WO2014073138A1 - 画像処理装置および内視鏡 - Google Patents

画像処理装置および内視鏡 Download PDF

Info

Publication number
WO2014073138A1
WO2014073138A1 PCT/JP2013/005385 JP2013005385W WO2014073138A1 WO 2014073138 A1 WO2014073138 A1 WO 2014073138A1 JP 2013005385 W JP2013005385 W JP 2013005385W WO 2014073138 A1 WO2014073138 A1 WO 2014073138A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization
polarized
image
subject
Prior art date
Application number
PCT/JP2013/005385
Other languages
English (en)
French (fr)
Inventor
克洋 金森
今村 典広
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP13853498.7A priority Critical patent/EP2918217B1/en
Priority to JP2014527398A priority patent/JP5857227B2/ja
Publication of WO2014073138A1 publication Critical patent/WO2014073138A1/ja
Priority to US14/467,316 priority patent/US20140362200A1/en
Priority to US15/960,438 priority patent/US10492660B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the present disclosure relates to an image processing apparatus and an endoscope used in the image processing apparatus.
  • the texture of the surface of the subject is changed at the same time as the color of the subject surface changes. It is necessary to confirm.
  • the surface texture is semi-transparent fine irregularities having an average size of 0.5 to 1.0 mm and a depth of about 0.1 to 0.2 mm, such as a stomach subdivision in the stomach. Since it is very difficult to capture this with a shadow of luminance by an endoscope, a blue pigment liquid such as an indigo carmine solution is distributed on the mucous membrane, and the state where the liquid accumulates in the groove is observed with luminance.
  • Embodiments of the image processing apparatus of the present disclosure enhance the concave region on the surface of the subject by detecting a concave region on the surface of the subject in the polarization imaging mode and obtaining a non-polarized image in the non-polarization imaging mode. Both an unillustrated image and a non-polarized image can be obtained.
  • the illumination unit in the polarization imaging mode, the first illumination light that is polarized in the first direction and the state that is polarized in the second direction that intersects the first direction
  • the illumination unit irradiates the subject with non-polarized illumination light
  • the wavelength range of the first illumination light is A polarization mosaic in which an illumination unit that sequentially emits the first and second illumination lights so as to have a portion that does not overlap in the wavelength range of the second illumination light, and a plurality of polarizers having different polarization transmission axis directions are arranged
  • the subject is irradiated with the first illumination light in an imaging element having an array and a light detection element array that receives light transmitted through each polarizer and outputs a signal.
  • a second polarized image composed of a signal of light transmitted through the polarizer having the polarization transmission axis in the intersecting direction is obtained, and the subject is irradiated with the non-polarized illumination light in the non-polarized imaging mode.
  • a polarization mosaic processing unit that obtains a non-polarized image constituted by a signal of light transmitted through each polarizer, and on the surface of the subject based on at least one of the first and second polarized images.
  • a concave region detecting unit that detects the concave region; and an image forming unit that forms an image showing the concave region on the surface of the subject in an emphasized manner.
  • the first white illumination light that is polarized in the first direction and the second direction that intersects the first direction.
  • the object is sequentially irradiated with the second white illumination light in a polarized state
  • the illumination unit that irradiates the object with the non-polarized white illumination light and a plurality of polarization transmission axes having different directions Polarized mosaic array in which the polarizers are arranged, a color mosaic filter in which color filters having different light transmission characteristics are arranged, and a light detecting element array that receives the light transmitted through each polarizer and each color filter and outputs a signal
  • the polarization transmission axis is set in a direction intersecting the first direction when the subject is illuminated with the first white illumination light.
  • a polarization mosaic processing unit that obtains a non-polarized image composed of light signals transmitted through a polarizer, and a concave that detects a concave region on the surface of the subject based on at least one of the first and second polarized images
  • Still another embodiment of the image processing apparatus includes a first white illumination light that is polarized in the first direction and a second direction that intersects the first direction in the polarization imaging mode.
  • the direction of the polarization transmission axis is different from that of the illumination unit that irradiates the subject with the non-polarized white illumination light.
  • An imaging device having a plurality of polarizers and a photodetecting device array having an aperture region provided with color filters having different light transmission characteristics and receiving light transmitted through the aperture region and outputting a signal.
  • the imaging device having a microlens array that covers the light detection element and the polarization imaging mode
  • the imaging device is moved forward in a direction that intersects the first direction.
  • a first polarization image composed of a signal of light transmitted through a polarizer having a polarization transmission axis, and a direction that intersects the second direction when the subject is illuminated with the second white illumination light
  • a part of the light detection elements selected from the plurality of light detection elements covered by the microlens array with a second polarization image formed by a light signal transmitted through a polarizer having the polarization transmission axis.
  • a non-polarized image composed of light signals transmitted through the respective polarizers when the subject is illuminated with the non-polarized white illumination light is formed in the non-polarized imaging mode.
  • An image separation unit a concave region detection unit that detects a concave region on the surface of the subject based on at least one of the first and second polarized images, and the concave region on the surface of the subject.
  • Still another embodiment of the image processing apparatus includes a first white illumination light that is polarized in the first direction and a second direction that intersects the first direction in the polarization imaging mode.
  • the direction of the polarization transmission axis is different from that of the illumination unit that irradiates the subject with the non-polarized white illumination light.
  • the imaging device having a photodetecting device array that receives and outputs a signal, and having a microlens array that covers a plurality of photodetecting devices, and in the polarization imaging mode
  • the first imaging device A first polarization image composed of a signal of light transmitted through a polarizer having the polarization transmission axis in a direction intersecting the first direction when the subject is illuminated with colored illumination light; and the subject A second polarization image formed by a signal of light transmitted through a polarizer having the polarization transmission axis in a direction crossing the second direction when the second white illumination light is irradiated , Formed based on signals from a part of the light detection elements selected from the plurality of light detection elements covered by the microlens array, and in the non-polarization imaging mode, the non-polarization imaging mode
  • An embodiment of the endoscope of the present disclosure is an endoscope used in any one of the image processing apparatuses described above, in the polarization imaging mode, the first illumination light that is polarized in the first direction, In addition, the subject is sequentially irradiated with the second illumination light that is polarized in the second direction intersecting the first direction, and in the non-polarization imaging mode, the subject is irradiated with the non-polarization illumination light.
  • An illuminating unit that sequentially emits the first and second illuminating light such that a wavelength region of the first illuminating light has a portion that does not overlap with a wavelength region of the second illuminating light; And an imaging element having a polarization mosaic array in which a plurality of polarizers having different directions of polarization transmission axes are arranged, and a light detection element array that receives light transmitted through each polarizer and outputs a signal.
  • Another embodiment of the endoscope according to the present disclosure is an endoscope used in any of the image processing apparatuses described above, and the first white illumination that is polarized in the first direction in the polarization imaging mode.
  • the object is sequentially irradiated with the light and the second white illumination light that is polarized in the second direction intersecting the first direction.
  • the non-polarization white illumination light is used.
  • the illumination unit that illuminates the subject, a polarization mosaic array in which a plurality of polarizers having different directions of polarization transmission axes are arranged, a color mosaic filter in which color filters having different light transmission characteristics are arranged, and each polarizer and each And an image sensor having a light detection element array that outputs a signal upon receiving light transmitted through the color filter.
  • Still another embodiment of the endoscope according to the present disclosure is an endoscope used in any of the image processing apparatuses described above, and is a first white that is polarized in a first direction in the polarization imaging mode.
  • the object is sequentially irradiated with the illumination light and the second white illumination light that is polarized in the second direction intersecting the first direction.
  • the non-polarization white illumination light is emitted.
  • an image sensor having a microlens array that covers a plurality of light detector elements.
  • Another embodiment of the endoscope according to the present disclosure is an endoscope used in any of the image processing apparatuses described above, and the first white illumination that is polarized in the first direction in the polarization imaging mode.
  • the object is sequentially irradiated with the light and the second white illumination light that is polarized in the second direction intersecting the first direction.
  • the non-polarization white illumination light is used.
  • Each of the illumination unit that irradiates the subject an aperture region provided with a plurality of polarizers having different directions of polarization transmission axes, a color mosaic filter in which color filters having different light transmission characteristics are arranged, and each of the aperture regions
  • An imaging device having a photodetecting element array that outputs light after receiving light transmitted through each color filter after passing through a polarizer, and having a microlens array covering a plurality of photodetecting elements Equipped with a.
  • the first illumination light that is polarized in the first direction and the first illumination light that is polarized in the second direction that intersects the first direction is sequentially irradiated with the illumination light of 2 and the object is irradiated with the non-polarized illumination light in the non-polarization imaging mode, so that unevenness information and inclination information on the object surface are obtained separately from the normal object image. be able to. For this reason, it is possible to synthesize an image similar to an image in which a blue pigment liquid such as an indigo carmine solution is distributed on the mucous membrane (an image in which the concave region is emphasized).
  • a blue pigment liquid such as an indigo carmine solution
  • (A) and (b) are both endoscopic images of gastric mucosa.
  • (A) And (b) is a figure which shows the observation state of the translucent uneven part by a brightness
  • (A) And (b) is a figure which shows the principle of polarization observation Graph showing the emission angle and transmittance when light exits the medium
  • (A) And (b) is a figure which shows the groove
  • (A) to (c) is a diagram showing a color wheel in the first embodiment of the present disclosure.
  • FIGS. 4A to 4C are diagrams illustrating a planar structure and a transmission axis direction of a wire grid forming a monochrome broadband polarization imaging device according to the first embodiment of the present disclosure.
  • FIGS. The figure which shows the cross-section of the monochrome broadband polarization
  • 6 is a diagram illustrating an operation in a normal imaging mode according to the first embodiment of the present disclosure. Timing chart of normal imaging mode in the first embodiment of the present disclosure The figure which shows operation
  • Timing chart of polarization imaging mode in the first embodiment of the present disclosure The figure which shows operation
  • Timing chart of polarization imaging mode in the first embodiment of the present disclosure The block diagram explaining the process of the recessed area detection part 204 and the image synthetic
  • Example of blue emphasis processing used in the concave area detection unit 204 (A) to (C) are experimental results using rat gastric mucosa.
  • FIGS. 9A to 9C are diagrams illustrating a planar arrangement of a color mosaic and a polarization mosaic according to the second embodiment of the present disclosure.
  • FIGS. The figure which shows operation
  • FIGS. 9A to 9C are diagrams illustrating a planar arrangement of a color mosaic and a polarization mosaic in Modification 1 of the second embodiment of the present disclosure.
  • FIGS. The figure which shows operation
  • FIGS. The figure which shows operation
  • FIG. 6A and 6B are diagrams for describing processing of the pixel selective re-integration unit 210 according to the third embodiment of the present disclosure.
  • 6A and 6B are diagrams illustrating images acquired in the normal imaging mode and the polarization imaging mode according to the third embodiment of the present disclosure.
  • FIG. 1 shows an image obtained by observing the surface mucosa of a human stomach with an endoscope.
  • FIG. 1A shows a normal color image, and only a gentle undulation is felt on the surface.
  • normal color image processing is processing for obtaining a color luminance image obtained by irradiating non-polarized white light.
  • the color image thus obtained is referred to as a “color luminance image”, and photographing for obtaining a color luminance image may be referred to as color luminance photographing.
  • FIG. 1 (b) shows a color image after the indigo carmine solution has been distributed.
  • the texture of the fine irregularities on the surface (size is 0.5 to 1.0 mm, depth is 0.1 to 0). .About 2 mm) can be clearly confirmed.
  • FIGS. 2 (a) and 2 (b) show simplified uneven cross sections formed on the surfaces of the stomach and intestinal organs.
  • the unevenness present on the surface of the stomach or intestine is generally considered to be formed by a repetitive array of upward convex convex shapes.
  • a concave region located between two adjacent convex portions is typically a small “groove” extending in a certain direction.
  • the plurality of grooves are locally aligned in substantially the same direction, but can generally exhibit a complex curvilinear shape or other pattern.
  • the actual unevenness on the surface of the subject may include a dot-like recess or protrusion, but in this specification, such an uneven recess may be simply referred to as a “groove” or “groove region”.
  • FIGS. 2A and 2B schematically show cross sections crossing several grooves existing in a narrow region in the surface portion of the subject.
  • the concave and convex portions as shown in FIGS. 2A and 2B extend in a direction perpendicular to the drawing sheet.
  • FIGS. 2 (a) and 2 (b) Since observation with an endoscope is coaxial illumination in which a light source is arranged in the vicinity of the photographing optical axis, illumination light is irradiated on the subject shown in FIGS. 2 (a) and 2 (b) from almost right above. In addition, the shooting is performed almost immediately above the subject.
  • One is specular reflection light (FIG. 2 (a)) in which light is reflected on the surface, and the other is internal diffused light that permeates the inside of the medium, reflects off the lower layer, and returns again from the surface. (FIG. 2B).
  • the specular reflection light is generated only when the irradiated light and the photographing optical axis are close to the specular reflection condition, the specular reflection light is generated only very locally in the photographing scene of the endoscope.
  • the color of the specular reflected light is the color of illumination, that is, white, and the luminance is very strong.
  • the subject image by the specular reflection light is generally strong and bright at the convex and concave portions on the surface of the subject, and weak and dark at the concave portion due to the above-described regular reflection conditions.
  • the internal diffused light is observed over the entire area of the photographing scene.
  • the color of the internal diffused light is the color of the medium itself, and the whole medium shines without the luminance being so strong.
  • the subject image by the internal diffused light tends to be dark at the thick convex portion of the medium and bright at the thin concave portion. That is, the correspondence between the brightness level and the unevenness of the subject surface is opposite between the specular reflection light and the internal diffused light.
  • FIG. 3 (a) and 3 (b) are diagrams for explaining observation using polarized light.
  • FIG. 3 (a) when polarized illumination in a direction parallel to the surface irregularities is irradiated, FIG. 3 (b) shows a polarized image in a crossed Nicol state when irradiated with polarized illumination in a direction perpendicular to the surface irregularities. Is getting.
  • an illumination 300 and a P-polarization filter 302 are arranged with respect to a schematic model 301 showing an uneven surface of an organ surface.
  • the model 301 is irradiated with light (P-polarized light or P-wave) polarized in parallel with the direction in which the unevenness of the model 301 extends (direction perpendicular to the drawing sheet).
  • the observation-side polarizing filter 303 (S) is arranged so as to form an orthogonal Nicol state, and the imaging device 304 acquires an image.
  • the polarizing filter 309 (S) for S-polarized illumination is arranged, and the observation-side polarizing filter 310 (P) is arranged so as to form an orthogonal Nicol state.
  • the polarized light when the polarization transmission axis of the polarizing filter is perpendicular to the paper surface of the drawing is P-polarized light
  • the polarized light when the polarization filter is parallel to the paper surface is S-polarized light (S wave).
  • the non-polarized scattered light 307 is polarized light 308 and 313 of internally diffused light that is emitted again from the surface from the inclined surface inclined with respect to the imaging system.
  • the internally diffused light becomes significantly polarized when the emission angle, which is the inclination between the boundary surface normal and the line of sight, is large.
  • the specular reflection components 306 and 312 are regular reflection in the coaxial illumination state, the same polarization state as the polarization state of the irradiated polarized light is maintained. Therefore, the specular reflection component 306 is polarized light perpendicular to the paper surface, and the specular reflection component 312 is polarized light parallel to the paper surface.
  • the polarization directions of the polarized light 308 and 313 of the internally diffused light are determined by Fresnel theory with respect to the polarized light emitted from the medium having a refractive index larger than 1 into the air.
  • FIG. 4 is a graph showing the state of polarization when light is emitted from a medium having a refractive index greater than 1 determined based on Fresnel theory into the air.
  • the transmittance is always T ⁇ > T ⁇ , that is, P-polarized light> S-polarized light with respect to the emission angle on the horizontal axis. Accordingly, both the internally diffused light polarizations 308 and 313 are polarized light having strong P-polarized light with respect to the inclination of the surface of the model 301.
  • the reflected light 306 is P-polarized light (perpendicular to the paper surface), and the reflected light 308 is S-polarized light (within the paper surface). Since the light is observed by the polarizing filter 303, the reflected light 306 becomes dark in the blocked state, and the reflected light 308 becomes bright in the transmitted state. That is, when the 301 scallop shape is observed from directly above, it is clearly observed as a striped pattern in which the vicinity of the central axis is dark and the vicinity of the slope is bright as in an image 314.
  • FIG. 3A the reflected light 306 is P-polarized light (perpendicular to the paper surface), and the reflected light 308 is S-polarized light (within the paper surface). Since the light is observed by the polarizing filter 303, the reflected light 306 becomes dark in the blocked state, and the reflected light 308 becomes bright in the transmitted state. That is, when the 301 scallop shape is observed from directly above, it is clearly observed as a striped pattern in which the vicinity of the
  • the P-polarization filter 310 of the imaging device 304 is observed, so that the reflected lights 312 and 313 are both blocked and darkened. That is, when the kamaboko shape of the model 301 is observed from directly above, it becomes dark as a whole as in the image 315 and the unevenness becomes unclear.
  • FIG. 5 is a diagram showing a result of executing this polarization imaging using a lenticular plate in which irregularities (many grooves) are actually formed in stripes on the acrylic plate surface.
  • the subject is a transparent sheet imitating a blood vessel placed on a complete diffusion plate and a milky white 2 mm thick acrylic lenticular plate placed thereon. This subject was observed from directly above.
  • the grooves of the lenticular plate were arranged parallel to the direction of 0 ° with respect to the horizontal direction in the drawing sheet.
  • FIG. 5A and FIG. 5B show images taken in a state where the polarized illumination is P and S, respectively. That is, in FIG.
  • FIGS. 5A and 5B Both the polarization imaging in FIGS. 5A and 5B were performed in a crossed Nicols state. When the orthogonal Nicol image captured at this time is observed, bright and dark stripes are clearly observed in the P direction in FIG. On the other hand, the brightness becomes unclear in FIG.
  • the concave portion on the surface can be detected by image processing such as differential filter processing if at least two types of orthogonal Nicol images in which polarized illuminations are orthogonal can be obtained.
  • image processing such as differential filter processing if at least two types of orthogonal Nicol images in which polarized illuminations are orthogonal can be obtained.
  • An image similar to an image in which a blue pigment liquid such as an indigo carmine solution is distributed on the mucous membrane can be reproduced by coloring the detected recesses in blue (blue) by color digital image processing.
  • the brightness of the specular reflection is extremely high, about 10 to 100, when the complete diffusion plate is 1. For this reason, when this high luminance is reduced so that the image pickup device is not saturated, and a crossed Nicols image is picked up, a polarizing filter having an extinction ratio performance of 100: 1 or more can be used.
  • FIG. 6 is a diagram schematically illustrating the overall configuration of the image processing apparatus according to the first embodiment of the present disclosure.
  • the image processing apparatus includes an endoscope 101, a control device 102, and a display unit 114.
  • the endoscope 101 has a distal end portion 106 having a monochrome broadband polarization imaging device 115 and an insertion portion 103 having a light guide 105 and a video signal line 108 inside.
  • the insertion portion 103 of the endoscope 101 has a structure that is long to the left and right and can be bent flexibly as shown.
  • the light guide 105 can transmit light even in a bent state.
  • the control device 102 includes a light source device 104 and an image processor 110.
  • a light source 118 which can be, for example, a xenon light source, a halogen light source, an LED light source, or a laser light source.
  • the non-polarized light emitted from the light source 118 passes through the color wheel 116 (ab) having a rotating RGB filter, the light becomes R red, G green, and B blue light sequentially. These lights are guided to the distal end portion 106 via the light guide 105 and become polarized or non-polarized light when passing through the illumination filter 200.
  • the illumination lens 107 irradiates the visceral mucosa surface 111 which is a subject as polarized or non-polarized illumination light 117.
  • the reflected light 113 from the subject passes through the objective lens 109 and forms an image on the monochrome broadband polarization image sensor 115.
  • the synchronizer 112 sends an imaging start signal to the monochrome broadband polarization image sensor 115 in synchronization with the rotation of the color wheel 106a to acquire an image by reflected light.
  • the imaged video signal is sent to the image processor 110 via the video signal line 108.
  • Color imaging and polarization imaging are executed by successively executing the above processing by the RGB sequential method.
  • a mode for performing normal color imaging may be referred to as a “non-polarized imaging mode” or a “normal imaging mode”
  • a mode for performing polarized imaging may be referred to as a “polarized imaging mode”.
  • the illumination control unit 120 illuminates the color wheel corresponding to each of the signals. It is inserted into the optical path 121 of light. By doing so, the spectral characteristic of the illumination used for the surface sequential irradiation is changed.
  • the color image processed by the polarization mosaic processing unit 202 is assembled into a full-color moving image by the image combining unit 206 and displayed on the display unit 114 as, for example, a moving image. Further, in the polarization imaging mode, an image processed by the polarization mosaic processing unit 202 is detected on the display unit in which the concave region on the surface is detected by the concave region detection unit 204 and is highlighted in blue by the image composition unit 206. Is displayed.
  • FIGS. 7A to 7C show examples of color wheels that can be used for illumination.
  • the normal imaging color wheel 116a shown in FIG. 7A has three fan-shaped regions provided around the rotation axis.
  • the three fan-shaped regions are respectively a red filter that transmits the substantially same red wavelength region indicated by R1R2 simultaneously, a green filter that transmits the substantially same green wavelength region indicated by G1G2, and a blue wavelength of substantially the same color indicated by B1B2. It consists of a blue filter that transmits through the area simultaneously.
  • R1 and R2 of “R1R2” indicate the red (R) wavelength range, for example, the short wavelength side half of 600 nm to 700 nm and the long wavelength side half wavelength range, respectively.
  • the fan-shaped region described as “R1R2” is a region that transmits light in both the wavelength region of R1 and the wavelength region of R2, and is described as “R”. May be.
  • a symbol such as “R1” may be used to indicate a specific wavelength range, or may be used to indicate a filter that selectively transmits light in such a wavelength range.
  • the polarization imaging color wheel 116b may have various configurations depending on the setting of the wavelength range for performing polarization imaging.
  • FIG. 7B shows an example of a color wheel 116b that sequentially transmits light of two types of wavelength bands in which green and blue are mixed. The color wheel 116b can select a wavelength range suitable for detecting the surface uneven texture.
  • FIG. 7C shows another example of the color wheel 116b that sequentially transmits light of six different wavelength ranges.
  • the color wheel 116b having such a configuration is suitable for acquiring a full-color orthogonal Nicol image. Note that one of the color wheel 116a of FIG. 7A and the color wheel 116b of FIG. 7B or 7C is designated by an external signal and selectively used. More specifically, the color wheel 116a is used in the non-polarization imaging mode or the normal imaging mode, and the color wheel 116b is used in the polarization imaging mode.
  • FIG. 8 is a diagram showing the transmission characteristics of the illumination filter 200. It has comb-shaped transmission characteristics in which P-polarized light and S-polarized light are transmitted alternately in the visible light wavelength ranges of B, G, and R. For example, in the example shown in FIG. 8, only the P-polarized light is transmitted in the wavelength range B1 (range of 400 to 450 nm), and only the S-polarized light is transmitted in the wavelength range B2 (range of 450 to 500 nm). For this reason, when the wavelength of light passing through the light guide from the light source is included in the wavelength band B1, the light is converted into P-polarized polarized illumination light by the illumination filter 200.
  • the wavelength of light passing through the light guide from the light source is included in the wavelength band B2
  • the light is converted into S-polarized polarized illumination light by the illumination filter 200.
  • the wavelength of light passing from the light source through the light guide spreads over the entire wavelength band B1B2, unpolarized illumination light is obtained because P-polarized light and S-polarized light are mixed. .
  • a filter having the characteristics shown in FIG. 8 can be realized as a multilayer polarizer.
  • Patent Document 2 describes an example thereof.
  • FIG. 9 is a diagram schematically showing an example of the structure of the pattern polarizer (polarization mosaic or polarization mosaic array) on the imaging surface of the monochrome broadband polarization image sensor 115. As shown in FIG. 9A, pixels are regularly arranged in rows and columns (XY directions) on the imaging surface.
  • the imaging element 115 is used in a surface sequential manner in which the color of illumination light sequentially changes to R, G, and B, no color mosaic filter is arranged on the imaging surface. That is, the image sensor 115 itself is a monochrome image sensor, and a polarizer is arranged in each pixel. Since light contained in the visible light wavelength range sequentially enters each pixel, the polarization selection characteristics of the polarizer used in the present embodiment are realized in the visible light band. Specifically, in the band of 400 nm to 800 nm, the extinction ratio indicating the polarization acquisition performance of the polarizer of this embodiment is 100: 1 or more.
  • this embodiment does not use a polarizer that exhibits polarization characteristics only at a specific wavelength that occupies a part of the visible light band, but instead uses a metal wire grid polarizer that can exhibit high polarization acquisition performance in a wide wavelength range. Used.
  • FIG. 9B shows one unit 801 of a polarizing filter corresponding to four pixels (2 ⁇ 2 blocks) arranged in 2 rows and 2 columns.
  • polarizing filters four polarizers
  • a plurality of straight lines shown on each polarizing filter indicate the direction of the transmission axis of polarized light.
  • FIG. 9C shows a wire arrangement in the case where it is realized by a metal wire grid corresponding to FIG. 9B.
  • the direction perpendicular to the direction of the metal wire (TE axis) is the polarization transmission axis. Therefore, when the wire is represented by a straight line in the schematic diagram, the direction of the polarization axis in FIG. ) Is 90 degrees different from the direction of the straight line of the metal wire.
  • the straight line (parallel to the polarization transmission axis) in FIG. Plan views that directly depict the wire direction shall not be used.
  • the arrangement plane of the metal wire grid can take various positions within the range from the uppermost surface of the image sensor to the lower layer.
  • the duty ratio between the width L and the interval S of each wire constituting the wire grid is a trade-off between the transmittance and the extinction ratio. In the embodiment of the present disclosure, the width L and the interval S are assumed to be equal.
  • the number of wire grids is 0 ° and 90 ° with respect to the vertical axis or horizontal axis in the imaging plane. In the case of forming an angle of °, the number is 17.
  • Non-patent document 1 discloses an example in which a prototype of a polarization imaging device using an aluminum wire grid polarizer was actually manufactured and performance of extinction ratio was measured.
  • Incident light reaches the imaging surface from the objective lens 109 disposed above the imaging element 115.
  • the microlens 220 is disposed on the uppermost surface.
  • the role of the microlens 220 is to condense light onto an efficient PD (photodiode) 232.
  • the microlens 220 is effective particularly in a case where wide-angle shooting is frequently used like an endoscope because the optical path of obliquely incident light is turned to an angle close to perpendicular to the imaging surface.
  • the presence of the microlens 220 has the effect of preventing the TM transmittance and the extinction ratio from being lowered because light can be incident on the wire grid layers 222 and 224 from almost right above.
  • a planarization layer 226 below the microlens 220 is a planarization layer 226.
  • a first wire grid layer 222 is disposed in the lower layer. The first wire grid layer 222 transmits only polarized light in a specific direction rotated by 90 ° in the imaging plane, and reflects or absorbs other light.
  • the first wire grid layer 222 in this embodiment has a hollow structure between metal wires, and each metal wire is in contact with air. For this reason, it has the effect which prevents the performance fall of an extinction ratio.
  • the second wire grid layer 224 is disposed below the first wire grid layer 222.
  • the second wire grid layer 224 is basically the same arrangement direction, size, and material as the first wire grid layer 222 and has the same hollow structure.
  • the extinction ratio of the entire two layers can be reduced to about 100: 1 even in a fine wire grid in which each extinction ratio is reduced to about 10: 1. Can be improved.
  • a planarizing layer 228 and wiring 230 are provided below the second wire grid 224. Since the wiring 230 is not disposed in the light transmitting portion, the light reaches the PD (photodiode) 232 in the lower layer without being shielded from light.
  • PD photodiode
  • the distance from the microlens 220 to the PD 232 is long, crosstalk between pixels occurs and the polarization characteristics, particularly the extinction ratio, are reduced.
  • the distance from the wire grid to the PD is set to about 2 to 3 ⁇ m.
  • TE waves whose polarization direction is orthogonal to the transmitted TM waves are reflected, which becomes stray light and may cause performance deterioration. In order to avoid this, it is effective to provide the wire grids 222 and 224 with an absorption action as a multilayer structure instead of a single layer.
  • the imaging operation of the image processing apparatus in the present embodiment will be described.
  • FIG. 11A and FIG. 11B are a diagram and a timing chart showing illumination and imaging operations in the normal imaging mode, respectively.
  • the left side of FIG. 11A shows a spectrum of frame sequential illumination.
  • the illumination of B color is composed of mixed light of B1 (P-polarized light) and B2 (S-polarized light), which are strictly different colors and different polarized lights.
  • B1 P-polarized light
  • B2 S-polarized light
  • G and R illumination lights These illumination lights can be regarded as non-polarized light of B, G, and R, respectively, at the time of irradiation. For this reason, it is substantially the same as the known frame sequential illumination.
  • FIG. 11A only the basic unit 801 of the polarization mosaic included in the polarization imaging device 105 is shown. Of the four polarizers included in the basic unit 801, two polarizers (P polarization filters) positioned at the upper left and lower right transmit P-polarized light polarized in the horizontal direction within the imaging surface. The two polarizers (S polarization filters) located in the upper right and lower left transmit S-polarized light polarized in the direction perpendicular to the imaging surface.
  • P polarization filters positioned at the upper left and lower right transmit P-polarized light polarized in the horizontal direction within the imaging surface.
  • S polarization filters located in the upper right and lower left transmit S-polarized light polarized in the direction perpendicular to the imaging surface.
  • the polarization operation of the monochrome broadband polarization imaging device 115 functions over a range of 400 nm to 800 nm corresponding to the entire visible light region, it is 1 regardless of whether the subject is irradiated with B, G, or R color illumination light.
  • a single image sensor can be used.
  • the obtained captured image receives the return light from the subject that has received non-polarized illumination through the P polarization filter or the S polarization filter. For this reason, a non-polarized image can be acquired by averaging the obtained pixel values in a 2 ⁇ 2 four-pixel region. The averaged pixel value is virtually located at the center of 2 ⁇ 2 4 pixels. For this reason, on the rightmost side of FIG. 11A, NP (non-polarized light) is described in the pixel region indicated by the dotted line. By shifting 2 ⁇ 2 4 pixels in units of 1 pixel, resolution degradation does not substantially occur.
  • non-polarized imaging is realized for the non-polarized plane sequential illumination of B, G, and R, respectively.
  • the three primary color images are sequentially stored in the color image buffer memory and the three primary color images are obtained, these images are combined to generate a full-color moving image.
  • the above processing is referred to as “polarization mosaic pixel averaging processing” in this specification.
  • Polarization mosaic pixel averaging processing is executed by the polarization mosaic processing unit 202 in FIG. 6, and full-color moving image generation is executed by the image composition unit 206.
  • FIG. 11B shows the above operation in a timing chart.
  • FIG. 11B illustrates a color component image processed in the light emission operation, the imaging operation, and the polarization mosaic processing unit 202 from the upper part of FIG. 11B.
  • Each operation at this timing is realized by the synchronization circuit 112 controlling the illumination control unit 120, the monochrome broadband polarization imaging device 115, and the polarization mosaic processing unit 202.
  • FIG. 12 and 13 are a diagram and a timing chart showing an outline of operation of illumination and imaging in the polarization imaging mode, respectively.
  • the polarization imaging color wheel shown in FIG. 7A is used.
  • the left side of FIG. 12 shows the spectrum of surface sequential illumination.
  • the illumination of B color and G color is determined in consideration of characteristics of mucous membranes such as a digestive organ that is a subject. Since the B and G bands are shorter in wavelength than the R band, they are more likely to be surface scattered, and are suitable for observing light scattering on the surface texture. In the B and G bands, since strong absorption exists in the reflection characteristics of the biological mucous membrane, the contrast becomes high, and it is suitable for observing the surface uneven texture.
  • the subject is alternately irradiated with B1G1 which is P-polarized light and B2G2 which is S-polarized light by the rotation of the color wheel for polarization imaging.
  • the illumination light is applied to the subject, and the return light reflected from the subject is observed by the monochrome broadband polarization image sensor 105.
  • Different polarization components are measured in the basic unit 801 of the polarization mosaic.
  • a total of four types of pixel information of orthogonal Nicols (P ⁇ ) and parallel Nicols (P ⁇ ) in P-polarized illumination and orthogonal Nicols (S ⁇ ) and parallel Nicols (S ⁇ ) in S-polarized illumination are obtained.
  • it is necessary to interpolate the values of the pixels displayed with ⁇ which are spatially insufficient as pixel information based on the values of the pixels located in the surrounding area. This interpolation process can be realized by a simple averaging process from four surrounding pixels.
  • FIG. 13 is a timing chart showing the above operation. From the upper part of FIG. 13, a light emission operation, an imaging operation, and a color component image processed in the mosaic processing unit are shown.
  • the synchronization circuit 112 controls the operation at this timing.
  • orthogonal Nicol (P () (S ⁇ ) images and parallel Nicol (P ⁇ ) (S ⁇ ) images corresponding to the respective images are output as monochrome images.
  • the “monochrome image” is a luminance image indicating polarization information in the B and G wavelength bands.
  • FIG. 14 and 15 are a diagram and a timing chart showing an outline of illumination and imaging operations in the polarization imaging mode when the polarization imaging color wheel in FIG. 7C is used, respectively.
  • BGR frame sequential color illumination is performed.
  • imaging is particularly effective when the mucosal surface is visually observed while removing specular reflection and the like. It is also suitable for applications in which the polarization characteristics inside the biological mucous membrane are to be observed as a narrow wavelength band.
  • the illumination light is irradiated to the subject in turn by B1G1R1 which is P-polarized light and B2G2R2 which is S-polarized light by the rotation of the color wheel for polarization imaging in FIG.
  • the return light reflected by the subject is observed by the monochrome broadband polarization imaging device 105, and different components are imaged by the basic unit 801 of the polarization mosaic.
  • the obtained captured images are RGB full-color crossed Nicols (P ⁇ ) and parallel Nicols (P ⁇ ) in P-polarized illumination, and crossed Nicols (S ⁇ ) and parallel Nicols (S ⁇ ) for RGB wavelength regions in S-polarized illumination.
  • FIG. 15 is a timing chart showing the above operation.
  • the upper part of FIG. 15 shows the light emission operation of the illumination, the imaging operation, and the color component image processed in the mosaic processing unit.
  • the synchronization circuit 112 controls the operation at this timing.
  • a crossed Nicols (P ⁇ ) (S ⁇ ) image and a parallel Nicols (P ⁇ ) (S ⁇ ) image corresponding to the P-polarized light and S-polarized light are output at the timing of alternate irradiation.
  • Tps is a period in which B, G, R frame sequential light is irradiated with polarized illumination fixed. Become.
  • the RGB full-color orthogonal Nicol image 1510 in FIG. 15 includes an image 1501 under B1 (P) illumination, an image 1502 under G2 (S) illumination, and an image 1503 under R1 (P) illumination.
  • An image 1511 processed and displayed at the next timing in a crossed Nicol image in which polarization is mixed includes an image 1502 under G2 (S) illumination, an image 1503 under R1 (P) illumination, and under B2 (S) illumination.
  • the illumination of the orthogonal Nicol image includes P ⁇ and S ⁇ in a well-balanced manner, which is advantageous for detecting the concave region in the subsequent stage.
  • recognition as a color image is not lost when a moving image is observed by a human.
  • FIG. 16 is a diagram for explaining processing in the concave area detection unit 204 and the image composition unit 206.
  • FIG. 17 is a diagram illustrating a mask pattern of peripheral pixel positions used for the difference between the central pixel value and the peripheral pixel average value in the concave area detection unit 204.
  • the concave area detection unit 204 receives the orthogonal Nicol image generated by the above processing.
  • the following differentiation mask processing is performed on the G component image that has been subjected to the smoothing filter processing in order to detect a pixel region brighter than the surroundings.
  • the reason why the pixel area brighter than the surroundings is detected is that, as described with reference to FIGS. 3 to 5, the luminance is brighter than the surroundings when the polarization direction of the polarized illumination is close to parallel to the surface groove of the subject. .
  • the direction of the surface unevenness of the subject is unknown.
  • the polarization direction of the polarized illumination is alternately changed between two orthogonal directions, and two types of orthogonal Nicols images (P ⁇ ) and (S ⁇ ) can be obtained alternately. ,No problem.
  • a mask in this example, 3 ⁇ 3, 5 ⁇ 5, and 7 ⁇ 7 pixels
  • the difference value ⁇ thus obtained is expressed by the following equation (1).
  • Enhancement of blue component Blue is emphasized by subtracting the ⁇ C value from the R and G components.
  • the shortage is subtracted from other color components to maintain continuity. For this reason, although the hue changes depending on the magnitude of ⁇ , the connection can be made smoothly.
  • the smaller value is C1
  • the larger value is C2
  • FIG. 18 shows the following three cases.
  • the image composition unit 206 accumulates R, G, and B images acquired by frame sequential illumination. Then, the three images R, G, and B are synthesized for each frame to synthesize a full-color image that can be displayed in real time. Furthermore, a full-color image in which the blue component enhancement is applied to the concave portion of the surface texture is displayed as a moving image without delay every frame time.
  • FIG. 19 is a diagram illustrating an example of an image obtained by the image processing apparatus of the present embodiment.
  • the subject is a mucous membrane obtained by dissecting a rat, opening a stomach, and extending and fixing it on a cork board.
  • FIGS. 19A and 19B show a parallel Nicol image and an orthogonal Nicol image of the subject, respectively.
  • FIG. 19C shows an image obtained by executing the recess detection process shown in the present embodiment.
  • a monochrome image is displayed, but the actually obtained image is a full-color image, and the surface uneven texture existing on the surface mucosa of the stomach is detected and colored pseudo blue. Indicates the state.
  • FIG. 20 is a diagram schematically illustrating the overall configuration of the image processing apparatus according to the second embodiment of the present disclosure.
  • white (white) light is irradiated and color imaging is performed by the single plate color imaging device 119.
  • polarization rotation illumination is realized when irradiating a subject with white light.
  • only the illumination control unit is arranged in the light source device 104, and the illumination light is generated by the LED arranged at the distal end portion of the endoscope or the organic EL surface light source.
  • a large number of illumination light irradiation apertures having a polarization plane of 0 ° (P) and 90 ° (S) are alternately arranged at the distal end of the endoscope (here, in 16 divisions). ) Is arranged.
  • eight identical types of LEDs that are not adjacent to each other are selected and turned on to realize alternately polarized illumination of P-polarized light and S-polarized light.
  • FIG. 22A shows another example of polarization rotation illumination.
  • the illumination pixel unit that is sequentially turned on is sufficiently small and the quantity is increased, so that the fluctuation of the light source position that is turned on can be suppressed within one pixel on the imaging side.
  • FIG. 22B is a diagram showing the overall configuration of this surface illumination, and a data driver for sequentially controlling lighting is prepared for each of the X-axis and Y-axis of the surface illumination. Pixels addressed by the axis are lit all at once. For example, here, if pixels with an even number on both the X axis and the Y axis (X 2m and Y 2m ) are turned on all at once, it becomes illumination light with a polarization plane of 0 °. Then, illumination light having a polarization transmission plane of 0 ° (P) and 90 ° (S) can be obtained by combining the even and odd numbers of the X-axis and Y-axis data drivers.
  • the advantage of using such a surface illumination is that only the polarization state of the illumination can be changed while the overall illuminance and light distribution state are constant.
  • the uniformity of illumination light is improved.
  • a very strong specular brightness on the surface mucosa of the organ can be reduced and imaging can be performed satisfactorily.
  • FIG. 23 is a diagram illustrating an example of a cross-sectional structure of the color polarization image sensor 119 used in the present embodiment.
  • a difference from the monochrome broadband polarization image pickup device 115 shown in FIG. 10 is that a color filter 240 is disposed between a wire grid layer 224 and a PD (photodiode) 232.
  • the color filter 240 may be formed of an organic material, or may be formed of a photonic crystal or a metal.
  • the distance DEPTH between the wire grid 224 and the PD 232 becomes longer as the color filter 240 is inserted, it is typically 4 to 6 ⁇ m.
  • the microlens 220 In the configuration of FIG. 24 (from the uppermost layer, the microlens 220, the first wire grid layer 222, the second wire grid layer 224, and the color filter 240), since the microlens 220 is positioned on the uppermost layer, the light is perpendicular to the wire grid. Easy to enter.
  • FIG. 24 is a diagram showing a planar structure of the color polarization image sensor 119 of FIG.
  • FIG. 24A shows the same planar structure as the color single-plate image sensor.
  • the 4 ⁇ 4 pixel region is enlarged and observed from directly above, and the color mosaic structure of FIG. 24B and the polarization mosaic structure of FIG. Overlapping condition.
  • FIG. 24B shows an example of the color mosaic filter, but the color mosaic filter that can be used in the embodiment of the present disclosure is not limited to this example. Other mosaic structures other than the Bayer mosaic may be used.
  • one color filter included in the color mosaic covers an area of four pixels (four photodiodes) arranged in two rows and two columns.
  • the 2 ⁇ 2 pixel region corresponds to the four types of polarization mosaic regions in FIG. That is, when the sub-pixel is used as a reference, the resolution of the image sensor is 1/2 ⁇ 1/2 of the original pixel and the number of pixels is reduced. However, the polarization processing is generated by performing the polarization processing within one pixel. Artifacts to be reduced.
  • the subject is irradiated with white (white) P-polarized light and white (white) S-polarized light alternately, and a polarized color mosaic image is acquired each time.
  • a polarized pixel pattern 2503 is acquired by the polarization mosaic 2502 when the P-polarized light is irradiated, and a polarized pixel pattern 2504 is acquired when the S-polarized light is irradiated.
  • P ⁇ and P ⁇ indicate pixels in a parallel Nicol state and a crossed Nicol state at the time of irradiation of P-polarized light, respectively.
  • S ⁇ and S ⁇ denote pixels in the parallel Nicols state and the orthogonal Nicols state at the time of S-polarized light irradiation, respectively.
  • the polarization mosaic processing unit 202 performs addition averaging of the images of the polarization pixel pattern 2503 and the polarization pixel pattern 2504 for each pixel.
  • a non-polarized (NP) color mosaic image 2505 that is reduced to 1/2 ⁇ 1/2 from the original resolution is obtained.
  • the process of generating a full color image from the non-polarized color mosaic image 2505 can be performed by normal color mosaic interpolation.
  • FIG. 26 is a timing chart showing the above operation.
  • 26 shows the light emission operation of the illumination, the imaging operation, and the color component image processed in the polarization mosaic processing unit 202 from the upper part of FIG.
  • the synchronization circuit 112 controls the operation at this timing.
  • Polarized pixel patterns 2503 and 2504 corresponding to the P-polarized light and S-polarized light are alternately imaged at the timing of alternate irradiation.
  • an addition average processing of the polarization pixel patterns 2503 and 2504 shown in FIG. 25 is executed to obtain a non-polarization color mosaic image 2505.
  • an RGB full-color image is obtained by color mosaic interpolation processing.
  • an image is generated as a moving image without delay for each frame time by continuously processing the P-polarized illumination and the S-polarized illumination that are temporally adjacent.
  • FIG. 27 is a diagram for explaining the operation in the polarization imaging mode in the present embodiment.
  • P-polarized light and S-polarized light are alternately irradiated on the subject, and a polarized color mosaic image is acquired each time.
  • Polarized pixel patterns 2503 and 2504 obtained here are the same as the polarized pixel patterns 2503 and 2504 in FIG.
  • the polarization mosaic processing unit 202 uses both the pixel patterns 2503 and 2504 to select and accumulate P ⁇ and S ⁇ and P ⁇ and S ⁇ for each corresponding pixel. In this way, a parallel Nicol image 2701 with PS polarization mixing and an orthogonal Nicol image 2702 with PS polarization mixing are generated separately.
  • the polarized images obtained as a result of this processing are color mosaic images 2703 and 2704 that have been reduced to 1/2 ⁇ 1/2 from the original resolution.
  • the same color pixels in the color mosaic images 2703 and 2704 constitute a parallel Nicol image PS ⁇ and an orthogonal Nicol image PS ⁇ in a state where P-polarized illumination and S-polarized illumination are uniformly included.
  • Color orthogonal interpolation is performed on the orthogonal Nicol image PS ⁇ to generate a full-color orthogonal Nicol image.
  • the concave region detection unit 204 and the image composition unit 206 perform the same processing as that described in the first embodiment.
  • FIG. 28 is a timing chart showing the above operation.
  • FIG. 28 shows a color image processed by the light emission operation, the imaging operation, and the polarization mosaic processing unit 202, the color mosaic interpolation unit 208, the concave region detection unit 204, and the image composition unit 206 from the top.
  • the operation up to the illumination and imaging is the same as the timing chart in the normal imaging mode in FIG.
  • a parallel Nicol image 2701 with PS mixed polarization and a crossed Nicol image 2702 with PS polarized light are generated by using captured images of P polarization illumination and S polarization illumination for each frame. That is, two types of polarized pixel patterns 2701 and 2702 are generated simultaneously for each frame.
  • the orthogonal Nicol image 2704 is a full-color image obtained by emphasizing the blue component in the concave portion of the surface texture in the concave region detection unit 204 and the image synthesis unit 206 every frame. Each time, a moving image is displayed on the display unit 114.
  • FIG. 29 is a diagram illustrating a first modification of the second embodiment of the present disclosure.
  • FIG. 29A is a diagram showing a planar structure of the color polarization image sensor 119 in the second embodiment shown in FIG.
  • FIG. 29A shows the same planar structure as that of the color single plate image sensor.
  • FIG. 29B shows an arrangement example of 4 ⁇ 4 color filters in the color mosaic
  • FIG. 29C shows an arrangement example of eight polarizers in the polarization mosaic. These color mosaic and polarization mosaic are stacked so as to cover 4 ⁇ 4 pixels (PD: photodiode).
  • PD photodiode
  • two color filters of the color mosaic correspond to one rectangular polarizer.
  • Other configurations are the same as those of the second embodiment.
  • the pixel where the 0 ° polarizer of angle display is located is a P-polarized transmission pixel
  • the pixel where the 90 ° polarizer is located is an S-polarized transmission pixel.
  • the 0 ° polarizer and the 90 ° polarizer do not form a checkered array. That is, the polarization mosaic is configured such that the same polarized light is incident on two pixels adjacent in the vertical or horizontal direction within the imaging surface. This is because a 0 ° polarizer and a 90 ° polarizer are always assigned to G pixels that occupy two of the RGB pixels. According to such a configuration, a 0 ° polarizer is assigned to two RG pixels and two BG pixels, and a 90 ° polarizer is assigned to two GB pixels and two GR pixels.
  • FIG. 30 is a diagram illustrating the operation in the normal imaging mode in the present embodiment.
  • white (white) P-polarized light and S-polarized light are alternately irradiated, and an image is acquired each time, and a polarized color mosaic image is acquired.
  • the polarization mosaic has an arrangement such as 3001, a polarization pixel pattern indicated by 3002 is acquired when P-polarized light is irradiated, and a polarization pixel pattern indicated by 3003 is acquired when S-polarized light is irradiated.
  • P ⁇ and P ⁇ indicate pixels in the parallel Nicols state and the orthogonal Nicols state at the time of P-polarized irradiation
  • S ⁇ and S ⁇ indicate pixels in the parallel Nicols state and the orthogonal Nicols state at the time of S-polarized light irradiation.
  • the polarization pixel patterns 3002 and 3003 are averaged for each pixel. In the averaging process, it is considered that pixels in the parallel Nicols state and the orthogonal Nicols state are evenly mixed as follows.
  • the result V of the averaging is a non-polarized color mosaic image 3004. At this time, there is no reduction in resolution as in the second embodiment.
  • the process of generating a full color image from the non-polarized color mosaic image 3004 can be performed by normal color mosaic interpolation.
  • FIG. 31 is a diagram for explaining the operation in the polarization imaging mode in the present embodiment.
  • P-polarized light and S-polarized light are alternately irradiated, and an image is acquired each time, and polarized image patterns 3102 and 3103 are acquired.
  • the polarization mosaic processing unit 202 collects P ⁇ and S ⁇ , and P ⁇ and S ⁇ ⁇ for each corresponding pixel by using both of the polarization pixel patterns 3102 and 3103, and performs embedding processing. In this way, a parallel Nicol image 3104 with PS polarization mixing and an orthogonal Nicol image 3105 with PS polarization mixing are generated separately.
  • Polarized images obtained as a result of this processing are color mosaic images 3106 and 3107, which are a parallel Nicol image PS ⁇ and an orthogonal Nicol image PS ⁇ in a state where P-polarized illumination and S-polarized illumination are equally included, respectively.
  • color mosaic interpolation is performed to generate a full-color orthogonal Nicol image.
  • the orthogonal Nicol image is subjected to processing similar to the processing described in the first embodiment in the concave area detection unit 204 and the image synthesis unit 206.
  • the timing chart related to this embodiment is the same as the timing chart related to the second embodiment.
  • FIG. 32 is a diagram illustrating a second modification of the second embodiment of the present disclosure.
  • FIG. 32A is a diagram showing a planar structure of the color polarization image sensor 119 of FIG.
  • FIG. 32B shows an arrangement example of 4 ⁇ 4 color filters in the color mosaic
  • FIG. 32C shows an arrangement example of four polarizers in the polarization mosaic.
  • These color mosaic and polarization mosaic are stacked so as to cover 4 ⁇ 4 pixels (PD: photodiode).
  • each array includes the same color Bayer mosaic.
  • FIG. 33 is a diagram illustrating the operation in the normal imaging mode in the present embodiment.
  • white (white) P-polarized light and S-polarized light are alternately irradiated, and an image is acquired each time, and a polarized color mosaic image is acquired.
  • the polarization mosaic has the arrangement 3301, the polarization pixel pattern 3302 is acquired when the P-polarized light is irradiated, and the polarization pixel pattern 3303 is acquired when the S-polarized light is irradiated.
  • P ⁇ , P ⁇ , S ⁇ , and S ⁇ have the above-mentioned meanings.
  • the polarization mosaic processing unit 202 executes addition averaging for each pixel with respect to the image having the polarization pixel patterns 3302 and 3303. In the averaging process, parallel Nicols and orthogonal Nicols pixels are evenly mixed (Equation 6).
  • the result V of the averaging is a non-polarized color mosaic image 3304.
  • the feature is that there is no reduction in resolution as in the second embodiment.
  • the process of generating a full color image from this non-polarized color mosaic image can be performed by normal color mosaic interpolation.
  • FIG. 34 is a diagram for explaining the operation in the polarization imaging mode in the present embodiment.
  • Polarized illumination is alternately irradiated with P-polarized light and S-polarized light, and an image is acquired each time, and polarized pixel patterns 3402 and 3403 are acquired.
  • the polarization mosaic processing unit 202 uses both polarization pixel patterns 3402 and 3403 to collect and embed P ⁇ and S ⁇ and P ⁇ and S ⁇ for each corresponding pixel, thereby performing parallel Nicols of PS polarization mixing.
  • An image 3404 and a PS polarized mixed orthogonal Nicol image 3405 are separately generated.
  • the polarized images obtained as a result of this processing are color mosaic images such as 3406 and 3407, and the parallel Nicol image PS ⁇ and the orthogonal Nicol image PS ⁇ with P polarization illumination and S polarization illumination included equally, respectively. It is.
  • color mosaic interpolation is performed to generate a full-color orthogonal Nicol image.
  • the orthogonal Nicol image is subjected to processing similar to the processing described in the first embodiment in the concave area detection unit 204 and the image synthesis unit 206.
  • the timing chart relating to this embodiment is the same as the timing chart of the second embodiment.
  • FIG. 35 is a diagram showing the configuration of the third exemplary embodiment of the present invention. Also in this embodiment, white (white) light is irradiated onto a subject and color imaging is performed with a single-plate color imaging device. The difference from the second embodiment is that a polarizing plate and a color filter are arranged in the lens opening, and a microlens array type color polarization imaging unit 3501 in which a microlens array is arranged on the imaging surface. And a pixel selection / re-integration unit 210 for performing image processing unique to the microlens array type element.
  • FIG. 36 is an enlarged view of the distal end portion of the endoscope in the present embodiment from the front.
  • a large number (in this case, 16 divisions) of illumination light irradiation ports having different polarization planes of 0 ° (P) and 90 ° (S) are arranged at the distal end of the endoscope. With this illumination, eight LEDs of the same type that are not adjacent to each other are selected and turned on, and P and S alternately polarized illumination is realized by imaging.
  • On the objective lens 3502 serving as the opening there are arranged 2 ⁇ 2 total four types of color and polarized composite filter regions as shown in the figure. These are the R and B non-polarized color filter regions and two orthogonal color polarizing filter regions of G 0 ° (P) and G 90 ° (S).
  • FIG. 37 is a diagram illustrating a configuration example of the microlens array type color polarization imaging unit 3501.
  • FIG. 37 for convenience of illustration, among the four regions on the objective lens 3502, two regions of the G filter in FIG. 36, that is, the G filter similar to the region 3701 in which the G filter and the 0 ° (P) polarizing filter are arranged. And only two regions 3702 in which a 90 ° (S) polarizing filter is arranged.
  • the light diverging from one point 3700 on the subject passes through two regions 3701 and 3702 on the objective lens 3502, respectively, and passes through the arrayed optical element 3703, thereby taking an imaging surface 3704 of the monochrome imaging element.
  • the image formed on the imaging surface 3704 is the image of the subject as a whole, but in detail, the images of two different regions From this, the image is established.
  • FIG. 38 is a diagram showing a cross-sectional structure of the color polarizing filter regions 3701 and 3702 in the opening.
  • a metal wire grid layer 3801 is used as a polarizing filter.
  • the wire grid layer 3801 for example, a metal wire having a pitch of about 100 nm can be formed on the transparent substrate 3802.
  • a color filter 3803 is disposed in the lower layer.
  • An objective lens 3502 is arranged at the next stage of the color filter 3803.
  • the arrangement order of the color filter, the wire grid layer, the objective lens, and the presence or absence of a gap with the lens are arbitrary.
  • the polarizing plate existing techniques such as a polymer polarizing plate other than the wire grid, a polarizing plate using a photonic crystal, and a polarizing plate using structural birefringence can be used.
  • FIG. 39 is a diagram for explaining processing in the pixel selection / reintegration unit 210 that generates a color polarization image from an imaging result using the microlens array type color polarization imaging device.
  • the resolution is reduced to 1 ⁇ 2 ⁇ 1 ⁇ 2.
  • FIG. 40 shows images acquired in the normal imaging mode and the polarization imaging mode in the endoscope according to the present embodiment.
  • the white (white) polarized illumination is alternately irradiated with P-polarized light and S-polarized light, and an image is acquired each time, and the process of FIG. A seeded color polarization image is acquired separately.
  • the four types of color polarization images obtained separately are displayed as 4001. This display method does not represent individual pixels as in the prior art, but represents the entire four images.
  • a polarized image 4002 is acquired when P-polarized light is irradiated, and a polarized image 4003 is acquired when S-polarized light is irradiated.
  • P ⁇ , P ⁇ , S ⁇ , and S ⁇ have the above-mentioned meanings, but P or S is an image captured in a non-polarized light without a special polarizing filter under P-polarized illumination or S-polarized illumination. It has the meaning.
  • the images 4002 and 4003 are averaged for each pixel.
  • pixels in the parallel Nicols state and the orthogonal Nicols state are considered to be evenly mixed as follows, and this result is approximately an unpolarized image.
  • the result V of the averaging is a non-polarized color mosaic image 4004.
  • the process of generating a full color image from this non-polarized color mosaic image can be performed by normal color mosaic interpolation.
  • the same process is performed until the image 4002 and the image 4003 are alternately acquired.
  • PS ⁇ 4005 and PS ⁇ 4006 are collected in the G wavelength region.
  • the advantage of the microlens array type polarization imaging device as in the present embodiment is that a polarizing plate can be arranged in the lens opening, so that the size of each polarization mosaic element can be made larger than that arranged on the imaging device. is there.
  • the length of the metal wire forming the polarization mosaic unit is equal to the pixel size of the image sensor and is 2 to 3 ⁇ m. With such a fine size, even if the pitch of each metal wire of the wire grid is fine, the wire grid length and the number of repetitions are limited, so that the extinction ratio performance as a polarizing plate is reduced to about 10: 1. .
  • FIG. 41 is a diagram showing the configuration of the fourth exemplary embodiment of the present invention.
  • the present embodiment performs white-white light irradiation and performs color imaging with a single-plate color imaging device.
  • This embodiment is different from the second embodiment in that a microlens array type color polarization imaging unit 4101 is used.
  • the microlens array type color polarization imaging unit 4101 in the present embodiment is different from the microlens array type color polarization imaging unit used in the third embodiment in the following configuration.
  • FIG. 42A is a diagram illustrating a configuration example of the microlens array type color polarization imaging unit 4101.
  • a polarizing filter 4103 having a broadband type 0 ° (P) transmission axis and 90 ° (S) transmission axis is arranged, and colorization is performed by a single-plate color imaging device 4104 having a Bayer mosaic 4105. To do. By doing so, the operation of polarization and color is separated. As a result, RGB full-color parallel / orthogonal Nicol images can be obtained.
  • the light transmitted through the four regions (UL), (UR), (DL), and (DR) of the polarizing filter 4103 by the action of the microlens array (array-like optical element) 3703 is reflected by the color mosaic filter 4105. Images are respectively formed in four regions (UL1), (UR1), (DL1), and (DR1).
  • FIG. 42B schematically illustrates an example of a cross-sectional configuration of the microlens array type color polarization imaging unit 4101.
  • FIG. 42B shows only two areas of the four areas on the objective lens 3502, the area 4202 where the 90 ° polarization filter is arranged in FIG. 41 and the area 4202 where the 0 ° polarization filter is arranged.
  • the light diverging from one point 3700 on the subject passes through the two areas 4201 and 4202 on the objective lens 3502 and reaches the color imaging element surface 4203 where the color mosaic is arranged via the arrayed optical element 3703. At this time, an image formed by light rays passing through the two areas 4201 and 4202 on the objective lens reaches different pixels 4204.
  • the image formed on the imaging surface 4203 is an image of the subject as a whole, but in detail, is formed from images of different polarization regions of 0 ° and 90 °.
  • the images of the areas 4201 and 4202 correspond to two color mosaic pixels on the color image sensor 4203.
  • FIG. 43 is a diagram showing a cross-sectional structure of the polarizing filter regions 4201 and 4202 in the opening according to the present embodiment.
  • a metal wire grid layer 3801 is used as a polarizing filter.
  • a metal wire having a pitch of about 100 nm can be formed on the transparent substrate 3802. According to such a wire grid layer 3801, a polarization operation can be realized in a wide band in the visible light range.
  • the objective lens 3502 is arranged on the next stage.
  • the arrangement order of the wire grid layer 3801 and the objective lens 3502 and the presence or absence of a gap between the wire grid layer 3801 and the objective lens 3502 are arbitrary.
  • the polarizing plate may be a polymer polarizing plate other than the wire grid polarizing plate as long as the polarizing operation is realized in a wide range of the visible light band.
  • FIG. 44 is a diagram for explaining the processing of the pixel selection / re-integration unit 210.
  • the resolution is reduced to 1/2 ⁇ 1/2.
  • the P (0 °) polarized color image 4401, the S (90 °) polarized color image 4402, the S (90 °) polarized color image 4403, and the P (0 °) polarized color image 4404 can be separated, respectively. . Thereafter, the processing of the color mosaic interpolation unit 208 is performed.
  • RGBG color Bayer mosaic unit
  • the same information as that of the second modification of the second embodiment can be obtained.
  • a merit of the micro lens array type polarization imaging device since a polarizing plate can be arranged in the lens opening, a large size wire grid polarizing device can be used, and a high extinction ratio of about 100: 1 can be realized. Has the advantage of being able to.
  • Embodiments of the present disclosure include medical endoscopes for gastrointestinal internal medicine, cameras for medical use such as dermatology, dentistry, ophthalmology, and surgery, industrial endoscopes, fingerprint imaging devices, and surface inspection devices in factories, etc.
  • the present invention is widely applicable to the field of image processing that requires observation, inspection, and recognition of surface irregularities of a subject. According to the embodiment of the present disclosure, it is possible to correctly detect irregularities on the surface of a smooth transparent object or a semi-transparent object, and it is possible to perform highlighting in a form that is easy for humans to distinguish. For this reason, the embodiment of the present disclosure is optimal for inspection of unevenness that is difficult in luminance observation.
  • the image processing apparatus of the present disclosure can be applied to a digital camera, a video camera, a surveillance camera, and the like, and can be widely used for improving contrast on a water surface or aerial photography, or photographing through glass.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)

Abstract

 本開示の画像処理装置は、実施形態において、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の照明光、および、第1の方向と交差する第2の方向に偏光した状態にある第2の照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光照明光で被写体を照射する照明部であって、第1の照明光の波長域が第2の照明光の波長域に重複しない部分を有するように第1および第2の照明光を順次出射する照明部を備える。また、偏光撮像素子と、偏光撮像モードにおいては、第1の照明光で被写体が照射されているときの第1の偏光画像と、被写体が第2の照明光で照射されているときの第2の偏光画像を得て、非偏光撮像モードにおいては、非偏光照明光で被写体が照射されているときの非偏光画像を得る、偏光モザイク処理部とを備える。第1および第2の偏光画像の少なくとも一方に基づいて被写体の表面における凹領域を検出し、凹領域を強調して示す画像を形成する。

Description

画像処理装置および内視鏡
 本開示は、画像処理装置および当該画像処理装置に使用される内視鏡に関する。
 粘膜で覆われた、生体の臓器器官の壁表面に対して照明光を照射して撮像を行う内視鏡の分野では、被写体の表面の色の変化と同時に、表面の微細な凹凸のテクスチャを確認する必要がある。この表面テクスチャは、たとえば胃における胃小区のように平均サイズが0.5~1.0mm、深さが0.1~0.2mm程度の半透明の微細な凹凸である。これを内視鏡によって輝度の陰影でとらえることは非常に難しいため、現在はインジゴカルミン溶液など青色色素液体を粘膜上に撒布して、液体が溝にたまる状態を輝度で観察している。
 しかし、この処理では、粘膜上に液体を吹き付けるために出血したり、粘膜の色が変わってしまうなどの問題があった。このように表面の凹凸を観察したいという課題に対して偏光照明と偏光撮像を用いた偏光内視鏡が特許文献1に記載されている。
特開2009-246770号公報 特開2009-210780号公報
Viktor Gruev, Rob Perkins, and Timothy York ,"CCD polarization imaging sensor with aluminum nanowire optical filters", 30 August 2010 / Vol. 18, No. 18 / OPTICS EXPRESS PP.19087-19094
 特許文献1に開示されているような偏光を使う従来技術では、特定の偏光成分の照明光を物体に照射し、物体からの戻り光において、照明と平行な偏光成分、および直交する偏光成分それぞれの画像を撮像し、それらに基づいて表面の形状変化を算出している。
 本開示の画像処理装置の実施形態は、偏光撮像モードにおいて、被写体の表面における凹領域を検出し、非偏光撮像モードにおいては非偏光画像を得ることにより、被写体の表面における前記凹領域を強調して示す画像および非偏光画像の両方を得ることができる。
 本開示の画像処理装置の実施形態は、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光照明光で前記被写体を照射する照明部であって、前記第1の照明光の波長域が前記第2の照明光の波長域に重複しない部分を有するように前記第1および第2の照明光を順次出射する照明部と、偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、および、各偏光子を透過した光を受けて信号を出力する光検知素子アレイとを有する撮像素子と、前記偏光撮像モードにおいては、前記第1の照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを得て、前記非偏光撮像モードにおいては、前記非偏光照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、偏光モザイク処理部と、前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部とを備える。
 本開示の画像処理装置の他の実施形態は、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、各偏光子および各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子と、前記偏光撮像モードにおいては、前記第1の白色照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の白色照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを得て、前記非偏光撮像モードにおいては、前記非偏光白色照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、偏光モザイク処理部と、前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部とを備える。
 本開示の画像処理装置の更に他の実施形態は、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、偏光透過軸の方向が異なる複数の偏光子、および、光透過特性が異なるカラーフィルタが設けられた開口領域を有し、前記開口領域を透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子と、前記偏光撮像モードにおいては、前記第1の白色照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の白色照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを、前記マイクロレンズアレイに覆われた前記複数の光検知素子から選択した一部の光検知素子からの信号に基づいて形成し、前記非偏光撮像モードにおいては、前記非偏光白色照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、画像分離部と、前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部と、を備える。
 本開示の画像処理装置の更に他の実施形態は、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、偏光透過軸の方向が異なる複数の偏光子が設けられた開口領域と、光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、前記開口領域の各偏光子を透過した後、更に各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子と、前記偏光撮像モードにおいては、前記第1の白色照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の白色照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを、前記マイクロレンズアレイに覆われた前記複数の光検知素子から選択した一部の光検知素子からの信号に基づいて形成し、前記非偏光撮像モードにおいては、前記非偏光白色照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、画像分離部と、前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部とを備える。
 本開示の内視鏡の実施形態は、上記のいずれかの画像処理装置に用いられる内視鏡であって、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光照明光で前記被写体を照射する照明部であって、前記第1の照明光の波長域が前記第2の照明光の波長域に重複しない部分を有するように前記第1および第2の照明光を順次出射する照明部と、偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、および、各偏光子を透過した光を受けて信号を出力する光検知素子アレイとを有する撮像素子とを備える。
 本開示の内視鏡の他の実施形態は、上記いずれかの画像処理装置に用いられる内視鏡であって、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、各偏光子および各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子とを備える。
 本開示の内視鏡の更に他の実施形態は、上記いずれかの画像処理装置に用いられる内視鏡であって、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、偏光透過軸の方向が異なる複数の偏光子、および、光透過特性が異なるカラーフィルタが設けられた開口領域を有し、前記開口領域を透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、各々が複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子とを備える。
 本開示の内視鏡の他の実施形態は、上記いずれかの画像処理装置に用いられる内視鏡であって、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、偏光透過軸の方向が異なる複数の偏光子が設けられた開口領域と、光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、前記開口領域の各偏光子を透過した後、更に各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子とを備える。
 本開示の実施形態によれば、偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の照明光、および、第1の方向と交差する第2の方向に偏光した状態にある第2の照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光照明光で前記被写体を照射するため、通常の被写体像とは別に、被写体表面の凹凸情報や傾斜情報を得ることができる。このため、たとえばインジゴカルミン溶液など青色色素液体を粘膜上に撒布した画像に類似する画像(凹領域が強調された画像)を合成することが可能になる。
(a)および(b)は、いずれも、胃粘膜の内視鏡画像の図 (a)および(b)は、輝度による半透明凹凸部の観測状態を示す図 (a)および(b)は、偏光観測の原理を示す図 光が媒質から出射する際の出射角と透過率を示すグラフ (a)および(b)は、アクリル製レンチキュラー板の直交ニコル撮像の際のアクリル板上の溝と偏光照明の方向性の関係を示す図 本開示の第1の実施形態の構成を示すブロック図 (a)から(c)は、本開示の第1の実施形態におけるカラーホイールを示す図 本開示の第1の実施形態における照明フィルタの特性を示す図 (A)から(C)は、本開示の第1の実施形態でのモノクロ広帯域偏光撮像素子を形成するワイヤグリッドの平面構造と透過軸方向を示す図 本開示の第1の実施形態でのモノクロ広帯域偏光撮像素子の断面構造を示す図 本開示の第1の実施形態における通常撮像モードの動作を示す図 本開示の第1の実施形態での通常撮像モードのタイミングチャート 本開示の第1の実施形態での偏光撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第1の実施形態での偏光撮像モードのタイミングチャート 本開示の第1の実施形態での偏光撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第1の実施形態での偏光撮像モードのタイミングチャート 本開示の第1の実施形態での凹領域検出部204と画像合成部206の処理を説明するブロック図 凹領域検出部204で用いる微分処理マスクの例 凹領域検出部204で用いる青色強調処理の例 (A)から(C)は、ラット胃の粘膜を用いた実験結果 本開示の第2の実施形態の構成を示すブロック図 本開示の第2の実施形態における内視鏡先端部と偏光回転照明を示す図 (A)および(B)は、本開示の第2の実施形態における偏光回転照明の別の構成を示す図 本開示の第2の実施形態におけるカラー偏光撮像素子の断面構造を示す図 (A)から(C)は、本開示の第2の実施形態におけるカラーモザイクと偏光モザイクの平面配置を示す図 本開示の第2の実施形態における通常撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第2の実施形態における通常撮像モードのタイミングチャート 本開示の第2の実施形態における偏光撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第2の実施形態における偏光撮像モードのタイミングチャート (A)から(C)は、本開示の第2の実施形態の変形例1におけるカラーモザイクと偏光モザイクの平面配置を示す図 本開示の第2の実施形態の変形例1における通常撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第2の実施形態の変形例1における偏光撮像モードの偏光モザイク処理部202の動作を示す図 (A)から(C)は、本開示の第2の実施形態の変形例2におけるカラーモザイクと偏光モザイクの平面配置を示す図 本開示の第2の実施形態の変形例2における通常撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第2の実施形態の変形例2における偏光撮像モードの偏光モザイク処理部202の動作を示す図 本開示の第3の実施形態の構成を示すブロック図 本開示の第3の実施形態における内視鏡の先端部を示す図 本開示の第3の実施形態におけるマイクロレンズアレイ型カラー偏光撮像部の構成を示す図 本開示の第3の実施形態における開口部のカラー偏光フィルタ領域の構成を示す図 本開示の第3の実施形態における画素選択再集積部210の処理を説明する図 本開示の第3の実施形態における通常撮像モードと偏光撮像モードで取得される画像を説明する図 本開示の第4の実施形態の構成を説明する図 本開示の第4の実施形態におけるマイクロレンズアレイ型カラー偏光撮像素子の構成図 本開示の第4の実施形態におけるマイクロレンズアレイ型カラー偏光撮像部の断面構成図 本開示の第4の実施形態における開口部の偏光フィルタ領域 本開示の第4の実施形態における画素選択再集積部210の処理を説明する図
 図1は、ヒトの胃の表面粘膜を内視鏡で観察した画像を示す。図1(a)は、通常でのカラー画像を示しており表面にはなだらかな起伏しか感じられない。すなわち消化器などを検察する内視鏡が、臓器表面の透明または半透明で形成された凹凸を検出することは通常のカラー画像処理では困難である。ここで、通常のカラー画像処理とは、非偏光の白色光を照射して得られるカラーの輝度画像を得るための処理である。こうして得られたカラー画像を「カラー輝度画像」と称し、また、カラー輝度画像を得るための撮影をカラー輝度撮影とする場合がある。
 一方、図1(b)は、インジゴカルミン液を撒布した後のカラー画像を示しており、表面の微細な凹凸のテクスチャ(サイズが0.5~1.0mm、深さが0.1~0.2mm程度)が明瞭に確認できる。
 図2(a)および(b)は、胃や腸の臓器表面に形成された凹凸断面を簡略化して示している。胃や腸の表面に存在する凹凸は、一般的には上に凸のカマボコ状の形状の繰り返し配列によって形成されていると考えられる。隣接する2つの凸部の間に位置する凹領域は、典型的には、ある方向に延びる小さな「溝」である。複数の溝は、局所的には略同じ方向に揃っているが、大局的には複雑な曲線状または他のパターンを示し得る。現実の被写体表面の凹凸は、ドット状の凹部または凸部を含み得るが、本明細書では、このような凹凸の凹部を単に「溝」または「溝領域」と称する場合がある。図2(a)および(b)は、被写体の表面部における狭い領域内に存在する幾つかの溝を横切る断面を模式的に示している。簡単のため、以下の説明では、図2(a)および(b)に示されるような凹部および凸部が図の紙面に対して垂直な方向に延びていると仮定してよい。
 内視鏡による観察は、撮影光軸の近傍に光源が配置された同軸照明であるため、図2(a)および(b)に示された被写体に対して、その略直上から照明光を照射し、おなじく被写体の略直上から撮影が行われる。このような同軸照明を用いた通常のカラー輝度撮影にて観察できる反射光には大きく2種ある。1つは表面にて光が反射する鏡面反射光(図2(a))であり、もう1つは媒質内部に浸透し、より下層で反射して戻って表面から再出射される内部拡散光(図2(b))である。鏡面反射光は、照射される光と撮影光軸とが正反射の条件に近い場合に限って発生するため、内視鏡の撮影シーンではごく局所的にしか発生しない。鏡面反射光の色は、照明の色すなわち白色であり、輝度は非常に強い。鏡面反射光による被写体像は、前記の正反射条件から、一般に被写体表面における凹凸の凸部にて強く明るく、凹部では弱く暗い。一方、内部拡散光は、撮影シーンの全域に渡って観測される。内部拡散光の色は、媒質の色自身であり、輝度はそれほど強くならずに媒質全体が光る。内部拡散光による被写体像は、媒質の厚みの厚い凸部において暗く、厚みの薄い凹部において明るくなる傾向がある。すなわち、鏡面反射光と内部拡散光との間では、輝度の高低と被写体表面の凹凸との対応関係が反対になる。
 通常の撮影では、上記の2種の反射光が重ねあわされて1つの輝度画像(撮影シーン)が形成される。そのため、撮影シーンの中で、2種の反射光の輝度の差がほぼ拮抗する領域には、凹凸部で輝度の明暗差がほとんど無くなる。従って、通常の輝度画像では、被写体の表面凹凸において輝度の差がほとんど無くなる。もし明暗の輝度差があったとしても、その情報に基づいて、たとえば周囲が画素よりも輝度の低い画素を凹部としてそれを検出する処理をすると、鏡面反射部と内部拡散反射部によって凹凸の位置関係にズレを生じてしまう弊害があり、輝度画像処理は非常に困難である。
 図3(a)および(b)は、偏光を用いた観察を説明するための図である。図3(a)の例では、表面凹凸に平行な方向の偏光照明を照射した場合、図3(b)は表面凹凸に垂直な方向の偏光照明を照射した場合におけるそれぞれ直交ニコル状態の偏光画像を取得している。
 図3(a)の設定では、臓器表面の凹凸断面を示す模式的なモデル301に対して、照明300とP偏光フィルタ302が配置されている。これにより、モデル301の凹凸が延びる方向(図の紙面に垂直な方向)に対して平行に偏光した光(P偏光またはP波)でモデル301が照射される。一方、直交ニコル状態を形成するように観察側偏光フィルタ303(S)が配置され、撮像装置304が画像を取得する。
 図3(b)の設定では、S偏光照明の偏光フィルタ309(S)が配置され、直交ニコル状態を形成するように観察側偏光フィルタ310(P)が配置される。なお、図3の例では、偏光フィルタの偏光透過軸が図の紙面に垂直であるときの偏光をP偏光、紙面に平行であるときの偏光をS偏光(S波)としている。
 直線偏光照明305、311を用いた撮影において観察できる反射光は大きく2種あり、1つは凸部で光が正反射する鏡面反射成分306、312であり、もう1つは媒質内部に浸透し、より下層で非偏光の散乱光307となり、撮像系に対して傾斜した斜面から表面から再度出射される内部拡散光の偏光308、313である。内部拡散光は、境界面法線と視線との傾きである出射角が大きい場合に偏光が顕著になる。
 次に反射光の偏光の方向について、定性的な説明を行う。
 まず、鏡面反射成分306、312は同軸照明状態での正反射であるから、照射された偏光の偏光状態と同じ偏光状態を維持する。このため、鏡面反射成分306は紙面に垂直な偏光、鏡面反射成分312は紙面に平行な偏光になる。
 一方、内部拡散光の偏光308、313の偏光方向は、屈折率が1より大きい媒質から空気中へ出射する際の偏光について、フレネル理論で決定される。図4は、フレネル理論に基づいて求められた屈折率が1より大きい媒質から空気中へ出射する際の偏光の状態を示すグラフである。横軸の出射角に対して透過率は常にT∥>T⊥すなわちP偏光>S偏光となる。従って、内部拡散光の偏光308、313ともに、モデル301の表面の傾斜に対してP偏光が強い偏光となる。
 次に、これらの反射光を撮像装置304で観察する場合、図3(a)では、反射光306がP偏光(紙面に垂直)、反射光308がS偏光(紙面内)である状態をS偏光フィルタ303で観測するので、反射光306は遮断状態にて暗くなり、反射光308は透過状態にて明るくなる。つまり301のカマボコ形を直上から観察した場合、画像314のように中心軸付近が暗く斜面付近が明るくなる縞模様となって明瞭に観測される。図3(b)では、反射光312、313ともS(紙面内)である状態を撮像装置304のP偏光フィルタ310で観測するので、反射光312、313とも遮断状態となって暗くなる。つまりモデル301のカマボコ形を直上から観察した場合、画像315のように全体的に暗くなり凹凸が不明瞭になる。
 図5は、実際にアクリル板表面に縞状に凹凸(多数の溝)が形成されたレンチキュラー板を用いて、この偏光撮像を実行した結果を示す図である。被写体は、完全拡散板上に血管を模した透明シートを置き、その上に乳白色の2mm厚のアクリル製レンチキュラー板を載せたものである。この被写体を直上から観察した。レンチキュラー板の溝は、図の紙面内における水平方向に対して0°の方向に平行に配置された。図5(a)と図5(b)は、それぞれ、偏光照明がP、Sになった状態で撮影した像を示している。すなわち、図5(a)では、偏光照明の偏光方向と被写体表面の溝方向とが平行であり、図5(b)では、偏光照明の偏光方向と被写体表面の溝方向とが直交している。図5(a)、(b)の偏光撮像は、両者とも直交ニコル状態で行われた。このときに撮像された直交ニコル画像を観察すると、図5(a)ではP方向に明暗の縞が明瞭に観察される。一方、図5(b)では明暗が不明瞭になる。
 上記のとおり、偏光撮像モードにおいて直交ニコル状態の偏光を撮像すると、偏光照明の偏光方向が被写体の凹部(溝)と平行に近い場合には輝度が周囲よりも明るくなり、凹部を明瞭に検出できる。そこで、被写体の凹凸の向きが未知の場合においては、少なくとも偏光照明が直交した2種類の直交ニコル画像を得ることができれば、微分フィルタ処理などの画像処理によって表面の凹部を検出することができる。検出された凹部に対して、カラーデジタル画像処理でBlue(青く)に着色することで、インジゴカルミン溶液など青色色素液体を粘膜上に撒布した画像と類似の画像を再現することができる。
 本発明者の実験によると、内視鏡のような同軸照明状態では、鏡面反射の輝度は完全拡散板を1とした場合に10から100程度ときわめて高くなる。このため、この高い輝度を撮像素子が飽和しない範囲にまで低下させるように減光し、直交ニコル画像を撮像する場合、100:1以上の消光比性能を有する偏光フィルタを用いることができる。
 以下、本開示の実施形態を説明する。
(第1の実施形態)
 図6は、本開示の実施形態1における画像処理装置の全体構成を模式的に示す図である。本画像処理装置は、内視鏡101と、制御装置102と、表示部114とを備える。
 内視鏡101は、モノクロ広帯域偏光撮像素子115を有する先端部106、および、ライトガイド105と映像信号線108とを内部に有する挿入部103を有している。内視鏡101の挿入部103は、図示されているように左右に長く、フレキシブルに曲がり得る構造を有している。ライトガイド105は曲がった状態でも光を伝達することができる。
 制御装置102は、光源装置104と画像プロセッサ110とを備える。光源装置104内には、たとえばキセノン光源、ハロゲン光源、LED光源、またはレーザ光源であり得る光源118が備えられている。光源118から発した非偏光の光は、回転するRGBフィルタを有するカラーホイール116(a~b)を通過した場合、順次、Rレッド、Gグリーン、Bブルーの光になる。これらの光は、ライトガイド105を経由して先端部106に導かれ、照明用フィルタ200を透過する際に、偏光または非偏光の光となる。そして照明レンズ107から、偏光または非偏光の照明光117となって、被写体である内臓粘膜表面111を照射する。被写体からの反射光113は、対物レンズ109を通ってモノクロ広帯域偏光撮像素子115上に結像する。
 同期装置112は、カラーホイール106aの回転と同期しながら、モノクロ広帯域偏光撮像素子115に撮影開始信号を送って反射光による映像を取得する。撮像された映像信号は、映像信号線108を経由して画像プロセッサ110に送られる。
 以上の処理をRGBの面順次方式で連続して実行してカラー撮像と偏光撮像を実行する。以下、通常のカラー撮像を実行するモード「非偏光撮像モード」または「通常撮像モード」と称し、偏光撮像を実行するモードを「偏光撮像モード」と称することがある。
 照明制御部120は、外部から、内視鏡の動作モードが通常撮像モードおよび偏光撮像モードのいずれであるかを示す信号が入力されると、それに対応して、それぞれに対応したカラーホイールを照明光の光路121に挿入する。そうすることにより、面順次照射に用いる照明の分光特性を変化させる。
 通常撮像モードの場合には、偏光モザイク処理部202にて処理されたカラー画像が画像合成部206にてフルカラー動画に組み立てられ、表示部114にたとえば動画で表示される。また偏光撮像モードにおいては、同じく偏光モザイク処理部202にて処理された画像が凹領域検出部204にて表面の凹領域を検出され、画像合成部206にて青色強調された表示部にたとえば動画で表示される。
 図7(a)~(c)は、照明に使われ得るカラーホイールの例を示している。図7(a)に示される通常撮像用カラーホイール116aは、回転軸の周りに設けられた3つの扇形状の領域を有している。この3つの扇形状領域は、それぞれ、R1R2で示すほぼ同色のレッド波長域を同時に透過するレッドフィルタ、G1G2で示すほぼ同色のグリーン波長域を同時に透過するグリーンフィルタ、B1B2で示すほぼ同色のブルー波長域を同時に透過するブルーフィルタとから構成されている。ここで、「R1R2」のR1およびR2は、それぞれ、レッド(R)の波長域、たとえば600nm~700nmの短波長側の半分および長波長側の半分の波長域を示す。図7(a)のカラーフィルタ116aにおいて、「R1R2」と記載された扇形状の領域は、R1の波長域およびR2の波長域の両方の光を透過する領域であり、「R」と記載しても良い。他の記号、「G1G2」および「B1B2」も同様である。本明細書では、「R1」などの符号を、特定の波長域を示すために用いたり、そのような波長域の光を選択的に透過するフィルタを示すために使用する場合がある。
 偏光撮像用カラーホイール116bは、偏光撮像を実行する波長域の設定により種々の構成を有し得る。図7(b)は、グリーンとブルーを混合した2種類の波長帯域の光を順次透過するカラーホイール116bの例を示している。このカラーホイール116bは、表面凹凸テクスチャを検出するために適した波長域を選択することが可能である。一方、図7(c)は、6個の異なる波長域の光を順次透過するカラーホイール116bの他の例を示している。このような構成を有するカラーホイール116bは、フルカラーの直交ニコル画像を取得するに適している。なお、図7(a)のカラーホイール116aおよび図7(b)または(c)のカラーホイール116bの一方が、外部からの信号によって指定されて選択的に使用される。より具体的には、非偏光撮像モードまたは通常撮像モードではカラーホイール116aが使用され、偏光撮像モードではカラーホイール116bが使用される。
 図8は、照明用フィルタ200の透過特性を示す図である。B、G、Rの各可視光波長範囲をP偏光とS偏光が交互に透過する櫛型の透過特性を有している。たとえば図8に示す例において、波長域B1(400~450nmの範囲)でP偏光のみを透過し、波長域B2(450~500nmの範囲)でS偏光のみを透過する。このため、光源からライトガイドを経由してくる光の波長が波長域B1に含まれる場合には、その光は照明用フィルタ200によってP偏光の偏光照明光に変換される。同様に、光源からライトガイドを経由してくる光の波長が波長域B2に含まれる場合には、その光は照明用フィルタ200によってS偏光の偏光照明光に変換される。なお、通常撮像モードおいて、光源からライトガイドを経由してくる光の波長が波長域B1B2の全体に広がる場合には、P偏光とS偏光が混合されるため非偏光の照明光が得られる。
 図8に示されるような特性を有するフィルタは、多層膜偏光子として実現することが可能であり、たとえば、特許文献2にその例が記載されている。
 図9は、モノクロ広帯域偏光撮像素子115の撮像面のパターン偏光子(偏光モザイクまたは偏光モザイクアレイ)の構造の例を模式的に示す図である。図9(A)に示すように撮像面には、画素が行および列状(X-Y方向)に規則的に配列されている。
 本撮像素子115は、照明光の色がR、G、Bに順次変化する面順次方式で用いられるため、その撮像面上にはカラーモザイクフィルタが配列されていない。すなわち、撮像素子115そのものは、モノクロ撮像素子であり、各画素に偏光子が配列されている。個々の画素には、可視光の波長域に含まれる光が順次入射するため、本実施形態で用いられる偏光子の偏光選択特性は可視光帯域で実現する。具体的には、400nm~800nmの帯域において、本実施形態の偏光子の偏光取得性能を示す消光比が100:1以上である。このため、本実施形態では、可視光帯域の一部を占める特定波長のみで偏光特性を呈する偏光子を用いず、その代わり、広い波長域で高い偏光取得性能を示し得る金属ワイヤグリッド偏光子を用いている。
 図9(B)は、2行2列に配列された4個の画素(2×2ブロック)に対応する偏光フィルタの1単位801を示している。この1単位801の中では、平面内に90°ずつ回転させた偏光フィルタ(4個の偏光子)が配置されている。図9(B)では、各偏光フィルタ上に示された複数の直線が偏光の透過軸の方向を示している。
 図9(C)は、図9(B)に対応して金属ワイヤグリッドで実現する場合のワイヤ配置が図示されている。ワイヤグリッドでは金属ワイヤの方向と垂直な方向(TE軸)が偏光の透過軸となるため、模式図でワイヤを直線で表現すると、図9(B)の偏光軸の向きと、図9(C)の金属ワイヤの直線の向きとが90度異なる。この混乱を避けるため、本開示の実施形態で利用する偏光フィルタの透過軸の向きを表現する場合、常に図9(B)の直線(偏光透過軸に平行)を使用するものとし、ワイヤグリッドのワイヤ方向を直接描く平面図は使用しないものとする。
 後述するように、この金属ワイヤグリッドの配置面は撮像素子の最上面から下層までの範囲内においてさまざまな位置をとり得る。ワイヤグリッドは平面的には他画素との干渉を回避するため、画素単位領域の外縁よりも余裕度Δだけ内側の領域内にされている。例えば正方形である1画素領域の一辺の長さDを3~4μmとすると、Δは0.2μm=200nm以上に設定され得る。ワイヤグリッドを構成する各ワイヤの幅Lと間隔Sのデユーティ比は、透過率と消光比のトレードオフになる。本開示の実施形態において、幅Lと間隔Sとは等しいものとする。後述するようにL=S=0.1μm=100nmとして、Δ=0.2μm=200nmのとき、ワイヤグリッドの本数は、ワイヤ方向が撮像面内の垂直軸または水平軸に対して0°と90°の角度を形成する場合には17本である。
 従来、アルミニウム製ワイヤグリッド偏光子を用いた偏光撮像素子で実際に試作され消光比の性能測定がされた例が非特許文献1に開示されている。非特許文献1によると、画素サイズ=7.4×7.4μmの領域内にピッチP=140nmm、高さH=70nmで配置された微細ワイヤグリッド偏光子の消光比は450、580、700nmの各波長でそれぞれ30:1、45:1、60:1程度であった。この実例から、ワイヤグリッドを微細化して撮像素子に実装しても、消光比性能として100:1を実現するのは困難であると予測される。そこで本実施形態においては、ワイヤグリッドを2層構造として高消光比を実現する構造をとっている。
 図10を参照して、撮像素子115の断面構成例を説明する。
 入射光は、撮像素子115の上方に配置される対物レンズ109から撮像面に到達する。撮像素子115において、光が到達する構造を順次説明すると、まず最上面にはマイクロレンズ220が配置される。このマイクロレンズ220の役割は光の効率的なPD(フォトダイオード)232への集光である。マイクロレンズ220は、斜め入射光の光路をまげて撮像面に対して垂直に近い角度にするため、特に内視鏡のように広角撮影が多用されるケースでは有効である。また、マイクロレンズ220があると、ワイヤグリッド層222、224に対してほぼ直上から光を入射させることができるため、TM透過率と消光比の低下を防ぐ効果を有する。マイクロレンズ220の下には平坦化層226がある。その下層に第1ワイヤグリッド層222が配置されている。第1ワイヤグリット層222は、撮像面内において90°ずつ回転した特定の方向の偏光だけが透過し、それ以外の光は反射または吸収する。
 本実施形態における第1ワイヤグリッド層222は、金属ワイヤ間に中空構造を有しており、各金属ワイヤは空気と接している状態がつくられる。このため、消光比の性能低下を防ぐ効果を有する。
 第1ワイヤグリッド層222の下方には第2ワイヤグリッド層224が配置される。この第2ワイヤグリッド層224は、基本的には第1ワイヤグリッド層222と配置方向、サイズ、材質同一であり、同じ中空構造を持っている。
 第1および第2ワイヤグリッド層222、224を重ねて用いることにより、各々の消光比が10:1程度に低下した微細ワイヤグリッドであっても、2層全体の消光比を100:1程度までに向上させることができる。第2ワイヤグリッド224の下層には、平坦化層228と配線230とが設けられている。光の透過部分には配線230は配置されていないため、遮光されることなく、その下層にあるPD(フォトダイオード)232に到達する。撮像面では、多数のPD232が行および列状に配列され、光感知セルアレイを形成している。
 撮像素子では、マイクロレンズ220からPD232までの距離を短くする低背化が重要である。本実施形態の偏光撮像素子においても、マイクロレンズ220からPD232までの距離が長い場合、画素間クロストークが発生して偏光特性、特に消光比を低下させてしまう。低背化のため、本実施形態においては、ワイヤグリッドからPDまでの距離を2~3μm程度に設定している。また、ワイヤグリッド偏光子では、透過するTM波に対して偏光方向が直交するTE波は反射されるため、これが迷光となり性能劣化の原因となり得る。これを回避するためには、ワイヤグリッド222、224を単層ではなく多層構造として吸収作用を設けることが有効である。 以下、本実施形態における画像処理装置の撮像動作を説明する。
 まず、図11Aおよび図11Bを参照して、通常撮像モードの動作を説明する。
 図11Aおよび図11Bは、それぞれ、通常撮像モードにおける照明と撮像の動作を示す図およびタイミングチャートである。図11Aの左段は、面順次照明の分光スペクトルを示している。B色の照明は、B1(P偏光)とB2(S偏光)という厳密には異なる色の異なる偏光の混合光からなる。このことは、G、R色の照明光でも同様である。これらの照明光は、照射時には、それぞれ、B、G、Rの非偏光とみなすことができる。このため、実質的には公知の面順次照明と変わらなくなる。
 照明光が被写体に照射されるとき、被写体で反射された戻り光は、モノクロ広帯域偏光撮像素子105にて観察される。図11Aでは、偏光撮像素子105が有する偏光モザイクの基本単位801のみを記載している。この基本単位801に含まれる4個の偏光子のうち、左上および右下に位置する2個の偏光子(Pの偏光フィルタ)は、撮像面内で水平な方向に偏光したP偏光を透過し、右上および左下に位置する2個の偏光子(Sの偏光フィルタ)は、撮像面内で垂直な方向に偏光したS偏光を透過する。
 モノクロ広帯域偏光撮像素子115の偏光動作は、可視光領域の全体に相当する400nm~800nmにわたって機能するので、B、G、R色の照明光で被写体が照射されるときのいずれであっても1個の撮像素子で対応できる。
 得られる撮像画像は、非偏光の照明を受けた被写体からの戻り光を、Pの偏光フィルタまたはSの偏光フィルタを介して受光する。このため、得られた画素値を2×2の4画素領域で平均化することにより、非偏光画像を取得できる。平均化された画素値は、仮想的には、2×2の4画素の中心に位置する。このため、図11Aの最も右側では、点線で示す画素領域にNP(非偏光)と記載されている。2×2の4画素を1画素単位でシフトさせることにより、解像度低下は実質的に発生しない。
 このようにB、G、Rの非偏光の面順次照明に対して、それぞれ、非偏光撮像が実現される。カラー画像バッファメモリへ3原色画像を順次蓄積し、3原色の画像を得られたときに、これらの画像を合成することにより、フルカラー動画を生成することができる。上記の処理を、本明細書では「偏光モザイク画素の平均化処理」と称する。偏光モザイク画素の平均化処理は図6の偏光モザイク処理部202にて実行され、フルカラー動画の生成は、画像合成部206にて実行される。
 図11Bは、以上の動作をタイミングチャートで示している。図11Bの上段から照明の発光動作、撮像動作、そして偏光モザイク処理部202において処理されるカラー成分画像を示している。このタイミングの各動作は、同期回路112が、照明制御部120、モノクロ広帯域偏光撮像素子115、偏光モザイク処理部202を制御して実現する。
 次に、図12および図13を参照して、偏光撮像モードの動作を説明する。
 図12および図13は、それぞれ、偏光撮像モードにおける照明と撮像の動作概要を示す図およびタイミングチャートである。この例では、図7(a)の偏光撮像用カラーホイールを使用する。
 図12の左段は、面順次照明の分光スペクトルを示している。このB色とG色の照明は、被写体となる消化器などの粘膜の特性を考慮して決められている。B、G帯域は、R帯域に比べて短波長のため表面散乱されやすく、表面テクスチャでの光散乱を観察するのに適している。また、B、G帯域には、生体粘膜の反射特性に強い吸収が存在するため、コントラストが高くなり、表面凹凸テクスチャの観察に適している。
 本実施形態では、偏光撮像用カラーホイールの回転により、P偏光であるB1G1とS偏光であるB2G2が交互に被写体に照射される。照明光が被写体に照射され、被写体から反射された戻り光は、モノクロ広帯域偏光撮像素子105にて観察される。偏光モザイクの基本単位801で異なる偏光成分が測定される。P偏光照明における直交ニコル(P⊥)および平行ニコル(P∥)、ならびに、S偏光照明における直交ニコル(S⊥)および平行ニコル(S∥)の合計4通りの画素情報が得られる。ただし、画素情報として空間的に不足している★で表示した画素の値は、その周囲に位置する画素の値に基づいて補間する必要がある。この補間処理は、周囲4画素からの簡単な平均化処理で実現できる。
 図13は、以上の動作を示すタイミングチャートである。図13の上段から照明の発光動作、撮像動作、そしてモザイク処理部において処理されるカラー成分画像が示されている。このタイミングの動作は、同期回路112が制御する。P偏光とS偏光の交互照射のタイミングで、それぞれに対応する直交ニコル(P⊥)(S⊥)画像と平行ニコル(P∥)(S∥)画像とがモノクロ画像として出力される。ここで「モノクロ画像」とは、BおよびGの波長帯における偏光情報を示す輝度画像である。直交ニコル(P⊥)(S⊥)を交互に連続的に表示することにより、図5に示されたような不可視な表面凹凸を明瞭化した画像を得ることができる。
 図14および図15は、それぞれ、図7(c)の偏光撮像用カラーホイールを使用した場合の偏光撮像モードにおける照明と撮像の動作概要を示す図およびタイミングチャートである。この場合は、BGRの面順次カラー照明が行われる。このような撮像は、粘膜表面を、鏡面反射などを除去しつつ目視で観察する場合に特に有効である。また、生体粘膜内部の偏光特性を狭帯域の波長域として観察したい用途にも適する。
 照明光は、図7(c)の偏光撮像用カラーホイールの回転により、P偏光であるB1G1R1とS偏光であるB2G2R2が順番に被写体に照射される。被写体で反射された戻り光は、モノクロ広帯域偏光撮像素子105にて観察され、偏光モザイクの基本単位801で異なる成分が撮像される。得られる撮像画像は、P偏光照明においてRGBフルカラーの直交ニコル(P⊥)、平行ニコル(P∥)、S偏光照明においてRGBの各波長域について直交ニコル(S⊥)、平行ニコル(S∥)の合計12通りの画像情報となる。この場合も画素情報として不足分があるため、★で表示した画素は周囲から補間する必要がある。このような構成を採用すれば、内視鏡でのリアルタイムの観察時に、粘膜表面から鏡面反射等を除去して粘膜状態を観察しやすい。この例では、動画として高速再現を可能にするため、ホイール上の円周上のフィルタ並びの順番が、B1-G2-R1-B2-G1-R2となるようにし、RGBのカラーと偏光のPとSの種類が交番になる。
 図15は、以上の動作を示すタイミングチャートで示ある。図15の上段から照明の発光動作、撮像動作、そしてモザイク処理部において処理されるカラー成分画像が示されている。このタイミングの動作は同期回路112が制御する。P偏光とS偏光の交互照射のタイミングでそれぞれに対応する直交ニコル(P⊥)(S⊥)画像と平行ニコル(P∥)(S∥)画像とが出力される。ただし直交ニコル(P⊥)または(S⊥)のRGBフルカラー画像を得るためには、偏光照明を固定状態でB、G、Rの面順次光が照射される期間であるTpsの時間が必要になる。従って、この時間を動画として表示できない。これは、偏光とカラーの両方の照明を面順次にて実現しているため、全ての種類の照明を照射し終わるのに時間がかかるのが原因である。内視鏡での観察では、動作の再現にリアルタイム性が要求される。そこで、実施形態では、直交ニコル画像の動画表示の目的のため、(P⊥)と(S⊥)をなるべく混合した画像をパイプライン方式に処理・表示をする。たとえば、図15のRGBフルカラー直交ニコル画像1510は、B1(P)照明下での画像1501、G2(S)照明下での画像1502、R1(P)照明下での画像1503というP偏光とS偏光が混在した直交ニコル画像で、次のタイミングで処理・表示される画像1511は、G2(S)照明下での画像1502、R1(P)照明下での画像1503、B2(S)照明下での画像1504というP偏光とS偏光とが混合した直交ニコル画像である。
 このような処理を行うと、直交ニコル画像の照明にP⊥とS⊥がバランスよく含まれ、後段の凹領域検出に対して有利である。また、BGRのカラー面順次の変化を偏光の変化よりも早く変化させることにより、人間が観察する動画とした場合にカラー画像としての認識が崩れない。
 図16は、凹領域検出部204、および画像合成部206での処理を説明するための図である。図17は、凹領域検出部204において、中心画素値と周辺画素平均値との差分に用いる周辺部の画素位置のマスクパターンを示す図である。凹領域検出部204には、以上の処理で生成された直交ニコル画像が入力される。
 以下、図14および図15を参照しながら説明したフルカラーの直交ニコル画像が毎フレーム取得される場合の処理を例に説明する。フルカラーであるR、G、B成分からなる直交ニコル画像は、ここでは、G成分を抜き出し、図16に示す平滑化処理、微分処理、および青色強調処理の順に処理される。
(1)平滑化処理
 入力された画像は、次段の微分処理を実行する前に、画像から強調したいテクスチャの周波数より高域の雑音成分を除去する。具体的には、雑音成分を除去するため、平滑化フィルタ処理が実行される。本実施形態では、一般的なガウス型フィルタを用いる。フィルタのマスクサイズを、後述する微分マスクフィルタのマスクサイズと同一にすることにより、細かい粒状ノイズの強調を回避できる。
(2)微分処理
 平滑化フィルタ処理がなされたG成分画像に対して、周囲よりも明るい画素領域を検出するため以下のような微分マスク処理を行う。周囲より明るい画素領域を検出する理由は、図3~図5を参照しながら説明したとおり、偏光照明の偏光方向が被写体の表面溝と平行に近い場合、輝度が周囲よりも明るくなるためである。実際には、被写体の表面凹凸の向きは未知である。しかし、本開示の実施形態では、偏光照明の偏光方向が、直交する2つの方向の間で交互に変わり、(P⊥)と(S⊥)の2種類の直交ニコル画像を交互に取得できるため、問題はない。微分処理は、平滑化処理後の画像に、図17に示すような中心画素と周辺画素とを指定するマスク(ここでは3×3、5×5、7×7画素の例を示す)を設定し、周辺の周囲N=8画素、N=16画素、もしくはN=24画素の画素値Vklの平均値と中心画素値Cijとの差分値Δを算出する。こうして得られる差分値Δは、以下の数1の式で示される。
Figure JPOXMLDOC01-appb-M000001
 次に、中心画素値が周囲より明るい場合、以下の数2に示すように、差分値Δをk倍に増幅した値をΔCとする。もし暗い場合にはΔCは0とする。
(数2)
 If (Δ>0) ΔC=k*Δ
 else ΔC=0
(3)青色成分の強調
 ΔC値をR、G成分から減算することにより、青色を強調する。ここで、R、G成分が0以下になる場合、その不足分を他の色成分から減算して連続性を維持する。このため、Δの大きさで色相は変化するが、滑らかに接続されるようにすることができる。R、G成分のうちで値が小さいものをC1、大きいものをC2とおいて、以下のように3種類に場合分けをする。
 図18は、以下の3通りの場合を示している。
 まず、1)ΔCが小さい場合には、R、G信号から減算する処理を実行する。次に、2)でΔCがC1を超える値になった場合には、最も小さい信号がゼロになり、残りが中間となる信号から減算される。次に、3)でR、G信号からの減算がゼロになった場合には、B信号から残りの信号が減算される。以上の処理で、中心画素が周辺画素よりも明るい画素領域のカラー信号が、その程度に応じて青色強調され、インジゴカルミン撒布に類似したカラー画像が生成される。
(数3)
 1)ΔC≦C1の場合
   C1=C1-ΔC
   C2=C2-ΔC

 2)C1<ΔC≦(C1+C2)/2の場合
   C1=0 C2=(C1+C2)-(2ΔC)

 3)(C1+C2)/2<(ΔC)の場合
   C1=0C2=0
   B=B-((2ΔC)-C1-C2)
(4)画像合成部の処理
 画像合成部206は、図15に示すように、面順次照明で取得される画像をR、G、B3枚分蓄積する。そして、R、G、Bの3枚の画像を1フレーム毎に合成してリアルタイム表示可能なフルカラー画像を合成する。更に、表面テクスチャの凹部に青色成分強調を施したフルカラー画像を、1フレーム時間ごとに遅延なく動画表示する。
 図19は、本実施形態の画像処理装置によって得られた画像の例を示す図である。被写体はラットを解剖して胃を開いて、コルク板上に伸展固定した粘膜である。図19(A)および図19(B)は、それぞれ、この被写体の平行ニコル画像および直交ニコル画像を示す。図19(C)は、本実施形態に示した凹部検出処理を実行した画像を示す。図19(C)では、モノクロ画像が表示されているが、実際に得られる画像はフルカラー画像であり、胃の表面粘膜上に存在する表面凹凸テクスチャを検出して擬似的に青く着色している状態を示す。
(第2の実施形態)
 図20は、本開示の実施形態2における画像処理装置の全体構成を模式的に示す図である。本実施形態では、白色(ホワイト)光を照射して単板カラー撮像素子119にてカラー撮像を行う。本実施形態では、白色光を被写体に照射する際、偏光回転照明を実現する。この目的のため、本実施形態では、光源装置104には照明制御部のみを配置し、内視鏡の先端部に配置したLED、あるいは有機EL面光源などで照明光を生成する。
 本実施形態においては、例えば図21に示すように、内視鏡の先端に偏光面が0°(P)、90°(S)の照明光の照射口が交互に多数(ここでは16分割で)配列されている。この例では、交互に隣接しない同種の8個のLEDが選択されて点灯することによってP偏光とS偏光の交互の偏光照明が実現される。
 図22(A)は、偏光回転照明の別の例を示している。この例では、順次点灯する照明画素単位を十分小さく、数量を多くすることにより、点灯する光源位置の変動が撮像側で1画素以内に抑制され得る。図22(B)は、この面照明の全体構成を示す図であり、面照明のX軸とY軸の各軸に順次点灯を制御するためのデータドライバが用意されており、X軸とY軸でアドレスされる画素が一斉に点灯する。たとえば、ここではX軸とY軸の両方が偶数の画素(X2mとY2m)が一斉に点灯すると、それは偏光面が0°の照明光となる。そしてX軸とY軸のデータドライバの偶数、奇数の組みあわせによって、0°(P)、90°(S)の偏光透過面を有する照明光が得られることになる。
 このような面照明を使う利点は、全体の照度や配光状態が一定のまま照明の偏光状態だけが変化できることである。照明に面光源を使用することにより、照明光の均一性が良くなる。その結果、臓器の表面粘膜における非常に強い正反射輝度を低下させ、撮像を良好に行うことができる。
 図23は、本実施形態で用いるカラー偏光撮像素子119の断面構造の例を示す図である。図10に示したモノクロ広帯域偏光画像撮像素子115と異なるのは、カラーフィルタ240がワイヤグリッド層224からPD(フォトダイオード)232までの間に配置されることである。このカラーフィルタ240は、有機物から形成されても良いし、フォトニック結晶または金属から形成されてもよい。光の入射側からPD232までの光の進行方向からみた場合、マイクロレンズ220、第1ワイヤグリッド層222、第2ワイヤグリッド層224、カラーフィルタ240の配置の取りえる順序は計6通りあり、各々でその利点が異なる。ワイヤグリッド224とPD232との間の距離DEPTHは、カラーフィルタ240が入る分長くなるため、典型的には4~6μmである。
 図24の構成(最上層からマイクロレンズ220・第1ワイヤグリッド層222・第2ワイヤグリッド層224・カラーフィルタ240)では、マイクロレンズ220が最上層に位置するため、ワイヤグリッドに垂直に光を入射させやすい。
 図24は、図23のカラー偏光撮像素子119の平面構造を示す図である。図24(A)はカラー単板撮像素子と同じ平面構造を示す。図24(A)の構成例では、4×4画素領域を拡大し、直上から観察して、図24(B)のカラーモザイク構造と図24(C)の偏光モザイク構造とが、画素ごとに重なった状態にある。
 図24(B)は、カラーモザイクフィルタの1例を示しているが、本開示の実施形態で使用され得るカラーモザイクフィルタは、この例に限定されない。ベイヤーモザイク以外の他のモザイク構造でも構わない。この例では、カラーモザイクに含まれる1色のフィルタが、2行2列に配置された4個の画素(4個のフォトダイオード)の領域をカバーする。2×2画素領域は、図24(C)の4種類の偏光モザイク領域に相当する。すなわち、サブ画素を基準にすると、イメージセンサの解像度は本来の画素の1/2×1/2となって画素数は低下するが、1画素内で偏光処理をすることにより偏光処理の結果発生するアーティファクトを低減させることができる。
 次に図25を参照して、本実施形態における通常撮像モードの動作を説明する。被写体には、White(白色)のP偏光とWhite(白色)のS偏光とが交互に照射され、その都度、偏光カラーモザイク画像が取得される。P偏光の照射時には、偏光モザイク2502によって偏光画素パターン2503が、S偏光の照射時には、偏光画素パターン2504が取得される。ここで、P∥およびP⊥は、それぞれ、P偏光の照射時における平行ニコル状態および直交ニコル状態の画素を示している。同様に、S∥およびS⊥は、それぞれ、S偏光照射時における平行ニコル状態および直交ニコル状態の画素を示す。偏光モザイク処理部202では、この偏光画素パターン2503と偏光画素パターン2504の画像を画素毎に加算平均を実行する。偏光画素パターン2503と偏光画素パターン2504において、各カラー画素での加算平均処理を行うと、平行ニコル状態の画素値と直交ニコル状態の画素値とが以下のように均等に混合される。
(数4)
(NP)=(P∥+P⊥+S∥+S⊥)/4
 加算平均の結果Vは、元々の解像度からは1/2×1/2に低下した非偏光(NP)のカラーモザイク画像2505が得られる。この非偏光カラーモザイク画像2505からフルカラー画像を生成する処理は、通常のカラーモザイク補間によって行われ得る。
 図26は、以上の動作を示すタイミングチャートである。図26の上段から照明の発光動作、撮像動作、そして偏光モザイク処理部202において処理されるカラー成分画像を示している。このタイミングの動作は、同期回路112が制御する。P偏光とS偏光の交互照射のタイミングでそれぞれに対応する偏光画素パターン2503、2504が撮像される。偏光モザイク処理部202では、図25に示された偏光画素パターン2503、2504の加算平均処理を実行して非偏光カラーモザイク画像2505が得られる。次に、カラーモザイク補間処理にて、RGBフルカラー画像を得る。したがって、P偏光照明とS偏光照明とが照射されて1枚のRGBフルカラー画像を得ることが可能になる。実際には、図26に示すように、時間的に隣接するP偏光照明およびS偏光照明の処理を連続することによって1フレーム時間毎に画像が遅延なく動画として生成される。
 図27は、本実施形態における偏光撮像モードの動作を説明するための図である。偏光撮像モードでは、P偏光とS偏光が交互に被写体に照射され、その都度、偏光のカラーモザイク画像が取得される。ここで得られる偏光画素パターン2503、2504は、図25の偏光画素パターン2503、2504と同一である。偏光モザイク処理部202では、画素パターン2503、2504の両方を使って、該当する画素ごとに、P∥とS∥、およびP⊥とS⊥を選択・集積処理する。こうすることによって、PS偏光混合の平行ニコル画像2701とPS偏光混合の直交ニコル画像2702を分離して生成する。そして同一カラー画素内の4画素を以下のように加算平均する。
(数5)
(PS∥)=(P∥+S∥+P∥+S∥)/4
(PS⊥)=(P⊥+S⊥+P⊥+S⊥)/4
 この処理の結果得られる偏光画像は、元々の解像度からは1/2×1/2に低下したカラーモザイク画像2703、2704である。カラーモザイク画像2703および2704内の同一カラー画素は、P偏光照明とS偏光照明を均等に含んだ状態での平行ニコル画像PS∥と直交ニコル画像PS⊥を構成している。直交ニコル画像PS⊥について、カラーモザイク補間が実行され、フルカラーの直交ニコル画像が生成される。この直交ニコル画像に対しては、凹領域検出部204および画像合成部206で第1の実施形態について説明した処理と同様の処理が行われる。
 図28は、以上の動作を示すタイミングチャートである。図28は、上段から照明の発光動作、撮像動作、そして偏光モザイク処理部202、カラーモザイク補間部208、凹領域検出部204、画像合成部206において処理されるカラー画像を示している。照明と撮像の動作までは、図26の通常撮像モードのタイミングチャートと同一である。偏光モザイク処理部202での動作では、P偏光照明とS偏光照明の撮像画像をフレームごとに用いてPS混合偏光での平行ニコル画像2701とPS偏光混合の直交ニコル画像2702を生成する。すなわち、フレームごとに同時に2種の偏光画素パターン2701、2702が生成される。また、それらを加算平均したカラーモザイク画像2703とカラーモザイク画像2704も同時に生成される。カラーモザイク画像2703、2704の解像度は1/2×1/2に低下している。直交ニコル画像2704は、第1の実施形態に関する図16を参照しながら説明したように、凹領域検出部204と画像合成部206において表面テクスチャの凹部で青色成分強調を施したフルカラー画像として毎フレームごとに表示部114で動画表示される。
(第2の実施形態の変形例1)
 図29は、本開示の実施形態2の変形例1を示す図である。図29(A)は、図23に示された第2の実施形態におけるカラー偏光撮像素子119の平面構造を示す図である。図29(A)は、カラー単板撮像素子と同じ平面構造を示している。図29(B)は、カラーモザイクにおける4×4個のカラーフィルタの配置例を示し、図29(C)は、偏光モザイクにおける8個の偏光子の配置例を示している。これらのカラーモザイクおよび偏光モザイクは、4×4個の画素(PD:フォトダイオード)をカバーするように積層されている。
 本実施形態では、カラーモザイクの2色のカラーフィルタと1個の長方形の偏光子とが対応している。他の構成は、第2の実施形態の構成と変わらない。
 図29(C)における角度表示の0°の偏光子が位置する画素が、P偏光の透過画素であり、90°の偏光子が位置する画素がS偏光の透過画素である。0°の偏光子と90°の偏光子とが市松配列を形成していない。すなわち、撮像面内において垂直方向または水平方向に隣接する2個の画素に同一の偏光が入射するように偏光モザイクが構成されている。これは、RGB画素のうち2画素を占めるG画素に必ず0°の偏光子と90°の偏光子が割り当てられるようにするためである。このような構成によれば、0°の偏光子が、RGの2画素とBGの2画素に割り当てられ、90°の偏光子がGBの2画素とGRの2画素に割り当てられている。
 図30は、本実施形態における通常撮像モードの動作を示す図である。通常撮像モードでは、White(白色)のP偏光とS偏光とが交互に照射され、その都度画像が取得され、偏光のカラーモザイク画像が取得される。偏光モザイクが3001のような配列であるため、P偏光の照射時には、3002で示す偏光画素パターンが、S偏光の照射時には3003で示す偏光画素パターンが取得される。ここで、P∥、P⊥はP偏光照射時における平行ニコル状態と直交ニコル状態の画素を示し、同様に、S∥、S⊥はS偏光照射時における平行ニコル状態と直交ニコル状態の画素を示す。偏光モザイク処理部202では、この偏光画素パターン3002、3003を画素毎に加算平均をする。加算平均処理は、平行ニコルと直交ニコル状態の画素が以下のように均等に混合されると考えられる。
 その場合、3004には、異なる色画素で直交ニコルと平行ニコルの画素が混在するが、あまり問題にはならない。これは内視鏡では被写体に対して照明角度と撮像角度がほぼ等しいため非偏光の照明が反射して大きく偏光することがあまり無く通常観察では色の違いがほぼ無いためである(表面凹凸の場合を除く)。
(数6)
(NP)=(P⊥+S∥)/2
(NP)=(P∥+S⊥)/2
 加算平均の結果Vは、非偏光のカラーモザイク画像3004が得られる。この際に第2の実施形態にあったような解像度の低下がない。この非偏光カラーモザイク画像3004からフルカラー画像を生成する処理は、通常のカラーモザイク補間によって行われ得る。
 図31は、本実施形態における偏光撮像モードの動作を説明する図である。偏光照明はP偏光とS偏光が交互照射され、その都度画像が取得され、偏光画像パターン3102、3103が取得される。偏光モザイク処理部202では、この偏光画素パターン3102、3103を両方使って、該当する画素ごとに、P∥とS∥、およびP⊥とS⊥を収集し埋め込み処理をする。こうすることによって、PS偏光混合の平行ニコル画像3104とPS偏光混合の直交ニコル画像3105とを分離生成する。この処理の結果得られる偏光画像は、カラーモザイク画像3106、3107であり、それぞれ、P偏光照明とS偏光照明を均等に含んだ状態での平行ニコル画像PS∥と直交ニコル画像PS⊥である。直交ニコル画像PS⊥について、カラーモザイク補間が実行されフルカラーの直交ニコル画像が生成される。この直交ニコル画像は、凹領域検出部204、画像合成部206において第1の実施形態について説明した処理と同様の処理が行われる。なお、この実施形態に関するタイミングチャートは、第2の実施形態に関するタイミングチャートと同様である。
(第2の実施形態の変形例2)
 図32は、本開示の実施形態2の変形例2を示す図である。図32(A)は、図23のカラー偏光撮像素子119の平面構造を示す図である。図32(B)は、カラーモザイクにおける4×4個のカラーフィルタの配置例を示し、図32(C)は、偏光モザイクにおける4個の偏光子の配置例を示している。これらのカラーモザイクおよび偏光モザイクは、4×4個の画素(PD:フォトダイオード)をカバーするように積層されている。
 本実施形態では、カラーベイヤ・モザイクの1単位の4画素と偏光モザイクの1単位とが対応している。他の構成は、第2の実施形態と変わらない。図32(C)における角度表示の0°の偏光子が位置する画素がP偏光の透過画素であり、90°の偏光子が位置する画素がS偏光の透過画素である。偏光モザイクの0°の偏光子と90°の偏光子とは市松配列を形成している。各々に同一のカラーベイヤ・モザイクが包含される配列としている。
 図33は、本実施形態における通常撮像モードの動作を示す図である。通常撮像モードでは、White(白色)のP偏光とS偏光とが交互に照射され、その都度、画像が取得され、偏光のカラーモザイク画像が取得される。偏光モザイクが配列3301を有するため、P偏光の照射時には、偏光画素パターン3302が、S偏光の照射時には偏光画素パターン3303が取得される。ここで、P∥、P⊥、S∥、S⊥は既出の意味を持つ。偏光モザイク処理部202では、この偏光画素パターン3302、3303を有する画像について、画素毎に加算平均を実行する。加算平均処理では、平行ニコルと直交ニコル状態の画素が均等に混合される(数6)。
 加算平均の結果Vは、非偏光のカラーモザイク画像3304が得られる。この際に第2の実施形態にあったような解像度の低下がない点が特徴である。この非偏光カラーモザイク画像からフルカラー画像を生成する処理は、通常のカラーモザイク補間によって行われ得る。
 図34は、本実施形態における偏光撮像モードの動作を説明する図である。偏光照明はP偏光とS偏光が交互照射され、その都度画像が取得され、偏光画素パターン3402、3403が取得される。
 偏光モザイク処理部202では、偏光画素パターン3402、3403を両方使って、該当する画素ごとに、P∥とS∥、およびP⊥とS⊥を収集し埋め込み処理することによってPS偏光混合の平行ニコル画像3404とPS偏光混合の直交ニコル画像3405を分離生成する。この処理の結果得られる偏光画像は3406と3407のようなカラーモザイク画像であり、それぞれ、P偏光照明とS偏光照明を均等に含んだ状態での平行ニコル画像PS∥、と直交ニコル画像PS⊥である。直交ニコル画像PS⊥について、カラーモザイク補間が実行されフルカラーの直交ニコル画像が生成される。この直交ニコル画像は、凹領域検出部204、画像合成部206において第1の実施形態について説明した処理と同様の処理が行われる。なお、この実施形態に関するタイミングチャートは第2の実施形態のタイミングチャートと同様である。
(第3の実施形態)
 図35は本発明の第3の実施形態の構成を示す図である。本実施形態も、白色(ホワイト)光を被写体に照射して単板カラー撮像素子にてカラー撮像を行う。第2の実施形態と異なるのは、レンズ開口部に偏光板とカラーフィルタが配置されている点、撮像面上にマイクロレンズアレイが配置されたマイクロレンズアレイ型カラー偏光撮像部3501を備えている点、および、マイクロレンズアレイ型素子特有の画像処理を行うための画素選択再集積部210を備えている点である。
 図36は、本実施形態における内視鏡先端部を正面から拡大した図である。内視鏡先端には偏光面が0°(P)、90°(S)の異なる照明光の照射口が交互に多数(ここでは16分割で)配置されている。この照明にて交互に隣接しない同種の8個のLEDが選択されて点灯し、撮像をすることによってPとSの交互の偏光照明が実現される。開口部となる対物レンズ3502上には、図で示すように2×2合計4種類のカラーと偏光の複合フィルタ領域が配置されている。これらはRとBの非偏光カラーフィルタ領域とGの0°(P)および、Gの90°(S)の2種類の直交したカラー偏光フィルタ領域である。
 図37は、このマイクロレンズアレイ型カラー偏光撮像部3501の構成例を示す図である。図37では、説明図の都合上、対物レンズ3502上の4領域のうち、図36におけるGフィルタの2領域、すなわち、Gフィルタと0°(P)偏光フィルタを配置した領域3701とおなじくGフィルタと90°(S)偏光フィルタを配置した領域3702の2つの領域のみを記載している。
 図37に示されるように、被写体上の1点3700から発散した光は、対物レンズ3502上の2領域3701、3702をそれぞれ透過しアレイ状光学素子3703を経由してモノクロ撮像素子の撮像面3704に到達する。この際対物レンズ上の領域の像が異なる2個の画素3705に到達するため、撮像面3704上に形成される像は、全体としては被写体の像であるが、詳細には異なる2領域の像から成立する画像となる。ここから画素を選択して集積するデジタル画像処理を行うことによって、2領域を透過した画像を分離生成することができ、同時にモノクロ撮像素子を用いながらカラー画像を得ることができる。
 図38は、開口部のカラー偏光フィルタ領域3701、3702の断面構造を示す図である。この例では、偏光フィルタとして金属ワイヤグリッド層3801が用いられている。ワイヤグリッド層3801は、例えばピッチが100nm程度の金属ワイヤが透明基盤3802上に形成され得る。その下層にはカラーフィルタ3803が配置されている。カラーフィルタ3803の次の段に対物レンズ3502が配置される。ここでカラーフィルタ、ワイヤグリッド層、対物レンズの配置順番、レンズとの間隙の有無は任意である。また、偏光板としてはワイヤグリッド以外のポリマー系偏光板、フォトニック結晶を用いた偏光板、構造複屈折を用いた偏光板など既存の技術を利用可能である。
 図39は、このマイクロレンズアレイ型カラー偏光撮像素子を用いた撮像結果からカラー偏光画像を生成する画素選択再集積部210での処理を説明するための図である。撮像素子3704上のイメージから2×2の画素ユニットごとにそれぞれ左上、右上、左下、右下の画素を全画像にわたって選択し再度集積することによって、解像度は1/2×1/2に低下するが、それぞれGのP(0°)偏光画像3901、Rの非偏光画像3902、Bの非偏光画像3903、GのS(90°)偏光画像3904とを分離することができる。ここから、RGBの非偏光カラー画像、およびG波長領域におけるP/S偏光画像を得ることができる。
 図40は、本実施形態における内視鏡において通常撮像モードと偏光撮像モードで取得される画像を示している。通常撮像モードでも偏光撮像モードにおいてもWhite(白色)の偏光照明はP偏光とS偏光が交互に照射され、その都度画像が取得され、図39の処理を得て1回の同一シーン撮像につき4種のカラー偏光画像が分離取得される。この分離取得される4種のカラー偏光画像を4001のように表示する。この表示方法は従来のように個々の画素を表現するものではなく4枚の画像全体を表現している。P偏光の照射時には、偏光画像4002が、S偏光の照射時には偏光画像4003が取得される。ここで、P∥、P⊥、S∥、S⊥は前述の意味を持つが、PまたはSは、P偏光照明またはS偏光照明下にて特別な偏光フィルタなしに非偏光で撮像された画像という意味を持つ。通常撮像モードでは、この画像4002、4003について、画素毎に加算平均をする。加算平均処理は、平行ニコルと直交ニコル状態の画素が以下のように均等に混合されると考えられ、この結果は近似的には非偏光画像になる。
(数7)
(NP)=(P⊥+S∥)/2
(NP)=(P∥+S⊥)/2
(NP)=P+S
 加算平均の結果Vは、非偏光カラーモザイク画像4004が得られる。この非偏光カラーモザイク画像からフルカラー画像を生成する処理は、通常のカラーモザイク補間によって行われ得る。
 偏光撮像モードにおいても画像4002と画像4003とが交互に取得される段階までは同様であるが、G画像のみで平行ニコルと直交ニコル画像を集めることによりG波長域においてPS∥4005とPS⊥4006の2種類の偏光画像を生成することができ、第1の実施形態における図13のように出力画像はモノクロ画像となる。
 本実施形態のようなマイクロレンズアレイ型偏光撮像素子の利点は、レンズ開口部に偏光板を配置できるため、個々の偏光モザイク素子のサイズが撮像素子上へ配置するよりもサイズ的に大きくできることである。たとえば、実施形態1、2で用いた偏光モザイク型の撮像素子では、偏光モザイク単位を形成する金属ワイヤ長は撮像素子の画素サイズに等しく2~3μmである。このような微細サイズではたとえワイヤグリッド個々の金属線のピッチは微細であってもワイヤグリッド長さや繰り返し本数が制限されるため偏光板としての消光比性能は10:1程度に低下するとされている。本実施形態では、レンズ開口部のサイズである0.5mm=500μm程度の比較的大判のワイヤグリッド偏光板を用いることができ、100:1程度の高い消光比を実現することができ、内視鏡における表面微細パターンの観察の明瞭化で極めて有利となる。
 (第4の実施形態)
 図41は、本発明の第4の実施形態の構成を示す図である。本実施形態も第2の実施形態と同様、白色(ホワイト)光を照射して単板カラー撮像素子にてカラー撮像を行う。第2の実施形態とは、マイクロレンズアレイ型カラー偏光撮像部4101を用いている点が異なる。本実施形態におけるマイクロレンズアレイ型カラー偏光撮像部4101は、以下の構成において第3の実施形態に用いられたマイクロレンズアレイ型カラー偏光撮像部から異なる。
 図42Aは、このマイクロレンズアレイ型カラー偏光撮像部4101の構成例を示す図である。レンズ開口部には、広帯域型の0°(P)透過軸と90°(S)透過軸を有する偏光フィルタ4103のみを配置し、カラー化はベイヤーモザイク4105を有する単板カラー撮像素子4104で実行する。こうすることにより、偏光とカラーの動作を分離している。これによってRGBのフルカラーの平行・直交ニコル画像を得ることができる。後述するように、マイクロレンズアレイ(アレイ状光学素子)3703の作用によって、偏光フィルタ4103の4種の領域(UL)(UR)(DL)(DR)を透過した光線は、カラーモザイクフィルタ4105の(UL1)(UR1)(DL1)(DR1)の4領域にそれぞれ結像する。
 図42Bは、マイクロレンズアレイ型カラー偏光撮像部4101の断面構成の例を模式的に示している。図42Bでは、対物レンズ3502上の4領域のうち図41における90°偏光フィルタを配置した領域4201とおなじく0°偏光フィルタを配置した領域4202の2つの領域のみを記載している。被写体上の1点3700から発散した光は、対物レンズ3502上の2領域4201、4202をそれぞれ透過し、アレイ状光学素子3703を経由してカラーモザイクを配置したカラー撮像素子面4203に到達する。この際、対物レンズ上の2つの領域4201、4202を通過する光線による像が、異なる画素4204に到達する。このため、撮像面4203上に形成される像は、全体としては被写体の像であるが、詳細には異なる0°と90°の偏光領域の像から成立する。各領域4201、4202の像は、カラー撮像素子4203上のカラーモザイク2画素に対応している。
 図43は、本実施形態における開口部の偏光フィルタ領域4201、4202の断面構造を示す図である。この例では、偏光フィルタとして金属ワイヤグリッド層3801が用いられている。ワイヤグリッド層3801は、例えばピッチが100nm程度の金属ワイヤが透明基盤3802上に形成され得る。このようなワイヤグリッド層3801によれば、可視光範囲の広帯域で偏光動作を実現できる。
 次の段には対物レンズ3502が配置される。ここで、ワイヤグリッド層3801と対物レンズ3502の配置順番、ワイヤグリッド層3801と対物レンズ3502との間隙の有無は任意である。偏光板は、可視光帯域の広い範囲にて偏光動作を実現するものであれば、ワイヤグリッド偏光板以外のポリマー系偏光板であっても良い。
 図44は、画素選択再集積部210の処理を説明する図である。撮像素子4203上のイメージから2×2の画素単位ごとにそれぞれ左上、右上、左下、右下の画素を全画像にわたって選択し、再度集積することによって、解像度は1/2×1/2に低下するが、それぞれP(0°)偏光カラー画像4401、S(90°)偏光カラー画像4402、S(90°)偏光カラー画像4403、P(0°)偏光カラー画像4404とを分離することができる。これ以降はカラーモザイク補間部208の処理を行う。
 本実施形態では、1種の偏光フィルタ内にRGBGという2×2カラーベイヤモザイク単位が含まれるため、第2の実施形態の変形例2と同様の情報が得られる。さらにマイクロレンズアレイ型偏光撮像素子の利点として、レンズ開口部に偏光板を配置できるため、サイズが大判のワイヤグリッド偏光素子を用いることができ、100:1程度の高い消光比を実現することができる利点を有する。
 本開示の実施形態は、消化器内科向け医療用内視鏡、皮膚科、歯科、眼科、外科などのメディカル用途のカメラ、工業用内視鏡、指紋撮像装置、さらに工場などにおける表面検査装置など被写体の表面凹凸の観察、検査、認識を必要とする画像処理分野に広く適用可能である。本開示の実施形態によれば、なめらかな透明物体または半透明物体の表面の凹凸を正しく検出でき、人間に判別しやすい形での強調表示をすることができる。このため、本開示の実施形態は、輝度観察では困難な凹凸の検査に最適である。
 また、本開示の画像処理装置は、デジタルカメラやビデオカメラ、監視カメラなどに適用でき、水面や空撮影におけるコントラスト向上やガラス越しの撮影等に広く利用可能である。
101  内視鏡
102  制御装置
103  挿入部
104  光源装置
105  ライトガイド
106  先端部
107  照明レンズ
108  映像信号線
109  対物レンズ
110  画像プロセッサ
111  内臓粘膜表面(凹凸あり)
112  同期装置
113  反射光
114  表示部
115  モノクロ広帯域偏光撮像素子
116  カラーホイール
117  偏光または非偏光照明光
118  光源
119  カラー偏光撮像素子
120  照明制御部
200  照明用フィルタ
202  偏光モザイク処理部
204  凹領域検出部
206  画像合成部
208  カラーモザイク補間部
210  画素選択再集積部
220  マイクロレンズ
222  第1ワイヤグリッド層
224  第2ワイヤグリッド層
226  平坦化層
228  平坦化層
230  配線
232  PD(フォトダイオード)
240  カラーフィルタ

Claims (19)

  1.  偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光照明光で前記被写体を照射する照明部であって、前記第1の照明光の波長域が前記第2の照明光の波長域に重複しない部分を有するように前記第1および第2の照明光を順次出射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、および、各偏光子を透過した光を受けて信号を出力する光検知素子アレイとを有する撮像素子と
     前記偏光撮像モードにおいては、前記第1の照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを得て、前記非偏光撮像モードにおいては、前記非偏光照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、偏光モザイク処理部と、
     前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、
     前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部と、
    を備える画像処理装置。
  2.  前記第1の照明光の波長域は、B(ブルー)およびG(グリーン)の少なくとも一方の波長域に含まれ、
     前記第2の照明光の波長域は、B(ブルー)およびG(グリーン)の少なくとも一方の波長域に含まれている、請求項1に記載の画像処理装置。
  3.  前記第1の照明光の波長域は、B(ブルー)の波長域の一部およびG(グリーン)の波長域の一部に含まれ、
     前記第2の照明光の波長域は、B(ブルー)の波長域の他の一部およびG(グリーン)の波長域の他の一部に含まれる、請求項1に記載の画像処理装置。
  4.  前記第1の照明光の波長域は、B(ブルー)の波長域の一部、G(グリーン)の波長域の一部、およびR(レッド)の波長域の一部に含まれ、
     前記第2の照明光の波長域は、B(ブルー)の波長域の他の一部、G(グリーン)の波長域の他の一部、およびR(レッド)の波長域の他の一部に含まれる、請求項1に記載の画像処理装置。
  5.  前記照明部は、前記第1の照明光として、B(ブルー)の波長域の一部に含まれる光、G(グリーン)の波長域の一部に含まれる光、およびR(レッド)の波長域の一部に含まれる光を、それぞれ異なるタイミングで出射し、また、前記第2の照明光として、B(ブルー)の波長域の他の一部に含まれる光、G(グリーン)の波長域の他の一部に含まれる光、およびR(レッド)の波長域の他の一部に含まれる光を、それぞれ異なるタイミングで出射する、請求項4に記載の画像処理装置。
  6.  前記照明部は、前記第1の照明光および第2の照明光を交互に出射し、かつ、R(レッド)、G(グリーン)、およびB(ブルー)の各波長域に含まれる光を順次出射する、請求項5に記載の画像処理装置。
  7.  前記偏光モザイク処理部は、前記偏光撮像モードにおいて、R(レッド)、G(グリーン)、およびB(ブルー)の各波長域に含まれる光で前記被写体が照明されているときに得られる前記第1および第2の偏光画像に基づいて非偏光フルカラー画像を形成する、請求項6に記載の画像処理装置。
  8.  偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、各偏光子および各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子と、
     前記偏光撮像モードにおいては、前記第1の白色照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の白色照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを得て、前記非偏光撮像モードにおいては、前記非偏光白色照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、偏光モザイク処理部と、
     前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、
     前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部と、
    を備える画像処理装置。
  9.  前記カラーモザイクフィルタは、R(レッド)フィルタ、G(グリーン)フィルタ、およびB(ブルー)フィルタの3種類のカラーフィルタを含む、請求項8に記載の画像処理装置。
  10.  前記3種類のカラーフィルタの各々は、偏光透過軸の方向が異なる前記複数の偏光子に対応している、請求項9に記載の画像処理装置。
  11.  前記3種類のカラーフィルタの各々は、前記複数の偏光子の各々に対応している、請求項10に記載の画像処理装置。
  12.  前記カラーモザイクフィルタにおける前記3種類のカラーフィルタはベイヤ配列を構成し、
     前記ベイヤ配列に含まれる2個のG(グリーン)フィルタは、それぞれ、偏光透過軸の方向が異なる前記複数の偏光子に対応している、請求項11に記載の画像処理装置。
  13.  前記複数の偏光子の各々は、前記3種類のカラーフィルタに対応している、請求項10に記載の画像処理装置。
  14.  偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子、および、光透過特性が異なるカラーフィルタが設けられた開口領域を有し、前記開口領域を透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子と、
     前記偏光撮像モードにおいては、前記第1の白色照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の白色照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを、前記マイクロレンズアレイに覆われた前記複数の光検知素子から選択した一部の光検知素子からの信号に基づいて形成し、前記非偏光撮像モードにおいては、前記非偏光白色照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、画像分離部と、
     前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、
     前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部と、
    を備える画像処理装置。
  15.  偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子が設けられた開口領域と、
     光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、前記開口領域の各偏光子を透過した後、更に各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子と、
     前記偏光撮像モードにおいては、前記第1の白色照明光で前記被写体が照射されているときに前記第1の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第1の偏光画像と、前記被写体が前記第2の白色照明光で照射されているときに前記第2の方向に交差する方向に前記偏光透過軸を有する偏光子を透過した光の信号によって構成される第2の偏光画像とを、前記マイクロレンズアレイに覆われた前記複数の光検知素子から選択した一部の光検知素子からの信号に基づいて形成し、前記非偏光撮像モードにおいては、前記非偏光白色照明光で前記被写体が照射されているときに各偏光子を透過した光の信号によって構成される非偏光画像を得る、画像分離部と、
     前記第1および第2の偏光画像の少なくとも一方に基づいて前記被写体の表面における凹領域を検出する凹領域検出部と、
     前記被写体の表面における前記凹領域を強調して示す画像を形成する画像形成部と、
    を備える画像処理装置。
  16.  請求項1から7の何れかに記載の画像処理装置に用いられる内視鏡であって、
     偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光照明光で前記被写体を照射する照明部であって、前記第1の照明光の波長域が前記第2の照明光の波長域に重複しない部分を有するように前記第1および第2の照明光を順次出射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、および、各偏光子を透過した光を受けて信号を出力する光検知素子アレイとを有する撮像素子と、
    を備える内視鏡。
  17.  請求項8から13のいずれかに記載の画像処理装置に用いられる内視鏡であって、
     偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子が配列された偏光モザイクアレイ、光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、各偏光子および各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子と、
    を備える内視鏡。
  18.  請求項14に記載の画像処理装置に用いられる内視鏡であって、
     偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子、および、光透過特性が異なるカラーフィルタが設けられた開口領域を有し、前記開口領域を透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子と、
    を備える内視鏡。
  19.  請求項15に記載の画像処理装置に用いられる内視鏡であって、
     偏光撮像モードにおいて、第1の方向に偏光した状態にある第1の白色照明光、および、前記第1の方向と交差する第2の方向に偏光した状態にある第2の白色照明光で、順次、被写体を照射し、非偏光撮像モードにおいては、非偏光白色照明光で前記被写体を照射する照明部と、
     偏光透過軸の方向が異なる複数の偏光子が設けられた開口領域と、
     光透過特性が異なるカラーフィルタが配列されたカラーモザイクフィルタ、および、前記開口領域の各偏光子を透過した後、更に各カラーフィルタを透過した光を受けて信号を出力する光検知素子アレイを有する撮像素子であって、複数の光検知素子を覆うマイクロレンズアレイを有する撮像素子と、
    を備える内視鏡。
PCT/JP2013/005385 2012-11-09 2013-09-11 画像処理装置および内視鏡 WO2014073138A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13853498.7A EP2918217B1 (en) 2012-11-09 2013-09-11 Image processing device and endoscope
JP2014527398A JP5857227B2 (ja) 2012-11-09 2013-09-11 画像処理装置および内視鏡
US14/467,316 US20140362200A1 (en) 2012-11-09 2014-08-25 Image processing apparatus and endoscope
US15/960,438 US10492660B2 (en) 2012-11-09 2018-04-23 Image processing apparatus and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-247178 2012-11-09
JP2012247178 2012-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/467,316 Continuation US20140362200A1 (en) 2012-11-09 2014-08-25 Image processing apparatus and endoscope

Publications (1)

Publication Number Publication Date
WO2014073138A1 true WO2014073138A1 (ja) 2014-05-15

Family

ID=50684268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005385 WO2014073138A1 (ja) 2012-11-09 2013-09-11 画像処理装置および内視鏡

Country Status (4)

Country Link
US (2) US20140362200A1 (ja)
EP (1) EP2918217B1 (ja)
JP (1) JP5857227B2 (ja)
WO (1) WO2014073138A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187804A1 (ja) * 2016-04-28 2017-11-02 シャープ株式会社 撮像装置
JP2021508546A (ja) * 2017-12-27 2021-03-11 エシコン エルエルシーEthicon LLC 光不足環境における蛍光撮像
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11686847B2 (en) 2019-06-20 2023-06-27 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11924535B2 (en) 2019-06-20 2024-03-05 Cila GmbH International Controlling integral energy of a laser pulse in a laser mapping imaging system
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11940615B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Driving light emissions according to a jitter specification in a multispectral, fluorescence, and laser mapping imaging system
US11974860B2 (en) 2019-06-20 2024-05-07 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral, fluorescence, and laser mapping imaging system
US12007550B2 (en) 2020-03-17 2024-06-11 Cilag Gmbh International Driving light emissions according to a jitter specification in a spectral imaging system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067425A1 (ja) * 2014-10-30 2016-05-06 オリンパス株式会社 画像処理装置、内視鏡装置及び画像処理方法
KR102305101B1 (ko) * 2014-12-23 2021-09-27 삼성전자주식회사 이미지 센서 보정용 광원 장치
JP6671872B2 (ja) * 2015-06-22 2020-03-25 キヤノン株式会社 アダプタ装置、撮像装置および撮像システム
CA2996014C (en) * 2015-08-24 2018-07-31 Titan Medical Inc. Method and apparatus for illuminating an object field imaged by a rectangular image sensor
US11782256B2 (en) * 2016-09-21 2023-10-10 Omnivision Technologies, Inc. Endoscope imager and associated method
WO2019044187A1 (ja) * 2017-09-01 2019-03-07 オリンパス株式会社 内視鏡の挿入部
DE102019204759A1 (de) * 2019-04-03 2020-10-08 Richard Wolf Gmbh Endoskopisches Instrument
CN111095281B (zh) * 2019-08-06 2021-07-02 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
US11176348B2 (en) 2019-08-06 2021-11-16 Shenzhen GOODIX Technology Co., Ltd. Optical fingerprint apparatus and electronic device
US20210093252A1 (en) * 2019-10-01 2021-04-01 Avid Najdahmadi Light-based medical device
EP4101368A1 (en) * 2021-06-09 2022-12-14 Koninklijke Philips N.V. Determining specular reflection information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047588A (ja) * 2001-08-03 2003-02-18 Olympus Optical Co Ltd 内視鏡装置
JP2009210780A (ja) 2008-03-04 2009-09-17 Nippon Shinku Kogaku Kk 多層膜偏光子
JP2009246770A (ja) 2008-03-31 2009-10-22 Fujifilm Corp 撮像装置、撮像方法、およびプログラム
JP2012045029A (ja) * 2010-08-24 2012-03-08 Fujifilm Corp 内視鏡装置および内視鏡診断装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683926B2 (en) * 1999-02-25 2010-03-23 Visionsense Ltd. Optical device
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
JP3583731B2 (ja) 2000-07-21 2004-11-04 オリンパス株式会社 内視鏡装置および光源装置
US8270689B2 (en) * 2006-09-12 2012-09-18 Carestream Health, Inc. Apparatus for caries detection
JP5106928B2 (ja) * 2007-06-14 2012-12-26 オリンパス株式会社 画像処理装置および画像処理プログラム
JP5100457B2 (ja) 2008-03-10 2012-12-19 オリンパスメディカルシステムズ株式会社 内視鏡観察システム
EP2309913A4 (en) * 2008-08-01 2014-07-02 Sti Medical Systems Llc HIGH DEFINITIVE DIGITAL VIDEO COLPOSCOPE WITH BUILT-IN POLARIZED LED LIGHTING AND COMPUTERIZED SYSTEM FOR CLINICAL DATA MANAGEMENT
JP2010082271A (ja) 2008-09-30 2010-04-15 Fujifilm Corp 凹凸検出装置、プログラム、及び方法
JP2010104422A (ja) * 2008-10-28 2010-05-13 Fujifilm Corp 撮像システムおよび撮像方法
JP2010104424A (ja) * 2008-10-28 2010-05-13 Fujifilm Corp 撮像システムおよび撮像方法
JP2010104421A (ja) 2008-10-28 2010-05-13 Fujifilm Corp 撮像システムおよび撮像方法
JP5067811B2 (ja) 2008-12-01 2012-11-07 富士フイルム株式会社 撮像装置
US8204283B2 (en) * 2009-01-16 2012-06-19 Gingy Technology Inc. Fingerprint input module
JP5570321B2 (ja) * 2010-06-29 2014-08-13 富士フイルム株式会社 偏光画像計測表示システム
WO2012011246A1 (ja) * 2010-07-21 2012-01-26 パナソニック株式会社 画像処理装置
JP2012024283A (ja) 2010-07-22 2012-02-09 Fujifilm Corp 内視鏡診断装置
CN103037752B (zh) * 2010-09-24 2015-05-13 松下电器产业株式会社 图像处理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047588A (ja) * 2001-08-03 2003-02-18 Olympus Optical Co Ltd 内視鏡装置
JP2009210780A (ja) 2008-03-04 2009-09-17 Nippon Shinku Kogaku Kk 多層膜偏光子
JP2009246770A (ja) 2008-03-31 2009-10-22 Fujifilm Corp 撮像装置、撮像方法、およびプログラム
JP2012045029A (ja) * 2010-08-24 2012-03-08 Fujifilm Corp 内視鏡装置および内視鏡診断装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2918217A4
VIKTOR GRUEV; ROB PERKINS; TIMOTHY YORK: "CCD Polarization Imaging Sensor with Aluminum Nanowire Optical Filters", OPTICS EXPRESS, vol. 18, no. 18, 30 August 2010 (2010-08-30), pages 19087 - 19094

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187804A1 (ja) * 2016-04-28 2017-11-02 シャープ株式会社 撮像装置
JPWO2017187804A1 (ja) * 2016-04-28 2018-11-22 シャープ株式会社 撮像装置
US10481313B2 (en) 2016-04-28 2019-11-19 Sharp Kabushiki Kaisha Image capturing apparatus
US11823403B2 (en) 2017-12-27 2023-11-21 Cilag Gmbh International Fluorescence imaging in a light deficient environment
JP2021508560A (ja) * 2017-12-27 2021-03-11 エシコン エルエルシーEthicon LLC 光不足環境における蛍光撮像
JP2021509337A (ja) * 2017-12-27 2021-03-25 エシコン エルエルシーEthicon LLC 光不足環境におけるツール追跡を伴うハイパースペクトル撮像
US11900623B2 (en) 2017-12-27 2024-02-13 Cilag Gmbh International Hyperspectral imaging with tool tracking in a light deficient environment
JP2021508546A (ja) * 2017-12-27 2021-03-11 エシコン エルエルシーEthicon LLC 光不足環境における蛍光撮像
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11686847B2 (en) 2019-06-20 2023-06-27 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11924535B2 (en) 2019-06-20 2024-03-05 Cila GmbH International Controlling integral energy of a laser pulse in a laser mapping imaging system
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11940615B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Driving light emissions according to a jitter specification in a multispectral, fluorescence, and laser mapping imaging system
US11949974B2 (en) 2019-06-20 2024-04-02 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
US11974860B2 (en) 2019-06-20 2024-05-07 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral, fluorescence, and laser mapping imaging system
US12007550B2 (en) 2020-03-17 2024-06-11 Cilag Gmbh International Driving light emissions according to a jitter specification in a spectral imaging system

Also Published As

Publication number Publication date
US20180235438A1 (en) 2018-08-23
JP5857227B2 (ja) 2016-02-10
US10492660B2 (en) 2019-12-03
EP2918217A4 (en) 2016-02-24
JPWO2014073138A1 (ja) 2016-09-08
EP2918217A1 (en) 2015-09-16
US20140362200A1 (en) 2014-12-11
EP2918217B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP5857227B2 (ja) 画像処理装置および内視鏡
JP5799264B2 (ja) 画像処理装置および内視鏡
JP5603508B2 (ja) 撮像処理装置および内視鏡
JP6334755B2 (ja) 組み合わされたフルカラー反射および近赤外線画像化のための画像化システム
US9645074B2 (en) Image processing apparatus
US9293491B2 (en) Polarization image sensor and endoscope
US20120257030A1 (en) Endoscope apparatus and image acquisition method of the endoscope apparatus
JP6939000B2 (ja) 撮像装置及び撮像方法
US20190069768A1 (en) Calculation system
JP5740559B2 (ja) 画像処理装置および内視鏡
JP2016063928A (ja) 偏光撮像装置、偏光画像処理装置、およびカラー偏光複合モザイクフィルタ
JP6156787B2 (ja) 撮影観察装置
US9271635B2 (en) Fluorescence endoscope apparatus
JP7219208B2 (ja) 内視鏡装置
JP2018126174A (ja) 内視鏡装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014527398

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013853498

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE