WO2014071657A1 - 姿态感知设备输出控制方法及装置、显示控制方法及系统 - Google Patents

姿态感知设备输出控制方法及装置、显示控制方法及系统 Download PDF

Info

Publication number
WO2014071657A1
WO2014071657A1 PCT/CN2012/084947 CN2012084947W WO2014071657A1 WO 2014071657 A1 WO2014071657 A1 WO 2014071657A1 CN 2012084947 W CN2012084947 W CN 2012084947W WO 2014071657 A1 WO2014071657 A1 WO 2014071657A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement change
change amount
amount
sensing device
processing
Prior art date
Application number
PCT/CN2012/084947
Other languages
English (en)
French (fr)
Inventor
龙涛
刘正东
龙江
乔磊
严松
Original Assignee
江苏惠通集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏惠通集团有限责任公司 filed Critical 江苏惠通集团有限责任公司
Publication of WO2014071657A1 publication Critical patent/WO2014071657A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1637Sensing arrangement for detection of housing movement or orientation, e.g. for controlling scrolling or cursor movement on the display of an handheld computer

Definitions

  • Attitude sensing device output control method and device, profit control method and system The present application claims to be submitted to the Chinese Patent Office on November 09, 2, 2009, and the application number is 201210447227.
  • the invention name is "the attitude sensing device output control method and The priority of the Chinese patent application of the device, the display control method and the system, the entire contents of which are incorporated herein by reference.
  • the present invention relates to an attitude sensing device and an application field thereof, and particularly to an output control method and device for an attitude sensing device, and a display control method and system for a motion track
  • the space mouse is an input device that operates the screen cursor (ie, the mouse pointer) like a traditional mouse, but does not need to rely on any platform, that is, through the air sway, the mouse pointer can be directly controlled according to its motion posture.
  • the perception of the motion posture is generally set in the attitude sensing device (space mouse), and the inertial device measurement technology is used to track the attitude of the motion carrier.
  • the inertial device generally includes a gyro sensor (hereinafter referred to as a gyroscope) and an acceleration sensor (hereinafter Referred to as the accelerometer)
  • a gyro sensor hereinafter referred to as a gyroscope
  • an acceleration sensor hereinafter Referred to as the accelerometer
  • the basic principle of the gyroscope is to use the high-angle rotation of the object, the powerful angular momentum to make the 4-rotor axis consistently point to one direction, and the directional instrument is manufactured.
  • the acceleration sensor obtains the motion trajectory by real-time acquisition of the acceleration signal of the moving object through the second-order integration.
  • the self-ghost acceleration of the front device can be obtained by analyzing the gravity acceleration of the sensor component itself.
  • the method includes: obtaining an angular velocity measurement of the sensitive axis of the gyroscope and adding The measured value of the tilt angle of the sensitive axis of the speed sensor, the sensitive axis of the acceleration sensor corresponds to the sensitive axis of the gyroscope; the observation equation is established to obtain the angular velocity observation of the sensitive axis of the gyroscope and the tilt of the sensitive axis of the acceleration sensor An angular observation value; converting an angular velocity observation value of the sensitive axis of the gyroscope into a rotation angle of a sensitive axis of the gyroscope, and converting an observation angle of the inclination angle of
  • the simulation path (ie, the motion trajectory) finally displayed by the device is determined by the attitude sensing device for the actual motion ⁇ , the positioning point formed by the line recognition, taking the space mouse as an example, the speed of the handheld space mouse is fast.
  • the output motion trajectory is more accurate > smooth; but for low-speed motion and high-speed motion operation, the following problems exist: For low-speed motion, it is often the user holding the space mouse into the line When the motion is positioned, the motion step size is generally large (the larger step size is for the positioning requirement, and the actual difference is small compared with the step size for the medium speed motion), and it is difficult to satisfy the mouse during the low speed motion.
  • the pointer moves accurately to the target point (ie, locates); for high-speed motion, when the user holds the space mouse for large-scale motion, the purpose is generally to restore the mouse's activity, and the large-scale motion makes the mouse pointer greatly deviate from the original positioning. Point Chart All of the above problems make the positioning of the motion track output by the prior art space mouse insufficient. Indeed, the smoothness and inferior tracks. Meaning "SUMMARY OF THE INVENTION
  • the technical solution of the present invention provides an output control method for an attitude sensing device, wherein the attitude sensing device includes an inertial device that senses a motion posture, and the output control method includes: acquiring a displacement change of the motion using an inertial device Volume and speed of movement;
  • the moving speed is less than the first threshold, performing a first process of changing the displacement change amount to reduce the length of the motion trajectory formed based on the displacement change amount, and outputting the displacement change amount after the first processing;
  • the moving speed is greater than the second threshold, performing a second process of changing the displacement change amount to reduce the amplitude of the motion trajectory formed based on the displacement change amount, and outputting the displacement change amount after the second processing
  • the second threshold is greater than the first threshold; otherwise, the output displacement amount obtained by directly outputting is optional
  • the inertial device includes at least one of a gyroscope and an acceleration only
  • the first processing includes: when the displacement When the amount of change is less than the agreed value, the displacement change amount is integrated, and the displacement change amount after the integral processing is output according to a preset first ratio; otherwise, the displacement change amount is differentially processed, and the differential processing is performed.
  • the displacement change amount is outputted according to a preset second ratio, and the agreed value is a value that is selected according to the relative value determined by the device output control, and the acquired displacement change amount is (Ar, Ay), wherein The amount of change in the lateral displacement is , ⁇ , and the amount of change in displacement after the first treatment ( ⁇ is:
  • the first ratio and the second ratio of the neck are respectively selected as the agreed value, and the agreed value may be ⁇ , and the preset first ratio and the second ratio are Can be 2 ⁇ ,
  • is a natural number greater than 1
  • the preset first ratio and the second ratio are in the range of 32 to 256
  • the agreed value is 2 ⁇ , which is a natural number greater than 1.
  • the preset first ratio and the second ratio are both less than ⁇ ⁇ selectable
  • the second processing includes: integrating the displacement change amount, and changing the displacement change amount according to a preset deflection amount After the differential processing, the multiplication of the displacement change amount after the integration processing and the displacement change amount after the differential processing is used as the output displacement change amount,
  • the displacement change amount of the capture is ( ⁇ , ), wherein the lateral displacement change amount is ⁇ , and the longitudinal displacement change amount is, the displacement change amount ( ⁇ ⁇ , ') after the second treatment is :
  • the technical solution of the present invention further provides a display control method for the motion track, including: An output control method is provided on the screen to display the motion trajectory of the gesture-aware device on the screen.
  • the technical solution of the present invention further provides an output control device for the gesture-aware device, the attitude-aware device
  • An inertial device that senses a motion posture, and: an acquisition unit, configured to acquire a displacement change amount and a motion speed of the motion from the inertial device; and a first processing unit, configured to change when the motion speed is less than a first threshold
  • the displacement change amount is a first process of reducing a length of a motion trajectory formed based on the displacement change amount, and outputting a displacement change amount after the first process
  • a second processing unit configured to: when the motion speed is greater than a threshold value for changing the displacement change amount so as to be based on the motion trajectory formed by the displacement change amount Diminishing the second processing, and outputting the second processed threshold change amount, wherein the second threshold is greater than the first threshold; the output end is configured to output the displacement change amount after the first processing or the second processing, or Directly output the amount of unprocessed displacement change.
  • the technical solution of the present invention further provides a display control system for a motion track, comprising: an output control device of any one of the above-described attitude sensing devices; and display control means for outputting based on the output control device
  • the amount of displacement change displays the motion trajectory of the gesture-aware device on the screen.
  • the above technical solution has at least the following beneficial effects: For the low-speed motion of the attitude-aware device, the user's demand for accurate movement of the handheld device is satisfied by reducing the length of the output motion trajectory (time step); for the high-speed motion of the attitude-aware device, by reducing the amplitude of the output motion trajectory (including Length and angle), so that when the user resumes mouse activity, it will not deviate from the original positioning point (the starting point of re-activity), greatly reduce the movement of the hair, improve the accuracy of the device positioning; improve the movement of the attitude-aware device as a whole
  • the smoothness especially for the start of the device (high speed motion) and the smoothness of the trajectory at pause (low speed motion).
  • FIG. 1 is a flowchart of an output control method of an attitude sensing device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a display control method for a motion track according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a display control system for a motion trajectory of the present invention
  • FIG. 4 is a schematic diagram of a display control system for a motion trajectory of the present invention
  • the present application may also be practiced in distributed computing environments, in a distributed computing environment
  • the connected remote processing device performs the task.
  • the program modules can be located in local and remote computer storage media, including storage devices, as shown in Figure 1.
  • the displacement variation and the motion velocity of the J t motion are obtained by using the inertial device; the inertial device is a gyroscope and an acceleration instrument, and only one of them may be selected; when the accelerometer device and acquires the common parameters, is obtained by fusion of acquiring angular velocity values and the measured values of the accelerometer measuring acceleration gyro proposed, particularly visible cited Patent Document background section of the present application, not further described herein to improve ⁇
  • the acquisition motion is set.
  • the displacement change amount is ( ⁇ >,), wherein the lateral displacement change amount is, the longitudinal displacement change amount is step S21: determining whether the acquired motion speed is less than the first threshold, if yes, step S311 is performed, otherwise step S22 is performed: Determining whether the acquired motion speed is greater than the second threshold, if yes, performing steps S321 and S322, otherwise executing Step S4; Step S2] and S22 are to first compare the motion speed with the first threshold, and then compare the motion speed with the second threshold. In other embodiments, the motion speed and the second threshold may be compared first, and then the motion speed and the first threshold are compared.
  • a threshold determining step S21., S22 is used to classify the captured moving speed by three preset ranges: setting the first threshold to the second threshold, 0 ⁇ s s being the low speed segment, s ; ⁇ s 2 is a medium speed, high speed above paragraph (obviously, there are different according to different treatment ⁇ velocity range which:: 3 and 8 3 ⁇ 4 and; can be scalar angular velocity may be a scalar linear velocity.
  • the first threshold and the second alarm value may be set according to actual application requirements.
  • the first threshold value and the second threshold value are relative measurement values of the motion speed, and may be measured by the linear velocity of the accelerometer, the angular velocity of the gyroscope, or may be used.
  • the measurement of the speed of the two speeds is as follows: the first threshold is 100 ra/s and the second threshold is 300 m/s.
  • the result of S21 is YES, that is, the moving speed is less than the first threshold.
  • motion The speed is in the low speed section, and the first processing of changing the displacement change amount (AJCAF) is performed, so that the length of the motion trajectory formed based on the displacement variation amount is reduced, that is, the time step of reducing the motion trajectory is reduced, and the output is processed after the first processing.
  • AJCAF displacement change amount
  • the first processing includes: Step S3.11; determining whether the displacement change amount is less than the agreed value, and in the embodiment, the determined value is 1; where is determined according to the device output control.
  • the relative value can be changed according to the value set in the specific device.
  • steps S31.2 and S31.4 are performed on the amount of change in the lateral displacement; otherwise, steps S313 and S315 are performed on the amount of change in the lateral displacement; the processing method of the longitudinal displacement change amount and the lateral displacement change
  • the processing of the quantity is the same as the step S312: when the judgment result of the step S3U is YES, that is, when the displacement change amount is less than i, the displacement change amount is integrated; step S314: the displacement change amount after the integral processing is preset by the first Proportional output step S313: When it is determined in step S311 that the crucible is no, that is, the displacement change amount is less than i, the displacement change amount is differentiated; step S315: the differential displacement after the differential processing is output according to a preset second ratiosley In a specific implementation, the displacement change amount ( ⁇ ', 4'') after the first processing can be obtained by the following formula:
  • the agreed value T can also be taken as 2 N (N is a natural number greater than ⁇ ), and the range of the preset ratio ⁇ is If it is less than L, for example, the agreed value T can be selected as 64. In this case, the range can be taken as
  • the second processing of changing the displacement change amount is performed, so that the amplitude of the motion trajectory formed based on the displacement variation amount is reduced, and the output is subjected to the second processing.
  • the motion velocity is greater than the ⁇ 2 threshold ⁇ that is, the motion velocity is in the high speed segment, and the trajectory of the idling segment often has a large amplitude, in order to achieve accurate positioning.
  • the above range needs to be reduced in the output motion trajectory, so the reduction of the amplitude includes the reduction of the angle of the motion trajectory and the reduction of the length.
  • the second processing includes: Step S321: Integrating the displacement change amount ( ⁇ , ⁇ ) to obtain ('Step S322: shifting the displacement change amount ( ⁇ ⁇ ) by a preset deflection amount ( ⁇ ) , ⁇ ; Step S323 : Differential processing of the amount of displacement change through translation
  • Step S324 The amount of displacement change after the integration of 321S321 (Ax, ⁇ and the step
  • the displacement change amount ( ⁇ ' ⁇ ') after the second processing can be obtained by the following formula:
  • the range of the preset deflection amount is the step S4: the amount of change in the displacement of the displacement, wherein: when the step S21 is judged to be no and the judgment of the S22 is also No, directly output the amount of displacement change ('); when the range of motion speed is in S, that is, the medium speed section, because the motion trajectory in the middle speed section has higher accuracy and smoothness, no motion trajectory is needed.
  • the parameters can be changed directly to output
  • step S311 When the result of the determination in step 21 is YES and the result of the determination in step S311 is YES, the result of the processing of the displacement change amount of step S314 is output in step S4.
  • the result of the determination in step 21 is YES and the result of the determination in step S311 is NO.
  • the amount of displacement of the processing result of step S315 to step S4 output::
  • step S4 A display control method for a motion trajectory as shown in FIG. 2 can be applied to a system including an attitude sensing device and an output display device thereof, including: an output control method of the attitude sensing device shown in FIG. 1; Step S5: based on The displacement change amount of the S4 output displays the motion trajectory of the attitude sensing device on the screen of the display device.
  • step S5 specifically, since the motion track of the device is a line that passes from the start position to the end position, taking the space mouse as an example, the pointer track displayed by the handheld mouse on the screen is the hand of the human body from the beginning.
  • the route passing through the position to the end position constitutes the spatial feature of the action, and the trajectory is represented by the direction, the form, and the amplitude; wherein the amplitude of the trajectory is represented by the length and the angle of the human body due to the space between the mouse and the display device
  • the information transmission of the spatial feature data is performed by wireless communication, and the pointer trajectory formed on the screen (ie, the reflection of the spatial mouse motion trajectory) is a display of the motion trajectory shown in FIG. 2 composed of a series of instantaneously transmitted positioning points.
  • the control method is formed based on the output control method of the attitude sensing device, for example:
  • the above-mentioned positioning point (the previous time positioning point and its previous positioning point constitute a predetermined moving track i) and the next time positioning point are taken as an example, that is, the display control method of the above-mentioned motion trajectory is displayed.
  • One-time positioning point When the sensing device acquires the moving speed of the handheld device (space mouse) at the next moment, it is first determined whether the moving speed of the moment is less than the first idle value: When the judgment result is yes, it indicates that the moving speed is In the low speed section, at this time, it is necessary to reduce the length of the motion track for the motion track after the pointer track-time (the handheld device has continuity due to human motion, and when it is judged that the motion speed is in the low speed segment at this moment, it will continue to be in the low speed segment thereafter) ), for the anchor point of the moment: the lateral displacement change amount and the longitudinal displacement change amount are reduced and outputted for the displacement change amount obtained, but the known angle of the anchor point is unchanged output; in other words, the actual The amount of change in displacement of the upper anchor point (substantially vector) includes the length information and angle of the change of the motion trajectory at this time.
  • the output control by the output control, the length information of the displacement change amount at this time is changed; after the display device receives the displacement change amount information of the point, the display point is displayed on the screen according to the above information; when the judgment result is no, the further judgment is made.
  • the processing includes processing the length and the angle of the motion track; changing the length information and the angle information of the displacement change amount at the time by the output control; after receiving the displacement change amount information of the point, the display device displays the positioning point on the screen according to the above information.
  • An output control device of an attitude sensing device (corresponding to the above output control method) as shown in i3 ⁇ 4 3 is a space mouse in this embodiment, including an inertial device for sensing a motion posture. 01.
  • the acquiring unit 102 is configured to obtain the displacement change amount and the motion speed of the motion from the inertial device 10;
  • the determining unit 03 includes a first determining module 131 and a second determining module 132, and the first determining module 131 is configured to determine Whether the obtained motion speed is less than the first threshold, the second determining module 132 is configured to determine whether the acquired motion speed is greater than the first threshold.
  • the first processing unit 104 is configured to change when the output of the first determining module 13 is YES.
  • the displacement change amount is a first process of reducing the length of the motion trajectory formed based on the displacement change amount, and outputting the displacement change amount after the first process;
  • the first processing unit 104 further includes: a determining unit 144, configured to determine whether the displacement change amount is less than an agreed value,
  • the first integration unit 141 is configured to perform an integration process on the displacement change amount when the output of the determination unit 44 is YES; the first differentiation unit 142 is configured to change the displacement when the output of the determination unit 144 is NO.
  • the predetermined value is a relative value determined according to the device output control; the first proportional unit 143 is configured to output the displacement change processed by the first integrating unit 141 by a preset first ratio.
  • the second proportional unit 45 is configured to output the displacement change amount processed by the first differential unit 42 to the first proportional unit 143 or the second proportional unit 145 according to a preset ratio, that is, after the first processing The amount of displacement change (output by the first processing unit 104).
  • the second processing unit 105 is configured to: when the output of the second determining module D2 is YES, perform a second process of changing the displacement change amount to reduce the amplitude of the motion trajectory formed based on the displacement change amount, and outputting the second process after the second process The amount of displacement change;
  • the second processing unit 105 further includes:
  • a second integration unit 151 configured to perform an integration process on the displacement change amount output by the acquisition unit 102;
  • the displacement adjusting unit 152 is configured to change the displacement change amount output by the acquiring unit 102 according to the preset deflection amount;
  • the second differential unit ⁇ 53 is used for differentiating the displacement change amount output by the displacement adjusting unit 152;
  • the multiplier 154 a displacement change amount and a second differential unit used for outputting the second integrating unit 15
  • the amount of displacement change outputted by 153 is multiplied and outputted by the multiplier 154 is the amount of displacement change after the second processing (output from the second processing unit 105).
  • the output terminal 106 is used for outputting through the first processing unit! 04 or the displacement change amount of the second processing unit 105, or when the outputs of the first judging module 311 and the second judging module 132 are both, the direct output does not pass through the first processing unit 104 and the second processing unit ⁇ 05
  • the amount of displacement change of the processing, the output of the output 106 is the displacement variation of the final output of the space mouse of the embodiment.
  • the technical solution of the present invention further provides a display control system for a motion track (a display control method corresponding to the above motion track), which can be applied to a computer system, and includes: an output control device and a display control device of the attitude sensing device. As shown in FIG.
  • the output control device of the gesture sensing device is disposed in the space mouse
  • the display control device is disposed in the host
  • the space mouse communicates with the host
  • the display control device of the host 202 is based on the space mouse 201.
  • the output control device (refer to FIG. 3 for specific structure) outputs the displacement change amount of the mouse pointer on the host display screen.
  • the pointer movement track displayed on the display screen of the space mouse after communicating with the host in this embodiment is as shown in FIG. 5 ( b)
  • L3 ⁇ 4 5 ( a ) is the pointer motion trajectory displayed on the display screen of the prior art space mouse. From the Start point to the End point is a trajectory of the mouse pointer.
  • the Start point due to the presence of the mouse
  • the screen saver changes the mouse device (such as converting from an optical mouse to a space mouse)
  • the Start point starts as a stagnation point, and the user needs to move the space mouse at high speed to resume the mouse operation, that is, the A segment is a high speed segment
  • the output control of the high-speed segment in the above scheme reduces the amplitude of the motion trajectory, which is different from that of Figure 5 (a) Burrs into huge, FIG. 5 (b) were reduced due to the amplitude of the high range output trajectory, so that the path deviation is greatly reduced, chopsticks significantly reduced hair stripping, high speed stage, improving the smoothness of the trajectory.
  • the trajectory B from the Start point to the End point is a medium speed end, and can be directly output because the motion trajectory is relatively in conformity with the demand (Fig. 5(a) and (b) in the B segment.
  • the end point is a final positioning point. Since the user holds the space mouse, the speed of the operation is significantly slowed down when approaching the point, and the C segment is a low speed segment. From the C segment of Figure 5 (a), the user Due to the accumulation deviation of the space mouse, the positioning will have a certain deviation after slowing down the speed at point C. Through the output control of the low speed section in the above scheme, the length of the motion trajectory is reduced, the deviation can be significantly reduced, and the motion trajectory is further improved. Smoothness.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及一种姿态感知设备的输出控制方法及装置、显示控制方法及系统。所述姿态感知设备的输出控制方法包括:使用惯性器件获取运动的位移变化量以及运动速度;当所述运动速度小于第一阈值,则作改变所述位移变化量之第一处理,使基于位移变化量所形成的运动轨迹的长度缩小,输出经第一处理后的位移变化量;当所述运动速度大于第二阈值,则作改变所述位移变化量之第二处理,以使基于位移变化量所形成的运动轨迹的幅度缩小,输出经第二处理后的位移变化量,所述第二阈值大于第一阈值;否则直接输出获取的位移变化量。本发明能够提升姿态感知设备输出运动轨迹的准确度及平滑度。

Description

姿态感知设备输出控制方法及装置、 盈示控制方法及系统 本申请要求于 20:! 2 年 11 月 09 日提交中国专利局、 申请号为 201210447227. K 发明名称为"姿态感知设备输出控制方法及装置、 显示控制 方法及系统"的中国专利申请的优先权,其全部内容通过引用结合在本申请中 技术领域
本发明涉及姿态感知设备及其应用领域,特别涉及一种姿态感知设备的输 出控制方法及装置, 运动轨迹的显示控制方法及系统
背景技术
传统计算机鼠标指针的控制过程大多数都依靠光学传感器或激光传感器 来实现, 这些传感器都基于物理光学原理, 均需依附桌面等平台进行搡作 ¾ 但 是在很多场合, 例如在计算机多媒体教学中, 用户想在空中搡控鼠标指针或是 通过在空中操控鼠标指针来实现多媒体电視 4 放、 网页浏览等应用,使用上迷 传感器实现控制的鼠标无法满足上述要求, 于是空间鼠标应运而生。 空间鼠标是一种输入设备,像传统鼠标一样操作屏幕光标(即鼠标指针), 但却不需要依酎任何平台,即通过空中晃动就能直接根据其运动姿态实现对鼠 标指针的控制 要实现空中运动姿态的感知,一般在姿态感知设备(空间鼠标) 中设置惯性器件, 利用惯性器件测量技术实现对运动载体姿态的跟踪 上述惯 性器件一般包括陀螺仪传感器 (以下简称陀螺仪)以及加速度传感器 (以下简 称加速度仪) 其中, 陀螺仪基本原理是运用物体高速旋转时, 强大的角动量 使 4 转轴一直稳定指向一个方向的性质, 所制造出来的定向仪器。 当运动方向 与转轴指向不一致时, 会产生相应的偏角, 再根椐偏角与运动的关系, 得到目 前运动物体的运动轨迹和位置, 从 实现定位的功能:, 而加速度传感器技术是 惯性与力的检测综合体, 目前在汽车电子和消费电子领域有较多的应用。加速 度传感器通过实时采集运动物体加速度信号 通过二阶积分的方式得到运动的 轨迹实现定位 另外, 在器件处于相对稳定的状态下, 可以通过分析传感器件 自身重力加速度, 得到 前器件的自身姿态 公开号为 CN 102289306的中国专利申请文本于 201 ί年】 2月; 21日公开了一 种姿态感知设备及其定位 >鼠标指针的控制方法和装置,公开了下述技术方案: 所述姿态感知设备的定位方法包括:获取陀螺仪的敏感轴的角速度测量值和加 速度传感器的敏感轴的倾斜角测量值,,所迷加速度传感器的敏感轴对应所迷陀 螺仪的敏感轴;建立观测方程以获取陀螺仪的敏感轴的角速度观测值和加速度 传感器的敏感轴的倾斜角观测值;将所述陀螺仪的敏感轴的角速度观测值转换 成陀螺仪的敏感轴的旋转角,将所述加速度传感器的敏感轴的倾斜角观测值转 换成加速度传感器的敏感轴的偏转角; 对所迷旋转角和所述偏转角进行融合, 得到姿态感知设备的姿态角; 通过姿态角的定位得到并输出位移变化量
但是, 由于设备最终显示的模拟路径 (即运动轨迹)是由姿态感知设备对 实际运动迸,行识别所形成的定位点决定的, 以空间鼠标为例,手持空间鼠标进 行搡作的速度有快慢之.别: 对于中速.运动的搡作, 输出的运动轨迹较为准确 > 平滑; 但对于低速运动及高速运动的操作, 则存在以下问题: 对于低速运动,往往是用户手持空间鼠标进 -行运动定位之时, 由于运动步 长一般较大(这里的较大步长是针对于定位需求而言,和进行中速运动时的步 长相比, 实际差别不大), 难以满足低速运动时鼠标指针对于目标点的准确移 动(即定位); 对于高速运动,往往是用户手持空间鼠标进行大幅度运动之时, 其目的一般是恢复鼠标的活动,大幅度运动却使得鼠标指针大大偏离原先的定 位点„ 上述问题均使现有技术的空间鼠标所输出的运动轨迹定位不够准确,且轨 迹平滑度不如人.意》 发明内容
本发明技术方案要解决的问題是如何提升现有技术空间鼠标输出运动轨 迹的定位准确度及平滑度。 为解决上述技术问题 本发明技术方案提供一种姿态感知设备的输出控制 方法, 所述的姿态感知设备包括对运动姿态进行感知的惯性器件, 该输出控制 方法包括: 使用惯性器件获取运动的位移变化量以及运动速度;
当所述运动速度小于第一阈值, 则作改变所述位移变化量之第一处理, 以 使基于位移变化量所形成的运动轨迹的长度縮小,输出经第一处理后的位移变 化量; 当所述运动速度大于第二阈值, 则作改变所述位移变化量之第二处理, 以 使基于位移变化量所形成的运动轨迹的幅度缩小,输出经第二处理后的位移变 化量 所述第二阈值大于第一阈值; 否则直接输出获取的位移变化量 可选的, 所述惯性器件包括陀螺仪和加速度仅中的至少一种 可选的, 所述第一处理包括: 当所述位移变化量小于约定值时, 对所述位 移变化量作积分处理, 将经积分处理后的位移变化量按预设的第一比例输出; 否则对所述位移变化量作微分处理,将经微分处理后的位移变化量按預设的第 二比例输出, 所述的约定.值为一根据设备输出控制所确定的相对值 可选 -的, 设获取的位移变化量为(Ar,Ay) , 其中, 横向位移变化量为 , 纵 向位移变化量为 άγ , 则经所述第一处理后的位移变化量 (Δ^ 为:
~Χ( Αχ≥Ύ)
Ax" "
~-~-{Δ)·' > T)
4 '― -
其中, 分别为所述颈设的第一比例及第二比例 > Τ为所述的约定值 可选的,所述的约定值可为 ί,所述预设的第一比例及第二比倒均可为 2Ν
Ν为大于 1的自然数 可选的, 所述预设的第一比例及第二比例的取值范围为 32〜256 可选的, 所述的约定值为 2Ν, 为大于 1 的自然数; 所述预设的第一比 例及第二比例均小于 ΐ β 可选的, 所述的第二处理包括: 对所述位移变化量作积分处理, 对所述位 移变化量按预设偏转量改变后再经微分处理,将所述积分处理后的位移变化量 及微分处理后的位移变化量的乘枳作为输出的位移变化量 ,) 可选的, 设荻取的位移变化量为(Δχ, ), 其中 横向位移变化量为 Λϊ , 纵 向位移变化量为 , 则经所述第二处理后的位移变化量 (Δ Ά,')为:
Αχ + Ρ
Figure imgf000006_0001
其中, Ρ为所述预设偏转量。 可选的, 所述预设偏转量的馭值范围为 1〜】0 为解决上述技术问題,本发明技术方案还提供一种运动轨迹的显示控制方 法, 包括: 上述任一种姿态感知设备的输出控制方法; 基于所输出的位移变化 量在屏幕上显示所述姿态感知设备的运动轨迹 为解决上述技术问題,本发明技术方案还提供一种姿态感知设备的输出控 制装置, 所述姿态感知设备包括对运动姿态进行感知的惯性器件, 以及: 获取单元, 用于从上述惯性器件获取运动的位移变化量以及运动速度; 第一处理单元, 用于当所述运动速度小于第一阈值,作改变所述位移变化 量以使基于位移变化量所形成的运动轨迹的长度缩小之第一处理,并输出经第 一处理后的位移变化量; 第二处理单元, 用于当所述运动速度大于第二阈值,作改变所述位移变化 量以使基于位移变化量所形成的运动轨迹的幅度缩小之第二处理,并输出经第 二处理后的位移变化量, 所述第二阈值大于第一阈值; 输出端 用于输出经第一处理或第二处理后的位移变化量, 或者, 直接输 出未经处理的位移变化量。 为解决上述技术问题,本发明技术方案还提供一种运动轨迹的显示控制系 统, 包括: 上述任一种姿态感知设备的输出控制装置; 以及, 显示控制装置, 用于基于所述输出控制装置输出的位移变化量在屏幕上显示所述姿态感知设 备的运动轨迹。 上迷技术方案至少具有如下有益效果为: 对于姿态感知设备的低速运动,通过减小输出运动轨迹的长度(时间步长) 满足了用户对于手持设备准确移动的需求; 对于姿态感知设备的高速运动, 通过减小输出运动轨迹的幅度(包括长度 及角度), 使用户恢复鼠标活动时不至于偏离原定位点(再次活动的起点), 大 大减小运动毛剌, 提髙设备定位的准确度; 从整体上完善了姿态感知设备的运动轨迹的平滑度,特別是对设备的启动 (高速运动)及停顿(低速运动) 时的轨迹平滑度作了优化。
附國说明 图 1为本发明实施例的一种姿态感知设备的输出控制方法的流程图; 图 2为本发明实施例的一种运动轨迹的显示控制方法的流程图; 图 3为本发明实施例的一种姿态感知设备的输出控制装置的结构示意图; 图 4为本发明实拖例的一种运动轨迹的显示控制系统的结构示意图; i 5 为现有技术空间鼠标与主机通信后在其显示屏上显示的指针运动轨 迹与本申请实施例空间鼠标与主机,通信后在其显示屏上显示的指针运动轨迹. 的对比示意图。
具体实施方式
下面结合附图详细介绍本申请的具体实施方式„ 需要 ΐ)ί明的是, 本申谛可 用于众多通用或专用的计算装置环境或配置中 例如: 个人计算^^服务器计 算机、 手持设备或便携式设备、 平板型设备 多处理器装置、 包括以上任何装 置或设备的分布式计算环境等等。 本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例 如程序模块 一般地,,程序模块包括执行特定任务或实现特定抽象数据类型的 例程、 程序、 对象 > 組件、 数据结构等等。 也可以在分布式计算环境中实践本 申请, 在这些分布式计算环境中, 由通过通信网絡而被连接的远程处理设备来 执行任务。在分布式计算环境中, 程序模块可以位于包括存储设备在内的本地 和远程计算机存储介质中 ,。 如图!所示的一种姿态感知设备的输出控制方法,姿态感知设^ ^包括对运 动姿态进行感知的惯性器件 步骤. SI : 使用惯性器件获 J t运动的位移变化量以及运动速度; 所述惯性器件为陀螺仪和加速.度仪,也可仅选用二者之一; 以陀螺仪和加 速度仪共同获取上述参数时,是通过获取陀螺议的角速度测量值及加速度仪的 加速度测量值进行融合所得, 具体可见本申请背景技术部分的引用专利文献, 此处不再赘述 β 为提高荻取数据的精确程度, 以同时选用陀螺仪和加速度仪共 同为惯性器件较佳;以其他类^能够获取上迷参数(位移变化量以及运动速度) 的替代器件也可, 这里, 设获取运动的位移变化量为 (ΔϊΑ>,), 其中, 横向位移变化量为 , 纵向位移变化量为 步骤 S21 : 判断获取的运动速度是否小于第一阈值, 是则执行步骤 S311 , 否则执行步骤 步骤 S22: 判断获取的运动速度是否大于笫二阈值, 是则执行步骤 S321 和 S322 , 否则执行步骤 S4; 步骤 S2】和 S22是先比较运动速度和第一阈值,再比较运动速度和第二阈 值, 在其他实施例中, 也可以先比较运动速度和第二阈值, 再比较运动速度和 第一阈值 判断步骤 S21. , S22用于将荻取的运动速度按预先设定的三个范围 进行 ¾分归类: 设第一阔值为 第二阈值为 , 0〜ss为低速段, s;〜s2为中 速段, 以上为高速段(显然, 有 ^^据运动速度所处范围不同进行不 同处理 :: 并且 8¾及3;可以是角速度的标量也可以是线速度的标量。 所述第一 阈值和第二闹值可以根据实际应用需求设定,第一阈值和第二阈值均为运动速 度的相对衡量值, 可用加速度仪的线速度衡量、 陀螺仪的角速度衡量, 也可用 二者速度的融合值衡量;以用加速度仪的线速度衡量为例,第一阈值为 100ra/s, 第二阈值为 300m/s 当 S21判断结果为是, 即运动速度小于第一阈值 说明上述运动速度处 于低速段 则作改变位移变化量 (AJCAF)之第一处理, 以使基于位移变化量所形 成的运动轨迹的长度缩小, 即縮小上述运动轨迹的时间步长,输出经第一处理 后的位移变化量 (Δτ'5 ') 处于低速段的运动轨迹, 因具备较大的时间步长, 会 产生运动轨迹较为粗糙,定位毛刺较大的问题 适当縮小运动轨迹的时间步长, 即使运动轨迹在时间段内的长度減小,即可达到提高低速段运动轨迹准确度及 平滑度的效杲。 本实旄例中, 所述第一处理包括: 步骡 S3.11; 判断位移变化量 是否小于约定值, 在本实施例中该确 定值取 1; 这里〗为一根据设备输出控制所确定的相对值, 可根据具体装置中 所设定的值进行更改。 当 t向位移变化量 Ar<i, 则对横向位移变化量执行步骤 S31.2和 S31.4; 否 则对对横向位移变化量执行步骤 S313和 S315;纵向位移变化量的处理方式与 横向位移变化量的处理方式相同 步骤 S312: 当步骤 S3U的判断结果为是, 即位移变化量小于 i时, 对位 移变化量作积分处理; 步骤 S314: 对积分处理后的位移变化量按预设的第一比例输出 步骤 S313: 当步骤 S311判断结杲为否, 即位移变化量小于 i时, 对位移 变化量作微分处理; 步骤 S315: 对微分处理后的位移变化量按预设的第二比例输出„ 具体实施时, 经所述第一处理后的位移变化量 (Δ·',4'')可通过以下公式得 到:
R
— (A >T}
ΔΛ:' - {
./?,χΔ 2(Αϊ<Τ)
~~ ~-{Δ!'>Τ)
Ay" " '
> = ί
K2xA)r ( A ^) 其中, A, 分別为所述预设的第一比倒及第二比例, T为所述的约定值。 在此处 对位移变化量进行积分处理特选 Δ / 的 2次幂、微分处理特选 Δ / 的 -2次幂; 理论上 多次幂的处理均可适用, 但一般实际中, 以 2次幂 /- 2次 幂即可获取较好的效果, 同时相对更易实现 在约定值 T取 1的前提下, 为方便计算机运算上述预设比例 i > 一般选 为 2N ( N为大于 1 的自然教丄 预设比例/^ 之间没无特別联系, 在具体 运用中为了进一步筒化计算, 预设比例 ^的取值范围可为 32 56, 即 N 的取值范围为 5〜8。 约定值 T也可取为 2N ( N为大于〗的自然数), 此时 预设比例 ^ 的 取值范围均小于 L 举个例子, 可选取约定值 T为 64, 此时, 的范围可取为
Figure imgf000010_0001
当 S22判断结果为是, 即运动速度大于第二阄值 S2 , 别作改变位移变化量 之第二处理, 以使基于位移变化量所彤成的运动轨迹的幅度缩小, 输出经第二 处理后的位移变化量; 由于运动轨迹的幅度包括角度信息及长度信息,运动速 度大于笫二阈值^即得到运动速度处于高速段,髙速段的运动轨迹往往具备较 大的幅度, 为了实现定位准确, 需要在输出的运动轨迹中减小上述幅度, 因此 幅度的縮小包括对运动轨迹角度的缩小及长度的缩小
本实施例中, 所迷第二处理包括: 步驟 S321 : 对位移变化量 (Λτ,φ)作积分处理得到 (' 步骤 S322: 对位移变化量 (Δ Αν)按预设偏转量平移得到 (Δτ,Α^ ; 步骤 S323 : 对经平移的位移变化量 作微分处理得到
步骤 S324 : 将经歩艨 S321 积分处理后的位移变化量 (Ax,^ 及经步驟
S322- S323平移、 微分处理后的位移变化量 (Λ ν)作乘积作为输出的位移变 化量, 即输出经第二处理的位移变化量
Figure imgf000010_0002
,其中. > A^、 ,s 为(Δχ,^'λ中的元素 ' Ax}、 Δ>¾为( ^y);中的元素。
具体实施时, 经所述第二处理后的位移变化量 (Δχ'^ν')可通过以下公式得 到:
. , Δ- 2
Ax -
Ax + P 其中,, '为所述预设偏转量, 预设偏转量的取值范围为卜 H
且可从上述公式中得到,
Figure imgf000011_0001
(Δ^、Δν), ~ (—— :——,■ ~ -—— )。
、 . ' ·、、 άχ + Ρ Ay + P 所述预设偏转量的取值范围为 步骤 S4: 徐出位移变化量, 其中: 当步骤 S21判断结杲为否且 S22的判断结杲也为否,则直接输出荻取的位 移变化量 ( '); 当运动速度的范围处于 S , 即中速段, 因处于中速段的 运动轨迹具备比较高的准确度及平滑度 不需对运动轨迹的参数作改变即可直 接输出
当步骤 21的判断结果为是且步骤 S311的判断结果为是时, 步骤 S4输出 的为步骤. S314的位移变化量的处理结果 当步骤 21的判断结果为是且步驟 S311的判断结果为否时, 步骤 S4输出 的为步骤 S315的位移变化量的处理结果 :
当步骤 21的判断结杲为否且 S22的判断结果为是,步骤 S4输出的为步骤 S324的位移变化量的处理结果。 如图 2所示的一种运动轨迹的显示控制方法,可以应用于包括姿态感知设 备及其输出显示装置的系统中, 包括: 图 1所示的姿态感知设备的输出控制方法; 步骤 S5:基于 S4输出的位移变化量在显示装置的屏幕上显示姿态感知设 备的运动轨迹。 在步骤 S5中, 具体地,, 由于设备的运动轨迹是一段从开始位置到结束位 置所经过的线路, 以空间鼠标为例,手持鼠标在屏幕上所显示的指针轨迹是人 体的手部从开始位置到结束位置所经过的路线组成动作的空间特征,轨迹由方 向、 形态, 幅度表示; 其中, 轨迹的幅度对于人体来说是以长度与角度来表示 的 由于空间鼠标与显示装置之间的是通过无线通讯进行上述空间特征数据的 信息传递, 在屏幕上所形成的指针轨迹 (即空间鼠标运动轨迹的反映)是由一 系列即时传输的定位点构成的 如图 2所示的运动轨迹的显示控制方法即是建 立在姿态感知设备的输出控制方法的基础上形成的, 举一个例子:
以指针轨迹中, 以上一时刻定位点(上一时刻定位点及其之前的定位点构 成了既定的运动轨 i )与下一时刻定位点为例, 即用上述运动轨迹的显示控制 方法显示下一时刻定位点: 当感应设备获取了下一时刻手持设备(空间鼠标) 的运动速度, 首先判断该时刻的运动速.度是否小于第一闲值: 当判断结果为是, 则表明运动速度处于低速段, 此时, 需要对指针轨迹下 —时刻之后的运动轨迹作縮小运动轨迹长度的处理(手持设备因人体运动具有 连贯性, 当此刻判断运动速度处于低速段, 则此后会持续处于低速段), 对该 时刻的定位点来说:则对其已获取的位移变化量作横向位移变化量及纵向位移 变化量缩小输出, 但定位点的已知角度则不变输出; 换句话说, 实际上定位点 的位移变化量 (实质为向量)包括了此时运动轨迹变化的长度信息及角度信息; 通过输出控制, 改变了此时位移变化量的长度信息; 显示装置接收到该点位移 变化量信息后, 按上述信息将该定位点显示在屏幕上; 当判断结果为否, 则进一步判断该时刻的运动速度是否大于第一阈值: 当判断结果为是, 则表明运动速度处于高速段, 此时, 需要对指针轨迹下 —时刻之.后的运动轨迹作縮小运动轨迹幅度的处理,幅度处理包括对运动轨迹 长度及角度的处理; 通过输出控制, 改变此时位移变化量的长度信息及角度信 息; 显示装置接收到该点位移变化量信息后,按上述信息将该定位点显示在屏
当判断结果也为否, 则表明运动速度处于中速段, 不需要对下一时刻定位 点的位移变化量作输出控制, 则显示装置直接接收到璲点位移变化量信息,按 上述信息将该定位点显示在屏幕上 如 i¾ 3所示的一种姿态感知设备的输出控制装置(对应于上述输出控制方 法)在本实施例为一种空间鼠标,包括对运动姿态进行感知的惯性器件】01. (陀 螺仪和加速度仪); 获取单元 102,用于从惯性器件 10〗获取运动的位移变化量以及运动速度; 判断单元】 03, 包括第一判断模块 131及第二判断模块 132, 第一判断模 块 131用于判断获取的运动速度是否小于第一阈值,第二判断模块 132用于判 断获取的运动速度是否大于第一阈值; 第一处理单元 104, 用于当第一判断模块 13〗输出为是时, 作改变位移变 化量以使基于位移变化量所形成的运动轨迹的长度縮小之第一处理,并输出经 第一处理后的位移变化量;
第一处理单元 104进一步包括: 判断单元 144, 用于判断位移变化量是否小于约定值,
第一积分单元 141 , 用于当判断单元〗 44输出为是时, 对所述位移变化量 作积分处理; 第一微分单元 142 , 用于当判断单元 144输出为否时, 对所述位移变化量 作微分处理; 所述的约定值为一根据设备输出控制所确定的相对值; 第一比例单元 143 , 用于将经第一积分单元 141处理的位移变化量按预设 的第一比例输出; 第二比例单元 45, 用于将经第一微分单元〗42处理的位移变化量按预设 的 - 比例输出 第一比例单元 143或第二比例单元 145繪出的即为经第一处理后(第一处 理单元 104输出) 的位移变化量。 第二处理单元 105 , 用于当第二判断模块 D2输出为是时, 作改变位移变 化量以使基于位移变化量所形成的运动轨迹的幅度缩小之第二处理,并输出经 第二处理后的位移变化量;
第二处理单元 105, 进一步包括:
第二积分单元 151, 用于对获取单元 102输出的位移变化量作积分处理; 位移调整单元 152, 用于按预设偏转量对获取单元 102输出的位移变化量 作改变; 第二微分单元】.53, 用于对位移调整单元 152输出的位移变化量作微分处 理; 乘法器 154, 用于将第二积分单元 15 输出的位移变化量及第二微分单元
153输出的位移变化量作乘积处理并输出 乘法器 154输出的即为经第二处理后(第二处理单元 105输出)的位移变 化量。
输出端 106, 用于输出经过第一处理单元!04或第二处理单元 105的位移 变化量, 或者, 当第一判断模块〗 31及第二判断模块 132的输出均为否时, 直 接输出未经过第一处理单元 104及笫二处理单元〗05处理的位移变化量,: 输出端 106输出的即为本实施例空间鼠标最终输出的位移变化量。 本发明技术方案还提供了一种运动轨迹的显示控制系统(对应于上述运动 轨迹的显示控制方法), 可应用于计算机系统上, 包括: 姿态感知设备的输出 控制装置和显示控制装置。 如图 4所示, 本实施例中, 姿态感知设备的输出控 制装置设置在空间鼠标中, 显示控制装置设置在主机中, 空间鼠标与主机进行 通信, 主机 202的显示控制装置基于空间鼠标 201的输出控制装置(具体结构 可以参考图 3 )输出的位移变化量在主机显示屏上显示鼠标指针的运动轨迹 本实施例空间鼠标与主机通信后在其显示屏上显示的指针运动轨迹如图 5 ( b ) 所示, L¾ 5 ( a )为现有技术空间鼠标在显示屏上显示的指针运动轨迹 图中, 从 Start点到 End点是鼠标指针走过的一段轨迹, 在 Start点, 由于鼠标 存在如屏保, 换鼠标设备(如从光电鼠标转换为空间鼠标)等情况, Start 点 开始为一停滞点, 需要用户高速移动空间鼠标来恢复鼠标搡作, 即 A段为高 速段, 此时, 通过上述方案中高速段的输出控制, 缩小了运动轨迹的幅度, 不 同于图 5 ( a ) 因高速移动鼠标所造成的巨大毛刺, 图 5 ( b ) 因对高速段的输 出运动轨迹作了幅度上的缩小, 使路径偏差大大减小, 毛剝显箸降低, 在高速 段提高了运动轨迹的平滑度。 从 Start点到 End点之间的轨迹 B为一中速端, 因运动轨迹相对符合需求 不需作处理即可直接输出 (图 5(a)及(b )在 B段 上一致); End点为一最后定位点, 由于用户手持空间鼠标, 在接近该点时搡 作速度显著放慢, C段即为一低速段, 从图 5 ( a ) 的 C段可知, 用户由于空 间鼠标的积累偏差, 在 C 点放慢速度后定位会有一定偏差 通过上述方案中 低速段的输出控制, 缩小了运动轨迹的长度, 则可显著減小这个偏差, 又进一 步提高了运动轨迹的平滑度。
本发明虽然已以铰佳实施例公开如上, 但其并不是用来限定本发明, 任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 明技术方案的内容, 依据本发明的技术实质对以上实施例所作的任何简单修 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

1、 一种姿态感知设备的输出控制方法, 所述的姿态感知设备包括对运动 姿态进行感知的惯性器件 其特征在于, 包括:
使用惯性器件获取运动的位移变化量以及运动速度;
当所迷运动速度小于第一阈值, 则作改变所迷位移变化量之第一处理, 以 使基于位移变化量所形成的运动轨迹的长度缩小,输出经第一处理后的位移变 化量;
当所述运动速度大于第二阐值, 则作改变所述位移变化量之第二处理, 以 使基于位移变化量所形成的运动轨迹的幅度縮小,输出经第二处理后的位移变 化量, 所述第二阔值大于第一阈值;
否则直接输出获取的位移变化量
2、 如权利要求〗所述的姿态感知设备的输出控制方法, 其特彺在于, 所 迷惯性器件包括陀螺仪和加速度仪中的至少一种
3 , 如权利要求〗所述的姿态感知设备的输出控制方法, 其特征在于, 所 述第一处理包括: 当所述位移变化量小于约定值时,对所述位移变化量作积分 处理, 将经积分处理后的位移变化量按预设的第一比例输出; 否则对所述位移 变化量作微分处理,将经 分处理后的位移变化量按预设的第二比例输出, 所 述的约定值为一根据设 ^输出控制所确定的相对值 :
4, 如权利要求 3所迷的姿态感知设备的输出控制方法, 其特征在于, 设获取的位移变化量为 (Δχ,,φ , 其中,横向位移变化量为 Δ , 纵向位移变 化量为 , 则经所述第一处理后的位移变化量 (Α · 为:
Figure imgf000016_0001
x'™ {
Κ2 χ Αχ2 ( Δχ<ΐ ) Γ(Δι.' > Τ)
Figure imgf000017_0001
其中, ϋ、、 分別为所述预设的第一比例及第二比例, T为所述的约定值
5、如权利要求 3或 4所述的姿态感知设备的输出控制方法, 其特征在于, 所述的约定值为 1, 所述预 it的第一比例及第二比例均为 2N, N为大于 1的自 然数。
6、 如权利要求 5所述的姿态感知设备的输出控制方法, 其特征在于, 所 述預设的第一比例及第二比例的取值范围为 32~256
7、如权利要求 3或 4所述的姿态感知设备的愉出控制方法, 其特征在于, 所述的约定值为 2 N为大于 〗 的自然数; 所述预设的第一比例及第二比例 均小于 L
8、 如 *利要求〗所述的姿态感知设备的输出控制方法, 其特征在于, 所 述的第二处理包括: 对所述位移变化量作积分处理,对所述位移变化量按预设 偏转量改变后再经微分处理,将所述积分处理后的位移变化量及微分处理后的 位移变化量的乘积作为输出的位移变化量。
9、 如权利要求 8所述的姿态感知设备的输出控制方法, 其特征在于, 设荻取的位移变化量为 其中, 横向位移变化量为 ΔΪ , 纵向位移变 化量为 , 则经所述第二处理后的位移变化量 (ΔΛ:',4 为:
Figure imgf000017_0002
Δν2
' Ay + P 其中, Ρ为所迷预设偏转量
10 ,如权利要求 8或 9所述的姿态感知设备的输出控制方法,其特征在于. 11 , 一种运动轨迹的显示控制方法 其特征在于, 包括: 权利要求 10任一项所述的姿态感知设备的输出控制方法; 基于所输出的位移变化量在屏幕上显示所述姿态感知设备的运动轨迹,
12 ,一种姿态感知设备的输出控制装置, 所迷姿态感知设,备包括对运动姿 态进行感知的惯性器件, 其特征在于, 还包括:
获取单元, 用于从上述惯性器件获取运动的位移变化量以及运动速度; 第一处理单元, 用于当所述运动速度小于第一阈值,作改变所述位移变化 量以使基于位移变化量所形成的运动轨迹的长度缩小之第一处理,并输出经第 一处理后的位移变化量; 第二处理单元, 用于当所迷运动速度大于第二阈值,作改变所述位移变化 量以使基于位移变化量所形成的运动轨迹的幅度缩小之第二处理,并输出经第 二处理后的位移变化量, 所述第二阔值大于第一闺值; 输出端, 用于输出经第一处理或第二处理后的位移变化量, 或者, 直接输 出未经处理的位移变化量 1.3、 如权利要求 12所述.的姿态感知设备的输出控制装置, 其特征在于, 所述惯性器件包括陀螺仪和加速度仪中的至少一种
1.4、 如权利要求 12所述的姿态感知设^ ^的输出控制装置, 其特征在于, 所述的第一处理单元包括: 第一积分单元, 用于当所述位移变化量小于约定值时,对所迷位移变化量 作积分处理; 第一微分单元, 用于当所迷位移变化量不小于约定值时, 对所述位移变化 量作微分处理; 所述的约定值为一根据设备输出控制所确定的相对值;
比例单元, 用于将经所迷积分处理的位移变化量按预设的第一比例输出, 将经所述徵分处理的位移变化量按预设的第二比例输出。
.15、 如权利要求】 .4所迷的姿态感知设备的输出控制装置, 其特征在于, 所述的约定值为 所述预设的第一比例及第二比例均为 2N, N为大于 1的自 然数 16、 如权利要求】5所述的姿态感知设备的榆出控制装置, 其特征在于, 所述预设的第一比例及第二比例的取值范围为 32〜256。
17、 如权利要求 14所述的姿态感知设备的输出控制装置, 其特征在于, 所述的约定值为 2N,, N为大于 1 的自然数; 所述颈设的第一比例及第二比例 均小于 1
1 8 , 如权利要求 .2所述的姿态感知设备的输出控制装置, 其特征在于, 所述的第二处理单元包括:
第二积分单元, 用于对所述位移变化量作积分处理;
位移调整单元, 用于按预设偏转量对所迷位移变化量作改变; 第二微分单元, 用于对改变后的位移变化量作微分处理;
乘法器,用于将上述积分处理后的位移变化量及微分处理后的位移变化量 作乘积处理并输出 β
19, 如权利要求 18所迷的姿态感知设备的输出控制装置, 其特征在于, 所述预设偏转量的取值范围为!〜 10。
20、 一种运动轨迹的益示控制系统, 其特征在于 包括: 权利要求 12〜19任一项所述的姿态感知设备的输出控制装置; 以及, 显示控制装置,用于基于所迷输出控制装置输出的位移变化量在屏幕上显 示所述姿态感知设备的运动轨迹
PCT/CN2012/084947 2012-11-09 2012-11-21 姿态感知设备输出控制方法及装置、显示控制方法及系统 WO2014071657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210447227.1 2012-11-09
CN201210447227.1A CN102929410B (zh) 2012-11-09 2012-11-09 姿态感知设备输出控制方法及装置、显示控制方法及系统

Publications (1)

Publication Number Publication Date
WO2014071657A1 true WO2014071657A1 (zh) 2014-05-15

Family

ID=47644235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084947 WO2014071657A1 (zh) 2012-11-09 2012-11-21 姿态感知设备输出控制方法及装置、显示控制方法及系统

Country Status (2)

Country Link
CN (1) CN102929410B (zh)
WO (1) WO2014071657A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008874A (zh) * 2006-01-24 2007-08-01 达方电子股份有限公司 鼠标及其光标控制方法
CN101641664A (zh) * 2007-09-14 2010-02-03 索尼株式会社 输入设备、控制设备、控制系统、控制方法及手持设备
CN102707802A (zh) * 2012-05-09 2012-10-03 华南理工大学 手势运动映射到界面的速度控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015679A (ja) * 2006-07-04 2008-01-24 Sony Computer Entertainment Inc ユーザインタフェース装置および操作感度調整方法
JP4582116B2 (ja) * 2007-06-06 2010-11-17 ソニー株式会社 入力装置、制御装置、制御システム、制御方法及びそのプログラム
CN102289306B (zh) * 2011-08-30 2013-06-19 江苏惠通集团有限责任公司 姿态感知设备及其定位、鼠标指针的控制方法和装置
CN102750020B (zh) * 2012-07-18 2015-05-20 深圳数字电视国家工程实验室股份有限公司 获取空中鼠标位移的方法、空中鼠标及空中鼠标控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008874A (zh) * 2006-01-24 2007-08-01 达方电子股份有限公司 鼠标及其光标控制方法
CN101641664A (zh) * 2007-09-14 2010-02-03 索尼株式会社 输入设备、控制设备、控制系统、控制方法及手持设备
CN102707802A (zh) * 2012-05-09 2012-10-03 华南理工大学 手势运动映射到界面的速度控制方法

Also Published As

Publication number Publication date
CN102929410A (zh) 2013-02-13
CN102929410B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6170250B2 (ja) ユーザインターフェースにおけるユーザインターフェースオブジェクトの操作
EP3677999B1 (en) User interface object manipulations in a user interface
JP5675627B2 (ja) 身振り認識を伴うモバイルデバイス
JP5427240B2 (ja) 動き感知に基づくユーザ命令入力方法およびデバイス
TWI567592B (zh) 手勢辨識方法及穿戴式裝置
TWI511026B (zh) 行動裝置及調整其視窗大小的方法
CN102289306A (zh) 姿态感知设备及其定位、鼠标指针的控制方法和装置
WO2013029302A1 (zh) 空中鼠标及控制鼠标指针移动的方法与装置
WO2012092840A1 (zh) 终端界面内容的缩放控制方法及装置
WO2022166620A1 (zh) 基于操作体的动态显示方法、装置、存储介质及电子设备
TW201118662A (en) Trace-generating systems and methods thereof
WO2013029303A1 (zh) 姿态感知设备及其定位、鼠标指针的控制方法和装置
CN103116411A (zh) 定位指针位置的方法及系统
US10331240B2 (en) Air pointer with improved user experience
WO2014071657A1 (zh) 姿态感知设备输出控制方法及装置、显示控制方法及系统
CN113498502A (zh) 使用外部传感器的手势检测
Lee et al. Orientation estimation in mobile virtual environments with inertial sensors
CN102289305B (zh) 姿态感知设备及其定位方法、鼠标指针的控制方法
Van Tonder et al. Improving the controllability of tilt interaction for mobile map-based applications
US10558270B2 (en) Method for determining non-contact gesture and device for the same
TW201725069A (zh) 電子設備及玩具控制方法
WO2019061149A1 (zh) 一种角度识别方法及设备
Han et al. Novel multiple-functional IMU-based wearable air mouse for the simultaneous operation with (Air) keyboards
CN104951218B (zh) 行动装置及调整视窗大小的方法
Malkawi et al. Interactive, immersive visualization for indoor environments: Use of augmented reality, human-computer interaction and building simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888121

Country of ref document: EP

Kind code of ref document: A1