WO2014079237A1 - 光纤网络的发送、接收、通信系统及信号的调制方法 - Google Patents

光纤网络的发送、接收、通信系统及信号的调制方法 Download PDF

Info

Publication number
WO2014079237A1
WO2014079237A1 PCT/CN2013/081494 CN2013081494W WO2014079237A1 WO 2014079237 A1 WO2014079237 A1 WO 2014079237A1 CN 2013081494 W CN2013081494 W CN 2013081494W WO 2014079237 A1 WO2014079237 A1 WO 2014079237A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital signal
order
optical
order digital
Prior art date
Application number
PCT/CN2013/081494
Other languages
English (en)
French (fr)
Inventor
朱松林
郭勇
印永嘉
高扬
曾冠军
张德智
同伟锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/646,409 priority Critical patent/US9882649B2/en
Priority to EP13856892.8A priority patent/EP2924896B1/en
Publication of WO2014079237A1 publication Critical patent/WO2014079237A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation

Definitions

  • the present invention relates to the field of communications, and in particular to a method for transmitting, receiving, and communicating a fiber optic network and a method for modulating a signal.
  • BACKGROUND A Time Division Multiplex (TDM) Passive Optical Network (PON) is a binary digital modulation optical fiber communication system.
  • the physical medium dependent layer or physical layer of the conventional TDM-PON employs a binary digital modulation technique.
  • Gigabit Passive Optical Network and 10-Gigabit-capable passive optical networks (XG-PON1) use scrambled binary non-return Scrambling binary NRZ, Ethernet Passive Optical Network (EPON) and lOGE PON adopt 8b/10b, 64b/66b line coded binary non-return-to-zero code (NRZ).
  • the electric power spectral density low frequency component of the binary non-return-to-zero code of the conventional TDM-PON overlaps with the electric power spectral density of the RF video signal modulation signal transmission system (RF Video signal).
  • WDM Wavelength Division Multiplexing
  • ODN Optical Distribution Node
  • the downlink signals of the PON are transmitted in the same direction in the same fiber and the power spectral densities overlap each other, resulting in the Raman Scattering effect of different wavelengths transmitting in the same fiber, causing the downlink signal of the TDM-PON system to be nonlinear to the RF Video system.
  • the Raman Crosstalk makes the low-frequency channel quality of the RF Video signal seriously degraded, so that the RF and TDM-PON cannot coexist in the same ODN network.
  • Embodiments of the present invention provide a method for transmitting, receiving, and communicating a fiber optic network and a method for modulating a signal, so as to at least solve the related art, since a fiber-optic communication system mostly adopts binary digital modulation, the transmission needs to be compared.
  • the system further includes: a first optical transmitting device configured to optically modulate the M-th order digital signal and transmit the modulated M-th order optical signal.
  • the system further includes: the first PON device, further configured to output two of the binary digital signals.
  • the system further comprises: a second optical transmitting device configured to optically modulate one of the two binary digital signals and transmit the modulated binary optical signal.
  • the first PON device comprises one of the following: an optical fiber line terminal OLT, a fiber network unit
  • the OLT comprises at least one of the following: GPON OLT, XGPON1 OLT, RF, NGPON2
  • the ONU includes at least one of the following: GPON 0NU, XGP0N1 ONU, RF, NGP0N2 0NU.
  • the M-order digital modulator comprises one of the following: Pulse Amplitude Modulation (PAM), Amplitude Shift Keying (ASK), Minimum Shift Keying (Minimum Shift Keying) , referred to as MSK), Phase Shift Keying (PSK), m Quadrature Amplitude Modulation (m-QAM), Discrete Multi-tone (Discrete MuliTone, DMT for short) , Orthogonal Frequency Division Multiplexing (abbreviated as 0FDM).
  • PAM Pulse Amplitude Modulation
  • ASK Amplitude Shift Keying
  • MSK Minimum Shift Keying
  • PSK Phase Shift Keying
  • m-QAM Phase Shift Keying
  • m-QAM Discrete Multi-tone
  • DMT Orthogonal Frequency Division Multiplex
  • a second passive optical network PON device configured to receive the demodulated binary digital signal, and perform corresponding operations according to the demodulated binary digital signal.
  • the system further includes: a first light receiving device configured to optically demodulate the received M-th order optical signal, and output the demodulated M-th order digital signal.
  • the system further comprises: a second light receiving device configured to optically demodulate the received binary optical signal and output the demodulated binary digital signal.
  • the second PON device comprises one of the following: an optical fiber line terminal OLT, a fiber network unit
  • the OLT includes at least one of the following: a Gigabit passive optical network, a GPON OLT, an XGPON1 OLT, an RF, and an NGP0N2 OLT;
  • the ONU includes at least one of the following: GPON ONU, XGPON1 ONU, RF, NGP0N2 0NU.
  • the M-order digital demodulator comprises one of the following: PAM, ASK, MSK, PSK, m-QAM,
  • a communication system for a fiber optic network comprising: the transmission system of the optical fiber network of any of the above, and the receiving system of the optical network of any of the above.
  • the method further includes: demodulating the received M-th order digital signal into a binary digital signal by using an M-order digital demodulator; performing, according to the binary digital signal The corresponding operation.
  • the method before the input binary digital signal is modulated into the M-order digital signal by the M-order digital modulator, the method further includes: determining whether the modulation is performed by the M-order digital modulator; if not, modulating by the binary digital modulator .
  • the method before determining whether to perform modulation by the M-th order digital modulator, the method further includes: determining whether to output the received two binary digital signals; if yes, passing the binary digital modulator and the The M-order digital modulator separately modulates two of the binary digital signals; if not, it determines whether modulation is performed by the M-order digital modulator.
  • the transmission system of the optical fiber network provided by the embodiment of the invention uses an M-order digital modulator to modulate the binary digital signal, and outputs the modulated M-order digital signal.
  • the optical fiber communication system adopts binary digital modulation
  • the transmission requires a large bandwidth
  • the large bandwidth requires an optical transceiver module with a higher transmission rate, which results in a higher user cost.
  • the problem of poor practicability reduces the bandwidth required for transmission and reduces the actual cost of the optical transceiver module.
  • the power spectrum can be shaped by using the M-ary characteristics to make the power spectrum of the RF signal and the passive optical network.
  • the power spectrum of the downlink signals does not overlap, solving the technical problem of Raman crosstalk.
  • FIG. 1 is a schematic structural diagram 1 of a transmission system of an optical fiber network according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of a transmission system of an optical fiber network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a transmission system according to the present invention
  • FIG. 4 is a schematic structural diagram 1 of a receiving system of a fiber optic network according to an embodiment of the present invention
  • FIG. 5 is a second schematic structural diagram of a receiving system of a fiber optic network according to an embodiment of the present invention
  • 6 is a schematic structural diagram of a communication system of a fiber optic network according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for modulating a signal according to an embodiment of the present invention
  • FIG. 8 is a structure of a modulation apparatus for a signal according to an embodiment of the present invention
  • FIG. 9 is a block diagram showing the structure of a modulation apparatus for a signal according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a binary digital modulation and an OFDM modulation conversion upgrade according to a preferred embodiment of the present invention
  • Power spectrum of RF signal and NRZ signal FIG.
  • FIG. 12 is a network of multiple networks coexisting according to a preferred embodiment 2 of the present invention
  • FIG. 13 is a schematic structural diagram of an OLT of an XGPON 1 according to the related art
  • FIG. 14 is a schematic diagram of an OLT structure of an XGPON 1 according to a preferred embodiment of the present invention
  • FIG. 15 is a schematic diagram of an ONU structure of an XG-PON 1 according to a related art
  • FIG. 16 is a schematic diagram of an ONU structure of an XGPON 1 according to a second preferred embodiment of the present invention.
  • FIG. 17 is a second schematic diagram of an OLT structure of an XGPON 1 according to a preferred embodiment of the present invention
  • FIG. 17 is a second schematic diagram of an OLT structure of an XGPON 1 according to a preferred embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of an OLT of an XGPON 1 according to the related art
  • FIG. 14 is a schematic diagram of an OLT
  • FIG. 18 is a second schematic diagram of an ONU structure of an XGPON 1 according to a preferred embodiment of the present invention
  • FIG. 19 is a schematic diagram of an XGPON 1 according to a preferred embodiment of the present invention.
  • FIG. 20 is a schematic diagram of an ONU structure of an XGPON 1 according to a preferred embodiment of the present invention.
  • FIG. 21 is a schematic diagram of a network architecture of a multi-network coexistence according to a preferred embodiment 3 of the present invention;
  • FIG. Example 3 is a schematic diagram of the architecture of two working modes of binary digital modulation and OFDM modulation of NGPON2 or NGEPON. BEST MODE FOR CARRYING OUT THE INVENTION
  • BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides a transmission system for a fiber optic network.
  • the structure of the system is shown in FIG. 1 , and includes: a first PON device 1 configured to output a binary digital signal;
  • the transmission system of the optical fiber network uses an M-order digital modulator to modulate a binary digital signal, and outputs the modulated M-order digital signal.
  • the optical communication system adopts binary digital modulation, which requires a large bandwidth for transmission, and a large bandwidth requires an optical transceiver module with a higher transmission rate, which leads to higher user cost and practicality.
  • the foregoing transmitting system may further include a first optical transmitting device 3, coupled to the M-order digital modulator 2, configured to optically modulate the received M-th order digital signal, as shown in FIG. 2, and to modulate the modulated M.
  • the light signal is transmitted.
  • the M-order digital signal outputted by the M-order digital modulator 2 is subjected to light modulation processing to make the signal fidelity better.
  • the first PON device 1 can also be arranged to output two binary digital signals.
  • the foregoing transmitting system may be used in combination with an existing system, and the apparatus may further include a second optical transmitting device 7 configured to optically modulate one of the two binary digital signals, and The modulated binary optical signal is transmitted as shown in FIG.
  • the embodiment of the present invention further provides a receiving system for a fiber optic network, which can be configured to receive a transmission signal from a transmitting system of the optical fiber network, and the structure thereof can be as shown in FIG. 4, and includes:
  • the receiving system may further include a second light receiving device, configured to optically demodulate the received binary optical signal, and to perform the demodulated binary digital signal. Make the output.
  • the first PON device and the second PON device are not the same device. For example, when the first PON device is an OLT, the second PON device is an ONU; if the first PON device is an ONU, the second PON device is For the OLT. In implementation, the OLT corresponds to the ONU.
  • the OLT is a GPON OLT, an RF, and an XGPON1 OLT
  • the IKE ONU is a GPON ONU, an RF, and an XGPON1 ONU.
  • the OLT or the ONU can be various, for example, GPON OLT, XGPON1 OLT, RF, NGPON2 0LT, and the like.
  • M-order digital tone The controller or M-order digital demodulator can also be any of the following: PAM, ASK, MSK, PSK, m-QAM, DMT, OFDM.
  • the embodiment further provides a communication system for a fiber optic network.
  • the structure of the communication system can be as shown in FIG.
  • the present embodiment further provides a signal modulation method.
  • the implementation process of the method is as shown in FIG. 7 and includes steps S702 to S704.
  • the received M-th order digital signal may be subjected to optical modulation processing; and then the modulated M-order optical signal is transmitted.
  • the receiving device at the opposite end can demodulate the M-order optical signal after receiving it, and output the demodulated M-order digital signal, and demodulate the output M-order digital signal into a binary number through the M-order digital demodulator.
  • the signal is then operated according to the binary digital signal.
  • the two binary digital signals are input, it is judged whether or not the two binary digital signals received are output. If both inputs are made, the two binary digital signals are modulated by a binary digital modulator and an M-order digital modulator, respectively. If the two signal values are input all the way, the input binary digital modulator or M-order digital modulator is selected according to the situation. If an input binary digital modulator is selected, modulation is performed in accordance with the existing binary digital modulation process.
  • an M-order digital modulator is selected for input, it is modulated and output as described above.
  • the embodiment further provides a signal modulating device, the device may comprise two parts, the first part is set to implement a transmitting function, and the second part is set to implement a receiving function, and the above device may be set according to different functions of the implementation. In the two entities, below, the case where they are set in different entities will be described.
  • a block diagram of a device configured to implement a transmitting function may be as shown in FIG.
  • a modulation module 10 configured to modulate an input binary digital signal into an M-order digital signal through an M-order digital modulator, wherein the M-order digital signal
  • the output module 20 is coupled to the modulation module 10 and configured to output the M-order digital signal through the optical network.
  • the apparatus configured to implement the receiving function may be as shown in FIG. 9, comprising: a demodulation module 30 configured to demodulate the received M-order digital signal into a binary number by an M-order digital demodulator.
  • the signal processing module 40 is coupled to the demodulation module 30 and configured to perform corresponding operations according to the binary digital signal.
  • the device can be configured as two separate sub-devices, that is, the sender and the receiver are respectively set according to different functions of the module, and those skilled in the art can set according to the functions of the above modules, and details are not described herein.
  • Preferred Embodiment 1 This embodiment provides a method for implementing a plurality of PONs and RFs coexisting in an ODN network.
  • the implementation method uses a multi-digit digital modulation technology to perform modulation, which can improve the amount of information carried by a unit bandwidth and improve spectrum efficiency.
  • the signal bandwidth occupied by the M-ary (M is greater than 2) digital modulation technique can be ⁇ / logf of the binary digital modulation technique signal bandwidth.
  • the reduced operating bandwidth of the optical module will greatly reduce the cost of the optical transceiver module.
  • the new multi-digit digital modulation technology also has the functions of power spectrum shaping and spectrum conversion.
  • the TDMPON system using spectrum shaping and spectrum conversion technology can reduce the bandwidth. Even eliminate its nonlinear Raman crosstalk to the RF Video system.
  • the conversion between the binary digital modulated signal and the multi-digit digital modulated signal can be realized by the ASIC chip, and the original binary digital modulated optical fiber communication transmission system is converted into a multi-digital digital modulation technology optical fiber communication transmission system, and of course, it can also be used.
  • the ASIC chip converts and directly converts the original binary digital modulation fiber-optic communication bed book system into M-ary, but this change is more complicated than the conversion using the ASIC chip, but still achieves the same effect.
  • OFDM Orthogonal Frequency Division Multiplexing
  • demodulation techniques are among the new types of multi-ary digital modulation techniques.
  • the principle of OFDM modulation is to divide the binary input signal into framing, serial-to-parallel conversion, code mapping (digital modulation technology QAM), digital IFFT processing, parallel-to-serial conversion, and then generate OFDM electrical signals through digital and signal conversion (DAC), which will be converted.
  • the subsequent electrical signals are transmitted by optical carrier modulation and transmitted over the fiber.
  • the principle of OFDM demodulation technology is usually that the optical detector converts the received optical carrier modulated signal into an OFDM electrical signal, and then performs digital signal conversion (ADC), serial-to-parallel conversion, digital FFT processing, de-coding mapping, and serial-to-serial conversion. Then, the binary digital signal is recovered by framing, as shown in FIG.
  • ADC digital signal conversion
  • serial-to-parallel conversion serial-to-parallel conversion
  • digital FFT processing digital FFT processing
  • de-coding mapping de-coding mapping
  • serial-to-serial conversion serial-to-serial conversion
  • Figure 11 shows that due to the overlap of the conventional binary modulation (NRZ signal of 10 Gb/s rate) and the power spectral density of the RF signal, severe nonlinear Raman crosstalk will result, affecting the coexistence of the TDMPON signal and the RF signal.
  • the OFDM modulated signal has a relatively compact power spectral density. Combined with the shift of the OFDM spectrum, the signal power spectral density of OFDM can be completely moved beyond the main power spectral density of the RF, thereby effectively reducing or eliminating the OFDM signal and the RF signal.
  • GPON, XGPON1 or EPON, 10GEPON is taken as an example.
  • a binary modulation and demodulation can be serially connected to the output ports of the PMD or PHY of the OLT of the traditional GPON, XGPONK EPON, 10GEPON OLT and ONU ASIC chips.
  • OFDM modulation and demodulation mutual conversion function chip replace the original binary digital modulation optical transceiver module with the optical transceiver module of OFDM digital modulation signal, thereby converting the original binary digital modulation optical fiber communication transmission system into OFDM digital modulation technology fiber Communication transmission system, that is, a multi-digital digital modulation technology optical fiber communication transmission system.
  • the functional chip of OFDM modulation uses GPON and XGPON1 to use the digital signal of the scrambled binary NRZ, and the EPON and 10GEPON are converted by the binary NRZ digital signal encoded by 8b/10b or 64b/66b lines.
  • the OFDM modulated signal is then transmitted over the ODN network by modulation of the optical module.
  • the OFDM signal is first converted by the optical module to the GPON and XGPON1 using the scrambled binary NRZ digital signal, and the EPON and 10GEPON are 8b/10b, 64b. Digital signal of the /66b line coded NRZ code.
  • the downstream optical signals of NGPON2 and RF signals coexist in the same ODN network.
  • the ASIC chip can work in the OFDM modulation mode, and the downlink optical signal of the NGPON2 and the RF signal coexist in the same ODN network.
  • the TC layer of the NGPON2 and the MAC layer data stream of the NGEPON are directly subjected to OFDM modulation processing after FEC encoding, and are transmitted through the optical module.
  • the optical module For the receiving direction, it is received by the optical module, FEC decoding is performed by OFDM demodulation processing, and then the data stream is sent to the TC layer of NGPON2 and the MAC layer of NGEPON.
  • the downstream optical signal for NGPON2 does not need to coexist with the RF signal in the same ODN network.
  • the ASIC chip can work in the ordinary binary digital modulation mode, and transmit and receive optical signals through the binary digital modulation optical transceiver module (optical module).
  • the operating frequency bandwidth of the optical transceiver module can be reduced by logf times, which greatly reduces the component price of the optical module, and makes the whole system The cost of the optical module is greatly reduced.
  • the power spectral density of the converted TDMPON downlink signal and the same RF video signal are no longer superimposed in the frequency domain, eliminating nonlinear Raman crosstalk and realizing TDMPON and RF signals.
  • Preferred embodiment two The network architecture supporting the GPON, XGPON1, and RF coexistence provided in this embodiment is shown in FIG.
  • the optical transceiver module of the OLT of the XGPON1 system operates at an optical signal of 10 Gbit/ s , and receives an optical signal of 2.5 Gbit/s.
  • the downlink wavelength range is 1575 nm to 1580 nm, and the upstream wavelength that can be received is 1260 nm.
  • the OLT optical module of the GPON system transmits a downlink optical signal of 2.5 Gbit/s, receives an optical signal of 1.25 Gbit/s uplink, and transmits a downlink wavelength range of 1480 nm to 1500 nm, and the uplink wavelength that can be received is 1290 nm to 1330 nm.
  • RF Video's transmit optical modules range in wavelength from 1550nm to 1560nm.
  • the downlink signal of XGPON1, the downlink signal of GPON and the downlink signal of RF are demultiplexed by the coexisting wavelength division multiplexer (WDMlr) shown in FIG. 12, and then transmitted to and received by the ONU supporting the XGPON1 system through the ODN network of the system.
  • the module, the ONU optical module supporting the GPON system, and the module receiving the RF signal; the uplink signal of the XGPON1 and the uplink signal of the GPON are combined by the WDMlr shown in FIG. 12, and then transmitted to the respective OLT ports.
  • the ONU optical module of the XGPON1 system operates at an optical rate of 10 Gbit/s and transmits an optical signal of 2.5 Gbit/s.
  • the downlink wavelength range that can be received is 1575 nm to 1580 nm, and the upstream wavelength is 1260 nm to 1280 nm.
  • the ONU optical module of the GPON system receives the optical signal of 2.5 Gbit/s downlink and receives the optical signal of 1.25 Gbit/s uplink.
  • the downlink wavelength range that can be received is 1480 nm to 1500 nm, and the uplink wavelength of the transmission is 1290 nm to 1330 nm.
  • GPON, XGPON1, and RF coexist in three ways, and each mode will be described below.
  • Method 1 XGPONl OLT digital modulation and demodulation technology conversion upgrade: XGPONl OLT general inclusion
  • the interface part of the PMD function chip includes two electrical interfaces that transmit and receive, and the two interfaces are interconnected with two electrical interfaces that are sent and received by the optical module.
  • the upgrade process is implemented by inserting a functional chip of OFDM modulation and demodulation technology between the PMD and the electrical interface of the optical module, and replacing the digital baseband optical module with an optical module.
  • the functional chips of the OFDM modulation and demodulation technology are used to convert the digital signals of the GPON and XGPON1 using the scrambled binary NRZ into OFDM signals, and then transmitted on the ODN network through debugging of the optical module.
  • XGPON1 ONU digital modulation and demodulation technology conversion upgrade XGPON1 ONU generally consists of UNI, TC and PMD three-part electrical chip and optical module, as shown in Figure 15.
  • the interface part of the PMD function chip includes two electrical interfaces that transmit and receive, and the two interfaces are interconnected with two electrical interfaces that are sent and received by the optical module.
  • the upgrade process is implemented by inserting a functional chip of OFDM modulation and demodulation technology between the PMD and the electrical interface of the optical module, and replacing the digital baseband optical module with an optical module.
  • the function chip of the OFDM modulation and demodulation technology converts the digital signals of the GPON and the XGPON1 using the scrambled binary NRZ into an OFDM signal, and then processes the modulated optical signals and transmits them on the ODN network after being processed by the optical module.
  • the modulated optical signal is received and demodulated on the ONU receiving end optical module, and the OFDM signal is converted into a digital signal of the PONZ of the GPON and XGPON1 scrambled and encoded by the functional chip of the OFDM modulation and demodulation technology, and transmitted to the PMD. Receive port.
  • the above completes the line code conversion upgrade of the ONU of the XGPON1, and the upgrade can be as shown in FIG. 16.
  • XGPON1 OLT's digital modulation and demodulation technology conversion upgrade The functions of OFDM modulation and demodulation technology and PMD functions are integrated in the same chip. Can be as shown in Figure 17.
  • XGPON1 ONU digital modulation and demodulation technology conversion upgrade The function of OFDM modulation and demodulation technology and PMD function are integrated in the same chip, as shown in Figure 18.
  • XGPON1 OLT digital modulation and demodulation technology conversion upgrade OFDM modulation and demodulation technology functions and optical module functions are integrated in the same optical module package, as shown in Figure 19.
  • XGPON1 ONU digital modulation and demodulation technology conversion upgrade OFDM modulation and demodulation technology functions and optical module functions are integrated in the same optical module package, as shown in Figure 20.
  • Preferred Embodiment 3 A network architecture supporting GPON, NGPON2, and RF coexistence provided in this embodiment is shown in FIG. 21. OLT operating speed of the optical transceiver module to transmit NGPON2 system behavior under 10Gbit / S of the optical signal, the optical signal receiving behavioral 2.5Gbit / s or 10Gbit / s of.
  • the downlink wavelength range transmitted is 1530 nm to 1540 nm, and the upstream wavelength that can be received is 1600 nm to 1625 nm.
  • RF Video's transmit optical modules range in wavelength from 1550nm to 1560nm.
  • the downlink signal of NGPON2, the downlink signal of GPON and the downlink signal of RF pass through the WDMlr split shown in FIG. 21 and then reach the optical transceiver module of the ONU supporting the NGPON2 system and the ONU optical module supporting the GPON system through the ODN network of the system respectively.
  • Module for receiving RF signals; on NGPON2 The uplink signal of the line signal and the GPON is combined by the WDMlr shown in FIG. 21 and transmitted to the respective OLT ports.
  • the ONU optical module of the NGPON2 system operates at an optical rate of 10 Gbit/ s and transmits an optical signal of 2.5 Gbit/s or 10 Gbit/s.
  • the downlink wavelength range that can be received is 1600 nm to 1625 nm.
  • the ONU optical module of the GPON system receives the downlink 2.5Gbit/s optical signal and receives the uplink 1.25Gbit/s optical signal.
  • the downlink wavelength range that can be received is 1480nm to 1500nm, and the uplink wavelength is 1290nm. 1330nm.
  • the OLT of the NGPON2 is composed of an ASIC chip and an optical module.
  • the ASIC chip generally consists of three parts: TM, TC and PMD.
  • the TC layer data stream of the NGPON 2 enters the PMD function module for the transmission direction.
  • the FMD function module performs FEC encoding on the data stream, it directly performs OFDM modulation processing, and then outputs the result to the optical transceiver module for transmission.
  • the optical signal is converted into an electrical signal by the optical transceiver module and sent to the PMD function module.
  • the PMD function module receives the signal through OFDM demodulation processing, performs FEC decoding, and then sends the data stream to the TC layer of NGPON2.
  • the ASIC chip can operate in a normal binary modulation mode and transmit and receive optical signals through a common digital optical transceiver module, which can be illustrated in FIGS. 3 and 22. From the above description, it can be seen that the embodiment of the present invention achieves the following technical effects: By applying the embodiment of the present invention, the downlink signal of the TDMPON system is generated to generate nonlinear Raman crosstalk to the RF Video system, so that part of the RF Video signal is obtained.
  • the low-frequency channel quality optimization enables RF and TDMPON to coexist in the same ODN network; and, the cost of the optical transceiver module is reduced, and the utility is strong.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光纤网络的发送、接收、通信系统及信号的调制方法,其中,该发送系统包括:第一PON设备,设置为输出二进制数字信号;M阶数字调制器,设置为将二进制数字信号调制为M阶数字信号,并将M阶数字信号进行输出,其中,M阶数字信号中的每个传输符号携带N=logM 2个比特信息,N为大于1的自然数,M为自然数。通过运用本发明,解决了由于光纤通信系统多采用二进制数字调制,其传输时需要较大的带宽,实用性较差的问题,进而减少了需要传输的带宽,也降低了光收发模块的实际成本,同时还可以利用M进制特性对功率谱进行整形,使RF信号的功率谱和无源光网络的下行信号的功率谱不重叠,解决拉曼串扰的技术难题。

Description

光纤网络的发送、 接收、 通信系统及信号的调制方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种光纤网络的发送、 接收、 通信系统及 信号的调制方法。 背景技术 传统时分复用(Time Division Multiplex,简称为 TDM)无源光网络(Passive Optical Network, 简称为 PON) 属于二进制数字调制光纤通信系统。 传统 TDM-PON的物理 介质依赖层或物理层采用二进制数字调制技术。例如,千兆无源光网络(Gigabit Passive Optical Network, 简称为 GPON) 和十吉比特无源光网络 (10-Gigabit-capable passive optical networks, 简称为 XG-PONl ), 采用加扰的二进制非归零码 (scrambled binary NRZ),以太无源光网络(Ethernet Passive Optical Network,简称为 EPON)和 lOGE PON 采用 8b/10b, 64b/66b线路编码的二进制非归零码 (NRZ)。 传统 TDM-PON的二进制 非归零码的电功率谱密度低频分量和射频视频光调制信号传输系统 (RF Video signal) 的电功率谱密度重叠。 当采用波分复用(Wavelength Division Multiplexing,简称为 WDM)技术使 RF Video 系统和 TDM-PON系统在同一个光分配网 ( Optical Distribution Node,简称为 ODN) 中共存时, RF Video信号和 TDM-PON的下行信号在同一光纤中同向传输并且功率谱 密度相互重叠, 导致不同波长在同一光纤中传输的拉曼散射(Raman Scattering)效应, 造成 TDM-PON系统下行信号对 RF Video系统产生非线性拉曼串扰(Nonlinear Raman Crosstalk), 使得 RF Video信号的部分低频信道质量严重劣化, 致使 RF和 TDM-PON 在同一个 ODN网络中无法共存; 并且, lOGbps的二进制数字调制光纤传输系统的光 收发模块的成本已经达到接入网用户的承受极限, 急需寻找降成本的技术方案。 相关技术中, 由于光纤通信系统多采用二进制数字调制, 其传输时需要较大的带 宽, 较大带宽需要较高传输速率的光收发模块, 则导致用户的使用成本较高, 实用性 较差。 发明内容 本发明实施例提供了一种光纤网络的发送、 接收、 通信系统及信号的调制方法, 以至少解决相关技术中, 由于光纤通信系统多采用二进制数字调制, 其传输时需要较 大的带宽, 较大带宽需要较高传输速率的光收发模块, 则导致用户的使用成本较高, 实用性较差的问题。 根据本发明实施例的一个方面,提供了一种光纤网络的发送系统,包括:第一 PON 设备, 设置为输出二进制数字信号; M阶数字调制器, 设置为将所述二进制数字信号 调制为 M阶数字信号, 并将所述 M阶数字信号进行输出, 其中, 所述 M阶数字信号 中的每个传输符号携带 N=lQg 个比特信息, N为大于 1的自然数, M为自然数。 优选地, 所述系统还包括: 第一光发送设备, 设置为对所述 M阶数字信号进行光 调制, 并将调制后的 M阶光信号进行发送。 优选地, 所述系统还包括: 所述第一 PON设备, 还设置为输出两路所述二进制数 字信号。 优选地, 所述系统还包括: 第二光发送设备, 设置为对两路所述二进制数字信号 中的一路所述二进制数字信号进行光调制, 并将调制后的二进制光信号进行发送。 优选地, 所述第一 PON设备包括以下之一: 光纤线路终端 OLT, 光纤网络单元
优选地,所述 OLT至少包括以下之一: GPON OLT, XGPON1 OLT, RF, NGPON2
OLT;所述 ONU至少包括以下之一: GPON 0NU, XGP0N1 ONU, RF,NGP0N2 0NU。 优选地, 所述 M 阶数字调制器包括以下之一: 脉冲幅度调制 (Pulse Amplitude Modulation, 简称为 PAM), 振幅键控 (Amplitude Shift Keying, 简称为 ASK), 最小 移频键控 (Minimum Shift Keying, 简称为 MSK), 相移键控 (Phase Shift Keying, 简 称为 PSK), m阶正交幅度调制(m Quadrature Amplitude Modulation ,简称为 m-QAM), 离散多音 (Discrete MuliTone, 简称为 DMT), 正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 0FDM)。 根据本发明实施例的另一个方面, 提供了一种光纤网络的接收系统, 包括: M阶 数字解调器, 设置为将接收的 M阶数字信号解调为二进制数字信号进行输出, 其中, 所述 M阶数字信号为发送系统通过 M阶数字调制器调制后的信号, 所述 M阶数字信 号中的每个传输符号携带 N=lQg^个比特信息, N为大于 1的自然数, M为自然数; 第二无源光网络 PON设备, 设置为接收解调后的二进制数字信号, 并根据所述解调后 的二进制数字信号进行相应操作。 优选地, 所述系统还包括: 第一光接收设备, 设置为对接收的所述 M阶光信号进 行光解调, 并讲解调后的所述 M阶数字信号进行输出。 优选地, 所述系统还包括: 第二光接收设备, 设置为对接收的二进制光信号进行 光解调, 并讲解调后的所述二进制数字信号进行输出。 优选地, 所述第二 PON设备包括以下之一: 光纤线路终端 OLT, 光纤网络单元
优选地, 所述 OLT至少包括以下之一: 千兆无源光网络 GPON OLT, XGPONl OLT, RF, NGP0N2 OLT;所述 ONU至少包括以下之一: GPON ONU, XGPONl ONU, RF, NGP0N2 0NU。 优选地,所述 M阶数字解调器包括以下之一: PAM, ASK, MSK, PSK, m-QAM,
DMT, 0FDM。 根据本发明实施例的又一个方面, 提供了一种光纤网络的通信系统, 包括: 上述 任一项的所述光纤网络的发送系统和上述任一项的所述光纤网络的接收系统。 根据本发明实施例的又一个方面, 提供了一种信号的调制方法, 包括: 将输入的 二进制数字信号通过 M阶数字调制器调制为 M阶数字信号, 其中, 所述 M阶数字信 号中的每个传输符号携带 N=lQg^个比特信息, N为大于 1的自然数, M为自然数; 将所述 M阶数字信号通过光纤网络进行输出。 优选地, 将所述 M阶数字信号通过光纤网络进行输出之后, 还包括: 将接收的所 述 M阶数字信号通过 M阶数字解调器解调为二进制数字信号; 根据所述二进制数字 信号进行相应操作。 优选地, 将输入的二进制数字信号通过 M阶数字调制器调制为 M阶数字信号之 前, 还包括: 判断是否通过所述 M阶数字调制器进行调制; 如果否, 则通过二进制数 字调制器进行调制。 优选地, 判断是否通过所述 M阶数字调制器进行调制之前, 还包括: 判断是否将 接收的两路所述二进制数字信号都进行输出; 如果是, 则通过所述二进制数字调制器 和所述 M阶数字调制器分别对两路所述二进制数字信号进行调制; 如果否, 则判断是 否通过所述 M阶数字调制器进行调制。 本发明实施例提供的光纤网络的发送系统,采用了 M阶数字调制器对二进制数字 信号进行调制, 并将调制后的 M阶数字信号输出。 通过运用本发明实施例, 解决了由 于光纤通信系统多采用二进制数字调制, 其传输时需要较大的带宽, 较大带宽需要较 高传输速率的光收发模块, 则导致用户的使用成本较高, 实用性较差的问题, 进而减 少了需要传输的带宽, 也降低了光收发模块的实际成本, 同时还可以利用 M进制特性 对功率谱进行整形, 使 RF信号的功率谱和无源光网络的下行信号的功率谱不重叠, 解决拉曼串扰的技术难题。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的光纤网络的发送系统的结构示意图一; 图 2是根据本发明实施例的光纤网络的发送系统的结构示意图二; 图 3是根据本发明实施例的光纤网络的发送系统的结构示意图三; 图 4是根据本发明实施例的光纤网络的接收系统的结构示意图一; 图 5是根据本发明实施例的光纤网络的接收系统的结构示意图二; 图 6是根据本发明实施例的光纤网络的通信系统的结构示意图; 图 7是根据本发明实施例的信号的调制方法的流程图; 图 8是根据本发明实施例的信号的调制装置的结构框图一; 图 9是根据本发明实施例的信号的调制装置的结构框图二; 图 10是根据本发明优选实施例一的二进制数字调制和 OFDM调制转换升级的结 构示意图; 图 11是根据相关技术的 RF信号和 NRZ信号的功率谱图; 图 12是根据本发明优选实施例二的多网络共存的网络架构示意图; 图 13是根据相关技术的 XGPON1的 OLT结构示意图; 图 14是根据本发明优选实施例二的 XGPON1的 OLT结构示意图一; 图 15是根据相关技术的 XG-P0N1的 0NU结构示意图; 图 16是根据本发明优选实施例二的 XGPON1的 ONU结构示意图一; 图 17是根据本发明优选实施例二的 XGPON1的 OLT结构示意图二; 图 18是根据本发明优选实施例二的 XGPON1的 ONU结构示意图二; 图 19是根据本发明优选实施例二的 XGPON1的 OLT结构示意图三; 图 20是根据本发明优选实施例二的 XGPON1的 ONU结构示意图三; 图 21是根据本发明优选实施例三的多网络共存的网络架构示意图; 图 22是根据本发明优选实施例三的 NGPON2或 NGEPON的二进制数字调制和 OFDM调制两种工作模式的架构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 基于相关技术中, 由于光纤通信系统多采用二进制数字调制, 其传输时需要较大 的带宽, 较大带宽需要较高传输速率的光收发模块, 则导致用户的使用成本较高, 实 用性较差的问题, 本发明实施例提供了一种光纤网络的发送系统, 该系统的结构示意 如图 1所示, 包括: 第一 PON设备 1, 设置为输出二进制数字信号;
M阶数字调制器 2,与第一 PON设备 1耦合,设置为将二进制数字信号调制为 M 阶数字信号, 并将 M阶数字信号进行输出, 其中, M阶数字信号中的每个传输符号携 带 N=logf个比特信息, N为大于 1的自然数, M为自然数。 本实施例提供的光纤网络的发送系统,采用了 M阶数字调制器对二进制数字信号 进行调制, 并将调制后的 M阶数字信号输出。 通过运用本实施例, 解决了由于光纤通 信系统多采用二进制数字调制, 其传输时需要较大的带宽, 较大带宽需要较高传输速 率的光收发模块, 则导致用户的使用成本较高, 实用性较差的问题, 进而减少了需要 传输的带宽, 也降低了光收发模块的实际成本, 同时还可以利用 M进制特性对功率谱 进行整形, 使 RF信号的功率谱和无源光网络的下行信号的功率谱不重叠, 解决拉曼 串扰的技术难题。 实施过程中, 上述发送系统还可以如图 2所示, 包括第一光发送设备 3, 与 M阶 数字调制器 2耦合设置为对接收的 M阶数字信号进行光调制, 并将调制后的 M阶光 信号进行发送。 此过程是将 M阶数字调制器 2输出的 M阶数字信号进光调制处理, 使信号的保真性更好。 在上述实施的过程中, 第一 PON设备 1还可以设置为输出两路二进制数字信号。 此时, 可以将上述发送系统与现有的系统进行结合使用, 则上述装置还可以包括第二 光发送设备 7, 设置为对两路二进制数字信号中的一路二进制数字信号进行光调制, 并将调制后的二进制光信号进行发送, 如图 3所示。 本发明实施例还提供了一种光纤网络的接收系统, 可以设置为接收来自上述光纤 网络的发送系统的发送信号, 其结构示意可以如图 4所示, 包括:
M阶数字解调器 4, 设置为将接收的 M阶数字信号解调为二进制数字信号进行输 出, 其中, M阶数字信号为发送系统通过 M阶数字调制器调制后的信号, M阶数字 信号中的每个传输符号携带 N=logf个比特信息, N为大于 1的自然数, M为自然数; 第二 PON设备 5, 与 M阶数字解调器 4耦合, 设置为接收解调后的二进制数字 信号, 并根据解调后的二进制数字信号进行相应操作。 如果发送系统发送的为 M阶光信号, 则接收系统还可以如图 5所示, 包括: 第一 光接收设备 6, 与 M阶数字解调器 4耦合, 设置为对接收的 M阶光信号进行光解调, 并讲解调后的 M阶数字信号进行输出。 如果是将现有系统与本实施例终端系统进行了结合, 则上述接收系统还可以包括 第二光接收设备, 设置为对接收的二进制光信号进行光解调, 并讲解调后的二进制数 字信号进行输出。 其中, 第一 PON设备和第二 PON设备不同时为一种设备, 例如, 当第一 PON设 备为 OLT时, 第二 PON设备为 ONU; 如果第一 PON设备为 ONU时, 则第二 PON 设备为 OLT。 实施时, OLT与 ONU是相对应的, 例如, OLT为 GPON OLT、 RF及 XGPONl OLT, 贝 lj ONU为 GPON ONU、 RF 及 XGPONl ONU。 其中, OLT或 ONU 可以为多种, 例如, GPON OLT, XGPONl OLT, RF, NGPON2 0LT等。 M阶数字调 制器或 M阶数字解调器也可以为以下的任意一种: PAM, ASK, MSK, PSK, m-QAM, DMT, OFDM。 本实施例还提供了一种光纤网络的通信系统, 该通信系统的结构示意可以如图 6 所示, 包括上述的光纤网络的发送系统和上述的光纤网络的接收系统。 基于上述光纤网络的通信系统, 本实施例还提供了一种信号的调制方法, 该方法 的实现流程如图 7所示, 包括步骤 S702至步骤 S704。 步骤 S702,将输入的二进制数字信号通过 M阶数字调制器调制为 M阶数字信号, 其中, M阶数字信号中的每个传输符号携带 N=logf个比特信息, N为大于 1的自然 数, M为自然数; 步骤 S704, 将 M阶数字信号通过光纤网络进行输出。 在步骤 S704执行之后, 还可以将接收的 M阶数字信号进行光调制处理; 然后将 调制处理后的 M阶光信号进行发送。 对端的接收设备可以在接收到 M阶光信号后对其进行解调, 并将解调后的 M阶 数字信号输出, 将输出的 M阶数字信号通过 M阶数字解调器解调为二进制数字信号, 再根据该二进制数字信号进行相应的操作。 实施过程中, 如果输入的是两路信号, 则判断是否将接收的两路二进制数字信号 都进行输出。如果是两路都进行输入, 则通过二进制数字调制器和 M阶数字调制器分 别对两路二进制数字信号进行调制。 如果两路信号值输入一路, 则根据情况选择输入 二进制数字调制器或 M阶数字调制器。如果选择输入二进制数字调制器, 则按照现有 的二进制数字调制过程进行调制。如果选择输入 M阶数字调制器, 则按照上述方法对 其进行调制和输出。 本实施例还提供了一种信号的调制装置, 该装置可以包括两个部分, 第一部分设 置为实现发送功能, 第二部分设置为实现接收功能, 上述装置可以根据其实现功能的 不同, 设置在两个实体中, 下面, 对其设置在不同实体中的情况进行说明。 设置为实 现发送功能的装置的结构框图可以如图 8所示, 包括: 调制模块 10, 设置为将输入的 二进制数字信号通过 M阶数字调制器调制为 M阶数字信号, 其中, M阶数字信号中 的每个传输符号携带 N=logf个比特信息, N为大于 1的自然数, M为自然数; 输出 模块 20, 与调制模块 10耦合, 设置为将 M阶数字信号通过光纤网络进行输出。 在一个优选实施例中, 上述设置为实现接收功能的装置可如图 9所示, 包括: 解 调模块 30, 设置为将接收的 M阶数字信号通过 M阶数字解调器解调为二进制数字信 号; 执行模块 40, 与解调模块 30耦合, 设置为根据二进制数字信号进行相应操作。 该装置可以设置为两个独立的分装置, 即根据模块不同的功能分别设置在发送方 和接收方, 本领域技术人员可根据上述模块的功能进行设置, 此处不进行赘述。 优选实施例一 本实施例提供了多种 PON及 RF等共存于 ODN网络中的实现方法, 该实现方法 利用多进制数字调制技术进行调制, 可以提升单位带宽携带的信息量, 而提升频谱效 率。 采用 M进制(M大于 2)数字调制技术占用的信号带宽可以是二进制数字调制技 术信号带宽的 Ι / logf。 光模块的工作带宽降低, 将会使光收发模块的成本大大下降, 同时新型的多进制数字调制技术还具有功率谱整形和频谱变换的功能,采用频谱整形、 频谱变换技术的 TDMPON系统可以降低甚至消除其对 RF Video系统的非线性拉曼串 扰。二进制数字调制信号和多进制数字调制信号之间的转换可以通过 ASIC芯片实现, 使原来的二进制数字调制光纤通信传输系统转换成多进制数字调制技术光纤通信传输 系统, 当然, 也可以不利用 ASIC芯片进行转换, 而直接将原有的二进制数字调制光 纤通信床书系统全部变换为 M进制的, 但此种变化相对于利用 ASIC芯片进行转换较 为复杂一些, 但仍能实现相同的效果。 例如正交频分复用 (OFDM) 调制和解调技术就属于新型的多进制数字调制技术 中的一种。 OFDM调制原理是将二进制输入信号进行分帧分组, 串并转换, 编码映射 (数字调制技术 QAM),数字 IFFT处理,并串变换,然后通过数字和信号转换(DAC ) 产生 OFDM电信号, 将转换后的电信号进行光载波调制发送并在光纤上传输。
OFDM 解调制技术原理通常是光探测器将接收到的光载波调制信号转换为的 OFDM电信号, 然后进行和数字信号转换 (ADC), 串并转换, 数字 FFT处理, 解编 码映射, 并串转换, 然后通过组帧来恢复出二进制数字信号, 可以如图 10所示。 在 OFDM调制技术中, OFDM调制信号的功率谱密度相比简单的二进制数字调制 技术呈现出陡降的特性, 这种特性可以有效限制信号的带外串扰。 图 11示出了由于传 统二进制调制( 10Gb/s速率的 NRZ信号)和 RF信号功率谱密度的重叠, 将导致严重 的非线性拉曼串扰, 影响 TDMPON信号与 RF信号的共存。 但 OFDM调制信号具有 相对紧凑的功率谱密度, 结合 OFDM频谱的搬移, 可以将 OFDM的信号功率谱密度 完全搬移到 RF的主要功率谱密度之外, 从而有效降低或消除 OFDM信号和 RF信号 间的非线性拉曼串扰。 实现时, OFDM信号功率谱密度的搬移和调整可以很容易的通 过数字 /射频器件实现。 本实施例还以 GPON、 XGPON1或 EPON、 10GEPON为例, 实施时, 可以在传 统的 GPON、 XGPONK EPON、 10GEPON的 OLT和 ONU的 ASIC芯片的 PMD或 PHY的输出输入端口串接一个二进制调制解调和 OFDM调制解调相互转换功能芯片, 同时, 用 OFDM数字调制信号的光收发模块代替原来的二进制数字调制光收发模块, 从而将原来的二进制数字调制光纤通信传输系统转换成了 OFDM 数字调制技术光纤 通信传输系统, 即一种多进制数字调制技术光纤通信传输系统。 实现的过程中,在发送方向上,通过 OFDM调制的功能芯片将 GPON和 XGPON1 采用加扰后的二进制 NRZ的数字信号, EPON和 10GEPON由 8b/10b或 64b/66b线路 编码的二进制 NRZ数字信号变换成 OFDM调制信号,然后通过光模块的调制在 ODN 网络上传输。 在接收方向上, 先由光模块的接收, 然后通过 OFDM的解调技术的功能 芯片将 OFDM信号转换成 GPON和 XGPON1采用加扰编码的二进制 NRZ的数字信号, EPON和 10GEPON采用 8b/10b, 64b/66b线路编码的 NRZ码的数字信号。 目前仍处在标准化的 NGPON2和 NGEPON中,有一些运行商希望 NGPON2的下 行光信号与 RF信号在同一 ODN网络中共存。针对 NGPON2的下行光信号与 RF信号 在同一 ODN网络共存的情况, ASIC芯片可以工作在 OFDM调制模式,实现 NGPON2 的下行光信号与 RF信号在同一 ODN网络中共存。 实现的过程中, 对于发送方向上的信号, NGPON2的 TC层和 NGEPON的 MAC 层数据流在 FEC编码后直接进行 OFDM调制处理, 并通过光模块发送。 对于接收方 向, 通过光模块接收, 通过 OFDM 解调处理, 进行 FEC 解码, 然后将数据流送给 NGPON2的 TC层和 NGEPON的 MAC层。针对 NGPON2的下行光信号不需要和 RF 信号在同一 ODN网络共存的情况,该 ASIC芯片可以工作在普通二进制数字调制模式, 并通过二进制数字调制光收发模块 (光模块) 进行光信号的收发。 通过物理层的二进制数字调制和多进制数字调制的变换升级或直接采用多进制数 字调制, 可以使光收发模块的工作频率带宽降低 logf倍, 大大降低了光模块的组件价 格, 使整个系统的光模块成本大大降低, 同时, 转换后的 TDMPON 的下行信号与同 向的 RF Video信号的功率谱密度在频域上不再存在叠加, 消除了非线性的拉曼串扰, 实现 TDMPON和 RF信号在同一 ODN网络中共存。 优选实施例二 本实施例提供的支持 GPON, XGPONl以及 RF共存的网络架构示意如图 12所示。 XGPONl系统的 OLT的光收发模块的工作速率为发送下行为 10Gbit/S的光信号,接收 上行为 2.5Gbit/s的光信号, 发送的下行波长范围为 1575nm到 1580nm, 能够接收的上 行波长为 1260nm到 1280nm, GPON系统的 OLT光模块发送下行 2.5Gbit/s的光信号, 接收上行 1.25Gbit/s的光信号, 发送的下行波长范围为 1480nm到 1500nm, 能够接收 的上行波长为 1290nm到 1330nm。 RF Video的发送光模块的波长范围为 1550nm到 1560nm。 XGPONl的下行信号、 GPON的下行信号和 RF的下行信号通过图 12中所 示的共存的波分复用器 (WDMlr) 分波后, 经过系统的 ODN 网络分别到达支持 XGPONl系统的 ONU的光收发模块、支持 GPON系统的 ONU光模块和接收 RF信号 的模块; XGPONl的上行信号和 GPON的上行信号通过图 12中所示的 WDMlr合波 后, 传输至各自的 OLT端口。 XGPONl系统的 ONU光模块的工作速率为接收下行为 10Gbit/s的光信号,发送上行为 2.5Gbit/s的光信号,能够接收的下行波长范围为 1575nm 到 1580nm, 发送的上行波长为 1260nm到 1280nm, GPON系统的 ONU光模块为接收 下行 2.5Gbit/s的光信号, 接收上行 1.25Gbit/s的光信号, 能够接收的下行波长范围为 1480nm到 1500nm, 发送的上行波长为 1290nm到 1330nm。 接收 RF信号的模块, 接 收波长范围为 1550nm到 1560nm。 本实施例采用三种方式实现 GPON, XGPONl 以及 RF共存, 下面分别对各方式 进行说明。 方式一: XGPONl的 OLT的数字调制和解调技术的转换升级: XGPONl的 OLT—般包含
TM, TC以及 PMD三部分电芯片以及光模块组成, 如图 13所示。 其中, PMD功能 芯片接口部分包含发送和接收两个电接口, 该两个接口与光模块的发送和接收的两个 电接口互联。 通过在 PMD和光模块的电接口之间插入 OFDM调制和解调技术的功能 芯片, 并将数字的基带光模块替换成光模块的方式来实现升级过程。 下行方向通过 OFDM调制和解调技术的功能芯片将 GPON和 XGPONl采用加扰 编码的二进制 NRZ 的数字信号变换成 OFDM 信号, 然后通过光模块的调试进而在 ODN网络上传输。 在上行方向通过光模块的接收和解调, 将接收的不同 ONU发送的 OFDM信号通过 OFDM调制和解调技术的功能芯片转换成 GPON和 XGPONl采用加 扰编码的二进制 NRZ的数字信号,并传递给 PMD的电接收端口。上述完成了 XGPONl 的 OLT的线路编码转换升级, 升级后可以如图 14所示。 XGPON1的 ONU的数字调制和解调技术的转换升级: XGPON1的 ONU—般包 含 UNI, TC以及 PMD三部分电芯片以及光模块组成, 如图 15所示。 其中, PMD功 能芯片接口部分包含发送和接收两个电接口, 该两个接口与光模块的发送和接收的两 个电接口互联。 通过在 PMD和光模块的电接口之间插入 OFDM调制和解调技术的功 能芯片, 并将数字的基带光模块替换成光模块的方式来实现升级过程。 上行方向通过 OFDM调制和解调技术的功能芯片将 GPON和 XGPON1采用加扰 编码的二进制 NRZ的数字信号变换成 OFDM信号, 然后通过光模块处理后, 输出调 制的光信号并在 ODN网络上传输。在 ONU接收端光模块上接收和解调调制的光信号, 通过 OFDM调制和解调技术的功能芯片将 OFDM信号转换成 GPON和 XGPON1采用 加扰编码的 NRZ的数字信号, 并传递给 PMD的电接收端口。 上述完成了 XGPON1 的 ONU的线路编码转换升级, 升级后可以如图 16所示。 方式二:
XGPON1 的 OLT的数字调制和解调技术的转换升级: OFDM调制和解调技术的 功能和 PMD功能集成在同一芯片中。 可以如图 17所示。 XGPON1的 ONU的数字调制和解调技术的转换升级: OFDM调制和解调技术的 功能和 PMD功能集成在同一芯片中, 可以如图 18所示。 方式三:
XGPON1 的 OLT的数字调制和解调技术的转换升级: OFDM调制和解调技术的 功能和光模块功能集成在同一光模块封装中, 可以如图 19所示。 XGPON1的 ONU的数字调制和解调技术转换升级: OFDM调制和解调技术的功 能和光模块功能集成在同一光模块封装中, 可以如图 20所示。 优选实施例三 本实施例提供的支持 GPON,NGPON2以及 RF共存的网络架构示意如图 21所示。 NGPON2系统的 OLT的光收发模块的工作速率为发送下行为 10Gbit/S的光信号,接收 上行为 2.5Gbit/s或 10Gbit/s的光信号。发送的下行波长范围为 1530nm到 1540nm, 能 够接收的上行波长为 1600nm到 1625nm。RF Video的发送光模块的波长范围为 1550nm 到 1560nm。 NGPON2的下行信号、 GPON的下行信号和 RF的下行信号通过图 21中 所示的 WDMlr分波后经过系统的 ODN网络分别到达支持 NGPON2系统的 ONU的 光收发模块、 支持 GPON系统的 ONU光模块和接收 RF信号的模块; NGPON2的上 行信号和 GPON的上行信号通过图 21中所示的 WDMlr合波后, 传输至各自的 OLT 端口。 NGPON2系统的 ONU光模块的工作速率为接收下行为 10Gbit/S的光信号, 发 送上行为 2.5Gbit/s 或 10Gbit/s 的光信号, 能够接收的下行波长范围为 1600nm 到 1625nm, 发送的上行波长为 1530nm到 1540nm, GPON系统的 ONU光模块为接收下 行 2.5Gbit/s 的光信号, 接收上行 1.25Gbit/s 的光信号, 能够接收的下行波长范围为 1480nm到 1500nm, 发送的上行波长为 1290nm到 1330nm。 接收 RF信号的模块, 接 收波长范围为 1550nm到 1560nm。 工作在 OFDM调试模式下, NGPON2的 OLT由 ASIC芯片及光模块组成。 ASIC 芯片一般包含 TM, TC以及 PMD三部分功能组成。当芯片工作在 OFDM调制模式下, 对于发送方向, NGPON2的 TC层数据流进入 PMD功能模块。 PMD功能模块在对数 据流进行 FEC编码后, 直接进行 OFDM调制处理, 然后输出给光收发模块发送。 对 于接收方向, 光信号通过光收发模块转化成电信号发送给 PMD功能模块。 PMD功能 模块接收信号通过 OFDM解调处理,进行 FEC解码然后将数据流送给 NGPON2的 TC 层。 针对不需要和 RF信号在同一 ODN网络共存的情况, 该 ASIC芯片可以工作在普 通二进制调制模式, 并通过普通数字光收发模块进行光信号的收发, 其示意可以如图 3和 22所示。 从以上的描述中, 可以看出, 本发明实施例实现了如下技术效果: 通过运用本发明实施例, 解决了 TDMPON系统下行信号对 RF Video系统产生非 线性拉曼串扰, 使得 RF Video信号的部分低频信道质量优化, 使 RF和 TDMPON在 同一个 ODN网络中可以共存; 并且, 降低了光收发模块的成本, 实用性强。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种光纤网络的发送系统, 包括:
第一无源光网络 P0N设备, 设置为输出二进制数字信号;
M阶数字调制器, 设置为将所述二进制数字信号调制为 M阶数字信号, 并将所述 M阶数字信号进行输出, 其中, 所述 M阶数字信号中的每个传输符 号携带 N=log 个比特信息, N为大于 1的自然数, M为自然数。
2. 根据权利要求 1所述的系统, 其中, 还包括:
第一光发送设备, 设置为对所述 M阶数字信号进行光调制, 并将调制后的 M阶光信号进行发送。
3. 根据权利要求 1所述的系统, 其中, 还包括:
所述第一 PON设备, 还设置为输出两路所述二进制数字信号。
4. 根据权利要求 3所述的系统, 其中, 还包括:
第二光发送设备, 设置为对两路所述二进制数字信号中的一路所述二进制 数字信号进行光调制, 并将调制后的二进制光信号进行发送。
5. 根据权利要求 1至 4中任一项所述的系统,其中,所述第一 PON设备包括以下 之一: 光纤线路终端 OLT, 光纤网络单元 ONU。
6. 根据权利要求 5所述的系统, 其中, 所述 OLT至少包括以下之一: 千兆无源光 网络 GPON OLT, 十吉比特无源光网 XGPON1 OLT, 射频网络 RF, 下一代无 源光网络 NGPON2 OLT;所述 ONU至少包括以下之一: GPON ONU, XGPONl ONU, RF, NGPON2 0NU。
7. 根据权利要求 1所述的系统, 其中, 所述 M阶数字调制器包括以下之一: 脉冲 幅度调制 PAM, 振幅键控 ASK, 最小移频键控 MSK, 相移键控 PSK, m阶正 交幅度调制 m-QAM, 离散多音 DMT, 正交频分复用 OFDM。
8. 一种光纤网络的接收系统, 包括:
M阶数字解调器, 设置为将接收的 M阶数字信号解调为二进制数字信号 进行输出, 其中, 所述 M阶数字信号为发送系统通过 M阶数字调制器调制后 的信号, 所述 M阶数字信号中的每个传输符号携带 N=logf个比特信息, N为 大于 1的自然数, M为自然数;
第二无源光网络 PON设备,设置为接收解调后的二进制数字信号,并根据 所述解调后的二进制数字信号进行相应操作。
9. 根据权利要求 8所述的系统, 其中, 还包括:
第一光接收设备, 设置为对接收的所述 M阶光信号进行光解调, 并讲解调 后的所述 M阶数字信号进行输出。
10. 根据权利要求 9所述的系统, 其中, 还包括: 第二光接收设备, 设置为对接收的二进制光信号进行光解调, 并讲解调后 的所述二进制数字信号进行输出。
11. 根据权利要求 8至 10中任一项所述的系统, 其中, 所述第二 PON设备包括以 下之一: 光纤线路终端 OLT, 光纤网络单元 ONU。
12. 根据权利要求 11所述的系统, 其中, 所述 OLT至少包括以下之一: 千兆无源 光网络 GPON OLT, 十吉比特无源光网 XGPONl OLT, 射频网络 RF, 下一代 无源光网络 NGPON2 OLT; 所述 ONU 至少包括以下之一: GPON ONU, XGPONl ONU, RF, NGPON2 ONU。
13. 根据权利要求 8所述的系统, 其中, 所述 M阶数字解调器包括以下之一: 脉冲 幅度调制 PAM, 振幅键控 ASK, 最小移频键控 MSK, 相移键控 PSK, m阶正 交幅度调制 m-QAM, 离散多音 DMT, 正交频分复用 OFDM。
14. 一种光纤网络的通信系统, 包括: 权利要求 1至 7中任一项的所述光纤网络的 发送系统和权利要求 8至 13中任一项的所述光纤网络的接收系统。
15. 一种信号的调制方法, 包括:
将输入的二进制数字信号通过 M阶数字调制器调制为 M阶数字信号, 其 中, 所述 M阶数字信号中的每个传输符号携带 N=logf个比特信息, N为大于 1的自然数, M为自然数;
将所述 M阶数字信号通过光纤网络进行输出。 根据权利要求 15所述的方法, 其中, 将所述 M阶数字信号通过光纤网络进行 输出之后, 还包括: 将接收的所述 M阶数字信号通过 M阶数字解调器解调为二进制数字信号; 根据所述二进制数字信号进行相应操作。
17. 根据权利要求 15或 16所述的方法, 其中, 将输入的二进制数字信号通过 M阶 数字调制器调制为 M阶数字信号之前, 还包括:
判断是否通过所述 M阶数字调制器进行调制;
如果否, 则通过二进制数字调制器进行调制。
18. 根据权利要求 17所述的方法, 其中, 判断是否通过所述 M阶数字调制器进行 调制之前, 还包括:
判断是否将接收的两路所述二进制数字信号都进行输出;
如果是,则通过所述二进制数字调制器和所述 M阶数字调制器分别对两路 所述二进制数字信号进行调制;
如果否, 则判断是否通过所述 M阶数字调制器进行调制。
PCT/CN2013/081494 2012-11-21 2013-08-14 光纤网络的发送、接收、通信系统及信号的调制方法 WO2014079237A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/646,409 US9882649B2 (en) 2012-11-21 2013-08-14 Transmitting, receiving and communication systems of optical network and method for modulating signal
EP13856892.8A EP2924896B1 (en) 2012-11-21 2013-08-14 Sending/receiving/communication system and signal modulation method for optical fibre network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210476566.2 2012-11-21
CN201210476566.2A CN103840882B (zh) 2012-11-21 2012-11-21 光纤网络的发送、接收、通信系统及信号的调制方法

Publications (1)

Publication Number Publication Date
WO2014079237A1 true WO2014079237A1 (zh) 2014-05-30

Family

ID=50775477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081494 WO2014079237A1 (zh) 2012-11-21 2013-08-14 光纤网络的发送、接收、通信系统及信号的调制方法

Country Status (4)

Country Link
US (1) US9882649B2 (zh)
EP (1) EP2924896B1 (zh)
CN (1) CN103840882B (zh)
WO (1) WO2014079237A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172375A1 (zh) * 2014-05-16 2015-11-19 华为技术有限公司 一种通信方法、装置及系统
TWI569624B (zh) * 2015-08-18 2017-02-01 國立高雄應用科技大學 多通道分波多工脈衝震幅調變式光收發器製造方法及其裝置
CN107105354B (zh) * 2016-02-19 2019-11-22 上海诺基亚贝尔股份有限公司 一种无源光网络设备以及用于无源光网络设备的方法
CN107359942B (zh) * 2016-05-10 2020-07-24 华为技术有限公司 生成信号的方法和设备
US10236991B2 (en) * 2017-03-10 2019-03-19 Zte Corporation Probabilistically shaped orthogonal frequency division multiplexing
JP6857561B2 (ja) * 2017-06-23 2021-04-14 日本放送協会 光送信装置及び光受信装置
CN111226423A (zh) * 2017-10-19 2020-06-02 瑞典爱立信有限公司 用于发送二进制信息的发射机、网络节点、方法及计算机程序
CN108123910B (zh) * 2017-12-11 2020-07-17 北京理工大学 一种基于光束轨道角动量态和振幅的混合键控方法与系统
US10601520B2 (en) 2018-02-07 2020-03-24 Infinera Corporation Clock recovery for digital subcarriers for optical networks
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11418312B2 (en) 2019-04-19 2022-08-16 Infinera Corporation Synchronization for subcarrier communication
US10972184B2 (en) 2019-05-07 2021-04-06 Infinera Corporation Bidirectional optical communications
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11239935B2 (en) 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11088764B2 (en) 2019-05-14 2021-08-10 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11483257B2 (en) 2019-09-05 2022-10-25 Infinera Corporation Dynamically switching queueing schemes for network switches
CA3157060A1 (en) 2019-10-10 2021-04-15 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11356180B2 (en) 2019-10-10 2022-06-07 Infinera Corporation Hub-leaf laser synchronization
EP4042607A1 (en) 2019-10-10 2022-08-17 Infinera Corporation Network switches systems for optical communications networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746857A1 (en) * 2005-07-20 2007-01-24 Siemens Aktiengesellschaft Method and apparatus enabling end-to-end resilience in PONs
CN102202245A (zh) * 2010-03-23 2011-09-28 华为技术有限公司 信号处理方法、装置及系统
CN102263726A (zh) * 2011-06-27 2011-11-30 中兴通讯股份有限公司 一种数据的传输方法、装置及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2440584A (en) * 2006-08-04 2008-02-06 Kassem Benzair Bit Metric Calculation for Gray Coded M-QAM using (piecewise) linear equations derived from Max-Log approximations
JP5088191B2 (ja) * 2008-03-21 2012-12-05 富士通株式会社 光伝送システム及びその分散補償方法
JP5014303B2 (ja) * 2008-10-09 2012-08-29 日本電信電話株式会社 光伝送方法および光伝送システム
US8897651B2 (en) * 2009-09-25 2014-11-25 Futurewei Technologies, Inc Passive optical network data over cable service interface specification upstream proxy architecture over the next generation hybrid fiber-coaxial networks
CN102696189A (zh) * 2010-01-07 2012-09-26 株式会社日立制作所 光传送系统
US9246597B2 (en) * 2010-04-15 2016-01-26 Infinera Corporation Dual rate QPSK/TCM-QPSK optical modulation
US9203544B2 (en) * 2010-12-03 2015-12-01 Wuhan Research Institute Of Posts And Telecommunications Optical communication system, device and method employing advanced coding and high modulation order
US9413483B2 (en) * 2012-03-02 2016-08-09 Futurewei Technologies, Inc. Passive optical network digital subscriber line convergence architecture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746857A1 (en) * 2005-07-20 2007-01-24 Siemens Aktiengesellschaft Method and apparatus enabling end-to-end resilience in PONs
CN102202245A (zh) * 2010-03-23 2011-09-28 华为技术有限公司 信号处理方法、装置及系统
CN102263726A (zh) * 2011-06-27 2011-11-30 中兴通讯股份有限公司 一种数据的传输方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924896A4 *

Also Published As

Publication number Publication date
EP2924896B1 (en) 2019-05-29
US9882649B2 (en) 2018-01-30
CN103840882A (zh) 2014-06-04
EP2924896A4 (en) 2015-12-09
US20150288456A1 (en) 2015-10-08
EP2924896A1 (en) 2015-09-30
CN103840882B (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2014079237A1 (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
Liu Enabling optical network technologies for 5G and beyond
EP2421280B1 (en) Cost effective multi-rate upstream for 10GEPON based on high efficiency coding
Olmedo et al. Multiband carrierless amplitude phase modulation for high capacity optical data links
Houtsma et al. Investigation of modulation schemes for flexible line-rate high-speed TDM-PON
CN101714971A (zh) 无源光网络通信方法及系统、光网络单元和光线路终端
WO2011044959A1 (en) Method for processing data in an optical network element and optical network element
CN103297169B (zh) 基于梳状光源再生技术的ofdm-pon长距离传输方法
JP2004336784A (ja) 多重搬送波を利用したコード分割多重化方式の受動型光加入者網
Jin et al. Experimental demonstrations of hybrid OFDM-digital filter multiple access PONs
Qiu et al. OFDM-PON optical fiber access technologies
CN105578316B (zh) 一种ocdma和ofdm混合的无源光网络系统
CN205378159U (zh) 一种ocdma和ofdm混合的无源光网络系统
WO2015010283A1 (zh) 一种信号发送和接收的方法、装置及系统
Zhong et al. Experimental demonstrations of matching filter-free digital filter multiplexed SSB OFDM IMDD transmission systems
CN103873410B (zh) Ofdm-pon系统及时钟信号的发送和提取方法
Dong Digital filter multiplexing-enabled advanced networking devices and PON architectures for 5G network convergence
Xue Key Signal Processing Technologies for High-speed Passive Optical Networks
Giacoumidis Adaptive optical OFDM for local and access networks
Dastgiri et al. A 40 Gb/s duty-cycle/polarization division multiplexing system
Zhang et al. 11× 5× 10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection
Zhang et al. Fixed and mobile convergence with stacked modulation
Mohammed et al. Novel unipolar sign encoded OFDM for next generation PONs
Teixeira et al. Ultra high capacity PON systems
Jin et al. First experimental demonstrations of real-time optical OFDMA PONs with adaptive dynamic bandwidth allocation and colorless ONUs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14646409

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013856892

Country of ref document: EP