WO2014068754A1 - 発電主回路開閉器 - Google Patents

発電主回路開閉器 Download PDF

Info

Publication number
WO2014068754A1
WO2014068754A1 PCT/JP2012/078357 JP2012078357W WO2014068754A1 WO 2014068754 A1 WO2014068754 A1 WO 2014068754A1 JP 2012078357 W JP2012078357 W JP 2012078357W WO 2014068754 A1 WO2014068754 A1 WO 2014068754A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
inner conductor
axial direction
duct
jacket
Prior art date
Application number
PCT/JP2012/078357
Other languages
English (en)
French (fr)
Inventor
透 山下
吉田 大輔
博一 大谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013503898A priority Critical patent/JP5241974B1/ja
Priority to PCT/JP2012/078357 priority patent/WO2014068754A1/ja
Priority to EP12887626.5A priority patent/EP2916411B1/en
Publication of WO2014068754A1 publication Critical patent/WO2014068754A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/12Auxiliary contacts on to which the arc is transferred from the main contacts
    • H01H33/121Load break switches
    • H01H33/122Load break switches both breaker and sectionaliser being enclosed, e.g. in SF6-filled container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/002Very heavy-current switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/52Cooling of switch parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/52Cooling of switch parts
    • H01H2009/526Cooling of switch parts of the high voltage switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/10Cooling

Definitions

  • the present invention relates to a power generation main circuit switch installed between a generator and a main transformer in a power plant, for example.
  • Patent Document 1 discloses a method in which a generator breaker (power generation main circuit switch) is provided in the middle of a phase separation bus and the phase separation bus and the generator breaker are cooled by forced air from a cooling device.
  • the forced air circulates in the conductor of the phase separation bus and between the conductor and the jacket.
  • Such forced air is flowed using a cooling device provided adjacent to the generator breaker, and the cooling device includes a blower and a cooler. That is, after the air that has exited the blower is cooled by a cooler, the phase separation passes from one end of the phase separation bus connected to one end of the generator breaker between the conductor of the phase separation bus and the jacket.
  • Patent Document 2 discloses a configuration in which only the phase separation bus between the generator and the main transformer is forcibly cooled. That is, after the wind from the cooling device constituted by the electric blower and the heat exchanger (cooler) flows from one end of the phase separation bus to the other end through the duct, it is returned to the blower and circulated again. Here, the forced air flows between the conductor of the phase separation bus and the jacket.
  • a power generation main circuit switch having a configuration that does not perform forced air cooling as described above.
  • a high-power switch power generation main circuit switch
  • the air inside the jacket does not flow in the axial direction of the high-power switch, and the temperature difference between the upper part and the lower part of the jacket in the cross section perpendicular to the axis becomes large. Convection occurs. Heat generated from the inner conductor of the high-power switch moves to the outer jacket by radiation and natural convection and is released from the outer jacket to the outside air.
  • Patent Documents 1 and 2 in which the phase separation bus is cooled by forced air cooling, a large fan is used because the wind flows over the entire phase separation bus extending in the axial direction. There was a problem that it was necessary.
  • the cooler since the cooler is provided, the cooling effect is increased, and a large current can be passed even with a small power generation main circuit switch, while the cooling device is increased in size.
  • the upper limit of the temperature of the contact portion is determined by the standard, and it is necessary to provide a cooling structure when it is desired to flow a large current with a smaller power generation main circuit switch.
  • the present invention has been made in view of the above, and a power generation main circuit capable of causing a larger current to flow by effectively cooling an internal conductor by blowing with a small blower without using a cooler.
  • An object is to provide a switch.
  • a power generation main circuit switch is disposed in the middle of a phase separation bus connecting a generator and a main transformer, and the phase separation bus
  • a power generation main circuit switch having a shut-off portion connected to the outer sheath, the outer sheath having the extending direction of the phase separation bus as an axial direction, and the inner conductor that is disposed in the outer sheath and constitutes the shut-off portion
  • a duct that is provided on the jacket and communicates with a space in the jacket through a plurality of ventilation openings, and a fan that is disposed in the duct and blows air in the axial direction.
  • the ventilation port is provided corresponding to the position of the inner conductor of the blocking portion in the axial direction and is provided on the upstream side of the blower in the axial direction and the first ventilation port provided on the downstream side of the blower.
  • the second ventilation port, and the ventilation by the blower The air circulated in the duct and the jacket through the first and second ventilation openings, and sent into the jacket from the duct through the first ventilation opening. Is configured to directly contact at least a part of the axial direction of the internal conductor constituting the blocking portion.
  • FIG. 1 is a longitudinal sectional view of a main part of a power generation main circuit switch according to an embodiment.
  • 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 is a longitudinal cross-sectional view of a main part of the power generation main circuit switch according to the present embodiment
  • FIG. 2 is a cross-sectional view along AA in FIG.
  • the power generation main circuit switch 1 is installed in the middle of a phase separation bus 2 that connects a generator and a main transformer (not shown).
  • the phase-separated bus 2 includes an outer cover 2b and an inner conductor 2a that is disposed in the outer cover 2b and extends in the axial direction.
  • the generator main circuit switch 1 includes a jacket 1e, a breaker 10 (breaker) disposed in the jacket 1e and connected to the internal conductor 2a of the phase separation bus 2, and a breaker installed in the jacket 1e. 10 and the disconnecting part 11 (disconnector) connected to the internal conductor 2a of the phase separation bus 2 and the blower 3 provided in the jacket 1e.
  • the blocking portion 10 includes an inner conductor 1a (first inner conductor) connected to the inner conductor 2a of the phase separation bus 2, an inner conductor 1b (second inner conductor) connected to the disconnecting portion 11, and an inner conductor. And an insulating portion 9 disposed between 1a and 1b.
  • the inner conductors 1a and 1b are both cylindrical, for example, and are spaced apart in the axial direction.
  • the internal conductor 1a is a fixed-side conductor, and is connected to a fixed contact (not shown) disposed therein.
  • the inner conductor 1b is a movable-side conductor and is connected to a movable contact (not shown) disposed therein.
  • the movable contact (not shown) reciprocates in the cylindrical insulating portion 10 to be in contact with or not in contact with the fixed contact (not shown).
  • the inner conductor 1b is longer in the axial direction than the inner conductor 1a.
  • the disconnecting portion 11 includes an inner conductor 1c (third inner conductor) connected to the inner conductor 1b of the blocking portion 10, and an inner conductor 1d (fourth) connected to the inner conductor 2a and the inner conductor 1c of the phase separation bus 2. Inner conductor).
  • the internal conductor 1c reciprocates in the axial direction, so that the internal conductor 1b of the interruption part 10 comes into contact or non-contact.
  • the outer sheath 1e of the power generation main circuit switch 1 is connected to the outer sheath 2b of the phase separation bus 2, and the spaces in the outer sheaths 1e and 2b are integrally sealed to the outside. Air exists in the jackets 2b and 1e.
  • the phase separation bus 2 is arranged horizontally, for example, and the jacket 1e of the power generation main circuit switch 1 is arranged with the axial direction arranged horizontally, for example.
  • the jacket 1 e is, for example, a box having a rectangular cross section, and is elongated in the axial direction with the extending direction of the phase separation bus 2 as the axial direction.
  • the blower 3 is provided on the jacket 1e, for example, on the top thereof.
  • the blower 3 includes a duct 5 and a blower 4 in the duct 5.
  • the duct 5 constitutes a wind path of the wind blown by the blower 4.
  • the duct 5 has, for example, a box shape with a rectangular cross section, and is long in the axial direction of the jacket 1e.
  • the duct 5 is arranged such that its length in the axial direction of the jacket 1e is shorter than that of the jacket 1e and covers the range of the substantially inner conductors 1a to 1d.
  • Ventilation holes 5a and 5b are provided on the lower surface of the duct 5 and the upper surface of the jacket 1e that contacts the lower surface. That is, the plurality of openings provided on the lower surface of the duct 5 and the same number of openings provided on the upper surface of the jacket 1e are aligned to form the vent holes 5a and 5b.
  • the ventilation opening 5a (second ventilation opening) is provided on the upstream side with respect to the blower 4, and is used for sucking wind into the duct 5 from the outer jacket 1e.
  • the vent hole 5b (second vent hole) is provided on the downstream side with respect to the blower 4, and is used to send air from the duct 5 into the outer jacket 1e.
  • one vent hole 5a is provided, and three vent holes 5b are provided, for example.
  • the blower 4 is disposed, for example, above the disconnection portion 11 and blows air in the axial direction of the jacket 1e.
  • the ventilation opening 5a is arrange
  • the vent hole 5a is provided above the inner conductor 1d in correspondence with the position of the inner conductor 1d in the axial direction.
  • One of the three vent holes 5b is disposed above the inner conductor 1a in the axial direction corresponding to the position of the inner conductor 1a, and the other one is arranged in the axial direction corresponding to the position of the inner conductor 1b. Arranged above the conductor 1b.
  • the remaining one is arrange
  • the said edge part is also a connection location of the internal conductor 1c and the internal conductor 1b.
  • the wind that has flowed into the jacket 1e from the duct 5 through the ventilation port 5b is directly and substantially vertically connected to the inner conductors 1a and 1b, and the connection points between the inner conductor 1c and the inner conductor 1b. Can be hit.
  • the wind sent from the blower 4 flows into the outer jacket 1e from the duct 5 through the vent hole 5b, and further flows into the duct 5 from the outer jacket 1e through the vent hole 5a. While it circulates in the jacket 1e and the duct 5, it hardly circulates in the jacket 2a of the phase separation bus 2. That is, the circulation of air by the blower 4 is generally closed in the jacket 1 e and the duct 5.
  • the air flow in the jacket 1e and the duct 5 is indicated by arrows.
  • the air in the jacket 1e and the duct 5 is circulated, and the wind from the vent hole 5b is directly applied to the internal conductors 1a to 1c. It has become.
  • the heat transfer coefficient of the part increases and heat transfer from the part to the air can be increased. This can be seen from the fact that, for example, the heat transfer coefficient when the wind hits the cylinder perpendicularly is proportional to the square root of the wind speed.
  • the internal conductors 1a and 1b are not simple conductors but are constituted by contacts for opening and closing current.
  • the portion that generates a large amount of heat when energized is the contact portion of the blocking portion 10, and the internal conductors 1a to 1d are not uniform in the axial direction, but have a temperature distribution that maximizes the contact portion of the blocking portion 10. There are many.
  • the wind is applied to the contact of the blocking portion 10 and the vicinity thereof, so that cooling of the contact is promoted.
  • the temperature distribution of the conductors 1a to 1d can be leveled.
  • the temperature of the inner conductors 1 a and 1 b of the power generation main circuit switch 1 is often higher than the temperature of the inner conductor 2 a of the phase separation bus 2 due to the influence of the contact of the blocking unit 10. If only the temperature of the inner conductors 1a and 1b is lowered, the energization current can be further increased.
  • the upper limit temperature of the contact of the blocking portion 10 is determined by the standard, in order to increase the energization current, the contact is increased in size so as to decrease the resistance to suppress heat generation, or air cooling, etc. It is necessary to cool by.
  • connection location of the internal conductor 1c and the internal conductor 1b corresponds to the contact (not shown) part of the disconnector 11, and although the heat_generation
  • the wind is mainly applied only to the inner conductors 1a and 1b of the power generation main circuit switching device 1 so that the wind circulates in the outer jacket 1e and in the duct 5, so that a cooler is used. Therefore, it is possible to effectively cool the small blower 4 with a small output, and it is possible to reduce the size of the blower 5 and increase the energization current.
  • the vent holes 5b are provided at three locations corresponding to the internal conductor 1a, the internal conductor 1b, and the connection location between the internal conductor 1b and the internal conductor 1c.
  • the same effect can be obtained by configuring the internal conductors 1a and 1b to directly contact at least a part of the axial direction.
  • a configuration in which only the air vent 5b corresponding to the position of the internal conductor 1a or only the position corresponding to the position of the internal conductor 1b is provided.
  • the configuration of the present embodiment has a higher cooling effect than these configurations.
  • the number of ventilation openings 5a and 5b installed is not limited to the example shown in FIG. 1, but it is necessary to prevent the cooling effect from decreasing because the flow velocity of the air flowing into the outer jacket 1e from the ventilation openings 5b is slow. There is.
  • the present invention is useful as a power generation main circuit switch.

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Patch Boards (AREA)

Abstract

 発電主回路開閉器1は、相分離母線2の延伸方向を軸方向とする外被1eと、外被1e内に配置され遮断部10を構成する内部導体1a,1bと、外被1e上に設けられ外被1e内の空間と複数個の通風口5a,5bで連通するダクト5と、ダクト5内に配置され前記軸方向に送風する送風機4とを備え、通風口5aは送風機4の上流側に設けられ、通風口5bは送風機4の下流側に設けられ、送風機4による送風は通風口5a,5bを介してダクト5内及び外被1e内で循環しており、ダクト5内から通風口5bを介して外被1e内に送られた送風は、内部導体1a,1bに直接当たるように構成されている。

Description

発電主回路開閉器
 本発明は、例えば発電所等において発電機と主変圧器との間に設置される発電主回路開閉器に関するものである。
 特許文献1では、相分離母線の中間に発電機遮断器(発電主回路開閉器)を設け、冷却装置による強制風により相分離母線及び発電機遮断器の冷却を行う方式が開示されている。ここで、強制風は、相分離母線の導体内、及び導体と外被との間を循環するようにしている。このような強制風は、発電機遮断器に隣接して設けられた冷却装置を用いて流されており、冷却装置は送風機とクーラとで構成されている。即ち、送風機を出た風は、クーラで冷却された後、発電機遮断器の一端に接続された相分離母線の一端から当該相分離母線の導体と外被との間を通って当該相分離母線の他端まで流れ、当該相分離母線の他端にて導体内に入り、次に当該相分離母線の他端から一端まで流れて発電機遮断器に戻る。更に、発電機遮断器に達した風は、発電機遮断器内で発電機遮断器の導体と外被との間を通過した後、発電機遮断器の他端に接続された相分離母線の一端から当該相分離母線の導体と外被との間を通って当該相分離母線の他端まで流れ、当該相分離母線の他端にて導体内に入り、次に当該相分離母線の他端から一端まで流れて再び送風機に戻ることになる。このように、強制風は相分離母線及び発電機遮断器の全体にわたって流れ、しかもその強制風はクーラによって冷却されている。
 また、特許文献2では、発電機と主変圧器との間の相分離母線のみを強制冷却する構成が開示されている。即ち、電動送風機と熱交換器(クーラ)で構成された冷却装置からの風を、ダクトを介して相分離母線の一端から他端まで流した後、再び送風機に戻して循環させている。ここで、強制風は、相分離母線の導体と外被との間を流れる。
 一方、上記のような強制風冷を行わない構成の発電主回路開閉器も存在する。例えば、特許文献3では、高出力開閉器(発電主回路開閉器)を自然対流による伝熱により冷却している。即ち、この構成では、外被内部の空気は高出力開閉器の軸方向に流れることはなく、軸に垂直な断面内の外被上部と外被下部とでは温度差が大きくなり、これにより自然対流が発生する。高出力開閉器の内部導体からの発熱は輻射と自然対流により外被に移動し、外被から外気に放出されることになる。
実公平5-28896号公報(第1図) 特公平6-85614号公報(第1図) 特開2005-32727号公報(第1図)
 しかしながら、相分離母線を強制風冷により冷却する従来の構成(特許文献1,2)では、軸方向に延伸する相分離母線の全体にわたって風を流す構成になっていることから、大型の送風機が必要になるという問題があった。また、クーラを設けているので、冷却効果が増大し、小型の発電主回路開閉器でも大きな電流を流すことが可能となる一方で、冷却装置が大型化するという問題があった。なお、発電主回路開閉器では、コンタクト部分の温度上限が規格により定められており、より小型の発電主回路開閉器で大きな電流を流したい場合は、冷却構造を設ける必要がある。
 一方、特許文献3に記載された従来技術のように、強制風冷を用いない構成では、自然対流による空気の流速が遅いために熱伝達率が低く、小型の発電主回路開閉器では大きな電流を流すことが困難となる。
 この発明は、上記に鑑みてなされたものであって、クーラを用いることなく、小型の送風機による送風で内部導体を効果的に冷却することで、より大きな電流を流すことが可能な発電主回路開閉器を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る発電主回路開閉器は、発電機と主変圧器との間を接続する相分離母線の中間に配置され、前記相分離母線と接続される遮断部を備えた発電主回路開閉器であって、前記相分離母線の延伸方向を軸方向とする外被と、この外被内に配置され、前記遮断部を構成する内部導体と、前記外被上に設けられ、前記外被内の空間と複数個の通風口で連通するダクトと、このダクト内に配置され前記軸方向に送風する送風機と、を備え、前記複数個の通風口は、前記軸方向において前記遮断部の内部導体の位置に対応して設けられるとともに前記送風機の下流側に設けられた第1の通風口と、前記軸方向において前記送風機の上流側に設けられた第2の通風口を含み、前記送風機による送風は、前記第1及び第2の通風口を介して、前記ダクト内及び前記外被内で循環しており、前記ダクト内から前記第1の通風口を介して前記外被内に送られた送風は、前記遮断部を構成する内部導体の前記軸方向の少なくとも一部に直接当たるように構成されていることを特徴とする。
 本発明によれば、クーラを用いることなく、小型の送風機による送風で内部導体を効果的に冷却することで、より大きな電流を流すことが可能になる、という効果を奏する。
図1は、実施の形態に係る発電主回路開閉器の要部の縦断面図である。 図2は、図1におけるA-A断面図である。
 以下に、本発明の実施の形態に係る発電主回路開閉器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本実施の形態に係る発電主回路開閉器の要部の縦断面図、図2は、図1におけるA-A断面図である。以下、図1及び図2を参照して、本実施の形態の構成について説明する。発電主回路開閉器1は、図示しない発電機と主変圧器との間を接続する相分離母線2の中間に設置されている。相分離母線2は、外被2bと、外被2b内に配置され軸方向に延伸する内部導体2aとを備えて構成される。
 発電主回路開閉器1は、外被1eと、外被1e内に配置され相分離母線2の内部導体2aと接続された遮断部10(遮断器)と、外被1e内に設置され遮断部10及び相分離母線2の内部導体2aと接続された断路部11(断路器)と、外被1eに設けられた送風装置3とを備えて構成される。
 遮断部10は、相分離母線2の内部導体2aに接続される内部導体1a(第1の内部導体)と、断路部11に接続される内部導体1b(第2の内部導体)と、内部導体1a,1b間に挟まれて配置された絶縁部9とを備えている。内部導体1a,1bは、いずれも例えば円筒状であり、軸方向に離隔して配置されている。内部導体1aは固定側導体であり、その内部に配置された固定コンタクト(図示せず)と接続されている。内部導体1bは可動側導体であり、その内部に配置された可動コンタクト(図示せず)と接続されている。可動コンタクト(図示せず)は、筒状の絶縁部10内を往復動することで、固定コンタクト(図示せず)と接触又は非接触となる。内部導体1bは、内部導体1aよりも軸方向に長尺である。
 断路部11は、遮断部10の内部導体1bに接続される内部導体1c(第3の内部導体)と、相分離母線2の内部導体2a及び内部導体1cに接続される内部導体1d(第4の内部導体)とを備えている。断路部11では、内部導体1cが軸方向に往復動することで、遮断部10の内部導体1bと接触又は非接触となる。
 発電主回路開閉器1の外被1eは相分離母線2の外被2bと接続されており、外被1e,2b内の空間は一体となって外部に対して密閉されている。外被2b,1e内には空気が存在する。相分離母線2は例えば水平に配置されており、発電主回路開閉器1の外被1eは軸方向を例えば水平にして配置されている。外被1eは、例えば、断面矩形の箱形であり、相分離母線2の延伸方向を軸方向とし、軸方向に長尺である。
 送風装置3は、外被1e上、例えばその上部、に設けられている。送風装置3は、ダクト5と、ダクト5内の送風機4とを備えて構成される。ダクト5は、送風機4により送風された風の風路を構成する。ダクト5は、例えば、断面矩形の箱形であり、外被1eの軸方向に長尺である。ダクト5は、外被1eの軸方向におけるその長さが外被1eよりも短く、概略内部導体1a~1dの範囲を覆うように配置されている。
 ダクト5の下面と当該下面に接触する外被1eの上面には、通風口5a,5bが設けられている。すなわち、ダクト5の下面に設けられた複数の開口と外被1eの上面に設けられた同数の開口とが一致して通風口5a,5bが形成されている。通風口5a(第2の通風口)は、送風機4に対して上流側に設けられ、外被1e内からダクト5内に風を吸い込むのに用いられる。通風口5b(第2の通風口)は、送風機4に対して下流側に設けられ、ダクト5内から外被1e内へ風を送り出すのに用いられる。通風口5aは例えば1個設けられ、通風口5bは例えば3個設けられている。通風口5a,5bを設けることにより、これらの通風口5a,5bによってダクト5内と外被内1e内の空間が連通する。
 送風機4は、例えば断路部11の上方に配置され、外被1eの軸方向に送風する。通風口5aは、例えば断路部11の上方に配置されている。詳細には、通風口5aは、軸方向において内部導体1dの位置に対応して内部導体1dの上方に設けられている。三つの通風口5bのうちの一つは軸方向において内部導体1aの位置に対応して内部導体1aの上方に配置され、別の一つは軸方向において内部導体1bの位置に対応して内部導体1bの上方に配置されている。そして、残りの一つは、軸方向において内部導体1bの断路部11側の端部に対応して当該端部の上方に配置されている。ここで、当該端部は、内部導体1cと内部導体1bとの接続箇所でもある。
 このような構成により、ダクト5内から通風口5bを通過して外被1e内へ流入した風が、直接、略垂直に内部導体1a,1b、及び内部導体1cと内部導体1bとの接続箇所に当たるようにできる。また、送風機4から送り出された風は、ダクト5内から通風口5bを介して外被1e内に流入し、更に外被1e内から通風口5aを介してダクト5内に流出することで、外被1e内及びダクト5内を循環する一方で、相分離母線2の外被2a内はほとんど循環しない。つまり、送風機4の送風による空気の循環は、概略、外被1e内及びダクト5内で閉じている。なお、図1及び図2では、外被1e内及びダクト5内における空気の流れを矢印で示している。
 次に、本実施の形態の動作について説明する。送風機4を動作させることにより、空気は通風口5aを介して外被1e内からダクト5内に取り込まれ、風がダクト5内を矢印に沿って流れ、それぞれの通風口5bに分配されて外被1e内に流れ込む。通風口5bから外被1e内に流れ込んだ風は、内部導体1a~1cに直接当り、内部導体1a~1cの周りを回りこむようにして外被1e内の底部に到達する。一方、空気は通風口5aを介して外被1e内からダクト5内に取り込まれているので、通風口5aの周囲の空気は通風口5aに向かって引かれるため、外被1e底部などの大部分の空気は全体として通風口5aに向かって流れる。
 以上のようにして、外被1e内及びダクト5内の空気を循環させるとともに、通風口5bからの風を直接内部導体1a~1cに当てており、風の当った部位は風速が速い状態となっている。内部導体1a~1cに当る風速が速いと、その部位の熱伝達率が大きくなり、当該部位から空気への熱の移動を多くすることができる。これは、例えば、円柱に垂直に風が当る場合の熱伝達率は風速の平方根にほぼ比例していることからもわかる。
 発電主回路開閉器1内の内部導体1a~1dに対して、上記のように、主に内部導体1a,1bに直接風が当たるような風の当て方をするメリットは次のとおりである。内部導体1a,1bは単純な導体ではなく、電流を開閉するためのコンタクトなどにより構成されている。一般的に通電時の発熱が大きい部位は遮断部10のコンタクト部分であり、内部導体1a~1dは軸方向に一様な温度ではなく、遮断部10のコンタクト部分が最大となる温度分布をしていることが多い。そのため、上記のように内部導体1a,1bに直接風が当たるようにすることで、遮断部10のコンタクトおよびその近傍に風を当てることにより、当該コンタクトの冷却が促進されることになり、内部導体1a~1dの温度分布を平準化することができる。
 また、遮断部10のコンタクトの影響により、発電主回路開閉器1の内部導体1a,1bの温度は相分離母線2の内部導体2aの温度よりも高いことが多く、発電主回路開閉器1の内部導体1a,1bの温度のみを下げれば、通電電流をより大きくすることが可能となる。なお、遮断部10のコンタクトは、その上限温度が規格により定められているので、通電電流を大きくするためには、抵抗を小さくするように大型化して発熱を抑制するか、あるいは、風冷等により冷却する必要がある。
 また、本実施の形態では、内部導体1cと内部導体1bとの接続箇所は、断路器11のコンタクト(図示せず)部分に該当し、遮断器10のコンタクト部分よりは発熱は小さいものの、当該接続箇所も通電時の発熱が大きい部位である。そのため、当該接続箇所の上方にも通風口5bを設け、当該接続箇所に直接風が当たるようにして、冷却効果を高めている。
 このように、主として発電主回路開閉装置1の内部導体1a,1bのみに直接風を当て、概略外被1e内及びダクト5内で風が循環するように構成しているので、クーラを用いることなく、出力の小さな小型の送風機4で効果的に冷却することができ、送風装置5の小型化と通電電流を高めることが可能となる。
 なお、本実施の形態では、通風口5bは、内部導体1a、内部導体1b、及び内部導体1bと内部導体1cとの接続箇所にそれぞれ対応して、三箇所に設けたが、遮断部10を構成する内部導体1a,1bの軸方向の少なくとも一部に直接当たるように構成することでも同様の効果が得られる。例えば、通風口5bのうち内部導体1aの位置に対応したもの又は内部導体1bの位置に対応したもののみを設ける構成も可能である。ただし、これらの構成よりも、本実施の形態の構成の方がより冷却効果が高い。また、通風口5a,5bの設置個数も図1の例に限定されるものではないが、通風口5bから外被1e内に流入する送風の流速が遅くなり冷却効果が減じないようにする必要がある。
 以上のように、本発明は、発電主回路開閉器として有用である。
 1 発電主回路開閉器、2 相分離母線、1a~1d,2a 内部導体、1e,2b 外被、3 送風装置、4 送風機、5 ダクト、5a,5b 通風口、9 絶縁部、10 遮断部、11 断路部。

Claims (3)

  1.  発電機と主変圧器との間を接続する相分離母線の中間に配置され、前記相分離母線と接続される遮断部を備えた発電主回路開閉器であって、
     前記相分離母線の延伸方向を軸方向とする外被と、
     この外被内に配置され、前記遮断部を構成する内部導体と、
     前記外被上に設けられ、前記外被内の空間と複数個の通風口で連通するダクトと、
     このダクト内に配置され前記軸方向に送風する送風機と、
     を備え、
     前記複数個の通風口は、前記軸方向において前記遮断部の内部導体の位置に対応して設けられるとともに前記送風機の下流側に設けられた第1の通風口と、前記軸方向において前記送風機の上流側に設けられた第2の通風口を含み、
     前記送風機による送風は、前記第1及び第2の通風口を介して、前記ダクト内及び前記外被内で循環しており、
     前記ダクト内から前記第1の通風口を介して前記外被内に送られた送風は、前記遮断部を構成する内部導体の前記軸方向の少なくとも一部に直接当たるように構成されていることを特徴とする発電主回路開閉器。
  2.  前記遮断部を構成する内部導体は、固定側導体である第1の内部導体と、この第1の内部導体と前記軸方向に離隔して配置された可動側導体である第2の内部導体と、前記第1の内部導体と前記第2の内部導体との間に挟まれ内部に可動コンタクトが配置される絶縁部とを備え、
     前記第1の通風口は二つの通風口から成り、当該二つのうちの一方は前記軸方向において前記第1の内部導体の位置に対応して設けられ、当該二つのうちの他方は前記軸方向において前記第2の内部導体の位置に対応して設けられており、
     前記ダクト内から前記第1の通風口のうちの前記一方を介して前記外被内に送られた送風は前記第1の内部導体に直接当たり、前記ダクト内から前記第1の通風口のうちの前記他方を介して前記外被内に送られた送風は前記第2の内部導体に直接当たるように構成されていることを特徴とする請求項1に記載の発電主回路開閉器。
  3.  前記発電主回路開閉器には前記遮断部に接続された断路部が設けられており、
     前記遮断部を構成する内部導体は、固定側導体である第1の内部導体と、この第1の内部導体と前記軸方向に離隔して配置された可動側導体である第2の内部導体と、前記第1の内部導体と前記第2の内部導体との間に挟まれ内部に可動コンタクトが配置される絶縁部とを備え、
     前記外被内には、前記断路部を構成し前記第2の内部導体と接続された第3の内部導体が設けられており、
     前記第1の通風口は三つの通風口から成り、当該三つのうちの一つは前記軸方向において前記第1の内部導体の位置に対応して設けられ、当該三つのうちの別の一つは前記軸方向において前記第2の内部導体の位置に対応して設けられ、当該三つのうちの残りは前記軸方向において前記第2の内部導体と前記第3の内部導体との接続箇所に対応して設けられており、
     前記ダクト内から前記第1の通風口のうちの前記一つを介して前記外被内に送られた送風は前記第1の内部導体に直接当たり、前記ダクト内から前記第1の通風口のうちの前記別の一つを介して前記外被内に送られた送風は前記第2の内部導体に直接当たり、前記ダクト内から前記第1の通風口のうちの前記残りを介して前記外被内に送られた送風は前記接続箇所に直接当たるように構成されていることを特徴とする請求項1に記載の発電主回路開閉器。
PCT/JP2012/078357 2012-11-01 2012-11-01 発電主回路開閉器 WO2014068754A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013503898A JP5241974B1 (ja) 2012-11-01 2012-11-01 発電主回路開閉器
PCT/JP2012/078357 WO2014068754A1 (ja) 2012-11-01 2012-11-01 発電主回路開閉器
EP12887626.5A EP2916411B1 (en) 2012-11-01 2012-11-01 Power generation main circuit switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078357 WO2014068754A1 (ja) 2012-11-01 2012-11-01 発電主回路開閉器

Publications (1)

Publication Number Publication Date
WO2014068754A1 true WO2014068754A1 (ja) 2014-05-08

Family

ID=49041785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078357 WO2014068754A1 (ja) 2012-11-01 2012-11-01 発電主回路開閉器

Country Status (3)

Country Link
EP (1) EP2916411B1 (ja)
JP (1) JP5241974B1 (ja)
WO (1) WO2014068754A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359617A (ja) * 1991-06-06 1992-12-11 Mitsubishi Electric Corp 強制風冷式相分離母線
JPH0528896U (ja) 1991-03-25 1993-04-16 文化シヤツター株式会社 シヤツター用安全装置
JPH0685614A (ja) 1992-09-01 1994-03-25 Fujitsu Ten Ltd 受信機
JP2001008337A (ja) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp 主回路開閉装置
JP2005032727A (ja) 2003-07-11 2005-02-03 Abb Res Ltd 冷却フィン構造を持つ高出力開閉器
JP2006166697A (ja) * 2004-12-03 2006-06-22 Abb Res Ltd 高電圧システムと冷却手段を備えた高電力回路遮断器
JP2008011605A (ja) * 2006-06-28 2008-01-17 Mitsubishi Electric Corp 電力用開閉装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841031A1 (de) * 2006-03-31 2007-10-03 Siemens Aktiengesellschaft Hochstrom-Leitungsanordnung und Generatoranlage
EP1906503A1 (de) * 2006-09-26 2008-04-02 Siemens Aktiengesellschaft Generatorableitung für einen Kraftwerksgenerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528896U (ja) 1991-03-25 1993-04-16 文化シヤツター株式会社 シヤツター用安全装置
JPH04359617A (ja) * 1991-06-06 1992-12-11 Mitsubishi Electric Corp 強制風冷式相分離母線
JPH0685614A (ja) 1992-09-01 1994-03-25 Fujitsu Ten Ltd 受信機
JP2001008337A (ja) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp 主回路開閉装置
JP2005032727A (ja) 2003-07-11 2005-02-03 Abb Res Ltd 冷却フィン構造を持つ高出力開閉器
JP2006166697A (ja) * 2004-12-03 2006-06-22 Abb Res Ltd 高電圧システムと冷却手段を備えた高電力回路遮断器
JP2008011605A (ja) * 2006-06-28 2008-01-17 Mitsubishi Electric Corp 電力用開閉装置

Also Published As

Publication number Publication date
EP2916411A1 (en) 2015-09-09
EP2916411B1 (en) 2017-12-20
JPWO2014068754A1 (ja) 2016-09-08
EP2916411A4 (en) 2016-05-25
JP5241974B1 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
KR101658427B1 (ko) 지중 온도를 이용한 수배전반 냉각 시스템
CN203103800U (zh) 一种散热优良的配电箱
JP2006353014A (ja) 配電機材
CN211958548U (zh) 一种高散热性能的大电流中压开关柜结构
KR20150039337A (ko) 폐쇄배전반
CA3111624C (en) Frequency converter cabinet body and frequency converter
KR20140055599A (ko) 방열핀 부착 부스바
KR101089594B1 (ko) 스마트 유입 변압기
EP2887373B1 (en) Terminal structure of main circuit part of vacuum circuit breaker
KR101033096B1 (ko) 안전장치와 각도 조절용 환풍기 및 그를 포함하는 냉각 효율 개선 배전반
CN103733294B (zh) 具有用于有效散热的通风通道的断路器
CN102196714A (zh) 一种散热装置
JPWO2020100183A1 (ja) ガス絶縁開閉装置
JP5241974B1 (ja) 発電主回路開閉器
US9208936B2 (en) Gas-insulated delta transformer
CN102017039B (zh) 断路器及其散热装置
CN111373851B (zh) 具有不对称式导引的空气流冷却系统的低压开关设备
CN202487486U (zh) 断路器极柱的内置散热器和相应的组装式极柱
CN207743613U (zh) 一种大电流金属封闭式开关柜手车室结构
JP5869093B1 (ja) 制御盤
KR20170071620A (ko) 자연 공냉식 방열판
CN202495389U (zh) 断路器组装式极柱
CN202026555U (zh) 一种散热装置
CN205487913U (zh) 散热真空断路器
KR20130102313A (ko) 가스절연 개폐장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013503898

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012887626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE