WO2014071788A1 - 一种声接收系统 - Google Patents
一种声接收系统 Download PDFInfo
- Publication number
- WO2014071788A1 WO2014071788A1 PCT/CN2013/084789 CN2013084789W WO2014071788A1 WO 2014071788 A1 WO2014071788 A1 WO 2014071788A1 CN 2013084789 W CN2013084789 W CN 2013084789W WO 2014071788 A1 WO2014071788 A1 WO 2014071788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- basic array
- microphones
- microphone
- frequency
- output
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/08—Mouthpieces; Microphones; Attachments therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/005—Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/40—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
- H04R1/406—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/40—Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
- H04R2201/403—Linear arrays of transducers
Definitions
- This invention relates to acoustic processing techniques, and more particularly to an acoustic receiving system including a longitudinal linear array of a plurality of microphones.
- the main problems affecting the sound reinforcement gain are: If the direct sound received by the microphone and the sound wave fed back for various reasons are the same frequency and in phase, it is easy to make the sound reinforcement system Producing positive feedback causes howling.
- the sound waves that the sound waves and microphones should accept are generally not in the same direction.
- the most common solution is to enhance the directional characteristics of the microphone and reduce the impact of feedback sound waves.
- the existing heart-shaped, super-cardioid-pointed microphones are generally the most sensitive to the positive input sound waves, and are insensitive to the sound waves input on the back side. This can suppress the sound waves that are fed back, but sometimes the sound waves that are fed back and forth or left and right will still Cause interference.
- the 8-shaped microphone is generally sensitive to the sound input from the front input and the back input, and is insensitive to the sound waves input from the top, bottom, left, and right. Therefore, the problem of sound wave feedback on the back side cannot be solved.
- the existing heart-shaped, super-heart-shaped, 8-shaped-pointed microphones have different directional responses to sound waves of different frequencies.
- an object of the present invention is to provide an acoustic receiving system which is simple in structure and capable of directional reception and output of sound waves of a plurality of frequencies.
- an acoustic receiving system comprising: a plurality of basic array devices, a plurality of filters, and a second mixing output device, wherein the outputs of the plurality of basic array devices are respectively connected to a filter, An output end of the plurality of filters is connected to an input end of the second mixing output device, and an output end of the second mixing output device is an output end of the acoustic receiving system;
- the basic array device includes a microphone array, a delay circuit and a first sound output device, the microphone array includes a plurality of microphones, the plurality of microphones are arranged longitudinally along a straight line, and two adjacent ones of the microphone arrays The spacing between the microphones is 1, where n is the total number of microphones in the basic array device and is the wavelength obtained from the center frequency set by the basic n-array device;
- an output end of each of the microphones is respectively connected to a delay circuit, and outputs of the plurality of delay circuits are connected to an input end of the first sound mixing output device, and the first sound output device is The output is connected to the input of the filter;
- the delay time of the i-th delay circuit in the basic array device is the delay time of the last delay circuit plus
- the unit time is: after the acoustic signal having the center frequency set by the basic array device is axially incident on the microphone array in the basic array device, the acoustic signal is adjacent to the two The time between the microphones, where n is the total number of microphones in the microphone array, and the value of i is 1, 2, 3, ... n; the total number n of microphones in the microphone array is greater than or equal to 3.
- the plurality of filters are band pass filters, and the band pass filter has a center frequency corresponding to the basic array device.
- the center frequencies of the plurality of basic array devices are continuously and evenly arranged at an x/m octave interval, where m is the total number of basic array devices, and the X octaves are also the total frequency ranges set by the acoustic receiving system. . Further, the number of microphones in the microphone array of each basic array device is the same.
- the bandwidth of the plurality of band pass filters is the same octave bandwidth, and the bandwidth of the plurality of band pass filters covers the set total frequency bandwidth.
- the first filter at the low frequency end is a low pass filter
- the last filter at the high frequency end is a high pass filter
- the remaining plurality of filters have a center frequency corresponding to the basic array device.
- the bandpass filter, the bandwidth of the remaining plurality of bandpass filters is the same octave bandwidth.
- the total number n of the microphones in the microphone array is greater than or equal to 4 and is an even number.
- the last microphones in the microphone array of each of the basic array devices are grouped together at the same physical location and close together.
- the basic array device and the band pass filter have an operating frequency bandwidth that meets the directivity requirement.
- the beneficial effects of the present invention are: Since the microphone array of the basic array device of the present invention is a discrete, equally spaced, linear longitudinally arranged microphone array composed according to a preset center frequency, the positive frequency band can be improved within a certain frequency bandwidth. The output gain to the acoustic excitation and the large suppression of the output of the non-positive acoustic excitation, while also obtaining near-unidirectional directivity characteristics in the center frequency and adjacent frequency range, so that the sound feedback is stronger and the ambient noise is stronger. The environment can still achieve good sound reinforcement.
- the present invention includes a plurality of basic array devices, and a plurality of basic array devices can be provided with a plurality of different operating frequency ranges such that a plurality of different operating frequency ranges constitute a wider frequency bandwidth. Therefore, the present invention can achieve directional reception of acoustic signals in a set frequency range. Also, the present invention is simple in structure, easy to implement, and low in investment cost.
- FIG. 1 is a schematic structural view of a specific embodiment of an acoustic receiving system according to the present invention
- FIG. 2 is a schematic structural view of a specific embodiment of a basic array device in an acoustic receiving system according to the present invention
- FIG. 3 is a schematic diagram of frequency-directivity response of a basic array device output composed of an array of four microphones
- FIG. 4 is a schematic diagram of frequency-directivity response of a basic array device output composed of an array of eight microphones
- Figure 5 is a schematic diagram showing the output frequency response of a plurality of band pass filters in the present invention
- Figure 6 is a schematic diagram showing the output frequency response of the low pass filter, the plurality of band pass filters, and the high pass filter of the present invention. detailed description
- an acoustic receiving system includes a plurality of basic array devices, a plurality of filters, and a second mixing output device, wherein the outputs of the plurality of basic array devices are respectively connected to a filter, and the plurality of filters are respectively The output of the second mixing output device is connected to the input of the second mixing output device, and the output of the second mixing output device is the output of the acoustic receiving system.
- Each of the plurality of filters may be set as a band pass filter.
- the basic array device includes a microphone array, a delay circuit and a first mixing output device, the microphone array including a plurality of microphones, M 2 , 3 ⁇ ⁇ ⁇ , and frequency response, sensitivity, and frequency of each microphone Performance such as pointing characteristics is basically the same.
- the plurality of microphones, ⁇ 2 , 3 ⁇ ′′′′ are arranged longitudinally along a straight line, and the distance between adjacent two microphones in the microphone array is 1 , wherein ⁇ is a microphone in the basic array device
- the total number of ⁇ is the wavelength obtained from the center frequency set by the basic array device, and the calculation formula is as follows:
- the wavelength is expressed, C.
- C Indicates the speed at which sound waves travel in the air, / represents the center frequency of the basic array device.
- the center frequency of each basic array device can be arbitrarily set according to actual conditions.
- the band pass filter has a center frequency corresponding to the basic array device, and the band pass filter has an operating frequency bandwidth set by the acoustic receiving system to meet the directivity requirement, that is, a band for each band pass filter They are set according to the center frequency, operating frequency range, directivity characteristics, and set directivity requirements of their corresponding basic array devices.
- the bandpass filter connected to the output of the basic array device has a center frequency of 400 Hz.
- the operating bandwidth set by the basic array device to meet the directivity requirement is: (-1/3 wide (+1/3) octave frequency range, Bay I":
- the working bandwidth of the bandpass filter is the same: (-1/3) ⁇ (+1/3)
- an output end of each of the microphones is respectively connected to a delay circuit, and outputs of the plurality of delay circuits are connected to an input end of the first sound mixing output device, and the first sound output device is The output is connected to the input of the bandpass filter.
- the delay time 1 of the ith delay circuit in the basic array device is the delay time of the last delay circuit plus (n) times the unit time, and the unit time is: the frequency is the basic array device The set center frequency/sound wave signal, the time at which the acoustic signal propagates between the adjacent two microphones after axially entering the array of microphones in the basic array device, where n is the total number of microphones in the microphone array, The value of i is 1, 2, 3... n.
- the acoustic signal is incident axially into the array of microphones, that is, the incident angle of the acoustic signal is 0° or 180° into the array of microphones.
- n is the total number of microphones in the microphone array, and i is 1, 2, 3... n, C. Indicates the speed at which the sound wave travels in the air; A indicates the delay time of the last delay circuit, that is, A indicates the delay time of the nth delay circuit, and A is any time set according to actual needs.
- i is 1, that is, it represents the delay time of the first delay circuit, and the first delay circuit is represented as the delay circuit connected to the first microphone. Then when the values of i are 2, 3, 4...n, then so.
- the delay time of the nth delay circuit connected to the output thereof is 0, then for the nth microphone M consult, the output end thereof can be directly connected to the first mixing output device.
- the input terminal is connected, that is, the output of the nth microphone M consult can be connected to the delay circuit.
- each basic array device For the center frequency of each basic array device, they are preset according to the actual needs of the user, and more The basic array devices H, H 2 , H 3 ... H m , whose center frequency ⁇ may be the same or different, where k has values of 1, 2, 3, ... m. Then, according to the user's needs, respectively, the corresponding center frequency is set for each basic array device, and after determining the total number of microphones in each basic array device, respectively, it is possible to separately calculate two adjacent ones in each basic array device. The distance between the microphones and the corresponding delay time of each delay circuit. And when the band pass filter is set, the band pass filter has a center frequency corresponding to the basic array device.
- the center frequency of the first basic array device when the center frequency of the first basic array device is set to 60 Hz, when the basic array device is fabricated, the total number of microphones in the first basic array device can be determined according to actual needs, and then the adjacent ones in the first basic array can be determined. What is the separation distance between the two microphones, the delay time of each delay circuit, and the center frequency of the first band pass filter. For other basic array devices, so on.
- an acoustic receiving system capable of maximally gaining a forward sound wave signal of a plurality of frequencies (frequency bands) and suppressing a maximum of a plurality of frequency (frequency band) reverse sound wave signals with a certain directivity characteristic can be obtained.
- the present invention has five basic array devices, and the center frequencies set by the first basic array device to the fifth basic array device are 40 Hz, 50 Hz, 63 Hz, 80 Hz, 100 Hz, respectively; and the first basic array device to the fifth basic array.
- the number of microphones in the device is 4, 5, 6, 7, 8 respectively; then, correspondingly, the center frequencies of the first band pass filter to the fifth band pass filter are: 40 Hz, 50 Hz, 63 Hz, 80 Hz, 100 Hz; and the interval between two adjacent microphones in the first basic array device is 1 ⁇ ; if the delay time of the fourth delay circuit in the first basic array device is 0,
- the delay times of the first delay circuit to the third delay circuit in the first basic array device are: 18.75ms, 12. 5ms, 6. 25ms; between the two adjacent microphones in the second basic array device
- the interval distance is both ⁇ , if the delay time of the fifth delay circuit in the second basic array device is 0, then the delay times of the first delay circuit to the fourth delay circuit in the second basic array device are respectively For: _ s, _ s, - ⁇ - s, - ⁇ s ; and for the third basic array device, the fourth basic
- the 250 250 250 250 array device and the fifth basic array device are analogously. Therefore, from the above, the calculation formula of the separation distance 4 between two adjacent microphones in the kth basic array device is as follows:
- the value of k is 1, 2, 3, ... m, m is the total number of basic array devices in the acoustic receiving system; n k represents the total number of microphones in the kth basic array device; k The center frequency of the basic array device. Then, when k is taken as 1, then _; is expressed as the center frequency of the first basic array device, and further, the distance between adjacent two microphones in the first basic array device can be determined as: ⁇ 4.
- the value of the delay circuit i k in the kth basic array device is l k , 2 k , 3 k . . . n k , that is, i k is represented as the ith delay circuit in the kth basic array device, and the kth basic array
- the delay time T ki of the delay circuit i k in the device is calculated as follows:
- ⁇ represents the center frequency of the kth basic array device; the value of k is 1, 2, 3, ... m; m is the basic array device in the acoustic receiving system
- the total number; i k is l k , 2 k , 3 k ... n k ;
- a k represents: the delay time of the last delay circuit in the kth basic array device.
- the number of microphones in the microphone array of each of the basic array devices is the same.
- the superposition result of two columns of waves of the same frequency and amplitude depends mainly on the phase difference between the two columns of waves, and according to the phase difference between the two columns of waves, the superposition result of the two columns of waves is It varies within a range between the magnitude of the cancellation and the doubling of the amplitude.
- the superposition result of multi-column waves of the same frequency and the same amplitude depends on the phase difference between the multi-column waves, and the superposition result of the multi-column waves is in the amplitude phase according to the phase difference between the multi-column waves. Eliminate the variation between zero and the multiple of the amplitude increase. For example, when six waves of the same frequency and the same amplitude are superimposed, the superposition result is varied within a range between an amplitude of 0 and an amplitude of 6P A , and P A is the amplitude of the single-column wave.
- the angle between the axial direction of the microphone array and the incident of the acoustic wave signal in a basic array device is set such that the acoustic signal is incident on the microphone array at an incident angle, when the acoustic signal is a plane wave or an approximate plane wave (far-field acoustic wave or approximate far-field) Acoustic wave), and ignore the acoustic signal received by each microphone, due to the difference in amplitude caused by different propagation distances;
- phase angles of the acoustic signals received by the microphones are respectively ⁇ ; ';
- phase angle of the corresponding acoustic signal is ⁇ ; ";
- the center frequency of the basic array device is /. That is, the center frequency of the microphone array in the basic array device is /.
- the straight line distance between the first microphone and the ⁇ th microphone is ⁇ _ ses.
- the sound wave signal arrives, the sound wave signal reaches the first microphone and then propagates to the i-th microphone Mi, and the distance of the sound wave signal is
- phase angle of the incident acoustic wave signal is a
- a is constant in the equation, and therefore can be omitted.
- i takes values 1, 2, 3, 4... n, where n is the total number of microphones.
- the phase angle is 0° and the frequency is the center frequency /.
- the sound wave signal reaches the first microphone and then propagates to the ith microphone Mi, wherein the sound wave signal travels a distance of ⁇ cos, and the phase angle of the sound signal received by the ith microphone at time ti is the first pass Sound n
- the value of i is 1, 2, 3...n, that is, the second microphone and the third microphone can be respectively calculated by the above formula.
- phase angles of the corresponding acoustic signals are:
- the value of i is 1, 2, 3... n.
- phase angle of the acoustic signal output by each delay circuit is:
- the basic array device is designed to: The delay time for the ith delay circuit, and the acoustic signal for the center frequency / is incident from the front side to the axial direction The transmission time of the i-th microphone and then the last microphone is ensured that the delay time of the delay circuit and the transmission process time are both the same.
- the number of microphones in the microphone array is not 3 or more, but 2;
- the frequency is the center frequency /.
- the phase angle of the output electrical signal is a plus the delay circuit delays by 180°, SP: a+180°; and the acoustic signal is from the first
- the microphone is transmitted to the second microphone, and after the second delay circuit (the delay time of the second delay circuit is 0), the phase angle of the output electrical signal is a plus the transmission distance delay is 180°, SP: a+180°. It follows that the phase angle of the electrical signal output by the first delay circuit is identical to the phase angle of the electrical signal output by the second delay circuit, that is, their phase difference is zero, so that the output electrical signal can be maximized. Gain.
- the frequency is the center frequency /.
- the phase angle of the electrical signal received by the second microphone and outputted via the second delay circuit (the delay time of the second delay circuit is 0) is still a, and the acoustic signal is transmitted from the second microphone to the first one.
- the microphone, and after the output of the first delay circuit, the phase angle of the electrical signal corresponding to the output sound wave is a plus delay circuit delay of 180°, and the delay formed by the transmission distance is 180°, SP: a+ 360°.
- phase angle of the electrical signal outputted by the second delay circuit and the phase angle of the electrical signal finally outputted by the first delay circuit are delayed by 360°, that is, the phase difference between the two is 0. Therefore, the amplitude of the final output electrical signal is also doubled.
- the basic array device also has the effect of doubling the amplitude of the electrical signal.
- a basic array device comprising a microphone array composed of two microphones, which cannot suppress the acoustic signal incident on the opposite side axially.
- the frequency is the center frequency /.
- the acoustic wave signal having the phase angle a is incident on the microphone array from the front side, the acoustic wave signal sequentially passes through the output of the first microphone and the first delay circuit, and the phase angle of the output electrical signal is a plus delay circuit extension.
- SP a+240°.
- the phase angle of the electrical signal received by the second microphone and outputted through the second delay circuit is a plus the delay circuit delay of 120°, and the addition The transmission distance is delayed by 120°, SP: a+240°.
- the sound wave signal is sequentially outputted through the third microphone and the third delay circuit (the delay time of the third delay circuit is 0), and the phase angle of the output electrical signal is a plus the transmission distance delay is 240°, SP: a+240°.
- the first delay circuit output
- the phase angle of the electrical signal is identical to the phase angle of the electrical signal output by the second delay circuit, and the phase angle of the acoustic signal outputted by the third delay circuit is also identical, that is, their phase difference is 0.
- the output acoustic signal can get the maximum gain.
- the basic array device can output, which is equivalent to three times the output of a single microphone, or an electrical signal close to three times the amplitude, that is, the gain of the basic array device can be Up to 4.77dB or close to 4.77dB.
- the sound wave signal is transmitted from the second microphone to the first microphone, and after the output of the first delay circuit, the phase angle of the electrical signal corresponding to the output sound wave is a plus delay circuit delay of 240 ° and transmission
- the distance is 240 ° , SP : a + 480 ° . It can be obtained that the attenuation caused by the distance when the sound wave propagates in the air is ignored, and the amplitude of the electrical signal corresponding to the final output acoustic signal is 0 or close to zero.
- the frequency of the axial injection into the opposite side is the center frequency /.
- the acoustic signal when the number of microphones in the microphone array is 3, the basic array device can suppress the acoustic signal incident on the opposite side axially.
- the total number of microphones n in the microphone array is greater than or equal to 3, that is, the number of microphones in the microphone array is at least 3.
- the microphone array in a basic array device includes four microphones, M 2 , M 3 , M 4 , and four microphones are arranged longitudinally along a straight line, and the center frequency thereof is /. , that is, the interval between two adjacent microphones is Therefore, when the frequency is the center frequency /.
- acoustic signals with a phase angle of 0° acoustic signals with a phase angle of 0°:
- the first microphone is first incident at the incident angle ⁇ , and the phase angle of the acoustic signal received by the first microphone is 0°;
- the delay time L of the ith delay circuit is:
- n 4
- i 1, 2, and 3.
- the delay times of the first delay circuit, the second delay circuit, and the third delay circuit can be respectively obtained, and further, the first delay circuit to the fourth delay circuit can be respectively obtained.
- the delay angle corresponds to the phase angle of the acoustic signal, as follows:
- the delay time of the 1st delay circuit is:
- the phase angle of the acoustic signal corresponding to the delay time is ⁇ " two 270°.
- the acoustic signals outputted by the four microphones are delayed by the corresponding delay circuits, and the phase angles of the output acoustic signals are the same, both being 270°. Therefore, the acoustic signal output from the basic array device obtains the maximum gain.
- the frequency is the center frequency /.
- phase angles of the electric signals corresponding to the output acoustic signals are respectively:
- the attenuation of the output acoustic signal can be maintained at a minimum value within a certain frequency bandwidth.
- the total number ⁇ of the microphones in the microphone array is greater than or equal to 4 and is an even number.
- the incident angle is 180°, the attenuation caused by the distance when the acoustic signal propagates in the air is ignored, and the output signal of the microphone in the microphone array through the delay circuit will cancel each other to obtain the maximum attenuation.
- the distance of the acoustic signal to each microphone is ⁇ Cos will change with the incident angle of the sound wave to form a directivity change.
- cos ⁇ l the basic array device n
- the directivity of the microphone becomes sharper than the directivity of a single microphone.
- the microphone's single directivity characteristic is not omnidirectional (the directivity of a small, single, basic structure microphone is omnidirectional or near omnidirectional)
- the directivity characteristics of the basic array device will also be more Sharper.
- the gain of the output signal will continue to increase when the incident angle of the acoustic wave is 0°, and the gain of the output signal is still minimized when the incident angle of the acoustic array is 180°. That is, as the number of microphones increases, the directivity of the basic array device will further become sharp.
- Fig. 3 it is a frequency-directivity response diagram of the output of a basic array device consisting of an array of four microphones.
- the basic array device is at / and /.
- the ratio is maintained near 1, if the basic array device only works in a narrow frequency band, as shown in Figure 3, in the (-1/3) ⁇ (+1/3) octave frequency range
- the basic array device can obtain approximately uniform gain and directivity characteristics in the frequency band.
- the directivity characteristics of the basic array device and the acoustic frequency / and center frequency of the incident microphone array / are known.
- the ratio is related to, and with the center frequency /. The specific value has nothing to do with it.
- Fig. 4 it is a frequency-directivity response diagram of the output of a basic array device consisting of an array of 8 microphones.
- the basic array device is at / and /. The ratio is maintained near 1, ie, If the basic array device operates only in a narrow frequency band, as shown in FIG. 4, the basic array device is in the frequency band in the (-1/3) to (+1/3) octave frequency range. Nearly consistent gain and directivity characteristics are obtained.
- the basic array device consisting of 8 microphones has higher gain for positive sound waves, deeper attenuation for reverse sound waves, and better directivity characteristics.
- the number of microphones in the microphone array is greater than or equal to 4 and is even, and the greater the number, the better the directivity effect of receiving sound waves.
- a large system of a plurality of basic array devices i.e., the present invention, has similar gain and similar directivity characteristics over a set passband range of the acoustic receiving system. Then, the reception of the frequency acoustic wave signals in the pass band range can be performed, and the output of the forward sound wave excitation of these frequencies and the output of the non-forward sound wave excitation of these frequencies can be greatly suppressed, as in the present invention.
- a band pass filter corresponding to the center frequency of each basic array device is provided.
- the output frequency response of multiple bandpass filters is shown in Figure 5.
- the passbands of the individual bandpass filters are connected to each other to form a complete channel that meets the set operating frequency range.
- the center frequency, fs of multiple basic array devices are continuously and evenly set according to the ⁇ 111 octave interval.
- m is the total number of basic array devices
- X octaves are also the total frequency band range set by the acoustic receiving system.
- the total number m of the basic array devices is the total frequency bandwidth of the controllable directivity set by the acoustic receiving system, the controllable directivity characteristic set by the acoustic receiving system, and the controllable pointing of each basic array device.
- the width of the frequency band and the controllable directivity characteristics of each basic array device is the width of the frequency band and the controllable directivity characteristics of each basic array device.
- the total number m of the basic array devices in the acoustic receiving system it may also be determined (increase or decrease) according to the frequency response and special directivity requirements of the special frequency band in the entire frequency band set by the acoustic receiving system. .
- the frequency response, directivity characteristics, etc. will be different.
- the center frequencies of the plurality of basic array devices in the acoustic receiving system they may be arranged from the non-uniform intervals as needed. Only in this case, the frequency response, directivity characteristics, etc. will be different in the operating frequency range of the acoustic receiving system.
- the basic array device Since the center frequencies of the plurality of basic array devices, f 2 , f 3 , ... are continuously and uniformly set at x/m octave intervals, increasing the number of basic array devices within the same set operating frequency range will result in The basic array device is responsible for the narrowing of the operating frequency band response.
- the characteristic change will be expressed as follows:
- the sensitivity of receiving the positive sound wave signal will be increased within the set operating frequency range, and the reverse attenuation will be more consistent, that is, approaching 0, the directivity characteristics of different frequencies will also become more consistent; conversely, reducing the number of basic array devices will reduce the sensitivity over the entire set frequency range, and, for directions other than the forward direction, sound waves of different frequencies
- the attenuation tends to be inconsistent, that is, the dispersion is increased and the directivity characteristics are deteriorated.
- the center frequencies of the plurality of basic array devices are distributed at x/m octave intervals (m is the number of basic array devices, and X octaves are the total frequency ranges set by the acoustic receiving system), one of them or
- the number of microphones in several basic array devices is increased or decreased, and the number of basic array devices increased, the sensitivity of the operating band is higher, the pointing characteristics become sharper, and the number of basic array devices is reduced, and the sensitivity of the operating frequency band Will fall, the directional characteristics will become dull. Therefore, for the number of basic array devices and the number of microphones in the basic array device, both need to be set according to actual conditions, so as to meet the special requirements of the special acoustic receiving system for different responses to individual frequency ranges.
- the center frequencies of the plurality of basic array devices are not uniformly distributed at x/m octave intervals, the center frequency distribution interval of the basic array device of one of the frequency bands or some of the frequency bands becomes larger or smaller. Then, in the working frequency band where the center frequency distribution interval becomes smaller, the sensitivity will be improved, and the pointing characteristic will become sharper; the working frequency band where the center frequency distribution interval becomes larger, the sensitivity will be lower, and the pointing characteristic will become dull. Therefore, the distribution of the center frequency of the basic array device can be set according to actual needs, and can meet the special requirements of the special acoustic receiving system for the special response of the special frequency range.
- the preferred embodiment of the present invention is - 1.
- the number of microphones in the microphone array of each basic array device of the sound receiving system is 4 or more and an even number. And the number of microphones of each basic array device is the same. Thus the entire acoustic receiving system will have a consistent gain in the forward direction within the set frequency bandwidth.
- the last microphone in the microphone array of each basic array device of the acoustic receiving system is concentrated in the same physical position and close to each other.
- the delay time of the delay circuit connected to the last microphone can be uniformly set to 0, and a delay circuit can be omitted.
- the number of microphones in the microphone array of each basic array device of the sound receiving system is the same, and when the center frequencies of the plurality of basic array devices are continuously and uniformly arranged at x/m octave intervals, the plurality of bands
- the bandwidth of the pass filter is the same octave bandwidth, and the bandwidth of the plurality of band pass filters covers the total frequency bandwidth set by the acoustic receiving system. That is, the bandpass filters connected to the output of each basic array device can be set to the same octave bandwidth.
- consistent directivity characteristics can be achieved within the frequency bandwidth set by the acoustic receiving system.
- the number of microphones in the microphone array of each basic array device of the sound receiving system is the same, and the center frequency of the plurality of basic array devices is continuously and evenly arranged according to the x/m octave interval, for the sound receiving system a band pass filter connected to the output of each basic array device and having a center frequency corresponding to the basic array device, except for the first band pass filter at the low frequency end and the last band pass filter at the high frequency end, the remaining band pass
- the bandwidth of the filter is set to the same octave bandwidth.
- the low frequency cutoff is set as a pass band, that is, the filter connected to the output end of the first basic array device is a low pass filter, and the low pass The high frequency end of the filter still presses the high frequency end of the remaining band pass filter, and then sets its high end cutoff frequency.
- the high frequency cutoff is set as a pass band, that is, at this time, the filter connected to the output end of the last basic array device is a high pass filter, and the high pass At the low end of the filter, the low-frequency end of the remaining bandpass filter is still set, and then the low-end cutoff frequency is set.
- the acoustic receiving system can receive an acoustic signal other than the set frequency bandwidth, that is, the operating frequency bandwidth is extended, and the directivity characteristic of the acoustic signal in a part of the frequency range outside the set frequency bandwidth cannot be controlled.
- the first filter of the low frequency end of the plurality of filters of the sound receiving system is a low pass filter
- the last filter of the high frequency end is a high pass filter
- the remaining plurality of filters are all A bandpass filter having a center frequency corresponding to the basic array device, and the bandwidth of the remaining plurality of bandpass filters is the same octave bandwidth.
- the low-pass filter in the acoustic receiving system, and the output frequency response of the remaining plurality of band-pass filters and the high-pass filter are as shown in FIG. 6.
- the present invention can selectively receive different acoustic signals within a certain frequency bandwidth, and can improve the output of the forward acoustic excitation and greatly suppress the output of the non-positive acoustic excitation. Therefore, the invention has a wide range of uses, for example: it can be used as a conference site to collect sounds (sounds), such as: hang the sound receiving system at the top of the center of the conference room, so that it can cover not only most speakers, but also pick up sounds (sounds) When you do not need complicated regulation, you can suppress all kinds of sound wave feedback, it is not easy to produce howling, and can isolate unwanted noise.
- a theater remote sound pickup transmission
- it can cover not only the entire stage, but also The required acoustic signal can also block the interference in the audience area in the theater; it can also be used as a special pickup (transmission) for ultra-long distance.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Circuit For Audible Band Transducer (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Abstract
一种声接收系统,包括:多个基本阵列装置的输出端分别连接一滤波器,多个滤波器的输出端均与第二混音输出器件的输入端连接。所述基本阵列装置包括传声器阵列,传声器阵列包括多个传声器,多个传声器沿着直线依次纵向排列设置,相邻两个传声器之间的间隔距离均为λ0/n;每个传声器的输出端分别连接一延时电路,多个延时电路的输出端均与第一混音输出器件的输入端连接;第i延时电路的延时时间为最后一个延时电路的延时时间加上(n-i)倍的单位时间。上述系统在设定的频率带宽内,能达到提高正向声波激励的输出增益,以及较大地抑制非正向声波的输出增益,获得所需的指向性特性。
Description
一种声接收系统
技术领域
本发明涉及声处理技术,尤其涉及一种包括由多个传声器组成纵向直线式阵列的声接收 系统。
背景技术
在扩声设备的应用中, 影响扩声增益的主要问题是: 如麦克风接收到的直达声与因各种 原因回授的声波的信号是同频率、 同相位的, 因而很容易使扩声系统产生正反馈引起啸叫。
回授声波与传声器应该接受的声波, 一般不是同一方向的, 最常用的解决办法是增强传 声器的指向特性,减少回授声波的影响。
现在已有的心型、 超心形指向的传声器, 一般对正面输入的声波最灵敏, 对背面输入的 声波不灵敏, 这样可以抑制背面回授的声波, 但有时上下左右回授的声波还是会造成干扰。
8字形指向的传声器一般对正面输入及背面输入的声波灵敏, 对上下左右输入的声波不 灵敏。 因此,背面的声波回授的问题仍不能解决。
而且, 现有的心型、 超心形、 8字形指向的传声器, 对不同频率声波的指向性响应是不 一样的。
由于单个传声器增益特性、指向特性和频率响应等方面因素的限制, 其对于声音环境的 要求往往较为苛刻。在声音环境较为复杂的场合下,往往很难取得较好的拾音(传声)效果。 例如目标声源与拾音 (传声) 设备之间的距离较远、 角度不佳、 背景噪声较大或回授较强, 都可能导致输出增益减小、 失真或产生啸叫的现象。 尤其是, 当扩声设备需要众多拾音(传 声)设备予以支持时, 其调控和调试的复杂性可想而知。 这样就需要一种能够实现对正向声 波激励有较高的增益输出, 而对非正向的声波能产生较大抑制作用, 并且具有较恒定的指向 性的拾音(传声)设备, 来简化扩声装置对于环境的需求。 从而满足在声波回授较强、 环境 噪声较高环境下的拾音 (传声) 需求, 并且实现能远距离拾音 (传声), 简化设备的调控和 操作, 以取得较好的扩声效果。
发明内容
为了解决上述技术问题,本发明的目的是提供一种结构简单而且能很好地对多种频率的 声波进行定向接收、 输出的声接收系统。
本发明所采用的技术方案是: 一种声接收系统, 包括多个基本阵列装置、 多个滤波器以 及第二混音输出器件, 所述多个基本阵列装置的输出端分别连接一个滤波器, 多个滤波器的 输出端均与第二混音输出器件的输入端连接,第二混音输出器件的输出端为声接收系统的输 出端;
所述基本阵列装置包括传声器阵列、延时电路和第一混音输出器件, 所述传声器阵列包 括多个传声器, 所述多个传声器沿着直线依次纵向排列设置, 所述传声器阵列中相邻两个传 声器之间的间隔距离均为 1 , 其中 n为基本阵列装置中传声器的总个数, 是根据基本 n 阵列装置所设定的中心频率而得出的波长;
所述基本阵列装置中, 每个传声器的输出端分别连接一延时电路, 多个延时电路的输出 端均与第一混音输出器件的输入端连接,所述第一混音输出器件的输出端与滤波器的输入端 连接;
所述基本阵列装置中第 i延时电路的延时时间为最后一个延时电路的延时时间加上
(n-i ) 倍的单位时间, 而所述的单位时间为: 频率为基本阵列装置所设定的中心频率的声 波信号轴向射入基本阵列装置中的传声器阵列后,该声波信号在相邻两个传声器之间传播的 时间, 其中 n为传声器阵列中传声器的总个数, i的取值为 1、 2、 3…… n; 所述传声器阵列中传声器的总个数 n大于等于 3。 进一步, 所述的多个滤波器均为带通滤波器, 所述的带通滤波器具有与基本阵列装置相 应的中心频率。
进一步, 多个基本阵列装置的中心频率按 x/m倍频程间隔连续均匀设置, 其中 m是基本 阵列装置的总个数, X个倍频程亦为声接收系统设定的总的频率范围。
进一步, 各个基本阵列装置的传声器阵列中传声器的个数均是一样的。
进一步, 所述的多个带通滤波器的带宽均为同样倍频程带宽, 并且所述的多个带通滤波 器的带宽覆盖所设定的总频率带宽。
进一步, 所述的多个滤波器中低频端第一滤波器为低通滤波器, 高频端最后一个滤波器 为高通滤波器, 而其余多个滤波器均为具有与基本阵列装置相应中心频率的带通滤波器, 所 述其余多个带通滤波器的带宽均为同样倍频程带宽。
进一步, 所述传声器阵列中传声器的总个数 n大于等于 4且为偶数。
进一步,各基本阵列装置的传声器阵列中最后一只传声器均聚集在同一个物理位置并相 互靠拢。
进一步, 所述的基本阵列装置及带通滤波器具有符合指向性要求的工作频率带宽。 本发明的有益效果是: 由于本发明中基本阵列装置的传声器阵列是一个根据预设的中心 频率而组成的离散、 等间隔、 直线纵向排列的传声器阵列, 能在一定的频率带宽内, 提高正 向声波激励的输出增益以及较大地抑制非正向声波激励的输出,同时还能在中心频率及相邻 频率范围内获得接近一致的指向性特性,这样在声波回授较强和环境噪音较强的环境下仍能 取得很好的扩声效果。而且本发明包括多个基本阵列装置, 多个基本阵列装置可设置多个不 同的工作频率范围, 从而多个不同的工作频率范围组成一个较宽的频率带宽。 因此本发明能 实现对设定频率范围的声波信号进行定向接收。还有本发明结构简单, 易于实现以及投资成 本低。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明- 图 1是本发明一种声接收系统一具体实施例的结构示意图;
图 2是本发明一种声接收系统中基本阵列装置一具体实施例的结构示意图;
图 3是由 4个传声器组成阵列的基本阵列装置输出的频率-指向性响应示意图; 图 4是由 8个传声器组成阵列的基本阵列装置输出的频率-指向性响应示意图;
图 5是本发明中多个带通滤波器的输出频率响应示意图;
图 6是本发明中低通滤波器、 多个带通滤波器以及高通滤波器的输出频率响应示意图。 具体实施方式
由图 1所示, 一种声接收系统, 包括多个基本阵列装置、 多个滤波器以及第二混音输出 器件, 所述多个基本阵列装置的输出端分别连接一个滤波器, 多个滤波器的输出端均与第二 混音输出器件的输入端连接, 而第二混音输出器件的输出端为本声接收系统的输出端。所述 的多个滤波器均可设为带通滤波器。
所述基本阵列装置包括传声器阵列、延时电路和第一混音输出器件, 所述传声器阵列包 括多个传声器 、 M2、 3〜·· ·Μη, 并且每个传声器的频响、 灵敏度、 指向特性等性能基 本一致。
所述多个传声器 、 Μ2、 3〜·· ' „沿着直线依次纵向排列设置, 所述传声器阵列中 相邻两个传声器之间的间隔距离均为 1 ,其中 η为基本阵列装置中传声器的总个数, 是 η 根据基本阵列装置所设定的中心频率而得出的波长, 而 的计算公式如下:
c
f
上式中, 表示波长, C。表示声波在空气中的传播速度, /表示基本阵列装置的中心 频率。而每个基本阵列装置的中心频率可根据实际情况而任意设置。所述的带通滤波器具有 与基本阵列装置相应的中心频率,以及所述的带通滤波器具有声接收系统所设定的符合指向 性要求的工作频率带宽, 即对于各个带通滤波器的带通, 它们是按其对应的基本阵列装置的 中心频率、 工作频率范围、 指向性特性、 设定的指向性要求而所设定的。
例如: 基本阵列装置所设定的中心频率为 400Hz , 那么与该基本阵列装置输出端连接的 带通滤波器, 其中心频率亦为 400Hz。 而基本阵列装置所设定的符合指向性要求的工作带宽 为:(-1/3广 (+1/3)倍频程频率范围时, 贝 I」: 带通滤波器的工作带宽相同为: (-1/3)〜(+1/3) 倍频程频率范围 (315 Hz 〜500Hz )。 其中, 倍频程宽度的计算公式为: N=log2 ( f2/fl )。
所述基本阵列装置中, 每个传声器的输出端分别连接一延时电路, 多个延时电路的输出 端均与第一混音输出器件的输入端连接,所述第一混音输出器件的输出端与带通滤波器的输 入端连接。
所述基本阵列装置中第 i延时电路的延时时间 1 为最后一个延时电路的延时时间加上 ( n-i ) 倍的单位时间, 而所述的单位时间为: 频率为基本阵列装置所设定的中心频率/的 声波信号, 轴向射入基本阵列装置中的传声器阵列后, 该声波信号在相邻两个传声器之间传 播的时间, 其中 n为传声器阵列中传声器的总个数, i的取值为 1、 2、 3…… n。 其中, 声波 信号轴向射入所述的传声器阵列, 即为该声波信号入射角 0 ° 或 180 ° 射入所述的传声器阵 列。 另外, 由于声波信号是轴向射入所述的传声器阵列, 因此根据上述可得, 该声波信号在 相邻两个传声器之间传播的距离为相邻两个传声器之间的直线距离, 即为 1 ,进而进一步 n 可得, 该声波信号在相邻两个传声器之间传播的时间, 其计算公式如下: t = - /c0
n
即第 i延时电路的延时时间 Ti, 其计算公式如下: τ = (ηΖ ί)1λ + Α
"•C0
其中 n为传声器阵列中传声器的总个数, i取值为 1、 2、 3…… n, C。表示声波在空气 中的传播速度; A表示最后一个延时电路的延时时间, 即 A表示第 n延时电路的延时时间, 而 A是根据实际需要而设置的任意时间。而当 i的取值为 1时, 即 ;代表为第 1延时电路的 延时时间, 而第 1延时电路则表示为与第 1传声器 连接的延时电路。 那么当 i的取值分 别为 2、 3、 4…… n时, 则如此类推。 还有, 对于第 n传声器 M„, 若与其输出端连接的第 n 延时电路的延时时间为 0时, 那么对于第 n传声器 M„, 其输出端可以直接与第一混音输出 器件的输入端连接, 即第 n传声器 M„的输出端可以不连接延时电路。
对于每个基本阵列装置的中心频率, 它们是根据用户的实际需求而预先设置的, 而且多
个基本阵列装置 H,、 H2、 H3…… Hm , 它们的中心频率 Λ可以是一样的, 也可以是不相同的, 其中 k的取值为 1、 2、 3…… m。 那么根据用户的需求进而分别对每个基本阵列装置设置了 相应的中心频率, 以及确定每个基本阵列装置中传声器的总个数后, 就可以分别计算出, 每 个基本阵列装置中相邻两个传声器之间的间隔距离,以及计算出每个延时电路相应的延时时 间。 并且在设置带通滤波器时, 使带通滤波器具有与基本阵列装置相应的中心频率。 例如当 第 1基本阵列装置的中心频率设定为 60Hz, 这样在制作基本阵列装置时, 根据实际需要确 定第 1基本阵列装置中传声器的总个数后,就能确定第 1基本阵列中相邻两个传声器之间的 间隔距离均为多少、每个延时电路的延时时间分别为多少, 以及第 1带通滤波器的中心频率 为多少。而对于其它的基本阵列装置,则如此类推。这样就能获得一个能对多个频率(频带) 的正向声波信号进行最大增益输出以及对多个频率 (频带) 的反向声波信号进行最大抑制、 具备一定指向性特性的声接收系统。 例如本发明共有 5个基本阵列装置,而第 1基本阵列装置至第 5基本阵列装置设定的中 心频率分别为 40Hz、 50Hz、 63Hz、 80Hz、 lOOHz ; 以及第 1基本阵列装置至第 5基本阵列装 置中传声器的个数分别为 4、 5、 6、 7、 8; 那么相应地, 第 1带通滤波器至第 5带通滤波器 具有的中心频率分别为: 40Hz、 50Hz、 63Hz、 80Hz、 100Hz ; 而第 1基本阵列装置中相邻两 个传声器之间的间隔距离均为 1· ;若第 1基本阵列装置中第 4延时电路的延时时间为 0,
4 40
那么第 1基本阵列装置中第 1延时电路至第 3延时电路的延时时间分别为: 18. 75ms, 12. 5ms, 6. 25ms ; 第 2基本阵列装置中相邻两个传声器之间的间隔距离均为 ·^, 若第 2基本阵列 装置中第 5延时电路的延时时间为 0, 那么第 2基本阵列装置中第 1延时电路至第 4延时电 路的延时时间分别为: 」_ s、 」_ s、 -^- s, -^ s ; 而对于第 3基本阵列装置、 第 4基本
上式中, k的取值为 1、 2、 3…… m, m为声接收系统中基本阵列装置的总个数; nk表示 第 k基本阵列装置中传声器的总个数; Λ表示第 k基本阵列装置的中心频率。 那么当 k取 1 时, 则 _;表示为第 1基本阵列装置的中心频率, 进而能求出第 1基本阵列装置中相邻两个传 声器之间的间隔距离 均为: 丄 4。 第 k基本阵列装置中延时电路 ik的取值为 lk、 2k、 3k…… nk, 即 ik表示为第 k基本阵列 装置中第 i延时电路, 而第 k基本阵列装置中延时电路 ik的延时时间 Tki, 其计算公式如下:
其中, 表示第 k基本阵列装置中传声器的总个数; Λ表示第 k基本阵列装置的中心频 率; k的取值为 1、 2、 3…… m; m为声接收系统中基本阵列装置的总个数; ik的取值为 lk、 2k、 3k…… nk ; Ak表示: 第 k基本阵列装置中最后一个延时电路的延时时间。
进一步作为优选的实施方式,各个基本阵列装置的传声器阵列中传声器的个数均是一样 的。
然而, 当各个基本阵列装置的传声器阵列中传声器的个数不一样时, 在声接收系统的工 作频率范围内, 频率响应、 指向性特性等, 将是不一样的了。
以下是对单个基本阵列装置进行详细的分析。
由公知常识可知, 电波的波动方程如下:
P = Pacos ( " t- (l) )
而两个相同频率的电波相加的方程如下:
Pa 2 = Pla 2+P2a 2+2PlaP2acos ( Φ 2— Φ
那么幅度相等 (即 Pla=P2a) 的两列电波的叠加情况如下:
Lpa=101g(Pa/Po)2=101g(2Pla/Po)2=101g(Pla/Po)2+101g4=LPla+ 6dB 由上述可得, 当同频率同相位同幅度的两列波叠加后, 输出的信号的幅度增加一倍, 即 约增加 6dB。
1
(2) 当两列波的相位差为 60° , 即 Φ2- φ^ ^Γ时, 所述的两列波的叠加情况如下:
Pa - Pla + + 2PiaP2aXl/2 - 3Pia
Lpa=101g(Pa/Po)2=101g(3Pla/Po)2=101g(Pla/Po)2+101g3=LPla+ 4.8dB
1
Lpa=101g(Pa/Po)2=101g2Pla7Po2=101g(Pla/Po)2+101g2=LPla+3dB 由上述可得, 当同频率同幅度并且相位差为 的两列波叠加后, 输出的信号的幅度增 加^倍, 即约增加 3dB。
2
(4) 当两列波的相位差为 120° 时, 即4)2 - 时, 所述的两列波的叠加情况 如下:
2
由上述可得, 当同频率同幅度并且相位差为 的两列波叠加后, 输出的信号的幅度不 增加, 即等于单列波的声压级。 (5) 当两列波的相位差为 180° 时, 即 Φ2 - = 时, 所述的两列波的叠加情况如 下:
由上述可得, 当同频率同幅度并且相位差为^ "的两列波叠加后, 输出的信号的幅度为 零, 即所述的两列波叠加的结果相消。
因此综上所述,同频率同幅度的两列波的叠加结果,其主要取决于两列波之间的相位差, 而根据两列波之间的相位差不同,两列波的叠加结果是在幅度相消为零和幅度增加一倍之间 的范围内变化。
同理, 同频率同幅度的多列波的叠加结果, 其同样取决于多列波之间的相位差, 而根据 多列波之间的相位差不同,多列波的叠加结果是在幅度相消为零和幅度增加多倍之间的范围 内变化。 例如, 当同频率、 同幅度的六列波叠加, 那么该叠加结果是在幅度为 0和幅度为 6PA之间的范围内变化, PA为单列波的幅度。
设定一基本阵列装置中传声器阵列的轴向与声波信号入射的夹角为 ,即声波信号以入 射角 入射到传声器阵列中, 当该声波信号为平面波或近似平面波(远场声波或近似远场声 波), 且忽略各传声器收到的声波信号, 因传播距离不同造成的幅度差异时;
各传声器接收到的声波信号的相位角分别为 Φ; ';
各传声器实际接收到声波信号的时间分别为 ;
对于各个延时电路的延时时间, 其分别对应的声波信号的相位角为 Φ; ";
基本阵列装置的中心频率为 /。, 即基本阵列装置中传声器阵列的中心频率为 /。; 第 1个传声器与第 η个传声器之间的直线距离为^ _„。
当相位角为 a和频率为中心频率 /。的声波信号以入射角 在时间 ^=0入射到第 1传声 器 时, 即第 1传声器 在时间为^=0, 接收到相位角为 a和频率为中心频率/。的声波信 号时,该声波信号到达第 1传声器 后再传播到第 i传声器 Mi,其间声波信号传播的距离为
— cos ^ , 并且第 i传声器在时间 接收到的声波信号的相位角与第 1传声器 相位角 n 的差为-
, , ((i - l) / n)A0 cos ^7
Φ, ' =——— - ~~― -x360° + <2
C0 /f0
其中, 因入射的声波信号的相位角为 a时, a在式中为常数, 故可省略。 另外, i取值为 1、 2、 3、 4…… n, n为传声器的总个数。
所以有, 当相位角为 0° 和频率为中心频率 /。的声波信号以入射角 在时间 t1=0入射 到第 1传声器 时, 即第 1传声器 在时间为^=0, 接收到相位角为 0° 和频率为中心频率 /。的声波信号, 该声波信号到达第 1传声器 后再传播到第 i传声器 Mi, 其间声波信号传 播的距离为 ^^ cos , 并且第 i传声器在时间 ti接收到的声波信号的相位角与第 1传声 n
器 相位角的差为:
1 。 C x 360O
c0 / f0
其中, i的取值为 1、 2、 3…… n,即通过上式能分别计算出第 2传声器、第 3传声器…… 第 n传声器在接收到该声波信号时, 该声波信号的相位角 ,· '。
而对于各个延时电路的延时时间, 其分别对应的声波信号的相位角为:
Φ " = ^~χ360ο
1 ι//0
其中, i的取值为 1、 2、 3…… n。
即各个延时电路输出的声波信号的相位角 为:
φ = φ '+ φ " 而经过上述可得, 基本阵列装置的设计思想是: 对于第 i延时电路的延时时间, 以及对 于频率为中心频率 /。的声波信号由正面、 轴向入射到第 i只传声器后再入射到最后一只传 声器这一传输过程时间, 保证这延时电路的延时时间和传输过程时间两者一致。
假如: 当传声器阵列中传声器的个数不为 3及 3以上, 而为 2时;
频率为中心频率 /。和相位角为 a的声波信号正面轴向入射该传声器阵列时, gp : 以入
射角为 = 0° 入射。 该声波信号依次经过第 1传声器和第 1延时电路输出后, 输出的电信 号的相位角为 a加延时电路延时 180° , SP: a+180° ; 而该声波信号从第 1只传声器传到 第 2只传声器, 并且经第 2延时电路 (第 2延时电路的延时时间为 0) 输出后, 输出的电信 号的相位角为 a加传输距离延时 180° , SP: a+180° 。 由此得出, 第 1延时电路输出的电 信号的相位角与第 2延时电路输出的电信号的相位角是一致的, 即它们的相位差为 0, 这样 输出的电信号能得到最大的增益。
但是,当频率为中心频率 /。和相位角为 a的声波信号由反面轴向入射该传声器阵列时, 即: 以入射角为 =180° 入射。第 2只传声器接收并经第 2延时电路(第 2延时电路的延时 时间为 0)输出的电信号的相位角仍为 a, 而该声波信号从第 2只传声器传到第 1只传声器, 并且经过第 1个延时电路输出后, 输出的声波对应的电信号的相位角为 a加延时电路延时 180° , 以及再加传输距离形成的延时 180° , SP: a+360° 。 由此可得, 第 2延时电路输出 的电信号的相位角和最终经第 1延时电路输出的电信号的相位角, 后者滞后了 360° , 即等 同于两者相位差为 0。 因此最终输出的电信号的幅度也增加了一倍。
也就是说对于由反面轴向射入的频率为中心频率 /。的声波信号, 该基本阵列装置对其 同样起到电信号幅度增加一倍的效果。
也就是说: 由 2只传声器组成传声器阵列的基本阵列装置, 其不能对反面轴向射入的声 波信号起到抑制的作用。
假如: 当传声器阵列中传声器的只数为 3时, 频率为中心频率 /。和相位角为 a的声波 信号由正面轴向入射该传声器阵列时,该声波信号依次经过第 1只传声器和第 1延时电路输 出后, 输出的电信号的相位角为 a加延时电路延时 240° , SP: a+240° 。 而该声波信号从 第 1只传声器传到第 2只传声器时,第 2只传声器接收并通过第 2延时电路输出的电信号的 相位角为 a加延时电路延时 120° , 以及再加传输距离延时 120° , SP: a+240° 。 该声波信 号依次经过第 3只传声器和第 3延时电路 (第 3延时电路的延时时间为 0) 输出后, 输出的 电信号的相位角为 a加传输距离延时 240° , SP: a+240° 。 由此得出, 第 1延时电路输出
的电信号的相位角, 与第 2延时电路输出的电信号的相位角是一致的, 与第 3延时电路输出 的声波信号的相位角也是一致的, 即它们的相位差为 0, 这样输出的声波信号能得到最大的 增益。
在对声波在空气中传播时因距离造成的衰减忽略不计时, 该基本阵列装置可输出, 相当 于单只传声器输出的 3倍,或接近 3倍幅度的电信号,即基本阵列装置的增益可达到 4. 77dB 或接近 4. 77dB。
当频率为中心频率 /。和相位角为 a的声波信号由反面轴向入射该传声器阵列时, 第 3 只传声器接收并经第 3延时电路 (第 3只延时电路的延时时间为 0 )输出的声波信号的相位 角仍为 a, 而该声波信号从第 3只传声器传到第 2只传声器, 并且经过第 2个延时电路输出 后, 输出的声波对应的电信号的相位角为 a并且加延时电路延时 120 ° 和再加传输距离延时 120 ° , SP : a+240 ° 。 该声波信号从第 2只传声器传到第 1只传声器, 并且经过第 1个延时 电路输出后, 输出的声波对应的电信号的相位角为 a加延时电路延时 240 ° 并再加传输距离 延时 240 ° , SP : a+480 ° 。 由此可得, 在对声波在空气中传播时因距离造成的衰减忽略不 计时, 最终输出的声波信号对应的电信号的幅度为 0或接近 0。
也就是说, 对于反面轴向射入的频率为中心频率 /。的声波信号, 当传声器阵列中传声 器的个数为 3时, 该基本阵列装置能对反面轴向射入的声波信号起到抑制的作用。
所述传声器阵列中传声器总数 n大于等于 3, 即所述传声器阵列中传声器的只数至少为 3只。 而当传声器的数量越多时, 在一定频率带宽内, 经传声器阵列和相应延时电路输出的 正向声波信号对应的电信号, 可达到增益进一步增加, 以及使反面衰减进一步加强, 同时也 提高了对声波信号反应的指向性特性。
如图 2所示, 一基本阵列装置中的传声器阵列包括 4个传声器 、 M2、 M3、 M4, 4个传声 器沿着直线依次纵向排列设置, 并且其中心频率为 /。, 即相邻两个传声器之间的间隔均为
因此, 当频率为中心频率/。和相位角为 0° 的声波信号:
(1)在时间 t1=o以入射角 φ 首先入射第 1传声器 ^,第 1只传声器 接收到的声波信 号的相位角为 =0° ;
而该声波信号分别入射到其它传声器的情况如下: (2) 在 ^Ao/Co , 此时该声波信号入射到第 2传声器 M2, 并且第 2传声器 M2接收到的声 波信号的相位角为 Φ2' = 90°;
波信号的相位角为 Φ3' = 180°;
波信号的相位角为 Φ4 ' = 270°。
此时, n为 4, 则 i的取值为 1、 2、 3。
那么根据上式,可分别求出第 1延时电路、第 2延时电路以及第 3延时电路的延时时间, 进而还可分别求出第 1延时电路至第 4延时电路它们的延时时间分别对应的声波信号的相位 角, 具体如下:
(1) 第 1延时电路的延时时间为:
3 而根据上述可得, 这一延时时间对应的声波信号的相位角为 <^ "二 270°。
(2) 第 2延时电路的延时时间为:
而根据上述可得, 这一延时时间对应的声波信号的相位角为 Φ2 " = 180°。
(3) 第 3延时电路的延时时间为:
Τ2 =。 /C。
而根据上述可得, 这一延时时间对应的声波信号的相位角为 Φ3" = 90°。
(4) 第 4延时电路的延时时间为 0, 即这一延时时间对应的声波信号的相位角 Φ4" = 0。
因此, 可以进一步地推导出:
(1) 该声波信号入射到第 1传声器 , 并且经过第 1延时电路后输出的声波信号, 其相位 角度为 1= 1'+ 1" = 270°。
(2) 该声波信号入射到第 2传声器 Μ2, 并且经过第 2延时电路后输出的声波信号, 其相位 角度为 2= 2'+ 2" = 270°。
(3) 该声波信号入射到第 3传声器 Μ3, 并且经过第 3延时电路后输出的声波信号, 其相位 角度为 Φ3=Φ3 '+Φ3" = 270°。
(4)该声波信号入射到第 4传声器 Μ4,并且经第 4延时电路后输出的声波信号, 其相位角为 Φ4=Φ4'+Φ4" = 270。
因此由上述可得, 4个传声器输出的声波信号分别经过相应的延时电路进行延时后, 输 出的声波信号的相位角相同, 均为 270°。 因此本基本阵列装置输出的声波信号获得最大的 增益。
另外,频率为中心频率 /。和相位角为 0° 的声波信号在时间 t4=0以入射角 = 180°入射 所述的传声器阵列时:
(1) 在 t4=0, 此时该声波信号入射到第 4只传声器 M4, 第 4只传声器 M4接收到的声波信号 的相位角为 Φ =0° ;
(2) 在 3= /^:。, 此时该声波信号入射到第 3只传声器 M3, 并且第 3只传声器 M3接收到 的声波信号的相位角为 Φ3' =90° ;
(3) 在 2= /^:。, 此时该声波信号入射到第 2只传声器 Μ2, 并且第 2只传声器 Μ2接收到 的声波信号的相位角为 Φ2' =180° ;
(4) 在^= /^, 此时该声波信号入射到第 1只传声器 , 并且第 1只传声器 接收到 的声波信号的相位角为 =270° 。
而各传声器的相应的延时电路的延时未变, 则分别对应的相角仍为: Φ ' =270° 、 Φ2" =180° 、 Φ3" =90° 、 Φ4" =0° ;
那么各传声器输出的信号经相应的延时电路进行延时后,各输出声波信号所对应的电信 号的相位角分别为:
(1) 第 1传声器 输出的声波信号经第 1延时电路进行延时后, 输出的电信号的相位角为 Φ, = Φ, '+ Φ, " = 270。 + 270。 = 540。。
(2) 第 2传声器 Μ2输出的声波信号经第 2延时电路进行延时后, 输出的电信号的相位角为 Φ2 = Φ2 '+ Φ2 " = 180。 + 180° = 360。。
(3) 第 3传声器 Μ3输出的声波信号经第 3延时电路进行延时后, 输出的电信号的相位角为 Φ3 =Φ3 '+Φ3 " = 90° + 90° = 180°。
(4) 第 4只传声器 Μ4输出的信号的延时为 0, 输出的电信号的相位角为
Φ4 =Φ4'+Φ4" = Ο。+Ο。 = Ο。。
因此可以得出, 1与 2的相位相反, Φ3与 Φ4的相位相反, 在对声波信号在空气中传 播时因距离造成的衰减忽略不计时, 该基本阵列装置输出的电信号的幅度为 0, 增益为极小 值。
而且还可以推断出, 当相邻两个传声器之间的距离均为 1 ,并且传声器的个数 η大于
η
等于 4且为偶数时, 在一定频带宽度内, 输出的声波信号的衰减均可维持极小值。
因此作为优选的实施方式, 传声器阵列中传声器的总个数 η大于等于 4且为偶数, 当
入射角 为 180° 时, 在对声波信号在空气中传播时因距离造成的衰减忽略不计时, 传声器 阵列中的传声器经延时电路的输出信号会两两相消, 获得最大衰减。
而由于声波信号会以不同的入射角 射到基本阵列装置中, 因此, 当声波信号入射基 本阵列装置的入射角 不等于 0° 同时也不等于 180° 时, 声波信号到达各传声器的距离 ^^ cos 会随声波入射角 进而形成指向性的变化。 又因 cos ≤l, 所以基本阵列装置 n
的指向性会比单只传声器的指向性变得更为尖锐。当传声器单只指向性特性不为全指向型时 (小型、 单只、 基本结构的传声器的指向性为全指向或接近全指向), 该基本阵列装置的指 向性特性, 也将相应表现为更加尖锐一些。 并且随着传声器数量的增加, 基本阵列装置在声 波入射角为 0°时,输出的信号的增益会持续增加,而基本阵列装置在声波入射角为 180° 时, 输出的信号的增益仍为最小, 即随着传声器数量的增加, 该基本阵列装置的指向性将进一步 变得尖锐。
另外, 当入射基本阵列装置的频率 / 与中心频率/。不同时, 即/≠/Q时, /和/。的比 值将影响基本阵列装置的增益及指向特性。
如图 3所示, 其是由 4个传声器组成阵列的基本阵列装置输出的频率-指向性响应示意 图, 从图 3上可看出, 该基本阵列装置在 /和 /。的比值维持在接近 1的附近时, 若该基本阵 列装置只工作在一个较窄的频段时, 如图 3所示, 在 (-1/3)〜 (+1/3)倍频程频率范围内, 该 基本阵列装置在该频带内可获得近似一致的增益及指向性特性。 同时可知, 该基本阵列装置 的指向性特性与入射传声器阵列的声波频率 / 和中心频率 /。的比值相关, 而与中心频率 /。的具体数值无关了。
由此, 按本发明设计的、 不同中心频率 /。的、 各个基本阵列装置, 均可获得接近一致 的指向性特性。
如图 4所示, 其是由 8个传声器组成阵列的基本阵列装置输出的频率-指向性响应示意 图, 同样, 由图 4中可看出, 该基本阵列装置在/和/。的比值维持在接近 1的附近时, 即,
若该基本阵列装置只工作在一个较窄的频段时, 如图 4所示, 在 (-1/3)〜 (+1/3)倍频程频率 范围内, 该基本阵列装置在该频带内可获得近似一致的增益及指向性特性。 而由图 3和图 4 相比可得, 由 8只传声器组成阵列的基本阵列装置, 其对正向声波的增益更高、 对反向声波 的衰减更深、 指向性特性更好。
因此可认定: 传声器阵列中传声器的只数大于等于 4且为偶数, 并且数量越多时, 接收 声波的指向性效果越好。
而基于单个基本阵列装置拥有的特性, 则可认定: 如由设定不同中心频率 /。的多个基 本阵列装置组成的大系统, 即本发明, 其在设定的声接收系统通频带范围内具有相似的增益 和相似的指向特性。那么则可针对通频带范围内的频率声波信号进行接收, 能提高这些频率 的正向声波激励的输出以及较大地抑制这些频率的非正向声波激励的输出, 即如本发明。
另外, 为了保证输出的声波信号能达到最大的增益, 避免各基本阵列装置输出之间的互 相干扰, 因此, 在声接收系统中, 设有与各基本阵列装置中心频率相对应的带通滤波器, 这 样才能使本发明达到最大的抗干扰的目的, 而对于多个带通滤波器, 由于它们的中心频率分 别为 、 f2、 fs…… fm, 与各基本阵列装置中心频率一一对应, 因此多个带通滤波器的输出 频率响应如图 5所示。而各个带通滤波器的通带之间相互衔接, 构成一个完整并且符合设定 的工作频率范围的通道。
而为了达到更好的声音接收效果,以及在设定的工作频率范围内能有接近一致的指向性 特性, 多个基本阵列装置的中心频率 、 fs…… 按^111倍频程间隔连续均匀设置, 其中 m是基本阵列装置的总个数, 同时, X个倍频程亦是声接收系统设定的总的频带范围。 而所 述基本阵列装置的总个数 m是按声接收系统所设定的可控指向性的总频带宽度、声接收系统 所设定的可控指向性特性、各基本阵列装置的可控指向性频带宽度、各基本阵列装置的可控 指向性特性而定。
另外, 对于声接收系统中所述基本阵列装置的总个数 m, 其也可按声接收系统所设定的 对整个频带中特殊频带的频率响应、特殊指向性要求而定(增加或减少)。 而在这种情况下,
在声接收系统的工作频率范围内, 频率响应、 指向性特性等, 将是不一样的了。 还有, 对于声接收系统中多个基本阵列装置的中心频率, 亦可按特殊需要, 从而非均匀 间隔设置。只是在这种情况下,在声接收系统的工作频率范围内,频率响应、指向性特性等, 将是不一样的了。
而由于多个基本阵列装置的中心频率 、 f2、 f3…… 按 x/m倍频程间隔连续均匀设置, 因此在同样设定的工作频率范围内增加基本阵列装置的数量,会使各基本阵列装置负责的工 作频段响应变窄。 此时, 由多个基本阵列装置的组合, 其特性变化将表现为: 设定的工作频 率范围内接收正向声波信号的灵敏度将提高, 反向的衰减将更趋于一致, 即趋近于 0, 不同 频率的指向性特性也将变得更一致; 反之, 减少基本阵列装置的数量, 会使整个设定频率范 围内灵敏度降低, 并且, 对于除正向以外的其它方向, 不同频率声波的衰减会趋于不一致, 即散差加大、 指向性特性变差。
另外, 当多个基本阵列装置的中心频率按 x/m倍频程间隔分布时 (m为基本阵列装置的 个数, X个倍频程为声接收系统设定的总的频率范围), 其中一个或几个基本阵列装置中的 传声器数量增加或减少, 那么数量增加的基本阵列装置, 其工作的频段灵敏度会更高, 指向 特性会变尖锐, 而数量减少的基本阵列装置, 其工作的频段的灵敏度会下降, 指向性特性会 变钝。 因此, 对于基本阵列装置的个数和基本阵列装置中传声器的个数, 两者需要根据实际 情况而设定, 从而满足特殊声接收系统对个别频率范围有不同响应的特殊要求。
再者, 当多个基本阵列装置的中心频率不是按 x/m倍频程间隔均匀分布时, 其中某一个 频段或某几个频段的基本阵列装置的中心频率分布间隔变大或变小。那么中心频率分布间隔 变小的工作的频段,灵敏度会提高、指向特性会变尖锐; 中心频率分布间隔变大的工作频段, 灵敏度会较低、 指向特性会变钝。 因此, 对于基本阵列装置的中心频率的分布, 根据实际需 要设定, 可满足特殊声接收系统对特殊频率范围的特殊响应的特殊要求。
而本发明较优的实施方式为- 1、 本声接收系统的各基本阵列装置的传声器阵列中传声器数量为大于等于 4且为偶数, 而
且各基本阵列装置的传声器数量一致。这样整个声接收系统在所设定的频率带宽内正向会有 一致的增益。
2、 本声接收系统的各基本阵列装置的传声器阵列中最后一只传声器均聚集在同一个物理位 置并相互靠拢。这样各基本阵列装置的传声器阵列中, 最后一只传声器所连接的延时电路的 延时时间可统一设置为 0, 即可省略一个延时电路。
3、 本声接收系统的各基本阵列装置的传声器阵列中传声器的个数均是一样, 并且多个基本 阵列装置的中心频率按 x/m倍频程间隔连续均匀设置时,所述多个带通滤波器的带宽均为同 样倍频程带宽,并且所述的多个带通滤波器的带宽覆盖声接收系统所设定的总频率带宽。即, 对于各基本阵列装置输出端所连接的带通滤波器, 均可将它们的带宽设置为同样倍频程带 宽。 这样, 在声接收系统所设定的频率带宽内, 可有一致的指向性特性。
4、 本声接收系统的各个基本阵列装置的传声器阵列中传声器的个数均是一样, 并且多个基 本阵列装置的中心频率按 x/m倍频程间隔连续均匀设置时,对于本声接收系统中各基本阵列 装置输出端所连接的, 具有与基本阵列装置相应中心频率的带通滤波器, 除低频端第一带通 滤波器和高频端最后一个带通滤波器外, 其余的带通滤波器的带宽均设置为同样倍频程带 宽。 同时, 对于所述的低频端第一带通滤波器, 将其低频截止设为通带, 即, 此时与第一基 本阵列装置输出端连接的滤波器为低通滤波器,并且该低通滤波器的高频端仍按其余带通滤 波器的高频端, 进而设置其高端截止频率。 而对于所述的高频端最后一个带通滤波器, 将其 高频截止设为通带,即,此时,与最后一个基本阵列装置输出端连接的滤波器为高通滤波器, 并且该高通滤波器的低频端, 仍按其余带通滤波器的低频端, 进而设置其低端截止频率。 这 样该声接收系统可接收到所设定的频率带宽以外的声信号, 即是扩展了工作频率带宽, 只不 过该设定的频率带宽以外部分频率范围的声信号的指向特性不能控制。
而通过上述可得, 此时本声接收系统的多个滤波器中低频端第一滤波器为低通滤波器, 高频端最后一个滤波器为高通滤波器,而其余多个滤波器均为具有与基本阵列装置相应中心 频率的带通滤波器, 并且所述其余多个带通滤波器的带宽均为同样倍频程带宽。而在这情况
下, 本声接收系统中的低通滤波器, 其余多个带通滤波器以及高通滤波器的输出频率响应如 图 6所示。
综上所述, 由于本发明在一定的频率带宽内, 能对不同的声波信号进行选择性接收, 并 且能提高正向声波激励的输出以及较大地抑制非正向声波激励的输出。因此本发明的用途广 泛, 例如: 可作为会议现场拾音 (传声), 如: 将本声接收系统悬挂在会议室中央顶部, 这 样不仅能覆盖大多数发言人, 而且在拾音(传声) 时, 无需繁杂的调控便能抑制各种声波回 授, 不易于产生啸叫, 并能隔离不需要的噪声; 作为剧场远距离拾音 (传声), 其不仅可覆 盖整个舞台, 录得所需的声波信号, 而且还可以屏蔽剧场内观众区的干扰; 也可作为超远距 离的特殊拾音 (传声)。
以上是对本发明的较佳实施进行了具体说明, 但本发明创造并不限于所述实施例, 熟悉 本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等 同的变形或替换均包含在本申请权利要求所限定的范围内。
Claims
1、 一种声接收系统, 其特征在于: 包括多个基本阵列装置、 多个滤波器以及第二混音输出 器件, 所述多个基本阵列装置的输出端分别连接一个滤波器, 多个滤波器的输出端均与第二 混音输出器件的输入端连接, 第二混音输出器件的输出端为声接收系统的输出端; 所述基本阵列装置包括传声器阵列、延时电路和第一混音输出器件, 所述传声器阵列包括多 个传声器, 所述多个传声器沿着直线依次纵向排列设置, 所述传声器阵列中相邻两个传声器 之间的间隔距离均为 1 , 其中 n为基本阵列装置中传声器的总个数, 是根据基本阵列 n 装置所设定的中心频率而得出的波长;
所述基本阵列装置中, 每个传声器的输出端分别连接一延时电路, 多个延时电路的输出端均 与第一混音输出器件的输入端连接, 所述第一混音输出器件的输出端与滤波器的输入端连 接;
所述基本阵列装置中第 i延时电路的延时时间为最后一个延时电路的延时时间加上 (n-i ) 倍的单位时间, 而所述的单位时间为: 频率为基本阵列装置所设定的中心频率的声波信号轴 向射入基本阵列装置中的传声器阵列后, 该声波信号在相邻两个传声器之间传播的时间, 其 中 n为传声器阵列中传声器的总个数, i的取值为 1、 2、 3…… n; 所述传声器阵列中传声器的总个数 n大于等于 3。
2、 根据权利要求 1所述一种声接收系统, 其特征在于: 所述的多个滤波器均为带通滤波器, 所述的带通滤波器具有与基本阵列装置相应的中心频率。
3、根据权利要求 1所述一种声接收系统, 其特征在于: 多个基本阵列装置的中心频率按 x/m 倍频程间隔连续均匀设置, 其中 m是基本阵列装置的总个数, X个倍频程亦为声接收系统设 定的总的频率范围。
4、 根据权利要求 1所述一种声接收系统, 其特征在于: 各个基本阵列装置的传声器阵列中 传声器的个数均是一样的。
5、 根据权利要求 2所述一种声接收系统, 其特征在于: 所述的多个带通滤波器的带宽均为 同样倍频程带宽, 并且所述的多个带通滤波器的带宽覆盖所设定的总频率带宽。
6、 根据权利要求 1所述一种声接收系统, 其特征在于: 所述的多个滤波器中低频端第一滤 波器为低通滤波器, 高频端最后一个滤波器为高通滤波器, 而其余多个滤波器均为具有与基 本阵列装置相应中心频率的带通滤波器,所述其余多个带通滤波器的带宽均为同样倍频程带 宽。
7、 根据权利要求 1至 6任一所述一种声接收系统, 其特征在于: 所述传声器阵列中传声器 的总个数 n大于等于 4且为偶数。
8、 根据权利要求 1所述一种声接收系统, 其特征在于: 各基本阵列装置的传声器阵列中最 后一只传声器均聚集在同一个物理位置并相互靠拢。
9、 根据权利要求 2至 6任一所述一种声接收系统, 其特征在于: 所述的基本阵列装置及带 通滤波器具有符合指向性要求的工作频率带宽。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/394,448 US9736562B2 (en) | 2012-11-08 | 2013-09-30 | Sound receiving system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210445720.X | 2012-11-08 | ||
CN201210445720.XA CN102970639B (zh) | 2012-11-08 | 2012-11-08 | 一种声接收系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014071788A1 true WO2014071788A1 (zh) | 2014-05-15 |
Family
ID=47800446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/084789 WO2014071788A1 (zh) | 2012-11-08 | 2013-09-30 | 一种声接收系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9736562B2 (zh) |
CN (1) | CN102970639B (zh) |
WO (1) | WO2014071788A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020051786A1 (en) | 2018-09-12 | 2020-03-19 | Shenzhen Voxtech Co., Ltd. | Signal processing device having multiple acoustic-electric transducers |
CN103002389B (zh) * | 2012-11-08 | 2016-01-13 | 广州市锐丰音响科技股份有限公司 | 一种声接收装置 |
CN102970639B (zh) | 2012-11-08 | 2016-01-06 | 广州市锐丰音响科技股份有限公司 | 一种声接收系统 |
CN103648065A (zh) * | 2013-12-20 | 2014-03-19 | 深圳市中兴移动通信有限公司 | 音频播放装置和移动终端 |
KR101656368B1 (ko) * | 2015-11-05 | 2016-09-09 | 영남대학교 산학협력단 | 장거리 초음파 검사에서 송수신 지향성 개선을 위한 방법 및 장치 |
JP6918602B2 (ja) * | 2017-06-27 | 2021-08-11 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 集音装置 |
US11565365B2 (en) * | 2017-11-13 | 2023-01-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for monitoring chemical mechanical polishing |
CN111145793B (zh) * | 2018-11-02 | 2022-04-26 | 北京微播视界科技有限公司 | 音频处理方法和装置 |
CN109743659A (zh) * | 2019-03-14 | 2019-05-10 | 宁波慧声信息技术研究院有限公司 | 一种语音传声器阵列及其控制方法 |
CN110797040A (zh) * | 2019-10-28 | 2020-02-14 | 星络智能科技有限公司 | 一种噪声消除方法、智能音箱及存储介质 |
CN112735455B (zh) * | 2019-10-28 | 2024-08-27 | 阿里巴巴集团控股有限公司 | 声音信息的处理方法和装置 |
CN114623984A (zh) * | 2022-05-16 | 2022-06-14 | 之江实验室 | 一种基于异构麦克风阵列的声学成像仪 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040175006A1 (en) * | 2003-03-06 | 2004-09-09 | Samsung Electronics Co., Ltd. | Microphone array, method and apparatus for forming constant directivity beams using the same, and method and apparatus for estimating acoustic source direction using the same |
JP2007006353A (ja) * | 2005-06-27 | 2007-01-11 | Doshisha | マイクロフォンアレイ |
GB2438259A (en) * | 2006-05-15 | 2007-11-21 | Roke Manor Research | Audio recording system utilising a logarithmic spiral array |
CN101447190A (zh) * | 2008-06-25 | 2009-06-03 | 北京大学深圳研究生院 | 基于嵌套子阵列的后置滤波与谱减法联合语音增强方法 |
CN102761805A (zh) * | 2012-02-14 | 2012-10-31 | 广州励丰文化科技股份有限公司 | 一种强指向性话筒 |
CN102970639A (zh) * | 2012-11-08 | 2013-03-13 | 广州市锐丰音响科技股份有限公司 | 一种声接收系统 |
CN202940957U (zh) * | 2012-11-08 | 2013-05-15 | 广州市锐丰音响科技股份有限公司 | 一种声接收系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4649392A (en) * | 1983-01-24 | 1987-03-10 | Sanders Associates, Inc. | Two dimensional transform utilizing ultrasonic dispersive delay line |
KR0180057B1 (ko) * | 1996-07-08 | 1999-04-01 | 이민화 | 초음파시스템의 3차원 영상 획득장치 |
US6678210B2 (en) * | 2001-08-28 | 2004-01-13 | Rowe-Deines Instruments, Inc. | Frequency division beamforming for sonar arrays |
CN100571451C (zh) * | 2004-01-19 | 2009-12-16 | 宏碁股份有限公司 | 结合定位技术的麦克风阵列收音方法及其系统 |
US9264813B2 (en) * | 2010-03-04 | 2016-02-16 | Logitech, Europe S.A. | Virtual surround for loudspeakers with increased constant directivity |
-
2012
- 2012-11-08 CN CN201210445720.XA patent/CN102970639B/zh active Active
-
2013
- 2013-09-30 US US14/394,448 patent/US9736562B2/en active Active
- 2013-09-30 WO PCT/CN2013/084789 patent/WO2014071788A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040175006A1 (en) * | 2003-03-06 | 2004-09-09 | Samsung Electronics Co., Ltd. | Microphone array, method and apparatus for forming constant directivity beams using the same, and method and apparatus for estimating acoustic source direction using the same |
JP2007006353A (ja) * | 2005-06-27 | 2007-01-11 | Doshisha | マイクロフォンアレイ |
GB2438259A (en) * | 2006-05-15 | 2007-11-21 | Roke Manor Research | Audio recording system utilising a logarithmic spiral array |
CN101447190A (zh) * | 2008-06-25 | 2009-06-03 | 北京大学深圳研究生院 | 基于嵌套子阵列的后置滤波与谱减法联合语音增强方法 |
CN102761805A (zh) * | 2012-02-14 | 2012-10-31 | 广州励丰文化科技股份有限公司 | 一种强指向性话筒 |
CN102970639A (zh) * | 2012-11-08 | 2013-03-13 | 广州市锐丰音响科技股份有限公司 | 一种声接收系统 |
CN202940957U (zh) * | 2012-11-08 | 2013-05-15 | 广州市锐丰音响科技股份有限公司 | 一种声接收系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102970639A (zh) | 2013-03-13 |
US20150063591A1 (en) | 2015-03-05 |
US9736562B2 (en) | 2017-08-15 |
CN102970639B (zh) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014071788A1 (zh) | 一种声接收系统 | |
CN112335261B (zh) | 图案形成麦克风阵列 | |
US9820036B1 (en) | Speech processing of reflected sound | |
US7889873B2 (en) | Microphone aperture | |
Guicking et al. | Active impedance control for one-dimensional sound | |
US9826307B2 (en) | Microphone array including at least three microphone units | |
WO2014086157A1 (zh) | 麦克风阵列采集多声道声音的装置及其方法 | |
US8300839B2 (en) | Sound emission and collection apparatus and control method of sound emission and collection apparatus | |
WO2007138878A1 (ja) | 音声会議装置 | |
CN102177731B (zh) | 音频设备 | |
Schellekens et al. | Time domain acoustic contrast control implementation of sound zones for low-frequency input signals | |
WO2014071789A1 (zh) | 一种声接收装置 | |
CN202940957U (zh) | 一种声接收系统 | |
JP2012088734A (ja) | 騒音低減装置 | |
CN202738087U (zh) | 一种强指向性话筒 | |
TW202110205A (zh) | 麥克風裝置、電子裝置及其音訊信號處理方法 | |
CN102761806B (zh) | 多频段指向性话筒阵列 | |
JPH02222400A (ja) | マイクロホン装置 | |
JP5331553B2 (ja) | マルチチャンネル音響におけるインパルス応答測定システム、残響音生成装置、及び残響音生成システム | |
US8565454B2 (en) | Directing sound field of actuator | |
CN202949553U (zh) | 一种声接收装置 | |
JP5166296B2 (ja) | 音響再生装置 | |
CN202738082U (zh) | 宽频段强指向性话筒阵列 | |
TWI249361B (en) | Cross-talk Cancellation System of multiple sound channels | |
EP3406086B1 (en) | Method and apparatus for playing audio by means of planar acoustic transducers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13853004 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14394448 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13853004 Country of ref document: EP Kind code of ref document: A1 |