WO2014080667A1 - エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ - Google Patents

エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ Download PDF

Info

Publication number
WO2014080667A1
WO2014080667A1 PCT/JP2013/070759 JP2013070759W WO2014080667A1 WO 2014080667 A1 WO2014080667 A1 WO 2014080667A1 JP 2013070759 W JP2013070759 W JP 2013070759W WO 2014080667 A1 WO2014080667 A1 WO 2014080667A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
value
amount
predicted
energy
Prior art date
Application number
PCT/JP2013/070759
Other languages
English (en)
French (fr)
Inventor
和人 久保田
恭介 片山
清高 松江
卓久 和田
谷本 智彦
博司 平
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP13815363.0A priority Critical patent/EP2924838B1/en
Priority to US14/031,754 priority patent/US9727929B2/en
Publication of WO2014080667A1 publication Critical patent/WO2014080667A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • Embodiment of this invention is related with the technique which manages the energy balance in a consumer.
  • HEMS Home Energy Management System
  • JP 2011-72166 A Japanese Patent Application Laid-Open No. 2011-92002
  • the double power generation mode is a form in which a private power generation facility (storage battery or the like) is provided in the PV system.
  • An object is to provide an energy management system, an energy management method, a program, a server device, and a local server capable of operating an energy storage device under an advantageous discharge strategy.
  • the energy management system manages the energy of the customer including the energy storage device and the energy creation device.
  • the energy management system includes a prediction unit, a creation unit, and a control unit.
  • the prediction unit predicts a demand amount of energy in the consumer and obtains a predicted value of the demand amount.
  • the prediction unit predicts the energy production amount of the energy creation device to obtain a production value prediction value.
  • the preparation department will develop a discharge strategy that can maximize the deduction amount obtained by subtracting the profit or loss of power purchase from the power sale profit by using the effect of boosting the power sale amount due to the discharge of the energy storage device. Create based on value.
  • the control unit controls the discharge of the energy storage device based on the actual value of the demand amount, the actual value of the production amount, and the discharge strategy.
  • FIG. 1 is a block diagram illustrating an example of an energy management system according to the first embodiment.
  • FIG. 2 is a functional block diagram showing an example of the home server 5 shown in FIG.
  • FIG. 3 is a diagram illustrating an example of a charge / discharge efficiency table of the storage battery system 4.
  • FIG. 4A is a diagram illustrating an example of a value for each time zone of the power purchase unit price.
  • FIG. 4B is a diagram illustrating an example of a purchase price of surplus power by the PV module 2.
  • FIG. 5 is a diagram showing an example of hardware blocks of the home server 5 shown in FIG.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure related to creation of a discharge rule.
  • FIG. 7A is a graph showing the electricity rate table shown in FIG. 4A.
  • FIG. 7B is a diagram illustrating an example of a charging plan for the storage battery system 4.
  • FIG. 8A is a graph illustrating an example of the PV power generation prediction value PV (t).
  • FIG. 8B is a graph showing an example of the predicted power demand value D (t).
  • FIG. 8C is a graph showing an example of the discharge value V (t).
  • FIG. 9 is a graph showing an example of the predicted value E (t) of the discharge value rate.
  • FIG. 10 is a diagram illustrating an example of the discharge on / off control of the storage battery system 4.
  • FIG. 11 is a flowchart illustrating an example of a processing procedure of the control unit 55.
  • FIG. 12 is a block diagram illustrating an example of an energy management system according to the second embodiment.
  • FIG. 13 is a functional block diagram illustrating an example of the cloud server 200.
  • FIG. 14 is a functional block diagram illustrating an example of the local server 6.
  • FIG. 15 is a diagram illustrating an example of hardware blocks of the cloud server 200.
  • FIG. 16 is a diagram illustrating an example of hardware blocks of the local server 6.
  • FIG. 1 is a block diagram illustrating an example of an energy management system according to the first embodiment.
  • This energy management system manages energy consumption in the home 10 of the customer.
  • the house 10 includes a PV module 2 as an energy creation device and a storage battery system 4 as an energy storage device. Assume that a consumer has a double power generation contract with an electric power company.
  • the house 10 includes a home appliance group 3, a distribution board 1, and a home server 5 in addition to the PV module 2 and the storage battery system 4.
  • the PV module 2, the storage battery system 4, and the home appliance group 3 are connected to the power system (power grid) via the distribution board 1.
  • the PV module 2 converts direct current generated power into alternating current by a power conditioning system (PCS) (not shown) and supplies the power to the power line in the house.
  • the electric power generated by the PV module 2 is consumed by the household electric appliance group 3, and is charged into the storage battery system 4, or reversely flows into the commercial power system. Considering the push-up effect, it is possible to obtain more power selling profits by securing the maximum reverse power flow.
  • the storage battery system 4 includes a PCS (not shown) that can convert DC power into AC power and AC power into DC power.
  • the storage battery system 4 converts AC power from the power system or the PV module 2 into DC and stores it in itself.
  • the electric power stored in the storage battery system 4 is converted into alternating current to cover the amount of power demand of consumers.
  • the home server 5 communicates with the PV module 2, the storage battery system 4, the home appliance group 3, and the distribution board 1 via the information line.
  • a typical communication protocol is ECHONET Lite (registered trademark). It is also possible to use a power line as an information line using power line communication (PLC) technology.
  • PLC power line communication
  • the home server 5 is connected to a communication network and receives information such as a weather forecast or an electricity bill from the communication network.
  • the communication network is an IP (Internet Protocol) network, a so-called Internet, or the like. Based on this information and information such as the amount of PV power generation, the power consumption of the household appliance group 3, the power for demand, the remaining amount of electricity stored in the storage battery system 4, the home server 5 generates a charge / discharge instruction to the storage battery system 4 .
  • the storage battery system 4 performs a charging operation and a discharging operation based on this instruction.
  • FIG. 2 is a functional block diagram showing an example of the home server 5.
  • the home server 5 includes a power demand amount prediction unit 51, a PV power generation prediction unit 52, a discharge value rate calculation unit 53, a rule creation unit 54, and a control unit 55.
  • the power demand amount prediction unit 51 predicts energy demand (hereinafter referred to as demand amount) in the consumer, and obtains a predicted value of the power demand amount.
  • the power demand amount prediction unit 51 predicts the power demand amount on the next day from the history of the past power demand amount of the house 10, for example. For example, the power demand on the same day of the week before the next day can be used as the predicted power demand for the next day.
  • the power demand amount prediction unit 51 predicts the power demand amount after that time from the power demand amount until a certain time on the current day to be predicted. For the power demand after a certain time on the current day, the power demand curve similar to the power demand curve up to that time is searched from the past history, and the curve after that time of the matched demand curve is used as the predicted value. can do. In addition to these methods, the power demand can be predicted by various other methods. It is also possible to correct the predicted value of the obtained power demand amount using weather information or the like.
  • the PV power generation prediction unit 52 predicts the power production amount of the PV module 2 (hereinafter referred to as power generation amount), and obtains a predicted value of the power generation amount.
  • the predicted value of the power generation amount can be calculated based on the past actual value of the power generation amount of the PV module 2 and the weather forecast.
  • Non-Patent Document 1 describes a method for predicting the amount of solar radiation from a weather forecast every three hours.
  • the discharge value rate calculation unit 53 calculates a discharge value and a discharge value rate.
  • the discharge value is an index for evaluating the power selling profit in consideration of the push-up effect.
  • the discharge value rate is the discharge value per unit electric energy.
  • the discharge value rate calculation part 53 calculates both a predicted value and the actual value which is an actual value about each of a discharge value and a discharge value rate. That is, the discharge value rate calculation unit 53 calculates a predicted value of the discharge value, a predicted value of the discharge value rate, an actual value of the discharge value, and an actual value of the discharge value rate.
  • the predicted value of the discharge value is calculated as the sum of the amount of cancellation of power purchase profit / loss in the case where the predicted value of power demand is covered by the discharge of the storage battery system 4 and the power sales profit based on the predicted value of PV power generation Is done.
  • the discharge value rate calculation unit 53 adds the predicted value of the power demand amount and the predicted value of the power generation amount, the charge / discharge efficiency table shown in FIG. 3, and FIGS. 4A and 4B. Refer to the electricity tariff shown in.
  • the charge / discharge efficiency table is a table in which the value of the charging power (discharge power) of the storage battery system 4 is associated with the efficiency of charging (discharging) the power of that value.
  • FIG. 3 shows that the charging efficiency and discharging efficiency of, for example, 500 watts [W] are 0.8. Values not shown in the table of FIG. 3 can be obtained by interpolation.
  • the electricity price list is a list of electricity prices by time zone.
  • FIG. 4A shows an example of a value for each time zone of the power purchase unit price. In the contract shown in FIG. 4A, it can be seen that the charge in the time zone including the daytime demand peak exceeds three times the charge in the nighttime.
  • FIG. 4B is a diagram illustrating an example of a purchase price of surplus power by the PV module 2. FIG. 4B shows that the power purchase price is uniformly 34 yen regardless of the time zone.
  • the predicted value of the discharge value rate is calculated by dividing the predicted value of the discharge value by the discharge amount of the storage battery system 4 (predicted value of power demand).
  • the real value of the discharge value is the sum of the amount of cancellation of the power purchase profit / loss under the condition that the real value of the power demand is covered by the discharge of the storage battery system 4 and the power sale profit based on the real value of the PV power generation amount Calculated.
  • the actual value of the discharge value rate is a value obtained by dividing the actual value of the discharge value by the actual value of the power demand.
  • the rule creation unit 54 determines the discharge rule of the storage battery system based on the predicted value of the discharge value rate and the remaining charge of the storage battery system 4 and passes it to the control unit 55.
  • the control part 55 discharges the storage battery system 4 based on the said discharge rule and the realization value of a discharge value rate.
  • the discharge value rate calculation unit 53 and the rule creation unit 54 function as a creation unit.
  • the creation unit creates a discharge strategy of the storage battery system 4 based on the predicted value of the power demand amount and the predicted value of the power generation amount.
  • the advantageous discharge strategy is a discharge strategy that maximizes the deduction amount obtained by subtracting the power purchase profit / loss from the power sale profit by using the push-up effect.
  • the control unit 55 controls the discharge of the storage battery system 4 based on the actual value of power demand, the actual value of power generation, and the discharge strategy.
  • the storage battery system 4 charges and discharges electric power in accordance with a charge / discharge instruction given from the control unit 55.
  • the home server 5 can be realized by using, for example, a general-purpose computer as basic hardware. That is, each functional block in the home server 5 can be realized by causing a computer CPU (Central Processing Unit) to execute a program.
  • the home server 5 can be realized by installing the above program in a computer in advance.
  • the program may be stored in a storage medium such as a CD-ROM, or distributed via a network and installed in a computer.
  • the computer includes a CPU, a memory, a hard disk, an interface (IF), and a graphic interface (GUI), which are connected via a bus.
  • a program that realizes the function of the home server 5 is stored on the hard disk, and is expanded in the memory at the time of execution, and then executed according to the procedure.
  • the home server 5 includes an interface for measuring the PV power generation amount and the power demand amount by the home appliance group 3, an interface with the storage battery system 4, and an interface with a network.
  • the home server 5 may include a power conditioning system in addition to the functional blocks shown in FIG.
  • the home server 5 may be realized as an embedded device (embedded apparatus) and installed outdoors.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure related to creation of a discharge rule.
  • the PV power generation prediction unit 52 calculates a predicted value of the PV power generation amount (Step S1) and obtains the time series PV (t).
  • the power demand prediction unit 51 calculates a predicted value of the power demand (step S2) and obtains the time series D (t).
  • t is a variable indicating the time of the day. For example, if one day (reference period) is represented by a set of one minute (unit period), t takes a value from 0 to 1439.
  • the rule creation unit 54 creates a charging rule for the storage battery system 4.
  • a charging rule is required so that charging can be completed in a short period of time as much as possible in the time zone where the electricity rate is cheap.
  • the rule creating unit 54 generates a plan in which the storage battery system 4 is fully charged at this Te.
  • FIG. 7A is a graph showing the electricity rate table shown in FIG. 4A.
  • Te is 7:00 am.
  • the remaining amount of the storage battery system 4 before charging is empty, the battery capacity is 5 kWh, and the chargeable power is 5 kW.
  • FIG. 7B it is possible to plan to charge the storage battery system 4 at 5 kW between 6:00 and 7:00.
  • the discharge value rate calculation unit 53 calculates a time series of the predicted value V (t) of the discharge value based on the following formulas (1) to (4) (step S4).
  • V (t) is calculated as a unit period of one minute.
  • PVovD (t) in equation (1) is the difference between the cases where the predicted value of PV power generation exceeds the predicted value of power demand, and the predicted value of PV power generation is less than the predicted value of power demand. Is a series that is zero.
  • DovPV (t) in equation (2) is the difference between the cases where the predicted power demand exceeds the predicted PV power generation, and the predicted power demand is less than or equal to the predicted PV power generation. Is a series that is zero.
  • PV push (t) in equation (3) is the smaller value of PV (t) and D (t). This PV push (t) is a series of power generation amounts that can boost the PV power sales amount by covering the predicted value of the power demand amount with the discharge of the storage battery system 4.
  • V (t) in Expression (4) indicates a value obtained by discharging D (t) at that time, that is, a discharge value.
  • PRsell indicates a PV power purchase price
  • PR (t) indicates a power charge.
  • the first term on the right side is a power selling price corresponding to the pushed-up PV power generation amount, and indicates a predicted value of the power sales profit based on the PV module 2 power generation amount.
  • the second term on the right side shows the amount of cancellation of the power purchase profit / loss when the predicted value of the power demand is covered by the discharge of the storage battery system 4.
  • FIG. 8A is a graph showing an example of the predicted PV power generation value PV (t).
  • FIG. 8B is a graph showing an example of the predicted power demand value D (t).
  • FIG. 8C is a graph showing an example of the discharge value V (t).
  • the discharge value V (t) is calculated based on Equation (4) using PV (t), D (t), PR (t) shown in FIG. 4A, and PRsell shown in FIG. 4B.
  • the horizontal axis indicates time, and is the cumulative value of “minutes” that have been added from 0 o'clock.
  • the vertical axis shows the value for each minute.
  • the discharge value rate calculation unit 53 calculates the time series of the discharge value rate predicted value E (t) from the discharge value V (t) and the power demand amount D (t) using the equation (5). (Step S5). That is, E (t) is a value obtained by dividing V (t) by the discharge amount (or the predicted value of the demand amount).
  • FIG. 9 is a graph showing an example of the predicted value E (t) of the discharge value rate.
  • the charge / discharge efficiency was set to 1.
  • the graph shown in FIG. 9 shows E (t) between Te (7:00) and Ts (23:00).
  • the value of E (t) is higher in the vicinity of 600 minutes (10:00), for example, than the value after 1020 minutes (17:00). This indicates that higher efficiency can be obtained by discharging the storage battery system 4 in the vicinity of 600 minutes. That is, if the storage battery system 4 is discharged in the vicinity of 600 minutes, the deduction between the power sale profit and the power purchase profit / loss can be further increased.
  • the discharge value rate calculation unit 53 sorts the time index t in descending order of E (t). If E (t) is the same, the rank of the time index t having the large demand value predicted value D (t) is increased. Then, the discharge value rate calculation unit 53 cumulatively adds D (t) in the order of the sorted t, and calculates a time tth when the sum of D (t) exceeds the charge amount (dischargeable amount) of the storage battery system 4 for the first time. (Step S6).
  • the discharge value rate calculation unit 53 calculates the time tth when the sum of D (t) added in order from the time t when the predicted value E (t) of the discharge value rate is high is equal to or greater than the total discharge amount in the storage battery system 4 in one day. , Specify. Let E (t) at time tth be Etth. Etth is a threshold value for determining whether or not to discharge the storage battery system 4.
  • the discharge rule for the day to be predicted is defined as “discharge the storage battery system 4 when the actual value of the discharge value rate E is 33.96 or more”.
  • FIG. 10 is a diagram illustrating an example of discharge on / off control of the storage battery system 4. Digit 1 indicates that discharge is performed (discharge is on), and digit 0 indicates that discharge is not performed (discharge is off). It is shown that the discharge control is executed more finely than the existing control based on the PV power generation amount. In FIG. 10, it is assumed that the PV power generation amount prediction and the power demand amount prediction are accurate. It was also assumed that the amount of discharge and the amount of power demand at each time were equal.
  • the discharge control as shown in FIG. 10 is realized by calculating a threshold value Etth as a discharge rule.
  • the discharge strategy based on the threshold Etth is a strategy of allocating the discharge amount of the storage battery system 4 in the order of the height of E (t) for each period in which one day is cut every minute.
  • FIG. 11 is a flowchart illustrating an example of a processing procedure of the control unit 55.
  • the control unit 55 performs on / off control of discharging of the storage battery system 4 based on the threshold value Etth.
  • Etth the threshold value
  • the storage battery system 4 should just be fully charged in the time zone when the electricity bill at night is cheap.
  • the discharge control will be described.
  • the control unit 55 acquires a threshold value Etth as a discharge rule (step S11). Next, the control part 55 acquires the actual value (PVact) of PV electric power generation amount, and the actual value (Dact) of electric power demand amount (step S12, S13).
  • PVact is measured by, for example, a sensor built in the PV module 2 or a sensor built in a PCS connected to the PV module 2. Dact is measured by a sensor connected to the distribution board 1, for example.
  • control unit 55 obtains the discharge value at the current time, that is, the actual value Vact of the discharge value by using equations (6) to (9) (step S14). Note that the subscript act in the equations (6) to (9) and (10) indicates an actual value.
  • PVovDact in equation (6) is the difference between the cases where the actual value of PV power generation exceeds the actual value of power demand, and is zero in cases where the actual value of PV power generation is less than or equal to the actual value of power demand. It is a certain series.
  • DovPVact in equation (7) is the difference between the cases where the actual value of the power demand exceeds the actual value of the PV power generation amount, and is zero in the case where the actual value of the power demand amount is less than or equal to the actual value of the PV power generation amount. It is a certain series.
  • PV pushact of the equation (8) is the smaller value of PVact and Dact.
  • This PV pushact is a series of power generation amounts that can boost the amount of PV power sold by covering the actual value of power demand with the discharge of the storage battery system 4.
  • Vact in equation (9) indicates a value obtained by discharging Dact at the current time, that is, a discharge value.
  • control unit 55 calculates an actual value Eact of the discharge value rate based on the equation (10) from Vact and Dact (step S15).
  • Eact is a value obtained by dividing the sum of the negotiated amount of the power purchase profit / loss and the power sale profit based on PVact by the amount of discharge taking into account efficiency when Dact is covered by the discharge of the storage battery system 4.
  • the denominator of the equation (10) may be the actual value Dact of the demand amount.
  • the control unit 55 gives a discharge instruction to the storage battery system 4 so as to discharge the power corresponding to Dact if Eact ⁇ Etth. If Eact ⁇ Ethth, the control unit 55 considers that the value of discharge at that time is low, and sees off the discharge.
  • the discharge value is calculated as an index that can evaluate the net power purchase profit (or power sale profit / loss) considering the push-up effect.
  • the discharge value rate which is the discharge value per discharge amount is calculated. Based on the discharge value rate, a discharge strategy that can maximize the power purchase profit (or minimize the power sale profit / loss) is created.
  • the discharge rule is given by the threshold value Etth of the discharge value rate. Whether or not the storage battery system 4 can be discharged is determined based on whether or not the actual value of the discharge value rate is equal to or greater than the threshold Etth. As a result, it is possible to save resources by reducing the number of rules as compared with the existing technology that controls discharge on / off with time.
  • the time shown in FIG. 10 indicates the discharge time in the case where the PV power generation prediction and the power demand prediction are perfectly correct.
  • the operation plan created based on the predicted value may not realize the expected reduction in utility costs due to the difference between the actual operation value and the predicted value.
  • the discharge control is performed based on a completely new index called the discharge value, not the discharge time based on the prediction.
  • whether discharge is possible is determined by comparing the actual value with a threshold value. Therefore, it is possible to realize control that can be expected to reduce the utility cost even if a deviation between the predicted value and the actual value occurs. Therefore, it is possible to provide an energy management system, an energy management method, a program, a server device, and a local server that can operate an energy storage device under an advantageous discharge strategy.
  • FIG. 12 is a block diagram illustrating an example of an energy management system according to the second embodiment.
  • achieved by 1st Embodiment is implement
  • the cloud server 200 is connected to the local server 6 via a communication network 100 such as the so-called Internet or IP (Internet Protocol) -VPN (Virtual Private Network).
  • a communication network 100 such as the so-called Internet or IP (Internet Protocol) -VPN (Virtual Private Network).
  • FIG. 13 is a functional block diagram illustrating an example of the cloud server 200.
  • the cloud server 200 includes a power demand amount prediction unit 201, a PV power generation prediction unit 202, a discharge value rate calculation unit 203, and a rule creation unit 204.
  • the power demand amount prediction unit 201 and the PV power generation prediction unit 202 have the same functions as the power demand amount prediction unit 51 and the PV power generation prediction unit 52 shown in FIG.
  • the power demand prediction unit 201 and the PV power generation prediction unit 202 can use an enormous database and computer resources provided in the cloud computing system. Thereby, it can be expected that more accurate predicted values can be obtained for both power demand and PV power generation.
  • the discharge value rate calculation unit 203 calculates the time series of the predicted value of the discharge value rate, as in the first embodiment.
  • the rule creation unit 204 calculates a threshold value Etth of the discharge value rate as in the first embodiment.
  • the rule creation unit 204 also has a function as a notification unit that notifies the local server 6 of a threshold value Etth as a discharge rule (discharge strategy) via the communication network 100.
  • the rule creation unit acquires the remaining battery level of the storage battery system 4 from the local server 6 via the communication network 100 and uses it for creating a discharge strategy.
  • FIG. 14 is a functional block diagram showing an example of the local server 6.
  • the local server 6 includes a discharge value rate calculation unit 61, a control unit 62, and a storage battery information collection unit 63.
  • the discharge value rate calculation unit 61 calculates an actual value of the discharge value rate in the same manner as in the first embodiment, based on the actual value of the power demand amount and the PV power generation amount.
  • the control unit 62 has a function as an interface for receiving the threshold value Etth notified from the cloud server. Further, the control unit 62 controls the discharge of the storage battery system 4 based on the acquired threshold value Etth.
  • the storage battery information collection unit 63 acquires information such as the current state of the storage battery system 4 and the remaining amount of storage battery, and notifies the cloud server 200 via the communication network 100.
  • the cloud server 200 includes a CPU, a memory, a hard disk, an interface, a GUI, and a bus connecting them.
  • a program that realizes the functions of the cloud server 200 is stored on a hard disk, and is expanded in a memory at the time of execution, and then executed according to a procedure.
  • the cloud server 200 includes an interface connected to the network 100, and communicates with the local server 6 via this interface. Specifically, the cloud server 200 notifies the local server 6 of the threshold value Etth via the interface, and acquires the remaining storage battery capacity from the local server 6.
  • the local server 6 includes a CPU, a memory, a hard disk, an interface, a GUI, and a bus connecting them.
  • a program that realizes the function of the local server 6 is stored on a hard disk, and is expanded in a memory at the time of execution, and then executed according to a procedure.
  • the local server 6 is connected to the information line of the house 10 and has an interface for acquiring the PV power generation amount and the electric power demand amount and communicating with the storage battery system 4.
  • the local server 6 includes an interface connected to the network 100, and communicates with the cloud server 200 via this interface.
  • the local server 6 acquires the threshold value Etth from the cloud server 200 via the interface, and notifies the cloud server 200 of the remaining storage battery capacity.
  • the cloud server 200 defines a discharge strategy and notifies the local server of the discharge rule via the interface.
  • the information required for creating the discharge strategy is acquired in the cloud computing system or notified from the local server to the cloud server 200 via the interface.
  • PV power generation prediction and power demand amount prediction may require calculation with a high load
  • the second embodiment can provide an energy management system, an energy management method, a program, a server device, and a local server that can operate an energy storage device under an advantageous discharge strategy.

Abstract

 実施形態によればエネルギー管理システムは、蓄エネルギー機器と創エネルギー機器とを備える需要家のエネルギーを管理する。このエネルギー管理システムは、予測部と、作成部と、制御部とを具備する。予測部は、需要家におけるエネルギーの需要量を予測して需要量の予測値を得る。予測部は、創エネルギー機器のエネルギーの生産量を予測して生産量の予測値を得る。作成部は、売電利益から買電損益を減算した差し引き額を蓄エネルギー機器の放電による売電量の押し上げ効果を利用して最大化可能な放電戦略を、需要量の予測値と生産量の予測値とに基づいて作成する。制御部は、需要量の実現値および生産量の実現値と、放電戦略とに基づいて蓄エネルギー機器の放電を制御する。

Description

エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ
 本発明の実施形態は、需要家におけるエネルギー収支を管理する技術に関する。
 近年、太陽光発電(Photovoltaic Power Generation:PV)システムや燃料電池(Fuel Cell:FC)などの創エネルギー機器、あるいは蓄電池などの蓄エネルギー機器、を備える家庭が増えてきている。併せて、家庭エネルギー管理システム(Home Energy Management System:HEMS)の普及が目覚しい。HEMSは、省エネ、省コスト、あるいは再生可能エネルギーの利活用などを可能とするシステムとして期待されている。
特開2011-72166号公報 特開2011-92002号公報
島田、黒川、"天気予報と天気変化パターンを用いた日射予測", IEE Trans. PE, pp1219-1225, Vol. 127, No.11, 2007.
 日本では、再生可能エネルギーの固定価格買取制度(feed in tariff:FIT)が2012年7月1日から開始した。この制度のもとでは、いわゆるダブル発電モードの契約では、PV発電時の電力需要量を蓄電池の放電で賄うことで、PVシステムに由来する売電量を増やすことが可能である。つまりダブル発電モードでは、自家発電設備などを放電させることで、売電量の押し上げ効果を期待することができる。ダブル発電モードとは、PVシステムに自家発電設備など(蓄電池など)を併設する形態である。
 このような条件下で光熱費の削減を追求するためには、押し上げ効果を加味した蓄電池の放電戦略(discharge strategy)を立てる必要がある。放電戦略の作成には需要家における電力需要量(energy demand)やPV発電量の予測値なども考慮しなくてはならない。しかし多くの場合、予測値と実運用時の値(実現値)とが異なるので期待した光熱費削減を実現できないケースもある。 
 目的は、蓄エネルギー機器を有利な放電戦略のもとで運用可能なエネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバを提供することにある。
 実施形態によればエネルギー管理システムは、蓄エネルギー機器と創エネルギー機器とを備える需要家のエネルギーを管理する。このエネルギー管理システムは、予測部と、作成部と、制御部とを具備する。予測部は、需要家におけるエネルギーの需要量を予測して需要量の予測値を得る。予測部は、創エネルギー機器のエネルギーの生産量を予測して生産量の予測値を得る。作成部は、売電利益から買電損益を減算した差し引き額を蓄エネルギー機器の放電による売電量の押し上げ効果を利用して最大化可能な放電戦略を、需要量の予測値と生産量の予測値とに基づいて作成する。制御部は、需要量の実現値および生産量の実現値と、放電戦略とに基づいて蓄エネルギー機器の放電を制御する。
図1は、第1の実施形態に係るエネルギー管理システムの一例を示すブロック図である。 図2は、図1に示されるホームサーバ5の一例を示す機能ブロック図である。 図3は、蓄電池システム4の充放電効率表の一例を示す図である。 図4Aは、買電単価の時間帯ごとの値の一例を示す図である。 図4Bは、PVモジュール2による余剰電力の買い取り価格の一例を示す図である。 図5は、図1に示されるホームサーバ5のハードウェアブロックの一例を示す図である。 図6は、放電ルールの作成に係わる処理手順の一例を示すフローチャートである。 図7Aは、図4Aに示される電気料金表を示すグラフである。 図7Bは、蓄電池システム4の充電計画の一例を示す図である。 図8Aは、PV発電量予測値PV(t)の一例を示すグラフである。 図8Bは電力需要量予測値D(t)の一例を示すグラフである。 図8Cは、放電価値V(t)の一例を示すグラフである。 図9は、放電価値率の予測値E(t)の一例を示すグラフである。 図10は、蓄電池システム4の放電オン/オフ制御の一例を示す図である。 図11は、制御部55の処理手順の一例を示すフローチャートである。 図12は、第2の実施形態に係るエネルギー管理システムの一例を示すブロック図である。 図13は、クラウドサーバ200の一例を示す機能ブロック図である。 図14は、ローカルサーバ6の一例を示す機能ブロック図である。 図15は、クラウドサーバ200のハードウェアブロックの一例を示す図である。 図16は、ローカルサーバ6のハードウェアブロックの一例を示す図である。
 [第1の実施形態]
 図1は、第1の実施形態に係るエネルギー管理システムの一例を示すブロック図である。このエネルギー管理システムは需要家の住宅10におけるエネルギー消費を管理する。住宅10は創エネルギー機器としてのPVモジュール2と、蓄エネルギー機器としての蓄電池システム4とを備える。需要家は電力会社とダブル発電契約を結んでいるとする。
 住宅10は、PVモジュール2および蓄電池システム4に加え、家電群3、分電盤1、および、ホームサーバ5を備える。PVモジュール2、蓄電池システム4、および家電群3は分電盤1を介して電力系統(power grid)に接続される。
 PVモジュール2は、直流の発電電力を図示しないパワーコンディショニングシステム(PCS)により交流に変換し、宅内の電力ラインに給電する。PVモジュール2により発電された電力は家電群3により消費されるのに加え、蓄電池システム4に充電されたり、商用の電力系統に逆潮流(reverse flow)したりする。押し上げ効果も加味して逆潮流電力を最大限に確保することで、より多くの売電利益を得ることができる。 
 蓄電池システム4は、直流電力を交流電力に、交流電力を直流電力に変換可能なPCS(図示せず)を備える。蓄電池システム4は、電力系統、あるいはPVモジュール2からの交流電力を直流に変換し、自らに蓄電する。蓄電池システム4に蓄えられた電力は交流に変換されて需要家の電力需要量を賄う。
 ホームサーバ5は情報ラインを介してPVモジュール2、蓄電池システム4、家電群3、および分電盤1と通信する。通信のプロトコルはECHONET Lite(登録商標)が代表的である。電力線通信(PLC)技術を利用して電力ラインを情報ラインとして利用することも可能である。
 またホームサーバ5は、通信ネットワークに接続され、天気予報、あるいは電気料金表などの情報を通信ネットワークから受信する。通信ネットワークは、IP(Internet Protocol)ネットワークや、いわゆるインターネットなどである。これらの情報、および、PV発電量、家電群3の消費電力、需用電力、蓄電池システム4の蓄電残量などの情報に基づいて、ホームサーバ5は蓄電池システム4への充放電指示を生成する。蓄電池システム4はこの指示に基づいて充電動作、放電動作を実行する。
 図2は、ホームサーバ5の一例を示す機能ブロック図である。ホームサーバ5は、電力需要量予測部51、PV発電予測部52、放電価値率計算部53、ルール作成部54、および、制御部55を備える。
 電力需要量予測部51は、需要家におけるエネルギー需要(以下、需要量と表記する)を予測して、電力の需要量の予測値を得る。電力需要量予測部51は、例えば住宅10の過去の電力需要量の履歴から翌日の電力需要量を予測する。例えば、翌日に対する、一週間前の同じ曜日の電力需要量を、翌日の電力需要量予測値として利用することができる。
 あるいは、電力需要量予測部51は、予測する当日の或る時刻までの電力需要量から、その時刻以降の電力需要量を予測する。当日の或る時刻以降の電力需要量は、その時刻までの電力需要量カーブと類似する電力需要量カーブを過去の履歴から検索し、マッチした需要量カーブのその時刻以降のカーブを予測値とすることができる。 
 これらの手法に限らず、電力需要量は他の様々な手法により予測可能である。また、天気情報などを利用して、得られた電力需要量の予測値を補正することも可能である。
 PV発電予測部52は、PVモジュール2の電力の生産量(以下、発電量と表記する)を予測して、発電量の予測値を得る。例えばPVモジュール2の発電量の過去の実績値、および天気予報に基づいて発電量の予測値を算出することが可能である。例えば、3時間ごとの天気予報から日射量を予測する手法が非特許文献1などに記載されている。
 放電価値率計算部53は、放電価値と、放電価値率とを算出する。放電価値とは、押し上げ効果を加味した売電利益を評価するための指標である。放電価値率とは、単位電力量あたりの放電価値である。 
 また放電価値率計算部53は、放電価値および放電価値率のそれぞれについて、予測値と、現実の値である実現値との双方を算出する。つまり放電価値率計算部53は、放電価値の予測値と、放電価値率の予測値と、放電価値の実現値と、放電価値率の実現値とを算出する。
 放電価値の予測値は、電力需要量の予測値を蓄電池システム4の放電で賄うケースでの買電損益の打ち消し額、と、PV発電量の予測値に基づく売電利益との和、として算出される。放電価値の予測値を算出するために、放電価値率計算部53は、電力需要量の予測値および発電量の予測値に加え、図3に示される充放電効率表と、図4Aおよび図4Bに示される電気料金表とを参照する。
 充放電効率表は、蓄電池システム4の充電電力(放電電力)の値と、その値の電力を充電する(放電する)効率とを対応付けた表である。図3によれば、例えば500ワット[W]の電力の充電効率および放電効率は0.8であることが示される。図3の表に無い値は補間により求めることができる。
 電気料金表は時間帯別の電気料金の一覧表である。図4Aは、買電単価の時間帯ごとの値の一例を示す。図4Aに示される契約では、昼間の需要ピークを含む時間帯における料金は、夜間における料金の3倍を超えることが分かる。図4Bは、PVモジュール2による余剰電力の買い取り価格の一例を示す図である。図4Bには、電力買取価格は時間帯によらず一律34円であることが示される。
 放電価値率の予測値は、放電価値の予測値を、蓄電池システム4の放電量(電力需要量の予測値)で除算して算出される。
 放電価値の実現値は、電力需要量の実現値を蓄電池システム4の放電で賄うとした条件下における買電損益の打ち消し額と、PV発電量の実現値に基づく売電利益との和、として算出される。放電価値率の実現値は、放電価値の実現値を電力需要量の実現値で除算した値である。
 ルール作成部54は、放電価値率の予測値と蓄電池システム4の充電残量とに基づいて蓄電池システムの放電ルールを決定し、制御部55に渡す。制御部55は、上記放電ルールと放電価値率の実現値とに基づいて、蓄電池システム4を放電させる。
 放電価値率計算部53およびルール作成部54は、作成部として機能する。作成部は、電力需要量の予測値と発電量の予測値とに基づいて、蓄電池システム4の放電戦略を作成する。放電価値率計算部53により算出される放電価値率を用いることで、有利な放電戦略を作成することが可能になる。有利な放電戦略とは、売電利益から買電損益を減算した差し引き額を、押し上げ効果を利用して最大化する、放電戦略である。
 制御部55は、電力需要量の実現値と、発電量の実現値と、放電戦略とに基づいて、蓄電池システム4の放電を制御する。蓄電池システム4は、制御部55から与えられる充放電指示に従って、電力を充電し、放電する。
 ホームサーバ5は、例えば、汎用のコンピュータを基本ハードウェアとして用いて、実現することが可能である。すなわち、ホームサーバ5における各機能ブロックはコンピュータのCPU(Central Processing Unit)にプログラムを実行させることにより実現可能である。ホームサーバ5は、上記プログラムをコンピュータにあらかじめインストールすることで実現可能である。あるいは上記プログラムをCD-ROMなどの記憶媒体に記憶して、またはネットワークを介して配信してコンピュータにインストールすることで実現してもよい。
 図5に示されるように、コンピュータは、CPU、メモリ、ハードディスク、インタフェース(IF)、および、グラフィックインタフェース(GUI)を備え、これらはバスを介して接続される。ホームサーバ5の機能を実現するプログラムはハードディスク上に格納され、実行時にメモリに展開されたのち手順に従って実行される。ホームサーバ5はPV発電量と家電群3による電力需要量とを計測するためのインタフェースと、蓄電池システム4とのインタフェースと、ネットワークとのインタフェースとを備える。
 特に、ホームサーバ5は図2に示される機能ブロックに加え、パワーコンディショニングシステムを備えても良い。このような形態では、ホームサーバ5を組み込み機器(embedded apparatus)として実現して屋外に設置するようにしても良い。
 図6は、放電ルールの作成に係わる処理手順の一例を示すフローチャートである。PV発電予測部52は、PV発電量の予測値を算出し(ステップS1)、その時系列PV(t)を得る。電力需要予測部51は、電力需要量の予測値を算出し(ステップS2)、その時系列D(t)を得る。 
 ここでtは1日における時刻を示す変数である。例えば1日(基準期間)を1分(単位期間)の集合で表すとすれば、tは0~1439の値をとる。
 次に、ルール作成部54は、蓄電池システム4の充電ルールを作成する。買電損益を最小にするため、電力料金の安い時間帯になるべく短期間で充電が完了するような充電ルールを求める。電力料金が最低の時間帯が終了する時刻をTeとすると、ルール作成部54は、このTeに蓄電池システム4が満充電となる計画を生成する。
 図7Aは、図4Aに示される電気料金表を示すグラフである。図7AにおいてTeは午前7:00である。充電前の蓄電池システム4の残量を空とし、電池容量を5kWh、充電可能電力を5kWとする。例として図7Bに示されるように、6:00~7:00の間に蓄電池システム4を5kWで充電するという計画を立てることができる。
 次に、放電価値率計算部53は、次式(1)~(4)に基づいて放電価値の予測値V(t)の時系列を算出する(ステップS4)。第1の実施形態では、時刻Teから、電気料金が最低の時間が開始する時刻Tsまでの時系列を算出するとする。つまりV(t)は、単位期間である1分ごとの値が算出される。 
Figure JPOXMLDOC01-appb-M000001
 式(1)におけるPVovD(t)は、PV発電量の予測値が電力需要量の予測値を超えるケースでは両者の差であり、PV発電量の予測値が電力需要量の予測値以下のケースでは0である系列である。 
 式(2)におけるDovPV(t)は、電力需要量の予測値がPV発電量の予測値を超えるケースでは両者の差であり、電力需要量の予測値がPV発電量の予測値以下のケースでは0である系列である。 
 式(3)のPVpush(t)は、PV(t)とD(t)とのうち小さいほうの値である。このPVpush(t)は、電力需要量の予測値を蓄電池システム4の放電で賄うことでPV売電量を押し上げ可能な発電量の系列である。 
 式(4)のV(t)は、その時刻にD(t)分放電することで得られる価値、すなわち放電価値を示す。ここでPRsellはPV売電買い取り価格を示し、PR(t)は電力料金を示す。右辺第1項は、押し上げられたPV発電量の分の売電価格であり、PVモジュール2の発電量に基づく売電利益の予測値を示す。右辺第2項は電力需要量の予測値を蓄電池システム4の放電で賄う場合の、買電損益の打ち消し額を示す。
 図8Aは、PV発電量予測値PV(t)の一例を示すグラフである。図8Bは電力需要量予測値D(t)の一例を示すグラフである。図8Cは、放電価値V(t)の一例を示すグラフである。放電価値V(t)は、PV(t)、D(t)、図4Aに示されるPR(t)、および図4Bに示されるPRsellを用いて、式(4)に基づいて算出される。図8A、図8B、および図8Cの各グラフにおいて横軸は時間を示し、0時から通算した“分”の累積値である。縦軸は各分ごとの値を示す。
 図6に戻り、次に、放電価値率計算部53は、放電価値V(t)および電力需要量D(t)から放電価値率の予測値E(t)の時系列を、式(5)に基づいて算出する(ステップS5)。つまりE(t)は、V(t)を放電量(または需要量の予測値)で除算した値である。 
Figure JPOXMLDOC01-appb-M000002
 式(5)におけるf(D(t))は、D(t)の電力を得るために蓄電池システム4から実際に放電される放電量、を表す関数である。例えば1kWに対する放電効率を95%とすれば、f(1kW)=1.052kWとなる。関数fによる変換後の値は、図3に示される充放電効率表を利用して求められる。
 図9は放電価値率の予測値E(t)の一例を示すグラフである。ここでは充放電効率を1とした。図9に示されるグラフはTe(7:00)~Ts(23:00)間におけるE(t)を示す。E(t)の値は、例えば、1020分(17:00)以降の値に比べて、600分(10:00)近傍における値のほうが高い。これは、蓄電池システム4を、600分の近傍で放電させるほうが、高い効率を得られることを示す。つまり蓄電池システム4を、600分の近傍で放電させれば、売電利益と買電損益との差し引きを、より高めることができる。
 次に放電価値率計算部53は、時刻インデックスtを、E(t)の高い順にソートする。E(t)が同じであれば、需要量の予測値D(t)の大きい時刻インデックスtの順位を高くする。そして放電価値率計算部53は、ソートしたtの順にD(t)を累積加算し、D(t)の合計が蓄電池システム4の充電量(放電可能量)を初めて超える時刻tth、を算出する(ステップS6)。
 つまり放電価値率計算部53は、放電価値率の予測値E(t)の高い時刻tから順に加算したD(t)の合計、が蓄電池システム4の1日における総放電量以上となる時刻tth、を特定する。時刻tthにおけるE(t)をEtthとする。Etthは、蓄電池システム4を放電させるか否かを判定するための閾値である。
 図9の例ではtth=667分目となり、その時のE(667)=33.96(円/kWh)である。つまり閾値は33.96円/kWである。以上説明したように、第1の実施形態では、予測対象とする日の放電ルールを、“放電価値率Eの実現値が33.96以上になれば、蓄電池システム4を放電する”と定める。放電価値率計算部53は、閾値Etth(=33.96)を制御部55に渡す(ステップS7)。
 図10は、蓄電池システム4の放電オン/オフ制御の一例を示す図である。ディジット1は放電実施する(放電オン)を示し、ディジット0は放電実施せず(放電オフ)を示す。PV発電量に基づく既存の制御に比べて、放電制御が、より、きめ細かく実行されることが示される。図10においては、PV発電量予測および電力需要量予測が正確であることを仮定した。また、放電量と各時刻の電力需要量とが等しいことを仮定した。
 図10に示されるような放電制御は、放電ルールとしての閾値Etthを計算することで実現される。閾値Etthに基づく放電戦略は、1日を1分ずつ刻んだ各期間ごとに、蓄電池システム4の放電量を、E(t)の高さの順に配分する、という戦略である。
 図11は、制御部55の処理手順の一例を示すフローチャートである。制御部55は、閾値Etthに基づいて、蓄電池システム4の放電をオン/オフ制御する。なお、充電については、夜間の電気代の安い時間帯に蓄電池システム4が満充電になれば良い。以下では放電の制御について説明する。
 制御部55は、放電ルールとしての閾値Etthを取得する(ステップS11)。次に制御部55は、PV発電量の実現値(PVact)と、電力需要量の実現値(Dact)とを取得する(ステップS12,S13)。PVactは、例えばPVモジュール2に内蔵されるセンサ、または、PVモジュール2に接続されるPCSに内蔵されるセンサ、により計測される。Dactは、例えば分電盤1に接続されるセンサにより計測される。
 次に制御部55は、現在時刻の放電価値、つまり放電価値の実現値Vactを、式(6)~(9)により求める(ステップS14)。なお式(6)~(9)および(10)における添え字actは、実現値であることを示す。 
Figure JPOXMLDOC01-appb-M000003
 式(6)におけるPVovDactは、PV発電量の実現値が電力需要量の実現値を超えるケースでは両者の差であり、PV発電量の実現値が電力需要量の実現値以下のケースでは0である系列である。 
 式(7)におけるDovPVactは、電力需要量の実現値がPV発電量の実現値を超えるケースでは両者の差であり、電力需要量の実現値がPV発電量の実現値以下のケースでは0である系列である。 
 式(8)のPVpushactは、PVactとDactとのうち小さいほうの値である。このPVpushactは、電力需要量の実現値を蓄電池システム4の放電で賄うことでPV売電量を押し上げ可能な発電量、の系列である。 
 式(9)のVactは、現在時刻にDact分放電することで得られる価値、すなわち放電価値を示す。
 次に制御部55は、VactおよびDactから式(10)に基づいて放電価値率の実現値Eactを算出する(ステップS15)。 
Figure JPOXMLDOC01-appb-M000004
 Eactは、Dactを蓄電池システム4の放電で賄う場合の、買電損益の打ち消し額とPVactに基づく売電利益との和を、効率を加味した放電量で除算した値である。なお式(10)の分母を需要量の実現値Dactにしても良い。
 制御部55は、Eact≧EtthであればDact分の電力を放電すべく、蓄電池システム4に放電指示を与える。Eact<Etthであれば、制御部55はその時点で放電する価値は低いと看做し、放電を見送る。
 以上説明したように第1の実施形態では、押し上げ効果を考慮した正味の買電利益(あるいは売電損益)を評価しうる指標としての放電価値、を算出する。そして、放電量あたりの放電価値である放電価値率を算出する。そして放電価値率に基づいて、買電利益を最大化(あるいは売電損益を最小化)し得る放電戦略を作成するようにしている。
 つまり、限りある蓄電池システム4の電力を、放電価値の高い時間帯に放電させることの可能な放電ルールを作成することが可能になる。従って第1の実施形態によれば、売電による正味の利益を最大にすることが可能になる。
 放電ルールは放電価値率の閾値Etthにより与えられる。放電価値率の実現値が閾値Etth以上となるか否かに基づいて、蓄電池システム4の放電の可否が判定される。これにより、放電オン/オフを時刻で制御する既存の技術に比べ、ルールの数を減らして、リソースを節約することが可能になる。
 例えば、図10に示される時刻は、PV発電予測と電力需要量予測とが完全に正しいとしたケースでの放電時刻を示す。しかしながら予測を完全に当てることは難しいので、計画を時刻ベースで作成すると、放電価値率が低い時刻での放電や、放電価値が高い時刻での放電見送りが生じる可能性がある。つまり予測値に基づいて作成された運転計画は、実運用時の値と予測値とのずれによって、期待した光熱費削減を実現できない可能性がある。
 これに対し、PV発電量の予測値および電力需要量の予測値と、各量の実現値とが異なる場合でも、放電価値率に基づいて放電オン/オフを判定することで、平均的には妥当な放電戦略となる。つまり第1の実施形態では予測に基づく放電時刻でなく、放電価値という、全く新たな指標に基づいて放電制御を行うようにしている。しかも、実現値と閾値との比較により放電の可否が決められる。従って、予測値と実現値との乖離が生じてもなお光熱費の削減を期待することの可能な制御を実現することができる。 
 これらのことから、蓄エネルギー機器を有利な放電戦略のもとで運用可能なエネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバを提供することが可能となる。
 [第2の実施形態]
 図12は、第2の実施形態に係るエネルギー管理システムの一例を示すブロック図である。図12において図1と共通する部分には同じ符号を付して示し、ここでは異なる部分についてのみ説明する。第2の実施形態においては、第1の実施形態により実現される機能を、クラウドコンピューティングシステムに備えられるクラウドサーバ200と、需要家に設けられるローカルサーバ6との協調動作により実現する。クラウドサーバ200はいわゆるインターネット、あるいはIP(Internet Protocol)-VPN(Virtual Private Network)などの通信ネットワーク100を介してローカルサーバ6に接続される。
 図13は、クラウドサーバ200の一例を示す機能ブロック図である。クラウドサーバ200は、電力需要量予測部201、PV発電予測部202、放電価値率計算部203、および、ルール作成部204を備える。電力需要量予測部201およびPV発電予測部202は、図1に示される電力需要量予測部51およびPV発電予測部52と同様の機能を持つ。第2の実施形態に特有のメリットとして、電力需要量予測部201およびPV発電予測部202は、クラウドコンピューティングシステムに備わる膨大なデータベースや計算機リソースを利用することが可能である。これにより電力需要量、PV発電量のいずれも、より正確な予測値を得られることを期待できる。
 放電価値率計算部203は、第1の実施形態と同様に、放電価値率の予測値の時系列を算出する。ルール作成部204は、第1の実施形態と同様に、放電価値率の閾値Etthを算出する。これに加えてルール作成部204は、放電ルール(放電戦略)としての閾値Etthを通信ネットワーク100を介してローカルサーバ6に通知する、通知部としての機能も備える。さらにルール作成部は通信ネットワーク100を介してローカルサーバ6から蓄電地システム4の蓄電池残量を取得し、放電戦略の作成に利用する。
 図14は、ローカルサーバ6の一例を示す機能ブロック図である。ローカルサーバ6は、放電価値率計算部61と、制御部62と、蓄電池情報収集部63とを備える。放電価値率計算部61は、電力需要量およびPV発電量の実現値に基づいて、第1の実施形態と同様にして放電価値率の実現値を算出する。
 制御部62は、クラウドサーバから通知される閾値Etthを受信するインタフェースとしての機能を備える。さらに制御部62は、取得した閾値Etthに基づいて蓄電池システム4の放電を制御する。蓄電池情報収集部63は、蓄電池システム4の現在の状態や蓄電池残量などの情報を、取得し、通信ネットワーク100を介してクラウドサーバ200に通知する。
 図15に示されるように、クラウドサーバ200はCPU、メモリ、ハードディスク、インタフェース、および、GUIと、これらを接続するバスを備える。クラウドサーバ200の機能を実現するプログラムはハードディスク上に格納され、実行時にメモリに展開されたのち手順に従って実行される。
 クラウドサーバ200はネットワーク100に接続されるインタフェースを備え、このインタフェースを介してローカルサーバ6と通信する。具体的には、クラウドサーバ200はインタフェースを介して閾値Etthをローカルサーバ6に通知し、蓄電池残量をローカルサーバ6から取得する。
 図16に示されるように、ローカルサーバ6はCPU、メモリ、ハードディスク、インタフェース、および、GUIと、これらを接続するバスを備える。ローカルサーバ6の機能を実現するプログラムはハードディスク上に格納され、実行時にメモリに展開されたのち手順に従って実行される。
 ローカルサーバ6は、住宅10の情報ラインに接続されてPV発電量、電力需要量を取得し、蓄電池システム4と通信するインタフェースを備える。併せて、ローカルサーバ6は、ネットワーク100に接続されるインタフェースを備え、このインタフェースを介してクラウドサーバ200と通信する。具体的には、ローカルサーバ6はインタフェースを介して閾値Etthをクラウドサーバ200から取得し、蓄電池残量をクラウドサーバ200に通知する。
 以上述べたように第2の実施形態では、エネルギー管理システムに係わる機能オブジェクトをクラウドサーバ200およびローカルサーバ6に分散配置し、両者のインタフェースを規定した。つまりクラウドサーバ200において放電戦略を規定し、放電ルールをインタフェースを介してローカルサーバに通知する。また、放電戦略の作成に要する情報はクラウドコンピューティングシステムにおいて取得するか、ローカルサーバからインタフェースを介してクラウドサーバ200に通知するようにした。
 このような形態によれば、クラウドコンピューティングシステムの膨大な計算機リソースを利用することが可能になる。例えばPV発電予測や電力需要量予測は負荷の高い計算を要する場合があるが、第2の実施形態によれば予測値を高精度で、かつ、短時間で算出することが可能になる。精度の高いPV発電量予測値や電力需要量予測値を利用すれば、放電戦略の妥当性をさらに高められることは言うまでもない。
 これらのことから第2の実施形態によっても、蓄エネルギー機器を有利な放電戦略のもとで運用可能なエネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバを提供することが可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示するものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (14)

  1.  蓄エネルギー機器と創エネルギー機器とを備える需要家のエネルギーを管理するエネルギー管理システムであって、
     前記需要家におけるエネルギーの需要量を予測して前記需要量の予測値を得て、前記創エネルギー機器のエネルギーの生産量を予測して前記生産量の予測値を得る予測部と、
     売電利益から買電損益を減算した差し引き額を前記蓄エネルギー機器の放電による売電量の押し上げ効果を利用して最大化可能な放電戦略を、前記需要量の予測値と前記生産量の予測値とに基づいて作成する作成部と、
     前記需要量の実現値および前記生産量の実現値と、前記放電戦略とに基づいて前記蓄エネルギー機器の放電を制御する制御部とを具備する、エネルギー管理システム。
  2.  前記需要家に設けられるローカルサーバと、このローカルサーバにネットワークを介して接続されるクラウドサーバとを具備し、
     前記クラウドサーバは、前記予測部と、前記作成部と、前記放電戦略を前記ネットワークを介して前記ローカルサーバに通知する通知部とを備え、
     前記ローカルサーバは、前記制御部と、前記通知された放電戦略を受信するインタフェースとを備える、請求項1に記載のエネルギー管理システム。
  3.  前記作成部は、
      前記予測された需要量を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記予測された生産量に基づく売電利益との和である放電価値の予測値を、基準期間内における単位期間ごとに算出し、
      前記放電価値の予測値を前記放電量で除算した値である放電価値率の予測値を前記単位期間ごとに算出し、
      前記蓄エネルギー機器の放電量をそれぞれの単位期間に、前記放電価値率の予測値の高さの順に配分する放電戦略を作成する、請求項1および2のいずれか1項に記載のエネルギー管理システム。
  4.  前記作成部は、
      前記需要量の予測値を前記放電価値率の予測値の高い単位期間から順に加算した合計値が前記総放電量以上になる単位期間を特定し、
      前記特定された単位期間における放電価値率の予測値を閾値とし、
     前記制御部は、
      前記需要量の実現値を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記生産量の実現値に基づく売電利益との和を前記放電量で除算した値である放電価値率の実現値を算出し、
      前記放電価値率の実現値が前記閾値以上のときに前記蓄エネルギー機器を放電させる、請求項3に記載のエネルギー管理システム。
  5.  蓄エネルギー機器と創エネルギー機器とを備える需要家のエネルギーを管理するエネルギー管理方法であって、
     前記需要家におけるエネルギーの需要量を予測して前記需要量の予測値を得て、
     前記創エネルギー機器のエネルギーの生産量を予測して前記生産量の予測値を得て、 売電利益から買電損益を減算した差し引き額を前記蓄エネルギー機器の放電による売電量の押し上げ効果を利用して最大化可能な放電戦略を、前記需要量の予測値と前記生産量の予測値とに基づいて作成し、
     前記需要量の実現値および前記生産量の実現値と、前記放電戦略とに基づいて前記蓄エネルギー機器の放電を制御する、エネルギー管理方法。
  6.  前記作成することは、
      前記予測された需要量を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記予測された生産量に基づく売電利益との和である放電価値の予測値を、基準期間内における単位期間ごとに算出し、
      前記放電価値の予測値を前記放電量で除算した値である放電価値率の予測値を前記単位期間ごとに算出し、
      前記蓄エネルギー機器の放電量をそれぞれの単位期間に、前記放電価値率の予測値の高さの順に配分する放電戦略を作成する、請求項5に記載のエネルギー管理方法。
  7.  前記作成することは、
      前記需要量の予測値を前記放電価値率の予測値の高い単位期間から順に加算し、
      前記加算して得られた前記需要量の合計が前記総放電量以上となる単位期間を特定し、
      前記特定された単位期間における放電価値率の予測値を閾値とし、
     前記制御することは、
      前記需要量の実現値を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記生産量の実現値に基づく売電利益との和を前記放電量で除算した値である放電価値率の実現値を算出し、
      前記放電価値率の実現値が前記閾値以上のときに前記蓄エネルギー機器を放電させる、請求項6に記載のエネルギー管理方法。
  8.  請求項5乃至7のいずれか1項に記載の方法をコンピュータに実行させるための命令を含む、プログラム。
  9.  蓄エネルギー機器と創エネルギー機器とを備える需要家のエネルギーを管理するサーバ装置であって、
     前記需要家におけるエネルギーの需要量を予測して前記需要量の予測値を得る需要量予測部と、
     前記創エネルギー機器のエネルギーの生産量を予測して前記生産量の予測値を得る生産量予測部と、
     売電利益から買電損益を減算した差し引き額を前記蓄エネルギー機器の放電による売電量の押し上げ効果を利用して最大化可能な放電戦略を、前記需要量の予測値と前記生産量の予測値とに基づいて作成する作成部と、
     前記放電戦略をネットワークを介して前記需要家に通知する通知部とを具備する、サーバ装置。
  10.  前記作成部は、
      前記予測された需要量を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記予測された生産量に基づく売電利益との和である放電価値の予測値を、基準期間内における単位期間ごとに算出し、
      前記放電価値の予測値を前記放電量で除算した値である放電価値率の予測値を前記単位期間ごとに算出し、
      前記蓄エネルギー機器の放電量をそれぞれの単位期間に、前記放電価値率の予測値の高さの順に配分する放電戦略を作成する、請求項9に記載のサーバ装置。
  11.  前記作成部は、
      前記需要量の予測値を前記放電価値率の予測値の高い単位期間から順に加算した合計値が前記総放電量以上になる単位期間を特定し、
      前記特定された単位期間における放電価値率の予測値を閾値とし、
     前記通知部は、前記閾値を前記需要家に通知する、請求項10に記載のサーバ装置。
  12.  蓄エネルギー機器と創エネルギー機器とを備える需要家に設けられるローカルサーバであって、
     売電利益から買電損益を減算した差し引き額を前記蓄エネルギー機器の放電による売電量の押し上げ効果を利用して最大化可能な放電戦略を、前記需要量の予測値と前記生産量の予測値とに基づいて作成する作成部と、
     前記需要量の実現値および前記生産量の実現値と、前記放電戦略とに基づいて前記蓄エネルギー機器の放電を制御する制御部とを具備する、ローカルサーバ。
  13.  前記作成部は、
      前記予測された需要量を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記予測された生産量に基づく売電利益との和である放電価値の予測値を、基準期間内における単位期間ごとに算出し、
      前記放電価値の予測値を前記放電量で除算した値である放電価値率の予測値を前記単位期間ごとに算出し、
      前記蓄エネルギー機器の放電量をそれぞれの単位期間に、前記放電価値率の予測値の高さの順に配分する放電戦略を作成する、請求項12に記載のローカルサーバ。
  14.  前記作成部は、
      前記需要量の予測値を前記放電価値率の予測値の高い単位期間から順に加算した合計値が前記総放電量以上になる単位期間を特定し、
      前記特定された単位期間における放電価値率の予測値を閾値とし、
     前記制御部は、
      前記需要量の実現値を前記蓄エネルギー機器の放電で賄う場合の前記買電損益の打ち消し額と前記生産量の実現値に基づく売電利益との和を前記放電量で除算した値である放電価値率の実現値を算出し、
      前記放電価値率の実現値が前記閾値以上のときに前記蓄エネルギー機器を放電させる、請求項13に記載のローカルサーバ。
PCT/JP2013/070759 2012-11-21 2013-07-31 エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ WO2014080667A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13815363.0A EP2924838B1 (en) 2012-11-21 2013-07-31 Energy management system, energy management method, program, server device, and local server
US14/031,754 US9727929B2 (en) 2012-11-21 2013-09-19 Energy management system, energy management method, program, server apparatus, and local server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-255301 2012-11-21
JP2012255301A JP6042184B2 (ja) 2012-11-21 2012-11-21 エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/031,754 Continuation US9727929B2 (en) 2012-11-21 2013-09-19 Energy management system, energy management method, program, server apparatus, and local server

Publications (1)

Publication Number Publication Date
WO2014080667A1 true WO2014080667A1 (ja) 2014-05-30

Family

ID=50775859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070759 WO2014080667A1 (ja) 2012-11-21 2013-07-31 エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ

Country Status (3)

Country Link
EP (1) EP2924838B1 (ja)
JP (1) JP6042184B2 (ja)
WO (1) WO2014080667A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193421A4 (en) * 2014-09-12 2018-02-21 Kabushiki Kaisha Toshiba Device operation plan creation device, device operation plan creation method, and storage medium storing device operation plan creation program
CN111008909A (zh) * 2019-11-19 2020-04-14 远景智能国际私人投资有限公司 储能系统的防逆流保护方法、装置、设备及存储介质
JP7048797B1 (ja) 2021-06-04 2022-04-05 株式会社東芝 管理装置、管理方法、および管理プログラム
CN116090664A (zh) * 2023-03-06 2023-05-09 广州东方电科自动化有限公司 一种基于园区储能和风光气电水的多能互补优化系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038085B2 (ja) * 2014-08-28 2016-12-07 横河電機株式会社 産業用デマンドレスポンス制御システムおよび産業用デマンドレスポンス制御方法
JP6456153B2 (ja) * 2015-01-16 2019-01-23 三菱電機株式会社 電力制御装置、充放電制御方法およびプログラム
WO2016166836A1 (ja) * 2015-04-15 2016-10-20 三菱電機株式会社 機器管理装置、機器管理システム、機器管理方法及びプログラム
EP3306780B1 (en) * 2015-06-08 2019-12-04 Kyocera Corporation Power conversion device, power management device, and power management method
JP6069597B1 (ja) * 2015-06-08 2017-02-01 京セラ株式会社 電力変換装置、電力管理装置及び電力管理方法
JP6425818B2 (ja) * 2015-08-04 2018-11-21 三菱電機株式会社 電力制御装置、コスト表示方法、及び、プログラム
JP6065165B1 (ja) * 2015-08-26 2017-01-25 中国電力株式会社 充放電量制御装置
JP7024793B2 (ja) * 2017-08-09 2022-02-24 住友電気工業株式会社 電力管理装置、電力管理システム、電力管理方法及び制御プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304402A (ja) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
JP2011072166A (ja) 2009-09-28 2011-04-07 Panasonic Electric Works Co Ltd 系統連系形給電システム
JP2011092002A (ja) 2006-04-24 2011-05-06 Panasonic Corp 負荷制御装置
JP2011130618A (ja) * 2009-12-18 2011-06-30 Panasonic Corp 電力制御装置および電力制御方法
WO2011086886A1 (ja) * 2010-01-12 2011-07-21 パナソニック株式会社 需給制御装置、需給制御方法、および、需給制御システム
JP2012222860A (ja) * 2011-04-04 2012-11-12 Denso Corp 電力供給システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054439A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 電力システム
JP5071545B2 (ja) * 2010-10-06 2012-11-14 株式会社デンソー 電力需給システム
US20120232969A1 (en) * 2010-12-31 2012-09-13 Nest Labs, Inc. Systems and methods for updating climate control algorithms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304402A (ja) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
JP2011092002A (ja) 2006-04-24 2011-05-06 Panasonic Corp 負荷制御装置
JP2011072166A (ja) 2009-09-28 2011-04-07 Panasonic Electric Works Co Ltd 系統連系形給電システム
JP2011130618A (ja) * 2009-12-18 2011-06-30 Panasonic Corp 電力制御装置および電力制御方法
WO2011086886A1 (ja) * 2010-01-12 2011-07-21 パナソニック株式会社 需給制御装置、需給制御方法、および、需給制御システム
JP2012222860A (ja) * 2011-04-04 2012-11-12 Denso Corp 電力供給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMADA; KUROKAWA: "Insolation Forecasting Using Weather Forecast with Weather Change Patterns", IEE TRANS. PE, vol. 127, no. 11, 2007, pages 1219 - 1225

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193421A4 (en) * 2014-09-12 2018-02-21 Kabushiki Kaisha Toshiba Device operation plan creation device, device operation plan creation method, and storage medium storing device operation plan creation program
CN111008909A (zh) * 2019-11-19 2020-04-14 远景智能国际私人投资有限公司 储能系统的防逆流保护方法、装置、设备及存储介质
JP7048797B1 (ja) 2021-06-04 2022-04-05 株式会社東芝 管理装置、管理方法、および管理プログラム
JP2022186394A (ja) * 2021-06-04 2022-12-15 株式会社東芝 管理装置、管理方法、および管理プログラム
CN116090664A (zh) * 2023-03-06 2023-05-09 广州东方电科自动化有限公司 一种基于园区储能和风光气电水的多能互补优化系统
CN116090664B (zh) * 2023-03-06 2023-10-10 广州东方电科自动化有限公司 一种基于园区储能和风光气电水的多能互补优化系统

Also Published As

Publication number Publication date
JP2014103811A (ja) 2014-06-05
EP2924838A4 (en) 2016-11-16
EP2924838A1 (en) 2015-09-30
JP6042184B2 (ja) 2016-12-14
EP2924838B1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6042184B2 (ja) エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ
Sevilla et al. Techno-economic analysis of battery storage and curtailment in a distribution grid with high PV penetration
JP5996460B2 (ja) エネルギー管理装置、エネルギー管理システム、エネルギー管理方法およびプログラム
Dufo-López Optimisation of size and control of grid-connected storage under real time electricity pricing conditions
Ghofrani et al. A framework for optimal placement of energy storage units within a power system with high wind penetration
Chen et al. Optimal allocation and economic analysis of energy storage system in microgrids
Nagarajan et al. Design and strategy for the deployment of energy storage systems in a distribution feeder with penetration of renewable resources
Zhu et al. The case for efficient renewable energy management in smart homes
Bahramirad et al. Practical modeling of Smart Grid SMS™ storage management system in a microgrid
WO2014119153A1 (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ
WO2014034391A1 (ja) エネルギー管理システム、サーバ、エネルギー管理方法および記憶媒体
Zhang et al. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack
JP2017229233A (ja) エネルギー管理システム、エネルギー管理方法、プログラム、サーバおよびクライアント装置
JP6045945B2 (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ装置
US20140257585A1 (en) Energy management system, energy management method, and medium
WO2013141039A1 (ja) エネルギー管理装置、エネルギー管理方法およびプログラム
US9727929B2 (en) Energy management system, energy management method, program, server apparatus, and local server
Li et al. Operation cost minimization of droop-controlled DC microgrids based on real-time pricing and optimal power flow
Wang et al. Operation of residential hybrid renewable energy systems: Integrating forecasting, optimization and demand response
US9806525B2 (en) Energy storage system
Carpinelli et al. Optimal operation of electrical energy storage systems for industrial applications
Safipour et al. Optimal planning of energy storage systems in microgrids for improvement of operation indices
Leng et al. Two-stage stochastic programming for coordinated operation of distributed energy resources in unbalanced active distribution networks with diverse correlated uncertainties
Logenthiran et al. Optimal selection and sizing of distributed energy resources for distributed power systems
KR20140052467A (ko) 에너지 저장장치 운영방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013815363

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13815363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE