WO2014072322A1 - Verfahren zum fügen eines fügepartners aus einem thermoplastischen kunststoff mit einem fügepartner aus glas - Google Patents

Verfahren zum fügen eines fügepartners aus einem thermoplastischen kunststoff mit einem fügepartner aus glas Download PDF

Info

Publication number
WO2014072322A1
WO2014072322A1 PCT/EP2013/073125 EP2013073125W WO2014072322A1 WO 2014072322 A1 WO2014072322 A1 WO 2014072322A1 EP 2013073125 W EP2013073125 W EP 2013073125W WO 2014072322 A1 WO2014072322 A1 WO 2014072322A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
glass
joining partner
thermoplastic
partner
Prior art date
Application number
PCT/EP2013/073125
Other languages
English (en)
French (fr)
Inventor
Frank Brunnecker
Manuel Sieben
Tobias JAUS
Original Assignee
Lpkf Laser & Electronics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lpkf Laser & Electronics Ag filed Critical Lpkf Laser & Electronics Ag
Priority to US14/440,966 priority Critical patent/US20150298391A1/en
Priority to JP2015541111A priority patent/JP2016502475A/ja
Priority to EP13789256.8A priority patent/EP2917023A1/de
Publication of WO2014072322A1 publication Critical patent/WO2014072322A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/343Making tension-free or wrinkle-free joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73111Thermal expansion coefficient
    • B29C66/73112Thermal expansion coefficient of different thermal expansion coefficient, i.e. the thermal expansion coefficient of one of the parts to be joined being different from the thermal expansion coefficient of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • B29C66/8362Rollers, cylinders or drums moving relative to and tangentially to the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9231Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • German Patent Application 10 2012 220 285.4 is incorporated herein by reference.
  • the invention relates to a method for joining a joining partner made of a thermoplastic material with a joining partner of glass.
  • glass-plastic compounds are realized by the use of adhesives.
  • glass displays glass displays which are connected to a PC or PC / ABS housing.
  • the adhesive is applied, in a second step, the glass pane is placed.
  • this technique has the disadvantage that the joints may become opaque. table does not look appealing and must be covered by a black print on the display.
  • PP is mainly used today as a material for the thermoplastic joining partner for economic reasons. Due to its non-polar structure, PP can only be glued after appropriate pretreatments, resulting in additional costs.
  • ECUs / frequency converters which are applied directly to the back of a substrate wafer of photovoltaic solar panels.
  • EP 1 763 431 B1 relates to a method for laser welding a thermoplastic polymer material with a second material permeable to the laser light used, wherein for the laser welding the laser light is directed at the weld by the second material onto the first material and at least the first material the weld softens under the action of the laser light.
  • the second material according to EP 1 763 431 B 1 may be a non-softening material to which the softened first material adheres after solidification.
  • a thermoplastic polymer material first material
  • a thermoplastic polymer material first material
  • DE 10 2009 034 226 A1 relates to a manufacturing method for a lamp having an at least partially transparent part and a plastic part, which forms a lamp housing or a lamp base. At least one connection point is produced by melting at least the plastic part by means of a laser beam, a cohesive or positive connection between the plastic part and the at least partially transparent part.
  • the at least partially transparent part of the lamp consists of glass. By melting the at least one connection point of the plastic part, a positive connection between the plastic part and the glass part is generated.
  • the plastic part is preferably made of polycarbonate, polypropylene, acrylonitrile-butadiene-styrene or polybutylene terephthalate.
  • JP 201 1-207 056 A relates to a method for bonding a thermoplastic with a glass substrate.
  • the carrier material is welded in its edge region with the plastic base body.
  • a laser radiates through the carrier material and heats a contact surface of the plastic.
  • the plastic body serves as a base body and the carrier material made of glass as a cover.
  • a semiconductor material is arranged between the base body and the carrier material.
  • the invention is based on the object to provide a method for joining a joining partner of a thermoplastic material with a joining partner made of glass, which leads by simple process engineering means to a reliable thermoplastic glass connection without the use of adhesives. This object is achieved according to the characterizing part of claim 1 by the following method steps:
  • thermoplastic joining partner of a laser-absorbing, thermoplastic material Providing a thermoplastic joining partner of a laser-absorbing, thermoplastic material
  • thermoplastic joining partner and the glass joining partner Positioning the thermoplastic joining partner and the glass joining partner to one another while subjecting the joining partners to a joining force
  • thermoplastic joining partner Injecting a laser machining beam on the boundary surface of the thermoplastic joining partner through the glass joining partner into a joining zone while melting the thermoplastic joining partner and forming an adhesive bond between the two joining partners in the joining zone with their cooling.
  • the method according to the invention is thus based on fundamentally known laser transmission welding, in which the processing beam radiates through a laser-transmissive joining partner onto the laser-absorbing joining partner, which melts and, in the case of a transmissive joining partner consisting of glass, adheres to the latter in the melt region.
  • adhesion compounds involve three different mechanisms of action.
  • secondary valence bonds form in the adjacent molecular layers.
  • the effective distance of this effect which is mainly based on hydrogen bonding, is approximately 0.5 nm. Therefore, one of the connecting elements must inevitably be fused partner to bridge surface irregularities.
  • this molten joining partner it is necessary for this molten joining partner to spread on the surface of the fixed partner, ie the surface tension should be as low as possible.
  • this mechanism of action requires a polarity of the molten medium, this requirement excludes a surface tension of 0. It is therefore in the optimal case only the essential part of the polar surface energy.
  • a second, independent of the polarity mechanism of action is the mechanical Verkrallung the plasticized material in the surface structure of the solid present joining partner. This mechanism is independent of the polarity of the materials, but also requires a low surface energy, so that it can lead to the fullest possible spreading of the molten joining partner.
  • the third potential mechanism is covalent bonding.
  • This type of bond promises high adhesive forces, but in many cases it requires functionalization of the plastic surface.
  • Si silicon
  • SiOH sianol
  • H hydrogen
  • the material of the thermoplastic joining partner may be selected from one or more of the following thermoplastic materials: polypropylene (PP), polyethylene (PE), acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), polymethyl methacrylate (PMMA) , Polycarbonate (PC), polyethylene terephthalate (PC), polyetherimide (PEI), polyamide (PA) or cycloolefm copolymer (COC).
  • PP polypropylene
  • PE polyethylene
  • ABS acrylonitrile-butadiene-styrene
  • ASA acrylic ester-styrene-acrylonitrile
  • PMMA polymethyl methacrylate
  • PC Polycarbonate
  • PC polyethylene terephthalate
  • PEI polyetherimide
  • PA polyamide
  • COC cycloolefm copolymer
  • the laser machining beam is preferably an infrared laser beam, in particular having a wavelength of 808 nm or 2000 nm, which can be provided with a laser power of 10 W to 200 W.
  • conventional laser beam processing equipment can be used, as described by the applicant. manufactured and sold for laser transmission welding.
  • a preferred radiation source for the heating of the glass joining partner can be formed by at least one halogen emitter which emits, for example, a short-wave I radiation and whose power is between 500 W and 2000 W, preferably 1000 W.
  • halogen emitter which emits, for example, a short-wave I radiation and whose power is between 500 W and 2000 W, preferably 1000 W.
  • a further optimization of the strength of the connection between the thermoplastic and glass joining partner can be achieved by surface activating the thermoplastic joining partner, at least in the region of the joining zone, by plasma treatment or flame treatment.
  • plasma treatment air, oxygen or nitrogen can preferably be used as the process gas.
  • OH groups are enriched on the surface of the plastic joining partner.
  • the laser machining beam is guided over the boundary surface of the thermoplastic joining partner at a feed rate of 2 mm / s to 100 mm / s.
  • the joining force, which is applied to the two joining partners can be between 200 N and 800 N, preferably 400 N.
  • An online process control can be integrated into the joining apparatus.
  • Fig. 1 is a schematic, broken perspective view of a
  • Fig. 3 is a plan view of the thermoplastic joining partner after a violent separation of the adhesive adhesive seam.
  • thermoplastic joining partner 1 shows two joining partners to be bonded, namely a first glass joining partner 1, and a second thermoplastic joining partner 2.
  • a device is used which is also used for laser transmission welding processes.
  • the upper glass joining partner 1 is transmissive to the laser processing beam 3, the lower thermoplastic joining partner 2 is absorptive for it.
  • the laser transmission welding is known and requires no further discussion.
  • the laser machining beam 3 is guided via a processing head designated as a whole by 4 from a stationary laser beam source via a fiber optic to the focusing optics 5. Laser source and fiber optics are omitted for clarity in the drawings.
  • the Focusing optics 5 is seated on a support 6 of the machining head 4, which is flanged, for example, on the manipulation arm of an industrial robot.
  • a tensioning roller 10 is mounted laterally next to the optical axis 9 of the laser processing beam 3 via a cantilever 8 and rolls with its circumference on the upper glass joining partner 1 and thus in the region of the gluing to be joined the two joining partners 1, 2 by applying a corresponding joining force F braced together.
  • a corresponding counter-holder for the roller below the welding contour is also not shown in FIG. 1 for the sake of clarity.
  • an IR halogen emitter 14 is attached to the support 6 of the machining head 4, which generates a short-wave, infrared secondary radiation 15.
  • the IR halogen emitter 14 is seated in a secondary beam reflector 16 on the carrier 6. Due to the reflector 16, the secondary radiation 15 is focused on the joining zone 18.
  • the focal region 19 of the secondary radiation 15 is widened with respect to the focus 21 of the laser beam 3, so that in the joining zone 18 concentrically around the focus 21 the secondary radiation 15 heats the upper glass joining partner 1 ,
  • thermoplastic joining partner 2 is prepared by plasma-activating its boundary surface 20 to be melted.
  • the plasma used is a compressed air plasma, although it is not certain which constituents of the air are generated during plasma generation 2
  • ionized / radicalized are O " ions, which form OH groups (OH, COOH, CHO, CONH 2 ) on the plastic surface, which, on the one hand, increases the surface tension and, on the other hand, the OH groups for the bil - Formation of covalent bonds available.
  • the two joining partners 1, 2 are then clamped in the device shown in Fig. 1.
  • the machining head 4 moves now under the action of the two joining partners 1, 2 with the tensioning roller 10, the joining contour K, which is to form an adhesive or adhesive joint between the two joining partners, in the feed direction 13, wherein in the respective joining zone 18 via the secondary radiation 15, the upper glass joining partner 1 is locally heated.
  • the laser machining beam 3 is directed to the glass joining partner 1 facing boundary surface 20 of the thermoplastic joining partner 2 through the glass joining partner 1 and there leads to a local melting of the thermoplastic joining partner 2. This is an intimate contact under Formation of hydrogen bonds and a micro-clawing between see the two joining partners 1, 2 achieved and thus a melting
  • FIG. 2 shows the plan view of the two joining partners 1, 2 after producing a joining contour K in the form of a short hot-melt adhesive seam, which is a uniform, glossy black seam surface in the boundary surface 20 of the lower thermoplastic joining partner 2 presents.
  • FIG. 3 shows the boundary surface 20 of the thermoplastic joining partner 2 after the violent tearing off of the upper glass joining partner 1. Eruptions in the thermoplastic material can be seen which indicate the strength of the seam bonding.
  • the glass joining partner 1 consisted of standard glass BK7 with a thickness of 5 mm, the thermoplastic joining partner 2 of a material combination PC / ABS.
  • the laser power was 28 W, the power of the secondary radiation 1000 W.
  • the feed rate v of the laser beam was set to 7 mm / s, the joining force F to 400 N.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

Ein Verfahren zum Fügen eines Fügepartners aus einem thermoplastischen Kunststoff mit einem Fügepartner aus Glas, ist durch folgende Verfahrensschritte charakterisiert: Bereitstellen eines Thermoplast-Fügepartners (2) aus einem Lase-rabsorbierenden, thermoplastischen Material, Bereitstellen eines Glas-Fügepartners (1) aus einem Laser-transmissiven Glas-Material, Positionieren des Thermoplast-Fügepartners (2) und des Glas-Fügepartners (1) aufeinander unter Beaufschlagung der Fügepartner (1, 2) mit einer Fügekraft (F), Erwärmen des Glas-Fügepartners (1) insbesondere mittels einer Strahlung (15), und Einstrahlen eines Laser-Bearbeitungsstrahls (3) auf die Grenz-Oberfläche (20) des Thermoplast-Fügepartners (2) durch den Glas-Fügepartner (1) hindurch in eine Fügezone (18) unter Aufschmelzen des Thermoplast-Fügepartners (2) und Ausbildung einer Haftverbindung zwischen den beiden Fügepartnern (1, 2) in der Fügezone (18) mit deren Abkühlung.

Description

Verfahren zum Fügen eines Fügepartners aus einem thermoplastischen Kunststoff mit einem Fügepartner aus Glas
Der Inhalt der deutschen Patentanmeldung 10 2012 220 285.4 wird durch Bezugnahme hierin aufgenommen.
Die Erfindung betrifft ein Verfahren zum Fügen eines Fügepartners aus einem thermoplastischen Kunststoff mit einem Fügepartner aus Glas. Zum Hintergrund der Erfindung ist festzuhalten dass üblicherweise derzeit Glas-Kunststoffverbindungen durch den Einsatz von Klebstoffen realisiert werden. Als beispielhafte Anwendung können hier Handydisplays aus Glaswerkstoff benannt werden, die mit einem PC bzw. PC/ABS-Gehäuse verbunden werden. Es wird in einem ersten Schritt der Klebstoff appliziert, in einem zweiten Schritt wird die Glasscheibe aufgesetzt. Bei diesem Pro- zess besteht eine große Gefahr, dass austretender Klebstoff die auf dem Glas befindlichen ITO- Schichten„kurzschließt" und somit das Touch- Display unwiderruflich zerstört. Zusätzlich zu dieser Gefahr der Ausschussproduktion hat diese Technik den Nachteil, dass die Fügestellen op- tisch nicht ansprechend aussehen und durch einen Schwarzdruck auf dem Display verdeckt werden müssen.
Weitere Anwendungen für diese Klebetechnik können Verglasungen im Automobilbau sein, wie z.B. Sonnendächer in einem Kunststoffträger. In diesem Bereich wird heute aus wirtschaftlichen Gründen vornehmlich PP als Material für den thermoplastischen Fügepartner eingesetzt. Aufgrund seine unpolaren Struktur ist PP nur nach entsprechenden Vorbehandlungen klebbar, wodurch Mehrkosten entstehen. Eine dritte Anwendung sind Steuergeräte/Frequenzumrichter, die direkt auf die Rückseite einer Substratscheibe von Photovoltaik-Solarpaneelen aufgebracht werden. Die EP 1 763 431 B 1 betrifft ein Verfahren zum Laserschweißen eines thermoplastischen Polymermaterials mit einem für das verwendete Laserlicht durchlässigen zweiten Material, wobei für das Laserschweißen das Laserlicht an der Schweißstelle durch das zweite Material auf das erste Material gerichtet ist und wenigstens das erste Material an der Schweißstelle unter der Einwirkung des Laserlichts erweicht. Das zweite Material gemäß der EP 1 763 431 B 1 kann ein nichterweichendes Material sein, an welchem das erweichte erste Material nach dem Verfestigen haftet. Beispielsweise kann durch das Verfahren gemäß der EP 1 763 431 B 1 zum Laserschweißen ein thermoplastisches Polymermaterial (erstes Material) mit Glas verbunden werden.
Die DE 10 2009 034 226 AI betrifft ein Herstellungsverfahren für eine Lampe mit einem zumindest teiltransparentem Teil und einem Kunststoffteil, das ein Lampengehäuse oder einen Lampensockel bildet. An zumin- dest einer Verbindungsstelle wird durch Aufschmelzen zumindest des Kunststoffteils mittels eines Laserstrahls eine stoffschlüssige oder formschlüssige Verbindung zwischen dem Kunststoffteil und dem zumindest teiltransparenten Teil erzeugt. Bei einem Ausführungsbeispiel der DE 10 2009 034 226 AI besteht das zumindest teiltransparente Teil der Lampe aus Glas. Durch das Aufschmelzen der zumindest einen Verbindungsstelle des Kunststoffteils wird eine formschlüssige Verbindung zwischen dem Kunststoffteil und dem Glasteil erzeugt. Bei dem Verfahren gemäß der DE 10 2009 034 226 AI durch- dringt während des Aufschmelzens der Laserstrahl das zumindest teiltransparente Teil und erhitzt zunächst im Wesentlichen das Kunststoffteil. Das Kunststoffteil besteht vorzugsweise aus Polycarbonat, Polypropylen, Acrylnitril-Butadien-Styrol oder Polybutylenterephthalat.
Die JP 201 1-207 056 A betrifft ein Verfahren zur Verbindung eines thermoplastischen Kunststoffs mit einem Trägermaterial aus Glas. Das Trägermaterial wird in dessen Randbereich mit dem Kunststoffgrundkörper verschweißt. Dabei strahlt ein Laser durch das Trägermaterial hindurch und erhitzt eine Kontaktfläche des Kunststoffs. Gemäß der JP 201 1-207 056 A dient der Kunststoffkörper als Grundkörper und das Trägermaterial aus Glas als Abdeckung. In einem Bereich, in dem das Trägermaterial nicht mit dem Kunststoffkörper verschweißt ist, ist zwischen Grundkörper und Trägermaterial ein Halbleitermaterial angeordnet.
Die vorgenannten Druckschriften offenbaren zwar durchgehend das Prinzip des Laser-induzierten Schmelzklebens eines thermoplastischen Fügepartners mit einem Glas-Fügepartner. Versuche bei der Anmelderin haben in diesem Zusammenhang jedoch gezeigt, dass die grundsätzliche Technik insbesondere im Hinblick auf die beim Abkühlen der Fügepartner entstehenden Spannungen in den beiden unterschiedlichen Materialien, nämlich ein thermoplastischen Kunststoff und Glas, die Schmelzklebe-Verbindung in ihrer Festigkeit leidet. Davon ausgehend liegt der Erfindung die Aufgabe zu Grunde, ein Verfahren zum Fügen eines Fügepartners aus einem thermoplastischen Kunststoff mit einem Fügepartner aus Glas anzugeben, das mit einfachen verfahrenstechnischen Mitteln zu einer zuverlässigen Thermoplast-Glas-Verbindung ohne Einsatz von Klebstoffen führt. Diese Aufgabe wird laut Kennzeichnungsteil des Patentanspruches 1 durch folgende Verfahrensschritte gelöst:
- Bereitstellen eines Thermoplast-Fügepartners aus einem Laserabsorbierenden, thermoplastischen Material,
- Bereitstellen eines Glas-Fügepartners aus einem Laser- transmissiven Glas-Material,
- Positionieren des Thermoplast-Fügepartners und des Glas- Fügepartners aufeinander unter Beaufschlagung der Fügepartner mit einer Fügekraft,
- Erwärmen des Glas-Fügepartners mittels einer Strahlung, und
- Einstrahlen eines Laser-Bearbeitungsstrahls auf die Grenz- Oberfläche des Thermoplast-Fügepartners durch den Glas- Fügepartner hindurch in eine Fügezone unter Aufschmelzen des Thermoplast-Fügepartners und Ausbildung einer Haftverbindung zwischen den beiden Fügepartnern in der Fügezone mit deren Abkühlung.
Das erfindungsgemäße Verfahren geht also vom grundsätzlich bekannten Laser-Durchstrahl-Schweißen aus, bei dem der Bearbeitungsstrahl durch einen Laser-transmissiven Fügepartner auf den Laser-absorbierenden Fügepartner strahlt, der aufgeschmolzen und im Falle eines aus Glas bestehenden transmissiven Fügepartner an diesem im Schmelzebereich anhaftet,
Nach dem derzeitigen Kenntnisstand sind an solchen Haft- Verbindungen drei unterschiedliche Wirkmechanismen beteiligt. Zum einen bilden sich Nebenvalenzbindungen in den angrenzenden Molekülschichten aus. Der Wirkabstand dieses vor allem auf Wasserstoff-Bindungen beruhenden Effektes beträgt ca. 0,5 nm. Daher muss zwangsläufig einer der Verbin- dungspartner aufgeschmolzen werden, um Oberflächenunebenheiten zu überbrücken. Zusätzlich ist es notwendig, dass dieser aufgeschmolzene Fügepartner auf der Oberfläche des fest vorliegenden Partners spreitet, d.h. die Oberflächenspannung sollte möglichst gering sein. Auf der anderen Seite bedarf dieser Wirkmechanismus einer Polarität des aufgeschmolzenen Mediums, diese Forderung schließt eine Oberflächenspannung von 0 aus. Sie beträgt also im optimalen Fall nur den essentiell notwendigen Anteil der polaren Oberflächenenergie. Ein zweiter, von der Polarität unabhängiger Wirkmechanismus ist die mechanische Verkrallung des plastifizierten Werkstoffes in der Oberflächenstruktur des solid vorliegenden Fügepartners. Dieser Mechanismus ist von der Polarität der Werkstoffe unabhängig, fordert jedoch auch eine geringe Oberflächenenergie, damit es zu einer möglichst vollständigen Spreitung des aufgeschmolzenen Fügepartners kommen kann.
Als dritter potentiell wirkender Mechanismus sind kovalente Bindungen zu nennen. Dieser Bindungstyp verspricht hohe Haftkräfte, er bedarf jedoch in vielen Fällen einer Funktionalisierung der Kunststoff Oberfläche. Auf der Seite des Glases stehen für gewöhnlich Si-(Silizium-)Moleküle zur Verfügung, die sich zur Ausbildung von kovalenten Bindungen zu SiOH (Sila- nol) anbieten. Das wiederum bedeutet, dass an der Oberfläche des thermoplastischen Kunststoffes H-(Wasserstoff-)Moleküle für diese Reaktion zur Verfügung stehen muss. Diese Moleküle können entweder natürlich im Kunststoff enthalten sein, oder sie können durch eine Funktionalisierung eingebracht werden.
Alle vorgenannten Wirkmechanismen leiden unter der Tatsache, dass sich aufgrund des gegenüber dem thermoplastischen Kunststoff deutlich gerin- geren Wärmeausdehnungskoeffizienten von Glas die Schmelzhaft- oder -klebe-Verbindung zwischen dem Thermoplast und dem Glas durch das starke Zusammenziehen des erstgenannten Materials in der Fügezone, also in aller Regel in der hergestellten Schmelzklebe-Naht, Nahteigenspannun- gen auftreten. Diese Spannungen überlagern die erreichten Haftkräfte und verringern diese. Bei einigen Verbindungen konnte sogar ein vollständiges Auftrennen beobachtet werden, was darauf schließen lässt, dass die Nahteigenspannungen die erreichten Haftkräfte übersteigen. Diese Problematik wird durch die ferner verfahrenstechnisch vorgesehene Erwärmung des Glas-Fügepartners entschärft. Durch diese Maßnahme wird dessen Temperatur im Einklang mit der Erhitzung des Thermoplast- Fügepartners erhöht, so dass beide Fügepartner ein gleichmäßigeres Abkühlverhalten mit deutlich verringertem internen Spannungsaufbau zeigen. Entsprechende Versuche lassen erkennen, dass zuverlässige Verbindungen zwischen den beiden genannten Fügepartnern mit hoher Festigkeit hergestellt werden können.
In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen des erfin- dungsgemäßen Verfahrens angegeben. So kann das Material des Thermoplast-Fügepartners ausgewählt sein aus einem oder mehreren folgender thermoplastischer Materialien: Polypropylen (PP), Polyethylen (PE), Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Polymethylmethacrylat (PMMA), Polycarbonat (PC), Polyethylente- rephthalat (PC), Polyetherimid (PEI), Polyamid (PA) oder Cycloolefmco- polymer (COC).
Für den Glas-Fügepartner haben sich als bevorzugte Materialien Borosili- kat-Glas, Quarzglas, Magnesiumfluorid, gehärtete Gläser, hergestellt durch Ionenaustauschverfahren oder vorgespannte Gläser vornehmlich aus Boro- silikat-Glas herausgestellt.
Der Laser-Bearbeitungsstrahl ist vorzugsweise ein Infrarot-Laserstrahl, insbesondere mit einer Wellenlänge von 808 nm oder 2000 nm, der mit einer Laser-Leistung von 10 W bis 200 W bereitgestellt werden kann. Hierfür können übliche Laserstrahl-Bearbeitungsanlagen eingesetzt werden, wie sie von der Anmelderin z.B. für das Laser- Durchstrahlschweißen hergestellt und vertrieben werden.
Eine bevorzugte Strahlungsquelle für die Erwärmung des Glas- Fügepartners kann durch mindestens einen Halogen- Strahler gebildet sein, der beispielsweise eine kurzwellige I -Strahlung emittiert und dessen Leistung zwischen 500 W und 2000 W, vorzugsweise 1000 W beträgt. Durch diese relativ breitbandige Sekundärstrahlung, die zeitlich vor und/oder auch gleichzeitig mit dem Laser-Bearbeitungsstrahl auf den Glas-Fügepartner aufgebracht werden kann, wird eine intensive Erwärmung des Glasmaterials erzielt. Eine weitere Optimierung der Festigkeit der Verbindung zwischen dem Thermoplast- und Glas-Fügepartner kann dadurch erzielt werden, dass der Thermoplast-Fügepartner zumindest im Bereich der Fügezone durch eine Plasmabehandlung oder Beflammung oberflächenaktiviert wird. Bei dieser Plasmabehandlung kann vorzugsweise Luft, Sauerstoff oder Stickstoff als Prozessgas eingesetzt werden. Bei dem Plasmabehandlungsprozess werden OH-Gruppen an der Oberfläche des Kunststoff-Fügepartners angereichert. Diese OH-Gruppen stehen dann bei dem nachgelagerten Verbindungspro- zess als Partner für die Ausbildung von Wasserstoffbrückenbindungen zur Verfügung. Überlagert zu der Bildung dieser Nebenvalenzbindungen kommt es zu einer kovalenten Verbindung zwischen den Si-Molekülen im Glas und den OH-Gruppen an der funktionalisierten Oberfläche des Kunststoffes. Eine weiter gesteigerte Festigkeit der Verbindung lässt sich erwarten, wenn die Oberfläche des Glas-Fügepartners zumindest im Bereich der Fügezone aufgeraut wird. Durch diese beispielsweise mittels Ultrakurzpulslaser mit einer Pulsdauer < 10 ns eingebrachte Strukturierung wird die am Verbin- dungsprozess beteiligte Fläche um ein Vielfaches vergrößert, was den Ver- krallungseffekt des geschmolzenen Thermoplast-Material in diesen Ober- flächen-Mikro strukturen und damit die Fügefestigkeit der Verbindung steigert.
Als weitere bevorzugte Verfahrensmaßnahme wird der beim Fügen der beiden Fügepartner auftretende Setzweg gemessen. Dies kommt der Reproduzierbarkeit des Fügeverfahrens zugute.
Als vorteilhafter Parameter für die Herstellung einer nahtförmigen Fügezone wird der Laser-Bearbeitungsstrahl mit einer Vorschub-Geschwindigkeit von 2 mm/s bis 100 mm/s über die Grenz-Oberfläche des Thermoplast- Fügepartners geführt. Die Fügekraft, die auf die beiden Fügepartner aufgebracht wird, kann dabei zwischen 200 N und 800 N, vorzugsweise 400 N, betragen. Einige wesentliche Vorteile der Erfindung lassen sich nochmals stich- punktartig wie folgt zusammenfassen:
- Kein Verbrauchsmaterial, wie insbesondere ein gesonderter Klebstoff, ist notwendig;
- der Füge-Prozess ist gut steuerbar; - es ist nur ein Prozessschritt notwendig;
- es können feine, abgegrenzte Strukturen erstellt werden; und
- eine online-Prozesskontrolle ist in den Füge-Apparat integrierbar.
Weitere Merkmale, Einzelheiten und Vorteile der Erfindung sind der nachfolgenden Beschreibung entnehmbar, in der Ausführungsbeispiele an Hand der beigefügten Zeichnungen näher erläutert werden. Es zeigen:
Fig. 1 eine schematische, aufgebrochene Perspektivdarstellung einer
Laserfügevorrichtung mit den beiden Fügepartnern,
Fig. 2 eine Draufsicht auf die Fügepartner mit einer intakten Klebe-
Haftnaht, und
Fig. 3 eine Draufsicht auf den Thermoplast-Fügepartner nach einem gewaltsamen Trennen der Klebe-Haftnaht.
Die Fig. 1 zeigt zwei zu verklebende Fügepartner, nämlich einen ersten Glas-Fügepartner 1, und einen zweiten Thermoplast -Fügepartner 2. Es wird für diese Verklebung eine Vorrichtung verwendet, wie sie auch für Laserdurchstrahlschweiß-Verfahren zum Einsatz kommt. Der obere Glas- Fügepartner 1 ist für den Laserbearbeitungsstrahl 3 transmissiv, der untere Thermoplast-Fügepartner 2 ist absorptiv dafür. Im Übrigen ist das Laserdurchstrahlschweißen bekannt und bedarf keiner näheren Erörterung.
Der Laser-Bearbeitungsstrahl 3 wird über einen als Ganzes mit 4 bezeichneten Bearbeitungskopf von einer stationären Laserstrahlquelle über eine Faseroptik zu der Fokussieroptik 5 herangeführt. Laserquelle und Faseroptik sind der Übersichtlichkeit halber in den Zeichnungen weggelassen. Die Fokussieroptik 5 sitzt an einem Träger 6 des Bearbeitungskopfes 4, der beispielsweise am Manipulationsarm eines Industrieroboters angeflanscht ist. Über einen Ausleger 8 ist seitlich neben der optischen Achse 9 des Laserbearbeitungsstrahls 3 eine Spannrolle 10 gelagert, die mit ihrem Umfang auf dem oberen Glas-Fügepartner 1 abrollt und damit im Bereich der vorzunehmenden Verklebung die beiden Fügepartner 1 , 2 durch Aufbringen einer entsprechenden Fügekraft F miteinander verspannt. Eine entspre- chende Gegenhalterung für die Rolle unterhalb der Schweißkontur ist in den Fig. 1 der Übersichtlichkeit halber ebenfalls nicht dargestellt.
Ferner ist am Träger 6 des Bearbeitungskopfes 4 ein IR-Halogen- Strahler 14 angebracht, der eine kurzwellige, infrarote Sekundär Strahlung 15 er- zeugt. Der IR-Halogen- Strahler 14 sitzt dabei in einem Sekundärstrahlre- flektor 16 am Träger 6. Auf Grund des Reflektors 16 wird die Sekundärstrahlung 15 fokussiert auf die Fügezone 18 gerichtet. Wie aus Fig. 1 dabei deutlich wird, ist der Fokusbereich 19 der Sekundär Strahlung 15 gegenüber dem Fokus 21 des Laserfügestrahls 3 verbreitert, so dass in der Fügezone 18 konzentrisch um den Fokus 21 die Sekundärstrahlung 15 für eine Erwärmung des oberen Glas-Fügepartners 1 sorgt.
Mit der vorstehend beschriebenen Fügevorrichtung lässt sich das erfindungsgemäße Verfahren wie folgt realisieren:
Der Thermoplast- Fügepartner 2 wird vorbereitet, indem seine aufzuschmelzende Grenz-Oberfläche 20 Plasma-aktiviert wird. Bei dem eingesetzten Plasma handelt es sich um ein Druckluftplasma, wobei nicht gesichert geklärt ist, welche Bestandteile der Luft bei der Plasmaerzeugung 2
ionisiert / radikalisiert werden. Vermutlich handelt es sich O "-Ionen, die an der Kunststoffoberfläche O-H-Gruppen (O-H; C-O-O-H; C-H-O; C-O-N- H2) ausbilden. Durch diese Funktionalisierung wird zum einen die Oberflächenspannung erhöht, zum anderen stehen die O-H-Gruppen für die Bil- dung von kovalenten Bindungen zur Verfügung.
Die beiden Fügepartner 1 , 2 werden dann in die in Fig. 1 dargestellte Vorrichtung eingespannt. Der Bearbeitungskopf 4 fährt nun unter Beaufschlagung der beiden Fügepartner 1, 2 mit der Spannrolle 10 die Fügekontur K, die eine Haft- oder Klebe-Naht zwischen den beiden Fügepartnern bilden soll, in Vorschubrichtung 13 ab, wobei in der jeweiligen Fügezone 18 über die Sekundärstrahlung 15 der obere Glas-Fügepartner 1 lokal erwärmt wird. Gleichzeitig wird der Laser-Bearbeitungsstrahl 3 auf die dem Glas-Fügepartner 1 zugewandte Grenz-Oberfläche 20 des Thermoplast-Fügepartners 2 durch den Glas-Fügepartner 1 gerichtet und führt dort zu einem lokalen Aufschmelzen des Thermoplast-Fügepartners 2. Damit wird ein inniger Kontakt unter Ausbildung von Wasserstoff-Bindungen und einer Mikro-Verkrallung zwi- sehen den beiden Fügepartnern 1 , 2 erzielt und damit eine Schmelz-
Anhaftung zwischen den beiden Fügepartnern 1 , 2 hervorgerufen. Der bei diesem Fügen der beiden Fügepartner 1 , 2 zwischen diesen auftretende Setzweg wird als aussagefähiger Parameter für den Schmelzprozess gemessen und in die Prozess Steuerung einbezogen. Nach dem Abkühlen der beiden Fügepartnern 1 , 2, das aufgrund der Erwärmung des Glas- Fügepartners 1 zu vernachlässigbaren inneren Spannungen innerhalb der Fügezone 18 führt, ist eine stabile Thermoplast-Glas-Schmelzklebe- Verbindung zwischen beiden Fügepartnern 1 , 2 gebildet. Anhand von Fig. 2 und 3 sind Versuchsergebnisse mit dem erfindungsgemäßen Füge-Verfahren darzulegen. So zeigt Fig. 2 die Draufsicht auf die beiden Fügepartner 1 , 2 nach dem Herstellen einer Fügekontur K in Form einer kurzen Schmelzklebe-Naht, die sich als gleichmäßige, schwarz glän- zende Nahtfläche in der Grenz-Oberfläche 20 des unteren Thermoplast- Fügepartners 2 präsentiert. Es ist eine starke Anhaftung festzustellen, zwischen beiden Fügepartnern 1 , 2 liegt also eine stabile Klebeverbindung vor. Die Fig. 3 zeigt die Grenz-Oberfläche 20 des Thermoplast-Fügepartners 2 nach dem gewaltsamen Abreißen des oberen Glas-Fügepartners 1. Es sind Ausbrüche im Thermoplast-Material zu erkennen, die auf die Festigkeit der Nahterbindung hinweisen.
Im vorstehend erörterten Fall bestand der Glas-Fügepartner 1 aus Standardglas BK7 mit einer Dicke von 5 mm, der Thermoplast-Fügepartner 2 aus einer Materialkombination PC/ABS. Die Laser-Leistung betrug 28 W, die Leistung der Sekundär Strahlung 1000 W. Die Vorschub- Geschwindigkeit v des Laserstrahls wurde auf 7 mm/s eingestellt, die Fügekraft F auf 400 N. In der folgenden Tabelle sind erfolgreiche Versuche zur Herstellung von Schmelzklebenähten zwischen verschiedenen Thermoplasten und Glas (BK7, Dicke 5 mm) mit den entsprechenden Materialien und Parametern dokumentiert:
Thermoplast- Laser- Halogen- Vorschub- Fügekraft Material Leistung Leistung Geschwindigkeit
PC/PET 28 W 1000 W 7 mm/s 400 N
PC/ABS 28 W 1000 W 7 mm/s 400 N
PP 14 W 1000 W 3 mm/s 400 N
PA (Grilamid) 24 W 1000 W 5,25 mm/s 400 N Bei dem Versuch mit der Thermoplast-Materialkombination PC/PET wurden im Übrigen Temperaturwechsel-Versuche mit den verklebten Fügepartnern 1 , 2 durchgeführt. So konnte nach drei Temperaturwechseln in- nerhalb von 30 bis 60 Minuten in einem Temperaturbereich von -20°C bis 60°C kein Aufreißen der Klebenaht beobachtet werden.

Claims

Patentansprüche
1. Verfahren zum Fügen eines Fügepartners aus einem thermoplastischen Kunststoff mit einem Fügepartner aus Glas, gekennzeichnet durch folgende Verfahrensschritte:
- Bereitstellen eines Thermoplast-Fügepartners (2) aus einem Laserabsorbierenden, thermoplastischen Material,
- Bereitstellen eines Glas-Fügepartners (1) aus einem Laser- transmissiven Glas-Material,
- Positionieren des Thermoplast-Fügepartners (2) und des Glas- Fügepartners (1) aufeinander unter Beaufschlagung der Fügepartner (1, 2) mit einer Fügekraft (F),
- Erwärmen des Glas-Fügepartners (1) insbesondere mittels einer Strahlung (15), und
- Einstrahlen eines Laser-Bearbeitungsstrahls (3) auf die Grenz-
Oberfläche (20) des Thermoplast-Fügepartners (2) durch den Glas- Fügepartner (1) hindurch in eine Fügezone (18) unter Aufschmelzen des Thermoplast- Fügepartners (2) und Ausbildung einer Haftverbindung zwischen den beiden Fügepartnern (1 , 2) in der Fügezone (18) mit deren Abkühlung.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Material des Thermoplast-Fügepartners (2) ausgewählt ist aus einem oder mehreren folgender thermoplastischer Materialien: Polypropylen (PP), Polyethylen (PE), Acrylnitril-Butadien-Styrol (ABS), Acrylester-
Styrol-Acrylnitril (ASA), Polymethylmethacrylat (PMMA), Polycarbo- nat (PC), Polyethylenterephthalat (PC), Polyetherimid (PEI), Polyamid (PA) oder Cycloolefmcopolymer (COC).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das
Material des Glas-Fügepartners (1) ausgewählt ist aus einem oder mehreren folgender Glas-Materialien: Borosilikat-Glas, Quarzglas, Magne- siumfluorid, gehärtete Gläser, hergestellt durch Ionenaustauschverfah- ren oder vorgespannte Gläser vornehmlich aus Borosilikat-Glas.
4. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Laser-Bearbeitungsstrahl (3) ein Infrarot-Laserstrahl, insbesondere mit einer Wellenlänge von 808 nm oder 2000 nm, ist.
5. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Laser-Bearbeitungsstrahl (3) mit einer Laser- Leistung von 10 W bis 200 W bereitgestellt wird.
6. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Strahlung für die Erwärmung des Glas-Fügepartners (1) durch mindestens einen Halogen- Strahler (14) erzeugt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Lei- stung des Halogen- Strahlers (14) zwischen 500 W und 2000 W, vorzugsweise 1000 W, beträgt.
8. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Thermoplast-Fügepartner (2) zumindest im Bereich der Fügezone (18) durch eine Plasmabehandlung oder Beflammung oberflächenaktiviert wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass bei der
Plasmabehandlung Luft, insbesondere Druckluft, Sauerstoff oder Stick- stoff als Prozessgas eingesetzt werden.
10. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Oberfläche des Glas-Fügepartners (1) zumindest im Bereich der Fügezone (18) aufgeraut wird.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Auf- rauung des Glas-Fügepartners (1) durch eine Laserbestrahlung, insbesondere durch Ultra-Kurzzeit-Laserpulse mit einer Pulsdauer < 10 ns, vorgenommen wird.
12. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der beim Fügen der beiden Fügepartner (1, 2) auftretende Setzweg gemessen wird.
13. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zur Herstellung einer nahtförmigen Fügezone der Laser- Bearbeitungsstrahl (3) mit einer Vorschub-Geschwindigkeit von 2 mm/s bis 10 mm/s über die Grenz-Oberfläche (20) des Thermoplast- Fügepartners (2) geführt wird.
14. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Fügekraft (F) zwischen 200 N und 800 N, vorzugsweise 400 N, beträgt.
PCT/EP2013/073125 2012-11-07 2013-11-06 Verfahren zum fügen eines fügepartners aus einem thermoplastischen kunststoff mit einem fügepartner aus glas WO2014072322A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/440,966 US20150298391A1 (en) 2012-11-07 2013-11-06 Method for joining a joining partner of a thermoplastic material to a joining partner of glass
JP2015541111A JP2016502475A (ja) 2012-11-07 2013-11-06 熱可塑性材料接合相手材とガラス接合相手材の接合方法
EP13789256.8A EP2917023A1 (de) 2012-11-07 2013-11-06 Verfahren zum fügen eines fügepartners aus einem thermoplastischen kunststoff mit einem fügepartner aus glas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012220285.4 2012-11-07
DE102012220285.4A DE102012220285A1 (de) 2012-11-07 2012-11-07 Verfahren zum Fügen eines Fügepartners aus einem thermoplastischen Kunststoff mit einem Fügepartner aus Glas

Publications (1)

Publication Number Publication Date
WO2014072322A1 true WO2014072322A1 (de) 2014-05-15

Family

ID=49554237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073125 WO2014072322A1 (de) 2012-11-07 2013-11-06 Verfahren zum fügen eines fügepartners aus einem thermoplastischen kunststoff mit einem fügepartner aus glas

Country Status (5)

Country Link
US (1) US20150298391A1 (de)
EP (1) EP2917023A1 (de)
JP (1) JP2016502475A (de)
DE (1) DE102012220285A1 (de)
WO (1) WO2014072322A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050795B1 (fr) * 2016-04-27 2019-11-29 Valeo Iluminacion Dispositif lumineux comprenant au moins deux parties soudees au laser
DE102022206071B4 (de) 2022-06-15 2024-10-17 Lpkf Laser & Electronics Aktiengesellschaft Fügeeinrichtung für das Laser-Durchstrahlfügen eines thermoplastischen Bauteils mit einem glasartigen Bauteil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284782A (ja) * 2007-05-17 2008-11-27 Hamamatsu Photonics Kk 樹脂・ガラス溶着方法及び樹脂・ガラス溶着装置
JP2011207056A (ja) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd 複合体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19848179A1 (de) * 1998-10-20 2000-05-18 Horst Exner Verfahren zum Verschweißen von Körpern und Verwendung von Laserstrahlen zum Verschweißen von Körpern
US6803549B2 (en) * 2002-05-30 2004-10-12 Xerox Corporation Flexible imaging member seam treatment apparatus
US8702892B2 (en) * 2005-02-11 2014-04-22 Sika Technology Ag Bonding of air-plasma treated thermoplastics
DE102005035914A1 (de) 2005-07-28 2007-02-01 Chemische Fabrik Budenheim Kg Laserschweißverfahren und -material
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US20070065659A1 (en) * 2005-09-21 2007-03-22 Orient Chemical Industries, Ltd. Laser-welded article
DE102009034226B4 (de) 2009-07-22 2021-03-11 Ledvance Gmbh Herstellungsverfahren für eine Lampe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284782A (ja) * 2007-05-17 2008-11-27 Hamamatsu Photonics Kk 樹脂・ガラス溶着方法及び樹脂・ガラス溶着装置
JP2011207056A (ja) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd 複合体の製造方法

Also Published As

Publication number Publication date
JP2016502475A (ja) 2016-01-28
US20150298391A1 (en) 2015-10-22
DE102012220285A1 (de) 2014-06-12
EP2917023A1 (de) 2015-09-16

Similar Documents

Publication Publication Date Title
EP1575756B1 (de) Verfahren und vorrichtung zum verschweissen thermoplastischer kunststoff-formteile, insbesondere zum konturschweissen dreidimensionaler formteile
EP0751865B2 (de) Werkstück aus kunststoff und herstellungsverfahren für ein derartiges werkstück
EP2444237B1 (de) Durchstrahllaserschweißverfahren für die Verbindung von Kunststoffformkörpern und Fügeverbindung
EP1758729A1 (de) Verfahren zum verbinden von werkstücken aus kunststoff
EP2321115B1 (de) Verfahren zur herstellung eines verbundteils durch durchstrahllaserschweissen
JPS60214931A (ja) 異種合成樹脂材料の接合方法
Jones Laser welding for plastic components
DE102012021602A1 (de) Vorrichtung zum Laserdurchstrahlschweißen und Verfahren zum Laserdurchstrahlschweißen
DE19944745B4 (de) Infrarotverbinden von transparenten Kunststoffgegenständen
DE102006054936A1 (de) Temperaturinduziertes Klebschweißverfahren und Klebschweißzusatzstoff zum Verbinden von thermodynamisch unverträglichen Kunststoffen
WO2014072322A1 (de) Verfahren zum fügen eines fügepartners aus einem thermoplastischen kunststoff mit einem fügepartner aus glas
DE102008020943A1 (de) Verfahren zum Fügen von wenigstens zwei transparenten Fügepartnern mittels Laserdurchstrahlschweißen
EP1440784A1 (de) Verfahren und Vorrichtung zum Verbinden von Werkstücken aus Kunststoff mittels Laserstrahl
EP3433078B1 (de) Vorrichtung und verfahren zur herstellung oder zum trennen einer verbindung mindestens eines metallischen oder keramischen bauteils und eines aus oder mit einem thermoplastischen polymer gebildeten bauteils
EP1987944B1 (de) Laserdurchstrahlschweissvorrichtung und Verfahren zum Verbinden von Kunststoffwerkstücken
Borges Transmission Laser Welding of Large Plastic Components: Lightweight automotive constructions require quantum jumps in technology
DE102013001826A1 (de) Verfahren zum Herstellen eines Laminats ohne Klebstoff
DE10211782A1 (de) Vliesfixierung
EP1238781B1 (de) Verfahren zum Verschweissen thermoplastischer Fügeteile mittels Diodenlaserstrahlung
KR102309105B1 (ko) 이종 소재 접합체의 제조방법
EP1663621B1 (de) Verfahren zum verbinden einer schicht aus thermoplastischem polymer mit der oberfläche eines elastomers
JP4492784B2 (ja) レーザ溶着部材の製造方法
DE102021203664A1 (de) Fügeverfahren zum Fügen mindestens eines ersten Fügepartners mit einem zweiten Fügepartner sowie Sensoranordnung mit diesen
DE102012109967A1 (de) Verfahren zur Herstellung eines Spritzenkörper-Kanülen-Verbundes, sowie verfahrensgemäß hergestellter Spritzenkörper mit integrierter Kanüle
DE102018109221A1 (de) Verfahren für das Laserstrahl-Kunststoffschweißen und zugehörige Laserstrahl-Schweißvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440966

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015541111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013789256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013789256

Country of ref document: EP