WO2014069951A1 - 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2014069951A1
WO2014069951A1 PCT/KR2013/009887 KR2013009887W WO2014069951A1 WO 2014069951 A1 WO2014069951 A1 WO 2014069951A1 KR 2013009887 W KR2013009887 W KR 2013009887W WO 2014069951 A1 WO2014069951 A1 WO 2014069951A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
transmitted
base station
terminal
frequency
Prior art date
Application number
PCT/KR2013/009887
Other languages
English (en)
French (fr)
Inventor
김기태
김진민
고현수
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020157014640A priority Critical patent/KR101731352B1/ko
Priority to US14/440,049 priority patent/US9531510B2/en
Publication of WO2014069951A1 publication Critical patent/WO2014069951A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2665Fine synchronisation, e.g. by positioning the FFT window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a synchronization signal in a wireless communication system.
  • Wireless communication systems have been widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (0FDMA) systems, and SC—FDMA (single single) systems.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC orthogonal frequency division multiple access
  • SC single single
  • a method of receiving a synchronization signal by a terminal in a wireless communication system the entire system band on the frequency axis N time axis Receiving position information on an area in which the synchronization signal is transmitted among M divided areas (where N and M are natural numbers); And receiving the sync signal in an area that opposes the location information.
  • a method for transmitting a synchronization signal by a base station includes transmitting the synchronization signal from a divided region obtained by dividing the entire system band into N time axes on a frequency axis. Transmitting positional information about the region (where N and M are natural numbers); And transmitting the sync signal in an area that complies with the location information.
  • a terminal for receiving a synchronization signal in a wireless communication system includes: a radio frequency (RF) unit; And a processor, wherein the processor receives position information on an area where the synchronization signal is transmitted among the divided areas obtained by dividing the entire system band on the N axis by the N time axis (where N and M may be a natural number), and may be configured to receive the synchronization signal in an area that respects the location information.
  • RF radio frequency
  • a base station for transmitting a synchronization signal in a wireless communication system includes: an R Radio Frequency) unit; And a processor, wherein the processor transmits position information on an area in which the synchronization signal is transmitted among the divided areas in which the entire system band is divided into N time axes on a frequency axis (where N and M are Natural number), and may transmit the synchronization signal in an area that corresponds to the location information.
  • the synchronization signal transmitted from different base stations may be transmitted in an area having different frequency and time resources.
  • the synchronization signal transmitted from base stations of different service types may be transmitted in an area having different frequency and time resources.
  • N may be determined according to a value obtained by normalizing a transmission power of a base station connected to the terminal.
  • N may be determined by the size of a maximum FF Fast Fourier Transform).
  • N may be determined by the number of subcarriers constituting the entire system band.
  • DAS distributed antenna system
  • Figure 2 shows the concept of BTSCbase transceiver stations (hotels) in the DAS system.
  • FIG. 3 shows an example of a structure of a radio frame.
  • Figure 4 illustrates a legacy communication frequency band and the frequency band of the small cell (smal 1 eel 1).
  • FIG. 5 shows a first embodiment of allocating a synchronization signal in a communication system according to the present invention.
  • FIG. 6 shows a second embodiment in which the entire system band is divided into N in the communication system according to the present invention.
  • FIG. 7 shows a third embodiment of dividing a system band in consideration of both time and frequency in a communication system according to the present invention.
  • FIG 8 illustrates a fourth embodiment in which a synchronization signal is allocated in consideration of intercell interference in a communication system according to the present invention.
  • FIG 9 illustrates a fifth embodiment in which resources are differently allocated to each carrier of a multicarrier in the communication system according to the present invention.
  • FIG. 10 illustrates an example of dividing and transmitting a synchronization sequence in a communication system according to the present invention.
  • FIG. 11 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • each component or feature is optional unless stated otherwise. Can be considered. Each component or feature may be implemented in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment, or may be replaced with other configurations or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal. Certain operations described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), and an access point (AP).
  • RN Repeater Relay Node
  • MS MSCMobi le Station
  • MSS Mobi le Subscriber Stat ion
  • MSC SSCSubscribing Station
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described in order to clearly reveal the technical idea of the present invention among the embodiments of the present invention are described in the document. Can be supported by In addition, all terms disclosed in this document may be described by the above standard document.
  • CDMA Code Division Multiple Access
  • FD Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFgonal Frequency Division Multiple Access (0FDMA)
  • SC-FDMA Single Carrier Frequency Division Multiple
  • TDMA is the Global System for Mobile
  • 0FDMA may be implemented in a wireless technology such as communications / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRAC Evolved UTRA.
  • UTRA is part of the Universal Mobile Telecom® unications system.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA, employing 0FDMA in downlink and SC-FDMA in uplink.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • a (Advanced) is the evolution of 3GPP LTE.
  • WiMAX can be described by the
  • a distributed antenna system will be described with reference to FIG. 1.
  • M2M Machine-t
  • communication technologies use carriers to efficiently use more frequency bands.
  • a multi-antenna technology In order to increase data capacity in a limited frequency band such as aggregation) technology, a multi-antenna technology, a multi-base station cooperation technology, and the like are being developed.
  • the communication environment is evolving toward increasing densities of access points that can be accessed around users.
  • AP In addition to Cellular Macro AP, AP. Can increase data capacity through several APs with small coverage such as WiFi AP, Cellular Femto AP, Cellular Pico AP.
  • AP is remote radio head (RRH) or A form such as an antenna node of a distributed antenna system (DAS) is also possible.
  • RRH remote radio head
  • DAS distributed antenna system
  • a DAS system manages antennas spread at various locations in a cell at a single base station. do.
  • the DAS system is distinguished from femto / pico cells in that several antenna nodes constitute one cell.
  • the initial use of the DAS system was to install more antennas to cover the shadow area.
  • the DAS can be regarded as a kind of MIMOC multiple input multiple output system in that base station antennas can simultaneously transmit and receive multiple data streams to support one or more users.
  • the MIM0 system meets the requirements of next-generation communications due to its high spectral efficiency.
  • the DAS is relatively uniform regardless of the user's position in the cell, high power efficiency, low correlation between the base station antennas and high channel efficiency due to the smaller distance between the user and the antenna than the CAS. It has the advantage of ensuring a high quality communication performance.
  • the DAS system includes a base station and antenna nodes (groups, clusters, etc.) connected thereto.
  • the antenna node is wired / wirelessly connected to the base station and may include one or a plurality of antennas.
  • the antennas belonging to one antenna node have a characteristic of belonging to the same spot locally, within a few meters from the nearest antenna.
  • the antenna node serves as an access point to which the terminal can access.
  • a relationship between an antenna node and an antenna must be clearly defined.
  • BTS base transceiver stations
  • a base station manages three sectors, and each base station is connected to a BSCCbase station control ler / RNC (Radio Network Control ler) through a backbone network.
  • BTS hotel base stations connected to each antenna node (AN) can be collected in one place. This reduces the cost of land and buildings on which base stations are to be installed, and makes it easy to maintain and manage base stations in one place.
  • backhaul is achieved by installing both BTS and MSCXMobile Switching Center / BSC / RNC in one place.
  • Capacity can be greatly increased.
  • a structure of a radio frame will be described with reference to FIG. 3.
  • uplink / downlink data packet transmission is performed in subframe units.
  • One subframe is defined as a certain time interval including a plurality of OFDM symbols.
  • the 3GPPLTE standard supports a type 1 radio frame structure applicable to FDE Frequency Division Duplex (FDE) and a type 2 radio frame structure applicable to Time Division Duplex (TDD).
  • FDE Frequency Division Duplex
  • TDD Time Division Duplex
  • the downlink radio frame consists of 10 subframes, one of which
  • a subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of 0FDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • the 0FDM symbol represents one symbol period.
  • the 0FDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of 0FDM symbols included in one slot is determined by cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of 0FDM symbols included in one slot may be seven.
  • the 0FDM symbol is configured by the extended CP, since the length of one 0FDM symbol is increased, the number of 0FDM symbols included in one slot is smaller than that of the normal CP.
  • the number of 0FDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • FIG. 3B is a diagram illustrating the structure of a type 2 radio frame.
  • FIG. Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the number of subframes, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 4 illustrates a legacy communication frequency band and a frequency band of a small cell.
  • the network may operate by setting a wide system band in the band having a higher center frequency than the frequency band used in the existing LTE system.
  • basic cell coverage is supported based on control signals such as system informat ion through existing celller bands, and transmission efficiency is improved by using wider frequency bands in high frequency small cells. It can be maximized. Thus local area access is slow
  • the distance between the terminal and the base station may be set to a small cell of 100m unit smaller than the existing cell of km unit. Accordingly, in such a cell, the distance between the terminal and the base station is shortened, and the following channel characteristics can be expected as the high frequency band is used.
  • Del ay spread As the distance between the base station and the terminal is shortened, the signal delay (del ay) may be shortened.
  • Subcarrier spacing In case of applying the same OFDM-based frame as LTE, since the allocated frequency band is large, it may be set to an extremely larger value than the existing 15 kHz.
  • Doppler's frequency Since the Doppler frequency is higher than the low frequency band, the coherent time may be extremely short.
  • a delay spread of a channel tends to be shorter in a high frequency band in which a carrier frequency (fc) becomes 5 GHz or more.
  • the path loss of the channel increases significantly in the high frequency band, and the distance from the base station should be close to ensure stable performance. Accordingly, a narrower cell structure is preferable to conventional cellular communication in high frequency band communication, and OFDM, which is a multiple access technique, is preferably used for easy resource utilization and control.
  • a conventional single symbol / single sequence based synchronization signal such as LTE may not provide sufficient performance. Therefore, the following describes the considerations for transmitting the synchronization signal in the high frequency band.
  • a center frequency band of 5 GHz or more or several tens of GHz or more may be used instead of a channel environment of 5 GHz or less in which a conventional Celller system or WiFi is operated. This is because there is no wide frequency band available in the vicinity of the existing 2GHz. The frequency band used in the existing communication is difficult to change and use due to various restrictions.
  • Next generation communication is required to support a service over UD (ultra definition) level, in addition to the existing Full HDChigh definition based service.
  • UD ultra definition
  • a service should be provided using a wider bandwidth.
  • it is inefficient to transmit a synchronization signal over the entire band of frequencies.
  • the transmission of synchronization signals over the widened system bandwidth is a major drain on power.
  • High density deployment of small cells is efficient in high frequency band communication. This method is the most efficient way to support high transmission to users.
  • Dense sal placement allows maximum system capacity to be maximized.
  • the quality of the synchronization signal received by the terminal may be degraded, thereby degrading the performance of synchronization acquisition.
  • the base station may transmit a synchronization signal only to a part of the system bandwidth of the high frequency band communication.
  • the position of the synchronization signal is not limited to the midpoint of the system band, that is, the area where the DC subcarrier is transmitted.
  • FIG. 5 shows a first embodiment of allocating a synchronization signal in a high frequency band communication system.
  • a position to which a synchronization signal is allocated may be moved to another region as well as to an intermediate point of the entire system band.
  • the synchronization signal is transmitted at a higher power than the general data signal so that the terminal can easily detect the synchronization signal. Accordingly, interference or interference may be caused to a terminal connected to a specific base station. In this case, a transmission area of a synchronization signal may be changed for each base station differently.
  • the base station may transmit information on the location where the synchronization signal is transmitted to the terminal. For example, in systems that support CACcarrier aggregat ion
  • Information about a synchronization signal position of a secondary cell may be transmitted through radio resource control (RRC) signaling of a cell. If the location of the synchronization signal is transmitted as bitmap information, the location of the synchronization signal channel
  • the UE may perform blind search on all synchronization signal candidates in the entire band.
  • the base station may transmit a synchronization signal in a plurality of regions in which the entire frequency band is divided.
  • FIG. 6 shows a second embodiment in which the entire system band is divided into N in the communication system according to the present invention.
  • the entire system band is divided into N (N is a natural number) regions.
  • the base station may select one of the divided regions or multiple M (1 ⁇ M ⁇ N) regions to transmit a synchronization signal.
  • a high frequency band communication system aims to obtain a high data rate using a wide system bandwidth.
  • the terminal should detect the synchronization signal for the entire frequency band without filtering processing. This in turn increases the complexity of the terminal and prevents the quick detection of the synchronization signal.
  • the frequency band is divided into N pieces, and the synchronization signal is transmitted only to the M areas that are part of the divided areas so that the terminal can quickly detect the synchronization signals. If it does not significantly affect the complexity of the terminal, it is possible to transmit the synchronization signal over the entire band by setting M to N.
  • the number N of band divisions may be set to the maximum FFT size or the number of available subcarriers.
  • the maximum value is a number that divides the entire frequency band into subcarrier units. N may also be determined according to the level of normalized transmit power. The number N for dividing the frequency band may be transmitted to the terminal through RRC signaling.
  • bits can be configured as shown in Table 2 by one to one frequency band for each bit.
  • the position at which the synchronization signal is transmitted may be preset or may be made to the terminal through RRC signaling.
  • the terminal may detect the synchronization signal through blind search. Determination of transmission or blind detection of information on the location where the synchronization signal is transmitted may be determined in consideration of channel environment factors such as processing capability, complexity, or interference of the terminal. For example, CMcarrier aggregat ion
  • information on a synchronization signal position of a secondary cell may be transmitted through RRCCRadio Resource Control signaling of a primary cell.
  • FIG. 7 illustrates a third embodiment of dividing an entire system band in consideration of time and frequency, and transmitting a synchronization signal to the divided region.
  • the frequency domain is divided on a predetermined time domain.
  • the system band can be divided in consideration of both time and frequency.
  • the total number of combinations is expressed as follows. It can be represented by 1.
  • the number M of symbols to which the synchronization signal is transmitted may be continuous or discontinuous in the time domain. 7 illustrates a case where a frequency domain is divided into four and the number of symbols selected in the time domain is four.
  • the information on the position at which the synchronization signal is transmitted may be transmitted as bitmap information after indexing the coordinate information or the entire area.
  • the information on the position at which the synchronization signal is transmitted is transmitted to the terminal through RRC signaling or the like, or
  • the terminal may detect the synchronization signal through blind search.
  • the determination of the transmission or blind detection of information on the location where the synchronization signal is transmitted may be determined in consideration of channel environment factors such as processing capability, complexity, or interference of the terminal.
  • channel environment factors such as processing capability, complexity, or interference of the terminal.
  • information about a synchronization signal position of a secondary cell may be provided through a radio resource control (RRC) signaling of a primary cell.
  • RRC radio resource control
  • the high frequency band communication system is expected to use a small cell based high density cell arrangement.
  • a large interference may occur between the synchronization signals made of different sequences. This may cause an error in the process of acquiring neighbor cell synchronization such as initial synchronization acquisition and handover of the UE. Therefore, according to the fourth embodiment of the present invention, a method of differently setting a synchronization signal for each base station in consideration of an interference situation of a terminal will be described.
  • a method of configuring a synchronization signal in different time-frequency domain resources for each base station may be preset or may be performed through RRC signaling.
  • a synchronization signal is provided through different areas for each base station through network management. Can be transmitted. This greatly reduces the interference generated between synchronization signals in a high density deployment environment of small cells.
  • the resource allocation pattern of the synchronization signal may be changed by updating the interference situation information of each cell.
  • this concept can be applied to different resource allocation according to the service type (Macro, Pico, Femto, RRH, Relay, hot spot, etc.) of the base station.
  • a fifth embodiment of the present invention describes a method of transmitting a synchronization signal in a different time-frequency resource region for each carrier in a system using a multicarrier.
  • the next generation communication system may be applied to a multi-carrier operation method that aggregates and uses a band of a predetermined size or more as well as a wide single broadband. Since there is a limit to the bandwidth available for each center frequency band, it is difficult to allocate bandwidth over several GHz at once. Therefore, it is desirable to construct a multi-carrier based system by joining bands of a predetermined size or more.
  • An example of a multi-carrier based system may be a Long Term Evolut ion-Advanced (LTE-A) system.
  • LTE-A Long Term Evolut ion-Advanced
  • the LTE-A system adopts carrier aggregation (CA) technology, thereby aggregating a plurality of component carriers (CCs) to execute transmission, thereby improving transmission bandwidth of the terminal.
  • CA carrier aggregation
  • CCs component carriers
  • LTE-A system is the existing LTE rel
  • the single carrier used in 8/9 is not one
  • bandwidth can be extended up to 100 MHz.
  • the carrier defined in the existing LTE rel 8/9 up to 20MHz can be redefined as a component carrier (or component carrier), and up to five component carriers can be used by one UE through carrier aggregation technology. It was made.
  • the current carrier aggregation (or carrier aggregation) technology mainly has the following features.
  • the number of carrier aggregations in the uplink and the downlink may be different. If it is to be compatible with the previous system, the uplink and the downlink should configure the same number of component carriers.
  • a component carrier of different quantities can be configured for uplink and downlink, so that different transmission bandwidths can be obtained.
  • each component carrier independently transmits one transport block, and requires an independent hybrid automatic retransmission request (Hybrid)
  • HARQ Automatic Repeat reQuest
  • a carrier aggregation using a plurality of component carriers requires a method of effectively managing component carriers.
  • component carriers may be classified according to roles and features.
  • Component carriers are called Primary Component Carriers (PCCs) (called Primary Carriers, Major Carriers, etc.) and Secondary Component Carriers (Secondary).
  • the primary component carrier is defined as one component carrier for each terminal, which is the center of management of the component carrier when using multiple component carriers.
  • the primary component carrier can serve as a core carrier that manages the aggregated component carriers.
  • the remaining secondary component carriers may play a role of providing additional frequency resources for providing a high data rate.
  • the base station may be connected through a primary component carrier (RRC) for signaling with the terminal.
  • RRC primary component carrier
  • Providing information for security and higher layers can also be accomplished through the primary component carrier.
  • the corresponding component carrier will be the primary component carrier, and in this case, it can play the same role as the carrier of the existing LTE system.
  • a fifth embodiment of the present invention describes a method of transmitting a synchronization signal through different time / frequency domains for each carrier in a system using multi-carriers.
  • different frequency bands are allocated for each carrier around one base station, and the other base stations may be designed so that the allocated patterns do not overlap or overlap each other only at a specific distance or more. Accordingly, it is possible to greatly reduce the probability that synchronization signal interference between base stations can occur.
  • FIG. 9 shows an example of synchronization signal allocation according to the fifth embodiment of the present invention, and specifically shows synchronization signal allocation according to Table 3. Referring to FIG. 9, it can be seen that a total of four partial bands exist in the frequency band, and resource allocation indexes are supported from 0 to 3.
  • FIG. 9 shows an example of synchronization signal allocation according to the fifth embodiment of the present invention, and specifically shows synchronization signal allocation according to Table 3. Referring to FIG. 9, it can be seen that a total of four partial bands exist in the frequency band, and resource allocation indexes are supported from 0 to 3.
  • FIG. 9 shows an example of synchronization signal allocation according to the fifth embodiment of the present invention, and specifically shows synchronization signal allocation according to Table 3. Referring to FIG. 9, it can be seen that a total of four partial bands exist in the frequency band, and resource allocation indexes are supported from 0 to 3.
  • FIG. 9 shows an example of synchronization signal allocation according to the fifth embodiment of the present invention, and specifically shows synchronization signal allocation according to Table 3.
  • the information on the position at which the synchronization signal is transmitted may be transmitted to the terminal through C signaling or the like, or may be preset. Or, the terminal is blind
  • the sync signal may be detected through a blind search.
  • the determination of the transmission or blind detection of information on the location where the synchronization signal is transmitted may be determined in consideration of channel environment factors such as processing capability, complexity, or interference of the terminal. For example, in a system supporting carrier aggregation (CA), information on a synchronization signal position of a secondary cell (secondary-cel 1) through radio resource control (RRC) signaling of a primary cell (primary-cel 1) Can be transmitted.
  • CA carrier aggregation
  • RRC radio resource control
  • resources for transmitting synchronization signals are defined.
  • the synchronization signal that is, a sequence, is actually transmitted.
  • a synchronization signal may be transmitted to some of several regions divided by frequency or time in the entire system band.
  • the synchronization sequences actually mapped to each region may be the same.
  • different synchronization sequences can be set for each region.
  • the synchronization sequence may be divided and transmitted according to the size of each region.
  • FIG. 11 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • Communication is performed between the base station and the relay, and communication is performed between the relay and the terminal in the access link. Accordingly, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes processor 112, memory 114, and radio frequency (Radio).
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • Terminal 120 is A processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a specific operation described in this document to be performed by a base station may be performed by an upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
  • An embodiment according to the present invention may be implemented by various means, for example, hardware and firmware.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs. (f ield programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • firmware or software an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Abstract

본 발명은 무선 통신 시스템에 에 관한 것이다. 본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 동기 신호를 수신하는 방법은 전체 시스템 대역을 주파수 축으로 N개 시간 축으로 M개 분할한 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 수신하는 단계(단, N 및 M은 자연수); 및 상기 위치 정보에 대응하는 영역에서 상기 동기 신호를 수신하는 단계를 포함할 수 있다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치 【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA (code division multiple access) 시스템, FDMA( frequency division multiple access) "시스템, TDMA(t ime division multiple access) 시스템, 0FDMA( orthogonal frequency division multiple access) 시스템, SC—FDMA( single carrier frequency division multiple access) 시스템, MC— FDMAGnulti carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치를 제안하고자 한다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하 는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】 [5] 상기 문제점을 해결하기 위하여, 본 발명의 일 실시예에 따른 무선 통신 시 스템에서 단말이 동기 신호를 수신하는 방법은, 전체 시스템 대역을 주파수 축으로 N 개 시간 축으로 M 개 분할한 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위 치 정보를 수신하는 단계 (단, N 및 M은 자연수); 및 상기 위치 정보에 대웅하는 영역 에서 상기 동기 신호를 수신하는 단계를 포함할 수 있다. [6] 본 발명의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 동기 신호를 전송하는 방법은, 전체 시스템 대역을 주파수 축으로 N 개 시간 축으로 M 개 분할한 분할 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 전송하는 단 계 (단, N 및 M은 자연수); 및 상기 위치 정보에 대웅하는 영역에서 상기 동기 신호를 전송하는 단계를 포함할 수 있다.
[7] 본 발명의 또 다른 실시예에 따른 무선 통신 시스템에서 동기신호를 수신하 는 단말은, RF(Radio Frequency) 유닛 ; 및 프로세서를 포함하고, 상기 프로세서는, 전 체 시스템 대역을 주파수 축으로 N 개 시간 축으로 M 개 분할한 분할 영역 중에서 상 기 동기 신호가 전송되는 영역에 대한 위치 정보를 수신하고 (단, N 및 M은 자연수), 상기 위치 정보에 대웅하는 영역에서 상기 동기 신호를 수신하도록 구성될 수 있다.
[8] 본 발명의 또 다른 실시예에 따른 무선 통신 시스템에서 동기 신호를 전송하 는 기지국은 R Radio Frequency) 유닛; 및 프로세서를 포함하고, 상기 프로세서는, 전체 시스템 대역을 주파수 축으로 N 개 시간 축으로 M 개 분할한 분할 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 전송하고 (단, N 및 M은 자연수), 상기 위치 정보에 대웅하는 영역에서 상기 동기 신호를 전송하도록 구성될 수 있다.
[9] 본 발명의 실시예들에 대해서 이하의 사항이 공통으로 적용될 수 있다.
[10] 서로 다른 기지국으로부터 전송되는 상기 동기 신호는 서로 다른 주파수 및 시간 자원을 가지는 영역에서 전송될 수 있다.
[11] 서로 다른 서비스 유형의 기지국으로부터 전송되는 상기 동기 신호는 서로 다른 주파수 및 시간 자원을 가지는 영역에서 전송될 수 있다.
[12] 상기 N은 상기 단말과 연결되는 기지국의 전송 전력을 노멀라이즈 (normalize) 한 값에 따라 결정될 수 있다.
[13] 상기 N은 최대 FF Fast Fourier Transform)의 크기로 결정될 수 있다.
[14] 상기 N 은 상기 전체 시스템 대역을 구성하는 부반송파 (subcarrier)의 수로 결정될 수 있다. - 【유리한 효과】
[15] 본 발명의 실시예에 따르면 무선 통신 시스템에서 동기 신호를 보다 효과적 으로 송수신할 수 있다. [16] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】 [17] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고,.상세한 설명과 함께 본 발명의 기술적 사상 을 설명한다.
[18] 도 1은 분산 안테나 시스템 (DAS)의 일례를 나타낸다.
[19] 도 ' 2 는 DAS 시스템의 BTSCbase transceiver stations) 호텔 (hotel)개념을 나 타낸다.
[20] 도 3은 무선 프레임의 구조의 일례를 나타낸다.
[21] 도 4는 레거시 (legacy) 통신 주파수 대역과 소형 셀 (smal 1 eel 1 )의 주파수 대 역을 예시한다.
[22] 도 5는 본 발명에 따른 통신 시스템에서 동기 신호를 할당하는 제 1 실시예를 나타낸다.
[23] 도 6은 본 발명에 따른 통신 시스템에서 전체 시스템 대역을 N개로 분할하는 제 2 실시예를 나타낸다.
[24] 도 7 은 본 발명에 따른 통신 시스템에서 시간 및 주파수 모두를 고려하여 시 스템 대역을 분할하는 제 3 실시예를 나타낸다.
[25] 도 8 은 본 발명에 따른 통신 시스템에서 셀간 간섭을 고려하여 동기 신호를 할당하는 제 4 실시예를 나타낸다.
[26] 도 9 는 본 발명에 따른 통신 시스템에서 멀티 캐리어의 각 캐리어별로 자원 을 다르게 할당하는 제 5 실시예를 나타낸다.
[27] 도 10 은 본 발명에 따른 통신 시스템에서 동기 시퀀스를 분할하여 전송하는 일례를 나타낸다.
[28] 도 11은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 【발명을 실시를 위한 형태】
[29] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실 Aᅵ될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다.
[30] 본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[31] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Station)'은 고정국 (fixed station) , Node B, eNode B(eNB) , 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay
Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal )'은 UE Jser Equi ment) , MSCMobi le Station) , MSS(Mobi le Subscriber Stat ion) , SSCSubscr iber Station) 등의 용어로 대체될 수 있다.
[32] 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[33] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장 는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
[34] 본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서돌에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
[35] 이하의 기술은 CDMA(Code Division Multiple Access), FD (Frequency Division Multiple Access) , TDMA(Time Division Multiple Access) , 0FDMA( Orthogonal Frequency Division Multiple Access) , SC-FDMA(S ingle Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는
UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile
communicat ions)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRAC Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS (Universal Mobile Teleco瞧 unications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE( long term evolution)는 E-UTRA를 사용하는 E-UMTS( Evolved UMTS)의 일부로써 , 하향링크에서 0FDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다 · LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e규격 (WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m규격 (WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다.
명확성을 위하여 이하에서는 3GPP LTE및 3GPP LTE-A시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
[36] 도 1을 참조하여 분산 안테나 시스템에 대하여 설명한다.
[37] 현재의 무선 통신 환경은 Machine-t으 Machine(M2M) 통신의 도입 및 높은 데이터 전송 용량을 요구하는 스마트폰, 태블릿 등의 다양한 디바이스의 보급으로 데이터 요구량이 매우 빠르게 증가하고 있다. 높은 데이터 요구량을 만족시키기 위해 통신 기술은 더 많은 주파수 대역을 효율적으로 사용하기 위한 CA(carrier
aggregation) 기술 등과 한정된 주파수 대역에서 데이터 용량을 높이기 위해 다중 안테나 기술, 다중 기지국 협력 기술 등으로 발전하고 있다. 통신 환경은 사용자 주변에 억세스 할 수 있는 AP ccess point)의 밀도가 점점 높아지는 방향으로 진화하고 있다. AP.는 셀를러 매크로 (Cellular Macro) AP뿐만 아니라 WiFi AP, 셀롤러 펨토 (Cellular Femto) AP, 셀를러 피코 (Cellular Pico) AP등 작은 커버리지를 갖는 여러 AP를 통하여 데이터 용량을 늘릴 수 있다. AP는 RRH(remote radio head) 혹은 DAS(distributed antenna system)의 안테나 노드 (antenna node)등과 같은 형태도 가능하다.
[38] DAS시스템은 기지국 (BS, BTS, Node-B, eNode-B) 안테나들이 셀 중앙에 몰려 있는 CAS(centralized antenna system) 시스템과 달리, 셀 내의 다양한 위치에 퍼져 있는 안테나들을 단일 기지국에서 관리한다. DAS 시스템은 여러 안테나 노드가 하나의 셀을 구성한다는 점에서 펨토 (femto)/피코 (pico) 셀 (cell)과는 구별된다. 초기의 DAS시스템의 용도는 음영지역을 커버하기 위해 안테나를 더 설치하는 것이었다. 그러나, DAS는 기지국 안테나들이 동시에 여러 데이터 스트림 (data stream)을 송수신하여 한 명 혹은 여러 명의 사용자를 지원할 수 있다는 점에서 일종의 MIMOCmultiple input multiple output) 시스템으로 볼 수 있다. MIM0시스템은 높은 주파수 효율 (spectral efficiency)로 인해 차세대 통신의 요구사항을
만족시키기 위한 필수적 요건으로 인식되고 있다. MIM0시스템의 관점에서, DAS는 CAS 보다 사용자와 안테나간의 거리가 작아짐으로써 얻게 되는 높은 전력효율, 낮은 기지국 안테나간의 상관도 및 낮은 간섭으로 인한 높은 채널용량, 셀 내의 사용자의 위치와 상관없이 상대적으로 균일한 품질의 통신성능이 확보되는 등의 장점을 가진다.
[39] 도 1은 분산 안테나시스템 (DAS)의 일례이다. 도 1에 도시된 바와 같이 DAS 시스템은 기지국과 그에 연결된 안테나 노드 (그룹, 클러스터 등)들로 구성된다.
안테나 노드는 기지국과 유 /무선으로 연결되며 한 개 또는 복수의 안테나를 포함할 수 있다. 일반적으로 한 안테나 노드에 속해있는 안테나들은 가장 가까운 안테나와의 거리가 수 미터 이내로서 지역적으로 같은 스팟 (spot)에 속하는 특성을 가진다.
안테나 노드는 단말이 접속 (access)할 수 있는 접속 포인트 (access point)의 역할을 한다. 종래의 DAS 시스템에서는 안테나 노드를 안테나와 동일시 하거나 둘을 구별하지 않는 기술이 많지만, DAS를 운용하기 위해서는 안테나 노드와 안테나 사이의 관계를 명확히 정의하여야 한다.
[40] 도 2는 DAS시스템의 BTS(base transceiver stations) 호텔 (hotel)개념을 나타낸다. 도 2를 참조하면, 종래의 셀를러 (eel hilar) 시스템은 하나의
기지국 (BTS)이 세 개의 섹터 (sector)를 관할하고 각각의 기지국은 백본 (backbone) 망을 통해 BSCCbase station control ler)/RNC(Radio Network Control ler)와 연결된다. 그러나 DAS시스템에서는 각 안테나 노드 (AN)와 연결되는 기지국들을 한곳에 모을 수 있다 (BTS hotel). 이로 인해 기지국을 설치할 땅과 건물에 대한 비용을 줄이고, 기지국에 대한 유지 및 관리를 한 곳에서 쉽게 할 수 있다. 또한, BTS와 MSCXMobile Switching Center)/BSC/RNC를 모두 한 곳에 설치함으로써 백홀 (backhaul)
용량 (capacity)을 크게 증가시킬 수 있다.
[41] 도 3을 참조하여 무선 프레임의 구조에 대하여 설명한다.
[42] 셀를러 OFDM무선 패킷 통신 시스템에세 상 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어진다. 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPPLTE 표준에서는 FDE Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[43] 도 3(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의
서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI (transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 술롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 0FDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는
하향링크에서 0FDMA 를 사용하므로, 0FDM 심볼이 하나의 심볼 구간을 나타낸다. 0FDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원
블록 (Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
[44] 하나의 슬롯에 포함되는 0FDM 심볼의 수는 CP(Cyclic Prefix)의
구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, 0FDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 7개일 수 있다. 0FDM 심볼이 확장된 CP에 의해 구성된 경우, 한 0FDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 0FDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 0FDM심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가사용될 수 있다. [45] 일반 CP가사용되는 경우 하나의 슬롯은 7개의 OFDM심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
[46] 도 3(b)는 타입 2무선 프레임의 구조를 나타내는 도면이다. 타입 2무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간 (Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
[47] 무선 프레임의 구조는 예시에 블과하고, 무선 프레임에 포함되는
서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
[48] 도 4는 레거시 (legacy) 통신 주파수 대역과 소형 셀 (small cell)의 주파수 대역을 예시한다.
[49] 차세대 통신의 높은 데이터 전송량을 만족시키기 위하여 로컬 영역 (local area)의 개념이 도입되었다. 즉, 이용자별 서비스의 지원을 강화하기 위하여 로컬 영역 접속 (local area access)이라는 새로운 셀 배치 (deployment)가 요청된다.
[50] 도 4는 새로운 셀 배치에 따른 소형 셀 (small-cell)의 개념을 나타내고 있다. 즉, 네트워크는 단말에게 기존의 LTE시스템에 운용되는 주파수 대역이 아닌 보다 높은 중심 주파수를 갖는 대역에 넓은 시스템 대역을 설정하여 운용할 수 있다. 또한 기존의 셀를러 대역을 통해서는 시스템 정보 (system informat ion)와 같은 제어 신호를 기반으로 기본적인 셀 커버리지를 지원하고, 고주파의 소형 셀 (small-cell) 에서는 보다 넓은 주파수 대역을 이용하여 전송효율을 극대화할 수 있다. 따라서 로컬 영역 접속 (local area access)은 비교적 좁은 지역에 위치한 저속
이동 (low-to— medium mobility)의 단말을 대상으로 한다. 단말과 기지국 사이의 거리는 기존 km단위의 셀보다 작은 100m단위의 작은 셀로 설정될 수 있다. [51] 따라서 이러한 셀에서는 단말과 기지국 사이의 거리가 짧아지고, 고주파 대역을 사용함에 따라 아래와 같은 채널 특성을 예상할 수 있다.
[52] 지연 확산 (Del ay spread): 기지국과 단말사이의 거리가 짧아짐에 따라 신호의 지연 (del ay)이 짧아질 수 있다.
[53] 부반송파 간격 (Subcarrier spacing): LTE와 동일한 OFDM기반의 프레임을 적용할 경우, 할당된 주파수 대역이 크기 때문에 기존의 15kHz보다 극단적으로 큰 값으로 설정될 수 있다.
[54] 도플러 주파수 (Doppler' s frequency): 고주파 대역은 저주파 대역보다 높은 도플러 (Doppler) 주파수가 나타나기 때문에, 상관 시간 (coherent time)이 극단적으로 짧아질 수 있다.
[55] 본 명세서에서는 고주파 대역 전송을 위한 동기화 신호의 전송 방법을 제안하며, 고주파 대역의 특성을 고려한 다양한 실시예를 설명한다.
[56] 일반적으로 반송파 주파수 (carrier frequency; fc)가 5GHz 이상이 되는 고주파 대역에서는 채널의 지연 확산 (delay spread)이 짧아지는 경향이 있다. 또한 고주파 대역일수록 채널의 경로 손실이 크게 증가하여, 기지국과의 거리가 가까워야 안정적인 성능을 보장할 수 있다. 따라서, 고주파 대역을 이용한 통신에서 기존의 셀롤러 통신 보다 좁은 셀 구조가 바람직하며, 자원 활용 및 제어의 용이성을 위하여 다중 접속 (multiple access) 기법인 OFDM이 이용되는 것이 바람직하다.
[57] 이러한 채널 특성을 고려할 때, LTE와 같은 기존의 단일 심볼 /단일 시퀀스 기반의 동기 신호는 층분한 성능을 제공하지 못할 수 있다. 따라서 이하에서는 고주파 대역에서 동기 신호를 전송하기 위한 고려사항을 설명한다.
[58] 먼저, 서비스 대역의 중심 주파수 증가를 고려하여야 한다.
[59] 기존의 셀를러 시스템 또는 WiFi 가 운용되고 있는 5GHz 이하의 채널 환경이 아니라 5GHz 이상 또는 수십 GHz 이상의 중심 주파수 대역이 이용될 수 있다. 기존의 2GHz 근방에서는 이용 가능한 넓은 주파수 대역을 확보할 수 없기 때문이다. 기존의 통신에서 이용되는 주파수 대역은 여러 제약으로 인하여 용도 변경 및 활용에 어려움이 따른다.
[60] 두번째로, 넓은 시스템 대역 폭이 요구된다.
[61] 차세대 통신은 기존의 Full HDChigh definition) 기반의 서비스에서 나아가 UD(ultra definition)급 이상의 서비스를 지원하는 것이 요청된다. 따라서 높은 전송률을 지원하기 위해서 보다 넓은 대역폭을 이용하여 서비스를 제공하여야 한다. 여기서, 수 백 MHz 이상 또는 수 GHz 이상의 대역폭을 이용하여 서비스를 제공할 경우, 주파수의 전 대역에 동기 신호를 전송하는 것은 비효율적이다. 넓어진 시스템 대역폭 전체에 동기 신호를 전송하는 것은 많은 전력 (power)이 소모되기 때문이다.
[62] 마지막으로, 소형 셀 기반의 고밀도 샐 배치가 요구된다.
[63] 고주파 대역 통신에서 소형 셀의 고밀도 배치가 효율적이다. 이 방법은 이용자에게 높은 전송를을 지원할 수 있는 가장 효율적인 방법이며, 보다
밀집 (dense)한 샐 배치를 통하여 전체 시스템의 용량 (capacity)을 최대로 증가시킬 수 있다. 하지만, 기지국의 전송 전력이 낮은 소형 셀에서 수 GHz 대역 전체에 동기 신호를 전송하는 경우, 단말이 수신하는 동기 신호의 품질이 저하되어, 동기 획득의 성능이 저하될 수 있다.
[64] 이하에서는 상기 3가지 고주파 대역 통신의 특성을 고려하여 아래의
실시예들을 제안한다.
[65] 제 1 실시예
[66] 본 발명의 제 1 실시예에 따르면, 기지국은 고주파 대역 통신의 시스템 대역폭 일부에만 동기 신호를 전송할 수 있다. 하지만, 동기 신호의 위치는 시스템 대역의 중간 지점, 즉 DC서브 캐리어가 전송되는 영역을 중심으로 한정되지 않는다.
[67] 도 5는 고주파 대역 통신 시스템에서 동기 신호를 할당하는 제 1 실시예를 나타낸다.
[68] 도 5를 참조하면, 동기 신호가 할당되는 위치는 전체 시스템 대역의 중간 지점뿐만 아니라 다른 영역으로 이동될 수 있다. 동기 신호는 단말이 검출하기 용이하도록 일반 데이터 신호에 비하여 높은 전력으로 전송된다. 따라서, 특정 기지국에 접속한 단말에게 간섭을 유발하거나 간섭을 받을 수 있는데, 이러한 경우 기지국 별로 동기 신호의 전송 영역을 다르게 변경할 수 있다.
[69] 기지국은 동기 신호가 전송되는 위치에 대한 정보를 단말로 전송할 수 있다. 예를 들면, CACcarrier aggregat ion)를 지원하는 시스템에서 프라이머리
셀 (primary-cell)의 RRC(radio resource control) 시그널링을 통하여 세컨더리 셀 (secondary-cell)의 동기 신호 위치에 대한 정보를 전송할 수 있다. 동기 신호의 위치를 비트맵 (bit-map)의 정보로 전송하는 경우, 동기 신호 채널의 위치를
부반송파 (subcarrier) 수로 나타낼 수 있다. 즉 nog2NPFT]로 나타낼 수 있으며, FFT(fast fourier transform) 사이즈가 1024라면 총 10 비트가 필요하게 된다.
독립적 (stand-alone)으로 동작하는 시스템의 경우, 단말은 전체 대역에서 모든 동기 신호 후보를 블라인드 검색 (Blind search)을 수행할 수 있다.
[70] 제 2 실시예
[71] 본 발명의 제 2 실시예에 따르면, 기지국은 전체 주파수 대역을 분할한 다수의 영역에서 동기신호를 전송할 수 있다.
[72] 도 6은 본 발명에 따른 통신 시스템에서 전체 시스템 대역을 N개로 분할하는 제 2 실시예를 나타낸다.
[73] 도 6을 참조하면, 전체 시스템 대역을 N(N은 자연수)개의 영역으로 분할한다. 이때, 기지국은 분할된 영역 중 하나 또는 복수 (Multiple)인 M개의 (1≤M≤N)영역을 선택하여 동기 신호를 전송할 수 있다.
[74] 고주파 대역 통신 시스템은 넓은 시스템 대역폭을 이용하여 높은 전송률을 획득하는 것을 목적으로 한다. 이때 동기 신호가 모든 주파수 대역에서 전송되는 경우, 단말은 필터링 처리 없이 전체 주파수 대역에 대하여 동기 신호를 검출해야 한다. 이는 결국 단말의 복잡도를 증가시켜ᅳ 신속하게 동기 신호를 검출할 수 없도록 한다.
[75] 따라서, 본 발명의 제 2 실시예에 따르면, 주파수 대역을 N개로 분할하고 분할된 영역의 일부인 M개의 영역에만 동기 신호를 전송하여 단말이 신속하게 동기 신호를 검출할 수 있도록 한다. 단말의 복잡도에 큰 영향을 미치지 않는다면, M을 N으로 설정하여 전체 대역에 동기 신호를 전송할 수 있다. 대역을 분할하는 수 N은 최대 FFT 크기 (size) 또는 이용 가능한 서브캐리어 수로 설정할 수 있다. N의
최대값은 전체 주파수 대역을 서브캐리어 단위로 분할하는 수가 된다. 또한, N은 노멀라이즈된 전송 전력 (power)의 레벨에 따라 결정될 수 있다. 주파수 대역을 분할하는 수 N은 RRC 시그널링을 통해서 단말로 전송될 수 있다.
[76] 동기 신호가 전송되는 위치는 비트맵 (bit-map) 형식의 정보로 전송될 수 있다. 분할된 주파수 대역의 수 N이 10이라면, 동기 신호가 전송되는 위치 정보를 flog2Nl = 4 비트로 표 1과 같이 구성할 수 있다.
[77] 【표 1】
동기 신호 위치 비트 정보
Figure imgf000014_0001
[78] 또한, 총 10 비트 (bit)를 이용하여 각 비트에 주파수 대역을 일대일 대웅하여 표 2와 같이 구성할 수도 있다.
[79] 【표 2】
Figure imgf000014_0002
[80] 동기 신호가 전송되는 위치는 미리 설정 (predefine)되거나, RRC 시그널링 등을 통하여 단말에게 될 수 있다. 또는, 단말이 블라인드 검출 (blind-search)올 통하여 동기신호를 검출할 수도 있다. 동기 신호가 전송되는 위치에 대한 정보의 전송 또는 블라인드 검출의 결정은 단말의 처리 능력, 복잡도, 또는 간섭 등의 채널 환경 요소를 고려하여 결정할 수 있다. 예를 들면, CMcarrier aggregat ion)를 지원하는 시스템의 경우, 프라이머리 셀 (primary-cell)의 RRCCRadio Resource Control ) 시그널링을 통하여 세컨더리 샐 (secondary-cell)의 동기 신호 위치에 대한 정보를 전송할 수 있다.
[81] 제 3실시예
[82] 도 7은 전체 시스템 대역을 시간 및 주파수를 고려하여 분할하고, 분할된 영역에 동기 신호를 전송하는 제 3실시예를 도시한다.
[83] 도 7을 참조하면 , 시간-주파수 패턴을 이용하여 여러가지 조합을 만들 수 있다. 제 2실시예에서는 일정한 시간 영역 상에서 주파수 영역을 분할하였지만, 제 3 실시예에 따르면 시간 및 주파수 모두를 고려하여 시스템 대역을 분할할 수 있다.
[84] 예를 들면, 전체 시스템 대역이 N개의 주파수 영역으로 분할되고, 시간 영역에서 동기 신호를 전송할 수 있는 심볼 수가 M이라면 (여기서, N 및 M은 자연수), 전체 조합 수는 아래와 같이 수학식 1로 나타낼 수 있다. 이때 동기 신호가 전송되는 심볼 수 M은 시간 영역에서 연속적이거나, 비연속적일 수 있다. 도 7은 주파수 영역이 4개로 분할되고, 시간 영역에서 선택된 심볼 수가 4개인 경우를 나타낸다.
[85] 주파수 영역에서 선택되는 대역 수: Nf = ¾ NCn
[86] 시간 영역에서 선택되는 심볼 수: Nt = ¾i=1MCm
[87] 전체 동기 신호 전송 대역 후보 (candidate) 수: NfxNt
[88] 동기 신호가 전송되는 위치에 대한 정보는 좌표 정보 또는 전체 영역을 인텍스한 후 비트맵 정보로서 전송될 수 있다. 또한, 동기 신호가 전송되는 위치에 대한 정보는 RRC시그널링 등을 통하여 단말에게 전송되거나, 미리
설정 (predefine)될 수 있다. 또는, 단말이 블라인드 검출 (blind-search)을 통하여 동기신호를 검출할 수도 있다. 동기 신호가 전송되는 위치에 대한 정보의 전송 또는 블라인드 검출의 결정은 단말의 처리 능력, 복잡도, 또는 간섭 등의 채널 환경 요소를 고려하여 결정할 수 있다. 예를 들면, CA( carrier aggregat ion)를 지원하는 시스템의 경우, 프라이머리 셀 (primary-cell)의 RRC(Radio Resource Control) 시그널링을 통하여 세컨더리 샐 (secondary-cell)의 동기 신호 위치에 대한 정보를 전송할 수 있다.
[89] 제 4실시예 [90] 상술한 바와 같이 고주파 대역 통신 시스템은 소형 셀 기반의 고밀도 셀 배치를 이용하는 것이 예상된다. 이러한 경우, 모든 기지국이 동일한 시간-주파수 영역에 동기 신호를 전송한다면, 서로 다른 시퀀스들로 이루어진 동기 신호 간에도 큰 간섭이 발생할 수 있다. 이는 단말의 초기 동기 획득 및 핸드 오버 등의 인접 셀 동기 획득 과정에서 오류를 발생시킬 수 있다. 따라서 본 발명의 제 4실시예에서는, 단말의 간섭 상황 고려하여 기지국 별로 동기 신호를 서로 상이하게 설정할 수 있는 방법을 설명한다. 기지국 별로 서로 상이한 시간-주파수 영역 자원에 동기 신호를 설정하는 방법은 미리 설정 (predefine)하거나, RRC시그널링을 통해서 이루어질 수 있다.
[91] 예를 들면, 도 8과 같이 단말의 서비스 커버리지 내에 다양한 네트워크가 흔재된 상황에서 서로 인접한 소형 셀들 사이에 서비스 커버리지가 중첩될 경우, 네트워크 관리를 통해 각 기지국 별로 서로 상이한 영역을 통해서 동기 신호를 전송할 수 있다. 이를 통해 소형 셀의 고밀도 배치 환경에서 동기 신호간 발생하는 간섭을 크게 낮출 수 있다. 또한, 각 셀들의 간섭 상황 정보를 업데이트하여 동기 신호의 자원 할당 패턴을 변경할 수 있다. 또한 이러한 개념은 기지국의 서비스 타입 (Macro, Pico, Femto, RRH, Relay, hot spot 등)에 따라 자원 할당을 다르게 하는 것으로 적용할 수 있다.
[92] 제 5실시예
[93] 본 발명의 제 5실시예는 멀티캐리어를 이용하는 시스템에서 각 캐리어 별로 서로 다른 시간-주파수 자원 영역에 동기 신호를 전송하는 방법을 설명한다.
[94] 차세대 통신 시스템은 넓은 단일 대역 (Single broadband) 뿐만 아니라 일정 크기 이상의 밴드들을 집성하여 사용하는 멀티 캐리어 운용 방식이 적용될 수 있다. 중심 주파수 대역별로 이용할 수 있는 대역폭에 제한이 있기 때문에, 한꺼번에 수 GHz 이상의 대역폭을 할당하는 것은 어렵다. 따라서 일정 크기 이상의 밴드들을 접합하여 멀티 캐리어 기반의 시스템을 구축하는 것이 바람직하다.
[95] 멀티 캐리어 기반의 시스템의 예로서 LTE-A(Long Term Evolut ion- Advanced) 시스템을 들 수 있다. LTE-A시스템은 캐리어 어그리게이션 (Carrier Aggregation, CA)(반송파 집적) 기술을 채용하고, 이로써 다수 개의 컴포넌트 캐리어 (Component Carrier, CC)를 어그리게이션하여 전송을 실행하여, 단말의 전송 대역폭을
향상시키고 주파수의 사용 효율을 증가시킨다. LTE-A시스템은 기존의 LTE rel 8/9에서 사용되던 단일 캐리어 (single carrier)를 하나가 아닌 다수의
캐리어 (멀티캐리어)를 동시에 묶어서 사용하예 100MHz까지 대역폭을 확장시킬 수 있다. 다시 말해, 기존의 LTE rel 8/9에서 최대 20MHz까지 정의되었던 반송파를 컴포넌트 캐리어 (혹은 요소 캐리어)라고 재정의하고, 캐리어 어그리게이션 기술을 통해 최대 5개까지의 컴포넌트 캐리어를 하나의 단말이 사용할 수 있도록 하였다.
[96] 현재의 캐리어 어그리게이션 (혹은 반송파 집적) 기술은 주로 다음과 같은 특징을 구비한다.
[97] (1) 연속하는 컴포넌트 캐리어 (component carrier)의 어그리게이션을 지원하고, 불연속하는 컴포넌트 캐리어의 어그리게이션 지원한다.
[98] (2) 상향링크와 하향링크의 캐리어 어그리게이션 개수는 상이할 수 있는데, 만약 이전 시스템과 서로 호환되어야 한다면, 상향링크와 하향링크는 동일한 수량의 컴포넌트 캐리어를 구성해야 한다.
[99] (3) 상 /하향링크에 대해 상이한 수량의 컴포넌트 캐리어를 구성하여, 상이한 전송 대역폭을 획득할 수 있다.
[100] (4) 단말에 대해서, 각각의 컴포넌트 캐리어는 하나의 전송 블록 (transport block)을 독자적으로 전송하고, 독립된 하이브리드 자동 재전송 요구 (Hybrid
Automatic Repeat reQuest , HARQ) 메커니즘을 구비한다.
[101] 하나의 컴포넌트 캐리어를 사용하는 기존의 LTE시스템과는 다르게 다수 개의 컴포년트 캐리어를 사용하는 캐리어 어그리게이션에서는 컴포넌트 캐리어를 효과적으로 관리하는 방법이 필요하게 되었다. 컴포넌트 캐리어를 효율적으로 관리하기 위해, 컴포넌트 캐리어를 역할과 특징에 따라 분류할 수 있다. 컴포넌트 캐리어는프라이머리 컴포넌트 캐리어 (Primary Component Carrier, PCC) (주요소 반송파, 주요소 캐리어 등으로 호칭됨)와 세컨더리 컴포년트 캐리어 (Secondary
Component Carrier, SCC) (부요소 반송파, 부요소 캐리어 등으로 호칭됨)로 나누어질 수 있다. 프라이머리 컴포넌트 캐리어는 여러 개의 컴포넌트 캐리어를 사용 시에 컴포넌트 캐리어의 관리의 중심이 되는 컴포넌트 캐리어로서 각 단말에 대하여 하나씩 정의되어 있다.
[102] 그리고, 하나의 프라이머리 컴포넌트 캐리어를 제외한 다른 컴포넌트 캐리어들은 세컨더리 컴포넌트 캐리어로 정의된다. 프라이머리 컴포년트 캐리어는 집적되어 있는 전체 컴포넌트 캐리어들을 관리하는 핵심 캐리어의 역할을 담당할 수 있고, 나머지 세컨더리 컴포넌트 캐리어는 높은 전송률을 제공하기 위한 추가적인 주파수 자원 제공의 역할을 담당할 수 있다. 예를 들어, 기지국은 단말과의 시그널링을 위한 접속 (RRC)은 프라이머리 컴포넌트 캐리어를 통하여 이루어질 수 있다. 보안과 상위 계층을 위한 정보 제공 역시, 프라이머리 컴포넌트 캐리어를 통하여 이투어질 수 있다. 실제로, 하나의 컴포넌트 캐리어만 존재하는 경우에는 해당 컴포넌트캐리어가 프라이머리 컴포넌트 캐리어가 될 것이며 , 이때는 기존 LTE 시스템의 캐리어와 동일한 역할을 담당할 수 있다.
[103] 본 발명의 제 5실시예에서는 멀티 캐리어를 이용하는 시스템에서, 캐리어 별로 서로 상이한 시간ᅳ주파수 영역을 통하여 동기 신호를 전송하는 방법을 설명한다.
[104] 먼제 하나의 기지국을 중심으로 캐리어 별로 서로 다른 주파수 대역을 할당하고, 다른 기지국은 할당된 패턴이 중첩되지 않도록 설계하거나, 특정 거리 이상에서만 중첩되도록 할 수 있다. 이에 따라, 기지국간 동기 신호 간섭이 발생할 수 있는 확률을 크게 낮출 수 있다.
[105] 예를 들면, 표 3과 같이 시간-주파수 영역 후보 'Ν=4' 개 ᅳ 멀티 캐리어 수
'Μ=3' , 증첩 기지국 1=4' 라면 아래와 같은 조합이 가능하다.
[106] 【표 3】
Figure imgf000018_0001
[107] 도 9는 본 발명의 제 5실시예에 따른 동기 신호 할당의 일례를 나타나며, 구체적으로, 표 3에 따른 동기 신호 할당을 나타낸다. 도 9를 참조하면, 주파수 대역에 총 4개의 부분 대역이 존재하고, 자원 할당 인덱스는 0부터 3까지 지원됨을 알 수 있다.
[108] 동기 신호가 전송되는 위치에 대한 정보는 C시그널링 등을 통하여 단말에게 전송되거나, 미리 설정 (predefine)될 수 있다. 또는, 단말이 블라인드 검출 (blind-search)을 통하여 동기신호를 검출할 수도 있다. 동기 신호가 전송되는 위치에 대한 정보의 전송 또는 블라인드 검출의 결정은 단말의 처리 능력, 복잡도, 또는 간섭 등의 채널 환경 요소를 고려하여 결정할 수 있다. 예를 들면, CA(carrier aggregation)를 지원하는 시스템의 경우, 프라이머리 셀 (primary-cel 1)의 RRC(Radio Resource Control) 시그널링을 통하여 세컨더리 셀 (secondary-cel 1 )의 동기 신호 위치에 대한 정보를 전송할 수 있다.
[109]
[110] 제 6실시예
[111] 제 1 내지 제 5 실시예에서는 동기 신호가 전송되는 자원에 대해서 정의하였다. 제 6실시예에서는 동기 신호가 전송되는 주파수 -시간 자원이 결정된 경우, 실제로 전송되는 동기 신호, 즉 시퀀스에 대해서 정의한다.
[112] 제 1 내지 제 3실시예에 따르면, 전체 시스템 대역에서 주파수 또는 시간으로 분할된 여러 영역 중 일부에 동기 신호가 전송될 수 있다. 여기서, 기본적으로 각 영역에 실제로 매핑 (mapping)되는 동기 시퀀스는 모두 같을 수 있다. 그러나, 각 영역별로 상이한 동기 시퀀스를 설정할 수 있다. 또한 각 영역별로 동기 시뭔스를 이하게 설정하는 경우, 전체 주파수 대역의 길이를 갖는 하나의 동기 시뭔스를 설계한 후, 도 10과 같이 각 영역별 크기에 맞추어 동기 시퀀스를 분할하여 전송할 수도 있다.
[113] 본 발명의 실시예가 적용될 수 있는 기지국 및 단말
[114] 도 11은 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.
[115] 무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은
기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다.. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.
[116] 도 11을 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)올 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio
Frequency, RF) 유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF유닛 (116)은 프로세서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세서 (122), 메모리 (124) 및 RF유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도톡 구성될 수 있다. 메모리 (124)는 프로세서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF유닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
[117] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
[118] 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네 트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수 행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수 행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNodeB(eNB), 억 세스 포인트 (access point) 등의 용어에 의해 대체될 수 있다.
[119] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어
(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors) , DSPDs(digi tal signal processing devices) , PLDs( programmable logic devices) , FPGAs(f ield programmable gate arrays), 프로세서, 콘트를러, 마이크로 콘트롤러, 마이크로 프로 세서 등에 의해 구현될 수 있다. [120] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다.
[121] 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[122] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구 체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범 위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
[123] 본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위】
【청구항 1】
무선 통신 시스템에서 단말이 동기 신호를 수신하는 방법에 있어서,
전체 시스템 대역을 주파수 축으로 N개 시간 축으로 M개 분할한 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 수신하는 단계 (단, N 및 M은 자연수); 및
상기 위치 정보에 대웅하는 영역에서 상기 동기 신호를 수신하는 단계 를 포함하는ᅳ 동기 신호 수신 방법 .
【청구항 2】
제 1항에 있어서,
서로 다른 기지국으로부터 전송되는 상기 동기 신호는 서로 다른 주파수 및 시간 자원을 가지는 영역에서 전송되는, 동기 신호 수신 방법 .
【청구항 3】
제 1항에 있어서,
서로 다른 서비스 유형의 기지국으로부터 전송되는 상기 동기 신호는 서로 다른 주파수 및 시간 자원을 가지는 영역에서 전송되는, 동기 신호 수신 방법.
【청구항 4]
제 1항에 있어서,
상기 N은 상기 단말과 연결되는 기지국의 전송 전력을 노멀라이즈 (normalize) 한 값에 따라 결정되는, 동기 신호 수신 방법.
【청구항 5】
제 1항에 있어서,
상기 N은 최대 FFT(Fast Fourier Transform)의 크기로 결정되는, 동기 신호 수신 ^ ^법.
【청구항 6】
제 1항에 있어서,
상기 N은 상기 전체 시스템 대역을 구성하는 부반송파 (subcarrier)의 수로 결정되는, 동기 신호 수신 방법.
【청구항 7]
무선 통신 시스템에서 기지국이 동기 신호를 전송하는 방법에 있어서, 전체 시스템 대역을 주파수 축으로 N개 시간 축으로 M개 분할한 분할 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 전송하는 단계 (단, N 및 M은 자연수); 및
상기 위치 정보에 대웅하는 영역에서 상기 동기 신호를 전송하는 단계 를 포함하는, 동기 신호 전송 방법 .
【청구항 8]
제 7항에 있어서,
서로 다른 기지국으로부터 전송되는 상기 동기 신호는 서로 다른 주파수 및 시간 자원을 가지는 영역에서 전송되는, 동기 신호 전송 방법.
【청구항 9】
제 7항에 있어서,
서로 다른 서비스 유형의 기지국으로부터 전송되는 상기 동기 신호는 서로 다른 주파수 및 사간 자원을 가지는 영역에서 전송되는, 동기 신호 전송 방법.
【청구항 10]
제 7항에 있어서,
상기 N은 상기 단말과 연결되는 기지국의 전송 전력올 노멀라이즈 (normalize) 한 값에 따라 결정되는, 동기 신호 전송 방법.
【청구항 111
제 7항에 있어서,
상기 N은 최대 FF (Fast Fourier Transform)의 크기로 결정되는, 동기 신호 전송 방법 .
【청구항 12】
제 7항에 있어서,
상기 N은 상기 전체 시스템 대역을 구성하는 부반송파 (subcarrier)의 수로 결정되는, 동기 신호 전송 방법.
【청구항 13]
무선 통신 시스템에서 동기신호를 수신하는 단말에 있어서,
RF (Radio Frequency) 유닛 ; 및
프로세서를 포함하고,
상기 프로세서는, 전체 시스템 대역을 주파수 축으로 N개 시간 축으로 M개 분할한 분할 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 수신하고 (단, N 및 M은 자연수), .
상기 위치 정보에 대웅하는 영역에서 상기 동기 신호를 수신하도록 구성되는, 단말.
【청구항 14]
무선 통신 시스템에서 동기 신호를 전송하는 기지국에 있어서,
RF(Radio Frequency) 유닛; 및
프로세서를 포함하고,
상기 프로세서는,
전체 시스템 대역을 주파수 축으로 N개 시간 축으로 M개 분할한 분할 영역 중에서 상기 동기 신호가 전송되는 영역에 대한 위치 정보를 전송하고 (단 N 및 M은 자연수),
상기 위치 정보에 대응하는 영역에서 상기 동기 신호를 전송하도록 구성되는, 기지국.
PCT/KR2013/009887 2012-11-04 2013-11-04 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치 WO2014069951A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157014640A KR101731352B1 (ko) 2012-11-04 2013-11-04 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
US14/440,049 US9531510B2 (en) 2012-11-04 2013-11-04 Method for transmitting/receiving synchronizing signal in wireless communication system and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261722226P 2012-11-04 2012-11-04
US201261722228P 2012-11-04 2012-11-04
US61/722,228 2012-11-04
US61/722,226 2012-11-04

Publications (1)

Publication Number Publication Date
WO2014069951A1 true WO2014069951A1 (ko) 2014-05-08

Family

ID=50627757

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2013/009887 WO2014069951A1 (ko) 2012-11-04 2013-11-04 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
PCT/KR2013/009888 WO2014069952A1 (ko) 2012-11-04 2013-11-04 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009888 WO2014069952A1 (ko) 2012-11-04 2013-11-04 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (2) US9531510B2 (ko)
EP (1) EP2916602A4 (ko)
KR (2) KR101731353B1 (ko)
CN (1) CN104823496B (ko)
WO (2) WO2014069951A1 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398566B2 (en) * 2014-09-18 2016-07-19 Nokia Technologies Oy Inter-operator radio resource sharing in dense deployments of small cell networks
US10405149B2 (en) * 2015-06-09 2019-09-03 Samsung Electronics Co., Ltd. Enhanced MBMS-based signal transmission/reception method
CN106937361A (zh) * 2015-12-31 2017-07-07 电信科学技术研究院 无线小区中高频段同步信号的收发方法及装置
CN107124383B (zh) * 2016-02-25 2021-01-19 中兴通讯股份有限公司 一种数据传输方法和装置
US10530544B2 (en) * 2016-08-12 2020-01-07 Motorola Mobility Llc Method and apparatus for receiving reference signals in support of flexible radio communication
KR20180035524A (ko) 2016-09-29 2018-04-06 삼성전자주식회사 무선 통신 시스템에서 혼합된 뉴머롤로지를 지원하기 위한 장치 및 방법
KR20180036565A (ko) * 2016-09-30 2018-04-09 주식회사 케이티 새로운 무선 접속 기술을 위한 동기 신호 설정 방법 및 장치
CN107920364B (zh) * 2016-10-10 2020-10-16 华为技术有限公司 同步信号的发送方法、接收方法及装置
US10623161B2 (en) * 2017-01-05 2020-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of sync signals with alternative features
US10588102B2 (en) 2017-01-24 2020-03-10 Qualcomm Incorporated Coordinated synchronization channel transmission and restricted measurement
CN110050490B (zh) * 2017-02-20 2021-10-22 华为技术有限公司 一种同步信号的监听方法及设备
CN110741574A (zh) 2017-03-15 2020-01-31 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
EP3399809A1 (en) 2017-05-02 2018-11-07 Fujitsu Limited Synchronization signals in 5g
CN108811130B (zh) 2017-05-05 2021-02-12 华为技术有限公司 一种带宽指示方法及装置
CN108811132B (zh) 2017-05-05 2020-12-01 华为技术有限公司 一种资源指示的方法、设备及系统
CN111108784B (zh) * 2017-10-02 2022-09-02 索尼公司 在无线通信系统中为用户设备建立接入的方法
WO2019098914A1 (en) 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, network nodes and methods in a wireless communications network
CN109167747B (zh) * 2017-11-17 2019-08-13 华为技术有限公司 通信方法和通信设备
CN109936430B (zh) * 2017-12-18 2024-04-12 华为技术有限公司 一种信号发送、接收方法及设备
CN110149642B (zh) * 2018-02-12 2021-12-10 华为技术有限公司 一种中继节点同步信号的发送方法及装置
WO2020032705A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020037457A1 (en) * 2018-08-20 2020-02-27 Qualcomm Incorporated Synchronized scheduling for carrier aggregation
US11463969B2 (en) * 2019-07-31 2022-10-04 Qualcomm Incorporated Techniques for connecting a wireless repeater to multiple base stations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039107A1 (en) * 2004-06-24 2008-02-14 Nortel Networks Limited Preambles in Ofdma System
WO2010002153A2 (ko) * 2008-06-30 2010-01-07 엘지전자주식회사 다중안테나 시스템에서 동기신호의 전송장치
WO2010090485A2 (ko) * 2009-02-08 2010-08-12 엘지전자 주식회사 무선 이동 통신 시스템에 있어서, 단말기 복조용 참조 신호 전송 방법 및 이를 수행하기 위한 장치
KR20100096015A (ko) * 2009-02-22 2010-09-01 엘지전자 주식회사 무선 통신 시스템에서 인터 워킹 신호 전송 방법 및 장치
WO2012148236A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 반송파 집성 시스템에서 동기화 신호 전송 방법 및 장치

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050066562A (ko) 2003-12-26 2005-06-30 삼성전자주식회사 직교 주파수 분할 다중화 방식의 무선 통신 시스템에서의프레임 프리앰블 구성 방법 및 그 프리앰블을 이용한프레임 동기 획득 및 셀 검색 방법
CN1956431A (zh) * 2005-10-28 2007-05-02 华为技术有限公司 无线通信系统中实现同步的方法
US7649963B2 (en) 2006-03-29 2010-01-19 Posdata Co., Ltd. Apparatus for estimating and compensating carrier frequency offset and data receiving method in receiver of wireless communication system
JP4637061B2 (ja) * 2006-06-28 2011-02-23 富士通株式会社 無線送信装置及びガードインターバル挿入方法
EP2037605A4 (en) * 2006-06-30 2014-07-16 Fujitsu Ltd DIGITAL MOBILE COMMUNICATION SYSTEM AND SENDING / RECEIVING METHOD THEREFOR
US8174995B2 (en) * 2006-08-21 2012-05-08 Qualcom, Incorporated Method and apparatus for flexible pilot pattern
CN102695226B (zh) * 2006-09-28 2014-12-03 富士通株式会社 移动站和无线通信系统
US9119132B2 (en) * 2007-10-10 2015-08-25 Qualcomm Incorporated Efficient system identification schemes for communication systems
CN101197636B (zh) * 2008-01-04 2013-08-07 中兴通讯股份有限公司 用于时分双工系统下行特殊时隙中资源的分配方法和装置
WO2010032969A2 (ko) * 2008-09-17 2010-03-25 (주)엘지전자 멀티 캐리어를 이용하는 통신시스템에서 데이터 송수신 방법 및 장치
US8891480B2 (en) * 2009-07-01 2014-11-18 Qualcomm Incorporated Positioning reference signals in a telecommunication system
KR101237666B1 (ko) 2009-07-28 2013-02-26 엘지전자 주식회사 다중 입출력 통신 시스템에서 셀간 간섭을 제거하기 위한 기준신호 전송 방법 및 장치
KR101664191B1 (ko) 2009-08-28 2016-10-11 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 할당 방법
CN101998607B (zh) * 2009-08-31 2013-07-31 中国移动通信集团公司 上行时隙引入下行传输辅同步信号的方法、系统及装置
US8411783B2 (en) * 2009-09-23 2013-04-02 Intel Corporation Method of identifying a precoding matrix corresponding to a wireless network channel and method of approximating a capacity of a wireless network channel in a wireless network
KR20110037430A (ko) * 2009-10-06 2011-04-13 주식회사 팬택 무선통신 시스템에서 신호 전송방법 및 그 송신장치, 이에 대응하는 수신장치
US9232462B2 (en) 2009-10-15 2016-01-05 Qualcomm Incorporated Methods and apparatus for cross-cell coordination and signaling
US8824383B2 (en) * 2010-06-22 2014-09-02 Telefonaktiebolaget L M Ericsson (Publ) Downlink scheduling in heterogeneous networks
US8705399B2 (en) 2010-10-29 2014-04-22 Neocific, Inc. Transmission of synchronization and control signals in a broadband wireless system
US10051624B2 (en) * 2010-12-06 2018-08-14 Interdigital Patent Holdings, Inc. Wireless operation in license exempt spectrum
EP2651045B1 (en) * 2010-12-10 2019-03-06 LG Electronics Inc. Method for transceiving signal in multi-node system, and device therefor
JP5092026B2 (ja) * 2011-02-14 2012-12-05 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動端末装置、及び通信制御方法
JP2013034165A (ja) 2011-06-27 2013-02-14 Ntt Docomo Inc 無線通信方法、無線通信システム及び移動局
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8437303B2 (en) * 2011-07-04 2013-05-07 Ofinno Technologies, Llc System frame number in multicarrier systems
US9629156B2 (en) * 2011-08-12 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Aggregated carrier synchronization and reference signal transmitting and receiving methods, devices and systems
CN102958097B (zh) * 2011-08-23 2016-08-03 华为技术有限公司 实现用户设备之间同步和感知的方法及设备
KR20140094565A (ko) 2011-11-18 2014-07-30 후지쯔 가부시끼가이샤 이종 네트워크에서 동기화를 향상시키기 위한 방법 및 장치
US9414371B2 (en) * 2012-04-16 2016-08-09 Samsung Electronics Co., Ltd. Hierarchical channel sounding and channel state information feedback in massive MIMO systems
US8982693B2 (en) * 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
US9065630B1 (en) 2012-09-27 2015-06-23 Marvell International Ltd. Systems and methods for detecting secondary synchronization signals in a wireless communication system
US9131434B2 (en) 2012-10-19 2015-09-08 Blackberry Limited Using a cell as a pathloss or timing reference
CN103988568A (zh) 2012-10-26 2014-08-13 华为技术有限公司 传输参考信号的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039107A1 (en) * 2004-06-24 2008-02-14 Nortel Networks Limited Preambles in Ofdma System
WO2010002153A2 (ko) * 2008-06-30 2010-01-07 엘지전자주식회사 다중안테나 시스템에서 동기신호의 전송장치
WO2010090485A2 (ko) * 2009-02-08 2010-08-12 엘지전자 주식회사 무선 이동 통신 시스템에 있어서, 단말기 복조용 참조 신호 전송 방법 및 이를 수행하기 위한 장치
KR20100096015A (ko) * 2009-02-22 2010-09-01 엘지전자 주식회사 무선 통신 시스템에서 인터 워킹 신호 전송 방법 및 장치
WO2012148236A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 반송파 집성 시스템에서 동기화 신호 전송 방법 및 장치

Also Published As

Publication number Publication date
US9531510B2 (en) 2016-12-27
KR20150093677A (ko) 2015-08-18
WO2014069952A1 (ko) 2014-05-08
US20150304079A1 (en) 2015-10-22
US20150296467A1 (en) 2015-10-15
CN104823496A (zh) 2015-08-05
KR101731352B1 (ko) 2017-04-28
KR101731353B1 (ko) 2017-04-28
US9768925B2 (en) 2017-09-19
CN104823496B (zh) 2019-04-23
EP2916602A4 (en) 2016-06-15
EP2916602A1 (en) 2015-09-09
KR20150093678A (ko) 2015-08-18

Similar Documents

Publication Publication Date Title
KR101731352B1 (ko) 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
US11825476B2 (en) Communication of direct current (DC) tone location
US11290251B2 (en) Techniques for unified synchronization channel design in new radio
CN109891814B (zh) 同步栅和信道栅的解耦
EP2911321B1 (en) Method for configuring wireless frame of user equipment, user equipment, method for configuring wireless frame of base station, and base station
JP6938390B2 (ja) 端末、無線通信方法、基地局及びシステム
US9848397B2 (en) Synchronizing signal receiving method and user equipment, and synchronizing signal transmitting method and base station
CN108901048B (zh) 移动终端装置以及基站装置
US11153781B2 (en) Variable cyclic prefix (CP) within a transmission slot in millimeter wave band
JP2019517746A (ja) 同期チャネルおよびブロードキャストチャネルのリソース選択による仮説の伝達
CN111034140B (zh) 终端、基站、无线通信方法以及系统
WO2018003646A1 (ja) ユーザ端末及び無線通信方法
KR20180009405A (ko) NB-IoT의 in band, guard band에서 새로운 DL center frequency indexing 방안

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157014640

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13850611

Country of ref document: EP

Kind code of ref document: A1