WO2014069813A1 - Dispositif et procédé de refroidissement indirect d'un élément supraconducteur à interférence quantique - Google Patents

Dispositif et procédé de refroidissement indirect d'un élément supraconducteur à interférence quantique Download PDF

Info

Publication number
WO2014069813A1
WO2014069813A1 PCT/KR2013/009105 KR2013009105W WO2014069813A1 WO 2014069813 A1 WO2014069813 A1 WO 2014069813A1 KR 2013009105 W KR2013009105 W KR 2013009105W WO 2014069813 A1 WO2014069813 A1 WO 2014069813A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
sensor module
inner container
heat transfer
squid sensor
Prior art date
Application number
PCT/KR2013/009105
Other languages
English (en)
Korean (ko)
Inventor
유권규
이용호
김기웅
권혁찬
김진목
이상길
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2014069813A1 publication Critical patent/WO2014069813A1/fr
Priority to US14/692,258 priority Critical patent/US9823312B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Superconductive Quantum Interference Device is an ultra-high sensitivity sensor that can measure the ultra-fine magnetic field generated in the biological activities of the core, brain, muscle, and the like.
  • SQUID sensors operate at cryogenic temperatures of 4K or 77K.
  • the measurement sensitivity is several to tens of fT / ⁇ Hz.
  • liquefied nitrogen or liquefied helium is generally used.
  • a low temperature refrigerant storage container capable of storing such low temperature refrigerant.
  • One technical problem to be solved by the present invention is to provide a stable operation of the system by using a superconducting shield, to protect the SQUID sensor from thermal noise and magnetic noise generated in the metallic material.
  • the outer container comprises an upper outer cylinder; An outer intermediate plate having a washer shape connected to a lower surface of the upper outer cylinder; A lower outer cylinder extending in contact with an inner side of the outer intermediate plate; And it may include an outer bottom plate disposed on the lower surface of the lower outer cylinder.
  • the magnetic shield may be lead (Pb) or nidium (Nb).
  • the magnetic shield may extend in a vertical direction to surround the SQUID sensor module.
  • the low temperature refrigerant storage container is made of a non-magnetic material that does not distort the magnetic field generated from the living body and does not have magnetic properties for stable operation of the SQUID sensor.
  • a material having a very low thermal conductivity is used.
  • G-10 epoxy glass fiber enforced epoxy is used and is called G-10 epoxy.
  • the G-10 epoxy is used as a material for a low temperature refrigerant storage container for biomagnetic measurement.
  • the materials used for heat transfer in conventional indirect cooling techniques should be non-metallic materials that are good at heat transfer.
  • alumina (Al 2 O 3 ) processed in the form of a rod is used as the heat transfer material.
  • a G-10 epoxy rod with a thin Cu wire is used as the heat transfer material.
  • FIG. 2 is a cross-sectional view illustrating the inner container of FIG. 1.
  • the indirect cooling device 100 of the superconducting quantum interference device is inserted into the outer container 120 extending in the vertical direction, the outer container 120.
  • SQUID sensor module 170 is disposed between the inner container 110 of the metallic material including a liquid refrigerant and the upper plate 111, the lower surface of the outer container 120 and the lower surface of the inner container 110.
  • heat shields 151, 153, and 155 are disposed between the inner container 110 and the outer container 120.
  • a first super insulation layer 154 is disposed between the first heat shield 151 and the second heat shield 153, and the second super insulation layer 156 is the second heat shield 153. And the third heat shield 155 may be disposed.
  • the super insulation layers 154 and 156 may include at least 100 layers of superinsulators and polyester nets, each of 30 sheets. Superinsulators can block the influx of radiant heat.
  • SQUID sensor module 170 is coupled to the sensor coupling plate 172 of the dielectric material, the sensor fixing blocks 174 mounted on the lower surface of the sensor coupling plate 172, and the sensor fixing blocks 174.
  • SQUID sensors 176 The sensor coupling plate 172 may be formed of a G-10 epoxy in a disk shape.
  • the sensor fixing block 174 is formed of G-10 epoxy and may fix the SQUID sensors 176.
  • the SQUID sensors 176 may measure a magnetic signal of the measurement target 20 disposed on the lower surface of the outer container 120.
  • the auxiliary heat transfer layer 148 is disposed to surround the SQUID sensor 172 using a copper mesh having a high thermal conductivity.
  • the fixing ring 149 fixes the auxiliary heat transfer layer 148 to the lower surface of the inner container 110.
  • the fixing ring 149 may be formed of a conductor such as copper.
  • the fixing ring 149 attaches the end of the auxiliary heat transfer layer 148 to the inner bottom plate 118 of the inner container 110.
  • the surfaces of the blade and the string are electrically insulated so as not to generate an induced current. Accordingly, the temperature inside the inner bottom plate 118 of the inner container 110 and the auxiliary heat transfer layer 149 is in equilibrium with the temperature of the inner bottom plate of the inner container.
  • the SQUID sensor 172 and the magnetic shield 143 can be uniformly cooled.
  • the auxiliary heat transfer layer 149 surrounds the bottom and side surfaces of the entire block including the heat transfer pillar 141, the magnetic shield 143, the heat transfer plate 142, and the SQUID sensor module 170. Can be arranged.
  • the insert 180 is inserted into the inner container 110 to supply a refrigerant to the inner container 110 and to block heat transfer by the insert 180.
  • the insert 180 may include an insert top plate 181 that is disposed on the top plate 101 of the inner container 110, at least one guide rod 184 fixed to the insert top plate and extending vertically, and the guide rod ( And at least one insert baffle 182 inserted into 180.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

La présente invention concerne un dispositif et un procédé de refroidissement indirect d'un élément supraconducteur à interférence quantique. Le dispositif comprend: un récipient extérieur s'étendant dans la direction verticale; un récipient intérieur métallique inséré dans le récipient extérieur pour renfermer un agent frigorigène liquide, le récipient intérieur comprenant une plaque supérieure; un module de capteur à SQUID disposé entre la surface inférieure du récipient extérieur et la surface inférieure du récipient intérieur; une colonne de transfert de chaleur servant à refroidir le module de capteur à SQUID, une de ses extrémités étant reliée à la surface inférieure du récipient intérieur et son autre extrémité étant reliée directement ou indirectement au module de capteur à SQUID; une unité d'écran magnétique formée d'un supraconducteur pour entourer la surface supérieure du module de capteur à SQUID; et une plaque de conduction de chaleur étant en contact thermique avec l'autre extrémité de la colonne de transfert de chaleur et superposée à la surface supérieure de l'unité d'écran. Le récipient intérieur comprend un espace qui est séparé du récipient extérieur, et l'espace entre le récipient intérieur et le récipient extérieur est en état de vide.
PCT/KR2013/009105 2012-10-29 2013-10-11 Dispositif et procédé de refroidissement indirect d'un élément supraconducteur à interférence quantique WO2014069813A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/692,258 US9823312B2 (en) 2012-10-29 2015-04-21 Apparatus and method for indirectly cooling superconducting quantum interference device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120120366A KR101403318B1 (ko) 2012-10-29 2012-10-29 초전도 양자 간섭 소자의 간접 냉각 장치 및 그 방법
KR10-2012-0120366 2012-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/692,258 Continuation US9823312B2 (en) 2012-10-29 2015-04-21 Apparatus and method for indirectly cooling superconducting quantum interference device

Publications (1)

Publication Number Publication Date
WO2014069813A1 true WO2014069813A1 (fr) 2014-05-08

Family

ID=50627663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009105 WO2014069813A1 (fr) 2012-10-29 2013-10-11 Dispositif et procédé de refroidissement indirect d'un élément supraconducteur à interférence quantique

Country Status (3)

Country Link
US (1) US9823312B2 (fr)
KR (1) KR101403318B1 (fr)
WO (1) WO2014069813A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159825B1 (en) 2006-08-25 2012-04-17 Hypres Inc. Method for fabrication of electrical contacts to superconducting circuits
KR102354391B1 (ko) * 2020-06-01 2022-01-21 한국표준과학연구원 이중 헬멧 뇌자도 장치
KR102356508B1 (ko) * 2020-06-11 2022-01-27 한국표준과학연구원 다모드 자세변환 이중 헬멧 뇌자도 장치
KR102473473B1 (ko) * 2020-12-07 2022-12-02 한국표준과학연구원 심자도 측정 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827217A (en) * 1987-04-10 1989-05-02 Biomagnetic Technologies, Inc. Low noise cryogenic apparatus for making magnetic measurements
JPH05251774A (ja) * 1992-03-06 1993-09-28 Daikin Ind Ltd Squid磁束計
KR20020036784A (ko) * 2000-04-07 2002-05-16 오카야마 노리오 자기 센서
JP3867158B2 (ja) * 1998-06-12 2007-01-10 株式会社日立製作所 極低温容器およびそれを用いた磁性測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441107A (en) * 1993-06-21 1995-08-15 Biomagnetic Technologies, Inc. Solid conductor thermal feedthrough
JP2946195B2 (ja) * 1995-08-18 1999-09-06 セイコーインスツルメンツ株式会社 非破壊検査装置
EP2065886A1 (fr) * 2007-11-27 2009-06-03 Hitachi Ltd. Dispositif magnétorésistif
JP5251774B2 (ja) 2009-07-27 2013-07-31 ソニー株式会社 画像符号化装置および画像符号化方法
KR101403319B1 (ko) * 2012-10-29 2014-06-05 한국표준과학연구원 저온 냉각 장치 및 초전도 양자 간섭 소자 센서 모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827217A (en) * 1987-04-10 1989-05-02 Biomagnetic Technologies, Inc. Low noise cryogenic apparatus for making magnetic measurements
JPH05251774A (ja) * 1992-03-06 1993-09-28 Daikin Ind Ltd Squid磁束計
JP3867158B2 (ja) * 1998-06-12 2007-01-10 株式会社日立製作所 極低温容器およびそれを用いた磁性測定装置
KR20020036784A (ko) * 2000-04-07 2002-05-16 오카야마 노리오 자기 센서

Also Published As

Publication number Publication date
KR101403318B1 (ko) 2014-06-05
US9823312B2 (en) 2017-11-21
US20150268311A1 (en) 2015-09-24
KR20140054638A (ko) 2014-05-09

Similar Documents

Publication Publication Date Title
FI89416C (fi) Flerkanalanordning foer maetning av svaga, lokal- och tidsberoende magnetfaelt
WO2014069813A1 (fr) Dispositif et procédé de refroidissement indirect d'un élément supraconducteur à interférence quantique
WO2014069814A1 (fr) Dispositif de refroidissement basse température et module capteur à élément supraconducteur à interférence quantique
JP5738893B2 (ja) 低雑音冷却装置
KR101632280B1 (ko) 냉각기 냉각형 스퀴드 측정 장치
US3801942A (en) Electric magnet with superconductive windings
US4968961A (en) Superconducting magnet assembly with suppressed leakage magnetic field
US8487727B2 (en) Magnet assemblies and methods for making the same
EP0135185B1 (fr) Cryostat pour aimant par RMN
US20100085137A1 (en) Method and Apparatus for Electrical, Mechanical and Thermal Isolation of Superconductive Magnets
JP2007311341A (ja) 超伝導マグネット向けの低ac損失超伝導体及びその製作方法
KR102534294B1 (ko) 자기장 측정 장치
US20220330870A1 (en) Multimodal position transformation dual-helmet meg apparatus
JP2007311792A (ja) 超伝導マグネット向けの低ac損失単一フィラメント超伝導体及びその製作方法
US9759787B2 (en) Coil system for a magnetic resonance tomography system
Lee et al. Magnetic diagnostics for Korea superconducting tokamak advanced research
CN213935806U (zh) 基于绝热悬挂装置的7t临床用磁共振影像设备用超导磁体
WO2024106848A1 (fr) Dispositif de stockage de fluide frigorigène pour appareil de mesure de champ magnétique
KR20190119923A (ko) 외측 샘플 장착을 위한 1k용 서브 쿨러를 이용한 크라이오스탯
JPH06273500A (ja) Squidを用いた磁気測定装置
Wang et al. Superconducting spin tipping solenoids for ZGS polarized beam facility
JPS60200579A (ja) 超電導装置
JP2002246663A (ja) クライオスタット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850910

Country of ref document: EP

Kind code of ref document: A1