WO2014074004A1 - Procédé de détermination de débit de constituants de mélange multiphasé - Google Patents

Procédé de détermination de débit de constituants de mélange multiphasé Download PDF

Info

Publication number
WO2014074004A1
WO2014074004A1 PCT/RU2012/000915 RU2012000915W WO2014074004A1 WO 2014074004 A1 WO2014074004 A1 WO 2014074004A1 RU 2012000915 W RU2012000915 W RU 2012000915W WO 2014074004 A1 WO2014074004 A1 WO 2014074004A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
filter
rays
constituents
determining
Prior art date
Application number
PCT/RU2012/000915
Other languages
English (en)
Inventor
Alexandra Igorevna BOTYACHKOVA
Gennadiy Gennadievich KARPINSKIY
Stepan Alexandrovich Polikhov
Reiner Franz Schulz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/RU2012/000915 priority Critical patent/WO2014074004A1/fr
Publication of WO2014074004A1 publication Critical patent/WO2014074004A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/087Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures

Definitions

  • the invention relates to a method for determining the flow rates in a multi-phase mixture according to the preamble of claim 1.
  • volumetric flow as well as phase composition of the fluid needs to be determined.
  • Volumetric flow can be detected by conventional flow rate detectors, e.g. by recording the pressure drop in a Venturi tube.
  • phase composition it is known to employ X-ray absorption, utilizing the fact that gas and liquid phases, as well as different elements, usually exhibit different absorp- tion coefficients. By measuring X-ray or gamma absorption at at least two different wavelengths, the ratio of the individual phases can therefore be determined.
  • X- rays of at least two different energies are provided and the absorption of the X-rays by the mixture is measured by means of an X-ray detector matrix.
  • an X-ray detector with energy resolution is used.
  • the X-ray detector not only registers the total count of incoming X-ray photons, but rather the count of X-ray photons associated with their energies. This allows a simultaneous measurement of high- and low-energy photons and an evaluation of the measurement results in terms of fluid composition.
  • the method according to the invention yields substantially faster results than conventional flow measurements and does not require maintenance-heavy devices or high-energy gamma sources, so maintenance and handling problems are avoided.
  • the X-rays are produced by a standard polychromatic X-ray source. This reduces the complexity of the devices needed further, in particular compared to flow-meters with two separate X-ray sources.
  • the X-ray source produces a spectrum with a K-line at 60-80 keV. This provides high-energy photons of a suitable wavelength for flow measurements .
  • the X-rays emitted from the X-ray source are transmitted through a filter with an X-ray fluorescence emission spectrum exhibiting a peak at 20-25 keV. At this energy, water and oil exhibit a markedly different X-ray attenuation, allowing for accurate measurements of phase composition.
  • a filter material is Rhodium.
  • a filter with a structured surface is used.
  • the surface can be regularly or stochastically roughened. Such surface structures reduce or avoid self-absorption of the fluorescence radiation created in the filter.
  • the filter itself can be made up from X-ray fluorophore particles embedded in an X-ray transparent matrix.
  • the fluorophore particles can be spherical or otherwise shaped grains of the fluorescent material embedded in the radiation trans- parent binder material of the matrix. This allows for balancing of the amount of transmitted high energy photons and low- energy photons created by X-ray fluorescence.
  • the invention is not limited to the application to flowing liquid/gas mixtures in tubes, but it can also be used for the measurement of the flow of any masses, e.g. solids/liquids on a conveyor belt.
  • FIG 1 A schematic representation of an X-ray tube suitable for use in an embodiment of a method according to the invention
  • FIG 2 a graph showing the linear attenuation coefficients of oil and water for photons in the energy range up to 100 keV;
  • FIG 3 a graph representing the influence of an X-ray fluorescent filter used in an embodiment of the method according to the invention on a high-energy X-ray spectrum emitted by an X-ray tube;
  • FIG 4 a schematic cross-sectional view through the surface portion of a filter used in an embodiment of the method according to the invention
  • FIG 5 a schematic cross-sectional view through the surface portion of an alternative filter used in an embodiment of the method according to the invention.
  • FIG 6 a schematic cross-sectional view through the surface portion of an alternative filter used in an embodiment of the method according to the invention, showing the embedding of fluorophore particles in an X-ray transparent matrix.
  • X-rays are produced by an X-ray tube 10, transmitted across the pipeline and detected by a detector 12.
  • X-rays of at least two different energies allows for determination of the ratio between the phases, which, together with a conventionally meas- ured flow velocity, yields the total flow rate for all the components in the mixture.
  • electrons are emitted from a cathode 14 within a vacuum chamber 16 and accelerated towards an anode 18 by an acceleration voltage.
  • an acceleration voltage When the electrons hit the anode 18, X-ray photons are produced and directed through an X-ray transparent window 20 towards the desired direction.
  • the energy of the photons is dependent on the acceleration voltage and the material of the anode 18.
  • the emission spectrum of the X-ray tube 10, as shown on the left side of FIG 3, has to be modified.
  • a rhodium filter 22 is placed in the optical path of the X-rays produced by the tube 10. Rhodium exhibits a characteristic X- ray fluorescence at 20-25 keV.
  • the resulting spectrum, depicted on the right side of FIG 3, shows an intense high- energy peak at roughly 60 keV, resulting from the K-emission of the anode 18, as well as an intense low-energy peak at 20 keV caused by the X-ray fluorescence of the filter 22.
  • detector 12 When using a detector 12 with a low energy resolution of e.g. 20 keV, one profits from the low width of the peaks.
  • detectors 12 with a high energy resolution of 10 keV or less can be used, which profit from the high photon count in the respective energy bins.
  • essentially two high quality X-ray measurements can be achieved by a single X-ray pulse.
  • the surface 24 of the filter 22 can be structured, either in an irregular, stochastic manner or in an ordered way. Both implementations help to avoid the self-absorption of the X-ray fluorescence photons created by the filter 22, leading to an improved intensity in the low- energy band.
  • the filter 22 preferably consists of an X-ray-transparent matrix 26 with embedded particles 28 of an X-ray fluorescent matter, e.g. rhodium.
  • the filter 22 itself is preferably encapsulated within the vacuum chamber 16 of the tube 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

La présente invention porte sur un procédé de détermination de débits de constituants de mélange multiphasé. La présente invention concerne un procédé de détermination de débits de constituants de mélange multiphasé, dans lequel des rayons X d'au moins deux énergies différentes sont fournis et l'absorption des rayons X par le mélange est mesurée au moyen d'une matrice (12) de détecteur de rayons X. Selon la présente invention, un détecteur (12) de rayons X ayant une résolution d'énergie est utilisé.
PCT/RU2012/000915 2012-11-08 2012-11-08 Procédé de détermination de débit de constituants de mélange multiphasé WO2014074004A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000915 WO2014074004A1 (fr) 2012-11-08 2012-11-08 Procédé de détermination de débit de constituants de mélange multiphasé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000915 WO2014074004A1 (fr) 2012-11-08 2012-11-08 Procédé de détermination de débit de constituants de mélange multiphasé

Publications (1)

Publication Number Publication Date
WO2014074004A1 true WO2014074004A1 (fr) 2014-05-15

Family

ID=48670050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000915 WO2014074004A1 (fr) 2012-11-08 2012-11-08 Procédé de détermination de débit de constituants de mélange multiphasé

Country Status (1)

Country Link
WO (1) WO2014074004A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200701A1 (de) 2015-01-19 2016-07-21 Siemens Aktiengesellschaft Messeinrichtung zum Quantifizieren von unterschiedlichen Anteilen eines Fluid-Gemisches, sowie ein entsprechendes Verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029356A1 (fr) * 1996-02-07 1997-08-14 Biotraces, Inc. Procede et appareil de telemesure de densite
US20090161823A1 (en) * 2007-12-19 2009-06-25 Schlumberger Technology Corporation Apparatus and Method for Fluid Phase Fraction Determination Using R-Rays Optimized for Wet Gas
WO2009130492A1 (fr) * 2008-04-24 2009-10-29 Durham Scientific Crystals Limited Détermination de composition de liquides
WO2011005133A1 (fr) * 2009-07-07 2011-01-13 Siemens Aktiengesellschaft Appareil et procédé pour mesurer l'écoulement de fluides de plusieurs phases
WO2011119045A1 (fr) * 2010-03-24 2011-09-29 Institutt For Energiteknikk Procédé de réalisation de mesures par tomodensitométrie de flux multiphases contenant du pétrole à travers une conduite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029356A1 (fr) * 1996-02-07 1997-08-14 Biotraces, Inc. Procede et appareil de telemesure de densite
US20090161823A1 (en) * 2007-12-19 2009-06-25 Schlumberger Technology Corporation Apparatus and Method for Fluid Phase Fraction Determination Using R-Rays Optimized for Wet Gas
WO2009130492A1 (fr) * 2008-04-24 2009-10-29 Durham Scientific Crystals Limited Détermination de composition de liquides
WO2011005133A1 (fr) * 2009-07-07 2011-01-13 Siemens Aktiengesellschaft Appareil et procédé pour mesurer l'écoulement de fluides de plusieurs phases
WO2011119045A1 (fr) * 2010-03-24 2011-09-29 Institutt For Energiteknikk Procédé de réalisation de mesures par tomodensitométrie de flux multiphases contenant du pétrole à travers une conduite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200701A1 (de) 2015-01-19 2016-07-21 Siemens Aktiengesellschaft Messeinrichtung zum Quantifizieren von unterschiedlichen Anteilen eines Fluid-Gemisches, sowie ein entsprechendes Verfahren

Similar Documents

Publication Publication Date Title
RU2533758C2 (ru) Устройство и способ для измерения многофазного потока флюида
CN105849536B (zh) 利用谱去卷积进行谱分析
JP5911585B2 (ja) 放射能分析装置
RU2010129923A (ru) Устройство и способ определения фракций фаз текучей среды с использованием рентгеновских лучей, оптимизированный для неосушенного газа
JP5988890B2 (ja) 放射能分析装置および放射能分析方法
CN101937090A (zh) 一种高灵敏宽量程X-γ周围剂量当量率仪探头
JP5816542B2 (ja) 線量率計測システム及び線量率計測方法
US10386499B2 (en) Device for determining a deposited dose and associated method
WO2016061540A1 (fr) Procédé de contrôle du rayonnement
EP2875342A1 (fr) Débitmètre multiphasique à rayons x avec détecteur matriciel à discrimination d'énergie
EP2871478B1 (fr) Méthode d'analyse de fluide et débitmètre multiphase
JP2024009260A (ja) 放射線ベースの厚さゲージ
WO2014074004A1 (fr) Procédé de détermination de débit de constituants de mélange multiphasé
CA2703773C (fr) Dispositif pour la determination en ligne du contenu d'une substance et procede utilisant un tel dispositif
RU2559119C1 (ru) Устройство для определения компонентного состава потока многофазной жидкости
Meshkian et al. Applications of innovative SiPM-based PVT scintillator detectors
WO2014074005A1 (fr) Procédé de détermination de débits de constituants de mélange multiphasé
EP2927650A1 (fr) Analyse de fluide utilisant l'annihilation électron-positron
SE509116C2 (sv) Anordning för detektering av ädelgaser i avgaser från en kärnreaktor
CN104391317B (zh) 一种90Sr的γ能谱分析方法
JP5635583B2 (ja) γ線測定装置
Spasova et al. Uncertainty Budget for^ 2^ 2^ 6Ra Activity Concentration in Water by Alpha Spectrometry
WO2014035275A1 (fr) Débitmètre multiphasé rayons x à détecteur à matrice de résolution en énergie
JP7378377B2 (ja) 放射線分析装置およびダストモニタ装置
JP7134150B2 (ja) 放射能分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858695

Country of ref document: EP

Kind code of ref document: A1