WO2014080599A1 - 電力供給システム、電力変換装置、計測点切替装置 - Google Patents

電力供給システム、電力変換装置、計測点切替装置 Download PDF

Info

Publication number
WO2014080599A1
WO2014080599A1 PCT/JP2013/006689 JP2013006689W WO2014080599A1 WO 2014080599 A1 WO2014080599 A1 WO 2014080599A1 JP 2013006689 W JP2013006689 W JP 2013006689W WO 2014080599 A1 WO2014080599 A1 WO 2014080599A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
period
supplied
storage battery
Prior art date
Application number
PCT/JP2013/006689
Other languages
English (en)
French (fr)
Inventor
悟 田舎片
洋 永里
裕章 加来
好克 井藤
聖師 安藤
井平 靖久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/646,519 priority Critical patent/US9590422B2/en
Priority to EP13856549.4A priority patent/EP2924840B1/en
Priority to JP2014548448A priority patent/JP6195206B2/ja
Publication of WO2014080599A1 publication Critical patent/WO2014080599A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a power supply system, and more particularly, to a power supply system that uses a combination of a power supply other than a system power supply and a cogeneration apparatus. Furthermore, this invention relates to the power converter device used for this electric power supply system, and the measuring point switching apparatus used for this electric power supply system.
  • Document 1 describes a technique for performing a reverse power flow of surplus power of a solar cell and preventing a power outflow from the storage battery to the system.
  • a cogeneration apparatus uses a gas engine in addition to a fuel cell.
  • the present invention can increase the utilization rate of the cogeneration apparatus, contribute to the reduction of utility costs, and secure the amount of heat necessary for hot water supply.
  • An object is to provide an electric power supply system. Furthermore, an object of this invention is to provide the power converter device used for this electric power supply system, and the measuring point switching apparatus used for this electric power supply system.
  • a power supply system includes a distribution board including a main breaker connected between a system power supply and a first load, and supplies power to the main breaker during a period in which power is supplied from the system power supply.
  • a power conversion device having a connection terminal to be supplied and a self-supporting terminal for extracting power during a period when power supply from the system power supply is stopped, and power is supplied from the distribution board during a period when power is supplied from the system power supply
  • a self-sustained distribution board that is fed from the self-supporting terminal of the power conversion device and connected to a second load during a period in which power supply from the system power supply is stopped;
  • a first current sensor that monitors a current passing through the main breaker is selected during a period in which power is supplied from a power source, and the self-contained distribution board is provided from the power converter during a period in which
  • a measuring point switching device that selects a second current sensor that monitors the current supplied to the cogeneration device, wherein the cogeneration device includes the first current sensor selected by the measuring point switching device and the second current sensor. Using one output with the current sensor, the output is adjusted so that the power output from the cogeneration apparatus is consumed by the first load and the second load.
  • the cogeneration apparatus is preferably a fuel cell.
  • the power supply selector further selects a first state in which the independent distribution board is connected to the distribution board and a second state in which the independent distribution board is connected to the independent terminal of the power converter. It is preferable to provide.
  • the power conversion device can connect a solar battery and a storage battery, and at least one of the power generated by the solar battery and the power stored in the storage battery is supplied from the system power supply.
  • the power to be transmitted is preferably configured to allow a reverse power flow to the system power supply.
  • the power conversion device performs a reverse power flow of surplus power that is not consumed by either the first load or the second load among the power generated by the solar cell, and the electricity charge
  • a first operation mode in which the storage battery is charged during a time zone where the unit price of the battery is relatively low, while discharging from the storage battery during a time zone where the unit price of the electricity rate is relatively high, and the electric power generated by the solar cell
  • a second operation mode in which the surplus power is used for charging the storage battery, and the storage battery is discharged from the storage battery during a period in which the solar battery does not generate power
  • a third operation mode in which the storage battery is maintained in a fully charged state. More preferably, it is selectable.
  • the power converter according to the present invention is used in any one of the above-described power supply systems.
  • the measurement point switching device according to the present invention is used in any one of the above-described power supply systems.
  • the output of the cogeneration device is controlled based on the current passing through the main breaker that receives power from the system power supply, power is also supplied from the cogeneration device to the load that is supplying power through the main breaker. Will be supplied.
  • the utilization rate of the cogeneration apparatus is increased.
  • the power supply system described below includes a distribution board 30, a power conversion device 50, a self-supporting distribution board 40, a cogeneration device (fuel cell 24), and a measurement point switching device 10.
  • the distribution board 30 includes a main breaker 31 connected between the system power supply 21 and the first load (load 60).
  • the power conversion device 50 includes a connection terminal 55 that supplies power to the main breaker 31 during a period in which power is supplied from the system power supply 21, and a self-supporting terminal 56 that extracts power during a period when power supply from the system power supply 21 is stopped. .
  • the independent distribution board 40 is supplied with power from the distribution board 30 during a period when power is supplied from the system power supply 21, and is supplied from the independent terminal 55 of the power conversion device 50 during a period when supply from the system power supply 21 is stopped. And a second load (such as load 61) is connected.
  • the cogeneration apparatus is configured to be connected to a self-supporting distribution board 40 and perform power generation and water heating, and the generated power is prohibited from flowing backward to the system power supply 21.
  • the measurement point switching device 10 selects one of the first current sensor (current sensor 34) and the second current sensor (current sensor 45) in order to determine the power output from the cogeneration device.
  • the measurement point switching device 10 selects the first current sensor that monitors the current passing through the main breaker 31 during a period in which power is supplied from the system power supply 21.
  • the measurement point switching device 10 selects a second current sensor that monitors the current supplied from the power conversion device 50 to the self-supporting distribution board 40 during the period when the power supply from the system power supply 21 is stopped.
  • the cogeneration apparatus uses the output of one of the first current sensor and the second current sensor selected by the measurement point switching apparatus 10 and the power output from the cogeneration apparatus is a first load (load 60). ) And a second load (such as load 61).
  • the power supply system includes a power selector 44 that selects a first state in which the independent distribution board 40 is connected to the distribution board 30 and a second state in which the independent distribution board 40 is connected to the independent terminal 56 of the power converter 50. It is desirable.
  • the power converter 50 can be connected to the solar battery 22 and the storage battery 23.
  • the power conversion device 50 outputs at least one of the power generated by the solar battery 22 and the power stored in the storage battery 23 from the interconnection terminal 55 during a period in which power is supplied from the system power supply 21.
  • the power conversion device 50 outputs the power from the self-supporting terminal 56 during a period in which the power supply from the system power supply 21 is stopped.
  • the power converter 50 is configured such that the power generated by the solar cell 22 and the power output through the interconnection terminal 55 can be reversely flowed to the system power supply 21.
  • the power conversion device 50 performs reverse power flow of surplus power that is not consumed by either the first load (load 60) or the second load (load 61, etc.) of the power generated by the solar cell 22. Is desirable.
  • the power conversion device 50 can select a first operation mode, a second operation mode, and a third operation mode.
  • the first operation mode the storage battery 23 is charged in a time zone in which the unit price of the electricity rate is relatively low, while the battery 23 is discharged in a time zone in which the unit price of the electricity rate is relatively high.
  • the surplus power out of the power generated by the solar battery 22 is used for charging the storage battery 23 and discharged from the storage battery 23 during a period when the solar battery 22 does not generate power.
  • the third operation mode the storage battery 23 is maintained in a fully charged state.
  • the power supply system shown in the figure includes four types of power sources 21, a solar cell 22, a storage battery 23, and a fuel cell 24 as power sources for supplying power to a load.
  • the system power supply 21 means a power supply supplied from a power supply company such as an electric power company through a distribution network.
  • the fuel cell 24 uses a hydrogen gas generated by reforming a fuel gas containing methane or propane, and has a configuration in which a hot water storage unit 242 is provided in parallel with the power generation unit 241 of the fuel cell 24.
  • the hot water storage unit 242 is configured to increase the hot water temperature in the hot water storage tank using the exhaust heat generated in the power generation unit 241 and functions as a cogeneration device.
  • the fuel cell 24 has both functions of power generation and water heating. Furthermore, the fuel cell 24 includes an auxiliary heat source that performs additional heating when the amount of heat stored instead of hot water in the hot water tank is insufficient. In addition, the fuel cell 24 may include an auxiliary heat source used when chasing hot water stored in a bathtub.
  • the fuel cell 24 can communicate with a remote controller 25 used for managing the operation state. In the example shown in FIG. 3, the fuel cell 24 can communicate with two remote controllers 25 (see FIG. 1), which are a bathroom remote controller 251 and a kitchen remote controller 252. It has become.
  • the solar cell 22 is illustrated as a power source capable of reverse power flow to the power system 20, but the solar cell 22 is a power source that generates power using natural energy such as wind power, hydropower, and geothermal heat. Can be substituted.
  • the storage battery 23 and the fuel cell 24 are illustrated as power sources in which reverse power flow to the power system 20 is prohibited.
  • a cogeneration device that generates power using a gas engine (gas microturbine) may be used.
  • the customer arbitrarily selects whether or not to provide them. That is, these power supplies are introduced in a timely manner as necessary.
  • the power conversion device 50 is required to perform power conversion between alternating current and direct current.
  • the fuel cell 24 is introduced, it is necessary to additionally install a stand-alone distribution board 40 and the like.
  • the distribution line L1 connected to the system power supply 21 is connected to the distribution board 30.
  • the distribution board 30 incorporates a main breaker 31 connected to the distribution line L1 and a plurality of branch breakers 32 that branch power on the load side of the main breaker 31 in a housing (not shown).
  • Each branch breaker 32 supplies power to a load (first load) 60 through the branch line L2.
  • a plurality of loads 60 are collectively denoted by reference numerals, but the reference numerals 60 indicate individual loads.
  • the distribution board 30 further incorporates a cooperation breaker 33 and a first current sensor (current sensor 34).
  • Cooperation breaker 33 is inserted between power converter 50 mentioned below and distribution line L1.
  • the main breaker 31 and the cooperation breaker 33 are commonly connected to the distribution line L1.
  • the current sensor 34 is arranged so as to detect the current passing through the main breaker 31.
  • a current sensor 34 is arranged in the distribution line L1 so as to measure a current passing through an electric path between the connection point with the cooperation breaker 33 and the main breaker 31.
  • the current sensor 34 is arranged so as to individually detect currents of two voltage lines (U phase and W phase) of a single-phase three-wire.
  • the current sensor 34 is assumed to be a current transformer including a core as a specific configuration, but may be configured to use a coreless coil (so-called Rogowski coil) or a magnetic sensor. The same applies to the current sensors 35, 36, 43, 45, 45 A, and 45 B described below, and the specific configuration of each of the current sensors 35, 36, 43, 45, 45 A, and 45 B conforms to the configuration of the current sensor 34. .
  • One of the branch breakers 32 built in the distribution board 30 is connected to the independent distribution board 40 through a branch line L3 corresponding to a single-phase three-wire.
  • a power supply selector 44 that selects one of the power supplied from the branch breaker 32 and the power supplied from the power converter 50 and supplies the selected power to the independent distribution board 40 is inserted in the branch line L3.
  • the power selector 44 includes an electromagnetic relay.
  • the stand-alone distribution board 40 includes a load (second load) 61 that needs to be fed even when power is not supplied from the system power supply 21, a management device 62 that manages the operations of the loads 60, 61, and a measurement device 63. A path for supplying electric power to is formed.
  • a plurality of loads 61 are collectively denoted by reference numerals 61, but the reference numerals 61 indicate individual loads.
  • Reference numeral 62 represents a device group constituting the management device 62.
  • the load 60 is referred to as a “general load”
  • the load 61 is referred to as a “specific load”.
  • the self-supporting distribution board 40 includes a main breaker 41 and a plurality of branch breakers 42 in a housing (not shown).
  • Each branch breaker 42 supplies power to the specific load 61, the management device 62, the measurement device 63, and the measurement point switching device 10 described later through the branch line L ⁇ b> 4.
  • One of the branch breakers 41 is connected to the fuel cell 24 through the connection line L5.
  • the electric power generated by the fuel cell 24 can be supplied to the specific load 61, the management device 62, the measurement device 63, and the measurement point switching device 10. Further, since the electric power generated by the fuel cell 24 can be supplied to the distribution board 30 through the main breaker 41, the electric power can also be supplied from the fuel cell 24 to the general load 60.
  • the management device 62, the measurement device 63, and the measurement point switching device 10 operate with the electric power from the independent distribution board 40 when the power supply from the system power supply 21 is stopped, similarly to the specific load 61, 2 load. That is, the management device 62, the measurement device 63, and the measurement point switching device 10 operate with the power supplied through the main breaker 31 if power is supplied from the system power supply 21.
  • the measuring device 63 acquires the outputs of the current sensor 35 and the current sensor 43, calculates the power passing through the electric circuit (distribution line L1, connection line L5) in which the current sensors 35 and 43 are arranged, and calculates the calculated power. This information has a function of notifying the power conversion device 50 of this information. Further, the measuring device 63 monitors whether power is supplied from the system power supply 21 based on the output of the current sensor 35.
  • the current sensor 35 is arranged so as to measure the current passing through the distribution line L1, and monitors the power supply state of the system power supply 21.
  • the current sensor 43 is arranged so as to measure the current passing through the connection line L5, and monitors the supply state of power from the fuel cell 24.
  • the alternate long and short dash line indicates a communication path, and for example, serial communication with specifications conforming to the RS485 standard is performed. It is not essential that the communication path conforms to the RS485 standard, and it is also possible to use a wireless communication path or perform communication using a power line carrier communication technique using a wired communication path. These communication technologies may be used in combination.
  • the distribution board 30 includes a linkage breaker 33 connected to the primary circuit (distribution line L1) of the main breaker 31 in the casing.
  • the main breaker 31 and the interconnection breaker 33 are commonly connected to the distribution line L1.
  • the cooperation breaker 33 forms a path for supplying the power generated by the solar battery 22 to the primary circuit of the main breaker 31, and forms a path for using the power received from the system power supply 21 for charging the storage battery 23.
  • the cooperation breaker 33 is a so-called remote control breaker, and is configured to be switched on and off in accordance with an instruction from the power conversion device 50.
  • the power conversion device 50 is connected to the solar battery 22 and the storage battery 23, and has a function of transferring power to and from the distribution board 30 and a function of supplying power to the independent distribution board 40. Therefore, a power converter 51 is provided that converts DC power generated by the solar battery 22 or DC power stored in the storage battery 23 into AC power equivalent to the system power supply 21.
  • the power conversion device 50 also includes a transformer 52 that converts the power output from the power converter 51 via two lines into three lines.
  • the power converter 51 also has a function of managing the charging current of the storage battery 23 and a function of managing the power when the surplus power that is not used by the customer among the power generated by the solar battery 22 is caused to flow backward to the distribution line L1.
  • the charging current of the storage battery 23 is monitored inside the power conversion device 50, and the power to be reversely flowed to the distribution line L1 is obtained by monitoring the output of the current sensor 36 that measures the current passing through the distribution line L1.
  • the power converter 51 includes a first conversion circuit that converts DC power generated by the solar battery 22 into AC power equivalent to the system power supply 21, and a second conversion circuit that charges and discharges the storage battery 23. Prepare.
  • the power converter 51 includes a first connection part connected to the interconnection breaker 33 and a second connection part that supplies power to the transformer 52.
  • the first connecting portion is connected to the distribution line L1 via the cooperation breaker 33, and system interconnection is possible.
  • the first connection portion is a single-phase three-wire system, and is connected to the cooperation breaker 33 through the connection line L6. It is connected to a distribution line L1 that is a primary side of the main breaker 31 via a linkage breaker 33.
  • the 1st connection part in the converter 51 is called the interconnection terminal 55.
  • connection line L6 is a path for supplying AC power generated by the solar battery 22 or AC power obtained from the power stored in the storage battery 23 to the main breaker 31 of the distribution board 30, or the power generated by the solar battery 22 is a distribution line. It is used as a path for reverse flow to L1.
  • the connection line L6 is also used as a path for charging the storage battery 23 using power supplied from the system power supply 21 through the distribution line L1.
  • the voltage between the terminals of the interconnection terminal 55 is determined by the line voltage of the power system 20.
  • the second connection part of the power converter 51 does not output power to the transformer 52 during a period when power can be received from the system power supply 21, and outputs power to the transformer 52 during a period when power cannot be received from the system power supply 21. .
  • Whether the power can be received from the system power supply 21 is determined by the power converter 51 using the voltage between the terminals of the interconnection terminal 55.
  • the second connection portion is a single-phase two-wire system, and is connected to the primary side of the transformer 52 by two wires, and only outputs electric power to the transformer 52.
  • the voltage between the terminals of the second terminal portion is kept at a constant voltage (for example, 200 V).
  • a terminal provided on the secondary side of the transformer 52 is referred to as a self-supporting terminal 56. Therefore, the electric power output from the self-supporting terminal 56 is derived from at least one of the solar battery 22 and the storage battery 23.
  • the self-supporting terminal 55 is connected to the power supply selector 44 through a connection line L7 corresponding to a single-phase three-wire.
  • the power conversion device 50 communicates with the remote controller 54 in order to allow the user to instruct and monitor the operation.
  • the remote controller 54 has a function of selecting the operation mode of the power conversion device 50 in addition to the function of visualizing the operation state of the power conversion device 50.
  • the operation mode of the power conversion device 50 will be described later. Whether the power conversion device 50 outputs the power of the solar battery 22 and the storage battery 23 from the interconnection terminal 55 or the independent terminal 56 depends on whether or not the power conversion device 50 can receive power from the system power supply 21 and the power conversion device 50. Depending on the operation mode.
  • a current sensor 35 is arranged on the primary distribution line L1 of the main breaker 31 in order to measure the electric power received from the system power supply 21.
  • the above-described current sensor 36 is disposed between the current sensor 35 and the main breaker 31 in order to detect a reverse power flow to the system power supply 21.
  • the current sensor 36 monitors the current at a position closer to the system power supply 21 than the connection point between the main breaker 31 and the interconnection breaker 33 in the distribution line L1.
  • the current sensor 35 is connected to the measuring device 63, and the measuring device 63 measures the power received from the system power supply 21 based on the current value measured by the current sensor 35.
  • the measuring device 63 acquires information on the amount of power generated by the solar battery 22 through communication with the power converter 51 and acquires information related to charging and discharging of the storage battery 23.
  • the output of the current sensor 36 is input to the power conversion device 50, and the power conversion device 50 determines whether a reverse power flow from the consumer to the system power supply 21 is generated based on the output of the current sensor 36.
  • Current sensor 36 is arranged to individually detect currents passing through two voltage lines in a single-phase three-wire.
  • Whether or not a reverse power flow from the customer to the system power supply 21 has occurred is determined using the relationship between the phase of the current monitored by the current sensor 36 and the phase of the voltage between the terminals of the interconnection terminal 55.
  • the voltage between the terminals in the interconnection terminal 55 has the same voltage and the same phase as the line voltage of the distribution line L1 electrically connected to the interconnection terminal 55. Accordingly, the power conversion device 50 uses the voltage waveform between the terminals of the interconnection terminal 55 and the current waveform monitored by the current sensor 36, and reverses the sign of the integrated value obtained by integrating the power for one period of the voltage waveform. Determine whether there is a tidal current.
  • the power selector 44 selects and connects one of the connection line L3 and the connection line L7 to the main breaker 41 of the self-supporting distribution board 40.
  • the power supply selector 44 selects a state in which the connection line L3 is connected to the self-supporting distribution board 40 and a state in which the connection line L7 is connected to the self-supporting distribution board 40 according to an instruction from the power converter 51. That is, the self-standing distribution board 40 is supplied with power through the distribution board 30 during the period when power is supplied from the system power supply 21, and is distributed from the power converter 50 to the distribution board during the period when the power from the system power supply 21 is stopped. Electric power is supplied without passing through 30.
  • the power conversion device 50 includes a switching instruction unit 53 that gives an instruction by a switching signal to the measurement point switching device 10.
  • the switching instruction unit 53 provides the measurement point switching device 10 with a switching signal indicating a period during which power is supplied from the system power supply 21 and a period during which power from the system power supply 21 is stopped. It is also transmitted to the fuel cell 24 through the device 10.
  • the measuring point switching device 10 uses a current sensor 34 built in the distribution board 30 and a second current sensor (current sensor 45) for measuring a current passing through the connection line L7, based on the current value monitored by the fuel cell 24. Select from which to get. That is, the measuring point switching device 10 connects the current sensor 34 to the fuel cell 24 during a period when power is supplied from the system power supply 21, and the current sensor 45 during a period when power from the system power supply 21 is stopped. Is connected to the fuel cell 24.
  • the fuel cell 24 determines whether or not reverse power flow has occurred based on the current monitored by the current sensors 34 and 45. That is, the outputs of the current sensor 34 and the current sensor 45 are used to monitor whether or not electric power that is not consumed by the consumer is generated during the period in which the fuel cell 24 is generating power.
  • the electric power generated by the fuel cell 24 is monitored by the current sensor 43.
  • the current sensor 43 monitors the current passing through the connection line L5 connecting the fuel cell 24 and the branch breaker 32.
  • the output of the current sensor 43 is input to the measuring device 63, and the measuring device 63 manages the power passing through the connection line L5.
  • the outputs of the current sensors 34 and 45 are input to the fuel cell 24, and the fuel cell 24 determines whether or not the electric power output from the fuel cell 24 is consumed by the consumer based on the outputs of the current sensors 34 and 45. to decide. Whether or not the power output from the fuel cell 24 includes power not consumed by the consumer is determined based on the phase relationship between the voltage and the current, similarly to the output of the current sensor 36. .
  • the fuel cell 24 communicates with the power conversion device 50 through the measurement point switching device 10. That is, a signal indicating whether or not power can be received from the system power supply 21 is notified not only to the measurement point switching device 10 but also to the fuel cell 24 from the power conversion device 50, and the interconnection terminal 55 and the independent terminal of the power conversion device 50. The fuel cell 24 is also notified which of the power is output from 56.
  • a one-dot chain line connecting the power conversion device 50 and the measurement point switching device 10 and a one-dot chain line connecting the measurement point switching device 10 and the fuel cell 24 indicate the signal paths described above.
  • FIG. 1 shows a state in which power is supplied from the system power supply 21, and a connection line L7 indicated by a broken line shows a state in which power is not supplied.
  • FIG. 2 shows a state in which the power from the system power supply 21 is stopped, and the distribution line L1, the branch line L2, and the connection lines L3 and L6 shown by broken lines show a state in which no power is supplied. Yes.
  • the fuel cell 24 is connected to the self-supporting distribution board 40 through the connection line L5. Since the connection line L5 corresponds to the single-phase three-wire, as shown in FIG. 3, the branch breaker 42 that connects the connection line L5 in the self-standing distribution board 40 has a configuration corresponding to the single-phase two-wire. It is desirable to have a configuration different from that of the branch breaker 42.
  • the fuel cell 24 can be connected to a communication line L8 for communicating with the measurement point switching device 10, a ground line L9 for grounding, a communication line L10 for managing operation at a distance, and the like.
  • the power converter 50 selects an operation mode using the remote controller 54.
  • the power conversion device 50 selects at least three types of operation modes: an economic priority mode (first operation mode), an environment priority mode (second operation mode), and a power storage priority mode (third operation mode). It is possible.
  • the economic priority mode is an operation mode for the purpose of reducing the value of power purchased from the system power supply 21 and increasing the profit obtained by the reverse power flow to the distribution line L1.
  • the environment priority mode is an operation mode for the purpose of reducing the amount of power purchased from the system power supply 21.
  • the power storage priority mode is an operation mode in which the storage battery 23 is always maintained in a fully charged state in preparation for the case where power supply from the system power supply 21 is stopped.
  • the power consumed by the general load 60, the specific load 61, the management device 62, etc. increases or decreases as shown by the characteristic P1 in FIG. 4, and the power generated by the solar cell 22 increases or decreases as indicated by the characteristic P2 in FIG. Is assumed.
  • the power consumed by the general load 60, the specific load 61, the management device 62, and the like is collectively referred to as “power consumption”.
  • the power consumption is obtained based on the current value measured by the current sensor 34 provided on the distribution board 30. Further, the power consumption is obtained based on the current value measured by the current sensor 45 provided in the connection line L7 in the state shown in FIG.
  • the characteristic P1 and the characteristic P2 are combined, it is divided into four areas D1 to D4 shown in FIG. Since the regions D1 and D2 are regions where the solar cell 22 is stopped, power must be supplied from a power source other than the solar cell 22. Regions D3 and D4 are regions where the solar cell 22 generates power, and the region D4 has a surplus (hereinafter referred to as “surplus power”) even if power consumption is subtracted from the power generated by the solar cell 22. It represents what happens.
  • the economic priority mode operates so as to obtain a power sale revenue by performing a reverse flow of the surplus power on the distribution line L1 when surplus power in the region D4 is generated.
  • the storage battery 23 is charged not by the power generated by the solar battery 22 but by the power received from the system power supply 21 at “night” when the unit price of the electricity bill is low. Further, the storage battery 23 is discharged as needed during the “daytime” and “evening” time zones.
  • surplus power in the region D4 is used for charging the storage battery 23, and is discharged from the storage battery 23 at night or night when power cannot be obtained from the solar battery 22, and used for power consumption.
  • the shortage is received from the system power supply 21, but the amount of power received from the system power supply 21 is reduced.
  • most of the power used for power consumption becomes renewable energy, which is in line with the objective of reducing the environmental load.
  • the battery 23 In the storage priority mode, regardless of the power generated by the solar battery 22, the battery 23 is charged until the battery 23 is almost fully charged. Wait without. In this case, when the power supply from the system power supply 21 is stopped, the supply of power is started using the power stored in the storage battery 23.
  • the storage battery 23 is discharged whenever necessary in the environment priority mode, and is allowed to be discharged only in “daytime” and “night” in the economic priority mode.
  • the fuel cell 24 can be linked during these periods when the discharge of the storage battery 23 is allowed.
  • the electric power generated by the fuel cell 24 has an upper limit value
  • the solar cell 22 and the fuel cell 24 are set so that the upper limit value is about a fraction of the maximum electric power generated by the solar cell 22.
  • the combination is defined. For example, a combination in which the maximum power generated by the solar cell 22 is 3 kW and the upper limit value of the power generated by the fuel cell 24 is 750 W is employed.
  • the power consumption obtained based on the current value measured by the current sensor 34 or the current sensor 45 during the above-described period when the storage battery 23 is allowed to discharge is less than or equal to the upper limit value of the power that can be generated.
  • the power generated by the fuel cell 24 is used for power consumption.
  • the fuel cell 24 applies the power stored in the storage battery 23 to the shortage.
  • the fuel cell 24 to the storage battery 23 are selected in the “night time” time period for charging the storage battery 23 in the economic priority mode, the time period for charging the storage battery 23 with surplus power in the environment priority mode, and the power storage priority mode.
  • the battery is not charged. That is, since the current sensor 34 provided on the upstream side of the main breaker 31 in the distribution board 30 is connected to the fuel cell 24, it is possible to manage the fuel cell 24 so that no reverse power flow occurs. Yes.
  • the fuel cell 24 and the power conversion device 50 have a time delay in the change in output power, it is difficult to immediately follow the change in power consumption when the power consumption changes suddenly.
  • the operation mode of the power converter 50 is the environment priority mode
  • the amount of power received from the system power supply 21 does not converge smoothly with respect to changes in power consumption regardless of whether the fuel cell 24 is generating power or is stopped. Don't be.
  • the amount of power received from the system power supply 21 must converge smoothly with respect to changes in power consumption regardless of whether the power conversion device 50 is operating or stopped. .
  • the upper stage represents power consumption (characteristic A1) and power received from the system power supply 21 (characteristic A2)
  • the lower stage represents power output from the fuel cell 24 (characteristic B1 and output from the power converter 50). Represents the electric power (characteristic B2).
  • the output power of the fuel cell 24 represented by the characteristic B1 is delayed with respect to the change in the power consumption represented by the characteristic A1, and in the illustrated example, the fuel cell 24 is delayed due to the response delay.
  • the output power of 24 changes with a slope of about 2 W / s.
  • the power is received from the system power source 21 so as to cancel out the inclination as represented by the characteristic A2.
  • the power conversion device 50 when the upper limit value (750 W in the illustrated example) of the output power of the fuel cell 24 is exceeded, the power conversion device 50 is adapted so that the power stored in the storage battery 23 is applied to the power consumption as represented by the characteristic B2. Starts driving. However, since there is a slight delay in the rise of the power output from the power conversion device 50, the power shortage during this time is represented by the system power supply as shown in the vicinity of the time 16:55:12 of the characteristic A2. Power is received from 21 for a short time.
  • the operation example shown in FIG. 6 is an operation when power is not received from the system power supply 21, where the characteristic A1 represents power consumption, the characteristic B1 represents the output power of the fuel cell 24, and the characteristic B2 represents the output power of the power converter 50.
  • the shortage with respect to the power consumption is supplemented by the power output from the power converter 50 during the period when the output power of the fuel cell 24 does not follow the change in the power consumption.
  • the power conversion device 50 detects a power failure based on the output of the measurement device 63 or the current sensor 36, the power conversion device 50 shuts off the cooperation breaker 33 and disconnects it from the system.
  • the power conversion device 50 selects whether to automatically start a self-sustaining operation or to start a self-sustaining operation manually after disconnection by operating the remote controller 54, and when the self-sustaining operation is started, The relay is switched, and the state shifts to a state in which power is supplied from the transformer 52 of the power conversion device 50 to the independent distribution board 40.
  • a time delay for example, a maximum of 5 seconds
  • the fuel cell 24 Since power is required to start the fuel cell 24, the fuel cell 24 is started using the power supplied from the power conversion device 50 through the independent distribution board 40. If the fuel cell 24 is in operation, the operation of the fuel cell 24 is continued even if a power failure occurs.
  • the power output from the fuel cell 24 is limited by the upper limit value, and the power consumed by the load 61 fed from the distribution board 30 cannot be satisfied. Therefore, at the time of a power failure, the specific load 61, the management apparatus 62, etc. which are connected to the independent distribution board 40 are targeted for power supply.
  • the power conversion device 50 gives an instruction to the measurement point switching device 10 to switch the measurement point for monitoring the reverse flow of the fuel cell 24. That is, the measuring point switching device 10 connects the current sensor 34 to the fuel cell 24 during a period when no power failure occurs, but connects the current sensor 45 to the fuel cell 24 during a period when power failure occurs.
  • the power conversion device 50 and the fuel cell 24 stop outputting and display an error on the remote controllers 25 and 54.
  • FIG. 7 shows a schematic configuration of the measurement point switching device 10.
  • the configuration related to the control of the power converter 50 is described as a processing unit 500
  • the configuration related to the control of the fuel cell 24 is described as a processing unit 240.
  • the measurement point switching device 10 includes a processing unit 11 that determines current sensors 34 and 45 to be connected to the fuel cell 24 by communicating with the processing units 240 and 500.
  • These processing units 11, 240, and 500 have a device including a processor that operates according to a program as a main hardware element. This type of device is selected from a microcomputer having a memory, a processor used in combination with another memory, and the like.
  • the current sensor 34 includes the two current transformers 341 and 342 so as to individually measure the two voltage lines (U phase and W phase), and the current sensor 45 similarly includes two current lines.
  • Two current transformers 451 and 452 are provided so as to individually measure voltage lines (U phase and W phase). Therefore, the measurement point switching device 10 includes two switches 12 and 13 for selecting the current transformers 341, 342, 451, and 452 for the U phase and the W phase, respectively. That is, the switch 12 selects one of the current transformer 341 and the current transformer 451, and the switch 13 selects one of the current transformer 342 and the current transformer 452.
  • the measurement point switching device 10 includes a power supply unit 14 for operating the processing unit 11 and the switching units 12 and 13.
  • FIG. 8 shows another configuration example of the self-supporting distribution board 40.
  • a branch breaker 42A corresponding to a single-phase three-wire for connecting the fuel cell 24 is provided separately from an ordinary single-phase two-wire branch breaker 42.
  • a service breaker 46 is provided upstream of the main breaker 41 to limit the maximum current.
  • Current sensors 45 ⁇ / b> A and 45 ⁇ / b> B connected to the fuel cell 24 at the time of a power failure are arranged so as to measure a current passing through an electric path between the service breaker 46 and the main breaker 41.
  • Current sensors 45A and 45B correspond to current transformers 451 and 452 shown in FIG. 7, and individually measure currents in the U phase and the W phase.
  • the presence or absence of the service breaker 46 is arbitrary.
  • the solar cell 22, the storage battery 23, and the fuel cell 24 are used in combination, and the fuel cell 24 is used according to the operation mode of the power conversion device 50, resulting in energy saving. Further, when power can be received from the system power supply 21, the fuel cell 24 uses the current value measured by the current sensor 34 provided on the upstream side of the main breaker 31 that receives power from the system power supply 21. The utilization rate of generated power has increased. As a result, a shortage of heat for hot water supply was suppressed.
  • the power generation amount of the fuel cell 24 is more than doubled in the configuration of the present embodiment. Further, when the fuel gas used as the fuel for the fuel cell 24 was purchased from a gas company, the sum of the gas charge and the electricity charge was reduced from the sum of the electricity charge when the fuel cell 24 was not used. In addition, the amount of reduction was more than twice as compared with the case where the fuel cell 24 is used only to compensate for the shortage of power.
  • the fuel cell 24 is shown as an example of the cogeneration apparatus.
  • a cogeneration apparatus having a configuration using a gas engine may be employed.
  • the above-described embodiment is an example of the present invention, and the present invention is not limited to the above-described embodiment, and other embodiments may be used without departing from the technical idea of the present invention. If so, various changes can be made according to the design and the like.

Abstract

 自立分電盤は、系統電源から電力が供給される期間に分電盤から給電される一方、系統電源からの給電が停止する期間に電力変換装置の自立端子から給電され、かつ特定負荷などが接続される。計測点切替装置は、主幹ブレーカを通過する電流を監視する電流センサと、電力変換装置から自立分電盤に供給される電流を監視する電流センサとの一方を選択する。燃料電池は、電流センサと電流センサとの一方の出力を用いて、燃料電池から出力された電力が一般負荷および特定負荷などで消費されるように出力を調節する。

Description

電力供給システム、電力変換装置、計測点切替装置
 本発明は、電力供給システム、詳しくは、系統電源ではない他の電源とコージェネレーション装置とを組み合わせて用いる電力供給システムに関する。さらに、本発明は、この電力供給システムに用いる電力変換装置、この電力供給システムに用いる計測点切替装置に関する。
 従来、分散電源である太陽電池と蓄電池とを組み合わせて用いる電力供給システムが提案されている(たとえば、日本特許出願公開番号2002-171674(以下、文献1という))。この種の電力供給システムは、太陽電池と蓄電池とで電力変換器を共用できる利点がある。文献1には、太陽電池の余剰電力の逆潮流を行い、かつ蓄電池から系統への電力流出を防止する技術が記載されている。
 近年、燃料ガスを改質して得られた水素を利用して発電する燃料電池が開発されている。さらに、燃料電池が発電する際に生じる熱を湯沸かしにも利用するコージェネレーション装置が考えられている。コージェネレーション装置としての燃料電池は、多くの場合、単独で使用するか、太陽電池と組み合わせて使用することが提唱されており、太陽電池と蓄電池とを組み合わせた分散電源に、さらにこの種の燃料電池を組み合わせる事例は少ない。
 とくに、燃料電池を電力不足を補う目的でのみ用いる構成では、燃料電池の発電量が少なく、給湯に十分な程度の熱量を得ることができない可能性がある。コージェネレーション装置は、燃料電池のほかにガスエンジンを用いる構成も知られている。
 本発明は、コージェネレーション装置を、系統電源ではない他の電源と組み合わせて用いる構成において、コージェネレーション装置の利用率を高め、光熱費の抑制に寄与し、かつ給湯に必要な熱量を確保できるようにした電力供給システムを提供することを目的とする。さらに、本発明は、この電力供給システムに用いる電力変換装置、およびこの電力供給システムに用いる計測点切替装置を提供することを目的とする。
 本発明に係る電力供給システムは、系統電源と第1の負荷との間に接続される主幹ブレーカを備えた分電盤と、前記系統電源から電力が供給される期間に前記主幹ブレーカに電力を供給する連系端子、および前記系統電源からの給電が停止する期間に電力を取り出す自立端子を備えた電力変換装置と、前記系統電源から電力が供給される期間に前記分電盤から給電される一方、前記系統電源からの給電が停止する期間に前記電力変換装置の前記自立端子から給電され、かつ第2の負荷が接続される自立分電盤と、前記自立分電盤に接続され発電と湯沸かしとを行う構成であって、発電した電力は前記系統電源への逆潮流が禁止されているコージェネレーション装置と、前記コージェネレーション装置が出力する電力を定めるために、前記系統電源から電力が供給される期間には前記主幹ブレーカを通過する電流を監視する第1の電流センサを選択し、前記系統電源からの給電が停止する期間に前記電力変換装置から前記自立分電盤に供給される電流を監視する第2の電流センサを選択する計測点切替装置とを備え、前記コージェネレーション装置は、前記計測点切替装置に選択された前記第1の電流センサと前記第2の電流センサとの一方の出力を用いて、前記コージェネレーション装置から出力された電力が前記第1の負荷および前記第2の負荷で消費されるように出力を調節することを特徴とする。
 この電力供給システムにおいて、前記コージェネレーション装置は燃料電池であることが好ましい。
 この電力供給システムにおいて、前記自立分電盤を、前記分電盤に接続する第1の状態と、前記電力変換装置の前記自立端子に接続する第2の状態とを選択する電源選択器をさらに備えることが好ましい。
 この電力供給システムにおいて、前記電力変換装置は、太陽電池と蓄電池とが接続可能であり、前記太陽電池が発電した電力と前記蓄電池に蓄電された電力との少なくとも一方を、前記系統電源から電力が供給される期間に前記連系端子から出力する一方、前記系統電源からの給電が停止する期間に前記自立端子から出力する構成であって、前記太陽電池が発電した電力かつ前記連系端子を通して出力する電力は、前記系統電源への逆潮流が可能になるように構成されていることが好ましい。
 この電力供給システムにおいて、前記電力変換装置は、前記太陽電池が発電した電力のうち前記第1の負荷と前記第2の負荷とのどちらにも消費されない余剰電力の逆潮流を行い、かつ電気料金の単価が相対的に安い時間帯に前記蓄電池に充電する一方、電気料金の単価が相対的に高い時間帯に前記蓄電池から放電する第1の動作モードと、前記太陽電池が発電した電力のうちの前記余剰電力を前記蓄電池の充電に用い、かつ前記太陽電池が発電しない期間に前記蓄電池から放電する第2の動作モードと、前記蓄電池を満充電の状態に維持する第3の動作モードとが選択可能であることがさらに好ましい。
 本発明に係る電力変換装置は、上述したいずれかの電力供給システムに用いられることを特徴とする。
 本発明に係る計測点切替装置は、上述したいずれかの電力供給システムに用いられることを特徴とする。
 本発明の構成によれば、系統電源から受電する主幹ブレーカを通過する電流に基づいてコージェネレーション装置の出力を制御するので、主幹ブレーカを通して電力を供給している負荷にもコージェネレーション装置から電力を供給することになる。その結果、コージェネレーション装置を、系統電源ではない他の電源と組み合わせて用いる構成において、コージェネレーション装置の利用率が高められるという利点がある。また、コージェネレーション装置の利用率を高めて、系統電源から購入する電力量が低減される結果、光熱費の抑制に寄与し、しかも、給湯に必要な熱量を確保できるという利点がある。
実施形態を示す非停電時のブロック図である。 実施形態を示す停電時のブロック図である。 実施形態に用いる燃料電池の外観を示す斜視図である。 実施形態の消費電力と発電電力との関係を示す動作説明図である。 実施形態の動作説明図である。 実施形態の他の動作説明図である。 実施形態に用いる計測点切替装置を示すブロック図である。 実施形態に用いる自立分電盤の構成例を示す概略構成図である。
 以下に説明する電力供給システムは、図1に示すように、分電盤30と電力変換装置50と自立分電盤40とコージェネレーション装置(燃料電池24)と計測点切替装置10とを備える。分電盤30は、系統電源21と第1の負荷(負荷60)との間に接続される主幹ブレーカ31を備える。電力変換装置50は、系統電源21から電力が供給される期間に主幹ブレーカ31に電力を供給する連系端子55、および系統電源21からの給電が停止する期間に電力を取り出す自立端子56を備える。自立分電盤40は、系統電源21から電力が供給される期間に分電盤30から給電される一方、系統電源21からの給電が停止する期間に電力変換装置50の自立端子55から給電され、かつ第2の負荷(負荷61など)が接続される。コージェネレーション装置は、自立分電盤40に接続され発電と湯沸かしとを行う構成であって、発電した電力は系統電源21への逆潮流が禁止されている。計測点切替装置10は、コージェネレーション装置が出力する電力を定めるために、第1の電流センサ(電流センサ34)と第2の電流センサ(電流センサ45)との一方を選択する。すなわち、計測点切替装置10は、系統電源21から電力が供給される期間には主幹ブレーカ31を通過する電流を監視する第1の電流センサを選択する。また、計測点切替装置10は、系統電源21からの給電が停止する期間に電力変換装置50から自立分電盤40に供給される電流を監視する第2の電流センサを選択する。コージェネレーション装置は、計測点切替装置10に選択された第1の電流センサと第2の電流センサとの一方の出力を用いて、コージェネレーション装置から出力された電力が第1の負荷(負荷60)および第2の負荷(負荷61など)で消費されるように出力を調節する。
 電力供給システムは、自立分電盤40を、分電盤30に接続する第1の状態と、電力変換装置50の自立端子56に接続する第2の状態とを選択する電源選択器44を備えることが望ましい。
 電力変換装置50は、太陽電池22と蓄電池23とが接続可能であることが望ましい。この場合、電力変換装置50は、太陽電池22が発電した電力と蓄電池23に蓄電された電力との少なくとも一方を、系統電源21から電力が供給される期間に連系端子55から出力する。また、電力変換装置50は、当該電力を系統電源21からの給電が停止する期間に自立端子56から出力する。そして、電力変換装置50は、太陽電池22が発電した電力かつ連系端子55を通して出力する電力は、系統電源21への逆潮流が可能になるように構成されている。
 さらに、電力変換装置50は、太陽電池22が発電した電力のうち第1の負荷(負荷60)と第2の負荷(負荷61など)とのどちらにも消費されない余剰電力の逆潮流を行うことが望ましい。この電力変換装置50は、第1の動作モードと第2の動作モードと第3の動作モードとが選択可能である。第1の動作モードは、電気料金の単価が相対的に安い時間帯に蓄電池23に充電する一方、電気料金の単価が相対的に高い時間帯に蓄電池23から放電する。第2の動作モードは、太陽電池22が発電した電力のうちの前記余剰電力を蓄電池23の充電に用い、かつ太陽電池22が発電しない期間に蓄電池23から放電する。第3の動作モードは、蓄電池23を満充電の状態に維持する。
 以下に、本実施形態の構成をさらに詳しく説明する。本実施形態で説明する電力供給システムの全体構成を図1、図2に示す。図に示す電力供給システムは、負荷に電力を供給する電源として、系統電源21と太陽電池22と蓄電池23と燃料電池24との4種類を備える。系統電源21は、電力会社のような電力供給事業者から配電網を通して供給される電源を意味する。
 燃料電池24は、メタンあるいはプロパンを含む燃料ガスの改質により生成した水素ガスを用いる構成であって、燃料電池24の発電ユニット241に貯湯ユニット242が並設された構成を備えている。貯湯ユニット242は、発電ユニット241で生じる排熱を利用して貯湯槽内の湯温を上昇させるように構成され、コージェネレーション装置として機能する。
 すなわち、燃料電池24は、発電と湯沸かしとの両方の機能を有している。さらに、燃料電池24は、貯湯槽内で湯に代えて蓄えている熱量が不足する場合に追加して加熱を行う補助熱源を備える。また、燃料電池24は、浴槽に溜めた湯を追い焚きする場合に用いる補助熱源を備える場合がある。燃料電池24は、動作状態の管理に用いるリモコン25と通信可能であり、図3に示す例では、浴室用リモコン251と台所用リモコン252との2個のリモコン25(図1参照)と通信可能になっている。
 本実施形態では、電力系統20への電力の逆潮流が可能な電源として、太陽電池22を例示しているが、太陽電池22は、風力、水力、地熱などの自然エネルギーを用いて発電する電源に代えることが可能である。また、本実施形態では、蓄電池23と燃料電池24とは、電力系統20への電力の逆潮流が禁止されている電源として例示している。燃料電池24に代えて、ガスエンジン(ガスマイクロタービン)を用いて発電するコージェネレーション装置を用いることも可能である。
 図示する太陽電池22と蓄電池23と燃料電池24との3種類の電源については、これらを設けるか否かを、需要家が任意に選択する。すなわち、これらの電源は必要に応じて適時に導入される。電源として太陽電池22または蓄電池23を用いる場合、交流と直流との間の電力変換を行うために電力変換装置50が必要になる。また、燃料電池24を導入する場合、自立分電盤40などを追加して設置することが必要である。
 系統電源21に接続された配電線L1は分電盤30に接続される。分電盤30は、配電線L1に接続される主幹ブレーカ31と、主幹ブレーカ31の負荷側において電力を分岐させる複数個の分岐ブレーカ32とを筐体(図示せず)に内蔵している。それぞれの分岐ブレーカ32は、分岐線L2を通して負荷(第1の負荷)60に電力を供給する。図では複数個の負荷60に一括して符号を付しているが、符号60は個々の負荷を意味する。
 分電盤30は、連携ブレーカ33と第1の電流センサ(電流センサ34)とをさらに内蔵する。連携ブレーカ33は、後述する電力変換装置50と配電線L1との間に挿入される。主幹ブレーカ31と連携ブレーカ33とは、配電線L1に共通に接続される。
 電流センサ34は、主幹ブレーカ31を通過する電流を検出するように配置される。図示例では、配電線L1において、連携ブレーカ33との接続点と、主幹ブレーカ31との間の電路を通過する電流を計測するように電流センサ34が配置されている。電流センサ34は、単相3線の2本の電圧線(U相とW相)の電流を個別に検出するように配置される。
 電流センサ34は、具体的な構成としてコアを備える電流トランスを想定しているが、コアレスコイル(いわゆるロゴスキーコイル)あるいは磁気センサを用いる構成であってもよい。以下に説明する電流センサ35,36,43,45,45A,45Bも同様であり、それぞれの電流センサ35,36,43,45,45A,45Bの具体的な構成は電流センサ34の構成に準じる。
 分電盤30に内蔵された分岐ブレーカ32のうちの1個は、単相3線に対応した分岐線L3を通して自立分電盤40に接続される。分岐線L3には、分岐ブレーカ32から供給される電力と、電力変換装置50から供給される電力との一方を選択して自立分電盤40に供給する電源選択器44が挿入されている。電源選択器44は、電磁継電器を備える。
 自立分電盤40は、系統電源21から電力が供給されない状態でも給電が必要になる負荷(第2の負荷)61と、負荷60,61の動作を管理する管理装置62と、計測装置63とに電力を供給する経路を形成する。図では複数個の負荷61に一括して符号を付しているが符号61は個々の負荷を意味する。また、符号62は、管理装置62を構成する機器群を表している。以下では、負荷60と負荷61とを区別するために、負荷60を「一般負荷」と呼び、負荷61を「特定負荷」と呼ぶ。
 自立分電盤40は、分電盤30と同様に、主幹ブレーカ41と複数個の分岐ブレーカ42とを筐体(図示せず)に内蔵する。それぞれの分岐ブレーカ42は、分岐線L4を通して、特定負荷61と管理装置62と計測装置63と後述する計測点切替装置10とに電力を供給する。分岐ブレーカ41のうちの1つは、接続線L5を通して燃料電池24に接続される。燃料電池24が発電した電力は、特定負荷61と管理装置62と計測装置63と計測点切替装置10とに供給可能になる。また、燃料電池24が発電した電力は、主幹ブレーカ41を通して、分電盤30にも供給可能であるから、燃料電池24から一般負荷60にも電力が供給可能である。管理装置62、計測装置63、計測点切替装置10は、系統電源21からの給電が停止しているときに、自立分電盤40からの電力により動作するから、特定負荷61と同様に、第2の負荷に含まれる。つまり、管理装置62、計測装置63、計測点切替装置10は、系統電源21から電力が供給されていれば、主幹ブレーカ31を通して供給される電力により動作する。
 計測装置63は、電流センサ35および電流センサ43の出力を取得し、それぞれの電流センサ35,43が配置された電路(配電線L1、接続線L5)を通過する電力を算出し、算出した電力の情報を電力変換装置50に通知する機能を有する。また、計測装置63は、電流センサ35の出力に基づいて系統電源21から電力が供給されているか否かを監視する。電流センサ35は、配電線L1を通過する電流を計測するように配置され、系統電源21の電力の供給状態を監視する。電流センサ43は、接続線L5を通過する電流を計測するように配置され、燃料電池24からの電力の供給状態を監視する。
 なお、図1、図2において、一点鎖線は通信路を示しており、たとえば、RS485規格に準じた仕様のシリアル通信を行う。通信路がRS485規格に準じた仕様であることは必須ではなく、無線通信路を用いたり、有線通信路を用いて電力線搬送通信の技術による通信を行うことも可能である。これらの通信技術は、組み合わせて用いてもよい。
 分電盤30は、主幹ブレーカ31の1次側の電路(配電線L1)に接続された連携ブレーカ33を筐体内に備える。主幹ブレーカ31と連系ブレーカ33とは、配電線L1に共通に接続される。連携ブレーカ33は、太陽電池22が発電した電力を主幹ブレーカ31の1次側の電路に供給する経路を形成し、また、系統電源21から受電した電力を蓄電池23の充電に用いる経路を形成する。連携ブレーカ33は、いわゆるリモコンブレーカであって、電力変換装置50からの指示によりオンとオフとを切り替えるように構成されている。
 電力変換装置50は、太陽電池22と蓄電池23とが接続され、分電盤30との間で電力の授受を行う機能と、自立分電盤40に電力を供給する機能とを備える。そのため、太陽電池22が発電した直流電力あるいは蓄電池23に蓄電された直流電力を、系統電源21と等価な交流電力に変換する電力変換器51を備える。また、電力変換装置50は、電力変換器51から2線で出力される電力を3線に変換するトランス52を備える。
 電力変換器51は、蓄電池23の充電電流を管理する機能、太陽電池22が発電した電力のうち需要家では利用されない余剰電力を配電線L1に逆潮流させる際の電力を管理する機能も有する。蓄電池23の充電電流は、電力変換装置50の内部で監視し、配電線L1に逆潮流させる電力は配電線L1を通過する電流を計測する電流センサ36の出力を取得して監視する。
 電力変換器51は、太陽電池22が発電した直流電力を、系統電源21と等価である交流電力に変換する第1の変換回路と、蓄電池23の充電および放電を行う第2の変換回路とを備える。また、電力変換器51は、連系ブレーカ33に接続される第1の接続部と、トランス52に電力を供給する第2の接続部とを備える。
 第1の接続部は、連携ブレーカ33を介して配電線L1に接続され、系統連系が可能になっている。具体的には、第1の接続部は、単相3線式であって、接続線L6を通して連携ブレーカ33と接続される。主幹ブレーカ31の1次側である配電線L1に連携ブレーカ33を介して接続される。以下では、変換器51における第1の接続部を連系端子55と呼ぶ。
 接続線L6は、太陽電池22が発電した電力あるいは蓄電池23に蓄電した電力から得られた交流電力を分電盤30の主幹ブレーカ31に供給する経路、あるいは太陽電池22が発電した電力を配電線L1に逆潮流させる経路として用いられる。また、接続線L6は、配電線L1を通して系統電源21から供給される電力を用いて蓄電池23を充電する経路としても用いられる。連系端子55の端子間の電圧は電力系統20の線間電圧によって決まめられる。
 一方、電力変換器51の第2の接続部は、系統電源21から受電可能である期間はトランス52に電力を出力せず、系統電源21から受電不能である期間はトランス52に電力を出力する。系統電源21から受電可能か否かは、電力変換器51が連系端子55における端子間の電圧を用いて判断する。第2の接続部は単相2線式であって、トランス52の1次側と2線で接続され、トランス52への電力の出力のみを行う。第2の端子部の端子間の電圧は定電圧(たとえば、200V)に保たれる。以下では、電力変換装置50において、トランス52の2次側に設けられる端子を自立端子56と呼ぶ。したがって、自立端子56が出力する電力は、太陽電池22と蓄電池23との少なくとも一方に由来する。自立端子55は、単相3線に対応した接続線L7を通して電源選択器44に接続される。
 電力変換装置50は、利用者による動作の指示および監視を可能にするために、リモコン54と通信する。リモコン54は、電力変換装置50の動作状態を可視化する機能のほか、電力変換装置50の動作モードを選択する機能も有している。電力変換装置50の動作モードについては後述する。電力変換装置50が、太陽電池22と蓄電池23との電力を連系端子55から出力するか自立端子56から出力するかは、系統電源21から受電可能か否かの状態と、電力変換装置50の動作モードとに応じて定められる。
 需要家において主幹ブレーカ31の1次側の配電線L1には、系統電源21から受電した電力を計量するために電流センサ35が配置される。また、配電線L1において、電流センサ35と主幹ブレーカ31との間には、系統電源21への逆潮流を検出するために上述した電流センサ36が配置される。電流センサ36は、配電線L1において主幹ブレーカ31と連系ブレーカ33との接続点より系統電源21に近い位置で電流を監視する。
 電流センサ35は計測装置63に接続され、計測装置63は、電流センサ35が計測した電流値に基づいて系統電源21から受電した電力を計測する。計測装置63は、電力変換器51との通信により太陽電池22の発電量の情報を取得し、また、蓄電池23の充電および放電に関する情報を取得する。一方、電流センサ36の出力は電力変換装置50に入力され、電力変換装置50は、電流センサ36の出力に基づいて需要家から系統電源21に対する逆潮流が生じているか否かを判断する。電流センサ36は、単相3線における2本の電圧線を通過する電流を個別に検出するように配置される。
 需要家から系統電源21に対する逆潮流が生じているか否かは、電流センサ36が監視する電流の位相と、連系端子55における端子間の電圧の位相との関係を用いて判断される。連系端子55における端子間の電圧は、連系端子55に電気的に接続された配電線L1の線間電圧と同電圧かつ同位相になる。したがって、電力変換装置50は、連系端子55における端子間の電圧波形と、電流センサ36が監視する電流波形とを用い、電圧波形の1周期分について電力を積分した積分値の符号によって、逆潮流が生じているか否かを判断する。
 上述したように、電源選択器44は、自立分電盤40の主幹ブレーカ41に、接続線L3と接続線L7との一方を選択して接続する。電源選択器44は、電力変換器51からの指示により、自立分電盤40に接続線L3を接続する状態と、自立分電盤40に接続線L7を接続する状態とを選択する。つまり、自立分電盤40は、系統電源21から電力が供給されている期間に分電盤30を通して電力が供給され、系統電源21からの電力が停止する期間に電力変換装置50から分電盤30を通さずに電力が供給される。
 電力変換装置50は、計測点切替装置10に切替信号による指示を与える切替指示部53を備える。切替指示部53は、系統電源21から電力が供給されている期間と、系統電源21からの電力が停止する期間とを示す切替信号を計測点切替装置10に与え、この切替信号は計測点切替装置10を通して燃料電池24にも伝送される。
 計測点切替装置10は、燃料電池24が監視する電流値を、分電盤30に内蔵された電流センサ34と、接続線L7を通過する電流を計測する第2の電流センサ(電流センサ45)とのどちらから取得するかを選択する。すなわち、計測点切替装置10は、系統電源21から電力が供給されている期間には電流センサ34を燃料電池24に接続し、系統電源21からの電力が停止している期間には電流センサ45を燃料電池24に接続する。
 燃料電池24は、系統電源21に対する電力の逆潮流が禁止されているから、電流センサ34,45が監視する電流に基づいて、逆潮流の発生の有無を判断する。すなわち、燃料電池24が発電を行っている期間に、需要家で消費されない電力が生じているか否かを監視するために、電流センサ34と電流センサ45との出力を用いる。燃料電池24が発電した電力は電流センサ43が監視する。電流センサ43は、燃料電池24と分岐ブレーカ32とを接続する接続線L5を通過する電流を監視する。電流センサ43の出力は、計測装置63に入力され、計測装置63は接続線L5を通過する電力を管理する。
 一方、電流センサ34,45の出力は燃料電池24に入力され、燃料電池24は電流センサ34,45の出力に基づいて燃料電池24から出力された電力が需要家で消費されているか否かを判断する。燃料電池24から出力された電力に、需要家で消費されていない電力が含まれているか否かは、電流センサ36の出力と同様に、電圧と電流との位相の関係に基づいて判断される。
 また、燃料電池24は、電力変換装置50との間で計測点切替装置10を通して通信する。つまり、系統電源21から受電可能か否かを表す信号が、計測点切替装置10だけではなく、電力変換装置50から燃料電池24にも通知され、電力変換装置50の連系端子55と自立端子56とのどちらから電力が出力されているかが燃料電池24にも通知される。図中において、電力変換装置50と計測点切替装置10との間を結ぶ一点鎖線、および計測点切替装置10と燃料電池24との間を結ぶ一点鎖線は、上述した信号の経路を示す。
 なお、図1は系統電源21から電力が供給されている状態を示し、破線で示されている接続線L7は電力が供給されていない状態を表している。また、図2は系統電源21からの電力が停止している状態を示し、破線で示されている配電線L1、分岐線L2、接続線L3,L6は電力が供給されていない状態を示している。
 上述したように、燃料電池24は、自立分電盤40とは接続線L5を通して接続されている。接続線L5は単相3線に対応しているから、図3に示すように、自立分電盤40において、接続線L5を接続する分岐ブレーカ42は、単相2線に対応した構成の他の分岐ブレーカ42とは別構成であることが望ましい。燃料電池24は、計測点切替装置10と通信するための通信線L8、接地をとるための接地線L9、遠方で動作を管理するための通信線L10などが接続可能である。
 以下に本実施形態の動作を説明する。電力変換装置50は、リモコン54を用いて動作モードが選択される。電力変換装置50は、経済優先モード(第1の動作モード)と、環境優先モード(第2の動作モード)と、蓄電優先モード(第3の動作モード)との少なくとも3種類の動作モードが選択可能なっている。
 経済優先モードは、系統電源21から購入する電力の対価を減少させ、かつ配電線L1への逆潮流によって得られる利益を増大させることを目的とした動作モードである。環境優先モードは、系統電源21から購入する電力量を低減することを目的とした動作モードである。また、蓄電優先モードは、系統電源21からの給電が停止した場合に備えて、蓄電池23を、つねにほぼ満充電の状態に維持する動作モードである。
 いま、一般負荷60、特定負荷61、管理装置62などにより消費される電力が図4の特性P1のように増減し、太陽電池22が発電する電力が図4の特性P2のように増減する場合を想定する。以下では、一般負荷60、特定負荷61、管理装置62などにより消費される電力を一括して「消費電力」と呼ぶ。消費電力は、図1に示す状態では、分電盤30に設けられた電流センサ34が計測した電流値に基づいて求められる。また、消費電力は、図2に示す状態では、接続線L7に設けられた電流センサ45が計測した電流値に基づいて求められる。
 図4の下部には、時間帯の目安を表すために、「夜間」「朝」「昼間」「晩」の文字を記載している。「朝」「昼間」「晩」「夜間」は、系統電源21から電力を購入する場合の電気料金の単価に対応する時間帯を表しており、「夜間」は電気料金の単価がもっとも安い時間帯に対応し、「昼間」「晩」は電気料金が高い時間帯に対応する。また、「朝」「昼間」は太陽電池22の発電量が比較的多い時間帯であり、「晩」は太陽電池22の発電がほぼ停止している時間帯、「夜間」は太陽電池22から電力が得られない時間帯になる。
 特性P1と特性P2とを組合せると、図4に示す4つの領域D1~D4に区分される。領域D1,D2は太陽電池22が停止している領域であるから、太陽電池22以外の電源から電力を供給しなければならないことになる。また、領域D3,D4は太陽電池22が発電している領域であり、領域D4は、太陽電池22が発電した電力のうち消費電力を差し引いても余剰分(以下、「余剰電力」という)が生じることを表している。
 経済優先モードは、領域D4の余剰電力が生じると、配電線L1に余剰電力の逆潮流を行うことによって売電収入を得るように動作する。また、蓄電池23の充電は、太陽電池22が発電した電力ではなく、電気料金の単価が安い「夜間」に系統電源21から受電した電力で行う。また、蓄電池23の放電は、「昼間」「晩」の時間帯に必要に応じて行う。
 一方、環境優先モードは、領域D4の余剰電力を蓄電池23の充電に用い、太陽電池22から電力が得られない「晩」「夜間」に蓄電池23から放電して消費電力に充当させるのである。この場合、蓄電池23に蓄電された電力が消費電力を充足しない場合に、不足分を系統電源21から受電することになるが、系統電源21から受電する電力量が低減される。その結果、消費電力に充当する電力の大部分が再生可能エネルギーになり、環境負荷を低減するという目的に沿うことになる。
 蓄電優先モードは、太陽電池22が発電する電力に関係なく、蓄電池23がほぼ満充電の状態になるまで充電し、充電が完了するとトリクル充電のような満充電に保つ充電を行うだけで、放電せずに待機する。この場合、系統電源21からの給電が停止すると、蓄電池23に蓄電された電力を用いて電力の供給を開始する。
 上述した各動作モードの説明から明らかなように、蓄電池23は、環境優先モードでは必要があればいつでも放電し、経済優先モードでは「昼間」「晩」にのみ放電が許可される。本実施形態は、蓄電池23の放電が許容されたこれらの期間に、燃料電池24の連携を可能にしている。
 ここに、燃料電池24が発電する電力には上限値があり、この上限値が太陽電池22が発電する最大電力と比較して数分の1程度になるように、太陽電池22と燃料電池24との組合せが定められる。たとえば、太陽電池22が発電する最大電力が3kWであり、燃料電池24が発電する電力の上限値が750Wである組合せが採用される。
 燃料電池24は、蓄電池23の放電が許容されている上述した期間に、電流センサ34または電流センサ45が計測した電流値に基づいて求めた消費電力が、発電可能な電力の上限値以下である場合は、燃料電池24の発電電力を消費電力に充当する。一方、燃料電池24は、この期間に、計測した電流値に基づいて求めた消費電力が、発電可能な電力の上限値を超える場合は、蓄電池23に蓄電された電力を不足分に充当する。
 なお、経済優先モードにおいて蓄電池23に充電する「夜間」の時間帯、環境優先モードにおいて余剰電力により蓄電池23に充電する時間帯、蓄電優先モードが選択されている状態では、燃料電池24から蓄電池23に充電されないようにしている。つまり、分電盤30における主幹ブレーカ31の上流側に設けられた電流センサ34を燃料電池24に接続しているから、燃料電池24から逆潮流が生じないように管理することが可能になっている。
 ところで、燃料電池24および電力変換装置50は出力電力の変化に時間遅れがあるから、消費電力が急に変化した場合に、消費電力の変化にただちに追従することは難しい。電力変換装置50の動作モードが環境優先モードであるとき、燃料電池24が発電中か停止中かにかかわらず消費電力の変化に対して系統電源21から受電する電力量はなめらかに収束しなければならない。また、燃料電池24が発電している期間に、電力変換装置50の運転中か停止中かにかかわらず消費電力の変化に対して系統電源21から受電する電力量はなめらかに収束しなければならない。
 図5に示す例は、上段が消費電力(特性A1)と系統電源21から受電する電力(特性A2)を表し、下段が燃料電池24から出力される電力(特性B1と電力変換装置50から出力される電力(特性B2)を表している。
 図からわかるように、特性B1で表される燃料電池24の出力電力は、特性A1で表される消費電力の変化に対して遅れを生じており、図示例では、応答の遅れによって、燃料電池24の出力電力は、約2W/sの傾きで変化している。このとき、燃料電池24から出力される電力では消費電力を充足できないから、特性A2で表されているように、この傾きを相殺するように系統電源21からの受電が行われる。
 また、燃料電池24の出力電力の上限値(図示例では750W)を超えると、特性B2で表されているように、蓄電池23に蓄電された電力を消費電力に充当するように電力変換装置50が運転を開始する。ただし、電力変換装置50から出力される電力の立ち上がりには若干の遅れがあるから、この間に不足する電力は、特性A2の時刻16:55:12の付近に表されているように、系統電源21から短時間だけ受電することになる。
 図6に示す動作例は、系統電源21から受電しない場合の動作であって、特性A1は消費電力、特性B1は燃料電池24の出力電力、特性B2は電力変換装置50の出力電力を表す。図6の例では、燃料電池24の出力電力が消費電力の変化に追従していない期間に、電力変換装置50が出力する電力により消費電力に対する不足分が補充されている。
 以下に、系統電源21から電力が供給されない状態、つまり停電の場合の動作について説明する。電力変換装置50は、計測装置63または電流センサ36の出力に基づいて停電を検出すると、連携ブレーカ33を遮断して系統から解列する。電力変換装置50は、リモコン54の操作により、解列後に自動的に自立運転を開始するか手動で自立運転を開始するかが選択され、自立運転が開始されると、電源選択部44の電磁継電器が切り替えられ、電力変換装置50のトランス52から自立分電盤40に電力が供給される状態に移行する。この切替に時間遅れ(たとえば、最大5秒)がある場合には、時間遅れの期間は特定負荷61、管理装置62などに対する電力供給が一時的に停止する。
 燃料電池24の起動には電力が必要であるから、電力変換装置50から自立分電盤40を通して供給される電力を用いて燃料電池24の起動が行われる。なお、燃料電池24が運転中であれば、停電が生じても燃料電池24の運転は継続される。
 上述したように、燃料電池24から出力される電力は上限値で制限されており、分電盤30から給電される負荷61が消費する電力を充足させることはできない。そのため、停電時には自立分電盤40に接続されている特定負荷61、管理装置62などを給電の対象にする。電力変換装置50は、計測点切替装置10に指示を与えて、燃料電池24の逆潮流を監視する計測点を切り替える。つまり、計測点切替装置10は、停電していない期間には電流センサ34を燃料電池24に接続しているが、停電している期間には電流センサ45を燃料電池24に接続する。
 なお、自立運転の期間において、消費電力が電力変換装置50に許容された最大電力と、燃料電池24の出力電力の上限値との和を超えると分岐線L4、接続線L5,L7の線間電圧が低下する。電力変換装置50と燃料電池24とは、この線間電圧の低下を検知すると、出力を停止し、リモコン25,54にエラーを表示する。
 図7に計測点切替装置10の概略構成を示す。図において電力変換装置50の制御に関わる構成を処理部500と記載し、燃料電池24の制御に関わる構成を処理部240として記載している。計測点切替装置10は、処理部240,500と通信することにより燃料電池24に接続する電流センサ34,45を決定する処理部11を備える。これらの処理部11,240,500は、プログラムにより動作するプロセッサを備えるデバイスを主なハードウェア要素とする。この種のデバイスは、メモリを備えるマイコン、別のメモリと組み合わせて用いるプロセッサなどから選択される。なお、処理部11と処理部240との間、および処理部11と処理部500との間はフォトカプラにより絶縁することが望ましい。
 電流センサ34は、上述のように、2本の電圧線(U相とW相)を個別に計測するように2個のカレントトランス341,342を備え、電流センサ45も同様に、2本の電圧線(U相とW相)とを個別に計測するように2個のカレントトランス451,452を備える。したがって、計測点切替装置10は、U相とW相とについてそれぞれカレントトランス341,342,451,452を選択するために、2個の切替器12,13を内蔵している。つまり、切替器12はカレントトランス341とカレントトランス451との一方を選択し、切替器13はカレントトランス342とカレントトランス452との一方を選択する。計測点切替装置10は、処理部11および切替器12,13を動作させるための電源部14を備える。
 図8に自立分電盤40の別の構成例を示す。図示例は燃料電池24を接続するための単相3線に対応する分岐ブレーカ42Aを、通常の単相2線の分岐ブレーカ42とは別に設けている。また、主幹ブレーカ41の上流側にサービスブレーカ46を設け、最大電流を制限している。停電時に燃料電池24に接続される電流センサ45A,45Bは、サービスブレーカ46と主幹ブレーカ41との間の電路を通過する電流を計測するように配置されている。電流センサ45A,45Bは、図7に示したカレントトランス451,452に対応し、U相とW相との電流を個別に計測する。なお、サービスブレーカ46の有無は任意である。
 以上説明した構成によって、太陽電池22と蓄電池23と燃料電池24とを組み合わせて用い、電力変換装置50の動作モードに応じて燃料電池24を活用した結果、省エネルギーになった。また、系統電源21から受電できる場合は、系統電源21から受電する主幹ブレーカ31の上流側に設けた電流センサ34で計測した電流値を燃料電池24が利用していることにより、燃料電池24の発電電力の利用率が高くなった。その結果、給湯用の熱量不足が抑制された。
 シミュレーションによれば、燃料電池24を電力が不足した場合にのみ駆動する場合と比較すると、本実施形態の構成では、燃料電池24の発電量が2倍以上になった。また、燃料電池24の燃料となる燃料ガスをガス会社から購入した場合、ガス料金と電気料金との総和は、燃料電池24を用いない場合の電気料金の総和よりも削減された。しかも、燃料電池24を電力の不足を補うためにのみ用いる場合と比較すると、削減額は2倍以上であった。
 なお、上述した実施形態において、コージェネレーション装置の例として燃料電池24を示したが、ガスエンジンを用いた構成のコージェネレーション装置を採用することも可能である。上述した実施形態は本発明の一例であって、本発明は、上述の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。

Claims (7)

  1.  系統電源と第1の負荷との間に接続される主幹ブレーカを備えた分電盤と、
     前記系統電源から電力が供給される期間に前記主幹ブレーカに電力を供給する連系端子、および前記系統電源からの給電が停止する期間に電力を取り出す自立端子を備えた電力変換装置と、
     前記系統電源から電力が供給される期間に前記分電盤から給電される一方、前記系統電源からの給電が停止する期間に前記電力変換装置の前記自立端子から給電され、かつ第2の負荷が接続される自立分電盤と、
     前記自立分電盤に接続され発電と湯沸かしとを行う構成であって、発電した電力は前記系統電源への逆潮流が禁止されているコージェネレーション装置と、
     前記コージェネレーション装置が出力する電力を定めるために、前記系統電源から電力が供給される期間には前記主幹ブレーカを通過する電流を監視する第1の電流センサを選択し、前記系統電源からの給電が停止する期間に前記電力変換装置から前記自立分電盤に供給される電流を監視する第2の電流センサを選択する計測点切替装置とを備え、
     前記コージェネレーション装置は、前記計測点切替装置に選択された前記第1の電流センサと前記第2の電流センサとの一方の出力を用いて、前記コージェネレーション装置から出力された電力が前記第1の負荷および前記第2の負荷で消費されるように出力を調節する
     ことを特徴とする電力供給システム。
  2.  前記コージェネレーション装置は燃料電池である
     請求項1記載の電力供給システム。
  3.  前記自立分電盤を、前記分電盤に接続する第1の状態と、前記電力変換装置の前記自立端子に接続する第2の状態とを選択する電源選択器をさらに備える
     請求項1又は2記載の電力供給システム。
  4.  前記電力変換装置は、
      太陽電池と蓄電池とが接続可能であり、
      前記太陽電池が発電した電力と前記蓄電池に蓄電された電力との少なくとも一方を、前記系統電源から電力が供給される期間に前記連系端子から出力する一方、前記系統電源からの給電が停止する期間に前記自立端子から出力する構成であって、
      前記太陽電池が発電した電力かつ前記連系端子を通して出力する電力は、前記系統電源への逆潮流が可能になるように構成されている
     請求項1~3のいずれか1項に記載の電力供給システム。
  5.  前記電力変換装置は、
      前記太陽電池が発電した電力のうち前記第1の負荷と前記第2の負荷とのどちらにも消費されない余剰電力の逆潮流を行い、かつ電気料金の単価が相対的に安い時間帯に前記蓄電池に充電する一方、電気料金の単価が相対的に高い時間帯に前記蓄電池から放電する第1の動作モードと、
     前記太陽電池が発電した電力のうちの前記余剰電力を前記蓄電池の充電に用い、かつ前記太陽電池が発電しない期間に前記蓄電池から放電する第2の動作モードと、
     前記蓄電池を満充電の状態に維持する第3の動作モードとが選択可能である
     請求項4記載の電力供給システム。
  6.  請求項1~5のいずれか1項に記載の電力供給システムに用いられる電力変換装置。
  7.  請求項1~5のいずれか1項に記載の電力供給システムに用いられる計測点切替装置。
PCT/JP2013/006689 2012-11-26 2013-11-14 電力供給システム、電力変換装置、計測点切替装置 WO2014080599A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/646,519 US9590422B2 (en) 2012-11-26 2013-11-14 Power supply system, power conversion apparatus, and measurement point switching apparatus
EP13856549.4A EP2924840B1 (en) 2012-11-26 2013-11-14 Power supply system, power conversion apparatus, and measurement point switching apparatus
JP2014548448A JP6195206B2 (ja) 2012-11-26 2013-11-14 電力供給システム、電力変換装置、計測点切替装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012258040 2012-11-26
JP2012-258040 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014080599A1 true WO2014080599A1 (ja) 2014-05-30

Family

ID=50775794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006689 WO2014080599A1 (ja) 2012-11-26 2013-11-14 電力供給システム、電力変換装置、計測点切替装置

Country Status (4)

Country Link
US (1) US9590422B2 (ja)
EP (1) EP2924840B1 (ja)
JP (1) JP6195206B2 (ja)
WO (1) WO2014080599A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118845A1 (ja) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 コージェネレーション装置の制御装置、およびコージェネレーション装置の制御方法
WO2015118844A1 (ja) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 エネルギー管理装置、およびエネルギー管理方法
WO2016001403A1 (de) * 2014-07-04 2016-01-07 TRUMPF Hüttinger GmbH + Co. KG Stromwandlervorrichtung, energiespeichersystem und verfahren zum betreiben einer stromwandlervorrichtung
WO2016088626A1 (ja) * 2014-12-04 2016-06-09 オムロン株式会社 蓄電池制御装置、蓄電システム及び蓄電池の充電方法
EP3309922A4 (en) * 2015-06-12 2018-05-30 Panasonic Intellectual Property Management Co., Ltd. Power storage system, power storage device, and operation method for power storage device
US10181724B2 (en) 2016-02-10 2019-01-15 Eguana Technologies Seamless transitions between control modes
US10305321B2 (en) 2016-02-10 2019-05-28 Eguana Technologies Automatic recovery control
EP3206275B1 (en) * 2016-02-10 2020-06-10 Eguana Technologies Output control and compensation for ac coupled systems

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150066228A1 (en) 2013-07-26 2015-03-05 Peaknrg Building Management and Appliance Control System
JP6160481B2 (ja) * 2013-12-27 2017-07-12 ソニー株式会社 電源装置、電源システムおよび電源制御方法
US20150333491A1 (en) * 2014-05-13 2015-11-19 Paul Cruz Alternative energy bus bar by pass breaker
US9728972B2 (en) * 2014-08-20 2017-08-08 Qfe 002 Llc Alternative energy bus bar by pass breaker, methods of use and installation
KR101717853B1 (ko) * 2015-09-02 2017-03-27 엘에스산전 주식회사 전력 모니터링 시스템 및 그의 전력 모니터링 방법
NL2016736B1 (nl) * 2016-05-06 2017-11-14 Lens-Ip B V Systeem voor het verdelen van stroom en werkwijze.
NL2017245B1 (en) * 2016-07-27 2018-02-01 Bredenoord B V Hybrid power plant and method for controlling such a hybrid power plant combining a generator, comprising a combustion engine, and a photovoltaic system
IT201600077695A1 (it) * 2016-07-29 2018-01-29 Renzo Armellin Dispositivo elettronico che limita o blocca l'alimentazione derivante da qualsiasi fonte di energia elettrica, rinnovabile o non, permettendo solo il consumo dei carichi.
CA3033258A1 (en) * 2016-08-08 2018-02-15 Orison, Inc. Plug and play with smart energy storage units
JP6809306B2 (ja) * 2017-03-13 2021-01-06 オムロン株式会社 パワーコンディショナ及びスイッチ制御装置
JP7354770B2 (ja) * 2019-10-31 2023-10-03 ブラザー工業株式会社 情報処理装置、情報処理装置の制御方法、及びプログラム
BE1029637B1 (nl) * 2021-07-30 2023-02-28 Dyck Gustaaf Van Elektrische installatie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171674A (ja) 2000-12-04 2002-06-14 Japan Storage Battery Co Ltd 電力貯蔵型太陽光発電システム
JP2009284590A (ja) * 2008-05-20 2009-12-03 Osaka Gas Co Ltd 発電システム
WO2010013783A1 (ja) * 2008-08-01 2010-02-04 パナソニック電工株式会社 配電システム
JP2011083091A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd バッテリ制御ユニット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570245B2 (ja) * 2000-12-27 2010-10-27 シャープ株式会社 分散電源システム
CA2366731A1 (en) * 2001-11-30 2003-05-30 Veris Industries, Llc Power monitoring system
US20060028069A1 (en) * 2004-08-09 2006-02-09 Loucks David G Retrofit kit for converting a transfer switch to a switch for soft-load transfer, and soft-load power distribution system and method
WO2010054477A1 (en) * 2008-11-14 2010-05-20 Thinkeco Power Inc. System and method of democratizing power to create a meta-exchange
JP2011015501A (ja) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd 配電システム
US8445150B2 (en) * 2009-07-08 2013-05-21 Bloom Energy Corporation Grid frequency-responsive solid oxide fuel cell system
EP2498364A4 (en) * 2009-11-06 2014-04-16 Panasonic Corp ENERGY DISTRIBUTION SYSTEM
JP5414082B2 (ja) * 2010-03-15 2014-02-12 株式会社正興電機製作所 電力供給システム、電力供給方法、プログラム、記録媒体及び電力供給制御装置
JP2014045527A (ja) * 2010-12-28 2014-03-13 Sanyo Electric Co Ltd 電力制御装置
JP2012157106A (ja) * 2011-01-24 2012-08-16 Sanyo Electric Co Ltd 電力制御装置および電力システム
EP2693590A1 (en) * 2011-03-30 2014-02-05 Panasonic Corporation Distributed power generation system and method for operating same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171674A (ja) 2000-12-04 2002-06-14 Japan Storage Battery Co Ltd 電力貯蔵型太陽光発電システム
JP2009284590A (ja) * 2008-05-20 2009-12-03 Osaka Gas Co Ltd 発電システム
WO2010013783A1 (ja) * 2008-08-01 2010-02-04 パナソニック電工株式会社 配電システム
JP2011083091A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd バッテリ制御ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924840A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118845A1 (ja) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 コージェネレーション装置の制御装置、およびコージェネレーション装置の制御方法
WO2015118844A1 (ja) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 エネルギー管理装置、およびエネルギー管理方法
JP2015149862A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 コージェネレーション装置の制御装置、およびコージェネレーション装置の制御方法
JP2015149861A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 エネルギー管理装置、およびエネルギー管理方法
WO2016001403A1 (de) * 2014-07-04 2016-01-07 TRUMPF Hüttinger GmbH + Co. KG Stromwandlervorrichtung, energiespeichersystem und verfahren zum betreiben einer stromwandlervorrichtung
JP2016111784A (ja) * 2014-12-04 2016-06-20 オムロン株式会社 蓄電池制御装置、蓄電システム及び蓄電池の充電方法
WO2016088626A1 (ja) * 2014-12-04 2016-06-09 オムロン株式会社 蓄電池制御装置、蓄電システム及び蓄電池の充電方法
US10135282B2 (en) 2014-12-04 2018-11-20 Omron Corporation Storage battery control apparatus, power storage system, and method for charging storage battery
EP3309922A4 (en) * 2015-06-12 2018-05-30 Panasonic Intellectual Property Management Co., Ltd. Power storage system, power storage device, and operation method for power storage device
US10181724B2 (en) 2016-02-10 2019-01-15 Eguana Technologies Seamless transitions between control modes
US10305321B2 (en) 2016-02-10 2019-05-28 Eguana Technologies Automatic recovery control
EP3206275B1 (en) * 2016-02-10 2020-06-10 Eguana Technologies Output control and compensation for ac coupled systems
US11139654B2 (en) 2016-02-10 2021-10-05 Eguana Technologies Output control and compensation for AC coupled systems

Also Published As

Publication number Publication date
US20150318700A1 (en) 2015-11-05
US9590422B2 (en) 2017-03-07
EP2924840A4 (en) 2015-12-23
JP6195206B2 (ja) 2017-09-13
EP2924840A1 (en) 2015-09-30
EP2924840B1 (en) 2017-01-11
JPWO2014080599A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6195206B2 (ja) 電力供給システム、電力変換装置、計測点切替装置
JP5891461B2 (ja) 電力制御装置及びそれを用いた電力制御システム
JP6155532B2 (ja) 電力供給システム
CN102804540A (zh) 配电系统
JP4619298B2 (ja) 電力変換装置
JP3172855U (ja) 電力供給装置及びそれを使用した電力供給システム
JP6358530B2 (ja) コージェネレーション装置の制御装置、およびコージェネレーション装置の制御方法
WO2011055208A1 (ja) 電力融通システム
WO2011077219A2 (ja) 電力供給システム
JP2012095424A (ja) 電力管理システム
JP6655805B2 (ja) エネルギー管理装置、およびエネルギー管理方法
JP6190224B2 (ja) 電力貯蔵システム
JP6179855B2 (ja) 電力供給システム、分電盤
JP6243617B2 (ja) 電力システム
WO2015104787A1 (ja) エネルギー管理装置、およびエネルギー管理システム
JP7406437B2 (ja) 熱融通システム
JP6085785B2 (ja) 電力供給システム
JP6507294B2 (ja) 電力制御装置、電力制御方法、および電力制御システム
JP7201282B1 (ja) 電力自家消費システム
CA2732592C (en) Smart bi-directional electric energy storage and multifunction power conversion system
WO2015198678A1 (ja) 電力供給システムおよびコントローラ
JP2012223072A (ja) 系統連系システム
KR20210056716A (ko) 홈 스마트그리드에 적용되는 신재생에너지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646519

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014548448

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013856549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013856549

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE