WO2014069252A1 - Device for increasing purity of metallic silicon - Google Patents

Device for increasing purity of metallic silicon Download PDF

Info

Publication number
WO2014069252A1
WO2014069252A1 PCT/JP2013/078283 JP2013078283W WO2014069252A1 WO 2014069252 A1 WO2014069252 A1 WO 2014069252A1 JP 2013078283 W JP2013078283 W JP 2013078283W WO 2014069252 A1 WO2014069252 A1 WO 2014069252A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
phosphorus
tray
metal
silicon
Prior art date
Application number
PCT/JP2013/078283
Other languages
French (fr)
Japanese (ja)
Inventor
岡 浩章
斉彰 岡
Original Assignee
産機電業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 産機電業株式会社 filed Critical 産機電業株式会社
Priority to JP2014544430A priority Critical patent/JPWO2014069252A1/en
Publication of WO2014069252A1 publication Critical patent/WO2014069252A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Definitions

  • the present invention relates to an apparatus for removing metal impurities, boron, and phosphorus from low-purity metal silicon that is a raw material of a solar cell, thereby increasing the purity.
  • metal silicon is used as a starting material, and this is refined to produce solar cells.
  • Metallic silicon as a starting material is generally 99. It has a purity of about xxx% (2 nines) and contains phosphorus (P), aluminum (Al), boron (B), iron (Fe), chromium (Cr) and the like. In order to manufacture a solar cell, it is necessary to remove these impurities efficiently and economically and purify them.
  • the present invention has been made based on the above-described circumstances, and can efficiently remove metal impurities such as aluminum, iron, and chromium, and boron and phosphorus from low-purity metal silicon, and can be continuously processed.
  • An object of the present invention is to provide an apparatus for increasing the purity of metal silicon having a compact apparatus configuration.
  • the apparatus for increasing the purity of metallic silicon includes a metal impurity removing unit, a boron and phosphorus removing unit, a tray made of a refractory material having an impurity passing unit, and a heater capable of melting silicon disposed on the upper side of the tray.
  • a water cooling pipe and an electromagnet arranged below the metal impurity removing part of the tray, a water cooling pipe arranged below the boron and phosphorus removing part of the tray, and a high voltage discharge arranged on the boron and phosphorus removing part of the tray.
  • metal impurities and boron and phosphorus are removed from the molten metal silicon in vacuum or in an inert gas atmosphere.
  • FIG. 1 It is explanatory drawing of the apparatus which removes a metal impurity and boron and phosphorus from the metal silicon molten metal of one Example of this invention.
  • the left figure is a sectional view taken along the line AA of FIG. 1 showing a principal part cross section of the metal impurity removing part, and the right figure is a sectional view taken along the line BB of FIG. It is.
  • An apparatus for removing metal impurities and boron and phosphorus from a molten metal silicon is disposed in a vacuum or an inert gas atmosphere, and the metal impurities and boron and phosphorus are in a vacuum or an inert gas atmosphere.
  • a tray 11 made of a refractory material such as alumina or carbon includes a deep bowl-shaped metal impurity removal section 11a, a cylindrical impurity passage section 11c provided so as to be connected to the lower part of the end, a shallow bowl-shaped boron and It consists of the phosphorus removal part 11b.
  • a molten silicon 12 formed by melting metal silicon having a purity of two nines with an arc furnace or the like is injected into the tray 11 from the raw material injection part X.
  • a heater 13 capable of melting silicon is disposed on the upper side of the tray 11, and by heating the molten metal 12, the temperature of the molten metal 12 is maintained at 1500 to 1600 ° C., and the molten metal state is maintained.
  • a water cooling pipe 14a is provided below the metal impurity removing portion 11a of the tray 11, and by cooling the tray 11, the strength of the tray made of a refractory material is maintained and at the same time the strength of the electromagnet 15 described below is maintained.
  • the electromagnet 15 is disposed further below the tray 11, and a magnetic field is formed in the metal impurity removing portion 11 a of the tray 11. Ferromagnetic materials such as iron and chromium, and diamagnetic materials such as copper contained in the molten silicon, due to the magnetic field, are all paramagnetic when utilized above the Curie temperature and Neel temperature. Metal impurities are trapped below the removal portion 11a. Since each metal impurity has a specific gravity difference, it accumulates in order from the bottom in order of weight. Aluminum has a specific gravity of 2.7, but silicon, carbon, boron, phosphorus, etc. have a specific gravity of 2.34 or less, so they gather in the upper layer of the basket. The supernatant containing silicon, carbon, boron and phosphorus is passed to the next process.
  • the metal contained in the molten metal 12 due to the magnetic field of the electromagnet 15 is used. Impurities are trapped downward, metal impurities are removed upward, and a molten silicon melt 12 containing boron, carbon, phosphorus, etc. flows.
  • the molten molten metal 12 from which the metal impurities above the metal impurity removing portion 11a have been removed flows into the shallow bowl-shaped boron and phosphorus removing portion 11b on the upper side of the tray 11 and passes continuously.
  • the boron and phosphorus removing portion 11b has a mechanism for supplying SiO 2 into the molten metal, and high-voltage discharge electrodes 16 are arranged on both sides of the bowl-shaped portion (see the right side of FIG. 2).
  • high-voltage discharge electrodes 16 are arranged on both sides of the bowl-shaped portion (see the right side of FIG. 2).
  • a high voltage is applied between the electrodes 16, arc discharge occurs, the molten metal reaches a high temperature of 1750 ° C. or higher, and SIO 2 melts and decomposes to generate free oxygen.
  • the silicon melt 12a continuously passing through the shallow bowl-shaped boron removing portion 11b is thin, and boron contained in the melt is oxidized by the oxidizing action of the generated oxygen, and boron oxide B 2 O 3.
  • phosphorus As for phosphorus, high heat is generated by high-voltage arc discharge, and phosphorus in the molten metal 12a is vaporized and removed by the action of high heat. Incidentally, phosphorus has roughly three forms, and P 4 and P 2 can be removed at a low temperature even under normal pressure, but P is difficult to remove unless the temperature is high. However, P can be removed by the high heat of the high-voltage arc formed by discharge.
  • a water cooling pipe 14b is disposed below the boron and phosphorus removal portion 11b of the tray 11, and the strength of the tray 11 in the boron and phosphorus removal portion 11b portion where high heat is generated is maintained by water cooling.
  • the molten silicon 12a that has passed through the boron and phosphorus removal section 11b is freed of metal impurities and boron and phosphorus, and purified from a purity of 2 nines (99.xxx%) to a purity of 6 nines (99.9999x%) or higher.
  • the refined molten silicon 12a is continuously discharged from the discharge port Z. In the vicinity of the discharge port Z, there is a mechanism for blowing hydrogen gas in the next process (not shown), which reduces oxidized silicon. And it solidifies and the metal silicon
  • the metal impurity trapped downward by the magnetic field of the metal impurity removing portion 11a gradually increases in impurity concentration as the molten metal 12 passes through.
  • a stopper (not shown) connected to the discharge port Y of the impurity passage portion 11c is opened periodically, and the electromagnet 15 is turned off to stop excitation.
  • the molten metal 12b containing a large amount of metal impurities passes through the impurity passage portion 11c connected to the lower portion of the impurity removal portion 11a and is discharged from the discharge port Y.
  • the stopper is closed again, and the electromagnet 15 is energized and excited to continue trapping the metal impurities in the molten metal 12.
  • this apparatus for increasing the purity of metal silicon, metal impurities in the molten metal can be trapped and removed by the magnetic field of the electromagnet, and boron is decomposed after melting SiO 2 by high voltage discharge, and B 2 O 3 is generated by oxygen generated. Since phosphorus can be removed by high heat of high voltage discharge, industrial waste is not generated, and a clean and environmentally friendly system can be obtained. And since it can be continuously operated with a relatively compact apparatus configuration and metal impurities and boron and phosphorus can be efficiently removed from the molten metal silicon, it is possible to economically increase the purity of the metal silicon. The operation of this device also requires less skill as in the past, and can be controlled easily by managing quantitative values such as temperature, magnetic force, discharge voltage, etc., so stable and high-purity metal silicon production Is possible.
  • the cooling pipe 14a and the electromagnet 15 are provided separately.
  • the cooling pipe 14 may have a magnetic field forming action and may be integrated.
  • the boron and phosphorus removal unit is arranged on the downstream side of the metal impurity removal unit, and boron and phosphorus are first removed from the silicon melt. It may be removed and then the metal impurities may be removed.
  • the present invention can be suitably used for applications that increase the purity of metallic silicon that is a raw material for solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Provided is a device for increasing purity of metallic silicon with a compact device configuration which is capable of efficiently removing metal impurities, boron and phosphorus from low purity metallic silicon and of continuous processing. This device comprises: a tray (11) which is composed of a refractory material and which is provided with a metallic impurities removal part (11a), a boron and phosphorus removal part (11b) and an impurities passage part (11c); a heater (13) which is disposed above the tray and is capable of melting silicon; a water cooling tube (14a) and an electromagnet (15) which are disposed below the metallic impurities removal part of the tray; a water cooling tube (14b) which is disposed below the boron and phosphorus removal part of the tray; and high voltage discharge electrodes (16) which are disposed on the boron and phosphorus removal part of the tray. This device removes metallic impurities, boron and phosphorus from molten metallic silicon.

Description

金属シリコンの純度を高める装置Equipment for increasing the purity of metallic silicon
 本発明は、太陽電池の原料となる低純度の金属シリコンから、金属不純物及びボロン及びリンを除去することで、その純度を高める装置に関する。 The present invention relates to an apparatus for removing metal impurities, boron, and phosphorus from low-purity metal silicon that is a raw material of a solar cell, thereby increasing the purity.
 近年、太陽電池の普及に伴い、金属シリコンを出発材料とし、これを精錬して太陽電池を製作することが行われている。出発材料としての金属シリコンは一般に99.xxx%(2ナイン)程度の純度を有し、リン(P)、アルミ(Al)、ボロン(B)、鉄(Fe)、クロム(Cr)等が含まれている。太陽電池を製作するためには、これらの不純物を効率的且つ経済的に除去して、精製する必要がある。 In recent years, with the widespread use of solar cells, metal silicon is used as a starting material, and this is refined to produce solar cells. Metallic silicon as a starting material is generally 99. It has a purity of about xxx% (2 nines) and contains phosphorus (P), aluminum (Al), boron (B), iron (Fe), chromium (Cr) and the like. In order to manufacture a solar cell, it is necessary to remove these impurities efficiently and economically and purify them.
 本発明は、上述の事情に基づいてなされたもので、低純度の金属シリコンからアルミ、鉄、クロム等の金属不純物及びボロン及びリンを効率的に除去でき、連続的な処理が可能で、且つコンパクトな装置構成の金属シリコンの純度を高める装置を提供することを目的とする。 The present invention has been made based on the above-described circumstances, and can efficiently remove metal impurities such as aluminum, iron, and chromium, and boron and phosphorus from low-purity metal silicon, and can be continuously processed. An object of the present invention is to provide an apparatus for increasing the purity of metal silicon having a compact apparatus configuration.
 本発明の金属シリコンの純度を高める装置は、金属不純物除去部と、ボロン及びリン除去部と、不純物通過部を備えた耐火材からなるトレーと、トレーの上側に配置したシリコンを溶融可能なヒーターと、トレーの金属不純物除去部の下側に配置した水冷配管及び電磁石と、トレーのボロン及びリン除去部の下側に配置した水冷配管と、トレーのボロン及びリン除去部に配置した高電圧放電用電極を備え、金属シリコン溶湯から金属不純物及びボロン及びリンを真空または不活性ガス雰囲気中で除去することを特徴とする。 The apparatus for increasing the purity of metallic silicon according to the present invention includes a metal impurity removing unit, a boron and phosphorus removing unit, a tray made of a refractory material having an impurity passing unit, and a heater capable of melting silicon disposed on the upper side of the tray. A water cooling pipe and an electromagnet arranged below the metal impurity removing part of the tray, a water cooling pipe arranged below the boron and phosphorus removing part of the tray, and a high voltage discharge arranged on the boron and phosphorus removing part of the tray. And metal impurities and boron and phosphorus are removed from the molten metal silicon in vacuum or in an inert gas atmosphere.
 これにより、低純度の金属シリコン溶湯から、電磁石磁場のトラップにより金属不純物を、高電圧放電の高熱で発生する酸素によりボロン酸化物としてボロンを、高電圧放電の高熱によりリンを、それぞれ効率的に除去できる。従って、比較的コンパクトな装置構成で連続的に操業が可能で、経済的に金属シリコンの高純度化が可能となる。 This makes it possible to efficiently remove metal impurities from low-purity metallic silicon melt by trapping an electromagnetic field, boron as boron oxide by oxygen generated by high heat of high voltage discharge, and phosphorus by high heat of high voltage discharge. Can be removed. Therefore, continuous operation is possible with a relatively compact apparatus configuration, and high purity of the metal silicon can be economically achieved.
本発明の一実施例の金属シリコン溶湯から金属不純物及びボロン及びリンを除去する装置の説明図である。It is explanatory drawing of the apparatus which removes a metal impurity and boron and phosphorus from the metal silicon molten metal of one Example of this invention. 左図は金属不純物除去部の要部断面を示す図1のAA線に沿った断面図であり、右図はボロン及びリン除去部の要部断面を示す図1のBB線に沿った断面図である。The left figure is a sectional view taken along the line AA of FIG. 1 showing a principal part cross section of the metal impurity removing part, and the right figure is a sectional view taken along the line BB of FIG. It is.
 以下、本発明の実施形態について、図1および図2を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.
 本発明の一実施例の金属シリコン溶湯から金属不純物及びボロン及びリンを除去する装置は、真空又は不活性ガス雰囲気中に配置され、金属不純物及びボロン及びリンは、真空又は不活性ガス雰囲気中で除去される。アルミナ、カーボン等の耐火材からなるトレー11は、深い樋状の金属不純物除去部11aと、その端部下部に接続するように設けた筒状の不純物通過部11cと、浅い樋状のボロン及びリン除去部11bからなる。純度2ナイン級の金属シリコンをアーク炉等により溶解して形成したシリコン溶湯12が原料注入部Xからトレー11に注入される。 An apparatus for removing metal impurities and boron and phosphorus from a molten metal silicon according to an embodiment of the present invention is disposed in a vacuum or an inert gas atmosphere, and the metal impurities and boron and phosphorus are in a vacuum or an inert gas atmosphere. Removed. A tray 11 made of a refractory material such as alumina or carbon includes a deep bowl-shaped metal impurity removal section 11a, a cylindrical impurity passage section 11c provided so as to be connected to the lower part of the end, a shallow bowl-shaped boron and It consists of the phosphorus removal part 11b. A molten silicon 12 formed by melting metal silicon having a purity of two nines with an arc furnace or the like is injected into the tray 11 from the raw material injection part X.
 トレー11の上側にはシリコンを溶融可能なヒーター13が配置され、溶湯12を加熱することで、溶湯12の温度を1500-1600℃に維持し、溶湯状態を保持する。トレー11の金属不純物除去部11aの下側には水冷配管14aを備え、トレー11を水冷することで、耐火材からなるトレーの強度を保持すると同時に下述の電磁石15の強度を維持する。 A heater 13 capable of melting silicon is disposed on the upper side of the tray 11, and by heating the molten metal 12, the temperature of the molten metal 12 is maintained at 1500 to 1600 ° C., and the molten metal state is maintained. A water cooling pipe 14a is provided below the metal impurity removing portion 11a of the tray 11, and by cooling the tray 11, the strength of the tray made of a refractory material is maintained and at the same time the strength of the electromagnet 15 described below is maintained.
 トレー11のさらに下側には電磁石15が配置され、磁場がトレー11の金属不純物除去部11aに形成される。その磁場により、シリコン溶湯に含まれる鉄、クロム等の強磁性体物質、銅等の反磁性体物質は、キュリー温度、ネール温度を超えると全て常磁性体となる性質を利用して、すべての金属不純物を除去部11aの下方にトラップする。各金属不純物には比重差があるため重い物から下から順に蓄積する。アルミニュウムは比重2.7であるが、シリコン、カーボン、ボロン、リン等は比重2.34以下であるため、樋の上層部に集まる。シリコン、カーボン、ボロン、リンが含まれている上澄みを次工程に流す。 The electromagnet 15 is disposed further below the tray 11, and a magnetic field is formed in the metal impurity removing portion 11 a of the tray 11. Ferromagnetic materials such as iron and chromium, and diamagnetic materials such as copper contained in the molten silicon, due to the magnetic field, are all paramagnetic when utilized above the Curie temperature and Neel temperature. Metal impurities are trapped below the removal portion 11a. Since each metal impurity has a specific gravity difference, it accumulates in order from the bottom in order of weight. Aluminum has a specific gravity of 2.7, but silicon, carbon, boron, phosphorus, etc. have a specific gravity of 2.34 or less, so they gather in the upper layer of the basket. The supernatant containing silicon, carbon, boron and phosphorus is passed to the next process.
 シリコン溶湯12が原料注入部Xから注入され、深い樋状の金属不純物除去部11a(図2左図参照)を通過する際に、上述したように、電磁石15の磁場により溶湯12に含まれる金属不純物が下方にトラップされ、上方には金属不純物が除去され、ボロン、カーボン、リン等が含まれた上澄みのシリコン溶湯12が流れる。金属不純物除去部11aの上方の金属不純物が除去された上記上澄みの溶湯12はトレー11の上側の浅い樋状のボロン及びリン除去部11bに流入し、連続的に通過する。 As described above, when the molten silicon 12 is injected from the raw material injection portion X and passes through the deep bowl-shaped metal impurity removal portion 11a (see the left figure in FIG. 2), the metal contained in the molten metal 12 due to the magnetic field of the electromagnet 15 is used. Impurities are trapped downward, metal impurities are removed upward, and a molten silicon melt 12 containing boron, carbon, phosphorus, etc. flows. The molten molten metal 12 from which the metal impurities above the metal impurity removing portion 11a have been removed flows into the shallow bowl-shaped boron and phosphorus removing portion 11b on the upper side of the tray 11 and passes continuously.
 ボロン及びリン除去部11bには、図示しないがSiOを溶湯中に供給する機構が有り、樋状部分の両側に高電圧放電用電極16が配置されていて(図2右図参照)、電極16間に高電圧を印加することでアーク放電し溶湯が1750℃以上の高温になりSIOが溶融して分解し自由状態になった酸素が発生する。浅い樋状のボロン除去部11bを連続的に通過するシリコン溶湯12aはその厚さが薄く、溶湯中に含まれるボロンが、発生する酸素の酸化作用により酸化され、ボロンの酸化物Bが形成され、1750℃以上の高温で気化して蒸発し、溶湯中のボロンが除去される。シリコンも酸化されるが高電圧放電の電圧を調節する事でボロンが酸化するよりも、シリコンが酸化する反応を遅く且つ少なくすることができる。アーク放電により1750~1900℃の間で溶湯の温度を調節すると、ボロンを効率的に除去できる。  Although not shown, the boron and phosphorus removing portion 11b has a mechanism for supplying SiO 2 into the molten metal, and high-voltage discharge electrodes 16 are arranged on both sides of the bowl-shaped portion (see the right side of FIG. 2). When a high voltage is applied between the electrodes 16, arc discharge occurs, the molten metal reaches a high temperature of 1750 ° C. or higher, and SIO 2 melts and decomposes to generate free oxygen. The silicon melt 12a continuously passing through the shallow bowl-shaped boron removing portion 11b is thin, and boron contained in the melt is oxidized by the oxidizing action of the generated oxygen, and boron oxide B 2 O 3. Is vaporized and evaporated at a high temperature of 1750 ° C. or higher, and boron in the molten metal is removed. Silicon is also oxidized, but by adjusting the voltage of the high voltage discharge, the reaction of oxidizing silicon can be made slower and less than that of boron. Boron can be efficiently removed by adjusting the temperature of the molten metal between 1750-1900 ° C. by arc discharge.
 リンについても、高電圧アーク放電により高熱が発生し、高熱の作用により、溶湯12a中のリンが気化して除去される。ちなみに、リンは概略3つの形態があり、P、Pは常圧下でも低温で除去できるが、Pは高温でないと除去が難しい。しかしながら、放電により形成される高電圧アークの高熱によりPの除去が可能となる。トレー11のボロン及びリン除去部11bの下側には水冷配管14bが配置され、水冷することで、高熱が発生するボロン及びリン除去部11b部分のトレー11の強度を保持する。 As for phosphorus, high heat is generated by high-voltage arc discharge, and phosphorus in the molten metal 12a is vaporized and removed by the action of high heat. Incidentally, phosphorus has roughly three forms, and P 4 and P 2 can be removed at a low temperature even under normal pressure, but P is difficult to remove unless the temperature is high. However, P can be removed by the high heat of the high-voltage arc formed by discharge. A water cooling pipe 14b is disposed below the boron and phosphorus removal portion 11b of the tray 11, and the strength of the tray 11 in the boron and phosphorus removal portion 11b portion where high heat is generated is maintained by water cooling.
 かくして、ボロン及びリン除去部11bを通過したシリコン溶湯12aは金属不純物及びボロン及びリンが除去され、純度2ナイン(99.xxx%)級から純度6ナイン(99.9999x%)級以上に精製される。精製されたシリコン溶湯12aは連続的に排出口Zから排出される。排出口Z近傍には図示しない次工程の水素ガスを吹く機構があり、酸化したシリコンを還元する。そして、固化して例えば純度6ナイン(99.9999x%)級以上の太陽電池用金属シリコンが得られる。 Thus, the molten silicon 12a that has passed through the boron and phosphorus removal section 11b is freed of metal impurities and boron and phosphorus, and purified from a purity of 2 nines (99.xxx%) to a purity of 6 nines (99.9999x%) or higher. The The refined molten silicon 12a is continuously discharged from the discharge port Z. In the vicinity of the discharge port Z, there is a mechanism for blowing hydrogen gas in the next process (not shown), which reduces oxidized silicon. And it solidifies and the metal silicon | silicone for solar cells of purity 6 nine (99.9999x%) grade or more is obtained, for example.
 金属不純物除去部11aの磁場により下方にトラップされた金属不純物は、溶湯12の通過量に伴い、不純物濃度が徐々に増大する。このため定期的に、不純物通過部11cの排出口Yに接続した図示しない栓を開くと共に、電磁石15の通電を切り励磁を停止する。これにより、金属不純物を多量に含む溶湯12bが不純物除去部11aの下部に接続した不純物通過部11cを通り、排出口Yから排出される。金属不純物を多量に含む溶湯の排出後は、再び栓を閉じ、電磁石15に通電し励磁を行うことで、溶湯12中の金属不純物のトラップを継続する。 The metal impurity trapped downward by the magnetic field of the metal impurity removing portion 11a gradually increases in impurity concentration as the molten metal 12 passes through. For this reason, a stopper (not shown) connected to the discharge port Y of the impurity passage portion 11c is opened periodically, and the electromagnet 15 is turned off to stop excitation. Thereby, the molten metal 12b containing a large amount of metal impurities passes through the impurity passage portion 11c connected to the lower portion of the impurity removal portion 11a and is discharged from the discharge port Y. After the molten metal containing a large amount of metal impurities is discharged, the stopper is closed again, and the electromagnet 15 is energized and excited to continue trapping the metal impurities in the molten metal 12.
 この金属シリコンの純度を高める装置によれば、電磁石の磁場により溶湯中の金属不純物をトラップして除去でき、ボロンを高電圧放電でSiOを溶融後に分解して発生する酸素によりBとして除去でき、リンを高電圧放電の高熱により除去できるので、産業廃棄物が生ぜず、クリーンで環境に優しいシステムとすることができる。そして、比較的コンパクトな装置構成で連続的に操業が可能で、金属シリコン溶湯から金属不純物及びボロン及びリンを効率的に除去できるので、経済的に金属シリコンの高純度化が可能となる。この装置の操作も、従来のような熟練があまり必要なく、温度、磁力、放電電圧等の定量的な値を管理することで、容易に制御ができるので、安定した高純度の金属シリコンの製造が可能である。 According to this apparatus for increasing the purity of metal silicon, metal impurities in the molten metal can be trapped and removed by the magnetic field of the electromagnet, and boron is decomposed after melting SiO 2 by high voltage discharge, and B 2 O 3 is generated by oxygen generated. Since phosphorus can be removed by high heat of high voltage discharge, industrial waste is not generated, and a clean and environmentally friendly system can be obtained. And since it can be continuously operated with a relatively compact apparatus configuration and metal impurities and boron and phosphorus can be efficiently removed from the molten metal silicon, it is possible to economically increase the purity of the metal silicon. The operation of this device also requires less skill as in the past, and can be controlled easily by managing quantitative values such as temperature, magnetic force, discharge voltage, etc., so stable and high-purity metal silicon production Is possible.
 なお、上記実施例では、冷却配管14aと電磁石15とを別体として設けたが、冷却配管14に磁場形成作用を持たせ、一体としてもよい。 In the above embodiment, the cooling pipe 14a and the electromagnet 15 are provided separately. However, the cooling pipe 14 may have a magnetic field forming action and may be integrated.
 また、ボロン及びリン除去部を金属不純物除去部の下流側に配置した例を示したが、ボロン及びリン除去部を金属不純物除去部の上流側に配置し、シリコン溶湯中からまずボロン及びリンを除去し、次に金属不純物を除去するようにしてもよい。 In addition, although an example in which the boron and phosphorus removal unit is arranged on the downstream side of the metal impurity removal unit has been shown, the boron and phosphorus removal unit is arranged on the upstream side of the metal impurity removal unit, and boron and phosphorus are first removed from the silicon melt. It may be removed and then the metal impurities may be removed.
 これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.
 本発明は、太陽電池の原料となる金属シリコンの純度を高める用途に好適に利用可能である。 The present invention can be suitably used for applications that increase the purity of metallic silicon that is a raw material for solar cells.

Claims (6)

  1.  金属不純物除去部と、ボロン及びリン除去部と、不純物通過部を備えた耐火材からなるトレーと、
     前記トレーの上側に配置したシリコンを溶融可能なヒーターと、
     前記トレーの金属不純物除去部の下側に配置した水冷配管及び電磁石と、
     前記トレーのボロン及びリン除去部の下側に配置した水冷配管と、
     前記トレーのボロン及びリン除去部に配置した高電圧放電用電極を備え、
     金属シリコン溶湯から金属不純物及びボロン及びリンを除去することを特徴とする金属シリコンの純度を高める装置。
    A tray made of a refractory material provided with a metal impurity removal portion, a boron and phosphorus removal portion, and an impurity passage portion;
    A heater capable of melting silicon disposed on the upper side of the tray;
    A water-cooled pipe and an electromagnet arranged below the metal impurity removing portion of the tray;
    A water-cooled pipe disposed below the boron and phosphorus removal portion of the tray;
    Comprising a high voltage discharge electrode arranged in the boron and phosphorus removal portion of the tray;
    An apparatus for increasing the purity of metallic silicon, wherein metallic impurities and boron and phosphorus are removed from molten metallic silicon.
  2.  前記金属不純物除去部は深い樋状であり、前記ボロン及びリン除去部は浅い樋状であり、前記不純物通過部は前記金属不純物除去部の端部下部に接続するように設けた筒状であることを特徴とする請求項1に記載の装置。 The metal impurity removal portion has a deep bowl shape, the boron and phosphorus removal portion has a shallow bowl shape, and the impurity passage portion has a cylindrical shape so as to be connected to a lower end portion of the metal impurity removal portion. The apparatus according to claim 1.
  3.  前記トレーの金属不純物除去部の下側と、前記トレーのボロン及びリン除去部の下側に水冷配管を備えたことを特徴とする請求項1に記載の装置。 The apparatus according to claim 1, further comprising water-cooling pipes below the metal impurity removing portion of the tray and below the boron and phosphorus removing portions of the tray.
  4.  前記金属不純物除去部は前記電磁石の磁場により、シリコン溶湯中の金属不純物をトラップし、前記金属不純物が除去された前記溶湯が連続的に前記ボロン及びリン除去部を通過することを特徴とする請求項1に記載の装置。 The metal impurity removing unit traps metal impurities in the molten silicon by a magnetic field of the electromagnet, and the molten metal from which the metal impurities have been removed continuously passes through the boron and phosphorus removing unit. Item 2. The apparatus according to Item 1.
  5.  前記ボロン及びリン除去部では、高電圧放電により添加したSiOが加熱される事で自由状態になった酸素を生成し、前記酸素の酸化作用により前記ボロンの酸化物が形成され、気化して前記溶湯中のボロンが除去されることを特徴とする請求項1に記載の装置。 In the boron and phosphorus removal part, SiO 2 added by high voltage discharge is heated to generate free oxygen, and the oxide of boron is formed and vaporized by the oxidation of oxygen. The apparatus according to claim 1, wherein boron in the molten metal is removed.
  6.  前記ボロン及びリン除去部は高電圧放電により高熱が発生し、前記高熱の作用により前記溶湯中のリンが気化して除去されることを特徴とする請求項1に記載の装置。 2. The apparatus according to claim 1, wherein the boron and phosphorus removing unit generates high heat by high voltage discharge, and phosphorus in the molten metal is vaporized and removed by the action of the high heat.
PCT/JP2013/078283 2012-11-02 2013-10-18 Device for increasing purity of metallic silicon WO2014069252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014544430A JPWO2014069252A1 (en) 2012-11-02 2013-10-18 Equipment for increasing the purity of metallic silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012243082 2012-11-02
JP2012-243082 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014069252A1 true WO2014069252A1 (en) 2014-05-08

Family

ID=50627165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078283 WO2014069252A1 (en) 2012-11-02 2013-10-18 Device for increasing purity of metallic silicon

Country Status (2)

Country Link
JP (1) JPWO2014069252A1 (en)
WO (1) WO2014069252A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136381A (en) * 2010-12-27 2012-07-19 Sanki Dengyo Kk Method for continuously refining silicon
JP2012236723A (en) * 2011-05-10 2012-12-06 Sanki Dengyo Kk Method for continuously refining silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136381A (en) * 2010-12-27 2012-07-19 Sanki Dengyo Kk Method for continuously refining silicon
JP2012236723A (en) * 2011-05-10 2012-12-06 Sanki Dengyo Kk Method for continuously refining silicon

Also Published As

Publication number Publication date
JPWO2014069252A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP4523274B2 (en) High purity metallic silicon and its smelting method
TWI778941B (en) Silica to high purity silicon production apparatus and rocess
CN101555013A (en) Refining method of industrial silicon
JP5820070B2 (en) Electric arc furnace dust recycling apparatus and method
CN106086462A (en) A kind of up-drawing method that is suitable for prepares the melt combined purifying method of oxygen-free copper bar
JP2012236723A (en) Method for continuously refining silicon
WO2014069252A1 (en) Device for increasing purity of metallic silicon
US8454920B2 (en) Silicon purification method
CN103101912B (en) Polycrystalline silicon preparation method
RU2403299C1 (en) Vacuum silicone cleaning method and device for its implementation (versions)
CN102674366A (en) Device for continuously smelting and purifying solar grade silicon materials in vacuum mode
CN104495853B (en) A kind of industrial silicon refining method
US9840755B2 (en) Refining device and refining method for titanium scraps and sponge titanium using deoxidising gas
KR101190270B1 (en) Refining method of tantallum powder using rf plasma and tantallum powder thereof
JPH07267624A (en) Purification of silicon and apparatus therefor
JP2010180472A (en) Method for separating zinc from galvanized steel scrap
JP2010517924A (en) Silicon purification equipment
CN202587573U (en) High frequency induction plasma generator
JP2012136381A (en) Method for continuously refining silicon
JP2014154388A (en) High-frequency induction coil integrated crucible, and method of removing boron and phosphor from metal silicon using the crucible
CN104495852A (en) Refining and purifying method for industrial silicon by vacuum electromagnetic induction suspension distillation
KR20110004129A (en) Manufacturing method for silicon
JPH09142823A (en) Purification of metal silicon and device for purifying the same
JP2007191347A (en) Method for producing high purity silicon
CN212375345U (en) Melting device for vacuum induction melting of high-purity indium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850033

Country of ref document: EP

Kind code of ref document: A1