WO2014076240A1 - Composition lubrifiante - Google Patents

Composition lubrifiante Download PDF

Info

Publication number
WO2014076240A1
WO2014076240A1 PCT/EP2013/073951 EP2013073951W WO2014076240A1 WO 2014076240 A1 WO2014076240 A1 WO 2014076240A1 EP 2013073951 W EP2013073951 W EP 2013073951W WO 2014076240 A1 WO2014076240 A1 WO 2014076240A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating composition
molybdenum
composition according
compound
ppm
Prior art date
Application number
PCT/EP2013/073951
Other languages
English (en)
Inventor
Olivier Lerasle
Jérôme VALADE
Mickael DEBORD
Original Assignee
Total Marketing Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services filed Critical Total Marketing Services
Priority to JP2015542275A priority Critical patent/JP2015535028A/ja
Priority to KR1020157015060A priority patent/KR102119233B1/ko
Priority to CN201380067892.0A priority patent/CN104870623B/zh
Priority to US14/442,582 priority patent/US10752858B2/en
Priority to MX2015006183A priority patent/MX2015006183A/es
Priority to EP13789835.9A priority patent/EP2920283B1/fr
Publication of WO2014076240A1 publication Critical patent/WO2014076240A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/70Soluble oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention is applicable to the field of lubricants. More particularly, the present invention relates to a lubricant composition having a high molybdenum content and comprising a combination of at least two compounds comprising molybdenum of different chemical nature.
  • the lubricant composition according to the invention simultaneously has good fuel economy properties and good storage stability properties.
  • the present invention also relates to a method of lubricating a mechanical part.
  • the present invention relates to a method for reducing energy losses by friction of a mechanical part.
  • the use of a lubricating composition to reduce fuel consumption is also another object of the present invention.
  • the improvement of the energetic performances of the lubricating compositions can be obtained in particular by mixing in base oils specific additives such as friction modifiers and viscosity index improvers polymers.
  • organometallic compounds comprising molybdenum are commonly used. It is necessary for a lubricating composition to have good anti-friction properties that a sufficient amount of molybdenum is present.
  • molybdenum dialkyldithiocarbamate hereinafter referred to as Mo-DTC
  • Mo-DTC molybdenum dialkyldithiocarbamate
  • this compound has the disadvantage of inducing the formation of sediment when the lubricating composition has too much molybdenum content.
  • the poor solubility of this compound modifies or even deteriorates the properties of the lubricant composition, in particular its viscosity.
  • too much or not enough viscous composition hinders the movement of moving parts, the good start of an engine, the protection of an engine when it has reached its operating temperature, and therefore ultimately causes an increase in fuel consumption.
  • EP 0 757 093 discloses lubricating compositions which may include Mo-DTC and / or Mo-DTP.
  • Mo-DTC and / or Mo-DTP disclose lubricating compositions which may include Mo-DTC and / or Mo-DTP.
  • this document teaches that a quantity of molybdenum brought by Mo-DTC and Mo-DTP exceeding 700 ppm may cause stability problems of the composition may appear, thus removing the skilled person from formulating lubricating compositions to high content of molybdenum.
  • a lubricant composition having a high molybdenum content and simultaneously having a storage stability and improved fuel economy properties.
  • An object of the present invention is to provide a lubricant composition overcoming all or in part the aforementioned drawbacks.
  • Another object of the invention is to provide a lubricant composition whose formulation is easy to implement.
  • Another object of the present invention is to provide a lubrication method for saving energy.
  • the subject of the invention is thus a lubricating composition
  • a lubricating composition comprising at least one base oil, at least one molybdenum dithiocarbamate compound (Mo-DTC), with minus a molybdenum dithiophosphate compound (Mo-DTP) and in which the amount of molybdenum provided by the Mo-DTP compound and the Mo-DTC compound ranges from 1000 to 2500 ppm by weight relative to the total weight of the lubricating composition and wherein the amount of molybdenum provided by the Mo-DTC compound is strictly less than 900 ppm by weight based on the total weight of the lubricating composition.
  • Mo-DTC molybdenum dithiocarbamate compound
  • Mo-DTP molybdenum dithiophosphate compound
  • the term "lubricating composition” means a lubricating composition, and not a grease. Indeed, in the greases the additives are not solubilized but dispersed in the network of fibers formed by the soap. The solubility problem of Mo-DTC does not arise as in oils especially for motor in which the solubility is imperative. Thus, the lubricating compositions according to the invention are not greases.
  • the applicant company has found that, in a lubricant composition having a molybdenum content ranging from 1000 to 2500 ppm and comprising a Mo-DTC compound, the addition of at least one Mo-DTP compound makes it possible to solubilize Mo-DTC compound and simultaneously improves the fuel economy properties of said composition.
  • the amount of Mo provided by the Mo-DTC compound must strictly be less than 900 ppm in the lubricating composition relative to the total mass of the lubricating composition.
  • the present invention makes it possible to formulate lubricant compositions with a high molybdenum content and in which the Mo-DTC compounds are soluble, that is to say that they can be dissolved in the lubricating composition without forming a precipitate or without make it cloudy.
  • the Mo-DTC compounds are soluble in a lubricating composition whose temperature varies from 0 ° C to 200 ° C, preferably from 10 ° C to 150 ° C, more preferably from 20 ° C to 100 ° C, more preferably from 40 ° C to 80 ° C.
  • the lubricating compositions according to the invention have a better storage stability, especially storage at a temperature of 0 ° C.
  • the combination of at least one Mo-DTC compound and at least one Mo-DTP compound in a lubricant composition comprising a high molybdenum content makes it possible to save fuel when an engine is idling or running. at high speed.
  • the lubricant composition consists essentially of at least one base oil, at least one Mo-DTC compound, at least one Mo-DTP compound and wherein the amount of molybdenum contributed by the Mo-DTP compound and the Mo-DTC compound ranges from 1000 to 2500 ppm by weight relative to the total mass of the lubricating composition and in which the amount of molybdenum provided by the Mo-DTC compound is strictly less than 900 ppm by weight relative to the total mass. of the lubricating composition.
  • Mo-DTC compound The molybdenum dithiocarbamate compounds (Mo-DTC compound) are complexes formed of a metal ring bonded to one or more ligands, the ligand being a dithiocarbamate group of alkyls. These compounds are well known to those skilled in the art.
  • the Mo-DTC compound used in the compositions according to the invention may comprise from 1 to 40%, preferably from 2 to 30%, more preferably from 3 to 28%, even more preferably from 4 to 15%. % by weight of molybdenum, based on the total mass of the Mo-DTC compound.
  • the Mo-DTC compound used in the compositions according to the invention may comprise from 1 to 40%, preferably from 2 to 30%, more preferably from 3 to 28%, even more preferably from 4 to 15%. % by mass of sulfur, relative to the total mass of the compound Mo-DTC.
  • the Mo-DTC compound used in the present invention can be chosen from those whose nucleus has two molybdenum atoms (also called dimeric Mo-DTC) and those whose nucleus has three molybdenum atoms (also called trimeric Mo-DTC).
  • the trimeric Mo-DTC compounds have the formula Mo 3 S k L n in which:
  • k represents an integer at least equal to 4, preferably ranging from 4 to 10, advantageously from 4 to 7,
  • n is an integer ranging from 1 to 4, and
  • L being an alkyl dithiocarbamate group comprising from 1 to 100 carbon atoms, preferably from 1 to 40 carbon atoms, advantageously from 3 to 20 carbon atoms.
  • trimeric Mo-DTC compounds include the compounds and methods for their preparation as described in WO 98/26030 and US 2003/022954.
  • the Mo-DTC compound used in the lubricating composition according to the invention is a dimeric Mo-DTC compound.
  • dimeric Mo-DTC compounds include compounds and methods for their preparation as described in EP 0 757 093, EP 0 719 851, EP 0 743 354 or EP 1 013 749.
  • the dimeric Mo-DTC compounds generally correspond to the compounds of formula (A):
  • R 1, R 2 , R 3 and R 4 which may be identical or different, independently represent a hydrocarbon group chosen from alkyl, alkenyl, aryl, cycloalkyl or cycloalkenyl groups,
  • X 2 , X 3 and X 4 which may be identical or different, independently represent an oxygen atom or a sulfur atom.
  • Alkyl group in the sense of the invention means a hydrocarbon group, linear or branched, comprising from 1 to 24 carbon atoms.
  • the alkyl group is selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl.
  • alkenyl group means a linear or branched hydrocarbon group comprising at least one double bond and comprising from 2 to 24 carbon atoms.
  • the alkenyl group may be chosen from vinyl, allyl, propenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl, oleic.
  • aryl group means a polycyclic aromatic hydrocarbon or an aromatic group which is substituted or not with an alkyl group.
  • the aryl group comprises from 6 to 24 carbon atoms.
  • the aryl group may be, for example, phenyl, toluyl, xylyl, cumenyl, mesityl, benzyl, phenethyl, styryl, cinnamyl, benzhydryl, trityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, phenylphenyl, benzylphenyl, phenylstyrene, p-cumylphen
  • cycloalkyl groups and cycloalkenyl groups include, but are not limited to, cyclopentyl, cyclohexyl, cycloheptyl, methylcyclopentyl, methylcyclohexyl, methylcycloheptyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, methylcyclopentenyl. , methylcyclohexenyl.
  • Cycloalkyl groups and cycloalkenyl groups may comprise from 3 to 24 carbon atoms.
  • R 1, R 2 , R 3 and R 4 which may be identical or different, independently represent an alkyl group comprising from 4 to 18 carbon atoms or an alkenyl group comprising from 2 to 24 carbon atoms.
  • X 2 , X 3 and X 4 may be the same and may be a sulfur atom.
  • X 1 X 2 , X 3 and X 4 may be the same and may be an oxygen atom.
  • X 1 and X 2 may represent a sulfur atom and X 3 and X 4 may represent an oxygen atom.
  • X 1 and X 2 may represent an oxygen atom and X 3 and X 4 may represent a sulfur atom.
  • the ratio of the number of sulfur atoms to the number of oxygen (S / O) atoms of the Mo-DTC compound may vary from (1/3) to (3/1).
  • the Mo-DTC compound of formula (A) may be selected from at least one symmetrical Mo-DTC compound, at least one asymmetric Mo-DTC compound and their combination.
  • symmetric Mo-DTC compound is meant a Mo-DTC compound of formula (A) in which the groups R 1, R 2 , R 3 and R 4 are identical.
  • asymmetric Mo-DTC compound is meant a Mo-DTC compound of formula (A) in which the groups R 1 and R 2 are identical, the groups R 3 and R 4 are identical and the groups R 1 and R 2 are different from the groups R 3 and R 4 .
  • the compound Mo-DTC is a mixture of at least one symmetrical Mo-DTC compound and at least one asymmetric Mo-DTC compound.
  • R 1 and R 2 which are identical, represent an alkyl group comprising from 5 to 15 carbon atoms and R 3 and R 4 , which are identical and different from R 1 and R 2 , represent a grouping. alkyl comprising from 5 to 15 carbon atoms.
  • R 1 and R 2 which are identical, represent an alkyl group comprising from 6 to 10 carbon atoms and R 3 and R 4 represent an alkyl group comprising from 10 to 15 carbon atoms.
  • R 1 and R 2 which are identical, represent an alkyl group comprising from 10 to 15 carbon atoms and R 3 and R 4 represent an alkyl group comprising from 6 to 10 carbon atoms.
  • R 1, R 2 , R 3 and R 4 which are identical, represent an alkyl group comprising from 5 to 15 carbon atoms, preferably from 8 to 13 carbon atoms.
  • the compound Mo-DTC is chosen from the compounds of formula A in which:
  • X 3 and X 4 represent a sulfur atom
  • R 1 represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms
  • R 2 represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms
  • R 3 represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms
  • the compound Mo-DTC is chosen from compounds of formula (A1)
  • the compound Mo-DTC is a mixture:
  • a Mo-DTC compound of formula (A1) in which R 1, R 2 represent an alkyl group comprising 8 carbon atoms and R 3 and R 4 represent an alkyl group comprising 13 carbon atoms.
  • Mo-DTC compounds examples include the products Molyvan L, Molyvan 807 or Molyvan 822 marketed by RT Vanderbilt Compagny or Sakura-lube 200, Sakura-lube 165, Sakura-lube 525 or Sakura-lube 600 products. marketed by the company Adeka.
  • the Mo-DTC compound used in the compositions of the invention makes it possible in particular to reduce the coefficient of friction in limiting and mixed lubrication regimes. Without being bound by any particular theory, this compound adsorbs on metal surfaces to form antifriction film with low shear strength.
  • the amount of molybdenum provided by the Mo-DTC compound (s) in the composition may be greater than or equal to 500 ppm and may be less than or equal to 800 ppm, preferably less than or equal to 700 ppm, more preferably less than or equal to 600 ppm by weight relative to the total mass of the lubricant composition.
  • the amount of molybdenum contributed by the Mo-DTC compound (s) to the lubricating composition can be measured using the ISO NFT 60106 method.
  • Mo-DTP molybdenum dithiophosphate
  • the Mo-DTP compound used in the compositions according to the invention may comprise from 1 to 40%, preferably from 2 to 30%, more preferably from 3 to 28%, even more preferably from 4 to 15%. %, advantageously from 5 to 12% by weight of molybdenum, relative to the total mass of the Mo-DTP compound.
  • the Mo-DTP compound used in the compositions according to the invention may comprise from 1 to 40%, preferably from 2 to 30%, more preferably from 3 to 28%, even more preferably from 4 to 15%. % by mass of sulfur, relative to the total mass of Mo-DTP compound.
  • the Mo-DTP compound used in the compositions according to the invention may comprise from 1 to 10%, preferably from 2 to 8%, more preferably from 3 to 6% by weight of phosphorus, relative to the total mass total mass of Mo-DTP compound.
  • the Mo-DTP compound used in the present invention can be chosen from compounds whose structure comprises two molybdenum atoms (also called dimeric Mo-DTP) and those whose structure comprises three molybdenum atoms (also called trimeric Mo-DTP). .
  • the trimeric Mo-DTP compound corresponds to the following formula Mo 3 S k L n in which:
  • k represents an integer at least equal to 4, preferably from 4 to 10, advantageously from 4 to 7,
  • n an integer ranging from 1 to 4,
  • L represents an alkyl dithiophosphate group comprising from 1 to 100 carbon atoms, preferably from 1 to 40 carbon atoms, advantageously from 3 to 20 carbon atoms.
  • trimeric Mo-DTP compounds include the compounds and methods for their preparation as described in WO 98/26030 and US 2003/022954.
  • the Mo-DTP compound used in the context of the invention is a dimeric Mo-DTP compound.
  • dimeric Mo-DTP compounds are the compounds as described in EP 0 757 093 or EP 0 743 354.
  • Dimeric Mo-DTCs generally correspond to formula compounds
  • R 5 , R 6 , R 7 and R 8 which may be identical or different, independently represent a hydrocarbon group chosen from alkyl, alkenyl, aryl, cycloalkyl or cycloalkenyl groups,
  • X 5 , X 6 , X 7 and X 8 which may be identical or different, independently represent an oxygen atom or a sulfur atom.
  • R 5 , R 6 , R 7 and R 8 which may be identical or different, independently represent an alkyl group comprising from 4 to 18 carbon atoms or an alkenyl group comprising from 2 to 24 carbon atoms.
  • X 5 , X 6 , X 7 and X 8 may be the same and may be a sulfur atom.
  • X 5 , X 6 , X 7 and X 8 may be the same and may represent an oxygen atom.
  • X 5 and X 6 may represent a sulfur atom and X 7 and X 8 may represent an oxygen atom.
  • X 5 and X 6 may represent an oxygen atom and X 7 and X 8 may represent a sulfur atom.
  • the compound Mo-DTP is chosen from compounds of formula (B) in which:
  • X 5 and X 6 represent an oxygen atom
  • X 7 and X 8 represent a sulfur atom
  • R 5 represents an alkyl group comprising from 4 to 12 carbon atoms, preferably from 6 to 10 carbon atoms
  • R 6 represents an alkyl group comprising from 4 to 12 carbon atoms, preferably from 6 to 10 carbon atoms,
  • R 7 represents an alkyl group comprising from 4 to 12 carbon atoms, preferably from 6 to 10 carbon atoms,
  • R 8 represents an alkyl group comprising from 4 to 12 carbon atoms, preferably from 6 to 10 carbon atoms.
  • the compound Mo-DTP is chosen from compounds of formula (B) in which:
  • X 5 and X 6 represent an oxygen atom
  • X 7 and X 8 represent a sulfur atom
  • R 5 represents an ethylhexyl group
  • R 6 represents an ethylhexyl group
  • R 7 represents an ethylhexyl group
  • R 8 represents an ethylhexyl group.
  • the compound Mo-DTP is chosen from compounds of formula (B1)
  • R 5 , R 6, R 7 and R 8 are as defined for formula (B).
  • Mo-DTP compounds As examples of Mo-DTP compounds, mention may be made of the Molyvan L product marketed by the company R.T Vanderbilt Compagny or the Sakura-lube 300 or Sakura-lube 310G products sold by the company Adeka.
  • the amount of molybdenum provided by the Mo-DTC compound and the Mo-DTP compound is at least 1100 ppm, preferably at least 1200 ppm, preferably at least 1300 ppm, preferably at least 1400 ppm, preferably at least 1500 ppm by weight based on the total weight of the lubricating composition.
  • the amount of molybdenum provided by the Mo-DTC compound and the Mo-DTP compound ranges from 1000 ppm to 2500 ppm, preferably from 1100 ppm to 2000, more preferably from 1200 ppm to 1800 ppm, more preferably from 1300 ppm to 1500 ppm, relative to the total mass of the lubricant composition.
  • the Mo-DTP compound used in the compositions of the invention in combination with the Mo-DTC compound make it possible in particular to obtain lubricating compositions having good storage properties and simultaneously maintain or improve its fuel economy properties.
  • the Mo-DTP compound makes it possible to solubilize the Mo-DTC compound in lubricating compositions having a high molybdenum content.
  • the amount of molybdenum provided by the Mo-DTP compound (s) in the lubricating composition can be measured using the ISO NFT 60106 method.
  • the total amount of molybdenum in the lubricating composition is at least 1000 ppm relative to the total mass of the lubricating composition, preferably
  • the total amount of molybdenum in the lubricating composition is measured according to the ISO NFT 60106 method.
  • the difference between the total amount of molybdenum in the lubricating composition and the amount of molybdenum provided by the Mo-DTC compound and the Mo-DTP compound may be derived from other compounds comprising molybdenum and present in the lubricating composition.
  • compounds comprising molybdenum other than the Mo-DTC and Mo-DTP compounds according to the invention mention may be made of the compounds as described in document EP 2 078 745.
  • compounds comprising molybdenum other than Mo-DTC and Mo-DTP compounds according to the invention include, in particular, succinimide complexes based on molybdenum.
  • the lubricant composition according to the present invention comprises at least one base oil which can be chosen from the base oils of groups I to V as defined in the API classification (American Petroleum Institute) or its European equivalent: the ATIEL classification (Technical Association of the European Lubricants Industry) or their mixtures.
  • the base oil or base oil mixture may be of natural or synthetic origin.
  • the base oil or the mixture of base oils may represent at least 50%, preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, relative to the total mass of the lubricating composition.
  • the oils of groups I to V can be oils of plant, animal or mineral origin.
  • the so-called mineral base oils include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, desalphating, solvent dewaxing, hydrotreating, hydrocracking and hydroisomerization, hydrofinishing.
  • the base oil of the composition according to the invention may also be a synthetic oil, such as certain esters of carboxylic acids and alcohols or polyalphaolefins.
  • the polyalphaolefins used as base oil, and which are distinguished from the heavy polyalphaolefins which may also be present in the compositions according to the invention may for example be obtained from monomers having from 4 to 32 carbon atoms (for example octene, decene ), and have a viscosity at 100 ° C ranging from 1.5 to 15 cSt (measured according to international standard ASTM D445.
  • Mixtures of synthetic and mineral oils can also be used.
  • composition according to the invention is formulated to obtain a kinematic viscosity at 100 ° C. (KV100) ranging from 4 to 25 cSt, preferably from 5 to 22 cSt, more preferably from 5 to 13 cSt measured according to the international standard ASTM D445.
  • KV100 kinematic viscosity at 100 ° C.
  • composition according to the invention is formulated to have a VI viscosity index greater than or equal to 140, preferably greater than or equal to 150, more preferably greater than or equal to 160.
  • the invention also relates to an oil, preferably an engine oil comprising a lubricant composition according to the invention.
  • the oil according to the invention may be grade OW-20 and 5W-30 according to the SAEJ300 classification, characterized by a kinematic viscosity at 100 ° C (KV100) ranging from 5.6 to 12.5. cSt measured according to ASTM D445 international standard.
  • the oil according to the invention can be characterized by a viscosity index, measured according to the international standard ASTM D2230, greater than or equal to 130, preferably greater than or equal to 150, more preferably greater than or equal to to 160.
  • base oils having a sulfur content of less than 0.3%, for example Group III mineral oils, and synthetic bases which are free of sulfur, preferably of Group IV, or their mixture.
  • Other additives may advantageously be made of base oils having a sulfur content of less than 0.3%, for example Group III mineral oils, and synthetic bases which are free of sulfur, preferably of Group IV, or their mixture.
  • the lubricant composition according to the invention may further comprise at least one additive.
  • the additive may be selected from the group consisting of anti-wear additives, extreme pressure additives, antioxidants, overbased or non-overbased detergents, viscosity index improvers, pour point improvers, dispersants , defoamers, thickeners and mixtures thereof.
  • the additive (s) may be introduced in isolation and / or included in packages of additives. The addition of the selected additive (s) depends on the use of the lubricating composition. These additives and their use depending on the purpose of the lubricant composition are well known to those skilled in the art.
  • the additive (s) are suitable for use as a motor oil.
  • the lubricating composition may further comprise at least one anti-wear additive, at least one extreme pressure additive or their mixture.
  • the anti-wear and extreme pressure additives protect the friction surfaces by forming a protective film adsorbed on these surfaces.
  • anti-wear additives There is a wide variety of anti-wear additives, but the category most used in lubricating compositions, especially for motor oil, is that of phosphosulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically dialkyldithiophosphates. zinc or ZnDTP.
  • Preferred compounds are of the formula Zn ((SP (S) (OR 9) (OR 0)) 2, wherein R 9 and io, which are identical or different, independently represent an alkyl group, preferably having 1 to 18 carbon atoms.
  • Amine phosphates are also anti-wear additives which can be used in the lubricating compositions according to the invention However, the phosphorus provided by these additives acts as a poison for the catalytic systems of automobiles because these additives are ash generators. can minimize these effects by partially substituting the amine phosphates by additives not providing phosphorus, such as, for example, polysulfides, including sulfur olefins.
  • the anti-wear and extreme-pressure additives may be present in the oil at contents ranging from 0.01 to 6% by weight, preferably from 0.05 to 4%. preferably from 0.1% to 2% relative to the total mass of the oil.
  • the lubricating composition may further comprise at least one additional friction modifier.
  • the additional friction modifying additive may be a compound providing metallic elements or a compound without ash.
  • the compounds providing metal elements mention may be made of transition metal complexes such as Mo (other than a Mo-DTC compound or a Mo-DTP compound), Sb, Sn, Fe, Cu, Zn, of which the ligands may be hydrocarbon compounds containing oxygen, nitrogen, sulfur or phosphorus atoms.
  • the ashless friction modifiers are of organic origin and may be selected from monoesters of fatty acids and polyols, alkoxylated amines, fatty alkoxylated amines, fatty epoxides, borate fatty epoxides; fatty amines or fatty acid glycerol esters.
  • fatty or "fatty (s)" is intended to mean a hydrocarbon group comprising from 10 to 24 carbon atoms.
  • the additional friction modifying additive may be present at contents ranging from 0.01 to 2% by weight, preferably from 0.1 to 1.5% in the lubricating composition, relative to the mass. total of the lubricating composition.
  • the additional friction modifying additive may be present in the engine oil at contents ranging from 0.01 to 5% by weight, preferably from 0.1 to 2% in oils. motor, relative to the total mass of the engine oil.
  • the lubricating composition may further comprise at least one antioxidant additive.
  • Antioxidant additives delay the degradation of oils in service, which can result in the formation of deposits, the presence of sludge, or an increase in the viscosity of the oil.
  • Antioxidant additives act in particular as radical inhibitors or destroyers of hydroperoxides.
  • antioxidants commonly used, mention may be made of antioxidants of phenolic or amine type. Some of these additives, for example phosphosulfides, can be ash generators.
  • Phenolic antioxidants may be ashless, or may be in the form of neutral or basic metal salts. Typically, these are compounds containing a sterically hindered hydroxyl group, for example when two hydroxyl groups are in the ortho or para position relative to each other, or when the phenol is substituted by an alkyl group comprising at least 6 atoms. of carbon. Amino compounds are another class of antioxidants that can be used, optionally in combination with phenolic antioxidants.
  • Typical examples are aromatic amines of the formula R11 R12R1 3 N, wherein Ru represents an aliphatic group or an optionally substituted aromatic group, R12 represents an optionally substituted aromatic group, R13 represents a hydrogen atom, an alkyl group, an aryl group or a group of the formula R 1 4 S (O) x R 1 , where R 4 represents an alkylene group or an alkenylene group, R 12 represents an alkyl group, an alkenyl group or an aryl group and x represents an integer equal to 0, 1 or 2. Sulfurized alkyl phenols or their alkali and alkaline earth metal salts can also be used as antioxidants.
  • antioxidants are that of oil-soluble copper compounds, for example copper thio- or dithiophosphates, copper and carboxylic acid salts, dithiocarbamates, sulphonates, phenates, acetylacetonates of copper. Copper salts I and II, succinic acid or anhydride may also be used.
  • oil-soluble copper compounds for example copper thio- or dithiophosphates, copper and carboxylic acid salts, dithiocarbamates, sulphonates, phenates, acetylacetonates of copper.
  • Copper salts I and II, succinic acid or anhydride may also be used.
  • the lubricant composition according to the invention may contain all types of antioxidant additives known to those skilled in the art.
  • the ashless antioxidants are used.
  • the lubricant composition according to the invention may comprise from 0.5 to 2% of at least one antioxidant additive by weight relative to the total weight of the lubricant composition.
  • the lubricating composition according to the invention may further comprise a detergent additive.
  • the detergent additives reduce in particular the formation of deposits on the surface of the metal parts by dissolving the secondary products of oxidation and combustion.
  • the detergents that can be used in the lubricant composition according to the invention are well known to those skilled in the art.
  • the detergents commonly used in the formulation of lubricating compositions may be anionic compounds having a long lipophilic hydrocarbon chain and a hydrophilic head.
  • the associated cation is typically a metal cation of an alkali or alkaline earth metal.
  • the detergents are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulphonates, salicylates and naphthenates, as well as the salts of phenates.
  • the alkali and alkaline earth metals are preferably calcium, magnesium, sodium or barium.
  • These metal salts may contain the metal in an approximately stoichiometric amount or in excess (in excess of the stoichiometric amount). In the latter case, these detergents are called overbased detergents.
  • the excess metal bringing the overbased character to the detergent, is in the form of metal salts insoluble in the oil, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate.
  • the lubricating composition according to the invention may comprise from 2 to 4% by weight of detergent, relative to the total mass of the lubricating composition.
  • the lubricating composition may further comprise at least one viscosity index improving polymer.
  • the polymers improving the viscosity index make it possible to guarantee a good cold strength and a minimum viscosity at high temperature, in particular to formulate multi-grade oils.
  • OCP polymeric esters and olefins copolymers
  • PMA polymethacrylates
  • the lubricant composition according to the invention may comprise from 1 to 15% by weight of viscosity index improving polymers, relative to the total weight of the lubricating composition.
  • the engine oil according to the invention comprises from 0.1 to 10% by weight of polymers improving the viscosity index, with respect to the total mass of the engine oil, preferably from 0.5 to 5%, preferably from 1 to 2%.
  • the lubricant composition according to the invention may further comprise at least one pour point depressant additive.
  • Pour point depressant additives in particular improve the cold behavior of oils by slowing the formation of paraffin crystals.
  • pour point depressant additives mention may be made of alkyl polymethacrylates, polyacrylates, polyarylamides, polyalkylphenols, polyalkylnaphthalenes and alkylated polystyrenes.
  • the lubricating composition according to the invention may comprise, in addition, at least one dispersing additive.
  • the dispersants ensure the suspension and evacuation of the insoluble solid contaminants constituted by the secondary oxidation products that form when a lubricating composition is in use.
  • the dispersant additives may be chosen from the groups formed by succinimides, PIBs (polyisobutenes) succinimides, Mannich bases.
  • the lubricant composition according to the invention may comprise from 5 to 8% by weight of dispersants, relative to the total mass of the lubricant composition. Rooms
  • the lubricant composition according to the invention can lubricate at least one mechanical part or a mechanical member, in particular bearings, gears, universal joints, transmissions, the piston / piston / sleeve system, the camshafts, the clutch , manual or automatic gearboxes, rockers, crankcases etc.
  • the invention also relates to a method for reducing the energy losses by friction of a mechanical part, said method comprising at least one step of contacting a mechanical part with a lubricant composition according to the invention.
  • the set of characteristics and preferences presented for the lubricant composition also applies to the method for reducing the energy losses by friction of a mechanical part according to the invention.
  • the invention also relates to a method for reducing the fuel consumption of a vehicle, the method comprising at least one step of contacting a lubricant composition according to the invention with at least one mechanical part of the engine of the vehicle .
  • the set of characteristics and preferences presented for the lubricant composition also applies to the process for reducing the fuel consumption of a vehicle according to the invention.
  • the invention also relates to the use of a lubricant composition according to the invention for reducing the fuel consumption of vehicles.
  • the set of characteristics and preferences presented for the lubricant composition also applies to the use to reduce the fuel consumption of vehicles according to the invention.
  • the vehicles may include a two or four stroke internal combustion engine.
  • the engines may be gasoline engines or diesel engines intended to be powered by gasoline or conventional diesel.
  • conventional gasoline or "conventional diesel” means engines which are powered by a fuel obtained after refining an oil of mineral origin (such as oil for example).
  • the engines may also be gasoline engines or diesel engines modified to be powered by a fuel based on oils derived from renewable materials such as alcohol-based fuels or biodiesel fuel.
  • the vehicles may be light vehicles such as automobiles, motorcycles, trucks, construction equipment, ships.
  • the invention also relates to the use of a lubricant composition according to the invention for reducing the energy losses by friction of a metal part, preferably in bearings, gears or universal joints.
  • the set of characteristics and preferences presented for the lubricant composition also applies to the use to reduce frictional energy losses of a metal part according to the invention.
  • Lubricating compositions A and B (comparative) and lubricant compositions C, D and E (according to the invention) were prepared from the following constituents:
  • Viscoplex 3-200 a viscosity index improving polymer which is a polymethacrylate (PMA), sold under the name Viscoplex 3-200 by the company Evonik RohMax
  • a package of additives comprising a mixture of carboxylate / sulphonate detergents, a succinimide PIB dispersant, a ZnDTP type anti-wear additive and a diphenylamine type antioxidant (sold under the name Irganox L57 by Chemtura),
  • a sealed glass vial comprising 100 g of the lubricating composition to be tested was placed in a refrigerator at a temperature of 0 ° C. After a period of one week, the visual appearance of the lubricant composition was observed.
  • composition was considered stable if it remained clear and there was no deposit formed at the bottom of the flask.
  • the lubricating composition was considered not stable if it was cloudy and / or if deposits formed at the bottom of the flask.
  • compositions according to the invention have good stability.
  • This test was based on the use of a driven engine bench.
  • NEDC corresponding to the reference pollutant emission measurement cycle in Europe
  • JC08 corresponding to the measurement cycle of d pollutant emission reference in Japan
  • This test includes the framing with a reference oil to follow a possible drift of the test means and to evaluate a level of gain relative to the reference oil.
  • the reference oil was a 0W20 ILSAC GF4 commercial oil recommended by the manufacturer for this engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

La présente invention concerne une composition lubrifiante à forte teneur en molybdène et comprenant une combinaison d'au moins deux composés comprenant du molybdène.

Description

COMPOSITION LUBRIFIANTE
La présente invention est applicable au domaine des lubrifiants. Plus particulièrement, la présente invention concerne une composition lubrifiante à forte teneur en molybdène et comprenant une combinaison d'au moins deux composés comprenant du molybdène de nature chimique différente. La composition lubrifiante selon l'invention présente simultanément de bonnes propriétés d'économie de carburant et de bonnes propriétés de stabilité au stockage. La présente invention concerne aussi un procédé de lubrification d'une pièce mécanique. La présente invention concerne un procédé pour réduire les pertes d'énergie par frottement d'une pièce mécanique. L'utilisation d'une composition lubrifiante pour réduire la consommation de carburant est également un autre objet de la présente invention.
La généralisation de l'automobile à l'échelle planétaire depuis la fin du siècle dernier pose des problèmes quant au réchauffement climatique, à la pollution, à la sécurité et à l'utilisation des ressources naturelles, en particulier à l'épuisement des réserves de pétrole.
Suite à l'établissement du protocole de Kyoto, de nouvelles normes protégeant l'environnement imposent à la filière de l'automobile de construire des véhicules dont les émissions polluantes et les consommations de carburant sont réduites. Il en résulte que les moteurs de ces véhicules sont soumis à des contraintes techniques de plus en plus sévères : ils tournent notamment plus vite, à des températures de plus en plus élevées et doivent consommer de moins en moins de carburant.
La nature des lubrifiants moteurs pour automobiles a une influence sur l'émission de polluants et sur la consommation de carburant. Des lubrifiants moteurs pour automobiles dits économiseurs d'énergie ou « fuel-eco » (en terminologie anglo- saxonne), ont été développés pour satisfaire ces nouveaux besoins.
L'amélioration des performances énergétiques des compositions lubrifiantes peut être obtenue notamment en mélangeant dans des huiles de base des additifs spécifiques tels que des modificateurs de frottement, des polymères améliorants d'indice de viscosité.
Parmi les modificateurs de frottement, les composés organométalliques comprenant du molybdène sont couramment utilisés. Il est nécessaire pour qu'une composition lubrifiante ait de bonnes propriétés anti-frottement qu'une quantité suffisante de molybdène soit présente. Parmi ces composés organométalliques, le dialkyldithiocarbamate de molybdène (dénommé dans la suite de la présente demande par l'acronyme Mo-DTC) est le plus utilisé comme source de molybdène. Cependant, ce composé présente l'inconvénient d'induire la formation de sédiments lorsque la composition lubrifiante présente une trop forte teneur en élément molybdène. La mauvaise solubilité de ce composé modifie voire détériore les propriétés de la composition lubrifiante, notamment sa viscosité. Or, une composition trop ou pas assez visqueuse nuit au mouvement des pièces mobiles, au bon démarrage d'un moteur, à la protection d'un moteur lorsqu'il a atteint sa température de service, et donc in fine provoque notamment une augmentation de consommation de carburant.
Différentes tentatives de solubilisation du Mo-DTC dans des compositions lubrifiantes ont été testées. On connaît du document EP0719851 l'utilisation de composés Mo-DTC asymétriques, c'est-à-dire obtenus à partir de dialkylamines ayant des groupements hydrocarbonés de taille différente. Ces composés asymétriques, notamment en association avec des composés Mo-DTP, permettent d'améliorer la solubilité du molybdène, notamment provenant du Mo-DTC, dans des compositions lubrifiantes présentant un indice de viscosité (VI) élevé.
Le document EP 0 757 093 décrit des compositions lubrifiantes pouvant comprendre du Mo-DTC et/ou du Mo-DTP. Toutefois, ce document enseigne qu'une quantité de molybdène apportée par le Mo-DTC et le Mo-DTP excédant 700 ppm peut engendrer des problèmes de stabilité de la composition peuvent apparaître, éloignant ainsi l'homme du métier de formuler des compositions lubrifiantes à teneur élevée en molybdène.
Les exigences d'économie de carburant étant grandissantes, il existe donc toujours un besoin de formuler une composition lubrifiante ayant une forte teneur en molybdène et présentant simultanément une stabilité au stockage et des propriétés d'économie de carburant améliorées. Par "forte teneur en molybdène" on entend au sens de la présente invention, des compositions lubrifiantes ayant une masse totale de molybdène d'au moins 1000 ppm (ppm = partie par million) par rapport à la masse totale de la composition lubrifiante.
Un objectif de la présente invention est de fournir une composition lubrifiante palliant tout ou en partie aux inconvénients précités.
Un autre objectif de l'invention est de fournir une composition lubrifiante dont la formulation est facile à mettre en œuvre.
Un autre objectif de la présente invention est de fournir un procédé de lubrification permettant des économies d'énergie.
L'invention a ainsi pour objet une composition lubrifiante comprenant au moins une huile de base, au moins un composé dithiocarbamate de molybdène (Mo-DTC), au moins un composé dithiophosphate de molybdène (Mo-DTP) et dans laquelle la quantité de molybdène apportée par le composé Mo-DTP et le composé Mo-DTC va de 1000 à 2500 ppm en masse par rapport à la masse totale de la composition lubrifiante et dans laquelle la quantité de molybdène apportée par le composé Mo- DTC est strictement inférieure à 900 ppm en masse par rapport à la masse totale de la composition lubrifiante.
Par « composition lubrifiante » au sens de la présente invention, on entend une composition lubrifiante, et non pas une graisse. En effet, dans les graisses les additifs ne sont pas solubilisés mais dispersés dans le réseau de fibres formé par le savon. Le problème de solubilité du Mo-DTC ne se pose pas comme dans les huiles notamment pour moteur dans lesquelles la solubilité est impérative. Ainsi, les compositions lubrifiantes selon l'invention ne sont pas des graisses.
De manière surprenante, la société demanderesse a constaté que, dans une composition lubrifiante ayant une teneur en molybdène qui va de 1000 à 2500 ppm et comprenant un composé Mo-DTC, l'addition d'au moins un composé Mo-DTP permet de solubiliser le composé Mo-DTC et permet simultanément d'améliorer les propriétés d'économie en carburant de ladite composition. Toutefois la quantité de Mo apportée par le composé Mo-DTC doit strictement être inférieure à 900 ppm dans la composition lubrifiante par rapport à la masse totale de la composition lubrifiante.
Ainsi, la présente invention permet de formuler des compositions lubrifiantes à forte teneur en molybdène et dans lesquelles les composés Mo-DTC sont solubles, c'est- à-dire qu'ils peuvent être dissouts dans la composition lubrifiante sans former de précipité ou sans la rendre trouble.
De manière avantageuse, les composés Mo-DTC sont solubles dans une composition lubrifiante dont la température varie de 0°C à 200°C, de préférence de 10°C à 150°C, plus préférentiellement de 20°C à 100°C, encore plus préférentiellement de 40°C à 80°C.
Avantageusement, les compositions lubrifiantes selon l'invention présentent une meilleure stabilité au stockage, notamment au stockage à une température de 0°C. Avantageusement, la combinaison d'au moins un composé Mo-DTC et d'au moins un composé Mo-DTP dans une composition lubrifiante comprenant une forte teneur en molybdène permet d'effectuer des économies de carburant lorsqu'un moteur tourne au ralenti ou tourne à haut régime. Dans un mode de réalisation, la composition lubrifiante consiste essentiellement en au moins une huile de base, au moins un composé Mo-DTC, au moins un composé Mo-DTP et dans laquelle la quantité de molybdène apportée par le composé Mo- DTP et le composé Mo-DTC va de 1000 à 2500 ppm en masse par rapport à la masse totale de la composition lubrifiante et dans laquelle la quantité de molybdène apportée par le composé Mo-DTC est strictement inférieure à 900 ppm en masse par rapport à la masse totale de la composition lubrifiante.
Description détaillée.
Composé dithiocarbamate de molybdène
Les composés dithiocarbamate de molybdène (composé Mo-DTC) sont des complexes formés d'un noyau métallique lié à un ou plusieurs ligands, le ligand étant un groupement dithiocarbamate d'alkyles. Ces composés sont bien connus de l'homme du métier.
Dans un mode de réalisation, le composé Mo-DTC utilisé dans les compositions selon l'invention peut comprendre de 1 à 40%, de préférence de 2 à 30%, plus préférentiellement de 3 à 28%, encore plus préférentiellement de 4 à 15% en masse de molybdène, par rapport à la masse totale du composé Mo-DTC.
Dans un mode de réalisation, le composé Mo-DTC utilisé dans les compositions selon l'invention peut comprendre de 1 à 40%, de préférence de 2 à 30%, plus préférentiellement de 3 à 28%, encore plus préférentiellement de 4 à 15% en masse de soufre, par rapport à la masse totale du composé Mo-DTC.
Le composé Mo-DTC utilisé dans la présente invention peut être choisi parmi ceux dont le noyau présente deux atomes de molybdène (aussi appelés Mo-DTC dimériques) et ceux dont le noyau présente trois atomes de molybdène (aussi appelés Mo-DTC trimériques).
Les composés Mo-DTC trimériques répondent à la formule Mo3SkLn dans laquelle :
- k représente un nombre entier au moins égal à 4, de préférence allant de 4 à 10, avantageusement de 4 à 7,
- n est un entier allant de 1 à 4, et
- L étant un groupement dithiocarbamate d'alkyles comprenant de 1 à 100 atomes de carbone, de préférence de 1 à 40 atomes de carbone, avantageusement de 3 à 20 atomes de carbone.
Comme exemples de composés Mo-DTC trimériques, on peut citer les composés et leurs procédés de préparation tels que décrits dans les documents WO 98/26030 et US 2003/022954. De préférence, le composé Mo-DTC utilisé dans la composition lubrifiante selon l'invention est un composé Mo-DTC dimérique. Comme exemples de composés Mo- DTC dimériques, on peut citer les composés et leurs procédés de préparation tels que décrits dans les documents EP 0 757 093, EP 0 719 851 , EP 0 743 354 ou EP 1 013 749.
Les composés Mo-DTC dimériques correspondent généralement aux composés de formule (A) :
Figure imgf000006_0001
dans laquelle :
R-i , R2, R3, R4, identiques ou différents, représentent indépendamment un groupement hydrocarboné choisi parmi les groupements alkyle, alcényle, aryle, cycloalkyle ou cycloalcényle,
X2, X3 et X4, identiques ou différents, représentent indépendamment un atome d'oxygène ou un atome de soufre.
Par groupement alkyle au sens de l'invention, on entend un groupement hydrocarboné, linéaire ou ramifié, comprenant de 1 à 24 atomes de carbone. Dans un mode de réalisation, le groupement alkyle est choisi dans le groupe formé par le méthyle, l'éthyle, le propyle, l'isopropyle, le n-butyle, l'iso-butyle, le tert-butyle, le n- pentyle, l'iso-pentyle, le néopentyle, l'hexyle, l'heptyle, l'octyle, le nonyle, le décyle, l'undécyle, le dodécyle, le tridécyle, l'isotridécyle, le tétradécyle, l'hexadécyle, le stéaryle, l'icosyle, le docosyle , le tétracosyle, le triacontyle, le 2-éthylhexyle, le 2- butyloctyle, le 2-butyldécyle, 2-hexyloctyle, 2-hexyldécyle, 2-octyldécyle, le 2- hexyldodécyle, le 2-octyldodécyle, le 2-décyltétradécyle, le 2-dodécylhexadécyle, le 2-hexadécyloctadécyle, le 2-tetradécyloctadécyle, le myristyle, le palmityle et le stéaryle.
Par groupement alcényle au sens de la présente invention, on entend un groupement hydrocarboné linéaire ou ramifié comprenant au moins une double liaison et comprenant de 2 à 24 atomes de carbone. Le groupement alcényle peut être choisi parmi le vinyle, l'allyle, le propényle, le butényle, l'isobutényle, le pentényle, l'isopentényl, l'hexényle, l'heptényle, l'octényle, le nonényle, le décényle, l'undécényle, le dodécényle, le tétradécényle, l'oléique.
Par groupement aryle au sens de la présente invention, on entend un hydrocarbure aromatique polycyclique ou un groupement aromatique qui est substitué ou non par un groupe alkyle. Le groupement aryle comprend de 6 à 24 atomes de carbone. Le groupe aryle peut être par exemple le phényle, le toluyie, le xylyle, le cuményle, le mésityle, le benzyle, le phénéthyle, le styryle, le cinnamyle, le benzhydryle, le trityle, l'éthylphényle, le propylphényle, le butylphényle, le pentylphényle, le hexylphényl, le heptylphényle, le octylphényle, le nonylphényle, le decylphenyl, le undecylphenyl, le dodécylphényle, le phénylphényle, le benzylphényle, le phényle-styrène, p- cumylphényle et le naphtyle.
Au sens de la présente invention, les groupes cycloalkyle et les groupes cycloalcényle comprennent, de façon non limitative, le cyclopentyle, le cyclohexyle, le cycloheptyle, le méthylcyclopentyle, le méthylcyclohexyle, le méthylcycloheptyle, le cyclopentényle, le cyclohexényle, le cycloheptényle, le méthylcyclopentenyle, le méthylcyclohexenyle. Les groupes cycloalkyle et les groupes cycloalcényle peuvent comprendre de 3 à 24 atomes de carbone.
De manière avantageuse, R-i , R2, R3 et R4, identiques ou différents, représentent indépendamment un groupement alkyle comprenant de 4 à 18 atomes de carbone ou un groupement alcényle comprenant de 2 à 24 atomes de carbone.
Dans un mode de réalisation, X2, X3 et X4 peuvent être identiques et peuvent représenter un atome de soufre.
Dans un mode de réalisation, X^ X2, X3 et X4 peuvent être identiques et peuvent être un atome d'oxygène.
Dans un mode de réalisation, Xi et X2 peuvent représenter un atome de soufre et X3 et X4 peuvent représenter un atome d'oxygène.
Dans un mode de réalisation, Xi et X2 peuvent représenter un atome d'oxygène et X3 et X4 peuvent représenter un atome de soufre.
Dans un mode de réalisation; le ratio en nombre d'atomes de soufre par rapport au nombre d'atomes d'oxygène (S/O) du composé Mo-DTC peut varier de (1 /3) à (3/1 ).
Dans un mode de réalisation, le composé Mo-DTC de formule (A) peut être choisi parmi au moins un composé Mo-DTC symétriques, au moins un composé Mo-DTC asymétrique et leur combinaison. Par composé Mo-DTC symétrique, on entend un composé Mo-DTC de formule (A) dans laquelle les groupements Ri , R2, R3 et R4 sont identiques.
Par composé Mo-DTC asymétrique, on entend un composé Mo-DTC de formule (A) dans laquelle les groupements Ri et R2 sont identiques, les groupements R3 et R4 sont identiques et les groupements Ri et R2 sont différents des groupements R3 et R4.
De manière avantageuse, le composé Mo-DTC est un mélange d'au moins un composé Mo-DTC symétrique et d'au moins un composé Mo-DTC asymétrique. Dans un mode de réalisation de l'invention, R-ι et R2, identiques, représentent un groupement alkyle comprenant de 5 à 15 atomes de carbone et R3 et R4, identiques et différents de Ri et R2, représentent un groupement alkyle comprenant de 5 à 15 atomes de carbone.
Dans un mode de réalisation préféré, Ri et R2, identiques, représentent un groupement alkyle comprenant de 6 à 10 atomes de carbone et R3 et R4 représentent un groupement alkyle comprenant de 10 à 15 atomes de carbone.
Dans un autre mode de réalisation préféré, Ri et R2, identiques, représentent un groupement alkyle comprenant de 10 à 15 atomes de carbone et R3 et R4 représentent un groupement alkyle comprenant de 6 à 10 atomes de carbone.
Dans un autre mode de réalisation préféré, Ri , R2, R3 et R4, identiques, représentent un groupement alkyle comprenant de 5 à 15 atomes de carbone, de préférence de 8 à 13 atomes de carbone.
De manière avantageuse, le composé Mo-DTC est choisi parmi les composés de formule A dans laquelle :
- Xi et X2 représentent un atome d'oxygène,
- X3 et X4 représentent un atome de soufre,
- Ri représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone,
- R2 représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone,
- R3 représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone,
- R4 représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone. Ainsi, de manière avantageuse, le composé Mo-DTC est choisi parmi les composés de formule (A1 )
Figure imgf000009_0001
(A1 )
dans laquelle les groupements Ri, R2, R3 et R4 sont tels que définis pour la formule (A).
Avantageusement, le composé Mo-DTC est un mélange :
- d'un composé Mo-DTC de formule (A1 ) dans laquelle R-i, R2, R3 et R4 représentent un groupement alkyle comprenant 8 atomes de carbone,
- d'un composé Mo-DTC de formule (A1 ) dans laquelle R-i, R2, R3 et R4 représentent un groupement alkyle comprenant 13 atomes de carbone, et
- d'un composé Mo-DTC de formule (A1 ) dans laquelle R-i, R2 représentent un groupement alkyle comprenant 13 atomes de carbone et R3 et R4 représentent un groupement alkyle comprenant 8 atomes de carbone, et/ou
- d'un composé Mo-DTC de formule (A1 ) dans laquelle R-i, R2 représentent un groupement alkyle comprenant 8 atomes de carbone et R3 et R4 représentent un groupement alkyle comprenant 13 atomes de carbone.
Comme exemples de composés Mo-DTC, on peut citer les produits Molyvan L, Molyvan 807 ou Molyvan 822 commercialisés par la société R.T Vanderbilt Compagny ou les produits Sakura-lube 200, Sakura-lube 165, Sakura-lube 525 ou Sakura-lube 600 commercialisés par la société Adeka.
Le composé Mo-DTC utilisé dans les compositions de l'invention permet notamment de diminuer le coefficient de frottement en régimes de lubrification limite et mixte. Sans être lié à une théorie en particulier, ce composé s'adsorbe sur les surfaces métalliques pour former un film antifriction à faible résistance au cisaillement.
Dans un mode de réalisation de l'invention, la quantité de molybdène apportée par le ou les composés Mo-DTC dans la composition peut être supérieure ou égale à 500 ppm et peut être inférieure ou égale à 800 ppm, de préférence inférieure ou égale à 700 ppm, plus préférentiellement inférieure ou égale à 600 ppm en masse par rapport à la masse totale de la composition lubrifiante.
La quantité de molybdène apportée par le ou les composés Mo-DTC à la composition lubrifiante peut être mesurée à l'aide la méthode ISO NFT 60106. Composé dithiophosphate de molybdène
Les composés dithiophosphate de molybdène (Mo-DTP) sont des complexes formés par d'un noyau métallique lié à un ou plusieurs ligands, le ligand étant un groupement dithiophosphate d'alkyles. Ces composés sont bien connus de l'homme du métier.
Dans un mode de réalisation, le composé Mo-DTP utilisé dans les compositions selon l'invention peut comprendre de 1 à 40%, de préférence de 2 à 30%, plus préférentiellement de 3 à 28%, encore plus préférentiellement de 4 à 15%, avantageusement de 5 à 12% en masse de molybdène, par rapport à la masse totale du composé Mo-DTP.
Dans un mode de réalisation, le composé Mo-DTP utilisé dans les compositions selon l'invention peut comprendre de 1 à 40%, de préférence de 2 à 30%, plus préférentiellement de 3 à 28%, encore plus préférentiellement de 4 à 15% en masse de soufre, par rapport à la masse totale du composé Mo-DTP.
Dans un mode de réalisation, le composé Mo-DTP utilisé dans les compositions selon l'invention peut comprendre de 1 à 10%, de préférence de 2 à 8%, plus préférentiellement de 3 à 6% en masse de phosphore, par rapport à la masse totale masse totale du composé Mo-DTP.
Le composé Mo-DTP utilisé dans la présente invention peut être choisi parmi les composés dont la structure comprend deux atomes de molybdène (aussi appelé Mo-DTP dimériques) et ceux dont la structure comprend trois atomes de molybdène (aussi appelés Mo-DTP trimériques).
Le composé Mo-DTP trimérique répond à la formule suivante Mo3SkLn dans laquelle :
- k représente un nombre entier au moins égal à 4, de préférence de 4 à 10, avantageusement de 4 à 7,
- n représente un entier allant de 1 à 4, et
- L représente un groupement dithiophosphate d'alkyles comprenant de 1 à 100 atomes de carbone, de préférence de 1 à 40 atomes de carbone, avantageusement de 3 à 20 atomes de carbone.
Comme exemples de composés Mo-DTP trimériques selon l'invention, on peut citer les composés et leurs procédés de préparation tels que décrits dans les documents WO 98/26030 et US 2003/022954. De manière avantageuse, le composé Mo-DTP utilisé dans le cadre de l'invention est un composé Mo-DTP dimérique.
Comme exemples de composés Mo-DTP dimériques, on peut citer les composés tels que décrits dans les documents EP 0 757 093 ou EP 0 743 354.
Les Mo-DTC dimériques correspondent généralement aux composés de formule
(B) :
Figure imgf000011_0001
(B)
dans laquelle :
R5, R6, R7 et R8, identiques ou différents, représentent indépendamment un groupement hydrocarboné choisi parmi les groupements alkyle, alcényle, aryle, cycloalkyle ou cycloalcényle,
X5, X6, X7 et X8, identiques ou différents, représentent indépendamment un atome d'oxygène ou un atome de soufre.
Dans un mode de réalisation, R5, R6, R7 et R8, identiques ou différents, représentent indépendamment un groupement alkyle comprenant de 4 à 18 atomes de carbone ou un groupement alcényle comprenant de 2 à 24 atomes de carbone.
Dans un mode de réalisation, X5, X6, X7 et X8 peuvent être identiques et peuvent représenter un atome de soufre.
Dans un autre mode de réalisation, X5, X6, X7 et X8 peuvent être identiques et peuvent représenter un atome d'oxygène.
Dans un autre mode de réalisation, X5 et X6 peuvent représenter un atome de soufre et X7 et X8 peuvent représenter un atome d'oxygène.
Dans un autre mode de réalisation, X5 et X6 peuvent représenter un atome d'oxygène et X7 et X8 peuvent représenter un atome de soufre.
Dans un mode de réalisation préféré de l'invention, le composé Mo-DTP est choisi parmi les composés de formule (B) dans laquelle :
- X5 et X6 représentent un atome d'oxygène,
- X7 et X8 représentent un atome de soufre,
- R5 représente un groupement alkyle comprenant de 4 à 12 atomes de carbone, de préférence de 6 à 10 atomes de carbone, - R6 représente un groupement alkyle comprenant de 4 à 12 atomes de carbone, de préférence de 6 à 10 atomes de carbone,
- R7 représente un groupement alkyle comprenant de 4 à 12 atomes de carbone, de préférence de 6 à 10 atomes de carbone,
- R8 représente un groupement alkyle comprenant de 4 à 12 atomes de carbone, de préférence de 6 à 10 atomes de carbone.
De manière avantageuse, le composé Mo-DTP est choisi parmi les composés de formule (B) dans laquelle :
- X5 et X6 représentent un atome d'oxygène,
- X7 et X8 représentent un atome de soufre,
- R5 représente un groupement ethylhexyle,
- R6 représente un groupement ethylhexyle,
- R7 représente un groupement ethylhexyle,
- R8 représente un groupement ethylhexyle.
De manière avantageuse, le composé Mo-DTP est choisi parmi les composés de formule (B1 )
Figure imgf000012_0001
(B1 )
dans laquelle R5, R6, R7 et R8 sont tels que définis pour la formule (B).
Comme exemples de composés Mo-DTP, on peut citer le produit Molyvan L commercialisé par la société R.T Vanderbilt Compagny ou les produits Sakura-lube 300 ou Sakura-lube 310G commercialisés par la société Adeka.
Dans un mode de réalisation, la quantité de molybdène apportée par le composé Mo-DTC et par le composé Mo-DTP est d'au moins 1 100 ppm, de préférence au moins 1200 ppm, de préférence d'au moins 1300 ppm, de préférence d'au moins 1400 ppm, de préférence d'au moins 1500 ppm en masse par rapport à la masse totale de la composition lubrifiante.
De manière avantageuse, la quantité de molybdène apportée par le composé Mo- DTC et par le composé Mo-DTP va de 1000 ppm à 2500 ppm, de préférence, de 1 100 ppm à 2000, plus préférentiellement de 1200 ppm à 1800 ppm, encore plus préférentiellement de 1300 ppm à 1500 ppm, par rapport à la masse totale de la composition lubrifiante.
Le composé Mo-DTP utilisé dans les compositions de l'invention en combinaison avec le composé Mo-DTC permettent notamment d'obtenir des compositions lubrifiantes présentant de bonnes propriétés de stockage et simultanément maintiennent ou améliorent ses propriétés d'économie de carburants.
Avantageusement, le composé Mo-DTP permet de solubiliser le composé Mo-DTC dans des compositions lubrifiantes ayant une forte teneur en molybdène.
La quantité de molybdène apportée par le ou les composés Mo-DTP dans la composition lubrifiante peut être mesurée à l'aide de la méthode ISO NFT 60106.
La quantité totale de molybdène dans la composition lubrifiante est d'au moins 1000 ppm par rapport à la masse totale de la composition lubrifiante, de préférence de
1000 à 2000 ppm, avantageusement de 1400 à 2000 ppm.
La quantité totale de molybdène dans la composition lubrifiante est mesurée selon la méthode ISO NFT 60106.
La différence entre la quantité totale de molybdène dans la composition lubrifiante et la quantité de molybdène apporté par le composé Mo-DTC et le composé Mo-DTP peut provenir d'autres composés comprenant du molybdène et présents dans la composition lubrifiante. Comme exemples de composés comprenant du molybdène autres que les composés Mo-DTC et Mo-DTP selon l'invention, on peut citer les composés tels que décrits dans le document EP 2 078 745. Comme exemple particulier de composés comprenant du molybdène autres que les composés Mo- DTC et Mo-DTP selon l'invention, on peut citer notamment les complexes succinimide à base de molybdène.
Huiles de base
La composition lubrifiante selon la présente invention comprend au moins une huile de base pouvant être choisie parmi les huiles de base des groupes I à V tels que définis dans la classification API (American Petroleum Institute) ou son équivalent européen : la classification ATIEL (Association Technique de l'Industrie Européenne des Lubrifiants) ou leurs mélanges.
L'huile de base ou le mélange d'huiles de base peut être d'origine naturelle ou synthétique.
L'huile de base ou le mélange d'huiles de base peut représenter au moins 50 %, de préférence au moins 60%, plus préférentiellement au moins 70 %, encore plus préférentiellement au moins 80%, par rapport à la masse totale de la composition lubrifiante.
Le tableau ci-dessous décrit les groupes des huiles de base selon la classification API (Publication API n°1509 Engine Oil Licencing and Certification System appendix E, 14th Edition, December 1996).
Figure imgf000014_0001
Les huiles des groupes I à V peuvent être des huiles d'origine végétale, animale, ou minérale. Les huiles de base dites minérales incluent tous types de bases obtenues par distillation atmosphérique et sous vide du pétrole brut, suivie d'opérations de raffinage telles qu'extraction au solvant, désalphatage, déparaffinage au solvant, hydrotraitement, hydrocraquage et hydroisomérisation, hydrofinition.
L'huile de base de la composition selon l'invention peut également être une huile synthétique, telle que certains esters d'acides carboxyliques et d'alcools ou des polyalphaoléfines. Les polyalphaoléfines utilisées comme huile de base, et qui se distinguent des polyalphaoléfines lourdes pouvant également être présentes dans les compositions selon l'invention, peuvent par exemple être obtenues à partir de monomères ayant de 4 à 32 atomes de carbone (par exemple octène, décène), et avoir une viscosité à 100°C allant de 1 ,5 à 15 cSt (mesurée selon la norme internationale ASTM D445.
Des mélanges d'huiles synthétiques et minérales peuvent également être employés.
De manière avantageuse, la composition selon l'invention est formulée pour obtenirune viscosité cinématique à 100°C (KV100) allant de 4 à 25 cSt, de préférence de 5 à 22 cSt, plus préférentiellement de 5 à 13 cSt mesurée selon la norme internationale ASTM D445.
De manière avantageuse, la composition selon l'invention est formulée pour présenter un indice de viscosité VI supérieur ou égal à 140, préférentiellement supérieur ou égal à 150, plus préférentiellement supérieur ou égal à 160.
L'invention a également pour objet une huile, préférentiellement une huile moteur comprenant une composition lubrifiante selon l'invention.
L'ensemble des caractéristiques et préférences présentées pour la composition lubrifiante s'applique également à l'huile selon l'invention.
Dans un mode de réalisation, l'huile selon l'invention peut être de grade OW-20 et 5W-30 selon la classification SAEJ300, caractérisée par une viscosité cinématique à 100°C (KV100) allant de 5,6 à 12,5 cSt mesurée selon la norme internationale ASTM D445.
Dans un autre mode de réalisation, l'huile selon l'invention peut être caractérisée par un indice de viscosité, mesurée selon la norme internationale ASTM D2230, supérieur ou égal à 130, de préférence supérieur ou égal à 150, plus préférentiellement supérieur ou égal à 160.
Pour formuler une huile moteur, on pourra avantageusement utiliser des huiles de base ayant une teneur en soufre inférieure à 0,3 % par exemple des huiles minérales de groupe III, et des bases synthétiques exemptes de soufre, préférentiellement de groupe IV, ou leur mélange. Autres additifs
Selon un mode de réalisation, la composition lubrifiante selon l'invention peut en outre comprendre au moins un additif. L'additif peut être choisi parmi le groupe formé par les additifs anti-usure, les additifs extrême pression, les antioxydants, les détergents surbasés ou non, les polymères améliorant l'indice de viscosité, les améliorants de point d'écoulement, les dispersants, les anti-mousse, les épaississants et leurs mélanges. Le ou les additifs peuvent être introduits isolément et/ou inclus dans des paquets d'additifs. L'ajout du ou des additifs choisis dépendent de l'utilisation de la composition lubrifiante. Ces additifs et leur emploi en fonction de la finalité de la composition lubrifiante sont bien connus de l'homme du métier.
Dans un mode de réalisation de l'invention, le ou les additifs sont adaptés à une utilisation comme huile moteur. Dans un mode de réalisation, la composition lubrifiante peut comprendre en outre au moins un additif anti-usure, au moins un additif extrême pression ou leur mélange. Les additifs anti-usure et extrême pression protègent les surfaces en frottement par formation d'un film protecteur adsorbé sur ces surfaces. Il existe une grande variété d'additifs anti-usure, mais la catégorie la plus utilisée dans les compositions lubrifiantes, notamment pour huile moteur, est celle des additifs phosphosoufrés comme les alkylthiophosphates métalliques, en particulier les alkylthiophosphates de zinc, et plus spécifiquement les dialkyldithiophosphates de zinc ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(OR9)(ORi0))2, où R9 et io, identiques ou différents, représentent indépendamment un groupement alkyle, comportant préférentiellement de 1 à 18 atomes de carbone. Les phosphates d'amines sont également des additifs anti-usure qui peuvent être employés dans les compositions lubrifiantes selon l'invention. Toutefois, le phosphore apporté par ces additifs agit comme poison des systèmes catalytiques des automobiles car ces additifs sont générateurs de cendres. On peut minimiser ces effets en substituant partiellement les phosphates d'amines par des additifs n'apportant pas de phosphore, tels que, par exemple, les polysulfures, notamment les oléfines soufrées.
Dans un mode de réalisation, notamment pour une application moteur, les additifs anti-usure et extrême-pression peuvent être présents dans l'huile à des teneurs allant de 0,01 à 6 % en masse, préférentiellement de 0,05 et 4%, préférentiellement de 0,1 % à 2% par rapport à la masse totale de l'huile.
Dans un mode de réalisation de l'invention, la composition lubrifiante peut comprendre, en outre, au moins un modificateur de frottement supplémentaire. L'additif modificateur de frottement supplémentaire peut être un composé apportant des éléments métalliques ou bien un composé sans cendres. Parmi les composés apportant des éléments métalliques, on peut citer les complexes de métaux de transition tels que Mo (autres qu'un composé Mo-DTC ou qu'un composé Mo-DTP), Sb, Sn, Fe, Cu, Zn, dont les ligands peuvent être des composés hydrocarbonés contenant des atomes d'oxygène, azote, soufre ou phosphore. Les modificateurs de frottement sans cendres sont d'origine organique et peuvent être choisis parmi les monoesters d'acides gras et de polyols, les aminés alcoxylées, les aminés alcoxylées grasses, les époxydes gras, les époxydes gras de borate; les aminés grasses ou les esters de glycérol d'acide gras. Par « gras » ou « grasse(s) » on entend au sens de la présente invention un groupement hydrocarboné comprenant de 10 à 24 atomes de carbone. Dans un mode de réalisation, l'additif modificateur de frottement supplémentaire peut être présent à des teneurs allant de 0,01 à 2 % en masse, préférentiellement de 0,1 à 1 ,5% dans la composition lubrifiante, par rapport à la masse totale de la composition lubrifiante.
Dans un mode de réalisation pour une application moteur, l'additif modificateur de frottement supplémentaire peut être présent dans l'huile moteur à des teneurs allant de 0,01 à 5 % en masse, préférentiellement de 0,1 à 2% dans des huiles moteur, par rapport à la masse totale de l'huile moteur. Dans un mode de réalisation, la composition lubrifiante peut comprendre, en outre, au moins un additif antioxydant. Les additifs antioxydants retardent la dégradation des huiles en service, dégradation qui peut notamment se traduire par la formation de dépôts, la présence de boues, ou une augmentation de la viscosité de l'huile. Les additifs antioxydants agissent notamment comme inhibiteurs radicalaires ou destructeurs d'hydropéroxydes. Parmi les antioxydants couramment employés, on peut citer les antioxydants de type phénolique ou aminé. Certains de ces additifs, par exemple les phosphosoufrés, peuvent être générateurs de cendres. Les antioxydants phénoliques peuvent être sans cendres, ou bien être sous forme de sels métalliques neutres ou basiques. Typiquement, ce sont des composés contenant un groupement hydroxyle stériquement encombré, par exemple lorsque deux groupements hydroxyles sont en position ortho ou para l'un par rapport à l'autre, ou que le phénol est substitué par un groupe alkyl comportant au moins 6 atomes de carbone. Les composés aminés sont une autre classe d'antioxydants pouvant être utilisés, éventuellement en combinaison avec les antioxydants phénoliques. Des exemples typiques sont les aminés aromatiques, de formule R11 R12R13N, dans laquelle Ru représente un groupement aliphatique ou un groupement aromatique éventuellement substitué, R12 représente un groupement aromatique éventuellement substitué, R13 représente un atome d'hydrogène, un groupement alkyle, un groupement aryle ou un groupement de formule Ri4S(0)xRi5, où Ri4 représente un groupe alkylène ou un groupement alkenylène, R12 représente un groupe alkyle, un groupe alcényle ou un groupement aryle et x représente un nombre entier égal à 0, 1 ou 2. Des alkyl phénols sulfurisés ou leurs sels de métaux alcalins et alcalino terreux peuvent également être utilisés comme antioxydants. Une autre classe d'antioxydants est celle des composés cuivrés solubles dans l'huile, par exemples les thio- ou dithiophosphates de cuivre, les sels de cuivre et d'acides carboxyliques, les dithiocarbamates, les sulphonates, les phénates, les acétylacétonates de cuivre. Les sels de cuivre I et II, d'acide ou d'anhydride succiniques peuvent également être utilisés.
La composition lubrifiante selon l'invention peut contenir tous types d'additifs antioxydants connus de l'homme du métier. De manière avantageuse, les antioxydants sans cendres sont utilisés.
Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre de 0,5 à 2% d'au moins un additif antioxydant en poids par rapport à la masse totale de la composition lubrifiant. Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre, en outre, un additif détergent. Les additifs détergents réduisent notamment la formation de dépôts à la surface des pièces métalliques par dissolution des produits secondaires d'oxydation et de combustion. Les détergents utilisables dans la composition lubrifiante selon l'invention sont bien connus de l'homme de métier. Les détergents communément utilisés dans la formulation de compositions lubrifiantes peuvent être des composés anioniques comportant une longue chaîne hydrocarbonée lipophile et une tête hydrophile. Le cation associé est typiquement un cation métallique d'un métal alcalin ou alcalino-terreux. Les détergents sont préférentiellement choisis parmi les sels de métaux alcalins ou alcalino-terreux d'acides carboxyliques, sulfonates, salicylates, naphténates, ainsi que les sels de phénates. Les métaux alcalins et alcalino-terreux sont préférentiellement le calcium, le magnésium, le sodium ou le baryum. Ces sels métalliques peuvent contenir le métal en quantité approximativement stœchiométrique ou bien en excès (en quantité supérieure à la quantité stœchiométrique). Dans ce dernier cas, ces détergents sont dits détergents surbasés. Le métal en excès, apportant le caractère surbasé au détergent, se présente sous la forme de sels métalliques insolubles dans l'huile, par exemple carbonate, hydroxyde, oxalate, acétate, glutamate, préférentiellement carbonate. Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre de 2 à 4% en poids de détergent, par rapport à la masse totale de la composition lubrifiante.
Dans un mode de réalisation, la composition lubrifiante peut comprendre en outre au moins un polymère améliorant l'indice de viscosité. Les polymères améliorant l'indice de viscosité permettent notamment de garantir une bonne tenue à froid et une viscosité minimale à haute température, pour formuler notamment des huiles multigrades. On peut citer parmi ces composés les esters polymères, les oléfines copolymères (OCP), les homopolymères ou copolymères du styrène, du butadiène ou de l'isoprène, hydrogénés ou non, les polyméthacrylates (PMA).
Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre de 1 à 15 % en masse de polymères améliorant l'indice de viscosité, par rapport à la masse totale de la composition lubrifiante.
Dans un mode de réalisation pour une application moteur, l'huile moteur selon l'invention comprend de 0,1 à 10 % en masse de polymères améliorant l'indice de viscosité, par rapport à la masse totale de l'huile moteur, de préférence de 0,5 à 5 %, préférentiellement de 1 à 2 %.
Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre en outre au moins un additif abaisseur de point d'écoulement. Les additifs abaisseurs de point d'écoulement améliorent notamment le comportement à froid des huiles, en ralentissant la formation de cristaux de paraffine. Comme exemple d'additifs abaisseurs de point d'écoulement, on peut citer les polyméthacrylates d'alkyle, des polyacrylates, des polyarylamides, des polyalkylphénols, des polyalkylnaphtalènes, des polystyrènes alkylés.
Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre, en outre, au moins un additif dispersant. Les dispersants assurent notamment le maintien en suspension et l'évacuation des contaminants solides insolubles constitués par les produits secondaires d'oxydation qui se forment lorsqu'une composition lubrifiante est en service. Les additifs dispersant peuvent être choisis dans les groupes formés par les succinimides, les PIB (polyisobutènes) succinimides, les Bases de Mannich.
Dans un mode de réalisation, la composition lubrifiante selon l'invention peut comprendre de 5 à 8 % en masse de dispersants, par rapport à la masse totale de la composition lubrifiante. Les pièces
La composition lubrifiante selon l'invention peut lubrifier au moins une pièce mécanique ou un organe mécanique, notamment des roulements, des engrenages, des joints de cardan, des transmissions, le système pistons/segments/chemises, les arbres à came, l'embrayage, les boîtes de vitesse manuelles ou automatiques, les culbuteurs, les carters etc. L'invention a également pour objet un procédé pour réduire les pertes d'énergie par frottement d'une pièce mécanique, ledit procédé comprenant au moins une étape de mise en contact d'une pièce mécanique avec une composition lubrifiante selon l'invention.
L'ensemble des caractéristiques et préférences présentées pour la composition lubrifiante s'applique également au procédé pour réduire les pertes d'énergie par frottement d'une pièce mécanique selon l'invention.
L'invention a également pour objet un procédé pour réduire la consommation de carburant d'un véhicule, le procédé comprenant au moins une étape de mise en contact d'une composition lubrifiante selon l'invention avec au moins une pièce mécanique du moteur du véhicule.
L'ensemble des caractéristiques et préférences présentées pour la composition lubrifiante s'applique également au procédé pour réduire la consommation de carburant d'un véhicule selon l'invention.
L'invention a également pour objet l'utilisation d'une composition lubrifiante selon l'invention pour réduire la consommation de carburant de véhicules.
L'ensemble des caractéristiques et préférences présentées pour la composition lubrifiante s'applique également à l'utilisation pour réduire la consommation de carburant de véhicules selon l'invention.
Les véhicules peuvent comprendre un moteur à combustion interne à deux ou quatre temps.
Les moteurs peuvent être des moteurs à essence ou des moteurs diesel destinés à être alimentés par de l'essence ou du diesel classique. Par « essence classique » ou par « diesel classique », on entend au sens de la présente invention des moteurs qui sont alimentés par un carburant obtenu après raffinage d'une huile d'origine minérale (tel que le pétrole par exemple). Les moteurs peuvent aussi être des moteurs à essence ou des moteurs à diesel modifiés pour être alimentés par un carburant à base d'huiles issues de matières renouvelables telles que les carburants à base d'alcool ou le carburant biodiesel.
Les véhicules peuvent être des véhicules légers tels que des automobiles, des motos, des poids lourds, des engins de travaux, des navires. L'invention a également pour objet l'utilisation d'une composition lubrifiante selon l'invention pour réduire les pertes d'énergie par frottement d'une pièce métallique, préférentiellement dans les roulements, les engrenages ou les joints de cardan. L'ensemble des caractéristiques et préférences présentées pour la composition lubrifiante s'applique également à l'utilisation pour réduire les pertes d'énergie par frottement d'une pièce métallique selon l'invention.
Les différents objets de la présente invention et leurs mises en œuvre seront mieux compris à la lecture des exemples qui suivent. Ces exemples sont donnés à titre indicatif, sans caractère limitatif.
Exemples
On a préparé les compositions lubrifiantes A et B (comparatif) et les compositions lubrifiantes C, D et E (selon l'invention) à partir des constituants suivants:
- une huile de base de groupe III ayant une viscosité cinématique à 100°C (KV100) égale à 4,18 cSt (mesurée selon la norme internationale ASTM D445),
- un polymère améliorant l'indice de viscosité qui est un polymère styrène/isoprène hydrogéné étoilé (SV) de la gamme Shellvis® de Shell,
- un polymère améliorant l'indice de viscosité qui est un polyméthacrylate (PMA), commercialisé sous le nom Viscoplex 3-200 par la société Evonik RohMax
- un paquet d'additifs comprenant un mélange de détergents carboxylate/sulfonate, un dispersant de type PIB succinimide, un additif anti-usure de type ZnDTP et un antioxydant de type diphénylamine (commercialisé sous le nom Irganox L57 par la société Chemtura),
- un composé dithiocarbamate de molybdène comprenant 10% en masse de Mo commercialisé par la société Adeka sous le nom de Sakura-lube 525.
- un composé dithiophosphate de molybdène comprenant 9% en masse de Mo commercialisé par la société Adeka sous le nom de Sakura-lube 300. Les pourcentages massiques des différents constituants des compositions lubrifiantes testées sont donnés dans le Tableau I ci-dessous. Tableau I
Figure imgf000022_0001
Test de stabilité :
Un flacon en verre fermé hermétiquement et comprenant 100 g de la composition lubrifiante à tester a été placé dans un réfrigérateur à une température de 0°C. Après une période d'une semaine, l'aspect visuel de la composition lubrifiante a été observé.
On a considéré que la composition était stable si elle restait limpide et qu'il n'y avait pas de dépôt formé au fond du flacon.
On a considéré que la composition lubrifiante n'était pas stable si elle était trouble et/ou si des dépôts se formaient au fond du flacon.
Les résultats sont présentés dans le tableau II ci-dessous. Tableau II
Figure imgf000023_0001
Les résultats montrent que les compositions selon l'invention présentent une bonne stabilité.
Test d'économie de carburant.
Ce test était basé sur l'utilisation d'un banc moteur entraîné.
Il s'agissait d'un banc moteur V6 3L Essence entraîné avec :
- une gamme de température huile et eau moteur de 50°C et 80°C représentatif des cycles d'homologation cibles : NEDC (correspondant au cycle de mesure d'émission polluante de référence en Europe) et JC08 (correspondant au cycle de mesure d'émission polluante de référence au Japon),
- une gamme de régime moteur de 500 tr/min à 3000 tr/min représentatif des cycles d'homologation cibles : NEDC et JC08.
Ce test inclut l'encadrement par une huile de référence pour suivre une dérive éventuelle du moyen d'essai et pour évaluer un niveau de gain par rapport à l'huile de référence.
L'huile de référence était une huile commerciale 0W20 ILSAC GF4 préconisée par le constructeur sur ce moteur.
Les gains en frottement sont exprimés dans le tableau III comme étant la moyenne à 50°C et 80°C des gains en frottement par rapport à l'huile de référence sur les plages de régimes définis. Il a été établi qu'un écart de 0,4% entre deux compositions permet de distinguer significativement les propriétés d'économie de carburant de ces compositions. Tableau III
Figure imgf000024_0001
Les résultats montrent que la composition lubrifiante selon l'invention présente à la fois de bonnes propriétés de stabilité ainsi que de bonnes propriétés d'économies de carburant.
II est à noter que ces économies de carburant sont obtenues lorsque le moteur tourne au ralenti, c'est à dire entre 550 et 800 tours par minute (trm) à 80°C mais également lorsque le moteur tourne à haut régime c'est-à-dire entre 1600 et 2400 tours par minute (trm) à 80°C

Claims

Revendications Composition lubrifiante comprenant au moins une huile de base, au moins un composé dithiocarbamate de molybdène, au moins un composé dithiophosphate de molybdène et dans laquelle : la quantité de molybdène apportée par le composé dithiophosphate de molybdène et par le composé dithiocarbamate de molybdène va de 1000 à 2500 ppm en masse par rapport à la masse totale de la composition lubrifiante, et la quantité de molybdène apportée par le composé dithiocarbamate de molybdène est strictement inférieure à 900 ppm en masse par rapport à la masse totale de la composition lubrifiante. Composition lubrifiante selon la revendication 1 dans laquelle la quantité de molybdène apportée par le composé dithiophosphate de molybdène et par le composé dithiocarbamate de molybdène va de 1 100 à 2000 ppm en masse par rapport à la masse totale de la composition lubrifiante, de préférence de 1200 à 1800 ppm, plus préférentiellement de 1300 à 1500 ppm. Composition lubrifiante selon la revendication 1 ou 2 comprenant au moins un composé dithiocarbamate de molybdène de formule (A1 ) :
(A1 ) dans laquelle Ri, R2, R3, R4, identiques ou différents, représentent indépendamment un groupement alkyle comportant de 4 à 18 atomes de carbone.
Composition lubrifiante selon la revendication 3 comprenant au moins un composé dithiocarbamate de molybdène de formule (A1 ) symétrique dans laquelle les groupements Ri, R2, R3 et R4 sont identiques. Composition lubrifiante selon la revendication 3 comprenant au moins un composé dithiocarbamate de molybdène de formule (A1 ) asymétrique dans laquelle :
- les groupements Ri et R2 sont identiques,
- les groupements R3 et R4 sont identiques, et
- les groupements Ri et R2 sont différents des groupements R3 et R4.
6. Composition selon l'une quelconque des revendications 3 à 5 comprenant au moins un composé dithiocarbamate de molybdène de formule (A1 ) symétrique et au moins un composé dithiocarbamate de molybdène de formule (A1 ) asymétrique.
7. Composition lubrifiante selon l'une quelconque des revendications 1 à 6 dans laquelle la quantité de molybdène apportée par le composé dithiocarbamate de molybdène est supérieure ou égale à 500 ppm et inférieure ou égale à 800 ppm en masse par rapport à la masse totale de la composition lubrifiante, de préférence inférieure ou égale à 700 ppm, plus préférentiellement inférieure ou égale à 600 ppm.
8. Composition lubrifiante selon l'une quelconque des revendications 1 à 7 dans laquelle le composé dithiophosphate de molybdène a pour formule générale la formule (B1 ) suivante :
Figure imgf000026_0001
dans laquelle R5, R6, R7, Rs, identiques ou différents, représentent indépendamment un groupement alkyle comportant de 4 à 18 atomes de carbone.
9. Composition lubrifiante selon l'une quelconque des revendications 1 à 8 comprenant en outre au moins un additif choisi parmi les détergents, les additifs anti-usure, les additifs extrême pression, les antioxydants, les polymères améliorant l'indice de viscosité, les améliorants de point d'écoulement, les dispersants, les anti-mousse, les épaississants et leurs mélanges.
Composition lubrifiante selon l'une quelconque des revendications 1 à 9 ayant une viscosité cinématique à 100°C mesurée selon la norme ASTM D445 de 4 à 25 cSt, préférentiellement de 5 à 22 cSt, avantageusement de 5 à 13 cSt.
Composition lubrifiante selon l'une quelconque des revendications 1 à 10 ayant un indice de viscosité supérieur ou égal à 140, préférentiellement supérieur ou égal à 150, avantageusement supérieur ou égal à 160.
Huile moteur comprenant une composition selon l'une quelconque des revendications 1 à 1 1.
Utilisation d'une composition lubrifiante selon l'une quelconque des revendications 1 à 1 1 pour réduire la consommation de carburant de véhicules.
Utilisation d'une composition lubrifiante selon l'une quelconque des revendications 1 à 1 1 pour réduire les pertes d'énergie par frottement dans les roulements, les engrenages, les joints de cardans.
Procédé de réduction des pertes d'énergie par frottement d'une pièce mécanique comprenant au moins une étape de mise en contact d'une pièce mécanique avec une composition lubrifiante selon l'une quelconque des revendications 1 à 1 1.
Procédé pour réduire la consommation de carburant d'un véhicule comprenant au moins une étape de mise en contact d'une pièce mécanique du moteur du véhicule avec une composition lubrifiante selon l'une quelconque des revendications 1 à 1 1 .
PCT/EP2013/073951 2012-11-16 2013-11-15 Composition lubrifiante WO2014076240A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015542275A JP2015535028A (ja) 2012-11-16 2013-11-15 潤滑剤組成物
KR1020157015060A KR102119233B1 (ko) 2012-11-16 2013-11-15 윤활유 조성물
CN201380067892.0A CN104870623B (zh) 2012-11-16 2013-11-15 润滑剂组合物
US14/442,582 US10752858B2 (en) 2012-11-16 2013-11-15 Lubricant composition
MX2015006183A MX2015006183A (es) 2012-11-16 2013-11-15 Composicion lubricante.
EP13789835.9A EP2920283B1 (fr) 2012-11-16 2013-11-15 Composition lubrifiante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260933A FR2998303B1 (fr) 2012-11-16 2012-11-16 Composition lubrifiante
FR1260933 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014076240A1 true WO2014076240A1 (fr) 2014-05-22

Family

ID=47741051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073951 WO2014076240A1 (fr) 2012-11-16 2013-11-15 Composition lubrifiante

Country Status (9)

Country Link
US (1) US10752858B2 (fr)
EP (1) EP2920283B1 (fr)
JP (1) JP2015535028A (fr)
KR (1) KR102119233B1 (fr)
CN (1) CN104870623B (fr)
AR (1) AR095656A1 (fr)
FR (1) FR2998303B1 (fr)
MX (1) MX2015006183A (fr)
WO (1) WO2014076240A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174186A1 (fr) * 2015-04-30 2016-11-03 Total Marketing Services Composition lubrifiante ultra-fluide
US11118128B2 (en) * 2017-01-24 2021-09-14 Adeka Corporation Engine oil composition
US11268044B2 (en) 2015-07-23 2022-03-08 Total Marketing Services Long duration fuel economy lubricating composition
FR3118630A1 (fr) 2021-01-06 2022-07-08 Total Marketing Services Composition lubrifiante ayant une stabilité à froid et des propriétés fuel eco améliorées
WO2023031417A1 (fr) 2021-09-03 2023-03-09 Totalenergies Onetech Composition lubrifiante présentant des propriétés d'épaississement à froid améliorées

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990213B1 (fr) 2012-05-04 2015-04-24 Total Raffinage Marketing Composition lubrifiante pour moteur
FR3018079B1 (fr) 2014-02-28 2017-06-23 Total Marketing Services Composition lubrifiante a base de nanoparticules metalliques
JP2019066002A (ja) * 2017-10-03 2019-04-25 株式会社豊田中央研究所 摺動システム
CN109652171B (zh) * 2017-10-12 2021-12-14 中国石油化工股份有限公司 一种工业机器人关节rv减速机专用油组合物
JP6963521B2 (ja) * 2018-02-27 2021-11-10 株式会社パイロットコーポレーション 筆記具用油性インキ組成物およびそれを用いた筆記具
CN108795541A (zh) * 2018-07-12 2018-11-13 安徽意博润滑科技有限公司 一种润滑脂组合物及其制备方法及其使用方法
WO2021132518A1 (fr) * 2019-12-27 2021-07-01 出光興産株式会社 Composition d'huile lubrifiante
FR3108914B1 (fr) * 2020-04-01 2022-07-01 Total Marketing Services Composition lubrifiante comprenant un composé 2,5-dimercapto-1,3,4-thiadiazole alkyl polycarboxylate
CN111638151B (zh) * 2020-07-15 2022-02-22 一汽解放汽车有限公司 一种检测摩擦副的抗磨损性能的试验方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627146A (en) * 1994-12-27 1997-05-06 Asahi Denka Kogyo K.K. Lubricating oil composition
WO2010114209A1 (fr) * 2009-03-31 2010-10-07 장암엘에스 주식회사 Composition de graisse pour joints homocinétiques, présentant une résistance à la chaleur supérieure et une faible force de frottement
US20120184473A1 (en) * 2007-12-20 2012-07-19 Chevron Oronite Company LLC and Chevron Japan Ltd. Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072619A (en) 1976-08-30 1978-02-07 The Dow Chemical Company Ester lubricants containing polyoxyalkylene phenothiazines
JPS54159411A (en) 1978-06-07 1979-12-17 Nippon Oil & Fats Co Ltd Engine oil composition
JPS6088094A (ja) 1983-10-20 1985-05-17 Nippon Oil & Fats Co Ltd 潤滑油組成物
DE4001043A1 (de) 1990-01-16 1991-07-18 Basf Ag Motorenoel mit einem gehalt an phenolalkoxylaten
KR950014276A (ko) * 1993-11-05 1995-06-15 전성원 극압 및 저마찰용 그리이스
JPH07197068A (ja) 1993-12-30 1995-08-01 Tonen Corp 潤滑油組成物
JP3941889B2 (ja) 1995-06-15 2007-07-04 新日本石油株式会社 エンジン油組成物
JPH0931483A (ja) * 1995-07-20 1997-02-04 Tonen Corp 潤滑油組成物
JP3497952B2 (ja) * 1996-08-02 2004-02-16 東燃ゼネラル石油株式会社 潤滑油組成物
EP0960178B1 (fr) 1996-12-13 2001-10-24 Infineum USA L.P. Compositions d'huile lubrifiante contenant des complexes de molybdene organiques
US6110878A (en) 1997-12-12 2000-08-29 Exxon Chemical Patents Inc Lubricant additives
JP4201902B2 (ja) 1998-12-24 2008-12-24 株式会社Adeka 潤滑性組成物
US6458750B1 (en) 1999-03-04 2002-10-01 Rohmax Additives Gmbh Engine oil composition with reduced deposit-formation tendency
US6756413B2 (en) 2000-12-15 2004-06-29 Japan U-Pica Company, Ltd. O/W aqueous thermosetting resin dispersion, FRP precision filter medium made with the aqueous dispersion, and process for producing the same
EP1406912B1 (fr) 2001-07-18 2004-12-01 Crompton Corporation Complexes d'organomolybdene comme modificateurs de frottement
US7790659B2 (en) 2002-06-28 2010-09-07 Nippon Oil Corporation Lubricating oil compositions
US20060116298A1 (en) * 2002-09-10 2006-06-01 Laurent Chambard Lubricating oil compositions
FR2848668B1 (fr) 2002-12-16 2005-03-18 Totalfinaelf France Procede et dispositif pour la determination en continu de la degradation des systemes de post-traitement des gaz d'echappement de moteur thermique
US7662881B2 (en) 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
MX221601B (en) 2004-05-14 2004-07-22 Basf Ag Functional fluids containing alkylene oxide copolymers having low pulmonary toxicity
JP2007224887A (ja) 2006-02-27 2007-09-06 Toyota Motor Corp 油圧システム
JP5137314B2 (ja) * 2006-03-31 2013-02-06 Jx日鉱日石エネルギー株式会社 潤滑油基油
JP5175462B2 (ja) 2006-09-04 2013-04-03 出光興産株式会社 内燃機関用潤滑油組成物
US8258087B2 (en) 2006-12-08 2012-09-04 Nippon Oil Corporation Lubricating oil composition for internal combustion engine
CN101802150A (zh) 2007-07-13 2010-08-11 陶氏环球技术公司 润滑剂组合物的粘度指数改性剂
EP2179012A4 (fr) 2007-07-13 2011-08-17 Dow Global Technologies Llc Additif améliorant l'indice de viscosité pour compositions lubrifiantes
US20090093384A1 (en) 2007-10-03 2009-04-09 The Lubrizol Corporation Lubricants That Decrease Micropitting for Industrial Gears
FR2924439B1 (fr) 2007-12-03 2010-10-22 Total France Composition lubrifiante pour moteur quatre temps a bas taux de cendres
JP5158995B2 (ja) * 2007-12-14 2013-03-06 アール.ティー. ヴァンダービルト カンパニー インコーポレーティッド 優れた耐摩耗特性及び腐食特性を有するepグリース用添加剤組成物
WO2009134716A1 (fr) 2008-04-28 2009-11-05 Dow Global Technologies Inc. Composition de lubrifiant à base de polyalkylèneglycol
FR2932813B1 (fr) 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
KR20100008262A (ko) * 2008-07-15 2010-01-25 현대자동차주식회사 등속조인트용 그리스 조성물
FR2936812B1 (fr) 2008-10-03 2010-10-15 Total France Compositions lubrifiantes pour transmissions.
EP2177596A1 (fr) 2008-10-20 2010-04-21 Castrol Limited Procédé de l'opération d'un moteur hybride
FR2942627B1 (fr) 2009-02-27 2011-05-06 Total Raffinage Marketing Composition de graisse
JP5815520B2 (ja) 2009-07-23 2015-11-17 ダウ グローバル テクノロジーズ エルエルシー グループi〜ivの炭化水素油のための潤滑添加剤として有用なポリアルキレングリコール
JP5507933B2 (ja) 2009-09-07 2014-05-28 Jx日鉱日石エネルギー株式会社 エンジン油組成物
US8609597B2 (en) 2009-09-24 2013-12-17 Dow Global Technologies Llc Estolide compositions having excellent low temperature properties
US8455415B2 (en) 2009-10-23 2013-06-04 Exxonmobil Research And Engineering Company Poly(alpha-olefin/alkylene glycol) copolymer, process for making, and a lubricant formulation therefor
FR2961823B1 (fr) 2010-06-25 2013-06-14 Total Raffinage Marketing Compositions lubrifiantes pour transmissions automobiles
JP5827333B2 (ja) 2010-08-31 2015-12-02 ダウ グローバル テクノロジーズ エルエルシー 腐食抑制性ポリアルキレングリコール系潤滑剤組成物
EP2619295B1 (fr) 2010-09-24 2014-10-22 Dow Global Technologies LLC Anti-oxydants non à base d'aromatiques pour lubrifiants
FR2965274A1 (fr) 2010-09-28 2012-03-30 Total Raffinage Marketing Composition lubrifiante
FR2968011B1 (fr) 2010-11-26 2014-02-21 Total Raffinage Marketing Composition lubrifiante pour moteur
FR2968669B1 (fr) 2010-12-13 2014-02-28 Total Raffinage Marketing Composition de graisse
WO2012129056A1 (fr) 2011-03-23 2012-09-27 Dow Global Technologies Llc Fluides de transfert de chaleur à base de polyalkylène glycol et huiles de moteur monofluides
KR20140029419A (ko) 2011-03-29 2014-03-10 다우 글로벌 테크놀로지스 엘엘씨 낮은 노아크 휘발성을 갖는 폴리알킬렌 글리콜 디에테르를 포함하는 윤활제 조성물
SG194007A1 (en) * 2011-04-15 2013-11-29 Vanderbilt Chemicals Llc Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
FR2980799B1 (fr) 2011-09-29 2013-10-04 Total Raffinage Marketing Composition lubrifiante pour moteur marin
FR2990213B1 (fr) 2012-05-04 2015-04-24 Total Raffinage Marketing Composition lubrifiante pour moteur
FR2990215B1 (fr) 2012-05-04 2015-05-01 Total Raffinage Marketing Composition lubrifiante pour moteur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627146A (en) * 1994-12-27 1997-05-06 Asahi Denka Kogyo K.K. Lubricating oil composition
US20120184473A1 (en) * 2007-12-20 2012-07-19 Chevron Oronite Company LLC and Chevron Japan Ltd. Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate
WO2010114209A1 (fr) * 2009-03-31 2010-10-07 장암엘에스 주식회사 Composition de graisse pour joints homocinétiques, présentant une résistance à la chaleur supérieure et une faible force de frottement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201068, Derwent World Patents Index; AN 2010-M89316, XP002695232 *
ROUNDS F: "Effects of Organic Molybdenum Compounds on the Friction and Wear Observed with ZDP-Containing Lubricant Blends", 35TH STLE/ASME TRIBOLOGY CONFERENCE,, 16 October 1989 (1989-10-16), pages 345 - 354, XP007916401 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174186A1 (fr) * 2015-04-30 2016-11-03 Total Marketing Services Composition lubrifiante ultra-fluide
FR3035663A1 (fr) * 2015-04-30 2016-11-04 Total Marketing Services Composition lubrifiante ultra-fluide
KR20180004718A (ko) * 2015-04-30 2018-01-12 토탈 마케팅 서비스 초유동성 윤활 조성물
US10731102B2 (en) 2015-04-30 2020-08-04 Total Marketing Services Ultra-fluid lubricating composition
KR102644248B1 (ko) 2015-04-30 2024-03-06 토탈에너지스 마케팅 써비씨즈 초유동성 윤활 조성물
US11268044B2 (en) 2015-07-23 2022-03-08 Total Marketing Services Long duration fuel economy lubricating composition
US11118128B2 (en) * 2017-01-24 2021-09-14 Adeka Corporation Engine oil composition
FR3118630A1 (fr) 2021-01-06 2022-07-08 Total Marketing Services Composition lubrifiante ayant une stabilité à froid et des propriétés fuel eco améliorées
WO2022148753A1 (fr) 2021-01-06 2022-07-14 Totalenergies Onetech Composition lubrifiante ayant une stabilité à froid et des propriétés fuel eco améliorées
WO2023031417A1 (fr) 2021-09-03 2023-03-09 Totalenergies Onetech Composition lubrifiante présentant des propriétés d'épaississement à froid améliorées
FR3126711A1 (fr) 2021-09-03 2023-03-10 Totalenergies Marketing Services Composition lubrifiante présentant des propriétés d’épaississement à froid améliorées

Also Published As

Publication number Publication date
CN104870623B (zh) 2019-03-26
EP2920283A1 (fr) 2015-09-23
FR2998303A1 (fr) 2014-05-23
CN104870623A (zh) 2015-08-26
US10752858B2 (en) 2020-08-25
JP2015535028A (ja) 2015-12-07
EP2920283B1 (fr) 2021-07-21
KR102119233B1 (ko) 2020-06-04
MX2015006183A (es) 2015-12-03
KR20150084905A (ko) 2015-07-22
US20160130521A1 (en) 2016-05-12
AR095656A1 (es) 2015-11-04
FR2998303B1 (fr) 2015-04-10

Similar Documents

Publication Publication Date Title
EP2920283B1 (fr) Composition lubrifiante
EP3289054B1 (fr) Composition lubrifiante ultra-fluide
EP3083907B1 (fr) Composition lubrifiante a base de triamines grasses
EP2245125A1 (fr) Composition lubrifiante pour moteur quatre temps a bas taux de cendres
CA2871433A1 (fr) Composition lubrifiante pour moteur
EP3274432A1 (fr) Composition lubrifiante
CA2955128A1 (fr) Compositions lubrifiantes pour vehicule a moteur
WO2017149119A1 (fr) Composition lubrifiante à base d'amines neutralisées et de molybdène
EP3325583B1 (fr) Composition lubrifiante a fuel eco longue durée
EP2935542A1 (fr) Composition lubrifiante a base d'ether de polyglycerol
EP2958980A1 (fr) Composition lubrifiante a base de composes amines
WO2017157892A1 (fr) Composition lubrifiante a base de polyalkylene glycols
EP3529341B1 (fr) Composition lubrifiante
EP2488618B1 (fr) Utilisation d'un lubrifiant moteur
FR3080383A1 (fr) Composition lubrifiante pour moteurs industriels a potentiel fe amplifie
FR3011246A1 (fr) Composition lubrifiante a base de copolymeres ethylene/propylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14442582

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015542275

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/006183

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013789835

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157015060

Country of ref document: KR

Kind code of ref document: A