WO2014078971A1 - Compuesto antagonista del receptor trpv-1, derivados de 1,3,4-tiadiazol alquilamidas y de chalconas - Google Patents
Compuesto antagonista del receptor trpv-1, derivados de 1,3,4-tiadiazol alquilamidas y de chalconas Download PDFInfo
- Publication number
- WO2014078971A1 WO2014078971A1 PCT/CL2013/000085 CL2013000085W WO2014078971A1 WO 2014078971 A1 WO2014078971 A1 WO 2014078971A1 CL 2013000085 W CL2013000085 W CL 2013000085W WO 2014078971 A1 WO2014078971 A1 WO 2014078971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trpv
- thiadiazole
- receptor
- compounds
- hydroxy
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
- C07D285/135—Nitrogen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
- A61K31/122—Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/433—Thidiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
- A61P29/02—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/80—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
- C07C49/807—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen all halogen atoms bound to the ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
- C07C49/825—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups all hydroxy groups bound to the ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/84—Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
Definitions
- the present technology is oriented to the pharmaceutical sector, mainly to the elaboration of TRPV-1 receptor antagonist drugs, to treat diseases in which it is overactivated, such as chronic pain.
- a target for the development of drugs aimed at combating chronic inflammatory pain are the receptors of transient potential vanilloid 1 or TRPV-1 receptors, since these are related to the modulation of nociceptive signals due to their expression in sensory fibers C and ⁇ , mainly (1, 2). These receptors are overactivated in these sensory fibers under pathological conditions and have a direct role in the maintenance of neurogenic inflammation (3, 4, 5, 6). They also represent a possible treatment for neuropathic pain due to the overexpression of these receptors in undamaged fibers near the damaged fibers.
- TRPV-1 receptors are non-selective cationic channels with calcium permeability known as polymodal nociceptors because they can be activated by various ligands both physical and chemical from the endogenous and exogenous environment.
- the direct activators of the TRPV-1 receptors known so far are endovainilloids (anandamide, arachidonic acid or lipoxygenase products), acidic or basic pH, harmful temperatures (> 42 ° C) and voltage (8, 9), in addition to ligands exogenous chemicals like capsaicin.
- TRPV-1 receptors can be activated indirectly or sensitized by changes in the phosphorylation-dephosphorylation status carried out by kinases, which are activated by secondary pathways resulting from the activation of receptors, such as bradykinin, serotonin receptors. , histamine, somatostatin, prostaglandin, interleukin or tyrosinase receptors, thus the activation of these receptors culminates with the activation of the TRPV-1 receptors (3).
- TRPV-1 receptors are activated by proinflammatory molecules released at the site of tissue inflammation present in pathologies associated with an inflammatory mechanism, such as cancer, osteoporosis, arthritis, diabetes, irritable color syndrome, cystitis and other diseases (10, 1 1). Some of these pro-inflammatory molecules can also directly activate TRPV-1 receptors, such as anandamide, arachidonic acid, N-arachidonoyl dopamine, N-acyldopamine, 12- (S) -hydroxyperoxyeicosatetraenoic acid, 15- (S) -hydroxyperoxyeicosatetranoic acid and leukotriene B4, which have been shown to activate TRPV-1 receptors effectively (12). Therefore, TRPV-1 receptors are directly involved with the perception and transduction of pain.
- proinflammatory molecules released at the site of tissue inflammation present in pathologies associated with an inflammatory mechanism, such as cancer, osteoporosis, arthritis, diabetes, irritable color syndrome, cystitis and other diseases (10, 1 1).
- TRPV-1 knockout mice The construction of TRPV-1 knockout mice has confirmed the main function of receptor activation in nociception processes and their application in the treatment of diseases with chronic pain. These mice lacking the TRPV-1 receptor exhibit a harmful behavior of physiological responses to vanilloid compounds, and neural cultures of the dorsal root ganglion (GRD) extracted from knockout mice do not respond to common activators of the receptor, such as capsaicin, heat harmful and protons, these mice are also characterized by not developing thermal hyperalgesia and mechanical allodynia, both recurrent symptoms in patients with chronic pain (13, 14, 15).
- GGD dorsal root ganglion
- the modulation of the activation of the TRPV-1 receptors can be used for the treatment of pathologies, such as urinary incontinence, overactivity of the bladder , asthma, chronic cough, renal hypertension, ischemic neuroprotection, pancreatitis or obesity because the expression of TRPV-1 receptors also includes non-cell sensory, such as keratinocytes, ⁇ cells of the pancreas, dendritic cells, among other cellular phenotypes (11), allowing to expand the pharmacology related to these receptors.
- pathologies such as urinary incontinence, overactivity of the bladder , asthma, chronic cough, renal hypertension, ischemic neuroprotection, pancreatitis or obesity because the expression of TRPV-1 receptors also includes non-cell sensory, such as keratinocytes, ⁇ cells of the pancreas, dendritic cells, among other cellular phenotypes (11), allowing to expand the pharmacology related to these receptors.
- the first known ligand for TRPV-1 receptors was capsaicin, a pungent compound present in chili pepper, capsaicin acts as an agonist for TRPV-1 receptors and its therapeutic potential is related to the property of sensitizing GRD sensory neurons and causing an effect desensitizer of these neurons after capsaicin exposure.
- the response exhibited by GRD neurons is characterized by acute desensitization or tachyphylaxis, depending on the exposure time or repeated doses of capsaicin, respectively and both desensitization mechanisms are dependent on extracellular calcium (16). In this way, the effect produced by capsaicin alters the transduction of nociceptive signals and this action is the basis of the analgesic effect mediated by it in topical applications in patients with chronic pain (17, 18).
- a group of natural compounds known as vanilloids are characterized by agonist activity on the TRPV-1 receptors, for example resineferatoxin, polygodial, isovaleral, scutigeral, neogrifolin, gingerol, eugenol, and piperine derivatives. These compounds are structural analogs of capsaicin and their synthesis is of interest for drug development because capsaicin acts specifically on the TRPV-1 receptors and causes specific desensitization in the C and ⁇ fibers of the GRD (19, 20).
- the agonist activity of the vanilloid compounds can be modified through halogenation in carbon 5 and 6 of the vanillyl group, changing the effect to an antagonistic activity, thus the chlorine and bromine atoms in these positions reduce the agonist activity, while the Iodine atom exerts a complete reversal of activity, thus 5/6-iodononivamide and 5-iodosineferatoxin are characterized by acting as complete antagonists of the TRPV-1 receptor with half maximum inhibitory concentration (IC 50 ) of 10; 126.2 and 0.4 nM, respectively, of these resineferatoxin, a daphnan diterpene isolated from resin Euphorbia, is also an agonist 10 times more potent than capsaicin and its iodination does not affect this potency, without However its pharmacological development is limited due to the low availability of this compound and high toxicity.
- the antagonistic effect exerted by the iodine atom is also observed in other iodinated vanilloid analogs
- the main competitive antagonistic compounds developed to date are characterized by acting at the orthostatic site of the TRPV-1 receptor located between the third and fourth transmembrane segments, in which the threonine 550 and tyrosine 510 residues are decisive in both the sensitivity of the receptor to agonist and antagonist compounds (25-28).
- This binding site identifies two important requirements for the recognition of the receptor corresponding to lipophilicity to reach the binding site and the establishment of hydrogen bonds to interact with the identified residues, these characteristics are consistent with the chemical modifications made in compounds with activity in the TRPV-1 receptor, which identify three pharmacophoric regions important for activity corresponding to a donor-acceptor region of hydrogen bonds, a region with high polarity and a hydrophobic region, these three regions are separated by spacer groups, which regulate the conformation of the ligands and therefore their agonist and antagonistic activity on the receptor .
- the agonist compounds acquire a folded conformation, between the donor-acceptor region of hydrogen bonds and the hydrophobic region, in which the capsaicin amide group, for example acquires a trans- orientation and the aliphatic chain an extended conformation ( 29).
- antagonistic compounds adopt a coplanar conformation between the hydrophobic region and the donor-acceptor region of hydrogen bonds (30).
- the most potent antagonistic compounds such as cinnamide derivatives, pyrimidines, quinazolines among several others (31-37), are characterized by maintaining these characteristics and also presenting high conformational restriction imposed between the polar region and hydrophobic, which favors coplanar rearrangement between the hydrophobic region and the donor-acceptor region of hydrogen bonds, improving antagonistic potency.
- BCTC N- (4-tert-butylphenyl) -4- (3-chloropyridin-2-yl) piperazine-1-carboxamide
- BCTC half maximum inhibitory concentration
- the cinnamide derivative (£) -3- (4-tert-butylphenyl) -N- (2,3-dihydrobenzo (b) -1,4-dioxin-6-yl) acrylamide exhibits antagonistic activity with IC50 79nm, the replacement of the double bond in this compound with a 4-aminopyridine group allowed to obtain a derivative with increased antagonistic activity showing an IC50 of 2nM (34).
- the synthesis of oxazole derivatives was developed from urea derivatives such as ABT-102, the urea replacement of the urea group gave As a result, compounds with potent antagonistic activity and obtaining compounds with improved pharmacokinetic properties and good CNS penetration (41).
- isosteric groups such as imidazole, thiazolpyrimidine, pyridopyrimidines, pyridopyrazines or thiazole carboxamides, have allowed obtaining a wide variety of competitive conformationally restricted antagonists with potent activity on TRPV-1 receptors (31-44).
- non-competitive antagonists for the TRPV-1 receptor have been characterized, such as ruthenium red with antagonistic activity IC50: 0.17 ⁇ and Lanthanum which exhibits activity at a concentration greater than or equal to 100 ⁇ , which act as blockers of the ionic channel joining a site composed of negatively charged residues, so arginine-rich hexapeptides have also been developed, however these compounds together with ruthenium red and lanthanum lack selectivity for the receptor, which results in side effects and toxicity preventing its pharmacological development (45, 46).
- TRPV1 transient receptor potential vanilloide type 1
- TRPV1 transient receptor potential vanilloid 1
- TRPV 1 Peripherally Restrided Transient Receptor Potential Vanilloid 1 Antagonists. Journal of Medicinal Chemistry, 2008, 51, 2744-2757. 37. - Michele C. Jetter, James J. McNally, Mark A. Youngman, ark E. McDonnell, et al. N-Pyridin-3-yl- and N -quinolin-3-yl-benzamides: Modulators of Human Vanilloid Receptor 1 (TRPV1). Bioorganic & Medicinal Chemistry Letters, 2008, 18, 2730-2734.
- Figure 1 vanilloid derivatives of 1, 3, 4 thiadiazole alkylamides.
- Figure 2 and Figure 3 derived from chalconas or carbonyl alpha, beta unsaturated derivatives.
- FIG. 13 13 C Nuclear Magnetic Resonance spectrum (DMSO, 100 MHz) obtained for the compound ( f 2E / ) -1- (4-bromodiphenyl) -3- (4-hydroxy-3- methoxyphenyl) prop-2- en-1-one [I].
- Figure 14 graph of the activation assay of the TRPV-1 receptor by Capsaicin for the 1,3-4-thiadiazole alkylamide derivatives evaluated at a concentration of 1 ⁇ .
- FIG. 19 graph of the TRPV-1 receptor activation assay by temperature for the 1,3-4-thiadiazole alkylamide derivatives.
- the first aspect of the invention relates to the vanilloid derivatives of 1, 3, 4 thiadiazole alkylamides described in Figure 1.
- R corresponds to a saturated alkyl chain defined by saturated linear chains of 6 to 8 carbons and X is defined as an H atom or an iodine atom.
- the method of synthesis applied for the synthesis of these derivatives begins with the protection of the 4-hydroxyl group by acylation with acetic anhydride of the starting material corresponding to 4-hydroxy-3-methoxybenzaldehyde or vanillin.
- the iodinated derivatives in carbon 5 of the vanillyl group are obtained by an iodination reaction with potassium iodide and commercial sodium hypochlorite shown in Figure 4, subsequently the hydroxyl group of this product corresponding to 4-hydroxy-3-iodine-5 - Methoxybenzaldehyde or 5-yodovainillin was protected with acetic anhydride.
- Heterocycle 1, 3, 4-thiadiazole was obtained using the thiosemicarbazone oxidative delation method, shown in Figure 5, whereby the aldehyde of the respective vanillin compounds and 5- protected yodoinillin were condensed with thiosemicarbazide to obtain the derivatives of thiosemicarbazones, which by oxidative delation with ferric chloride in aqueous medium, derivatives of 1, 3, 4- thiadiazol-2 amino were obtained with the hydroxyl group deprotected in the same reaction stage.
- the second aspect of this invention relates to derivatives of chalconas or carbonyl alpha, beta unsaturated derivatives described in Figures 2 and 3, where the different R correspond to different substituent groups:
- R1 corresponds to a hydrogen, a methoxyl group or a hydroxyl group
- R2 is a hydrogen or a methoxy group
- R3 is a hydrogen or a chlorine group
- R4 is a hydrogen or a bromine group
- R5 is a hydrogen, a methoxy group or a hydroxyl group.
- vanilloids which is associated with a different mode of union at the orthostatic site of the TRPV-1 receptor and the establishment of hydrophobic interactions at a binding site not described and contributing to the increase of antagonistic activity, based on the structure-activity analysis and conformational aspects of the synthesized compounds related to planarity and conformational restriction imposed by heterocycle 1, 3, 4- thiadiazole and the alpha, beta unsaturated carbonyl system, present in compounds [ah] and [iq], respectively.
- the compounds described herein are mainly characterized by exhibiting antagonistic activity in TRPV-1 receptors with high conformational restriction, which contributes to the increase in ligand-receptor binding energy and influences the greater antagonistic activity and also by acquiring between the pharmacophoric regions. a conformation different from that associated with the antagonistic activity described so far.
- the conformational restriction is regulated through the substitution of the amide group present in capsaicin analogs by the heterocycle 1, 3, 4-thiadiazole, which allows the synthesized compounds acquire a coplanar conformation between the donor-acceptor region of hydrogen bonds formed by the vanillyl group and the polar region formed by the group 1, 3, 4-thiadiazole, while the incorporation of an amide group as a spacer allows a conformation bent between the donor-acceptor region of hydrogen bonds (vanillyl group) and the hydrophobic region formed by linear aliphatic chains.
- the conformational restriction is regulated through the unsaturated double bond and the elimination of the spacer groups commonly present in compounds with activity in TRPV-1 receptors, such as amino, oxo or methylene and which have been shown to influence agonist and antagonist activity, thus it has been shown that in capsaicin analogue agonists, the substitution of the methylene group between the vanillyl group (donor-acceptor region of hydrogen bonds) and amide (polar region) by an ethylene group or a carbonyl group significantly reduces the agonist activity of the compounds (47), while the absence of this spacer region in capsaicin analogues and thiourea analogues eliminates both agonist and antagonistic activity, respectively (47,48,49 ).
- reaction mixture is neutralized with 10% ammonia at pH 4-5 and then allowed to cool in an ice water bath, forming an amanillo precipitate, which is crystallized several times in an ethanol / methanol mixture, obtaining 2, 61 g (0.01 16 mol) of the product as a yellow powder in a yield of 60%.
- reaction mixture is left under stirring at room temperature for 2 hours, obtaining the diacylated product and subsequently in a previously dried round bottom flask, 0.3 g (0.0006 mol) of this is added, followed by 2 ml of a solution of NaOH (30%) in 10ml of methanol for 3 hours at reflux and under stirring. Once the reaction reaches room temperature it is acidified to pH 4 with 37% HCI. Obtaining a white solid that is purified by column chromatography, using as mobile phase 20% ethyl acetate / hexane, finally the product obtained is crystallized from methanol water, obtaining 0.185g of a white solid in a yield of 84.86% .
- reaction mixture is allowed to stir at room temperature for 2 hours and then the reaction is partitioned between an acidic aqueous solution and dichloromethane, the organic phase is extracted and washed with a saturated NaCl solution, the organic phase is concentrated and the obtained residue is hydrolyzed in a solution of NaOH (30%) in methanol for 3 hours at reflux and under stirring. Once the reaction reaches room temperature it is acidified to pH 4 with 37% HCI. Obtaining a brown solid that is purified by column chromatography, using as mobile phase 20% ethyl acetate / hexane, finally the product obtained is crystallized from methanol water, obtaining 0.064g of a brown solid in a yield of 22.85% .
- reaction mixture is allowed to stir at room temperature for 2 hours and then the reaction is partitioned between an acidic aqueous solution and dichloromethane, the organic phase is extracted and washed with a saturated NaCl solution, the organic phase is concentrated and the obtained residue is hydrolyzed in a solution of NaOH (30%) in methanol for 3 hours at reflux and under stirring. Once the reaction reaches room temperature it is acidified to pH 4 with 37% HCI. Obtaining a brown solid that is purified by column chromatography, using as mobile phase 20% ethyl acetate / hexane, finally the product obtained is crystallized from methanol water, obtaining 0.091g of a brown solid in a yield of 33.46% .
- reaction mixture is allowed to stir at room temperature for 2 hours and then the reaction is partitioned between an acidic aqueous solution and dichloromethane, the organic phase is extracted and washed with a saturated NaCl solution, the organic phase is concentrated and the obtained residue is hydrolyzed in a solution of NaOH (30%) in methanol for 3 hours at reflux and under stirring. Once the reaction reaches room temperature it is acidified to pH 4 with 37% HCI. Obtaining a brown solid that is purified by column chromatography, using 20% ethyl acetate / hexane as the mobile phase, finally the product obtained is crystallized from methanol water, obtaining 0.078g of a brown solid in a yield of 29.55% .
- IR infrared
- Table 4 shows the absorption frequencies of compounds derived from chalconas or carbonyl alpha, beta unsaturated derivatives [iq].
- the synthesized compounds were evaluated in cultures of HEK-293T cells transfected with the rat TRPV-1 receptor cDNA.
- the activity of the compounds were based on the mechanism of activation of the TRPV-1 receptor by capsaicin and temperature, which increase intracellular calcium levels as a result of the opening of the ionic channel of the receptor, the calcium influx was measured with a Fluo 4 fluorescent probe -AM, thus in the presence of an antagonist the influx of calcium is blocked by inactivation of the TRPV-1 receptor and cell fluorescence decreases.
- HEK-293T cells were cultured in a DMEM medium supplemented with 5% fetal bovine serum, 50U / ml penicillin, 50mg / ml streptomycin and 2mM L-glutamine. The cultures were maintained at 37 ° C, in an environment of 5% CO 2 and 80% relative humidity.
- HEK-293T cells were transfected with rat pcDNA3 TRPV-1, in a reaction tube 97 ⁇ of optimem and 3pL of lipofectamine 2000 were added, and in a second tube 1 g of DNA and a volume of optimized, such as complete 100 ⁇ . Both tubes were incubated for 10 minutes, after which they were mixed and incubated for an additional 15 minutes.
- the compounds destined for screening tests on TRPV-1 receptors were prepared in a 10,000X stock solution in DMSO, ethanol or sopropanol and subsequently for the test they were diluted in Ringer medium to a concentration of 1 ⁇ .
- capsaicin, BCTC, Lanthanum, Ruthenium Red solutions were used at final concentrations of 0.031 ⁇ , 1 ⁇ , 100 ⁇ and 10 ⁇ , respectively.
- the cells were treated with 200 pL of trypsin, allowed to incubate for 5 minutes at room temperature, then Cells were gently pipetted and transferred to a 15mL tube. It was centrifuged at a speed of 6000 rpm for 10 min. and they were resuspended in 1 ml of Ringer medium, then 1 ⁇ Fluo-4AM 1000X was added and incubated for half an hour at 37 ° C. Subsequently, it was centrifuged and washed with 1X PBS, pH 7.34 to remove excess probe. Finally, the cell pellet was resuspended in 1.5 ml of Ringer medium.
- TRPV-1 receptor activation assay by capsaicin TRPV-1 receptor activation assay by capsaicin.
- HEK 293T cells transfected with the rat TRPV-1 receptor and loaded with Fluo-4AM were plated at a cell density of 50,000 cells per well, with a 40-50% transfection percentage. Following the addition of 2 plJpocillo of each compound to be tested and for a period of 5-10 minutes at room temperature the cells were allowed to incubate before carrying out the experiment by temperature. Subsequently, the fluorescence measurements were read in a real-time PCR equipment, which allows to increase 1 ° C every 35 seconds from 36 ° C to 55 ° C for the compounds and from 22-56 ° C for the transfected cells in the absence of the compounds. The fluorescence measurements were read using the FAM filter (483-533nM).
- the fluorescence data obtained for each temperature and each compound are corrected by subtracting the cell background and the baseline corresponding to the fluorescence at the beginning of the ramp (22 or 36 ° C) for each sample. Subsequently, the values were normalized by expressing the data as relative fluorescence, which corresponds to the ratio between the fluorescence change and the baseline. The results were plotted in Figures 18 to 21 as the average ⁇ standard deviation, obtained in two independent experiments at a temperature of 54 ° C.
- a TRPV-1 receptor activation assay is performed by temperature, incubating HEK-293T cells transfected and loaded with Fluo-4AM, in the presence of different concentrations of each compound to be tested corresponding to 1 ⁇ ; 0.1 ⁇ ; 0.01 ⁇ ; 0.003 ⁇ ; 0.001 ⁇ ; 0.0003 ⁇ , 0.0001 ⁇ and 0.00001 ⁇ . Subsequently, the relative fluorescence data obtained at 50 ° C was used to calculate the fluorescence ratio, which is normalized with respect to the fluorescence relative to the initial concentration. In this way the fluorescence ratio obtained for two independent experiments was averaged and expressed together with the respective standard deviation.
- Figures 22 and 23 show the dose response curves, in which the ratio of fluorescence versus molar logarithm concentration was adjusted to a sigmoid curve of inhibition of 4 parameters, determining the respective values corresponding to half of the maximum concentration inhibitory (IC 50 ) for each of the compounds evaluated. These values are shown in Table 7 and 8 of the two groups of compounds.
- Table 7 IC50 values of compounds derived from 1,3,3-thiadiazole alkylamides and the BCTC control antagonist.
- Table 8 IC 50 values of the compounds derived from chalconas, or alpha, beta carbonyl unsaturated derivatives and the BCTC control antagonist.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Rheumatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pain & Pain Management (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Esta tecnología comprende compuestos derivados de 1, 3, 4-tiadiazol alquilamidas y de chalcona, los cuales inhiben la activación del receptor TRPV-1 por capsaicina y temperatura. Estos compuestos presentan una potente actividad antagonista para el modo de activación del receptor TRPV-1 por capsaicina y por temperatura. También se divulga el uso de estos compuestos en el tratamiento de enfermedades en las que el receptor TRPV-1 se encuentra sobreactivado, como por ejemplo el dolor crónico.
Description
COMPUESTO ANTAGONISTA DEL RECEPTOR TRPV-1,
DERIVADOS DE 1 ,3,4-TI ADI AZOL ALQUILAMIDAS Y DE CHALCONAS.
Sector técnico
La presente tecnología está orientada al sector farmacéutico, principalmente a la elaboración de fármacos antagonistas del receptor TRPV-1, para tratar enfermedades en las que él se encuentre sobreactivado, como por ejemplo el dolor crónico.
Técnica anterior
Un blanco para el desarrollo de drogas destinadas a combatir el dolor crónico inflamatorio, son los receptores de potencial transitorio vainilloide 1 o receptores TRPV-1 , ya que estos están relacionados con la modulación de las señales nociceptivas debido a su expresión en fibras sensoriales C y Αδ, principalmente (1, 2). Estos receptores se encuentran sobreactivados en estas fibras sensoriales bajo condiciones patológicas y tienen un rol directo en el mantenimiento de la inflamación neurogénica (3, 4, 5, 6). Además representan un posible tratamiento para el dolor neuropático debido a la sobreexpresión de estos receptores en fibras no dañadas vecinas a las fibras dañadas.
Los receptores TRPV-1 son canales catiónicos no selectivos con permeabilidad a calcio conocidos como nociceptores polimodales debido a que pueden ser activados por varios ligandos tanto físicos y químicos desde el medio endógeno y exógeno. Los activadores directos de los receptores TRPV-1 conocidos hasta ahora son endovainilloides (anandamida, ácido araquidónico o productos de la lipooxigenasa), pH ácido o básico, temperaturas dañinas (>42°C) y voltaje (8, 9), además de ligandos químicos exógenos como capsaicina. Sin embargo los receptores TRPV-1 pueden ser activados indirectamente o sensibilizados por cambios en el estado de fosforilación-defosforilación llevado a cabo por quinasas, las cuales son activadas por vías secundarias resultado de la activación de receptores, tales como los receptores de bradiquinina, serotonina,
histamina, somatostatina, prostaglandina, interleukina o los receptores de tirosinasa, de esta forma la activación de estos receptores culmina con la activación de los receptores TRPV-1 (3).
Los receptores relacionados con la activación indirecta de los receptores TRPV-1 son activados por moléculas proinflamatorias liberados en el sitio de inflamación tisular presente en patologías asociadas con un mecanismo inflamatorio, tales como cáncer, osteoporosis, artritis, diabetes, síndrome de color irritable, cistitis y otras enfermedades (10, 1 1). Algunas de estas moléculas proinflamatorias, además pueden activar directamente los receptores TRPV-1 , tales como anandamida, ácido araquidónico, N- araquidonoil dopamina, N-acildopamina, ácido 12-(S)- hidroxiperoxieicosatetraenoico, ácido 15-(S)-hidroxiperoxieicosatetranoico y leucotrieno B4, los cuales han mostrado activar los receptores TRPV-1 con eficacia (12). Por lo tanto, los receptores TRPV-1 están involucrados directamente con la percepción y transducción del dolor.
La construcción de ratones knockout de TRPV-1 ha permitido confirmar la principal función de la activación del receptor en los procesos de nocicepción y su aplicación en el tratamiento de enfermedades con dolor crónico. Estos ratones carentes del receptor TRPV-1 presentan un comportamiento dañino de las respuestas fisiológicas a compuestos vainilloides, además los cultivos neuronales del ganglio de raíz dorsal (GRD) extraídos de los ratones knockout no responden a activadores comunes del receptor, tales como capsaicina, calor dañino y protones, además estos ratones se caracterizan por no desarrollar hiperalgesia térmica y alodinia mecánica, ambos síntomas recurrentes en pacientes con dolor crónico (13, 14, 15).
Además de la inhibición de los receptores TRPV-1 aplicada para el tratamiento de las sensaciones de dolor, la modulación de la activación de los receptores TRPV-1 puede ser usada para el tratamiento de patologías, tales como la incontinencia urinaria, sobreactividad de la vejiga, asma, tos crónica, hipertensión renal, neuroprotección isquémica, pancreatitis u obesidad debido a que la expresión de los receptores TRPV-1 abarca además células no
sensoriales, tales como queratinocitos, células β del páncreas, células dendríticas, entre otros fenotipos celulares (11), permitiendo ampliar la farmacología relacionada con estos receptores.
El primer ligando conocido para los receptores TRPV-1 fue capsaicina un compuesto pungente presente en el ají, capsaicina actúa como agonista de los receptores TRPV-1 y su potencial terapéutico está relacionado con la propiedad de sensibilizar las neuronas sensoriales del GRD y causar un efecto desensibilizador de estas neuronas después de la exposición de capsaicina. La respuesta exhibida por las neuronas del GRD se caracteriza por una desensibilización aguda o taquifilaxis, según el tiempo de exposición o dosis repetidas de capsaicina, respectivamente y ambos mecanismos de desensibilización son dependientes del calcio extracelular (16). De este modo el efecto producido por capsaicina altera la transducción de las señales nociceptivas y esta acción es la base del efecto analgésico mediado por ella en aplicaciones tópicas en pacientes con dolor crónico (17, 18).
Un grupo de compuestos naturales conocidos como vainilloides se caracterizan por presentar actividad agonista sobre los receptores TRPV-1 , por ejemplo resineferatoxina, poligodial, isovaleral, escutigeral, neogrifolin, gingerol, eugenol, y derivados de piperina. Estos compuestos son análogos estructurales de capsaicina y su síntesis es de interés para el desarrollo de drogas debido a que capsaicina actúa específicamente en los receptores TRPV-1 y causa desensibilización especifica en las fibras C y Αδ del GRD (19, 20). La actividad agonista de los compuestos vainilloides puede ser modificada a través de halogenación en los carbono 5 y 6 del grupo vainillilo, cambiando el efecto a una actividad antagonista, así los átomos de cloro y bromo en estas posiciones reducen la actividad agonista, mientras que el átomo de yodo ejerce una reversión completa de actividad, de este modo 5/6-yodononivamida y 5- yodoresineferatoxina se caracterizan por actuar como antagonista completos del receptor TRPV-1 con mitad de concentración máxima inhibitoria (IC50) de 10; 126,2 y 0,4 nM, respectivamente, de estos resineferatoxina un diterpeno dafnano aislado de Euphorbia resinífera , además es un agonista 10 veces más potente que capsaicina y su yodación no afecta esta potencia, sin
embargo su desarrollo farmacológico está limitado debido a la baja disponibilidad de este compuesto y alta toxicidad. El efecto antagonista ejercido por el átomo de yodo es también observado en otros análogos vainilloides yodados (21 , 22, 23).
El desarrollo de compuestos con actividad antagonista en receptores TRPV-1 referente tanto a análogos de capsaicina y otras clases estructurales de antagonistas con actividad específica es un área de investigación farmacéutica emergente tanto para el tratamiento del dolor crónico y otras enfermedades, en las cuales la actividad de los receptores esta aumentada. Esto debido principalmente a que la aplicación terapéutica basada en agonistas presenta desventajas como neurotoxicidad asociada al incremento del calcio intracelular, además capsaicina si bien es eficaz en pacientes con dolor crónico su aplicación tópica en humanos induce dolor inicial, eritema e hiperalgesia y debe ser aplicada repetidamente para alcanzar el efecto analgésico debido a las bajas concentraciones de capsaicina presente en las formulaciones con el fin de reducir sus efectos secundarios, esto además de evitar su uso prolongado induce el abandono de las terapias tópicas basadas en capsaicina por los pacientes. Por otra parte la pungencia y los efectos laterales sistémicos mostrado por análogos vainilloides impide el desarrollo de compuestos agonistas con biodisponibilidad oral, además de la relación existente entre mayor potencia agonista y la presencia del grupo hidroxilo (3, 18).
Los principales compuestos antagonistas competitivos desarrollados hasta la fecha se caracterizan por actuar en el sitio ortostérico del receptor TRPV-1 localizado entre el tercer y cuarto segmento transmembrana, en el cual los residuos de treonina 550 y tirosina 510 son determinantes tanto en la sensibilidad del receptor a compuestos agonistas y antagonistas (25-28). Este sitio de unión identifica dos requerimientos importantes para el reconocimiento del receptor correspondientes a la lipofilicidad para alcanzar el sitio de unión y el establecimiento de enlaces hidrógeno para interactuar con los residuos identificados, estas características son consistentes con las modificaciones químicas realizadas en compuestos con actividad en el receptor TRPV-1, las cuales identifican tres regiones farmacofóricas importantes para la actividad
correspondientes a una región donante-aceptora de enlaces hidrógeno, una región con alta polaridad y una región hidrofóbica, estas tres regiones se encuentran separadas por grupos espaciadores, los cuales regulan la conformación de los ligandos y por tanto su actividad agonista y antagonista sobre el receptor. De este modo los compuestos agonistas, adquieren una conformación doblada, entre la región donante-aceptora de enlaces hidrógeno y la región hidrofóbica, en la cual el grupo amida de capsaicina, por ejemplo adquiere una orientación trans- y la cadena alifática una conformación extendida (29). Mientras que los compuestos antagonistas adoptan una conformación coplanar entre la región hidrofóbica y la región donante-aceptora de enlaces hidrógeno (30).
Basado en estos criterios estructurales y conformacionales los compuestos antagonistas con mayor potencia, tales como derivados de cinamidas, pirimidinas, quinazolinas entre varios otros (31-37), se caracterizan por mantener estas características y además por presentar alta restricción conformacional impuesta entre la región polar e hidrofóbica, los cual favorece el rearreglo coplanar entre la región hidrofóbica y la región donante-aceptora de enlaces hidrógeno, mejorando la potencia antagonista. De esta manera, el compuesto N-(4-tert-butilfenil)-4-(3-cloropiridin-2-il)piperazina-1-carboxamida conocido como BCTC se caracteriza por ser un derivado de urea restringido conformacionalmente con potente actividad antagonista del receptor TRPV-1 con mitad de concentración máxima inhibitoria (IC50) de 2-6nM, según el tipo de especie (rata, ratón o humano) del receptor TRPV-1 , sin embargo aunque muestra eficacia en modelos animales de dolor crónico presenta pobre estabilidad metabólica, corta vida media, pobre solubilidad acuosa y moderada biodisponibiiidad oral (31 , 32, 33). Del mismo modo el derivado de cinamida (£)-3-(4-tert butilfenil)-N-(2, 3-dihidrobenzo (b)-1 , 4-dioxin-6-il) acrilamida presenta actividad antagonista con IC50 79nm, el reemplazo del doble enlace en este compuesto por un grupo 4-aminopiridina permitió obtener un derivado con actividad antagonista aumentada mostrando un IC50 de 2nM (34). De forma similar, la síntesis de derivados de oxazoles fue desarrollada a partir de derivados de ureas como ABT-102, el reemplazo ¡sostérico del grupo urea dio
como resultado compuestos con potente actividad antagonistas y la obtención de compuestos con propiedades farmacocinéticas mejoradas y buena penetración en el SNC (41 ). Así grupos isostéricos, tales como imidazol, tiazolpirimidina, piridopirimidinas, piridopirazinas o tiazol carboxamidas han permitido la obtención de una amplia diversidad de antagonistas competitivos restringidos conformacionalmente con potente actividad sobre receptores TRPV-1 (31-44).
Además de antagonistas competitivos se han caracterizado antagonistas no competitivos para el receptor TRPV-1 , tales como rojo de rutenio con actividad antagonista IC50: 0.17 μΜ y Lantano el cual exhibe actividad a una concentración mayor o igual a 100 μΜ, los cuales actúan como bloqueadores del canal iónico uniéndose a un sitio compuesto por residuos cargados negativamente, así también se han desarrollado hexapéptidos ricos en arginina, sin embargo estos compuestos junto con rojo de rutenio y lantano carecen de selectividad para el receptor, lo cual resulta en efectos laterales y toxicidad impidiendo su desarrollo farmacológico (45, 46).
Referencias 1.- Michael J. Caterina, Mark A. Schumacher, Makoto Tominaga, Tobías A. Rosen, Jon D. Levine and David Julius. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389, 816-824.
2. - Kendall Mitchell, Brian D Bates, Jason M Keller, atthew López, Lindsey Scholl, Julia Navarro, Nicholas Madian, Gal Haspel, Michael I Nemenov and Michael Jladarola. Ablation of rat TRPV1- expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates. Molecular Pain, 2010, 6, 1-13.
3. - Marcello Trevisani, and Arpad Szallasi. Targeting TRPV1. Challenges and Issues in Pain Management. The Open Drug Discovery Journal, 2010, 2, 37-49.
4. - Andrés Jara-Oseguera, Sidney A. Simón, and Támara Rosenbaum. TRPV 1: on the road to pain relief. Curr Mol Pharmacol. 2008, 1 , 255-269.
5. - Louise A. Roberts and Mark Connor. TRPV1 Antagonists as a Potential Treatment for Hyperalgesia. Recent Patents on CNS Drug Discovery, 2006, 1 , 65-76.
6. - Gilbert Y. Wonga, Narender R. Gawa. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks. Brain Research Reviews, 2009, 60, 267-277.
7. -Enza Palazzo, Livio Luongo, Vito de Novellis, Liberato Berrino, Francesco Rossi and Sabatino Maione. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Molecular Pain. 2010, 6, 1-11
8. -Ramon Latorre, Cristián Zaelzer and Sebastian Brauchi. Structure-functional intimacies of transient receptor potential channels. Quarterly Reviews of Biophysics, 2009, 42, 201-246.
9. - Andrés Jara-Oseguera, Andrés Nieto-Posadas, Arpad Szallasi, León D. Islas and Támara Rosenbaum. Molecular Mechanisms of TRPV1 Channel Activation. The Open Pain Journal, 2010, 3, 68-81
10. - Bernd Nilius, Grzegorz Owsianik, Thomas Voets, and John a. Peters. Transient Receptor Potential Catión Channels in Disease. Physiology Review, 2007, 87, 165-217.
11. - Khadija Alawi and Julie Keeble. The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacology & Therapeutics, 2010, 125, 181 -195.
12. - Mario van der Stelt and Vincenzo Di Marzo. Endovanilloids Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur. J. Biochem. 2004, 271,1827-1834.
13.- M. J. Caterina, A. Leffler, A. B. Malmberg, W. J. Martin, et ál. Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor. Science. 2000, 288, 306-313
14.- Lu Yu1, Fei Yangl , Hao Luo1 , Feng-Yu Liu1, Ji-Sheng Han1 ,2,3, Guo-Gang Xing*1 ,2 and You Wan. The role of TRPV1 ¡n different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant. Molecular Pain, 2008, 4, 1-10.
15.- Jurgen Sandkuhler. Models and Mechanisms of Hyperalgesia and Allodynia. Physiology Review. 2009, 89, 707-758.
16.- Patricia A. Koplas, Robert L. Rosenberg, and Gerry S. Oxford. The Role of Calcium in the Desensitization of Capsaicin Responses in Rat Dorsal Root Ganglion Neurons. The Journal of Neuroscience, 1997, 173, 525-3537.
17.-Gilbert Y. Wonga,1 , Narender R. Gawa. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks. Brain Research Reviews, 2009, 60, 267-277
18,-Lorna Masón, R. Andrew Moore, Sheena Derry, Jayne E. Edwards, Henry J. McQuay. Systematic review of topical capsaicin for the treatment of chronic pain. BMJ, 2004, 328, 991-994.
19.- Rosa Planells-Cases, Carolina García-Martínez 1 , Miriam Royo, Enrique Pérez-Payá, Cristina Carreño, Fernando Albericio, Angel Messeguer, and Antonio Ferrer-Montiel. Small molecules targeting the vanilloid receptor complex as drugs for inflammatory pain. Drugs of the Future, 2003, 28, 1-28.
20. -Holzer, P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacological Reviews, 1991, 43, 143-201.
21.- Dong Wook Kang , Yong Soo Kim , Kwang Su Lim , Myeong Seop Kim , Larry V. Pearce, et ál. Halogenation of 4-hydroxy/amino-3-methoxyphenyl acetamide TRPV1 agonists showed enhanced antagonism to capsaicin. Bioorganic & Medicinal Chemistry. 2010, 18, 8092-8105.
22.- Kwang Su Lim, Dong Wook Kang , Yong Soo Kim , Myeong Seop Kim , Seul-G¡ Park , Sun Choi, Larry V. Pearce , Peter M. Blumberg , Jeewoo Lee. Receptor activity and conformational analysis of 5- halogenatedresiniferatoxin analogs as TRPV1 ligands. Bioorganic & Medicinal Chemistry Letters. 2011,
21, 299-302.
23. - Giovanni Appendino, Nives Daddario, Alberto Minassi, Aniello.Schiano Moriello, Luciano De Petrocellis, and Vincenzo Di Marzo. The Taming of Capsaicin. Reversal of the Vanilloid Adivity of N-Acylvanillamines by Aromatic lodination. Journal of Medicinal Chemistry. 2005, 48, 4663-4669.
24. - Derek S. Reubish, Daniel E. Emerling, Jeff DeFalco, Daniel Steiger, Cheryl L. Victoria, and Fabien Vincent. Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. Short Technical Reports, 2009, 47, 3-9.
25. - Sven-Eric Jordt and David Julius. Molecular Basis for Species-Specific Sensitivity to "Hot" Chili Peppers. Cell, 2002, 108, 421^*30.
26 .- Narender R. Gawa, Lana Klionsky, Yusheng Qu, Licheng Shi, Rami Tamir, Steve Edenson, T. J. Zhang, Vellarkad N. Viswanadhan, Attila Toth, Larry V. Pearce, Todd W. Vanderah, Frank Porreca, Peter M. Blumberg, Jack Lile, Yax Sun, Ken Wild.Jean-Claude Louis, and James J. S. Treanor. Molecular Determinante of Vanilloid Sensitivity in TRPV1. The journal of biological chemistry, 2004, 279, 20283-20295.
27. - Margaret Z. Chou, Tecla Mtui, Ying-Duo Gao, Martin Kohler and Richard E. Middleton. Resiniferatoxin Binds to the Capsaicin Receptor (TRPV1) near the Extracellular Side of the S4
Transmembrane Domain. Biochemistry, 2004, 43, 2501-2511.
28. - Jin Hee Lee, Yoonji Lee, HyungChuI Ryu, Dong Wook Kang, Jeewoo Lee, Jozsef Lazar , Larry V. Pearce, Vladimir A. Pavlyukovets, Peter M. Blumberg, Sun Choi. Structural ¡nsights into transient receptor potential vanilloide type 1 (TRPV1) from homology modeling, flexible docking and mutational studies. J Comput Aided Mol Des. 2011 , 25, 317-327.
29. - Margit Winkier, Thomas Moraux, Hesham A. Khairy, et al. Synthesis and Vanilloid Receptor (TRPV-1) Activity of the Enantiomers of a-Fluorinated Capsaicin. ChemBioChem, 10, 2009, 823-828.
30 - Brian S. Brown , Ryan Keddy, Guo Zhu Zheng, Robert G. Schmidt, et al. Tetrahydropyridine-4- carboxamides as novel, potent transient receptor potential vanilloid 1 (TRPV1) antagonists. Bioorganic & Medicinal Chemistry 16, 2008, 8516-8525.
31. - Craig C. Corrella , P. Tara Phelpsa, John C. Anthesa, Shelby Umlandb, Scott Greenfeder.Cloning and pharmacological characterization of mouse TRPV1. Neuroscience Letters 370, 2004, 55-60.
32. - Qun Sun, Laykea Tafesse, Khondaker Islam. 4-(2-Pyridyl)piperazine-1-carboxamides: Potent Vanilloid Receptor 1 Antagonists. Bioorganic & Medicinal Chemistry Letters 13, 2003, 3611-3616.
33.- Vassil I. Ognyanov, Chenera Balan, Anthony W. Bannon. Design of Potent, Orally Available Antagonists of the Transient Receptor Potential Vanilloid 1. Structure-Activity Relationships of 2-Piperazin- 1-yl-1 H-benzimidazoles. Journal Medicinal Chemistry, 2006, 49, 37 9-3742.
34.- Mark H. Norman, Jiawang Zhu, Christopher Fotsch, Yunxin Bo, Ning Chen, Partha Chakrabarti, Elizabeth M. Doherty et ál. Novel vanilloid receptor-1 antagonists: 1. Conformationally restricted analogues of trans-cinnamides. Journal of Medicinal Chemistry, 2007, 50, 3497-3514.
35- Elizabeth M. Doherty, Christopher Fotsch, Yunxin Bo, Partha P. et ál. Discovery of Potent, Orally Available Vanilloid Receptor-1 Antagonists. Structure-Activity Relationship of N-Aryl Cinnamides. Journal of Medicinal Chemistry, 2005, 48 , 71-90.
36.- Nuria Tamayo, Hongyu Liao, Markian M. Stec, Xianghong Wang, et ál. Design and Synthesis of Peripherally Restrided Transient Receptor Potential Vanilloid 1 (TRPV 1) Antagonists. Journal of Medicinal Chemistry, 2008, 51, 2744-2757.
37. - Michele C. Jetter, James J. McNally, Mark A. Youngman, ark E. McDonnell, et ál. N -Pyridin-3-yl- and N -quinolin-3-yl-benzamides: Modulators of Human Vanilloid Receptor 1 (TRPV1). Bioorganic & Medicinal Chemistry Letters, 2008, 18, 2730-2734.
38. - Bin Shao, Jincheng Huang, Qun Sun, Kenneth J. Valenzano, Lori Schmid and Scott Nolan. 4-(2- Pyridyl) piperazine-1-benzimidazoles as potent TRPV1 antagonists. Bioorganic & Medicinal Chemistry
Letters, 2005, 15, 719-723.
39. - Irene Drizin, Arthur Gomtsyan, Eral K. Bayburt, Robert G. Schmidt, Guo Zhu Zheng, et ál. Structure-activity studies of a novel series of 5, 6-fused heteroaromatic ureas as TRPV1 antagonists. Bioorganic & Medicinal Chemistry, 2006, 14, 4740-4749.
40.- Ronald Palin, Lynn Abernethy, Nasrin Ansari, Kenneth Cameron, Tom Clarkson, Maureen Dempster, et ál. Structure-activity studies of a novel series of ¡soxazole-3-carboxamide derivatives as TRPV1 antagonists. Bioorganic & Medicinal Chemistry Letters, 2011, 21 , 892-898.
41. - Richard J. Perner, John R. Koenig, Stanley DiDomenico, Arthur Gomtsyan, et ál. Synthesis and biological evaluation of 5-substituted and 4, 5-disubstituted-2-arylamino oxazole TRPV1 antagonists. Bioorganic & Medicinal Chemistry, 2010, 18, 4821-4829.
42. - Ning Xi, Yunxin Bo, Elizabeth M. Doherty, Christopher Fotsch, et ál. Synthesis and evaluation of thiazole carboxamides as vanilloid receptor 1 (TRPV1) antagonists. Bioorganic & Medicinal Chemistry Letters, 2005, 15, 5211-5217.
43. - Kevin J. Hodgetts, Charles A. Blum, Timothy CaldweII, Rajagopal Bakthavatchalam, Xiaozhang Zheng, et al. Pyrido[2,3-b]pyrazines, discovery of TRPV1 antagonists with reduced potential for the formation of reactive metabolites. Bioorganic & Medicinal Chemistry Letters, 2010, 20, 4359-4363.
44. - Natalie A. Hawryluk, Jeffrey E. Merit, Alee D. Lebsack, Bryan J. Branstetter, Michael D. Hack, et ál. Discovery and synthesis of 6, 7, 8, 9-tetrahydro-5H-pyrimido-[4,5-d]azepines as novel TRPV1 antagonists. Bioorganic & Medicinal Chemistry Letters, 2010, 20, 7137-7141.
45 - Angel Messeguer, Rosa Planells-Cases and Antonio Ferrer-Montiel. Physiology amd Pharmacology of the Vanilloid Receptor. Current Neuropharmacology. 2006, 4, 1-15.
46. - Joris Vriens, Giovanni Appendino and Bernd Nilius. Pharmacology of Vanilloid Transient Receptor Potential Catión Channels. Molecular Pharmacology 75, 2009, 1262-1279.
47. - Christopher S. J. Walpole, Stuart Bevan, Graham Bloomfield, Robin Breckenridge, lan F. James, Timothy Ritchie, Arpad Szallazi, Janet Winter and Roger Wrigglesworth. Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 2. The amide bond "B-region". Journal of Medicinal Chemistry, 1993, 36, 2373-2380.
48. - Jeewoo Lee, Mi-Kyoung Jin, Sang-Uk Kang and et ál. Analysis of structure-activity relationships for the Ά-region' of N-(4-t-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl]thiourea analogues as TRPV1 antagonists. Journal Bioorganic and Medicinal Chemistry, 2005, 15, 4136-4142.
49. - Young-Ger Suh, Yong-Sil Lee, Kyung-Hoon Min, Ok-Hu¡ Park, Jin-Kwan Kim, Ho-Sun Seung.Seung- Yong Seo, Bo-Young Lee, Yeon-Hee Nam and et Al, Novel Potent Antagonists of Transient Receptor Potential Channel, Vanilloid Subfamily Member 1 : Structure-Activity Relationship of ,3-Diarylalkyl Thioureas Possessing New Vanilloid Equivalente. Journal of Medicinal Chemistry, 2005, 48, 18, 5823-5836.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 , derivados vainilloides de 1 , 3, 4 tiadiazol alquilamidas.
Figura 2 y Figura 3, derivados de chalconas o derivados carbonilo alfa, beta insaturados.
Figura 4, ruta de síntesis utilizada para ia yodación del 4-hidrox¡-3- metoxibenzaldehído o vainillina.
Figura 5, ruta de síntesis utilizada para la obtención de los derivados de 1 , 3, 4-tiadiazol-2-amino.
Figura 6, ruta de síntesis utilizada para la obtención de los derivados de 1 , 3, 4-tiadiazol alquilamidas.
Figura 7, ruta de síntesis utilizada para la obtención de los derivados de chalconas o derivados carbonilo alfa, beta insaturados.
Figura 8, espectro de Resonancia magnética Nuclear de H (DMSO, 400 MHz) obtenido para el compuesto N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]- nonamida [b]
Figura 9, espectro de Resonancia magnética Nuclear de 3C (DMSO, 100 MHz) obtenido para el compuesto N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-nonamida [b].
Figura 10, espectro de Resonancia Magnética 1H (DMSO, 400 MHz) obtenido para el compuesto N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]- heptanamida [e].
Figura 11 , espectro de Resonancia magnética Nuclear de 3C (DMSO, 100 MHz) obtenido para el compuesto N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-heptanamida [e].
Figura 12, espectro de Resonancia Magnética 1H (DMSO, 400 MHz) obtenido para el compuesto C2EJ-1-(4-bromodifenil)-3-(4-hidroxi-3-metoxifen¡l)prop-2-en- 1-ona [I].
Figura 13, espectro de Resonancia magnética Nuclear de 13C (DMSO, 100 MHz) obtenido para el compuesto (f2E/)-1-(4-bromodifenil)-3-(4-hidroxi-3- metoxifenil)prop-2-en-1-ona [I].
Figura 14, gráfico del ensayo de activación del receptor TRPV-1 por Capsaicina para los derivados de 1 , 3, 4-tiadiazol alquilamidas evaluados a una concentración 1 μΜ.
Figura 15, gráfico del ensayo de activación del receptor TRPV-1 por Capsaicina para los derivados de 1 , 3, 4-tiadiazol alquilamida (representación sin capsaicina).
Figura 16, gráfico del ensayo de activación del receptor TRPV-1 por Capsaicina para los derivados de chalconas.
Figura 17, gráfico del ensayo de activación del receptor TRPV-1 por Capsaicina para los derivados de chalconas (representación sin capsaicina).
Figura 18, Respuesta del receptor TRPV-1 de rata a los incrementos de temperatura.
Figura 19, gráfico del ensayo de activación del receptor TRPV-1 por temperatura para los derivados de 1 , 3, 4-tiadiazol alquilamidas.
Figura 20, gráfico del ensayo de activación del receptor TRPV-1 por temperatura para los derivados de 1 , 3, 4-tiadiazol alquilamidas, (representación sin capsaicina).
Figura 21 , gráfico del ensayo de activación del receptor TRPV-1 por temperatura para los derivados de chalconas.
Figura 22, gráfico del ensayo de activación del receptor TRPV-1 por temperatura para los derivados de chalconas (representación sin capsaicina).
Figura 23, curvas dosis respuesta para los derivados de 1 , 3, 4-tiadiazol alquilamida en células HEK-293T que sobreexpresan el receptor TRPV-1.
Figura 24, curvas dosis respuesta para los derivados de chalconas en células HEK-293T que sobreexpresan el receptor TRPV-1.
DIVULGACION DE LA INVENCIÓN
En esta invención se describen compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y derivados de chalconas con capacidad de inhibir la activación del receptor TRPV-1 por capsaicina y temperatura.
El primer aspecto de la invención se relaciona con los derivados vainilloides de 1 , 3, 4 tiadiazol alquilamidas descritos en la Figura 1.
Donde R, corresponde a una cadena alquílica saturada definida por cadenas lineales saturadas de 6 a 8 carbonos y X es definido como un átomo de H o un átomo de yodo.
El método de síntesis aplicado para la síntesis de estos derivados se inicia con la protección del grupo 4-hidroxilo por acilación con anhídrido acético del material de partida correspondiente a 4-hidroxi-3-metoxibenzaldehído o vainillina. Los derivados yodados en el carbono 5 del grupo vainillilo son obtenidos mediante una reacción de yodación con yoduro de potasio e hipoclorito de sodio comercial mostrado en la Figura 4, posteriormente el grupo hidroxilo de este producto correspondiente a 4-hidroxi-3-yodo-5- metoxibenzaldehído o 5-yodovainillina fue protegido con anhídrido acético. El heterociclo 1 , 3, 4-tiadiazol fue obtenido utilizando el método de delación oxidativa de tiosemicarbazonas, mostrado en la Figura 5, por lo cual el aldehido de los respectivos compuestos de vainillina y 5- yodovainillina protegidos fueron condensados con tiosemicarbazida para obtener los derivados de tiosemicarbazonas, los cuales mediante delación oxidativa con cloruro férrico en medio acuoso se obtuvieron los derivados de 1 , 3, 4- tiadiazol-2 amino con el grupo hidroxilo desprotegido en la misma etapa de reacción. Posteriormente estos productos de 1 , 3, 4-tiadiazol -2-amino fueron adiados, según la ruta mostrada en la Figura 6 con derivados de cloruros de acilo correspondiente a cloruro de ácidos con cadenas hidrocarbonadas lineales de 6-9 carbonos, esta reacción de acilación dio como resultado productos acilados tanto en los grupos hidroxilo y amino, por lo tanto la última etapa de síntesis consistió en la hidrólisis básica del éster formado para
obtener los respectivos compuestos descritos en la Figura 1 con el grupo hidroxilo libre, obteniendo de este modo los siguientes compuestos:
[a] N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-nonamida,
[b] N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-nonamida,
[c] N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-¡l]-octanamida,
[d] N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-octanamida,
[e] N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-heptanamida,
[f] N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-heptanamida,
[g] N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-hexanamida, y [h] N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-hexanamida.
El segundo aspecto de esta invención se relaciona con derivados de chalconas o derivados carbonilo alfa, beta insaturados descritos en las Figura 2 y 3, Donde los distintos R corresponden a diferentes grupos sustituyentes:
R1 corresponde a un hidrógeno, un grupo metoxilo o un grupo hidroxilo;
R2 es un hidrógeno o un grupo metoxilo;
R3 es un hidrógeno o un grupo cloro;
R4 es un hidrógeno o un grupo bromo; y
R5 es un hidrógeno, un grupo metoxilo o un grupo hidroxilo.
El método de síntesis para los compuestos descritos en las Figura 2 y 3 consistió en la aplicación de la condensación de Claisen-Schmidt entre diferentes benzaldehídos y acetofenonas. Las reacciones de condensación se llevaron a cabo tanto en condiciones catalíticas básicas y ácidas a temperatura ambiente y condiciones de reflujo, respectivamente como es mostrado en la Figura 7. La combinación de estos distintos sustituyentes da lugar a los siguientes compuestos con nombre:
[i] (2E)-1 -(4-bromodifen¡l)-3-fen¡lprop-2-en-1 -ona,
[j] {2E)A -(4-bromodifenil)-3-(4-metoxifenil)prop-2-en-1 -ona,
[k] (2E)A -(4-bromodifenil)-3-(4-hidroxifenil)prop-2-en-1 -ona,
[I] {2E)A -(4-bromodifenil)-3-(4-hidroxi-3-metoxifenil)prop-2-en-1 -ona,
[m] (1E, 4E)A ,5-difenilpenta-1 ,4-dien-3-ona,
[n] (1E, 4E -1 ,5-(4-hidroxidifenil)penta-1 ,4-dien-3-ona,
[o] (1E, 4£ 1 ,5-(4-metoxidifenil)penta-1 ,4-dien-3-ona,
[p] ^E^^cloro-S^-hidroxifeni -l-fenilprop^-en-l-ona,
[q] (2E)-2 cloro-3-(4-hidroxi-3-metoxifenil)-1-fenilprop-2-en-1-ona.
Estos compuestos se presentan como una alternativa al tratamiento de enfermedades involucradas con la sobreactivación de los receptores TRPV-1. Los ensayos in vitro realizados en cultivos de células HEK-293T sobreexpresadas con el receptor TRPV-1 de rata, basados en mediciones fluorométricas del influjo de calcio inducido, tras la activación del receptor TRPV-1 por capsaicina, indicaron que los compuestos [a-h] y [i-q] inhiben el influjo de calcio observado por una disminución en la fluorescencia celular, exhibiendo una potente actividad antagonista para el modo de activación del receptor TRPV-1 por capsaicina (Figuras 14-17). Además, estos compuestos [a-h] y [i-q], exhiben actividad antagonista sobre el modo de activación del receptor TRPV-1 por temperatura (Figuras 19-21) la actividad es representada como el promedio de fluorescencia relativa para dos ensayos independientes obtenida a 54°C, temperatura a la cual el receptor TRPV-1 presenta su máxima activación.
Desde de las respectivas curvas dosis-respuesta para los compuestos con actividad antagonista presentadas en las Figuras 22 y 23, se determinó la mitad de la concentración inhibitoria máxima (IC50) presentadas en las Tablas 7 y 8, estos valores indican una actividad antagonista en el orden nanomolar, con rangos de IC50 entre 0.4-1 .2 nM, lo que revela que estos compuestos son potentes antagonistas del receptor TRPV-1 , la cual es superior a la actividad mostrada por muchos antagonistas competitivos y por antagonistas derivados de compuestos vainilloides, lo cual está asociado a un modo distinto de unión
en el sitio ortostérico del receptor TRPV-1 y el establecimiento de interacciones hidrofóbicas en un sitio de unión no descrito y que contribuye en el aumento de actividad antagonista, basado en el análisis estructura-actividad y aspectos conformacionales de los compuestos sintetizados relacionados con la planaridad y restricción conformacional impuesta por el heterociclo 1 , 3, 4- tiadiazol y el sistema carbonílico alfa, beta insaturado, presente en los compuestos [a-h] y [i-q], respectivamente.
Los compuestos descritos aquí, se caracterizan principalmente por exhibir actividad antagonista en receptores TRPV-1 con alta restricción conformacional, lo cual contribuye al incremento de la energía de unión ligando-receptor e influye en la mayor actividad antagonista y además por adquirir entre las regiones farmacofóricas una conformación diferente a la asociada con la actividad antagonista descrita hasta ahora. De este modo en los derivados de 1 , 3, 4-tiadiazol alquilamidas, la restricción conformacional es regulada a través del reemplazo ¡sostérico del grupo amida presente en análogos de capsaicina por el heterociclo 1 , 3, 4-tiadiazol, lo cual permite que los compuestos sintetizados adquieran una conformación coplanar entre la región donante-aceptora de enlaces hidrógeno conformada por el grupo vainillilo y la región polar conformada por el grupo 1 , 3, 4-tiadiazol, mientras que la incorporación de un grupo amida como espaciador permite una conformación doblada entre la región donante-aceptora de enlaces hidrógeno (grupo vainillilo) y la región hidrofóbica conformada por las cadenas alifáticas lineales. Esto permite la obtención tanto de análogos vainilloides yodados y no yodados con potente actividad antagonista, siendo el efecto de estos últimos contrario al efecto mostrado por compuestos vainilloides con grupo vainillilo no yodado, los cuales comúnmente presentan actividad agonista, con excepción de capsazepina, el cual es un derivado vainilloide no yodado y primer antagonista competitivo de capsaicina identificado, sin embargo presenta baja potencia (IC50: 56.2 nM), inestabilidad metabólica y baja selectividad para el receptor TRPV-1 (23,45). A diferencia de los derivados de 1 , 3, 4-tiadiazol alquilamidas, los cuales presentan alta restricción conformacional, favoreciendo su selectividad en receptores TRPV-1. De esta manera la restricción
conformacional impuesta por el heterociclo 1, 3, 4-tiadiazol y el grupo amida permiten estabilizar el estado conformacional del receptor TRPV-1 responsable de su inactivación, explicando el antagonismo exhibido tanto por derivados no yodados y yodados en el grupo vainillilo y que se asocian a un modo de unión distinto al adoptado por compuestos vainilloides antagonistas en el sitio de unión ortostérico del receptor.
En los derivados de chalconas o derivados carbonilo alfa, beta insaturados, la restricción conformacional es regulada a través del doble enlace insaturado y la eliminación de los grupos espaciadores comúnmente presentes en compuestos con actividad en receptores TRPV-1, tales como grupos amino, oxo o metileno y los cuales han mostrado influir en la actividad agonista y antagonista, así se ha mostrado que en agonistas análogos de capsaicina, la sustitución del grupo metileno entre el grupo vainillilo (región donante-aceptora de enlaces hidrógeno) y amida (región polar) por un grupo etileno o un grupo carbonilo reduce notablemente la actividad agonista de los compuestos (47) , mientras que la ausencia de esta región espadadora en análogos de capsaicina y análogos de tiourea elimina la actividad tanto agonista y antagonista, respectivamente (47,48,49). De esta manera los cambios estructurales obtenidos a través de la síntesis de derivados de chalconas permitieron la obtención de potentes antagonistas del receptor TRPV-1 con actividad nanomolar, lo cual además de estar asociado con la mayor restricción conformacional se relaciona con la conformación anticoplanar entre la región donante-aceptora de enlaces hidrógeno y la región hidrofóbica conformadas por los grupos arilos. Además de la obtención de moléculas de bajo peso molecular, lo cual facilita el desarrollo farmacológico de antagonistas del receptor TRPV-1 para ser administrados por vía oral, para aumentar su biodisponibilidad.
EJEMPLOS DE APLICACIÓN
EJEMPLO N°1 : Síntesis de los compuestos Procedimientos generales.
Las reacciones de síntesis para cada uno de los compuestos propuestos se llevaron a cabo en solventes sin tratamiento previo, excepto para la reacciones de acilación, en la cual el catalizador piridina, utilizado estuvo previamente secado con KOH sólido. El transcurso de las reacciones fueron evaluadas mediante cromatografía en capa fina en placas de sílice gel, utilizando como fase móvil 60% acetato de etilo/bencina. Las placas fueron reveladas mediante luz ultravioleta y soluciones de vainillina/ácido sulfúrico /metanol, 30% ácido sulfúrico/metanol y reactivo de Folin. Los productos fueron purificados mediante cristalización o cromatografía en columna y los respectivos análisis de caracterización espectroscópica fueron realizados en un espectrómetro infrarrojo y un espectrómetro de resonancia magnética nuclear para los análisis de RMN-1H y RMN-13C.
Se presentan los 7 primeros compuestos que corresponde a los intermediarios de reacción descritos en las Figura 4 y 5.
Acetato de 4-formil-2-metoxifenilo (1).
En un matraz Erlenmeyer de 100ml se adicionan 10 gr (0,066 moles) de 4- hidroxi-3-metoxibenzaldehído y 40 mi de anhídrido acético, bajo agitación se adicionan 3 gotas de ácido sulfúrico concentrado. La mezcla de reacción se deja bajo agitación a temperatura ambiente por 4 horas y posteriormente se adicionan al medio de reacción 40 mi de agua destilada, el sólido formado es filtrado y cristalizado en metanol, obteniendo 9, 13 gr (0,047 moles) de cristales color rosado-naranjo claro en un rendimiento de 71 ,27%.
Acetato de 4-(carbamotioilhidrazinilideno) metil-2-metoxifenilo (2).
En un balón fondo redondo de 250 mi, se agregan 8 g (0,041 moles) de acetato de 4-form¡l-2-metoxifen¡lo y 3,73 g (0,041 moles) de tiosemicarbazida en 50 mi de metanol, el medio de reacción se acidifica con ácido acético glacial hasta obtener un pH 4-5 y la mezcla de reacción se refluye por 6 horas bajo agitación. Posteriormente se deja enfriar en un baño de agua-hielo, formándose un precipitado color amarrillo-blanco, el cual es filtrado y cristalizado en metanol, obteniendo 9,37 g (0,036 moles) de los cristales en un rendimiento de 89,2%.
2-amino-5-(4-hidroxi-3-metoxifenil)- 1 , 3, 4 tiadiazol (3).
En un balón fondo redondo de 250 mi se agregan 5g (0,0195 moles) de tiosemicarbazona, 20 mi (9,48 g; 0,059 moles) de una solución acuosa de cloruro férrico y 30 mi de metanol. La mezcla de reacción se refluye bajo agitación por el periodo de 1-2 horas. Posteriormente la mezcla de reacción en caliente es filtrada sobre carbón activado y posteriormente se adicionan al filtrado 30 mi de una solución acuosa de ácido cítrico (1 1 ,52 g; 0,06 moles) y citrato de sodio (6,42 g; 0,03 moles) y se refluye por 1 hora bajo agitación. La mezcla de reacción es neutralizada con 10% de amoniaco a pH 4-5 y luego se deja enfriar en un baño de agua hielo, formándose un precipitado amanillo, el cual es cristalizado varias veces en una mezcla de etanol/metanol, obteniendo 2,61 g (0,01 16 moles) del producto como un polvo color amarillo en un rendimiento de 60%. 4-hidrox¡-5-metoxi-3-yodobenzaldehído (4).
En un matraz Erlenmeyer se disuelven 10g (0,065 moles) de 4-hidroxi-3- metoxibenzaldehído y 9,73 g (0,065 moles) de Kl en 20 mi de metanol. La solución se enfría en un baño de agua-hielo por 15 minutos. A través de un embudo de adición y bajo agitación en un baño de agua-hielo, se agrega a la mezcla de reacción, gota-gota 74 mi de NaOCI (0,065 moles) comercial (4,7% v/v). Terminado de agregar todo el NaOCI, la reacción se agita por 60 minutos adicionales en el baño agua-hielo. Posteriormente se adicionan 20 mi de una
solución de tiosulfato de sodio 10% (%p/p) y se agita por 15 minutos a temperatura ambiente, luego se acidifica la mezcla de reacción con HCI 37% hasta pH 3-4 y el precipitado formado se filtra y se lava con agua enfriada en hielo. El sólido se deja secar y se cristaliza en alcohol isopropílico, obteniendo 13,54g (0,048 moles) del producto como cristales color amanillo claro, en un rendimiento de 75,22%.
Acetato de 4-formil-6-metoxi-2-yodofenilo (5).
En un matraz Erlenmeyer, se colocan 4g (0,0144 moles) de 4-hidroxi- 5-metoxi- 3-yodo benzaldehído y 20 mi de anhídrido acético. En agitación son agregados 3 gotas de H2SO4 (c). La mezcla de reacción se deja en agitación a temperatura ambiente por 6 horas, luego se agregan 30 mi de agua destilada formando un precipitado, el cual es filtrado y lavado varias veces con agua destilada. Posteriormente el sólido es cristalizado en metanol, obteniendo 4,57 g (0,0142 moles) del producto como cristales color café claro en un 99,13% de rendimiento.
Acetato de 4-(carbamotioilhidrazinilideno) metil-6-metoxi-2-yodofenilo (6).
En un matraz fondo redondo, se agregan 4g (0,012 moles) de acetato de 4- formil-6-metoxl-2-yodofenilo, 1 ,09g (0,012 moles) de tiosemicarbazida en 50 mi de metanol, el medio de reacción se acidifica con ácido acético glacial hasta obtener un pH 4-5 y la mezcla de reacción se refluye por 6 horas bajo agitación. Posteriormente se deja enfriar en un baño de agua-hielo, formándose un precipitado color amarrillo-blanco, el cual es filtrado y cristalizado en metanol, obteniendo 4,03 g (0,01 moles) de cristales color amarrillo-blanco en un rendimiento de 85,38%.
2-amino-5-(4-hidroxi-5-metoxi-3-yodofenil)-1, 3, 4-tiadiazol (7).
En un matraz fondo redondo, se agregan 4g (0,0106 moles) de tiosemicarbazona, 5.2g (0,032 moles) de FeCb disuelto en 10 mi de agua destilada y 20 mi de metanol. La mezcla de reacción se refluye por 2 horas, posteriormente se adicionan 20 mi de una solución de ácido cítrico (6,15 g;
0,032 moles) y citrato de sodio (3,43g; 0,016 moles) y se agita bajo reflujo por 1 hora. Luego la mezcla de reacción se calienta en carbón activado y se filtra en caliente. El filtrado se concentra hasta la mitad y se deja enfriar en un baño de agua-hielo, formándose un sólido café claro, el cual se cristaliza varias veces con agua y metanol, obteniendo 1 ,66g (0,0047 moles) con un 44,86% de rendimiento.
A continuación se presentan las síntesis de los compuestos [a-h] y [i-q], descritos en las Figura 6 y 7:
/V-[5-(4-hidroxi-3-metoxifenil)-1, 3, 4-tiadiazol-2-¡l] nonanamida (a).
En un matraz fondo redondo secado previamente, se adicionan 2 mi (0,01 1 moles) de ácido nonanoico y 0,6 mi (0,0083 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000895 moles) de 2- amino-5-(4-hidroxi-3-metoxifen¡l)-1 , 3, 4 tiadiazol seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas, obteniendo el producto diacilado y posteriormente en un matraz fondo redondo secado previamente, se adicionan 0,3 g (0,0006 moles) de éste, seguido de 2ml de una solución de NaOH (30%) en 10ml de metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color blanco que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,185g de un sólido blanco en un rendimiento de 84,86%.
A/-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4-tiadiazol-2-¡l] nonanamida (b).
En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,011 moles) de ácido nonanoico y 0,6 mi (0,0083 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g
(0,000573 moles) de 5-(4-hidroxi-5-metoxi-3-yodofenil)-1 ,3,4 tiadiazol-2- amino seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color café que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,064g de un sólido café en un rendimiento de 22,85%.
N-[5-(4-hidroxi-3-metoxifenil)-1, 3, 4-tiadiazol-2-il] octanamida (c).
En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,013 moles) de ácido octanoico y 0,8 mi (0,011 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000895 moles) de 5-(4-hidroxi-3-metoxifenil)-1 , 3, 4 tiadiazol-2- amino seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color blanco que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0, 173g de un sólido blanco en un rendimiento de 55,27%.
/V-[5-(4-hidroxi-5-metox¡-3-yodofenil)-1, 3, 4-t¡adiazol-2-¡l] octanamida (d).
En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,013 moles) de ácido octanoico y 0,8 mi (0,01 1 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000573 moles) de 5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4 tiadiazol-2- amino seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color café que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,091g de un sólido café en un rendimiento de 33,46%.
W-[5-(4-hidroxi-3-metoxifenil)-1, 3, 4-tiadiazol-2-il] heptanamida (e).
En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,014 moles) de ácido heptanoico y 0,9 mi (0,012 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000895 moles) de 5-(4-hidroxi-3-metoxifenil)-1 ,3,4 tiadiazol-2- amino seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color blanco que es purificado por cromatografía en columna, utilizando como fase
móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,167g de un sólido blanco en un rendimiento de 55,48%. /V-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1, 3, 4-tiad¡azol-2-il] heptanamida (f).
En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,014 moles) de ácido heptanoico y 0,9 mi (0,012 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000573 moles) de 2- amino-5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4 tiadiazol seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color café que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,078g de un sólido café en un rendimiento de 29,55%.
/V-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4-tiadiazol-2-il] hexanamida (g).
En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,016 moles) de ácido hexanoico y 0,9 mi (0,012 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000895 moles) de 2- amino-5-(4-hidroxi-3-metoxifenil)-1 , 3, 4 tiadiazol seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el
residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color blanco que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,118g de un sólido blanco en un rendimiento de 41 ,1 1 %.
A/-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1, 3, 4-tiadiazol-2-il] hexanamida (h). En un matraz fondo redondo secado previamente, se adicionan 1 mi (0,016 moles) de ácido hexanoico y 0,9 mi (0,012 moles) de cloruro de tionilo, la mezcla se agita y refluye por 16 horas a 80°C. Posteriormente se deja enfriar a temperatura ambiente y bajo agitación vigorosa se adicionan rápidamente 0,2 g (0,000573 moles) de 2- amino-5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4 tiadiazol seguido de 2 mi de piridina. La mezcla de reacción se deja en agitación a temperatura ambiente por 2 horas y posteriormente la reacción se particiona entre una solución acuosa ácida y diclorometano, la fase orgánica se extrae y se lava con una solución de NaCI saturado, la fase orgánica se concentra y el residuo obtenido se hidroliza en una solución de NaOH (30%) en metanol por 3 horas a reflujo y bajo agitación. Una vez que la reacción alcanza la temperatura ambiente se acidifica hasta pH 4 con HCI 37%. Obteniendo un sólido color café que es purificado por cromatografía en columna, utilizando como fase móvil 20% acetato de etilo/hexano, finalmente el producto obtenido es cristalizado en metanol agua, obteniendo 0,058g de un sólido café en un rendimiento de 22,66%.
(2£)-1 -(4-bromofenil)-3-fenilprop-2-en-1 -ona (i)
En un matraz Erlenmeyer, se disuelven 2g (0,01 moles) de 4-bromo acetofenona y 1 ,02 mi (1 ,06 g; 0,01 moles) de benzaldehído en 30 mi de metanol. Bajo agitación en una placa agitadora se agregan gota a gota 2 mi de una solución acuosa de KOH 50% y la mezcla de reacción se agita por 18 horas a temperatura ambiente. Posteriormente se neutraliza a pH 7 con HCI
37% y se deja enfriar en un baño de hielo por 24 horas, formándose un precipitado amarrillo claro, el cual se filtra y lava con abundante agua destilada. El sólido se recristaliza en metanol, obteniendo 2,42 g del producto en un 84,32% de rendimiento.
(2£)-1-(4-bromofenil)-3-(4-metoxifenil) prop-2-en-1-ona (j)
En un matraz Erlenmeyer, se disuelven 2g (0,01 moles) de 4-bromo acetofenona y 1.22 mi (1 ,36 g; 0,01 moles) de anisaldehído. Bajo agitación en una placa agitadora se agregan gota a gota 2 mi de una solución acuosa de KOH 50% y la mezcla de reacción se agita por 18 horas a temperatura ambiente. Posteriormente se neutraliza a pH 7 con HCI 37% y se deja enfriar en un baño de hielo por 24 horas, formándose un precipitado amarrillo claro, el cual se filtra y lava con abundante agua destilada. El sólido se recristaliza en metanol, obteniendo 2,48 g (0,007 moles) del producto en un 78,2% de rendimiento.
(2£)-1-(4-Bromofenil)-3-(4-hidroxifen¡l) prop-2-en-1-ona (k)
En un matraz fondo redondo, se disuelven 2g (0,01 moles) de 4-bromo acetofenona y 1 ,22 g (0,01moles) de 4-hidroxibenzaldehído en 20 mi de etanol absoluto. Se adicionan 1 mi de H2S04 (c) y bajo agitación se refluye la mezcla de reacción a 60°C por 18 horas. Posteriormente se neutraliza a pH 7 con NaOH (c) y la fase orgánica es extraída con diclorometano y se concentra. El residuo se purifica por cromatografía en columna, utilizando como fase móvil 30% acetato de etilo/hexano, obteniendo 0,875 g (0,003moles) del producto puro como sólido amarillo en un 28,9% de rendimiento.
(2E)-1 -(4-bromofenil)-3-(4-h¡droxi-3-metoxifen¡l) prop-2-en-1 -ona (I)
En un matraz fondo redondo, se disuelven 2,58g (0,01 moles) de 4-bromo acetofenona y 2 g (0,01 moles) de 4-hidroxi-3-metoxibenzaldehído en 20 mi de etanol absoluto. Se adicionan 1 mi de H2SO4 (c) y bajo agitación se refluye la mezcla de reacción a 60°C por 18 horas. Posteriormente se neutraliza a pH 7 con NaOH (c) y la fase orgánica es extraída con diclorometano y concentra. El
residuo se purifica por cromatografía en columna, utilizando como fase móvil 30% acetato de etilo/hexano, obteniendo 0,789 g (0,002moles) del producto puro como un sólido naranjo, en un 18,2% de rendimiento. (1 E, 4£)-1 ,5-difenil penta-1 ,4-dien-3-ona (m)
En un matraz Erlenmeyer, se disuelven 2g (0,019 moles) de benzaldehído y 0,69 mi (0,55 g; 0,0095 moles) de acetona en 10 mi de metanol. Bajo agitación y gota a gota se adicionan 2 mi de una solución de KOH 40%, la cual terminada de agregar se deja la mezcla de reacción en agitación por 30 minutos adicionales a temperatura ambiente. Se forma un precipitado amarrillo, el cual se filtra y cristaliza en metanol. Se obtienen 4,23g (0,018 moles) de cristales amarillo en un 95,05 % de rendimiento.
(1E, 4£)-1 ,5-(4-hidroxifenil) penta-1 ,4-dien-3-ona (n)
En un matraz Erlenmeyer, se disuelven 2g (0,016 moles) de 4- hidroxibenzaldehído y 0,58 mi (0,46 g, 0,008 moles) de acetona en 10 mi de metanol. Bajo agitación y gota a gota se adicionan 2 mi de una solución de KOH 40%, la cual terminada de agregar se deja la mezcla de reacción en agitación por 30 minutos adicionales a temperatura ambiente. La reacción resultante se acidifica a pH 4 con HCI 37% y la fase orgánica se extrae con diclorometano y concentra. El residuo se cristaliza en metanol/agua tres veces, obteniendo 0,324g (0,001 moles) de producto como cristales naranjo claro en un 7,6% de rendimiento. (1 E, 4E)-1 ,5-(4-metoxifenil) penta-1 ,4-dien-3-ona (o)
En un matraz Erlenmeyer, se disuelven 2g (0,015 moles) de 4- metoxibenzaldehído y 0,53 mi (0,42 g; 0,0073 moles) de acetona en 10 mi de metanol. Bajo agitación y gota a gota se adicionan 2 mi de una solución de KOH 40%, la cual terminada de agregar se deja la mezcla de reacción en agitación por 30 minutos adicionales a temperatura ambiente. Se forma un precipitado amarrillo, el cual se filtra y cristaliza en metanol, obteniendo 2,52g (0,00086 moles) de cristales amarrillo en un 58,74% de rendimiento.
(2EJ-cloro-3-(4-hidroxifenil)-1 -fenilprop-2-en-1 -ona. (p)
En un matraz fondo redondo, se disuelven 2g (0,01 moles) de cloruro de fenacilo y 1 ,22 g (0,01 moles) de 4-hidroxibenzaldehído en 20 mi de etanol absoluto. Se adicionan 1 mi de H2S04 (c) y bajo agitación se refluye la mezcla de reacción a 60°C por 18 horas. Posteriormente se neutraliza a pH 7 con NaOH (c) y la fase orgánica es extraída con diclorometano y concentrada. El residuo se purifica por cromatografía en columna, utilizando como fase móvil 30% acetato de etilo/hexano, obteniendo 0,834 g (0,004 moles) del producto como sólido naranjo claro, en un 37,23% de rendimiento.
(2E cloro-3-(4-hidroxi-3-metoxifenil)-1 -fenil prop-2-en-1 -ona (q).
En un matraz fondo redondo, se disuelven 1 ,95g (0,01 moles) de cloruro de fenacilo y 2 g (0,01 moles) de 4-hidroxi-3-metoxibenzaldehído en 20 mi de etanol absoluto. Se adicionan 1 mi de H2S04 (c) y bajo agitación se refluye la mezcla de reacción a 60°C por 18 horas. Posteriormente se neutraliza a pH 7 con NaOH (c) y la fase orgánica es extraída con diclorometano y concentra. El residuo se purifica por cromatografía en columna, utilizando como fase móvil 30% acetato de etilo/hexano, obteniendo 0,796g (0,003moles) del producto como un sólido naranjo, en un 31 ,33% de rendimiento.
EJEMPLO N° 2: Caracterización de los compuestos Factor de Retención:
Se determina el factor de retención de los compuestos derivados vainilloides y chalconas purificados por cromatografía en columna o por cristalización, los respectivos valores se presentan en la Tabla 1 y 2, Tabla 1 : Factor de Retención (Rf) de derivados 1 , 3, 4-tiadiazol alquilamidas:
Tabla 2: Factor de Retención (Rf) de derivados de chalconas:
Espectros infrarrojos:
La caracterización mediante espectroscopia infrarroja (IR) se realizó mediante la identificación de las respectivas frecuencias de absorción para cada grupo funcional. En la Tabla 3 se presenta la caracterización, mediante espectroscopia IR de los compuestos derivados vainilloides de 1 , 3, 4-tiadiazol alquilamidas.
Tabla 3: Frecuencias de absorción (KBr) v cm'1 :
En la Tabla 4 se presentan las frecuencias de absorción de los compuestos derivados de chalconas o derivados carbonilo alfa, beta insaturados [i-q].
Tabla 4: Frecuencias de absorción (KBr) v cm
Resonancia magnética nuclear
Los espectros de resonancia magnética nuclear de 1H y 13C, de los compuestos fueron caracterizados, los desplazamientos químicos (ppm) de los grupos funcionales característicos para la estructura de los compuestos son mostrados en las Tablas 5 y 6, y en las Figuras 8 a 13 se muestran los espectros de resonancia de 1H y 13C para los compuestos [b], [e] y [I] con los respectivos desplazamientos químicos asignados para cada hidrógeno y carbono de la molécula.
Tabla 5: Desplazamientos químicos determinados para los derivados de 1 , 3, 4- tiadiazol alquilamidas.
C-Amida: 171.56 -(CH2)5CH3 1.20 (m, 6H), 1 .50-1.56 (m, 2H), 2.40- C-Heterociclo: 160.48. 157.91 R1-l 2.43 (t, J=7.5Hz, 2H).
C- Alifático: 34.89. 30.95. 28.19. (f) H-Hidroxilo: 10.13 (s)
24.60, 21.97, 13.95 H-Amida: 12.51 ís. NHV
H-Alifático: 0.82-0.86 ft. J=6.8 Hz.
C-Amida: 171.46
R-(CH2)4CH3 3H), 1.24-1.26 (m, 4H), 1.55-1.62 (m,
C-Heterociclo: 161.98. 157.47 R1-H 2H . 2.43-2.47 (t. J=7.5 Hz. 2 )
C-Alifático: 34.83. 30.72. 24.32.
(g) H-Hidroxilo: 9.66 (s)
21.83, 13.83
H-Amida: 12.49 (s. ΝΗΪ.
H-Alifático: 0.72-0.74 (t J= 6.8Hz.
C-Amida: 171.54
R-(CH2)4CH3 3H), 1.15-1.18 (m, 4H), 1.47-1.52 (m,
C-Heterociclo: 160.47. 157.74 R1-l 2H). 2.34-2.37 ít. J=7.4Hz. 2H)
C-Alifático: 34.86. 30.74. 24.34. (h) H-Hidroxilo: 10.07 is)
21.86, 13.85
H-Amida: 12.45 (s. NH .
Tabla 6: Desplazamientos químicos determinados para los derivados de chalconas.
Ejemplo N° 3: Caracterización Fisiológica
Ensayos Biológicos
Los compuestos sintetizados fueron evaluados en cultivos de células HEK- 293T transfectadas con el cDNA del receptor TRPV-1 de rata. La actividad de
los compuestos estuvo basada en el mecanismo de activación del receptor TRPV-1 por capsaicina y temperatura, los cuales aumentan los niveles de calcio intracelular como consecuencia de la apertura del canal iónico del receptor, el influjo de calcio fue medido con una sonda fluorescente Fluo 4-AM, así en presencia de un antagonista el influjo de calcio es bloqueado por inactivación del receptor TRPV-1 y la fluorescencia celular disminuye.
Cultivo celular.
Células HEK-293T fueron cultivadas en un medio DMEM suplementado con 5% of suero bovino fetal, 50U/ml penicilina, 50mg/ml estreptomicina y 2mM L- glutamina. Los cultivos se mantuvieron a 37°, en un ambiente de 5% CO2 y 80% de humedad relativa.
Transfección DNA
Las células HEK-293T fueron transfectadas con pcDNA3 TRPV-1 de rata, en un tubo de reacción fueron agregados 97μί de optimem y 3pL de lipofectamina 2000, y en un segundo tubo fue adicionado 1 g de DNA y un volumen de optimen, tal de completar 100μί. Ambos tubos fueron incubados por 10 minutos, tras lo cual fueron mezclados e incubados por 15 minutos adicionales.
Soluciones de los compuestos ensayados.
Los compuestos destinados para los ensayos de tamizaje sobre receptores TRPV-1 fueron preparados en una solución madre de 10.000X en DMSO, etanol o ¡sopropanol y posteriormente para el ensayo fueron diluidos en medio Ringer hasta una concentración de 1 μΜ.
Como controles se utilizaron soluciones de capsaicina, BCTC, Lantano, Rojo de Rutenio a concentraciones finales de 0,031 μΜ, 1 μΜ, 100 μΜ y 10 μΜ, respectivamente.
Tratamiento con FLUO-4AM
Después de 48 horas de transfección las células fueron tratadas con 200 pL de tripsina, se dejo incubar por 5 minutos a temperatura ambiente, luego las
células fueron suavemente pipeteadas y transpasadas a un tubo de 15mL Se centrifugo a una velocidad de 6000 rpm por 10 min. y se resuspendieron en 1 mi de medio Ringer, luego se agregó 1 μΙ Fluo-4AM 1000X y se incubó por media hora a 37°C. Posteriormente, se centrifugó y se lavó con PBS 1X, pH 7,34 para eliminar el exceso de la sonda. Finalmente el pellet de células se resuspendió en 1 ,5 mi de medio Ringer.
Ensayo de activación del receptor TRPV-1 por capsaicina.
En placas de 48 pocilios las células HEK 293T transfectadas con el receptor TRPV-1 de rata y cargadas con Fluo-4 AM, fueron plaqueadas a una densidad celular de 50,000 células por pocilio, con un porcentaje de transfección 40- 50%. Seguido de la adición de 2 L/pocillo de cada compuesto a ensayar y 2pl/pocillo de una solución de capsaicina 0,031 μΜ en 0,1 % de etanol. Por un periodo de 2-5 minutos a temperatura ambiente se dejaron incubar las células para posteriormente hacer las mediciones de fluorescencia, las cuales se efectuaron antes de la adición de capsaicina y después de adicionar capsaicina. Las medidas de fluorescencia se llevaron a cabo en un equipo de PCR en tiempo real, donde las mediciones de fluorescencia a 25°C se realizaron en 13 ciclos, cada 10 segundos. Los datos normalizados fueron expresados como cambios de fluorescencia en respuesta a la capsaicina en el tiempo, lo que se muestra en las Figuras 14 a 17. Se grafican los valores promedio ± la desviación estándar, que resultaron de la realización de dos experimentos independientes.
Ensayo de activación del receptor TRPV-1 por temperatura
En placas de 48 pocilios, las células HEK 293T transfectadas con el receptor TRPV-1 de rata y cargadas con Fluo-4AM, fueron plaqueadas a una densidad celular de 50,000 células por pocilio, con un porcentaje de transfección 40- 50%. Seguido de la adición de 2 plJpocillo de cada compuesto a ensayar y por un periodo de 5-10 minutos a temperatura ambiente se dejaron incubar las células antes de la realización del experimento por temperatura. Posteriormente se procedió a hacer lectura de las medidas de fluorescencia en
un equipo de PCR en tiempo real, el cual permite incrementar 1 °C cada 35 segundos desde 36°C hasta 55°C para los compuestos y desde 22-56 °C para las células transfectadas en ausencia de los compuestos. La lectura de las medidas de fluorescencia se realizó, utilizando el filtro FAM (483-533nM). Los datos de fluorescencia obtenidos para cada temperatura y cada compuesto, se presentan corregidos restando el fondo celular y la línea base correspondiente a la fluorescencia al inicio de la rampa (22 o 36°C) para cada muestra. Posteriormente los valores se normalizaron expresando los datos como fluorescencia relativa, que corresponde a la razón entre el cambio de fluorescencia y la línea base. Los resultados se graficaron en las Figuras 18 a 21 como el promedio ± desviación estándar, obtenidos en dos experimentos independientes a una temperatura de 54° C.
Curva Dosis Respuesta.
Se realiza un ensayo de activación del receptor TRPV-1 por temperatura, incubando las células HEK-293T transfectadas y cargadas con Fluo-4AM, en presencia de diferentes concentraciones de cada compuesto a ensayar correspondientes a 1 μΜ; 0,1 μ ; 0,01 μΜ; 0,003 μΜ; 0,001 μΜ; 0,0003 μΜ, 0,0001 μΜ y 0,00001 μΜ. Posteriormente los datos de fluorescencia relativa obtenidos a 50°C fueron utilizados para calcular la razón de fluorescencia, la cual se presenta normalizada con respecto a la fluorescencia relativa a la concentración inicial. De este modo la razón de fluorescencia obtenida para dos experimentos independientes fue promediada y expresada junto a la respectiva desviación estándar.
En las Figuras 22 y 23 se presentan las curvas dosis respuesta, en las cuales la razón de fluorescencia versus logaritmo molar de concentración se ajustaron a una curva sigmoidea de inhibición de 4 parámetros, determinando los respectivos valores correspondientes a la mitad de la máxima concentración
inhibitoria (IC50) para cada uno de los compuestos evaluados. Estos valores son mostrados en las Tabla 7 y 8 de los dos grupos de compuestos.
Tabla 7: Valores IC50, de los compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y el antagonista control BCTC.
Tabla 8: Valores IC50, de los compuestos derivados de chalconas, o derivados alfa, beta carbonilo insaturados y el antagonista control BCTC.
Claims
1. - Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas CARACTERIZADOS por que inhiben la activación del receptor TRPV-1.
2. - Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas, según reivindicación 1 , CARACTERIZADOS por que inhiben la activación del receptor TRPV-1 por capsaicina y temperatura.
3.- Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas, según reivindicación 1 , CARACTERIZADOS por que en su estructura R, corresponde a una cadena alquílica saturada definida por cadenas lineales saturadas de 6 a 8 carbonos y X es definido como un átomo de H o un átomo de yodo.
4.- Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas, según reivindicación 1 , CARACTERIZADOS por que son obtenidos mediante reacción de O-acilación, condensación de aminas, ciclación oxidativa de tiosemicarbazonas, reacción de N- acilación e hidrólisis alcalina.
5.- Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas, según reivindicación 1 , CARACTERIZADOS por que corresponden específicamente a los siguientes compuestos:
a) N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-nonamida, b) N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-nonamida,
c) N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-octanamida, d) N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-octanamida, e) N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-heptanamida, f) N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-heptanamida, g) N-[5-(4-hidroxi-5-metoxi-3-yodofenil)-1 , 3, 4- tiadiazol-2-il]-hexanamida, y h) N-[5-(4-hidroxi-3-metoxifenil)-1 , 3, 4- tiadiazol-2-il]-hexanamida.
6.- Compuestos derivados de chalconas CARACTERIZADOS por que inhiben la activación del receptor TRPV-1.
7.- Compuestos derivados de chalconas, según reivindicación 6, CARACTERIZADOS por que inhiben la activación del receptor TRPV-1 por capsaicina y temperatura.
8. - Compuestos derivados de chalconas, según reivindicación 6, CARACTERIZADOS por que en su estructura R puede corresponder a diferentes grupos sustituyentes, tales como
R1 : hidrógeno, un grupo metoxilo o un grupo hidroxilo;
R2: hidrógeno o un grupo metoxilo;
R3: hidrógeno o un grupo cloro;
R4: hidrógeno o un grupo bromo; y
R5: hidrógeno, un grupo metoxilo o un grupo hidroxilo.
9. - Compuestos derivados de chalconas, según reivindicación 6, CARACTERIZADOS por que el método para su síntesis consistió en la aplicación de la condensación de Claisen-Schmidt entre diferentes benzaldehídos y acetofenonas.
10. - Compuestos derivados de chalconas, según reivindicación 6, CARACTERIZADOS por que corresponden específicamente a los siguientes compuestos:
a) (2£)-1-(4-bromodifenil)-3-fenilprop-2-en-1-ona,
b) (2EJ-1 -(4-bromodifen¡l)-3-(4-metoxifenil)prop-2-en-1 -ona,
c) C2E -1-(4-bromodifenil)-3-(4-hidroxifenil)prop-2-en-1-ona,
d) (2Ε)-λ -(4-bromodifenil)-3-(4-hidroxi-3-metoxifenil)prop-2-en-1 -ona, e) (1E, 4E)-1 ,5-difenilpenta-1 ,4-dien-3-ona,
f) (1E, 4E 1 ,5-(4-hidroxidifenil)penta-1 ,4-dien-3-ona,
g) (1E, 4E 1 ,5-(4-metoxidifenil)penta-1 ,4-dien-3-ona,
h) (2E -2cloro-3-(4-hidroxifenil)-1-fenilprop-2-en-1 -ona,
i) (2E)-2 cloro-3-(4-hidroxi-3-metoxifenil)-1-fenilprop-2-en-1-ona.
1 1. - Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y chalconas, según reivindicaciones 1 y 6, CARACTERIZADOS por que presentan una potente actividad antagonista para el modo de activación del receptor TRPV-1 por capsaicina y por temperatura.
12. - Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y chalconas, según reivindicaciones 1 y 6, CARACTERIZADOS por que presentan una actividad antagonista en el orden nanomolar, con rangos de IC50 entre 0.04-1.2 nM,
13. - Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y chalconas, según reivindicaciones 1 y 6, CARACTERIZADOS por que presentan un modo distinto de unión en el sitio ortostérico del receptor TRPV-1 , que contribuye en el aumento de la actividad antagonista.
14. - Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y chalconas, según reivindicaciones 1 y 6, CARACTERIZADOS por que exhiben actividad antagonista en receptores TRPV-1 con alta restricción conformacional, que es regulada a través del reemplazo isostérico del grupo amida presente en análogos de capsaicina por el heterociclo 1 , 3, 4-tiadiazol, y a través del doble enlace insaturado y la eliminación de los grupos espaciadores, en las chalconas.
15.- Compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y chalconas, según reivindicaciones 1 y 6, CARACTERIZADOS por que la restricción
conformacional impuesta permite estabilizar el estado conformacional del receptor TRPV-1 responsable de su inactivación.
16.- Uso de compuestos derivados de 1 , 3, 4-tiadiazol alquilamidas y chalconas, según reivindicaciones 1 y 6, CARACTERIZADOS por que se utilizan para la elaboración de un medicamento para tratar enfermedades en las que el receptor TRPV-1 se encuentre sobreactivado, como por ejemplo el dolor crónico.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/646,655 US20160039778A1 (en) | 2012-11-22 | 2013-11-21 | Trpv-1 receptor antagonist compound derived from 1,3,4-thiadiazole alkylamides and chalcones |
EP13857010.6A EP2924028A4 (en) | 2012-11-22 | 2013-11-21 | TRPV-1 RECEPTOR ANTAGONIST COMPOUND, 1,3,4-TIADIAZOLE ALKYLAMIDE AND CHALCONES DERIVATIVES |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL3253-2012 | 2012-11-22 | ||
CL2012003253A CL2012003253A1 (es) | 2012-11-22 | 2012-11-22 | Compuestos derivados de 1,3,4-tiadiazol alquilamidas y de chalconas, antagonistas del receptor trpv-1; uso de los compuestos para tratar el dolor cronico. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014078971A1 true WO2014078971A1 (es) | 2014-05-30 |
Family
ID=50775362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2013/000085 WO2014078971A1 (es) | 2012-11-22 | 2013-11-21 | Compuesto antagonista del receptor trpv-1, derivados de 1,3,4-tiadiazol alquilamidas y de chalconas |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160039778A1 (es) |
EP (1) | EP2924028A4 (es) |
CL (1) | CL2012003253A1 (es) |
WO (1) | WO2014078971A1 (es) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112694392B (zh) * | 2020-12-21 | 2022-11-22 | 青岛大学 | 一种trpv3抑制剂及其制备方法 |
CN115105503B (zh) * | 2022-07-20 | 2023-05-23 | 河南大学 | 一种trpv1拮抗/cox抑制双靶点药物或其药学上可接受的盐、药物制剂和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0371438A2 (en) * | 1988-11-29 | 1990-06-06 | Warner-Lambert Company | 3,5-Di-tertiary-butyl-4-hydroxyphenyl-1,3,4-thiadiazoles, and oxadiazoles and 3,5-di-tertiary-butyl-4-hydroxiphenyl- 1,2,4-thiadiazoles, -oxadiazoles as antiinflammatory agents |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2004135386A (ru) * | 2002-05-06 | 2005-07-20 | Вертекс Фармасьютикалз Инкорпорейтед (Us) | Тиадиазолы или оксадиазолы и их применение в качестве ингибиторов протеинкиназы jak |
WO2008007780A1 (fr) * | 2006-07-13 | 2008-01-17 | Kyowa Hakko Kirin Co., Ltd. | Dérivé du pentadiènamide |
WO2009090548A2 (en) * | 2008-01-17 | 2009-07-23 | Glenmark Pharmaceuticals, S.A. | 3-azabicyclo [3.1.0] hexane derivatives as vanilloid receptor ligands |
US9096558B2 (en) * | 2010-07-09 | 2015-08-04 | Pfizer Limited | N-sulfonylbenzamide compounds |
-
2012
- 2012-11-22 CL CL2012003253A patent/CL2012003253A1/es unknown
-
2013
- 2013-11-21 US US14/646,655 patent/US20160039778A1/en not_active Abandoned
- 2013-11-21 WO PCT/CL2013/000085 patent/WO2014078971A1/es active Application Filing
- 2013-11-21 EP EP13857010.6A patent/EP2924028A4/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0371438A2 (en) * | 1988-11-29 | 1990-06-06 | Warner-Lambert Company | 3,5-Di-tertiary-butyl-4-hydroxyphenyl-1,3,4-thiadiazoles, and oxadiazoles and 3,5-di-tertiary-butyl-4-hydroxiphenyl- 1,2,4-thiadiazoles, -oxadiazoles as antiinflammatory agents |
Non-Patent Citations (52)
Title |
---|
ANDRES JARA-OSEGUERA; ANDRES NIETO-POSADAS; ARPAD SZALLASI; LEON D. ISLAS; TAMARA ROSENBAUM: "Molecular Mechanisms of TRPV1 Channel Activation", THE OPEN PAIN JOURNAL, vol. 3, 2010, pages 68 - 81 |
ANDRES JARA-OSEGUERA; SIDNEY A. SIMON; TAMARA ROSENBAUM: "TRPV 1: on the road to pain relief", CURR MOL PHARMACOL., vol. 1, 2008, pages 255 - 269 |
ANGEL MESSEGUER; ROSA PLANELLS-CASES; ANTONIO FERRER-MONTIEL: "Physiology amd Pharmacology of the Vanilloid Receptor", CURRENT NEUROPHARMACOLOGY, vol. 4, 2006, pages 1 - 15 |
BERND NILIUS; GRZEGORZ OWSIANIK; THOMAS VOETS; JOHN A. PETERS: "Transient Receptor Potential Cation Channels in Disease", PHYSIOLOGY REVIEW, vol. 87, 2007, pages 165 - 217, XP008116003, DOI: doi:10.1152/physrev.00021.2006 |
BIN SHAO; JINCHENG HUANG; QUN SUN; KENNETH J. VALENZANO; LORI SCHMID; SCOTT NOLAN: "4-(2-Pyridyl) piperazine-1-benzimidazoles as potent TRPV1 antagonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 15, 2005, pages 719 - 723 |
BRIAN S. BROWN; RYAN KEDDY; GUO ZHU ZHENG; ROBERT G. SCHMIDT ET AL.: "Tetrahydropyridine-4-carboxamides as novel, potent transient receptor potential vanilloid 1 (TRPV1) antagonists", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 16, 2008, pages 8516 - 8525, XP025427645, DOI: doi:10.1016/j.bmc.2008.08.005 |
CHRISTOPHER S. J. WALPOLE; STUART BEVAN; GRAHAM BLOOMFIELD; ROBIN BRECKENRIDGE; IAN F. JAMES; TIMOTHY RITCHIE; ARPAD SZALLAZI; JAN: "Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 2. The amide bond ''B-region", JOURNAL OF MEDICINAL CHEMISTRY, vol. 36, 1993, pages 2373 - 2380, XP001145824, DOI: doi:10.1021/jm00068a015 |
CRAIG C. CORRELLA; P. TARA PHELPSA; JOHN C. ANTHESA; SHELBY UMLANDB; SCOTT GREENFEDER: "Cloning and pharmacological characterization of mouse TRPV1", NEUROSCIENCE LETTERS, vol. 370, 2004, pages 55 - 60 |
DEREK S. REUBISH; DANIEL E. EMERLING; JEFF DEFALCO; DANIEL STEIGER; CHERYL L. VICTORIA; FABIEN VINCENT: "Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine", SHORT TECHNICAL REPORTS, vol. 47, 2009, pages 3 - 9 |
DONG WOOK KANG; YONG SOO KIM; KWANG SU LIM; MYEONG SEOP KIM; LARRY V. PEARCE: "Halogenation of 4-hydroxy/amino-3-methoxyphenyl acetamide TRPV1 agonists showed enhanced antagonism to capsaicin", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 18, 2010, pages 8092 - 8105, XP027452474, DOI: doi:10.1016/j.bmc.2010.09.001 |
ELIZABETH M. DOHERTY; CHRISTOPHER FOTSCH; YUNXIN BO; PARTHA P: "Discovery of Potent, Orally Available Vanilloid Receptor-1 Antagonists. Structure-Activity Relationship of N-Aryl Cinnamides", JOURNAL OF MEDICINAL CHEMISTRY, vol. 48, 2005, pages 71 - 90, XP002408838, DOI: doi:10.1021/jm049485i |
ENZA PALAZZO; LIVIO LUONGO; VITO DE NOVELLIS; LIBERATO BERRINO: "Francesco Rossi and Sabatino Maione. Moving towards supraspinal TRPV1 receptors for chronic pain relief", MOLECULAR PAIN, vol. 6, 2010, pages 1 - 11 |
GILBERT Y WONGA,1; NARENDER R. GAVVA: "Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks", BRAIN RESEARCH REVIEWS, vol. 60, 2009, pages 267 - 277, XP026066401, DOI: doi:10.1016/j.brainresrev.2008.12.006 |
GILBERT Y. WONGA; NARENDER R. GAVVA: "Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks", BRAIN RESEARCH REVIEWS, vol. 60, 2009, pages 267 - 277, XP026066401, DOI: doi:10.1016/j.brainresrev.2008.12.006 |
GIOVANNI APPENDINO; NIVES DADDARIO; ALBERTO MINASSI; ANIELLO; SCHIANO MORIELLO; LUCIANO DE PETROCELLIS; VINCENZO DI MARZO: "The Taming of Capsaicin. Reversal of the Vanilloid Activity of N-Acylvanillamines by Aromatic lodination", JOURNAL OF MEDICINAL CHEMISTRY, vol. 48, 2005, pages 4663 - 4669, XP003020485, DOI: doi:10.1021/jm050139q |
GOWRAMMA, B ET AL.: "Synthesis of 2-[(bis(2-chloroethyl)amino) acetamido]-5-substituted-1,3,4-thiadiazoles as possible alkylating anticancer agents.", ASIAN JOURNAL OF CHEMISTRY, vol. 18, no. 4., 2006, pages 2705 - 2711, XP055258412 * |
HOLZER, P.: "Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons", PHARMACOLOGICAL REVIEWS, vol. 43, 1991, pages 143 - 201 |
IRENE DRIZIN; ARTHUR GOMTSYAN; EROL K. BAYBURT; ROBERT G. SCHMIDT; GUO ZHU ZHENG: "Structure-activity studies of a novel series of 5, 6-fused heteroaromatic ureas as TRPV1 antagonists", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 14, 2006, pages 4740 - 4749 |
JEEWOO LEE; MI-KYOUNG JIN; SANG-UK KANG: "Analysis of structure-activity relationships for the 'A-region' of N-(4-t-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl]thiourea analogues as TRPV1 antagonists", JOURNAL BIOORGANIC AND MEDICINAL CHEMISTRY, vol. 15, 2005, pages 4136 - 4142 |
JIN HEE LEE; YOONJI LEE; HYUNGCHUL RYU; DONG WOOK KANG; JEEWOO LEE; JOZSEF LAZAR; LARRY V. PEARCE; VLADIMIR A. PAVLYUKOVETS; PETER: "Structural insights into transient receptor potential vanilloide type 1 (TRPV1) from homology modeling, flexible docking and mutational studies", J COMPUT AIDED MOL DES, vol. 25, 2011, pages 317 - 327, XP019902479, DOI: doi:10.1007/s10822-011-9421-5 |
JORIS VRIENS; GIOVANNI APPENDINO; BERND NILIUS: "Pharmacology of Vanilloid Transient Receptor Potential Cation Channels", MOLECULAR PHARMACOLOGY, vol. 75, 2009, pages 1262 - 1279, XP055200762, DOI: doi:10.1124/mol.109.055624 |
JURGEN SANDKUHLER: "Models and Mechanisms of Hyperalgesia and Allodynia", PHYSIOLOGY REVIEW, vol. 89, 2009, pages 707 - 758 |
KENDALL MITCHELL; BRIAN D BATES; JASON M KELLER; MATTHEW LOPEZ; LINDSEY SCHOLL; JULIA NAVARRO; NICHOLAS MADIAN; GAL HASPEL; MICHAE: "Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates", MOLECULAR PAIN, vol. 6, 2010, pages 1 - 13 |
KEVIN J. HODGETTS; CHARLES A. BLUM; TIMOTHY CALDWELL; RAJAGOPAL BAKTHAVATCHALAM; XIAOZHANG ZHENG ET AL.: "Pyrido[2,3-b]pyrazines, discovery of TRPV1 antagonists with reduced potential for the formation of reactive metabolites", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 20, 2010, pages 4359 - 4363, XP028851669, DOI: doi:10.1016/j.bmcl.2010.06.069 |
KHADIJA ALAWI; JULIE KEEBLE: "The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation", PHARMACOLOGY & THERAPEUTICS, vol. 125, 2010, pages 181 - 195, XP026894624, DOI: doi:10.1016/j.pharmthera.2009.10.005 |
KWANG SU LIM; DONG WOOK KANG; YONG SOO KIM; MYEONG SEOP KIM; SEUL-GI PARK; SUN CHOI; LARRY V. PEARCE; PETER M. BLUMBERG; JEEWOO LE: "Receptor activity and conformational analysis of 5-halogenatedresiniferatoxin analogs as TRPV1 ligands", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 21, 2011, pages 299 - 302 |
LORNA MASON; R. ANDREW MOORE; SHEENA DERRY; JAYNE E. EDWARDS; HENRY J. MCQUAY: "Systematic review of topical capsaicin for the treatment of chronic pain", BMJ, vol. 328, 2004, pages 991 - 994 |
LOUISE A. ROBERTS; MARK CONNOR: "TRPV1 Antagonists as a Potential Treatment for Hyperalgesia", RECENT PATENTS ON CNS DRUG DISCOVERY, vol. 1, 2006, pages 65 - 76 |
LU YU1; FEI YANG1; HAO LUO1; FENG-YU LIU1; JI-SHENG HAN1,2,3; GUO-GANG XING*1,2; YOU WAN: "The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant", MOLECULAR PAIN, vol. 4, 2008, pages 1 - 10 |
M. J. CATERINA; A. LEFFLER; A. B. MALMBERG; W. J. MARTIN: "Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor", SCIENCE, vol. 288, 2000, pages 306 - 313 |
MARCELLO TREVISANI; ARPAD SZALLASI: "Targeting TRPV1: Challenges and Issues in Pain Management", THE OPEN DRUG DISCOVERY JOURNAL, vol. 2, 2010, pages 37 - 49 |
MARGARET Z. CHOU; TECLA MTUI; YING-DUO GAO; MARTIN KOHLER; RICHARD E. MIDDLETON: "Resiniferatoxin Binds to the Capsaicin Receptor (TRPV1) near the Extracellular Side of the S4 Transmembrane Domain", BIOCHEMISTRY, vol. 43, 2004, pages 2501 - 2511 |
MARGIT WINKLER; THOMAS MORAUX; HESHAM A. KHAIRY ET AL.: "Synthesis and Vanilloid Receptor (TRPV-1) Activity of the Enantiomers of a-Fluorinated Capsaicin", CHEMBIOCHEM, vol. 10, 2009, pages 823 - 828 |
MARIO VAN DER STELT; VINCENZO DI MARZO: "Endovanilloids Putative endogenous ligands of transient receptor potential vanilloid 1 channels", EUR. J. BIOCHEM., vol. 271, 2004, pages 1827 - 1834 |
MARK H. NORMAN; JIAWANG ZHU; CHRISTOPHER FOTSCH; YUNXIN BO; NING CHEN; PARTHA CHAKRABARTI; ELIZABETH M. DOHERTY: "Novel vanilloid receptor-1 antagonists: 1. Conformationally restricted analogues of trans-cinnamides", JOURNAL OF MEDICINAL CHEMISTRY, vol. 50, 2007, pages 3497 - 3514, XP055167470, DOI: doi:10.1021/jm070189q |
MICHAEL J. CATERINA; MARK A. SCHUMACHER; MAKOTO TOMINAGA; TOBIAS A. ROSEN; JON D. LEVINE; DAVID JULIUS: "The capsaicin receptor: a heat-activated ion channel in the pain pathway", NATURE, vol. 389, 1997, pages 816 - 824 |
MICHELE C. JETTER; JAMES J. MCNALLY; MARK A. YOUNGMAN; MARK E. MCDONNELL: "N -Pyridin-3-yl-and N -quinolin-3-yl-benzamides: Modulators of Human Vanilloid Receptor 1 (TRPV1", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, 2008, pages 2730 - 2734 |
NARENDER R. GAVVA; LANA KLIONSKY; YUSHENG QU; LICHENG SHI; RAMI TAMIR; STEVE EDENSON; T. J. ZHANG; VELLARKAD N. VISWANADHAN; ATTIL: "Molecular Determinants of Vanilloid Sensitivity in TRPV1", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, 2004, pages 20283 - 20295 |
NATALIE A. HAWRYLUK; JEFFREY E. MERIT; ALEC D. LEBSACK; BRYAN J. BRANSTETTER; MICHAEL D. HACK: "Discovery and synthesis of 6, 7, 8, 9-tetrahydro-5H-pyrimido-[4,5-d]azepines as novel TRPV1 antagonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 20, 2010, pages 7137 - 7141, XP027459374, DOI: doi:10.1016/j.bmcl.2010.09.023 |
NING XI; YUNXIN BO; ELIZABETH M. DOHERTY; CHRISTOPHER FOTSCH: "Synthesis and evaluation of thiazole carboxamides as vanilloid receptor 1 (TRPV1) antagonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 15, 2005, pages 5211 - 5217 |
NURIA TAMAYO; HONGYU LIAO; MARKIAN M. STEC; XIANGHONG WANG: "Design and Synthesis of Peripherally Restricted Transient Receptor Potential Vanilloid 1 (TRPV 1) Antagonists", JOURNAL OF MEDICINAL CHEMISTRY, vol. 51, 2008, pages 2744 - 2757 |
PATRICIA A. KOPLAS; ROBERT L. ROSENBERG; GERRY S. OXFORD: "The Role of Calcium in the Desensitization of Capsaicin Responses in Rat Dorsal Root Ganglion Neurons", THE JOURNAL OF NEUROSCIENCE, vol. 173, 1997, pages 525 - 3537 |
QUN SUN; LAYKEA TAFESSE; KHONDAKER ISLAM: "4-(2-Pyridyl)piperazine-1-carboxamides: Potent Vanilloid Receptor 1 Antagonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 13, 2003, pages 3611 - 3616 |
RAMON LATORRE; CRISTIAN ZAELZER; SEBASTIAN BRAUCHI: "Structure-functional intimacies of transient receptor potential channels", QUARTERLY REVIEWS OF BIOPHYSICS, vol. 42, 2009, pages 201 - 246 |
REBOLLEDO C L ET AL.: "Design and synthesis of conformationally restricted capsaicin analogues based in the 1, 3, 4-thiadiazole heterocycle reveal a novel family of transient receptor potential vanilloid 1 (TRPV1) antagonists.", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 66, 2013, pages 193 - 203, XP028685906 * |
RICHARD J. PERNER; JOHN R. KOENIG; STANLEY DIDOMENICO; ARTHUR GOMTSYAN: "Synthesis and biological evaluation of 5-substituted and 4, 5-disubstituted-2-arylamino oxazole TRPV1 antagonists", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 18, 2010, pages 4821 - 4829, XP027083670 |
RONALD PALIN; LYNN ABERNETHY; NASRIN ANSARI; KENNETH CAMERON; TOM CLARKSON; MAUREEN DEMPSTER: "Structure-activity studies of a novel series of isoxazole-3-carboxamide derivatives as TRPV1 antagonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 21, 2011, pages 892 - 898, XP055137875, DOI: doi:10.1016/j.bmcl.2010.12.092 |
ROSA PLANELLS-CASES; CAROLINA GARCIA-MARTINEZI; MIRIAM ROYO; ENRIQUE PEREZ-PAYA; CRISTINA CARRENO; FERNANDO ALBERICIO; ANGEL MESSE: "Small molecules targeting the vanilloid receptor complex as drugs for inflammatory pain", DRUGS OF THE FUTURE, vol. 28, 2003, pages 1 - 28 |
See also references of EP2924028A4 * |
SVEN-ERIC JORDT; DAVID JULIUS: "Molecular Basis for Species-Specific Sensitivity to ''Hot'' Chili Peppers", CELL, vol. 108, 2002, pages 421 - 430, XP002990728, DOI: doi:10.1016/S0092-8674(02)00637-2 |
VASSIL . OGNYANOV; CHENERA BALAN; ANTHONY W. BANNON: "Design of Potent, Orally Available Antagonists of the Transient Receptor Potential Vanilloid 1. Structure-Activity Relationships of 2-Piperazin-1-yl-1 H-benzimidazoles", JOURNAL MEDICINAL CHEMISTRY, vol. 49, 2006, pages 3719 - 3742 |
YOUNG-GER SUH; YONG-SIL LEE; KYUNG-HOON MIN; OK-HUI PARK; JIN-KWAN KIM; HO-SUN SEUNG; SEUNG-YONG SEO; BO-YOUNG LEE; YEON-HEE NAM: "Novel Potent Antagonists of Transient Receptor Potential Channel, Vanilloid Subfamily Member 1: Structure-Activity Relationship of 1,3-Diarylalkyl Thioureas Possessing New Vanilloid Equivalents", JOURNAL OF MEDICINAL CHEMISTRY, vol. 48, no. 18, 2005, pages 5823 - 5836, XP009056086, DOI: doi:10.1021/jm0502790 |
Also Published As
Publication number | Publication date |
---|---|
US20160039778A1 (en) | 2016-02-11 |
CL2012003253A1 (es) | 2013-01-11 |
EP2924028A1 (en) | 2015-09-30 |
EP2924028A4 (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
El-Naggar et al. | Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2 | |
Zhang et al. | Synthesis, biological evaluation, and molecular docking studies of novel 1, 3, 4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity | |
US8420664B2 (en) | A3 adenosine receptor allosteric modulators | |
Rooney et al. | Discovery, optimization, and biological evaluation of 5-(2-(trifluoromethyl) phenyl) indazoles as a novel class of transient receptor potential A1 (TRPA1) antagonists | |
ES2382876T3 (es) | Compuestos de ariloxi-N-biciclometil-acetamida sustituidos como antagonistas de VR1 | |
JP7390415B2 (ja) | ニューロキニン-1受容体アンタゴニストとしての化合物およびその使用 | |
WO2019226991A1 (en) | Androgen receptor modulators and methods for their use | |
TWI828644B (zh) | 微管蛋白抑制劑 | |
BR112013002164B1 (pt) | Inibidores de desmetilase à base de arilciclopropilamina de lsd1, seus usos, e composição farmacêutica | |
BR112014020773A2 (pt) | compostos de sulfonamida e seus usos como inibidores tnap | |
Tang et al. | Design, synthesis and evaluation of 6-aryl-indenoisoquinolone derivatives dual targeting ERα and VEGFR-2 as anti-breast cancer agents | |
JP2023520872A (ja) | ピラゾリルプロパンアミド化合物およびその前立腺がんを処置するための使用 | |
Szczęśniak-Sięga et al. | Synthesis and pharmacological evaluation of novel arylpiperazine oxicams derivatives as potent analgesics without ulcerogenicity | |
WO2012112670A1 (en) | Novel lipogenic inhibitors and uses thereof | |
JP7018514B2 (ja) | 化合物及びその薬学での応用 | |
JPWO2005079845A1 (ja) | 片頭痛予防薬 | |
WO2014078971A1 (es) | Compuesto antagonista del receptor trpv-1, derivados de 1,3,4-tiadiazol alquilamidas y de chalconas | |
JP2016519662A (ja) | K2pチャネルの調節 | |
JP2021519797A (ja) | 腎傷害を治療するための組成物および方法 | |
Pericherla et al. | Chemical modifications of nimesulide | |
WO2018189679A1 (en) | Isoindoline derivatives for use as ampk activators | |
Xin et al. | Discovery of Novel ERα and Aromatase Dual-Targeting PROTAC Degraders to Overcome Endocrine-Resistant Breast Cancer | |
Naser et al. | Synthesis and preliminary pharmacological evaluation of new analogues of diclofenac as potential anti-inflammatory agents | |
JP5302214B2 (ja) | Trpv1受容体拮抗薬としてのo−置換ジベンジル尿素誘導体 | |
WO2013148994A1 (en) | Glucose transporter inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13857010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013857010 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013857010 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14646655 Country of ref document: US |