 on the first semiconductor substrate 10-1 is the semiconductor substrate. Although remaining in the region overlapping with 10-2, the attached electrode material 15 is in a position not overlapping with the finger wiring 16 formed on the substrate surface 11 of the semiconductor substrate 10-2.
 さらに、図13(C)に示すように、さらに次の半導体基板10-3の電極材料15の塗布作業においても、1回目及び2回目の電極材料15の塗布作業でマスクフィルム18上に付着した電極材料15と、半導体基板10-3の基板面11に形成されるフィンガー配線16とは重ならない位置にある。 Further, as shown in FIG. 13 (C), in the next application work of the electrode material 15 of the semiconductor substrate 10-3, the first and second application work of the electrode material 15 adhered to the mask film 18. The electrode material 15 and the finger wiring 16 formed on the substrate surface 11 of the semiconductor substrate 10-3 are in positions that do not overlap.
 このように、本実施の形態に係る配線形成装置1-5では、マスクフィルム回収量mを、マスクフィルム18上における電極付着位置が次回に電極材料15が塗布される半導体基板10のフィンガー配線16同士の中間に絶縁状態を保持されて位置するように設定してあることにより、マスクフィルム回収量mを効率的に削減することができ、コスト削減効果がはかれる。 Thus, in the wiring forming apparatus 1-5 according to the present embodiment, the mask film collection amount m is set to the finger wiring 16 of the semiconductor substrate 10 on which the electrode material 15 is applied the next time the electrode attachment position on the mask film 18 is applied. Since the insulation state is set so as to be positioned between the two, the mask film collection amount m can be efficiently reduced, and the cost reduction effect is achieved.
 以上、本発明に係る配線形成装置の実施の形態について種々説明したが、これに限られるものではない。例えば、マスクユニットの形態や数は、マスク部分の配置形態や向きによって種々の変形例が可能である。 Although various embodiments of the wiring forming apparatus according to the present invention have been described above, the present invention is not limited to this. For example, various modifications of the form and number of mask units are possible depending on the arrangement form and orientation of the mask portion.
 1 配線形成装置、
 10 半導体基板(基板)、
 11 基板面、
 12 辺縁部、
 15 電極材料(塗布液)、
 16 フィンガー配線(フィンガー電極)、
 18 マスクフィルム、
 19 マスク部分、
 20 基板載置台、
 21 盤状ベース、
 22 柱部、
 23 載置板、
 24 基板載置面、
 30 基板搬送機構、
 31 装置基台、
 32 基板搬送ステージ、
 40 塗布ノズル、
 41 ノズル本体、
 42 キャビティ、
 43 導入口、
 44 吐出口、
 50 ノズル昇降機構、
 51 ノズル支持フレーム、
 52 柱部、
 53 梁部、
 54 ノズル昇降ステージ、
 60 塗布液供給機構、
 61 電極材料タンク、
 62 タンク本体、
 63 供給口、
 64 圧力調整口、
 65 配管、
 66 レギュレータ、
 67 バルブ、
 70 マスク機構、
 71 マスクユニット、
 72 支持プレート、
 73 供給ローラー、
 74,75 ガイドローラー、
 76 回収ローラー、
 77 モータ
1 Wiring forming device,
10 Semiconductor substrate (substrate),
11 Substrate surface,
12 edge,
15 electrode material (coating solution),
16 finger wiring (finger electrode),
18 Mask film,
19 Mask part,
20 substrate mounting table,
21 board base,
22 pillars,
23 mounting plate,
24 substrate mounting surface,
30 substrate transport mechanism,
31 device base,
32 substrate transfer stage,
40 coating nozzle,
41 Nozzle body,
42 cavities,
43 Introduction port,
44 Discharge port,
50 nozzle lifting mechanism,
51 nozzle support frame,
52 Pillars,
53 Beam,
54 Nozzle lift stage,
60 coating liquid supply mechanism,
61 electrode material tank,
62 tank body,
63 Supply port,
64 Pressure adjustment port,
65 piping,
66 regulator,
67 valves,
70 mask mechanism,
71 mask unit,
72 support plates,
73 Feeding roller,
74,75 guide rollers,
76 collection roller,
77 motor
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.

Claims (5)

  1.  基板が載置される基板載置台と、
     該基板載置台に載置された基板の基板面に対して配線材料を含む塗布液を吐出する塗布ノズルと、
     該塗布ノズルと前記基板載置台との中の一方を他方に対して相対移動させる相対移動機構と、
     前記塗布ノズルに対して前記基板載置台とともに相対移動可能に設けられたマスクユニットと
    を有し、
     前記塗布ノズルは、前記相対移動機構による相対移動方向と交差する方向に沿って配列された複数の吐出口を有し、
     前記マスクユニットは、前記基板載置台に載置された基板の、前記相対移動機構による相対移動方向と交差するとともに前記塗布ノズルにおける前記複数の吐出口の配列方向とも交差する辺縁部が、前記相対移動機構による相対移動によって前記複数の吐出口の一部の下方を通過する際に、当該一部の吐出口との間に介在され、当該一部の吐出口から吐出される塗布液が前記辺縁部に付着するのを防ぐマスクフィルムを備えている
    こと特徴とする配線形成装置。
    A substrate mounting table on which the substrate is mounted;
    A coating nozzle for discharging a coating liquid containing a wiring material to the substrate surface of the substrate placed on the substrate placing table;
    A relative movement mechanism for moving one of the coating nozzle and the substrate mounting table relative to the other;
    A mask unit provided to be movable relative to the coating nozzle together with the substrate mounting table;
    The application nozzle has a plurality of discharge ports arranged along a direction intersecting a relative movement direction by the relative movement mechanism,
    The mask unit has an edge that intersects a relative movement direction of the substrate placed on the substrate placement table and the arrangement direction of the plurality of discharge ports in the coating nozzle. When passing below some of the plurality of discharge ports by relative movement by a relative movement mechanism, the coating liquid that is interposed between the some discharge ports and discharged from the some discharge ports is A wiring forming apparatus comprising a mask film for preventing adhesion to the edge portion.
  2.  前記マスクフィルムは、長尺の帯状マスクフィルムにより形成され、
     前記マスクユニットは、
     前記帯状マスクフィルムの塗布液が付着していない帯長部分が配置されるマスクフィルム供給部と、
     前記帯状マスクフィルムの塗布液が付着している帯長部分が配置されるマスクフィルム回収部と、
     前記マスクフィルム供給部から前記帯状マスクフィルムの帯長部分を所定量だけ導出し
    、前記辺縁部と前記一部の吐出口との間に新たに介在させるとともに、前記辺縁部と前記一部の吐出口との間に既に介在する前記帯状マスクフィルムの帯長部分を当該所定量だけ前記マスクフィルム回収部に導入するマスクフィルム移動機構と
    を備えていることを特徴とする請求項1記載の配線形成装置。
    The mask film is formed of a long strip mask film,
    The mask unit is
    A mask film supply unit in which a band length portion to which the coating liquid of the band-shaped mask film is not attached is disposed;
    A mask film recovery part in which a band length portion to which the coating liquid of the band mask film is attached is disposed,
    A band length portion of the band-shaped mask film is derived by a predetermined amount from the mask film supply unit, and is newly interposed between the edge portion and the part of the discharge ports, and the edge portion and the part. 2. A mask film moving mechanism for introducing a predetermined length of the band length portion of the band-shaped mask film already interposed between the discharge port and the mask film collecting portion. Wiring forming device.
  3.  前記マスクフィルム回収部には、前記マスクフィルム移動機構によって導入された前記帯状マスクフィルムの帯長部分のフィルム表面に付着している塗布液を回収する塗布液回収機構が設けられている
    ことを特徴とする請求項2記載の配線形成装置。
    The mask film recovery part is provided with a coating liquid recovery mechanism for recovering the coating liquid adhering to the film surface of the strip length portion of the strip mask film introduced by the mask film moving mechanism. The wiring forming apparatus according to claim 2.
  4.  前記マスクフィルムは、ループ状の帯状マスクフィルムにより形成され、
     前記マスクユニットは、
     前記帯状マスクフィルムの塗布液が付着していない帯長部分が配置されるマスクフィルム供給部と、
     前記帯状マスクフィルムの塗布液が付着している帯長部分が配置されるマスクフィルム回収部と、
     前記マスクフィルム供給部から前記帯状マスクフィルムの帯長部分を所定量だけ導出し、前記辺縁部と前記一部の吐出口のとの間に新たに介在させるとともに、前記辺縁部と前記一部の吐出口との間に既に介在する前記帯状マスクフィルムの帯長部分を当該所定量だけ前記マスクフィルム回収部に導入するマスクフィルム移動機構と、
     前記スクフィルム回収部から前記マスクフィルム供給部への前記帯状マスクフィルムの戻り路に設けられ、前記帯状マスクフィルムを洗浄するマスクフィルム洗浄機構と
    を備えていることを特徴とする請求項1記載の配線形成装置。
    The mask film is formed of a loop-shaped strip mask film,
    The mask unit is
    A mask film supply unit in which a band length portion to which the coating liquid of the band-shaped mask film is not attached is disposed;
    A mask film recovery part in which a band length portion to which the coating liquid of the band mask film is attached is disposed,
    A predetermined length of a band length portion of the band-shaped mask film is led out from the mask film supply unit, and is newly interposed between the edge portion and the part of the discharge ports. A mask film moving mechanism for introducing a band length portion of the band-shaped mask film already interposed between the discharge port of the section into the mask film collecting section by the predetermined amount;
    2. A mask film cleaning mechanism provided on a return path of the belt-shaped mask film from the screen film recovery unit to the mask film supply unit, and cleaning the belt-shaped mask film. Wiring forming device.
  5.  前記マスクフィルム移動機構は、
     前記所定量として、前記辺縁部と前記一部の吐出口との間に介在している前記帯状マスクフィルムの帯長部分に形成された、当該一部の吐出口からの塗布液の吐出により塗布された帯状塗布領域を、当該一部の吐出口間に位置させるように、前記マスクフィルム供給部から導出し、前記マスクフィルム回収部に導入する
    ことを特徴とする請求項2又は4記載の配線形成装置。
    The mask film moving mechanism is
    As the predetermined amount, by discharging the coating liquid from the partial discharge port formed in the band length portion of the band-shaped mask film interposed between the edge portion and the partial discharge port. 5. The coated strip-shaped coating region is derived from the mask film supply unit so as to be positioned between the partial ejection ports, and is introduced into the mask film collection unit. Wiring forming device.
PCT/JP2013/080663 2012-11-22 2013-11-13 Wiring forming apparatus WO2014080819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012256609A JP2014107285A (en) 2012-11-22 2012-11-22 Wiring formation device
JP2012-256609 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080819A1 true WO2014080819A1 (en) 2014-05-30

Family

ID=50776002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080663 WO2014080819A1 (en) 2012-11-22 2013-11-13 Wiring forming apparatus

Country Status (3)

Country Link
JP (1) JP2014107285A (en)
TW (1) TW201431097A (en)
WO (1) WO2014080819A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026558A (en) * 2004-07-16 2006-02-02 Daio Paper Corp Method/device for stripe coating and membraneous member to be used for it
JP2008126115A (en) * 2006-11-17 2008-06-05 Dainippon Screen Mfg Co Ltd Method and apparatus for applying masking tape
JP2009272208A (en) * 2008-05-09 2009-11-19 Dainippon Screen Mfg Co Ltd Mask member pasting apparatus, and coating system
JP2012151448A (en) * 2010-12-27 2012-08-09 Sat:Kk Solar cell collector electrode formation device, method thereof and coating head
JP2012192342A (en) * 2011-03-16 2012-10-11 Fujifilm Corp Coating apparatus and coating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026558A (en) * 2004-07-16 2006-02-02 Daio Paper Corp Method/device for stripe coating and membraneous member to be used for it
JP2008126115A (en) * 2006-11-17 2008-06-05 Dainippon Screen Mfg Co Ltd Method and apparatus for applying masking tape
JP2009272208A (en) * 2008-05-09 2009-11-19 Dainippon Screen Mfg Co Ltd Mask member pasting apparatus, and coating system
JP2012151448A (en) * 2010-12-27 2012-08-09 Sat:Kk Solar cell collector electrode formation device, method thereof and coating head
JP2012192342A (en) * 2011-03-16 2012-10-11 Fujifilm Corp Coating apparatus and coating method

Also Published As

Publication number Publication date
TW201431097A (en) 2014-08-01
JP2014107285A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
KR100711069B1 (en) Substrate processing apparatus
TWI533367B (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP5600624B2 (en) Coating film forming apparatus and coating film forming method
TWI460020B (en) Smearing and smearing method
US10684501B2 (en) Manufacturing system and manufacturing method
JP2009297718A (en) Coating device
KR100836588B1 (en) Apparatus for polarizer adhesive on glass panel
KR20100078476A (en) Apparatus for peeling a protective film of printed circuit board, and method of the same
TWI527142B (en) Electrolytic coating apparatus and electric paste coating method and grain bonding device
TWI468229B (en) Coating apparatus and coating method
JP5912403B2 (en) Application processing equipment
WO2014080819A1 (en) Wiring forming apparatus
TWI519425B (en) Roll printing apparatus and roll printing method using the same
JP4353530B2 (en) Substrate processing method and substrate processing apparatus
JP6968750B2 (en) Mask cleaning device, printing machine, mask cleaning method
JP5745152B1 (en) Liquid application device for bonding machine and liquid application method for bonding machine
KR20120069576A (en) Coating process apparatus and coating process method
KR101746051B1 (en) Substrate coating appartus and method thereof
KR101229437B1 (en) Substrate Processing Apparatus and Substrate Processing Method
KR101154184B1 (en) Preparatory photoresist discharging device for substrate coater apparatus and substrate coating method using same
KR20190046142A (en) Automated device with polarizer of glass for liquid crystal display
KR20060004308A (en) Cleaning equipment and the method for photo mask
JP7111565B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
TWI601463B (en) Pattern forming method, pattern printing method, pattern forming system and pattern printing system
JP2015015292A (en) Wiring formation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857531

Country of ref document: EP

Kind code of ref document: A1