WO2013029303A1 - 姿态感知设备及其定位、鼠标指针的控制方法和装置 - Google Patents

姿态感知设备及其定位、鼠标指针的控制方法和装置 Download PDF

Info

Publication number
WO2013029303A1
WO2013029303A1 PCT/CN2011/081625 CN2011081625W WO2013029303A1 WO 2013029303 A1 WO2013029303 A1 WO 2013029303A1 CN 2011081625 W CN2011081625 W CN 2011081625W WO 2013029303 A1 WO2013029303 A1 WO 2013029303A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
sensing device
acceleration sensor
attitude
angle
Prior art date
Application number
PCT/CN2011/081625
Other languages
English (en)
French (fr)
Inventor
龙涛
刘正东
龙江
唐元浩
严松
Original Assignee
江苏惠通集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏惠通集团有限责任公司 filed Critical 江苏惠通集团有限责任公司
Publication of WO2013029303A1 publication Critical patent/WO2013029303A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors

Definitions

  • Attitude sensing device and its positioning, mouse pointer control method and device The application is submitted to the State Intellectual Property Office of China on August 30, 2011, the application number is 201110252933.6, and the invention name is "attitude sensing device and its positioning, mouse pointer The priority of the Chinese Patent Application, which is incorporated herein by reference.
  • Technical field
  • the present invention relates to the field of attitude sensing devices and application technologies thereof, and in particular, to a gesture sensing device, a positioning method and device thereof, and a method and device for controlling a mouse pointer. Background technique
  • the space mouse is an input device that operates the screen cursor (mouse pointer) like a traditional mouse, but does not need to be placed on any plane. In the air, it can directly control the mouse pointer by relying on the perception of the air movement posture.
  • the inertial device is generally set in the attitude sensing device (for example, a space mouse), and the inertial device measurement technology is used to track the posture of the motion carrier.
  • the use of inertial device measurement technology to track the motion carrier attitude has a very broad prospect.
  • the basic principle of the inertial tracking system is to measure the angular velocity and linear acceleration of the motion of the object by using inertial devices such as a gyro sensor (hereinafter referred to as a gyroscope) and an acceleration sensor based on the known initial position and attitude of the target.
  • the position and posture of the object are obtained by integration.
  • the basic principle of the gyroscope is the directional instrument manufactured by using the high-angle rotation of the object and the strong angular momentum to make the rotating shaft stably point to one direction.
  • a corresponding declination angle is generated, and according to the relationship between the declination angle and the motion, the motion trajectory and position of the current moving object are obtained, thereby realizing the positioning function.
  • the acceleration sensor technology is a combination of inertia and force detection. There are many applications in the automotive electronics and consumer electronics fields.
  • the acceleration sensor collects the acceleration signal of the moving object in real time, and obtains the trajectory of the motion to realize the positioning by the second-order integral.
  • the self-attitude of the current device can be obtained by analyzing the gravity acceleration of the sensor device itself.
  • the gyroscope output angular velocity is an instantaneous amount, and the angular change amount obtained by integrating the angular velocity with the time integral is added to the initial angle to obtain an angle, wherein the smaller the integration time dt, the more accurate the output angle.
  • the principle of the gyroscope determines that the measurement reference is itself, there is no absolute reference object outside the system, and the dt cannot be infinitely small, so the cumulative error of the integral will increase rapidly with time, resulting in the final output angle not conforming to the actual.
  • the accelerometer measures the direction of gravity and has an absolute reference "gravity axis" outside the system. In the absence of external force acceleration, the angle can be accurately output without cumulative error.
  • the acceleration sensor uses MEMS technology to detect the micro-deformation caused by the inertial force.
  • the inertial force is essentially gravity. Therefore, the acceleration sensor cannot distinguish between the gravity acceleration and the external force acceleration.
  • the output of the acceleration sensor is not It’s accurate.
  • the problem to be solved by the present invention is to provide an attitude sensing device, a positioning method and device thereof, a control method and device for a mouse pointer, and a gyroscope technology and an acceleration sensor technology to achieve the accuracy and stability of spatial positioning.
  • an embodiment of the present invention provides a positioning method of an attitude sensing device, where the posture sensing device includes a gyroscope and an acceleration sensor, and the positioning method of the attitude sensing device includes: acquiring a rotation angle of a sensitive axis of the gyroscope Obtaining a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, the sensitive axis of the acceleration sensor corresponding to the sensitive axis of the gyroscope; setting a first line corresponding to the gyroscope based on the linear acceleration of the sensitive axis of the acceleration sensor Weight and corresponding to the plus a second weight of the speed sensor; weighting the rotation angle and the deflection angle based on the first weight and the second weight to obtain an attitude angle of the attitude sensing device.
  • an embodiment of the present invention further provides a positioning device for an attitude sensing device, including: a first acquiring unit, configured to acquire a rotation angle of a sensitive axis of the gyroscope; and a second acquiring unit, adapted to acquire an acceleration sensor a deflection angle of the sensitive axis and a linear acceleration, the sensitive axis of the acceleration sensor corresponding to the sensitive axis of the gyroscope; and a setting unit adapted to set a first corresponding to the gyroscope based on a linear acceleration of the sensitive axis of the acceleration sensor a weight and a second weight corresponding to the acceleration sensor; and a processing unit adapted to perform weighting processing on the rotation angle and the deflection angle based on the first weight and the second weight to obtain an attitude angle of the attitude sensing device.
  • an embodiment of the present invention further provides an attitude sensing device, including: a gyroscope, an acceleration sensor, and the positioning device of the above-described attitude sensing device.
  • the above technical solution sets different weights on the gyroscope and the acceleration sensor based on the linear acceleration, so that the weight of the gyroscope and the weight of the acceleration sensor can be adaptively adjusted according to the linear acceleration change; and, by weighting processing
  • the rotation angle of the sensitive axis of the gyroscope is combined with the deflection angle of the sensitive axis of the acceleration sensor, thereby effectively combining the data of the gyroscope and the data of the acceleration sensor, realizing the accurate positioning of the attitude sensing device and the precise control of the mouse pointer.
  • FIG. 1 is a flowchart of a positioning method of an attitude sensing device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional space coordinate system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of step S3 of the positioning method of the attitude sensing device according to the first embodiment of the present invention
  • FIG. 4 is a flowchart of step S4 of the positioning method of the attitude sensing device according to the first embodiment of the present invention
  • FIG. 6 is a flowchart of step S3 of the positioning method of the posture sensing device according to Embodiment 2 of the present invention
  • FIG. 7 is a positioning method of the posture sensing device according to Embodiment 2 of the present invention
  • FIG. 8 is a schematic structural diagram of a positioning device of a posture sensing device according to Embodiment 2 of the present invention
  • FIG. 9 is a flowchart of a method for controlling a mouse pointer according to an embodiment of the present invention after a positioning step of the posture sensing device
  • FIG. 10 is a schematic structural diagram of a control device for a mouse pointer according to an embodiment of the present invention.
  • the attitude sensing device of the embodiment of the present invention includes a gyroscope and an acceleration sensor. Since the attitude sensing device generally has the largest front end motion, the gyroscope and the acceleration sensor can be installed in the position of the attitude sensing device near the front end to better sense the attitude perception. The movement of the device. To accurately locate the attitude-aware device, it is necessary to fuse the data of the gyroscope with the data of the acceleration sensor. The fusion usually includes real-time fusion and long-term fusion, and the real-time fusion is performed once per algorithm cycle (that is, once each time the data is sampled), The long-term fusion fixed detection period (for example, 256 algorithm cycles) is performed once.
  • the fusion usually includes real-time fusion and long-term fusion, and the real-time fusion is performed once per algorithm cycle (that is, once each time the data is sampled), The long-term fusion fixed detection period (for example, 256 algorithm cycles) is performed once.
  • the fusion can be a complementary weight fusion, or a combination of complementary weight fusion and Kalman filtering.
  • the so-called complementary weight fusion means that different weights are set for the gyroscope and the acceleration sensor, and the sum of the weights of the two is 1, and then the data of the gyroscope and the data of the acceleration sensor are weighted. Since there is no external force acceleration, the acceleration sensor can accurately output the angle without accumulated error, that is, the acceleration sensor has high precision in static or low-speed motion; When performing variable-speed motion in three-dimensional space, especially at high-speed motion, since the acceleration sensor cannot distinguish between gravity acceleration and external force acceleration, its accuracy is reduced at high speed.
  • different weights can be set for the gyroscope and the acceleration sensor based on different motion states of the attitude sensing device, such as static, low speed or high speed.
  • the accuracy of the acceleration sensor is high at static or low speed, and the weight of the acceleration sensor is set. Greater than the weight of the gyroscope; At high speeds, the accuracy of the gyroscope is high, and the weight of the gyroscope is set to be greater than the weight of the acceleration sensor.
  • the embodiment of the present invention combines the gyroscope and the acceleration sensor to locate the attitude sensing device, so the weights of the two are complementary, that is, the sum of the weights is 1, but if the gesture sensing device is combined with other If the inertial device (such as a geomagnetic sensor) is positioned, the sum of the weights of the gyroscope and the acceleration sensor may be less than one.
  • an embodiment of the present invention provides a positioning method for an attitude sensing device, as shown in FIG. 1 , which includes:
  • Step S1 acquiring a rotation angle of the sensitive axis of the gyroscope
  • Step S2 acquiring a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, where the sensitive axis of the acceleration sensor corresponds to the sensitive axis of the gyroscope;
  • Step S3 setting a first weight corresponding to the gyroscope and a second weight corresponding to the acceleration sensor based on a linear acceleration of a sensitive axis of the acceleration sensor;
  • Step S4 Perform weighting processing on the rotation angle and the deflection angle based on the first weight and the second weight to obtain an attitude angle of the attitude sensing device.
  • the attitude sensing device AO moves in a three-dimensional space
  • the three-dimensional space coordinate system includes two perpendicular vertical X-axis, y-axis, and z-axis, wherein the X-axis and the y-axis are parallel to the ground plane, and the z-axis is vertical.
  • the gyroscope can be a single-axis gyroscope, a two-axis gyroscope or a three-axis gyroscope
  • the acceleration sensor can be a single-axis gravitational acceleration sensor, a two-axis gravitational acceleration sensor or a three-axis gravitational acceleration sensor.
  • the sensitive axis of the gyroscope coincides with the corresponding coordinate axis
  • the sensitive axis of the acceleration sensor coincides with the corresponding coordinate axis.
  • the attitude sensing device includes two mutually perpendicular single-axis gyroscopes and a three-axis gravity acceleration sensor.
  • the sensitive axis of one of the single-axis gyroscopes coincides with the X axis, and is recorded as X.
  • Axis gyroscope the sensitive axis of another single-axis gyroscope coincides with the z-axis, recorded as a z-axis gyroscope; the three sensitive axes of the acceleration sensor coincide with the X-axis, the y-axis and the z-axis, respectively, which are recorded as acceleration sensors
  • the attitude sensing device includes two mutually perpendicular single-axis gyroscopes and a three-axis gravity acceleration sensor, and the motion of the attitude sensing device in the spatial coordinate system is taken as an example for detailed description.
  • the rotation angle of the sensitive axis of the gyroscope refers to the angle between the sensitive axis of the gyroscope and its corresponding coordinate axis, which is represented by ⁇ .
  • the rotation angle of the sensitive axis of the X-axis gyroscope refers to the angle between the sensitive axis of the X-axis gyroscope and the X-axis, denoted as ⁇ ⁇ ;
  • the rotation angle of the sensitive axis of the ⁇ -axis gyroscope refers to the ⁇ -axis gyroscope
  • the angle between the sensitive axis and the x-axis is denoted by ⁇ ⁇ .
  • the deflection angle of the sensitive axis of the acceleration sensor refers to the angle between the sensitive axis of the acceleration sensor and its corresponding coordinate axis, which is represented by ⁇ .
  • the deflection angle of the X-sensitive axis of the acceleration sensor refers to the angle between the X-sensitive axis and the X-axis, denoted as ⁇ ⁇ ;
  • the deflection angle of the ⁇ -sensitive axis of the acceleration sensor refers to the angle between the ⁇ sensitive axis and the ⁇ axis, Recorded as ⁇ ⁇ .
  • the acceleration sensor measures the inclination angle of the sensitive axis
  • the inclination angle of the sensitive axis of the acceleration sensor refers to the angle between the sensitive axis of the acceleration sensor and the direction of the gravitational acceleration, which is actually the angle between the sensitive axis of the acceleration sensor and the x-axis.
  • the deflection angle of the sensitive axis of the acceleration sensor is converted by the tilt angle of the sensitive axis.
  • the inclination angle of the X-sensitive axis of the acceleration sensor refers to the angle between the X-sensitive axis and the ⁇ -axis, which is denoted as ⁇ ⁇ ;
  • the inclination angle of the ⁇ -sensitive axis of the acceleration sensor refers to the angle between the ⁇ sensitive axis and the ⁇ axis, Recorded as ⁇ ⁇ .
  • the attitude angle of the attitude sensing device refers to the angle between the attitude sensing device and each coordinate axis, and is represented by ⁇ .
  • the attitude angle of the attitude sensing device and the X axis refers to the angle between the attitude sensing device and the X axis, which is denoted by ⁇ ⁇ ;
  • the attitude angle of the attitude sensing device and the ⁇ axis refers to the angle between the attitude sensing device and the ⁇ axis Is ⁇ ⁇ .
  • the rotation angle of the sensitive axis of the gyroscope and the deflection angle of the sensitive axis of the acceleration sensor are combined with the complementary weight filter fusion and the Kalman filter fusion to obtain the attitude angle of the attitude sensing device.
  • the rotation angle of the sensitive axis of the gyroscope is obtained.
  • the gyroscope outputs the angular velocity of the sensitive axis.
  • the angular velocity can be integrated into the time to obtain the angular change.
  • the angle of rotation of the axis on is the initial angle of the sensitive axis of the gyroscope (the angle of rotation determined at the previous sampling instant), ⁇ is the angular velocity of the sensitive axis of the gyroscope (the angular velocity obtained at the current sampling time).
  • Step S2 Acquire a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, and the sensitive axis of the acceleration sensor corresponds to the sensitive axis of the gyroscope.
  • the acceleration sensor outputs the inclination angle of each sensitive axis. After the inclination angle of each sensitive axis is converted, the deflection angle of each sensitive axis can be obtained.
  • the deflection angle of the ⁇ sensitive axis ⁇ ⁇ ⁇ ⁇
  • ⁇ ⁇ is the inclination angle of the X sensitive axis of the acceleration sensor
  • ⁇ ⁇ is the inclination angle of the ⁇ sensitive axis of the acceleration sensor.
  • the acceleration sensor also outputs the linear acceleration of each sensitive axis, which can reflect the different motion states of the attitude sensing device, so it can be used as the basis for setting the weight. For details, please refer to the description of step S3.
  • Step S3 setting a first weight corresponding to the gyroscope and a second weight corresponding to the acceleration sensor based on a linear acceleration of a sensitive axis of the acceleration sensor.
  • step S3 first establishes a correlation between the filter time constant and the linear acceleration of the sensitive axis of the acceleration sensor, and then obtains a weight value based on the correlation between the filter time constant and the presence of the first weight and the second weight.
  • step S3 of this embodiment includes:
  • Step S31 setting a first filtering parameter ⁇ and a second filtering parameter m, wherein the second filtering parameter m is 3 ⁇ 5 times, usually an integer multiple, of the first filtering parameter n.
  • the first filter parameter n and the second filter parameter m are parameters required to establish a correlation between the filter time constant and the linear acceleration of the sensitive axis of the acceleration sensor.
  • the first filter parameter n is an empirical value. In this embodiment, the first filter parameter n has a value range of [3, 6], and is usually an integer, for example, 3, 4, 5, or 6.
  • the difference between the accelerations of the acceleration sensors is the vector sum of the linear accelerations of the respective sensitive axes (X-sensitive axis, y-sensitive axis, and z-sensitive axis).
  • the acceleration sensor outputs a sensitive axis in addition to the tilt angle of the output sensitive axis.
  • the linear acceleration, the linear acceleration is a vector, with size and direction.
  • the size is usually expressed as a multiple of the gravitational acceleration G, such as 1G, 1.2G, 2G, 2.5G, etc., so Ki is multiplied by the gravitational acceleration G.
  • the filter time constant ⁇ is relative to the duration of the signal, for low-pass filtering, a signal with a duration greater than or equal to the filter time constant ⁇ is allowed to pass, and a signal having a duration less than the filter time constant ⁇ is filtered out ( Allow low-frequency signals to pass, filter out high-frequency signals); For high-pass filtering, allow signals with a duration less than or equal to the filter time constant ⁇ to pass, while signals with a duration greater than the filter time constant ⁇ are filtered out (allow high-frequency signals) Pass, filter out the low frequency signal).
  • the second weight b can also be determined.
  • the difference Ki between the acceleration and the acceleration of the acceleration sensor reaches the upper limit n/m , indicating that the external force of the environment is too large, the reliability of the data of the acceleration sensor is greatly reduced, the first weight a of the corresponding gyroscope is 1, and the second weight b of the corresponding acceleration sensor is 0, that is, the acceleration sensor is not required to be combined
  • the data is used to modify the data of the gyroscope, and the data of the gyroscope is directly subjected to subsequent positioning calculation.
  • step S4 of the embodiment is based on the first weight And weighting the rotation angle and the deflection angle to obtain the attitude angle of the attitude sensing device, including: Step S41, performing high-pass filtering on the rotation angle based on the filter time constant ⁇ , multiplying the first weight by the first weight, to obtain a first product result;
  • Step S42 performing low-pass filtering on the deflection angle based on the filtering time constant ⁇ and multiplying the second weight by the second weight to obtain a second product result;
  • Step S43 performing Kalman filtering on the first product result and the second product result to obtain the attitude angle.
  • the low frequency signal will reduce the detection accuracy of the gyroscope, it is necessary to filter out the low frequency signal in the data of the gyroscope, that is, high-pass filtering the rotation angle of the sensitive axis of the gyroscope, and the filtered data is approximately ⁇ ; It will reduce the detection accuracy of the acceleration sensor. Therefore, it is necessary to filter out the high-frequency signal in the data of the acceleration sensor, that is, low-pass filtering the deflection angle of the sensitive axis of the acceleration sensor, and the filtered data is approximately ⁇ ;
  • the data of the gyroscope and the data of the acceleration sensor are weighted and Kalman filtered. Kalman filtering has been widely used in target tracking systems. The dynamic information of the target is used to remove the influence of noise and obtain an accurate estimation of the target position. Since it is a well-known and widely used technology in the art, it will not be explained here.
  • the rotation angle ⁇ ⁇ of the sensitive axis of the X-axis gyroscope is high-pass filtered and then multiplied by the first weight a; the deflection angle 0 of the X-sensitive axis of the acceleration sensor is low-pass filtered and then multiplied by The second weight b; the result of the two multiplications is input to the Kalman filter, and the output result of the Kalman filter is the attitude angle ⁇ ⁇ of the attitude sensing device and the X axis.
  • the attitude sensing device of the embodiment includes only two gyroscopes, determining the attitude angle of the attitude sensing device only needs to determine the attitude angle of the attitude sensing device and the X axis and the attitude angle with the x axis, in other embodiments.
  • the y-axis gyroscope may also be included, and accordingly, the attitude angle of the attitude sensing device and the y-axis may be determined according to the rotation angle of the sensitive axis of the y-axis gyroscope and the deflection angle of the y-sensitive axis of the acceleration sensor.
  • step S4 may also not perform Kalman filtering, but directly add weights, that is, add the first product result and the second product result to obtain the attitude angle, due to the data of the gyroscope.
  • the high-pass filter is approximately a
  • the data of the acceleration sensor of the low-pass filter is approximately ⁇
  • the attitude angle ⁇ ⁇ attitude sensing device and the X-axis attitude angle ⁇ ⁇ and a [zeta] axis may be expressed as: ⁇ ⁇ ⁇ * ⁇ ⁇ + ) * ⁇ ⁇ , "o*i3 ⁇ 4 + b*A.
  • This embodiment can be implemented by Kalman filtering. Improve the accuracy and stability of positioning in one step.
  • Determining the attitude angle of the attitude sensing device also realizes the positioning of the attitude sensing device, that is, the posture of the posture sensing device can be represented by the attitude angle of the posture sensing device.
  • the position sensing device may be used to represent the position of the attitude sensing device in the coordinate system of the space coordinate system.
  • the positioning method of the posture sensing device in the embodiment of the present invention may further include: determining the space sensing coordinate of the posture sensing device.
  • the component dcos0, d is the initial component of the attitude sensing device in the space coordinate system
  • is the attitude angle.
  • the component dcose of the attitude sensing device in the space coordinate system includes: a component of the X-axis of the attitude-aware device in the space coordinate system d x cos0 x and a component of the z-axis of the spatial coordinate system d z Cos0 z , d x is the initial component of the X-axis of the attitude-aware device in the space coordinate system, and d z is the initial component of the z-axis of the attitude-aware device in the spatial coordinate system, represented by coordinates, and the attitude-aware device is from the initial position (d x , d z ) moved to the current position ( d x cos9 x , d z cos9 z ).
  • the positioning device of the attitude sensing device of the embodiment is as shown in FIG. 5, and includes: a first acquiring unit A1, configured to acquire a rotation angle of a sensitive axis of the gyroscope;
  • a second acquiring unit A2 configured to acquire a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, where the sensitive axis of the acceleration sensor corresponds to the sensitive axis of the gyroscope;
  • a setting unit A3 adapted to acquire a linear acceleration of the sensitive axis of the acceleration sensor from the second acquiring unit A2, and set a first weight corresponding to the gyroscope and a corresponding position based on a linear acceleration of the sensitive axis of the acceleration sensor The second weight of the acceleration sensor;
  • the processing unit A4 is adapted to, based on the first weight and the second weight set by the setting unit A3, the rotation angle of the sensitive axis of the gyroscope acquired by the first acquiring unit A1 and the acquired by the second acquiring unit A2
  • the deflection angle of the sensitive axis of the acceleration sensor is weighted to obtain the attitude angle of the attitude sensing device.
  • the setting unit A3 further includes:
  • the filter parameter setting unit A31 is adapted to set the first filter parameter n and the second filter parameter m, the first filter parameter n has a value range of [3, 6], and the second filter parameter m is the 3-5 times the filtering parameter n;
  • the processing unit A4 further includes:
  • the high-pass filter A41 is adapted to high-pass filter the rotation angle of the sensitive axis of the gyroscope acquired by the first acquisition unit A1, and the filter time constant of the high-pass filter is obtained from the time constant determining unit A32;
  • the first multiplier A42 is adapted to multiply the output result of the high-pass filter A41 by the first weight determined by the weight determining unit A33 to obtain a first product result;
  • the low-pass filter A43 is adapted to low-pass filter the deflection angle of the acceleration sensor acquired by the second acquisition unit A2, and the filter time constant of the low-pass filter is obtained from the time constant determining unit A32;
  • the second multiplier A44 is adapted to multiply the output result of the low pass filter A43 by the second weight determined by the weight determining unit A33 to obtain a second product result;
  • the Kalman filter A45 is adapted to perform Kalman filtering on the first product result output by the first multiplier A42 and the second product result output by the second multiplier A44 to obtain an attitude angle of the attitude sensing device.
  • the adder may be substituted for the Kalman filter A45, the adder being adapted to add the first product result and the second product result to obtain the attitude angle.
  • the positioning device of the attitude sensing device of this embodiment may further include a component determining unit (not shown), wherein the component determining unit is adapted to determine a component dcosB of the gesture sensing device in the spatial coordinate system, where d is The initial component of the attitude-aware device in the spatial coordinate system, ⁇ is the attitude angle.
  • Steps S1 and S2 of this embodiment are the same as those of Embodiment 1, and steps S3 and S4 will be described in detail below.
  • step S4 of the embodiment The difference between the step S4 of the embodiment and the step S4 of the embodiment 1 is that the data of the gyroscope and the data of the acceleration sensor are directly weighted, and the filtering is not performed before the weighting. Therefore, the step S3 of the embodiment may not set the filtering parameter. Directly converting the linear acceleration measured by the acceleration sensor into a line speed And a first fixed weight and a second weight are set in a certain range based on the linear velocity, and the sum of the first weight and the second weight is 1. Specifically, refer to FIG. 6. Step S3 includes:
  • Step S31 integrating the vector sum of the linear accelerations of the sensitive axes of the acceleration sensor with the time to obtain the linear velocity.
  • the vector sum of the linear accelerations of the X-sensitive axis, the y-sensitive axis, and the z-sensitive axis of the acceleration sensor is obtained, and the obtained vector and time-integrated can obtain the linear velocity.
  • Step S32 it is determined whether the line speed is less than a preset value, and if yes, step S33 is performed, and if not, S34' is executed.
  • Step S33 setting the first weight to be smaller than the second weight.
  • the linear velocity is less than the preset value, and the accuracy of the acceleration sensor is higher than the accuracy of the gyroscope, so the second weight corresponding to the acceleration sensor is set to be the first weight corresponding to the gyroscope.
  • Step S34 setting the first weight to the second weight.
  • the line speed is greater than or equal to the preset value, and the accuracy of the gyroscope is higher than the accuracy of the acceleration sensor, so the first weight corresponding to the gyroscope is set to be the second weight corresponding to the acceleration sensor.
  • the preset value is an empirical value that is preset according to the actual situation.
  • the preset value may be in the range of [0.4, 0.6] and the unit is in meters/second.
  • the preset The value of the first weight may be [0, 2/5], for example, the first weight is 1/3, if the line speed is less than the preset value. Then the second weight is 2/3; or, if the first weight is set to 2/5, the second weight is 3/5; if the line speed is small or 0, the first weight can be set to 0, the second weight Set to 1.
  • the value of the first weight may be [3/5, 1], and when the online speed is increased, the reliability of the data of the acceleration sensor is decreased. Applying the data of the acceleration sensor to correct the data of the gyroscope has little meaning.
  • the first weight can be set to 1, and the second weight is 0.
  • two preset values such as a first preset value and a second preset value
  • the second preset value is greater than the first preset value, when the line speed is When the first preset value is less than the first preset value, for example, 0.3 m/s, the first weight is set to be smaller than the second weight, for example, the first weight is set to 1/3, and the second weight is 2/3; when the line speed is greater than When the second preset value is, for example, 0.6 m/s, the first weight is set to 1, and the second weight is 0; otherwise, the first weight is set to be greater than the second weight, for example, the first weight is set to 2/3, and the second The weight is 1/3. That is to say, as the line speed increases, the weight of the acceleration sensor is gradually reduced, and the weight of the gyroscope is increased.
  • step S4 of this embodiment includes: Step S41, multiplying the rotation angle by the first weight to obtain a third product result; Step S42, multiplying the deflection angle by the second weight to obtain a fourth product result; Step S43, Kalman filtering is performed on the third product result and the fourth product result to obtain the attitude angle.
  • Step S4 is different from step S4 of Embodiment 1 in that the rotation angle of the sensitive axis of the gyroscope is directly multiplied by the first weight, and high-pass filtering is not performed before weighting; the deflection angle of the sensitive axis of the acceleration sensor is directly multiplied by the second Weight, no low pass filtering before weighting.
  • the first weight and the second weight applied in step S4 may be the first weight and the second weight set in step S3 of the embodiment, or may be the first weight and the first weight set in step S3 of the first embodiment. Two weights.
  • the step S4 may not perform Kalman filtering, but may be directly accumulated after weighting, that is, the third product result and the fourth product result are added to obtain the attitude angle, specifically, the attitude sensing device.
  • the Kalman filter in this embodiment can improve the accuracy and stability of positioning.
  • the positioning method of the attitude sensing device of the embodiment may further include: determining that the component dcos0, d of the attitude sensing device in the space coordinate system is an initial component of the attitude sensing device in the space coordinate system, and ⁇ is the attitude angle.
  • the positioning device of the attitude sensing device of the present embodiment includes: a first acquiring unit B1 adapted to acquire a rotation angle of a sensitive axis of the gyroscope;
  • a second acquiring unit B2 configured to acquire a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, where the sensitive axis of the acceleration sensor corresponds to the sensitive axis of the gyroscope;
  • the setting unit B3 is adapted to set a first weight corresponding to the gyroscope and a second weight corresponding to the acceleration sensor based on a linear acceleration of a sensitive axis of the acceleration sensor acquired by the second acquiring unit B2;
  • the processing unit B4 is adapted to, based on the first weight and the second weight set by the setting unit B3, the rotation angle of the sensitive axis of the gyroscope acquired by the first acquiring unit B1 and the second acquisition unit B2
  • the deflection angle of the sensitive axis of the acceleration sensor is weighted to obtain the attitude angle of the attitude sensing device.
  • the setting unit B3 further includes:
  • a linear velocity calculation unit B31 adapted to linearly accelerate the respective sensitive axes of the acceleration sensor The vector sum is integrated with time to obtain a linear velocity, and the linear acceleration of each sensitive axis of the acceleration sensor is acquired from the second acquiring unit B2;
  • the determining unit B32 is adapted to determine whether the line speed obtained by the line speed calculating unit B31 is less than a preset value
  • the weight setting unit B33 is adapted to set the first weight to be smaller than the second weight when the determination result of the determining unit B32 is YES; and set the first weight when the determining result of the determining unit B32 is negative Greater than the second weight.
  • the setting unit may include:
  • a linear velocity calculation unit adapted to integrate a vector of linear accelerations of each sensitive axis of the acceleration sensor with a time to obtain a linear velocity, and a linear acceleration of each sensitive axis of the acceleration sensor is acquired from the second acquiring unit;
  • a first determining unit configured to determine whether the line speed obtained by the line speed calculating unit is less than a first preset value
  • a second determining unit configured to determine whether the line speed obtained by the line speed calculating unit is greater than a second preset value, where the second preset value is greater than the first preset value, and the second determining unit may be in the Determining whether the line speed is greater than a second preset value when the determination result of the first determining unit is negative;
  • a weight setting unit configured to set a first weight to be less than a second weight when the determination result of the first determining unit is YES; and to set a first weight to be 1 when the second determining unit determines yes The weight is 0; otherwise the first weight is set to be greater than the second weight.
  • the processing unit B4 further includes:
  • the third multiplier B41 is adapted to multiply the rotation angle of the sensitive axis of the gyroscope acquired by the first acquiring unit B1 by the first weight set by the weight setting unit B33 to obtain a third product result;
  • the fourth multiplier B42 the deflection angle of the sensitive axis of the acceleration sensor acquired by the second acquiring unit B2 is multiplied by the second weight set by the weight setting unit B33, to obtain a fourth product result;
  • a Kalman filter B43 configured to perform Kalman filtering on a third product result output by the third multiplier B41 and a fourth product result output by the fourth multiplier B42, to obtain an attitude angle of the attitude sensing device .
  • the adder may be substituted for the Kalman filter B43, the adder being adapted to add the third product result and the fourth product result to obtain the attitude angle.
  • the positioning device of the attitude sensing device of the present embodiment may further include a component determining unit (not shown), wherein the component determining unit is adapted to determine the component dcosB, d of the gesture sensing device in the spatial coordinate system, and the gesture sensing The initial component of the device in the spatial coordinate system, ⁇ is the attitude angle.
  • the above gesture sensing device can be used as a space mouse for controlling the movement of the mouse pointer on the screen.
  • the embodiment of the present invention further provides a method for controlling a mouse pointer, including: the method for locating the gesture-aware device, as shown in FIG. 9, further includes:
  • Step S7 controlling the movement of the mouse pointer based on the displacement change amount of the mouse pointer.
  • Step S5 determines a change of the two-dimensional space determined by the attitude sensing device in the two-dimensional space determined by the X-axis and the z-axis from the first position to the second position, wherein the first position can be represented by coordinates (A, B), and A is A component in the X-axis, B is the component of the first position in the z-axis; the second position can use coordinates (Acos0 x , Bcos9 z ), Acos0 x is the component of the second position in the x-axis, : ⁇ 080 2 The component of the second position on the Z axis.
  • the displacement change amount As of the mouse pointer described in the step S6 includes: the displacement change amount ⁇ of the mouse pointer on the X axis and the Y axis The amount of change in displacement ⁇ .
  • step S7 may include: moving the mouse pointer from the third position to the fourth position based on the displacement change amount ⁇ of the mouse pointer on the X axis and the displacement change amount ⁇ on the x axis to control the movement of the mouse pointer If the coordinates of the mouse in the third position are (XI, Y1), the mouse is in the fourth position. The coordinates are (Xl+ ⁇ , ⁇ 1+ ⁇ ).
  • the sensitivity coefficient of the gyroscope and the sensitivity coefficient of the mouse are set and adjusted according to actual needs and operating environments, such as accuracy requirements, screen size and resolution, etc., which are well known to those skilled in the art, and are no longer known here. Expand the instructions.
  • control device for the mouse pointer of the embodiment of the present invention includes: a positioning device C1 of the attitude sensing device, and the specific structure thereof may be as shown in FIG. 5 or as shown in FIG. 8;
  • a component change determining unit C2 configured to calculate a component change Ad of the gesture sensing device, wherein
  • Ad d - d cos e , ⁇ is the attitude angle, d is the initial component of the attitude sensing device in the spatial coordinate system, and the attitude angle is obtained from the positioning device C1 of the attitude sensing device;
  • a displacement change determining unit C3 adapted to determine a displacement change amount As of the mouse pointer
  • SF the sensitivity coefficient of the gyroscope
  • MF the sensitivity coefficient of the mouse pointer
  • Ad the component change of the posture sensing device calculated by the component change determining unit C2;
  • the pointer control unit C4 is adapted to control the movement of the mouse pointer based on the amount of change in the displacement of the mouse pointer determined by the displacement change determining unit C3.
  • the above mouse pointer control device may be integrated in whole or in part in the attitude sensing device, and the attitude sensing device passes through a wireless transceiver device (such as a radio frequency transceiver, an infrared transceiver, etc.) and a control device (such as a projector, a computer, etc.) that controls the mouse pointer.
  • a wireless transceiver device such as a radio frequency transceiver, an infrared transceiver, etc.
  • a control device such as a projector, a computer, etc.
  • the wireless transceiver is connected to the control device via a USB interface.
  • the attitude sensing device comprises: an X-axis gyroscope, a z-axis gyroscope, a three-axis gravity acceleration sensor, and the above-described positioning device Cl.
  • the attitude sensing device transmits the attitude angle information of the attitude sensing device to the control device through the wireless transceiver device.
  • the above-described component change determining unit C2, displacement change determining unit C3 and pointer control unit C4 can be integrated in the control device.
  • the attitude sensing device includes: an X-axis gyroscope, a z-axis gyroscope, a three-axis gravity acceleration sensor, the above-described positioning device C1, and a component change determining unit C2.
  • the gesture sensing device transmits component change information of the gesture sensing device to the control device through the wireless transceiver.
  • the above-described displacement change determining unit C3 and pointer control unit C4 can be integrated in the control device.
  • the attitude sensing device includes: an X-axis gyroscope, a z-axis gyroscope, a three-axis gravity acceleration sensor, the above-described positioning device C1, a component change determining unit C2, and a displacement change determining unit C3.
  • the space mouse transmits the displacement change amount information of the mouse pointer to the control device through the wireless transceiver.
  • the above-described pointer control unit C4 can be integrated in the control device.
  • the attitude sensing device includes: an X-axis gyroscope, a z-axis gyroscope, a three-axis gravity acceleration sensor, and the above-described mouse pointer control device.
  • the gesture sensing device transmits the location information of the mouse pointer to the control device through the wireless transceiver.
  • the gyroscope and the acceleration sensor are set with different weights based on the linear acceleration, so that the weight of the gyroscope and the weight of the acceleration sensor can be adaptively adjusted according to the linear acceleration change; and the rotation angle and acceleration of the sensitive axis of the gyroscope are processed by the weighting process.
  • the deflection angle of the sensitive axis of the sensor is combined, thereby effectively combining the data of the gyroscope and the data of the acceleration sensor, realizing the accurate positioning of the attitude sensing device and the precise control of the mouse pointer.
  • the weight of the gyroscope and the weight of the acceleration sensor can be different from the difference between the acceleration of the acceleration sensor and the acceleration of gravity. Change and adaptively adjust.
  • High-pass filtering is performed before weighting the data of the gyroscope, and low-pass filtering is performed before weighting the data of the acceleration sensor to filter out the signal affecting the accuracy, thereby improving the accuracy and stability of the position sensing device positioning, and the mouse The accuracy of the pointer control.
  • the Kalman filter After weighting the data of the gyroscope and the data of the acceleration sensor, the Kalman filter makes the combined data more accurate and stable, further improving the accuracy and stability of the position sensing device positioning, and the accuracy of the mouse pointer control.

Abstract

一种姿态感知设备及其定位、鼠标指针的控制方法和装置。所述姿态感知设备的定位方法包括:获取陀螺仪的敏感轴的旋转角;获取加速度传感器的敏感轴的偏转角和线加速度,所述加速度传感器的敏感轴对应所述陀螺仪的敏感轴;基于所述加速度传感器的敏感轴的线加速度设置对应所述陀螺仪的第一权重和对应所述加速度传感器的第二权重;基于所述第一权重和第二权重,对所述旋转角和所述偏转角进行加权处理,得到姿态感知设备的姿态角。本发明的技术方案可以实现姿态感知设备的准确定位以及鼠标指针的精确控制。

Description

姿态感知设备及其定位、 鼠标指针的控制方法和装置 本申请要求于 2011 年 8 月 30 日提交中国国家知识产权局、 申请号为 201110252933.6、 发明名称为"姿态感知设备及其定位、 鼠标指针的控制方法 和装置 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及姿态感知设备及其应用技术领域,特别涉及姿态感知设备及其 定位方法和装置、 鼠标指针的控制方法和装置。 背景技术
目前,计算机鼠标指针的定位大多数都依靠光学传感器或激光传感器来实 现,这些传感器都基于物理光学原理,使得传感器需要依靠桌面等平台来实现。 但是在很多场合, 例如在计算机多媒体教学中, 用户想在空中操控鼠标指针或 是通过在空中操控鼠标指针来实现多媒体电视播放、 网页浏览等应用,仅使用 传统的传感器就无法实现,于是空间鼠标应运而生。空间鼠标是一种输入设备, 像传统鼠标一样操作屏幕光标(鼠标指针), 但却不需要放在任何平面上, 在 空中晃动就能直接依靠空中运动姿态的感知实现对鼠标指针的控制。要实现空 中运动姿态的感知, 一般在姿态感知设备(例如空间鼠标) 中设置惯性器件, 利用惯性器件测量技术实现对运动载体姿态的跟踪。 利用惯性器件测量技术进行运动载体姿态的跟踪具有非常广阔的前景。惯 性跟踪系统的基本原理是在目标初始位置和姿态已知的基础上, 依据惯性原 理, 利用陀螺仪传感器(以下筒称陀螺仪)、 加速度传感器等惯性器件测量物 体运动的角速度和直线加速度, 然后通过积分获得物体的位置和姿态。 其中, 陀螺仪基本原理是运用物体高速旋转时,强大的角动量使旋转轴一直稳定指向 一个方向的性质, 所制造出来的定向仪器。 当运动方向与转轴指向不一致时, 会产生相应的偏角,再根据偏角与运动的关系,得到目前运动物体的运动轨迹 和位置,从而实现定位的功能。而加速度传感器技术是惯性与力的检测综合体, 目前在汽车电子和消费电子领域有较多的应用。加速度传感器通过实时采集运 动物体加速度信号, 通过二阶积分的方式得到运动的轨迹实现定位。 另外, 在 器件处于相对稳定的状态下, 可以通过分析传感器件自身重力加速度,得到目 前器件的自身姿态。 陀螺仪输出角速度,是瞬时量,将角速度对时间积分计算得到的角度变化 量与初始角度相加, 得到角度, 其中积分时间 dt越小, 输出角度越准。 但是陀 螺仪的原理决定其测量基准是自身, 没有系统外的绝对参照物, 加上 dt不可能 无限小, 所以积分的累积误差会随时间迅速增加, 导致最终输出角度与实际不 符。 加速度传感器测量的是重力方向, 有系统外的绝对参照物 "重力轴" , 在 无外力加速度的情况下, 能准确地输出角度并且不会有累积误差。但是加速度 传感器是用 MEMS技术检测惯性力造成的微小形变, 而惯性力本质上就是重 力, 所以加速度传感器不能区分重力加速度和外力加速度, 当系统在三维空间 做变速运动时, 加速度传感器的输出就不准确了。
相关技术还可参考公开号为WO2005108119(A2) 的国际专利申请,该专利 申请公开了一种带有倾斜补偿和提高可用性的自由空间定位设备。 由于陀螺仪技术以及加速度传感器技术都存在运动物体姿态与运动状态 很难完全体现的不足, 因此,如何将陀螺仪技术以及加速度传感器技术有效地 结合,从而能实现空间定位的准确性和稳定性是本领域技术人员长期探讨的问 题。
发明内容
本发明解决的问题是提供一种姿态感知设备及其定位方法和装置、鼠标指 针的控制方法和装置,结合陀螺仪技术和加速度传感器技术实现空间定位的准 确性和稳定性。
为解决上述问题, 本发明实施方式提供一种姿态感知设备的定位方法, 所 述姿态感知设备包括陀螺仪和加速度传感器,所述姿态感知设备的定位方法包 括: 获取陀螺仪的敏感轴的旋转角; 获取加速度传感器的敏感轴的偏转角和线 加速度, 所述加速度传感器的敏感轴对应所述陀螺仪的敏感轴; 基于所述加速 度传感器的敏感轴的线加速度设置对应所述陀螺仪的第一权重和对应所述加 速度传感器的第二权重; 基于所述第一权重和第二权重, 对所述旋转角和所 述偏转角进行加权处理, 得到姿态感知设备的姿态角。
为解决上述问题,本发明实施方式还提供一种鼠标指针的控制方法,包括: 上述的姿态感知设备的定位方法; 计算所述姿态感知设备的变化分量 Ad, 其 中, M = d _d∞ , Θ为姿态角, d为姿态感知设备在空间坐标系的初始分量; 确定所述鼠标指针的位移变化量 As, 其中, = M I、SF *MF、, SF为所述陀螺 仪的灵敏度系数, MF为鼠标指针的灵敏度系数; 基于所述鼠标指针的位移变 化量控制所述鼠标指针的移动。
为解决上述问题, 本发明实施方式还提供一种姿态感知设备的定位装置, 包括: 第一获取单元, 适于获取陀螺仪的敏感轴的旋转角; 第二获取单元, 适 于获取加速度传感器的敏感轴的偏转角和线加速度,所述加速度传感器的敏感 轴对应所述陀螺仪的敏感轴;设置单元,适于基于所述加速度传感器的敏感轴 的线加速度设置对应所述陀螺仪的第一权重和对应所述加速度传感器的第二 权重; 处理单元, 适于基于所述第一权重和第二权重, 对所述旋转角和所述偏 转角进行加权处理, 得到姿态感知设备的姿态角。
为解决上述问题,本发明实施方式还提供一种鼠标指针的控制装置,包括: 上述的姿态感知设备的定位装置; 分量变化确定单元,适于计算所述姿态感知 设备的分量变化 Ad, 其中, M = d _d∞ , Θ为姿态角, d为姿态感知设备在 空间坐标系的初始分量; 位移变化确定单元,适于确定所述鼠标指针的位移变 化量 As, 其中, = M I、SF *MF、, SF为所述陀螺仪的灵敏度系数, MF为鼠 标指针的灵敏度系数; 指针控制单元, 适于基于所述鼠标指针的位移变化量控 制所述鼠标指针的移动。
为解决上述问题, 本发明实施方式还提供一种姿态感知设备, 包括: 陀螺 仪、 加速度传感器和上述的姿态感知设备的定位装置。
与现有技术相比,上述技术方案基于线加速度对陀螺仪和加速度传感器设 置不同的权重,使得陀螺仪的权重和加速度传感器的权重可以随线加速度变化 而自适应调整; 并且,通过加权处理将陀螺仪的敏感轴的旋转角和加速度传感 器的敏感轴的偏转角结合,由此有效地融合了陀螺仪的数据和加速度传感器的 数据, 实现了姿态感知设备的准确定位和鼠标指针的精确控制。 附图说明
图 1是本发明实施方式的姿态感知设备的定位方法的流程图;
图 2是本发明实施方式的三维空间坐标系的示意图;
图 3是本发明实施例 1的姿态感知设备的定位方法的步骤 S3的流程图; 图 4是本发明实施例 1的姿态感知设备的定位方法的步骤 S4的流程图; 图 5是本发明实施例 1的姿态感知设备的定位装置的结构示意图; 图 6是本发明实施例 2的姿态感知设备的定位方法的步骤 S3的流程图; 图 7是本发明实施例 2的姿态感知设备的定位方法的步骤 S4的流程图; 图 8是本发明实施例 2的姿态感知设备的定位装置的结构示意图; 图 9 是本发明实施例的鼠标指针的控制方法在姿态感知设备的定位步骤 后的流程图; 图 10是本发明实施例的鼠标指针的控制装置的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以 便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式 来实施, 因此本发明不受下面公开的具体实施例的限制。
本发明实施方式的姿态感知设备包括陀螺仪和加速度传感器,由于姿态感 知设备一般是前端运动最大,因此陀螺仪和加速度传感器可以安装在姿态感知 设备中靠近前端的位置, 以更好地感应姿态感知设备的运动。要对姿态感知设 备实现准确定位, 需要融合陀螺仪的数据和加速度传感器的数据, 融合通常包 括实时融合和长期融合, 实时融合每一算法周期执行一次(即每次采样数据后 都执行一次), 长期融合固定检测周期 (例如 256个算法周期)执行一次。
融合可以是互补权重融合, 也可以结合互补权重融合和卡尔曼滤波融合。 所谓互补权重融合是指对陀螺仪和加速度传感器设置不同的权重,两者的权重 之和为 1 , 然后将陀螺仪的数据和加速度传感器的数据进行加权处理。 由于在 无外力加速度的情况下, 加速度传感器能准确地输出角度并且不会有累积误 差, 也就是说, 加速度传感器在静态或低速运动时精度很高; 而当姿态感知设 备在三维空间做变速运动,特别是高速运动时, 由于加速度传感器不能区分重 力加速度和外力加速度, 其在高速运动时精度就降低了。 因此可以基于姿态感 知设备的不同运动状态, 如静态、 低速或高速, 对陀螺仪和加速度传感器设置 不同的权重, 具体地, 在静态或低速时, 加速度传感器的精度较高, 设置加速 度传感器的权重大于陀螺仪的权重; 在高速时, 陀螺仪的精度较高, 设置陀螺 仪的权重大于加速度传感器的权重。 需要说明的是, 本发明实施方式是结合陀 螺仪和加速度传感器两种惯性器件对姿态感知设备进行定位,因此两者的权重 互补, 即权重之和为 1 , 但是, 如果姿态感知设备还结合其他惯性器件(例如 地磁传感器)进行定位, 则陀螺仪和加速度传感器的权重之和可以小于 1。
基于上述分析, 本发明实施方式提供一种姿态感知设备的定位方法如图 1 所示, 包括:
步骤 S1 , 获取陀螺仪的敏感轴的旋转角;
步骤 S2 , 获取加速度传感器的敏感轴的偏转角和线加速度, 所述加速度 传感器的敏感轴对应所述陀螺仪的敏感轴;
步骤 S3 , 基于所述加速度传感器的敏感轴的线加速度设置对应所述陀螺 仪的第一权重和对应所述加速度传感器的第二权重;
步骤 S4, 基于所述第一权重和第二权重, 对所述旋转角和所述偏转角进 行加权处理, 得到姿态感知设备的姿态角。
如图 2所示, 姿态感知设备 AO在三维空间内运动, 设三维空间坐标系包 括两两垂直的 X轴、 y轴和 z轴, 其中, X轴和 y轴平行于地平面, z轴垂直 于地平面, 陀螺仪可以是单轴陀螺仪、 两轴陀螺仪或三轴陀螺仪, 加速度传感 器可以是单轴重力加速度传感器、两轴重力加速度传感器或三轴重力加速度传 感器。 姿态感知设备平行于地平面时, 陀螺仪的敏感轴与对应的坐标轴重合, 加速度传感器的敏感轴与对应的坐标轴重合。
以姿态感知设备包括两个相互垂直的单轴陀螺仪和一个三轴重力加速度 传感器为例,姿态感知设备平行于地平面时, 其中一个单轴陀螺仪的敏感轴与 X轴重合, 记为 X轴陀螺仪; 另一个单轴陀螺仪的敏感轴与 z轴重合, 记为 z 轴陀螺仪; 加速度传感器的三个敏感轴分别与 X轴、 y轴和 z轴重合, 分别记 为加速度传感器的 X敏感轴、 y敏感轴和 z敏感轴; 其中, 加速度传感器的 X 敏感轴对应 X轴陀螺仪的敏感轴,加速度传感器的 z敏感轴对应 z轴陀螺仪的 敏感轴。
下面即以姿态感知设备包括两个相互垂直的单轴陀螺仪和一个三轴重力 加速度传感器,姿态感知设备在所述空间坐标系内运动为例进行详细说明。 首 先对旋转角、 偏转角、 倾斜角和姿态角进行定义:
陀螺仪的敏感轴的旋转角是指陀螺仪的敏感轴与其对应的坐标轴的夹角, 用 α表示。 具体地, X轴陀螺仪的敏感轴的旋转角是指 X轴陀螺仪的敏感轴与 X轴的夹角, 记为 αχ; ζ轴陀螺仪的敏感轴的旋转角是指 ζ轴陀螺仪的敏感轴 与 ζ轴的夹角, 记为 αζ
加速度传感器的敏感轴的偏转角是指加速度传感器的敏感轴与其对应的 坐标轴的夹角, 用 β表示。 具体地, 加速度传感器的 X敏感轴的偏转角是指 X 敏感轴与 X轴的夹角, 记为 βχ; 加速度传感器的 Ζ敏感轴的偏转角是指 Ζ敏感 轴与 Ζ轴的夹角, 记为 βζ
加速度传感器测量的是敏感轴的倾斜角,加速度传感器的敏感轴的倾斜角 是指加速度传感器的敏感轴与重力加速度方向的夹角,实际上也就是加速度传 感器的敏感轴与 ζ轴的夹角, 用 γ表示, 加速度传感器的敏感轴的偏转角通过 敏感轴的倾斜角转换得到。 具体地, 加速度传感器的 X敏感轴的倾斜角是指 X 敏感轴与 ζ轴的夹角, 记为 γχ; 加速度传感器的 ζ敏感轴的倾斜角是指 ζ敏感 轴与 ζ轴的夹角, 记为 γζ
姿态感知设备的姿态角是指姿态感知设备与各坐标轴的夹角, 用 Θ表示。 具体地,姿态感知设备与 X轴的姿态角是指姿态感知设备与 X轴的夹角,记为 θχ; 姿态感知设备与 Ζ轴的姿态角是指姿态感知设备与 Ζ轴的夹角记为 θζ
上述的夹角均为锐角。
实施例 1
本实施例结合互补权重滤波融合和卡尔曼滤波融合对陀螺仪的敏感轴的 旋转角和加速度传感器的敏感轴的偏转角进行融合,获得姿态感知设备的姿态 角。
请参考图 1 , 步骤 S1 , 获取陀螺仪的敏感轴的旋转角。 陀螺仪输出的是敏 感轴的角速度, 角速度对时间积分可以得到角度变化量,再与初始角度相加可 以得到旋转角, 可以用公式表示为: = + 6^ , 其中, α为陀螺仪的敏感轴 的旋转角, on为陀螺仪的敏感轴的初始角度 (前一采样时刻确定的旋转角), ω为陀螺仪的敏感轴的角速度(当前采样时刻获取的角速度)。
具体实施时, X轴陀螺仪的敏感轴的旋转角《χ = «χ1 + , 其中, 为 X 轴陀螺仪的敏感轴的旋转角, 1为 X轴陀螺仪的敏感轴的初始角度, 0^为 X 轴陀螺仪的敏感轴的角速度。 ζ轴陀螺仪的敏感轴的旋转角 c z = c zl + cozdt,其中, 为 z轴陀螺仪的敏感轴的旋转角, αζ1为 z轴陀螺仪的敏感轴的初始角度, ωζ 为 ζ轴陀螺仪的敏感轴的角速度。
步骤 S2, 获取加速度传感器的敏感轴的偏转角和线加速度, 所述加速度 传感器的敏感轴对应所述陀螺仪的敏感轴。加速度传感器输出的是各敏感轴的 倾斜角, 对各敏感轴的倾斜角进行转换后可以得到各敏感轴的偏转角。
具体实施时, 加速度传感器的 X敏感轴的偏转角 βχ=90。-γχ , ζ敏感轴的偏 转角 βζζ , γχ为加速度传感器的 X敏感轴的倾斜角, γζ为加速度传感器的 ζ 敏感轴的倾斜角。
加速度传感器还输出各敏感轴的线加速度,可以反映姿态感知设备的不同 运动状态, 因此可作为设置权重的依据, 具体请参见步骤 S3的说明。
步骤 S3 , 基于所述加速度传感器的敏感轴的线加速度设置对应所述陀螺 仪的第一权重和对应所述加速度传感器的第二权重。
本实施例中, 对陀螺仪的数据(敏感轴的旋转角)和加速度传感器的数据 (敏感轴的偏转角)进行加权前,还需要对陀螺仪的数据和加速度传感器的数 据进行滤波(参见步骤 S4 ), 因此, 步骤 S3首先建立滤波时间常数与加速度 传感器的敏感轴的线加速度的关联,再基于滤波时间常数与第一权重和第二权 重存在的关联得到权重值。 如图 3所示, 本实施例的步骤 S3包括:
步骤 S31 , 设置第一滤波参数 η和第二滤波参数 m, 所述第二滤波参数 m 为所述第一滤波参数 n的 3~5倍,通常为整数倍。 第一滤波参数 n和第二滤波 参数 m为建立滤波时间常数与加速度传感器的敏感轴的线加速度的关联所需 要的参数。 所述第一滤波参数 n为经验值, 本实施例中, 第一滤波参数 n的取 值范围为 [3 , 6] , 通常取整数, 例如, 3、 4、 5或 6。
步骤 S32, 确定滤波时间常数 τ, 其中, 若 K n/m Μ τ = -πι ^ Κϊ + η , 若 Ki>n/m则 τ=0, Ki为所述加速度传感器的合加速度与重力加速度 G的差值, 所述加速度传感器的合加速度是指各敏感轴(X敏感轴、 y敏感轴和 z敏感轴) 的线加速度的矢量和。加速度传感器除了输出敏感轴的倾斜角,还输出敏感轴 的线加速度, 线加速度为矢量, 有大小和方向, 大小通常是以重力加速度 G 的倍数表示, 如 1G、 1.2G、 2G、 2.5G等, 因此 Ki与重力加速度 G呈倍数关 系。 滤波时间常数 τ是相对于信号的持续时间而言的, 对于低通滤波, 允许持 续时间大于或等于滤波时间常数 τ的信号通过,而持续时间小于滤波时间常数 τ 的信号则会被滤除(允许低频信号通过, 滤除高频信号); 对于高通滤波, 允许持续时间小于或等于滤波时间常数 τ的信号通过,而持续时间大于滤波时 间常数 τ的信号则会被滤除(允许高频信号通过, 滤除低频信号)。
步骤 S33 , 确定第一权重 a和第二权重 b , 其中, b = ~^ , a = l—b。 滤 τ + dt
波时间常数 τ可以理解为两个权重的比值再乘以采样时间 dt, 即^ = ^ , 当 l - b 滤波时间常数 τ确定后,对应于陀螺仪的第一权重 a和对应于加速度传感器的 第二权重 b也可以确定。 通过上述步骤建立了第一权重 a、 第二权重 b与加速度传感器的合加速度 与重力加速度的差值 Ki之间的关联, 从而使得第一权重 a、 第二权重 b可以 随加速度传感器的合加速度与重力加速度的差值 Ki的变化而自适应调整。
具体来说, 当 Ki<n/m时, τ>0 , τ随 Ki减小而增大, b随 τ增大而增大, a随 τ增大而减小; Ki=n/m时, τ=0 , a=l , b=0 , 环境外力对姿态感知设备的 作用影响了加速度传感器的线加速度变化,当加速度传感器的合加速度与重力 加速度的差值 Ki达到上限值 n/m时, 说明环境外力的作用太大, 加速度传感 器的数据的可靠性大大降低, 对应陀螺仪的第一权重 a为 1 , 对应加速度传感 器的第二权重 b为 0 , 也就是说, 不需要结合加速度传感器的数据去修正陀螺 仪的数据,而直接将陀螺仪的数据进行后续的定位计算。进一步地, 当 Ki>n/m 时,如果根据7 = -»^ ' + «计算得到 τ<0 ,此时再结合加速度传感器的数据去修 正陀螺仪的数据也就没有意义, 所以当 Ki>n/m时, 直接设置 τ=0 , 相应地, a=l , b=0。
在确定滤波时间常数 τ, 以及对应所述陀螺仪的第一权重 a和对应所述加 速度传感器的第二权重 b后, 如图 4所示, 本实施例的步骤 S4 , 基于所述第 一权重和第二权重,对所述旋转角和所述偏转角进行加权处理,得到姿态感知 设备的姿态角包括: 步骤 S41 , 基于所述滤波时间常数 τ对所述旋转角进行高通滤波后乘以所 述第一权重, 得到第一乘积结果;
步骤 S42, 基于所述滤波时间常数 τ对所述偏转角进行低通滤波后乘以所 述第二权重, 得到第二乘积结果;
步骤 S43 , 对所述第一乘积结果和第二乘积结果进行卡尔曼滤波, 得到所 述姿态角。
由于低频信号会降低陀螺仪的检测精度,因此需要滤除陀螺仪的数据中的 低频信号, 即对陀螺仪的敏感轴的旋转角进行高通滤波, 滤波后的数据近似为 α; 而高频信号会降低加速度传感器的检测精度, 因此需要滤除加速度传感器 的数据中的高频信号, 即对加速度传感器的敏感轴的偏转角进行低通滤波, 滤 波后的数据近似为 β; 然后再对滤波后的陀螺仪的数据和加速度传感器的数据 进行加权和卡尔曼滤波。 卡尔曼滤波已广泛应用于目标跟踪系统中, 利用目标 的动态信息, 去除噪声影响, 得到目标位置的准确估计, 由于其为本领域所熟 知且广泛采用的技术, 在此不再展开说明。
在具体实施时, 对 X轴陀螺仪的敏感轴的旋转角 αχ进行高通滤波后再乘 以第一权重 a;对加速度传感器的 X敏感轴的偏转角 0 进行低通滤波后再乘以 第二权重 b; 将两个相乘的结果输入卡尔曼滤波器, 卡尔曼滤波器的输出结果 即为姿态感知设备与 X轴的姿态角 θχ。 对 ζ轴陀螺仪的敏感轴的旋转角 进 行高通滤波后再乘以第一权重 a;对加速度传感器的 z敏感轴的偏转角 βζ进行 低通滤波后再乘以第二权重 b; 将两个相乘的结果输入卡尔曼滤波器, 卡尔曼 滤波器的输出结果即为姿态感知设备与 z轴的姿态角 θζ。由于本实施例的姿态 感知设备仅包括两个陀螺仪, 因此,确定姿态感知设备的姿态角只需确定姿态 感知设备与 X轴的姿态角和与 Ζ轴的姿态角即可, 在其他实施例中,还可以包 括 y轴陀螺仪,相应地就可以根据 y轴陀螺仪的敏感轴的旋转角和加速度传感 器的 y敏感轴的偏转角确定姿态感知设备与 y轴的姿态角。
在其他实施例中, 步骤 S4也可以不进行卡尔曼滤波, 而是加权后直接累 加, 即将所述第一乘积结果和第二乘积结果相加, 得到所述姿态角, 由于对陀 螺仪的数据进行高通滤波后近似为 a, 对加速度传感器的数据进行低通滤波后 近似为 β , 因此姿态感知设备与 X轴的姿态角 θχ和与 ζ轴的姿态角 θζ可以分 别表示为: θχ α *αχ + ) *βχ , 《o*i¾ + b*A。 本实施例采用卡尔曼滤波可以进 一步提高定位的准确性和稳定性。
确定姿态感知设备的姿态角也就实现了姿态感知设备的定位,即可以用姿 态感知设备的姿态角来表示姿态感知设备的位置。 进一步,还可以用姿态感知 设备在空间坐标系的各坐标轴的分量来表示姿态感知设备的位置,本发明实施 例的姿态感知设备的定位方法还可以包括:确定所述姿态感知设备在空间坐标 系的分量 dcos0, d为姿态感知设备在空间坐标系的初始分量, Θ为姿态角。
本实施例在具体实施时,所述姿态感知设备在空间坐标系的分量 dcose包 括: 姿态感知设备在空间坐标系的 X轴的分量 dxcos0x和在空间坐标系的 z轴 的分量 dzcos0z, dx为姿态感知设备在空间坐标系的 X轴的初始分量, dz为姿态 感知设备在空间坐标系的 z轴的初始分量, 用坐标表示, 姿态感知设备从初始 位置 ( dx, dz )运动到了当前位置 ( dxcos9x, dzcos9z )。
对应地, 本实施例的姿态感知设备的定位装置如图 5所示, 包括: 第一获取单元 A1 , 适于获取陀螺仪的敏感轴的旋转角;
第二获取单元 A2,适于获取加速度传感器的敏感轴的偏转角和线加速度, 所述加速度传感器的敏感轴对应所述陀螺仪的敏感轴;
设置单元 A3 , 适于从所述第二获取单元 A2获取所述加速度传感器的敏 感轴的线加速度 ,基于所述加速度传感器的敏感轴的线加速度设置对应所述陀 螺仪的第一权重和对应所述加速度传感器的第二权重;
处理单元 A4, 适于基于所述设置单元 A3设置的第一权重和第二权重, 对所述第一获取单元 A1获取的陀螺仪的敏感轴的旋转角和所述第二获取单元 A2获取的加速度传感器的敏感轴的偏转角进行加权处理, 得到姿态感知设备 的姿态角。
所述设置单元 A3进一步包括:
滤波参数设置单元 A31 ,适于设置第一滤波参数 n和第二滤波参数 m, 所 述第一滤波参数 n的取值范围为 [3 , 6] , 所述第二滤波参数 m为所述第一滤波 参数 n的 3-5倍;
时间常数确定单元 A32 , 适于从所述第二获取单元 A2获取所述加速度传 感器的敏感轴的线加速度,从所述滤波参数设置单元 A31获取第一滤波参数 n 和第二滤波参数 m, 确定滤波时间常数 τ, 其中, 若 Ki n/m则 T =—m ^ Κί + η ·> 若 Ki〉n/m则 τ=0, Ki为所述加速度传感器的各敏感轴的线加速度的矢量和与 重力加速度的差值;
权重确定单元 A33 , 适于从所述时间常数确定单元 A32获取滤波时间常 数 τ, 基于所述滤波时间常数 τ确定所述第一权重 a和第二权重 b, 其中, b = ~ - ~ , a = i _b。
τ + dt
所述处理单元 A4进一步包括:
高通滤波器 A41 ,适于对所述第一获取单元 A1获取的陀螺仪的敏感轴的 旋转角进行高通滤波, 所述高通滤波器的滤波时间常数从时间常数确定单元 A32获取;
第一乘法器 A42, 适于将所述高通滤波器 A41的输出结果乘以所述权重 确定单元 A33确定的第一权重, 得到第一乘积结果;
低通滤波器 A43 , 适于对所述第二获取单元 A2获取的加速度传感器的偏转 角进行低通滤波, 所述低通滤波器的滤波时间常数从时间常数确定单元 A32 获取;
第二乘法器 A44, 适于将所述低通滤波器 A43 的输出结果乘以所述权重 确定单元 A33确定的第二权重, 得到第二乘积结果;
卡尔曼滤波器 A45 , 适于对所述第一乘法器 A42输出的第一乘积结果和 第二乘法器 A44输出的第二乘积结果进行卡尔曼滤波, 得到所述姿态感知设 备的姿态角。
在其他实施例中, 也可以利用加法器替代所述卡尔曼滤波器 A45 , 所述加 法器适于将所述第一乘积结果和第二乘积结果相加, 得到所述姿态角。
此外, 本实施例的姿态感知设备的定位装置还可以包括分量确定单元(图 中未示 ), 所述分量确定单元适于确定所述姿态感知设备在空间坐标系的分量 dcosB, 其中, d为姿态感知设备在空间坐标系的初始分量, Θ为姿态角。
实施例 2
本实施例的步骤 S1和 S2与实施例 1相同, 下面对步骤 S3和 S4进行详 细说明。
本实施例的步骤 S4与实施例 1的步骤 S4的区别是对陀螺仪的数据和加 速度传感器的数据直接加权, 在加权前不进行滤波, 因此, 本实施例的步骤 S3 可以不设置滤波参数, 而直接将加速度传感器测得的线加速度转换成线速 度,基于所述线速度在一定范围内设置相对固定的第一权重和第二权重, 第一 权重和第二权重之和为 1 , 具体地, 请参考图 6, 步骤 S3包括:
步骤 S31,, 将所述加速度传感器的各敏感轴的线加速度的矢量和对时间 积分得到线速度。 求所述加速度传感器的 X敏感轴、 y敏感轴和 z敏感轴的线 加速度的矢量和, 求得的矢量和对时间积分可以得到线速度。
步骤 S32,, 判断所述线速度是否小于预设值, 若是则执行步骤 S33,, 若 否则执行 S34'。
步骤 S33,, 设置所述第一权重小于所述第二权重。 在静态或低速运动状 态, 线速度小于预设值, 加速度传感器的精度高于陀螺仪的精度, 所以设置对 应于加速度传感器的第二权重大于对应于陀螺仪的第一权重。
步骤 S34,, 设置所述第一权重大于所述第二权重。 在高速运动状态, 线 速度大于或等于所述预设值, 陀螺仪的精度高于加速度传感器的精度, 所以设 置对应于陀螺仪的第一权重大于对应于加速度传感器的第二权重。
所述预设值为根据实际情况而预先设定的经验值, 本实施例中, 所述预 设值的取值范围可以为 [0.4, 0.6] , 单位为米 /秒, 例如, 所述预设值为 0.5m/s, 若所述线速度小于所述预设值, 则所述第一权重的取值范围可以为 [0, 2/5] , 例如设置第一权重为 1/3 , 则第二权重为 2/3 ; 或者, 设置第一权重为 2/5 , 则 第二权重为 3/5; 如果线速度很小或为 0 , 可以将第一权重设为 0, 第二权重设 为 1。 若所述线速度大于或等于所述预设值, 则所述第一权重的取值范围可以 为 [3/5 , 1] , 一般在线速度增大时, 加速度传感器的数据的可靠性降低, 应用 加速度传感器的数据修正陀螺仪的数据意义不大, 可以设置第一权重为 1 , 则 第二权重为 0。
在其他实施例中, 也可以预先设置两个预设值, 如第一预设值和第二预 设值, 所述第二预设值大于所述第一预设值, 当所述线速度小于所述第一预设 值, 例如 0.3m/s时,设置第一权重小于第二权重, 例如,设置第一权重为 1/3 , 第二权重为 2/3 ; 当所述线速度大于所述第二预设值, 例如 0.6m/s时, 设置第 一权重为 1 , 第二权重为 0; 否则设置第一权重大于第二权重, 例如设置第一 权重为 2/3 , 第二权重为 1/3。 也就是说, 随着线速度增加, 逐渐减小加速度传 感器的权重, 增加陀螺仪的权重。
请继续参考图 7 , 本实施例的步骤 S4包括: 步骤 S41,, 将所述旋转角乘以所述第一权重, 得到第三乘积结果; 步骤 S42,, 将所述偏转角乘以所述第二权重, 得到第四乘积结果; 步骤 S43,, 对所述第三乘积结果和第四乘积结果进行卡尔曼滤波, 得到 所述姿态角。
步骤 S4与实施例 1的步骤 S4的区别在于:将陀螺仪的敏感轴的旋转角直 接乘以第一权重,加权前不进行高通滤波; 将加速度传感器的敏感轴的偏转角 直接乘以第二权重, 加权前不进行低通滤波。 此外, 步骤 S4所应用的第一权 重和第二权重可以是本实施例的步骤 S3所设置的第一权重和第二权重, 也可 以是实施例 1的步骤 S3所设置的第一权重和第二权重。
在其他实施例中, 步骤 S4也可以不进行卡尔曼滤波, 而是加权后直接累 加, 即将所述第三乘积结果和第四乘积结果相加, 得到所述姿态角, 具体地, 姿态感知设备与 X轴的姿态角 θχ和与 ζ 轴的姿态角 θζ可以分别表示为: θχ = αχ +1^βχ , θζ = α *αζ + 1) *βζ 。 本实施例采用卡尔曼滤波可以提高定位的准 确性和稳定性。
进一步, 本实施例的姿态感知设备的定位方法还可以包括: 确定所述姿态 感知设备在空间坐标系的分量 dcos0, d为姿态感知设备在空间坐标系的初始 分量, Θ为姿态角。
对应地, 本实施例的姿态感知设备的定位装置如图 8所示, 包括: 第一获取单元 B1 , 适于获取陀螺仪的敏感轴的旋转角;
第二获取单元 B2,适于获取加速度传感器的敏感轴的偏转角和线加速度, 所述加速度传感器的敏感轴对应所述陀螺仪的敏感轴;
设置单元 B3 ,适于基于所述第二获取单元 B2获取的所述加速度传感器的 敏感轴的线加速度设置对应所述陀螺仪的第一权重和对应所述加速度传感器 的第二权重;
处理单元 B4,适于基于所述设置单元 B3设置的第一权重和第二权重,对 所述第一获取单元 B1 获取的陀螺仪的敏感轴的旋转角和所述第二获取单元 B2获取的加速度传感器的敏感轴的偏转角进行加权处理, 得到姿态感知设备 的姿态角。
所述设置单元 B3进一步包括:
线速度计算单元 B31 ,适于将所述加速度传感器的各敏感轴的线加速度的 矢量和对时间积分得到线速度,所述加速度传感器的各敏感轴的线加速度从所 述第二获取单元 B2获取;
判断单元 B32,适于判断所述线速度计算单元 B31得到的所述线速度是否 小于预设值;
权重设置单元 B33 ,适于在所述判断单元 B32的判断结果为是时设置所述 第一权重小于所述第二权重; 在所述判断单元 B32 的判断结果为否时设置所 述第一权重大于所述第二权重。
在其他实施例中, 所述设置单元可以包括:
线速度计算单元,适于将所述加速度传感器的各敏感轴的线加速度的矢量 和对时间积分得到线速度,所述加速度传感器的各敏感轴的线加速度从所述第 二获取单元获取;
第一判断单元,适于判断所述线速度计算单元得到的线速度是否小于第一 预设值;
第二判断单元,适于判断所述线速度计算单元得到的线速度是否大于第二 预设值, 所述第二预设值大于所述第一预设值, 第二判断单元可以在所述第一 判断单元的判断结果为否时判断所述线速度是否大于第二预设值;
权重设置单元,适于在所述第一判断单元的判断结果为是时设置第一权重 小于第二权重; 在所述第二判断单元的判断结果为是时设置第一权重为 1 , 第 二权重为 0; 否则设置第一权重大于第二权重。
所述处理单元 B4进一步包括:
第三乘法器 B41 , 适于将所述第一获取单元 B1获取的陀螺仪的敏感轴的 旋转角乘以所述权重设置单元 B33设置的第一权重, 得到第三乘积结果; 第四乘法器 B42 , 适于将所述第二获取单元 B2获取的加速度传感器的敏 感轴的偏转角乘以所述权重设置单元 B33设置的第二权重, 得到第四乘积结 果;
卡尔曼滤波器 B43 ,适于对所述第三乘法器 B41输出的第三乘积结果和所 述第四乘法器 B42输出的第四乘积结果进行卡尔曼滤波, 得到所述姿态感知 设备的姿态角。
在其他实施例中, 也可以利用加法器替代所述卡尔曼滤波器 B43 , 所述加 法器适于将所述第三乘积结果和第四乘积结果相加, 得到所述姿态角。 此外,本实施例的姿态感知设备的定位装置还可以包括分量确定单元(图 中未示 ), 所述分量确定单元适于确定所述姿态感知设备在空间坐标系的分量 dcosB, d为姿态感知设备在空间坐标系的初始分量, Θ为姿态角。
上述姿态感知设备可以作为空间鼠标, 用于控制屏幕上鼠标指针的移动。 本发明实施例还提供一种鼠标指针的控制方法, 包括: 上述的姿态感知 设备的定位方法, 如图 9所示, 还包括:
步骤 S5 , 计算所述姿态感知设备的变化分量 Ad, 其中, M = d _d d Θ 为姿态角, d为姿态感知设备在空间坐标系的初始分量;
步骤 S6, 确定所述鼠标指针的位移变化量 As, 其中, S = M I、SF *MF、, SF为所述陀螺仪的灵敏度系数, MF为鼠标指针的灵敏度系数;
步骤 S7 , 基于所述鼠标指针的位移变化量控制所述鼠标指针的移动。 具体实施时, 步骤 S5所述的姿态感知设备的变化分量 Ad包括: 姿态感 知设备在 X轴的变化分量 ΔΑ和在 z轴的变化分量 ΔΒ , 其中, M = A - A cos , A为姿态感知设备在 X轴的初始分量; Δβ = β _ β cos , B为姿态感知设备在 z 轴的初始分量。步骤 S5确定了姿态感知设备在 X轴和 z轴所确定的二维空间, 从第一位置运动到第二位置的变化, 其中, 第一位置可以用坐标(A, B )表 示, A为第一位置在 X轴的分量, B为第一位置在 z轴的分量; 第二位置可以 用坐标(Acos0x, Bcos9z ), Acos0x为第二位置在 x轴的分量, :^0802为第二位 置在 Z轴的分量。
将姿态感知设备的空间运动映射到屏幕上鼠标指针的运动,以相互垂直的
X轴(对应 X轴)和 Y轴(对应 z轴 )确定的屏幕为例, 步骤 S6所述的鼠标 指针的位移变化量 As包括: 鼠标指针在 X轴的位移变化量 ΔΧ和在 Y轴的位 移变化量 ΔΥ。
步骤 S6 的具体实施可以包括: 确定所述鼠标指针在 X轴的位移变化量 ΔΧ, 其中, AX = / (^Fx *MF) , SFX为 x轴陀螺仪的灵敏度系数, MF为鼠标 指针的灵敏度系数; 确定所述鼠标指针在 Y 轴的位移变化量 ΔΥ , 其中, ΔΥ = ΔΒ / (SFz *MF) , SFZ为 ζ轴陀螺仪的灵敏度系数, 所述 Υ轴垂直于所述 X 轴。步骤 S7的具体实施可以包括:基于所述鼠标指针在 X轴的位移变化量 ΔΧ 和在 Υ轴的位移变化量 ΔΥ控制所述鼠标指针的移动,将鼠标指针从第三位置 移动到第四位置, 若鼠标在第三位置的坐标为(XI , Y1 ), 则鼠标在第四位置 的坐标为 (Xl+ΔΧ, Υ1+ΔΥ )。 其中, 陀螺仪的灵敏度系数和鼠标的灵敏度系 数是根据实际需求和运行环境, 例如准确度要求、屏幕大小和分辨率等而设定 和调整, 此为本领域技术人员所公知, 在此不再展开说明。
需要说明的是, 如果在姿态感知设备中安装三个相互垂直的陀螺仪, 也 可以基于上述方法实现以姿态感知设备在三维空间的运动控制鼠标指针在二 维 /三维空间的移动。
对应地, 本发明实施例的鼠标指针的控制装置如图 10所示, 包括: 姿态感知设备的定位装置 C1 , 其具体结构可以如图 5所示, 也可以如图 8所示;
分量变化确定单元 C2,适于计算所述姿态感知设备的分量变化 Ad,其中,
Ad = d - d cos e , Θ为姿态角, d为姿态感知设备在空间坐标系的初始分量, 所 述姿态角从所述姿态感知设备的定位装置 C1获取;
位移变化确定单元 C3 , 适于确定所述鼠标指针的位移变化量 As, 其中,
As = Ad / (SF ^MF) , SF为所述陀螺仪的灵敏度系数, MF为鼠标指针的灵敏度 系数, Ad为所述分量变化确定单元 C2计算得到的所述姿态感知设备的分量变 化;
指针控制单元 C4,适于基于所述位移变化确定单元 C3确定的鼠标指针的 位移变化量控制所述鼠标指针的移动。 上述鼠标指针的控制装置可以全部或部分集成在姿态感知设备中,姿态感 知设备通过无线收发装置(例如射频收发器、 红外收发器等)与控制鼠标指针 的控制设备(例如投影仪、 计算机等)传送信息, 无线收发器通过 USB接口 与控制设备连接。
在本发明一个实施例中, 姿态感知设备包括: X轴陀螺仪、 z轴陀螺仪、 三轴重力加速度传感器和上述的定位装置 Cl。 姿态感知设备通过无线收发装 置向控制设备发送姿态感知设备的姿态角信息。上述的分量变化确定单元 C2、 位移变化确定单元 C3和指针控制单元 C4可以集成在控制设备中。
在本发明的另一个实施例中, 姿态感知设备包括: X轴陀螺仪、 z轴陀螺 仪、 三轴重力加速度传感器、 上述的定位装置 C1和分量变化确定单元 C2。姿 态感知设备通过无线收发装置向控制设备发送姿态感知设备的分量变化信息。 上述的位移变化确定单元 C3和指针控制单元 C4可以集成在控制设备中。 在本发明的又一个实施例中, 姿态感知设备包括: X轴陀螺仪、 z轴陀螺 仪、 三轴重力加速度传感器、 上述的定位装置 Cl、 分量变化确定单元 C2和位 移变化确定单元 C3。 空间鼠标通过无线收发装置向控制设备发送鼠标指针的 位移变化量信息。 上述的指针控制单元 C4可以集成在控制设备中。
在本发明的再一个实施例中, 姿态感知设备包括: X轴陀螺仪、 z轴陀螺 仪、三轴重力加速度传感器和上述的鼠标指针的控制装置。姿态感知设备通过 无线收发装置向控制设备发送鼠标指针的位置信息。
综上所述, 上述技术方案具有以下优点:
基于线加速度对陀螺仪和加速度传感器设置不同的权重,使得陀螺仪的权 重和加速度传感器的权重可以随线加速度变化而自适应调整; 并且,通过加权 处理将陀螺仪的敏感轴的旋转角和加速度传感器的敏感轴的偏转角结合,由此 有效地融合了陀螺仪的数据和加速度传感器的数据,实现了姿态感知设备的准 确定位和鼠标指针的精确控制。
通过建立加速度传感器的合加速度与重力加速度的差值与陀螺仪的权重 和加速度传感器的权重的关联,使得陀螺仪的权重和加速度传感器的权重可以 随加速度传感器的合加速度与重力加速度的差值的变化而自适应调整。
在对陀螺仪的数据加权前进行高通滤波,在对加速度传感器的数据进行加 权前进行低通滤波, 以滤除影响精度的信号,从而提高了姿态感知设备定位的 准确性和稳定性, 以及鼠标指针控制的精确度。
在对陀螺仪的数据和加速度传感器的数据加权后通过卡尔曼滤波使得融 合后的数据更为准确和稳定,进一步提高了姿态感知设备定位的准确性和稳定 性, 以及鼠标指针控制的精确度。 虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此 本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1.一种姿态感知设备的定位方法,所述姿态感知设备包括陀螺仪和加速度 传感器, 其特征在于, 包括:
获取陀螺仪的敏感轴的旋转角;
获取加速度传感器的敏感轴的偏转角和线加速度,所述加速度传感器的敏 感轴对应所述陀螺仪的敏感轴;
基于所述加速度传感器的敏感轴的线加速度设置对应所述陀螺仪的第一 权重和对应所述加速度传感器的第二权重;
基于所述第一权重和第二权重, 对所述旋转角和所述偏转角进行加权处 理, 得到姿态感知设备的姿态角。
2.如权利要求 1所述的姿态感知设备的定位方法, 其特征在于, 所述加速 度传感器为三轴重力加速度传感器,基于所述加速度传感器的敏感轴的线加速 度设置对应所述陀螺仪的第一权重和对应所述加速度传感器的第二权重包括: 设置第一滤波参数 n和第二滤波参数 m, 所述第二滤波参数 m为所述第 一滤波参数 n的 3~5倍;
确定滤波时间常数 τ,其中,若 Ki n/m贝' J r = _m * ¾ + w ,若 Ki>n/m则 τ=0 , Ki 为所述加速度传感器的各敏感轴的线加速度的矢量和与重力加速度的差 值;
确定所述第一权重 a和第二权重 b , 其中, b = ~^ , fl = l -b。
τ + dt
3.如权利要求 2所述的姿态感知设备的定位方法, 其特征在于, 所述第一 滤波参数 n的取值范围为 [3 , 6]。
4.如权利要求 2所述的姿态感知设备的定位方法, 其特征在于,基于所述 第一权重和第二权重,对所述旋转角和所述偏转角进行加权处理,得到姿态感 知设备的姿态角包括:
基于所述滤波时间常数对所述旋转角进行高通滤波后乘以所述第一权重, 得到第一乘积结果;
基于所述滤波时间常数对所述偏转角进行低通滤波后乘以所述第二权重, 得到第二乘积结果;
将所述第一乘积结果和第二乘积结果相加, 得到所述姿态角。
5.如权利要求 2所述的姿态感知设备的定位方法, 其特征在于,基于所述 第一权重和第二权重,对所述旋转角和所述偏转角进行加权处理,得到姿态感 知设备的姿态角包括:
基于所述滤波时间常数对所述旋转角进行高通滤波后乘以所述第一权重, 得到第一乘积结果;
基于所述滤波时间常数对所述偏转角进行低通滤波后乘以所述第二权重, 得到第二乘积结果;
对所述第一乘积结果和第二乘积结果进行卡尔曼滤波, 得到所述姿态角。
6.如权利要求 1所述的姿态感知设备的定位方法, 其特征在于, 所述加速 度传感器为三轴重力加速度传感器, 所述第一权重和第二权重之和为 1 ; 基于 所述加速度传感器的敏感轴的线加速度设置对应所述陀螺仪的第一权重和对 应所述加速度传感器的第二权重包括:
将所述加速度传感器的各敏感轴的线加速度的矢量和对时间积分得到线 速度;
若所述线速度小于预设值则设置所述第一权重小于所述第二权重; 若所述线速度大于或等于预设值则设置所述第一权重大于所述第二权重。
7.如权利要求 6所述的姿态感知设备的定位方法, 其特征在于, 所述预设 值为 0.5米 /秒,
若所述线速度小于所述预设值则设置所述第一权重为 1/3或 2/5;
若所述线速度大于或等于所述预设值则设置所述第一权重为 1。
8.如权利要求 1所述的姿态感知设备的定位方法, 其特征在于, 所述加速 度传感器为三轴重力加速度传感器, 所述第一权重和第二权重之和为 1 ; 基于 所述加速度传感器的敏感轴的线加速度设置对应所述陀螺仪的第一权重和对 应所述加速度传感器的第二权重包括:
将所述加速度传感器的各敏感轴的线加速度的矢量和对时间积分得到线 速度;
若所述线速度小于第一预设值则设置所述第一权重小于所述第二权重; 若所述线速度大于第二预设值则设置所述第一权重为 1 ; 否则设置所述第一权重大于所述第二权重。
9.如权利要求 8所述的姿态感知设备的定位方法, 其特征在于, 所述第一 预设值为 0.3米 /秒, 所述第二预设值为 0.6米 /秒;
若所述线速度小于所述第一预设值则设置所述第一权重为 1/3;
若所述线速度大于所述第二预设值则设置所述第一权重为 1 ;
否则设置所述第一权重为 2/3。
10. 如权利要求 1所述的姿态感知设备的定位方法, 其特征在于, 基于 所述第一权重和第二权重,对所述旋转角和所述偏转角进行加权处理,得到姿 态感知设备的姿态角包括:
将所述旋转角乘以所述第一权重, 得到第三乘积结果;
将所述偏转角乘以所述第二权重, 得到第四乘积结果;
将所述第三乘积结果和第四乘积结果相加, 得到所述姿态角。
11. 如权利要求 1所述的姿态感知设备的定位方法, 其特征在于, 基于 所述第一权重和第二权重,对所述旋转角和所述偏转角进行加权处理,得到姿 态感知设备的姿态角包括:
将所述旋转角乘以所述第一权重, 得到第三乘积结果;
将所述偏转角乘以所述第二权重, 得到第四乘积结果;
对所述第三乘积结果和第四乘积结果进行卡尔曼滤波, 得到所述姿态角。
12. 如权利要求 1所述的姿态感知设备的定位方法, 其特征在于, 还包 括: 确定所述姿态感知设备在空间坐标系的分量 dcos0, d为姿态感知设备在 空间坐标系的初始分量, Θ为姿态角。
13. 一种鼠标指针的控制方法, 其特征在于, 包括:
权利要求 1所述的姿态感知设备的定位方法;
计算所述姿态感知设备的变化分量 Ad,其中, M = d _d∞se , Θ为姿态角, d为姿态感知设备在空间坐标系的初始分量;
确定所述鼠标指针的位移变化量 As, 其中, s = M I、SF *MF、, SF为所述 陀螺仪的灵敏度系数, MF为鼠标指针的灵敏度系数;
基于所述鼠标指针的位移变化量控制所述鼠标指针的移动。
14. 一种姿态感知设备的定位装置, 所述姿态感知设备包括陀螺仪和加 速度传感器, 其特征在于, 包括: 第一获取单元, 适于获取陀螺仪的敏感轴的旋转角;
第二获取单元,适于获取加速度传感器的敏感轴的偏转角和线加速度, 所 述加速度传感器的敏感轴对应所述陀螺仪的敏感轴;
设置单元,适于基于所述加速度传感器的敏感轴的线加速度设置对应所述 陀螺仪的第一权重和对应所述加速度传感器的第二权重;
处理单元, 适于基于所述第一权重和第二权重,对所述旋转角和所述偏转 角进行加权处理, 得到姿态感知设备的姿态角。
15. 如权利要求 14所述的姿态感知设备的定位装置, 其特征在于, 所述 加速度传感器为三轴重力加速度传感器, 所述设置单元包括:
滤波参数设置单元,适于设置第一滤波参数 n和第二滤波参数 m, 所述第 二滤波参数 m为所述第一滤波参数 n的 3~5倍;
时间常数确定单元, 适于确定滤波时间常数 τ , 其中, 若 Ki n/m 则
T = -m * Ki + n , 若 Ki>n/m则 τ=0, Ki为所述加速度传感器的各敏感轴的线加速 度的矢量和与重力加速度的差值;
权重确定单元, 适于确定所述第一权重 a和第二权重 b, 其中, b = ~^ , τ + dt a = i _b。
16. 如权利要求 15所述的姿态感知设备的定位装置, 其特征在于, 所述 第一滤波参数 n的取值范围为 [3 , 6]。
17. 如权利要求 15所述的姿态感知设备的定位装置, 其特征在于, 所述 处理单元包括:
高通滤波器, 适于基于所述滤波时间常数对所述旋转角进行高通滤波; 第一乘法器,适于将所述高通滤波器的输出结果后乘以所述第一权重,得 到第一乘积结果;
低通滤波器, 适于基于所述滤波时间常数对所述偏转角进行低通滤波; 第二乘法器,适于将所述低通滤波器的输出结果乘以所述第二权重,得到 第二乘积结果;
加法器,适于将所述第一乘积结果和第二乘积结果相加,得到所述姿态角。
18. 如权利要求 15所述的姿态感知设备的定位装置, 其特征在于, 所述 处理单元包括: 高通滤波器, 适于基于所述滤波时间常数对所述旋转角进行高通滤波; 第一乘法器,适于将所述高通滤波器的输出结果后乘以所述第一权重,得 到第一乘积结果;
低通滤波器, 适于基于所述滤波时间常数对所述偏转角进行低通滤波; 第二乘法器,适于将所述低通滤波器的输出结果乘以所述第二权重,得到 第二乘积结果;
卡尔曼滤波器, 适于对所述第一乘积结果和第二乘积结果进行卡尔曼滤 波, 得到所述姿态角。
19. 如权利要求 14所述的姿态感知设备的定位装置, 其特征在于, 所述 加速度传感器为三轴重力加速度传感器, 所述第一权重和第二权重之和为 1 ; 所述设置单元包括:
线速度计算单元,适于将所述加速度传感器的各敏感轴的线加速度的矢量 和对时间积分得到线速度;
判断单元, 适于判断所述线速度是否小于预设值;
权重设置单元,适于在所述判断单元的判断结果为是时设置所述第一权重 小于所述第二权重;在所述判断单元的判断结果为否时设置所述第一权重大于 所述第二权重。
20. 如权利要求 19所述的姿态感知设备的定位装置, 其特征在于, 所述 第一预设值为 0.5米 /秒,
若所述线速度小于所述预设值则设置所述第一权重为 1/3或 2/5;
若所述角速度大于或等于所述预设值则设置所述第一权重为 2/3或 3/5。
21. 如权利要求 14所述的姿态感知设备的定位装置, 其特征在于, 所述 加速度传感器为三轴重力加速度传感器, 所述第一权重和第二权重之和为 1 ; 所述设置单元包括:
线速度计算单元,适于将所述加速度传感器的各敏感轴的线加速度的矢量 和对时间积分得到线速度;
第一判断单元, 适于判断所述线速度是否小于第一预设值;
第二判断单元,适于判断所述线速度是否大于第二预设值, 所述第二预设 值大于所述第一预设值;
权重设置单元,适于在所述第一判断单元的判断结果为是时设置第一权重 小于第二权重; 在所述第二判断单元的判断结果为是时设置第一权重为 1 , 第 二权重为 0; 否则设置第一权重大于第二权重。
22. 如权利要求 21所述的姿态感知设备的定位装置, 其特征在于, 所述 第一预设值为 0.3米 /秒, 所述第二预设值为 0.6米 /秒;
若所述线速度小于所述第一预设值则设置所述第一权重为 1/3;
若所述线速度大于所述第二预设值则设置所述第一权重为 1 ;
否则设置所述第一权重为 2/3。
23. 如权利要求 14所述的姿态感知设备的定位装置, 其特征在于, 所述 处理单元包括:
第三乘法器, 适于将所述旋转角乘以所述第一权重, 得到第三乘积结果; 第四乘法器, 适于将所述偏转角乘以所述第二权重, 得到第四乘积结果; 加法器,适于将所述第三乘积结果和第四乘积结果相加,得到所述姿态角。
24. 如权利要求 14所述的姿态感知设备的定位装置, 其特征在于, 所述 处理单元包括:
第三乘法器, 适于将所述旋转角乘以所述第一权重, 得到第三乘积结果; 第四乘法器, 适于将所述偏转角乘以所述第二权重, 得到第四乘积结果; 卡尔曼滤波器, 适于对所述第三乘积结果和第四乘积结果进行卡尔曼滤 波, 得到所述姿态角。
25. 如权利要求 14所述的姿态感知设备的定位装置, 其特征在于,还包 括: 分量确定单元, 适于确定所述姿态感知设备在空间坐标系的分量 dcos0, d 为姿态感知设备在空间坐标系的初始分量, Θ为姿态角。
26. 一种鼠标指针的控制装置, 其特征在于, 包括:
权利要求 14所述的姿态感知设备的定位装置;
分量变化确定单元, 适于计算所述姿态感知设备的分量变化 Ad, 其中, Ad = d - d cos e , Θ为姿态角, d为姿态感知设备在空间坐标系的初始分量; 位移变化确定单元, 适于确定所述鼠标指针的位移变化量 As , 其中, As = Ad / (SF ^MF) , SF为所述陀螺仪的灵敏度系数, MF为鼠标指针的灵敏度 系数;
指针控制单元,适于基于所述鼠标指针的位移变化量控制所述鼠标指针的 移动。
27. 一种姿态感知设备, 包括陀螺仪和加速度传感器, 其特征在于, 还 包括: 权利要求 14所述的姿态感知设备的定位装置。
28. 如权利要求 27所述的姿态感知设备, 其特征在于, 还包括: 分量变化确定单元, 适于计算所述姿态感知设备的分量变化 Ad, 其中,
Ad=d-dcose, Θ为姿态角, d为姿态感知设备在空间坐标系的初始分量。
29. 如权利要求 28所述的姿态感知设备, 其特征在于, 还包括: 位移变化确定单元, 适于确定所述鼠标指针的位移变化量 As, 其中,
As = Ad/(SF^MF) , SF为所述陀螺仪的灵敏度系数, MF为鼠标指针的灵敏度 系数。
30. 如权利要求 29所述的姿态感知设备, 其特征在于, 还包括: 指针控制单元,适于基于所述鼠标指针的位移变化量控制所述鼠标指针的 移动。
31.如权利要求 27所述的姿态感知设备, 其特征在于, 包括两个相互垂直 的单轴陀螺仪和一个三轴重力加速度传感器。
PCT/CN2011/081625 2011-08-30 2011-11-01 姿态感知设备及其定位、鼠标指针的控制方法和装置 WO2013029303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110252933.6 2011-08-30
CN201110252933.6A CN102306054B (zh) 2011-08-30 2011-08-30 姿态感知设备及其定位、鼠标指针的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2013029303A1 true WO2013029303A1 (zh) 2013-03-07

Family

ID=45379921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081625 WO2013029303A1 (zh) 2011-08-30 2011-11-01 姿态感知设备及其定位、鼠标指针的控制方法和装置

Country Status (2)

Country Link
CN (1) CN102306054B (zh)
WO (1) WO2013029303A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267834A (zh) * 2014-09-26 2015-01-07 重庆市科学技术研究院 空中鼠标系统及其操控方法
CN105208420A (zh) * 2015-08-24 2015-12-30 小米科技有限责任公司 电视控制方法及装置、电子设备
CN108627151B (zh) * 2017-03-23 2021-10-22 富士通株式会社 基于惯性测量单元的转角测量装置、方法及电子设备
CN110060609B (zh) * 2018-01-18 2022-09-30 京东科技控股股份有限公司 一种智能展示系统及方法
CN111536968B (zh) * 2020-04-15 2022-08-30 阿波罗智能技术(北京)有限公司 确定路侧感知设备的动态姿态的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175411A (ja) * 1999-12-17 2001-06-29 Tokin Corp 画像コントロール装置
US20100123660A1 (en) * 2008-11-14 2010-05-20 Kyu-Cheol Park Method and device for inputting a user's instructions based on movement sensing
CN101809528A (zh) * 2007-09-26 2010-08-18 汤姆逊许可证公司 用于提供滚动补偿的方法和装置
CN102004843A (zh) * 2010-09-07 2011-04-06 哈尔滨工业大学 一种具有模式识别功能的手持控制漫游系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533106B1 (ko) * 2002-08-06 2005-12-05 삼성전자주식회사 지자계 센서의 자세 오차 보상장치 및 방법
JP2007040763A (ja) * 2005-08-01 2007-02-15 Toyota Motor Corp 加速度センサの補正装置
CN101619978B (zh) * 2008-06-30 2011-07-27 鼎亿数码科技(上海)有限公司 基于陀螺仪和加速度传感器的定位方法
CN101881617A (zh) * 2009-05-06 2010-11-10 鼎亿数码科技(上海)有限公司 陀螺仪空间定位方法
CN102042833B (zh) * 2009-10-09 2012-11-07 财团法人工业技术研究院 运动追踪方法与系统
CN101915580B (zh) * 2010-07-14 2012-09-12 中国科学院自动化研究所 一种基于微惯性和地磁技术的自适应三维姿态定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175411A (ja) * 1999-12-17 2001-06-29 Tokin Corp 画像コントロール装置
CN101809528A (zh) * 2007-09-26 2010-08-18 汤姆逊许可证公司 用于提供滚动补偿的方法和装置
US20100123660A1 (en) * 2008-11-14 2010-05-20 Kyu-Cheol Park Method and device for inputting a user's instructions based on movement sensing
CN102004843A (zh) * 2010-09-07 2011-04-06 哈尔滨工业大学 一种具有模式识别功能的手持控制漫游系统

Also Published As

Publication number Publication date
CN102306054A (zh) 2012-01-04
CN102306054B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
KR101778807B1 (ko) 데이터 융합을 이용하는 모션 캡처 포인터
JP5258974B2 (ja) 動き感知に基づく力強度および回転強度を入力する方法およびデバイス
CN102289306B (zh) 姿态感知设备及其定位、鼠标指针的控制方法和装置
KR101708584B1 (ko) 고정 기준계에서의 공간 내 물체의 배향을 감지하기 위한 개선된 방법 및 장치
WO2013029302A1 (zh) 空中鼠标及控制鼠标指针移动的方法与装置
US20190187784A1 (en) Calibration of Inertial Measurement Units Attached to Arms of a User and to a Head Mounted Device
EP2702465B1 (en) Improved pointing device
WO2008128087A1 (en) A force sensing apparatus and method to determine the radius of rotation of a moving object
WO2013029303A1 (zh) 姿态感知设备及其定位、鼠标指针的控制方法和装置
CN108731676B (zh) 一种基于惯性导航技术的姿态融合增强测量方法及系统
JP2004288188A (ja) マグネチックセンサを用いたペン型入力システムおよびその軌跡復元方法
US8797262B2 (en) Method of sensing motion in three-dimensional space
TWI476733B (zh) 運動軌跡重建方法及其裝置
CN103425402A (zh) 一种移动终端姿态的检测方法及其装置
WO2013023411A1 (zh) 姿态感知设备的定位方法、鼠标指针的控制方法
JPH10253361A (ja) 信号処理方法及び三次元データ入力装置
KR100940095B1 (ko) 포인터 이동 값 계산 장치, 포인터 이동 값 보정 방법 및자세 각도 변화량 보정 방법, 이를 사용하는 3차원 포인팅디바이스
Lee et al. Orientation estimation in mobile virtual environments with inertial sensors
WO2013029301A1 (zh) 姿态感知设备及其定位方法、鼠标指针的控制方法
Žumer et al. An advanced nonlinear model of a low-g MEMS accelerometer for a computer pen
WO2013023399A1 (zh) 二维/三维角速度检测装置、方法、姿态感知设备
CN107678568B (zh) 一种通过移动终端模拟激光笔的方法及装置
Mohamad et al. Hand Motion Controlled Robotic Arm based on Micro-Electro-Mechanical-System Sensors: Gyroscope, Accelerometer and Magnetometer
Gao et al. Research on Transmitter of the Somatosensory Hand Gesture Recognition System
Fahmi et al. 3d-to-2d projection algorithm for remote control using smartphone: Enhancing smartphone capability for costless wireless audio visual consumer appliance control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871410

Country of ref document: EP

Kind code of ref document: A1