WO2014067132A1 - 用于小区搜索和测量的方法、装置和系统 - Google Patents

用于小区搜索和测量的方法、装置和系统 Download PDF

Info

Publication number
WO2014067132A1
WO2014067132A1 PCT/CN2012/083996 CN2012083996W WO2014067132A1 WO 2014067132 A1 WO2014067132 A1 WO 2014067132A1 CN 2012083996 W CN2012083996 W CN 2012083996W WO 2014067132 A1 WO2014067132 A1 WO 2014067132A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
tested
cluster
base station
sequence
Prior art date
Application number
PCT/CN2012/083996
Other languages
English (en)
French (fr)
Inventor
张磊
王轶
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201280075933.6A priority Critical patent/CN104641688A/zh
Priority to PCT/CN2012/083996 priority patent/WO2014067132A1/zh
Publication of WO2014067132A1 publication Critical patent/WO2014067132A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, apparatus and system for cell search and measurement. Background technique
  • Small cell is one of the hottest topics in the LTE Advanced (Long Term Evolution Advanced) version 12 discussion.
  • a dense deployment scenario is one of the most important scenarios.
  • small cells are often used to increase cell throughput and cell capacity. Therefore, there will be a number of small cells densely deployed together, and their coverage will be connected to each other for seamless coverage.
  • Such small cells are called cell clusters or cell groups.
  • F1 is the area covered by the macro base station
  • F2 is the area covered by the small cell.
  • the adjacent small cells (one or more) in the figure constitute one cell cluster or cell group.
  • the user's mobile terminal UE, User Equipment
  • RRM measurement Radio Resource Management measurement
  • a signal transmission method includes: a base station calculates a PSS sequence and an SSS sequence of a current cell according to a cell ID of a cell cluster to which the cell cluster belongs, according to a cell cluster to which the cell cluster belongs The cell ID, the CP type, and the slot number of the CRS are calculated, the initial phase of the CRS sequence of the current cell is calculated, and the CRS sequence of the cell is calculated according to the initial phase of the CRS sequence;
  • the base station transmits the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and sends the CRS sequence in a period of 5 ms.
  • a signal sending method includes: the base station calculates a PSS sequence and an SSS sequence of the current cell according to a cell ID of a cell cluster to which the cell cluster belongs, and according to the cell cluster to which the cell belongs The cell ID, the CP type, the slot number of the CRS, and the virtual cell ID of the cell, calculate an initial phase of the CRS sequence of the cell, and calculate a CS sequence of the cell according to the initial phase of the CRS sequence;
  • the base station transmits the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and sends the CRS sequence in a period of 5 ms.
  • a method for searching and measuring a cell includes:
  • the UE searches for and detects the PSS sequence and the SSS sequence of the cluster of the to-be-tested cell according to the cell ID of the cell cluster to be tested, to obtain the coarse-precision OFDM symbol synchronization information of the cluster to be tested;
  • the UE calculates a CRS sequence and a location of each cell to be tested according to the cell ID of the cell cluster to be tested and the virtual ID of the cell to be tested in the cell cluster;
  • the UE detects, according to the calculated CRS sequence and location of each cell to be tested, and the coarse-precision OFDM symbol synchronization information of the cluster to be tested, the CRS signal sent by each cell to be tested is detected;
  • the UE uses the calculated coarse-precision OFDM symbol synchronization information of the cell cluster to be tested, and uses the calculated cell to be tested. a CRS sequence, obtaining fine-precision OFDM symbol synchronization information of the cell to be tested, and performing cell measurement on the cell to be tested by using the fine-precision OFDM symbol synchronization information;
  • the UE reports the cell measurement result according to a predetermined policy.
  • a base station includes: a calculating unit, configured to calculate a PSS sequence and an SSS sequence of the current cell according to a cell ID of a cell cluster to which the base station belongs, according to the The cell ID of the cell cluster to which the base station belongs, the CP type, and the slot number of the CRS, calculate an initial phase of the CRS sequence of the current cell, and calculate a CRS sequence of the cell according to the initial phase of the CRS sequence;
  • a determining unit which determines a location of the CRS sequence according to a cell ID of a cell cluster to which the base station belongs and a virtual cell ID of the current cell;
  • a sending unit which sends the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and the CRS sequence is in a period of 5 ms.
  • a base station includes: a calculating unit, configured to calculate a PSS sequence and an SSS sequence of the current cell according to a cell ID of a cell cluster to which the base station belongs, according to the The cell ID of the cell cluster to which the base station belongs, the CP type and the slot number of the CRS, and the virtual cell ID of the current cell, calculate the initial phase of the CRS sequence of the current cell, and calculate the CRS sequence of the cell according to the initial phase of the CRS sequence. ;
  • a determining unit which determines a location of the CRS sequence according to a cell ID of a cell cluster to which the base station belongs; a sending unit that transmits the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and sends the sequence in a 5 ms period The CRS sequence.
  • a user equipment UE
  • the UE includes:
  • a search unit which searches for and detects a PSS sequence and an SSS sequence of the cluster of the cell to be tested according to the cell ID of the cluster to be tested, to obtain coarse-precision OFDM symbol synchronization information of the cluster of the cell to be tested;
  • a calculating unit which calculates a CRS sequence and a location of each cell to be tested according to a cell ID of the cell cluster to be tested and a virtual ID of the cell to be tested in the cell cluster;
  • a detecting unit configured to detect, according to the calculated CRS sequence and location of each cell to be tested, and the coarse-precision OFDM symbol synchronization information of the cluster to be tested, the CRS signal sent by each cell to be tested; For each cell to be tested, after detecting the signal by the detecting unit, Based on the coarse-precision OFDM symbol synchronization information of the cell cluster to be tested, using the calculated CRS sequence of the cell to be tested, obtaining fine-precision OFDM symbol synchronization information of the cell to be tested, and using the fine-precision OFDM symbol synchronization information, The cell to be tested performs cell measurement;
  • the reporting unit reports the cell measurement result according to a predetermined policy.
  • a communication system wherein the communication system comprises any combination of the foregoing UE and one or more of the foregoing base stations.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to execute the aforementioned signal transmitting method in the base station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the aforementioned signal transmitting method in a base station.
  • a computer readable program wherein when the program is executed in a terminal device, the program causes a computer to perform the aforementioned method of cell search and measurement in the terminal device.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the aforementioned method of cell search and measurement in a terminal device.
  • the beneficial effects of the embodiments of the present invention are as follows:
  • the method, the device and the system of the embodiment can effectively reduce the computational complexity of the user equipment for cell search and measurement.
  • 1 is a schematic diagram of a joint deployment of a small base station and a macro base station
  • Figure 2 is a flow chart of the method of the first embodiment of the present invention.
  • Figure 3 is a flow chart of a method of the second embodiment of the present invention.
  • FIG. 4 is a flow chart of a method according to a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the composition of a base station according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the composition of a base station according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the composition of a UE according to a sixth embodiment of the present invention. detailed description
  • LTE-Advanced cells may be combined into one cell cluster, and these cells have such characteristics:
  • the frame structure type is the same;
  • the carrier frequency is the same, that is, all cells are intra-frequency
  • Each cell in the cell cluster has an independent virtual ID (virtual ID) to distinguish cells in the cluster.
  • the virtual ID of the cell can be learned by the UE through blind detection.
  • the cells in one cell cluster are not limited to the small cells mentioned in the background technology section, and may be other
  • the LTE-Advanced cell can be provided as long as the above conditions are met.
  • the UE may perform cell search (Cell search), that is, PSS/SSS detection, on the cell cluster, thereby obtaining a physical cell ID (physical cell ID) and system synchronization information (coarse-precision OFDM symbol synchronization information) of the cell cluster, and then When timing tracking is performed on any cell in a cell cluster, CRS (Cell-specific) can be used based on the OFDM (Orthogonal Frequency Division Multiplexing) symbol synchronization information of the cell cluster. Reference signal, cell-specific reference signal) Get fine-precision OFDM symbol synchronization information.
  • Cell search that is, PSS/SSS detection
  • cell cluster is also used for convenience of description.
  • other expressions may be used for the collection of cells of this type, such as the "cell group” mentioned in the background art, etc.
  • the examples are not intended to be limiting.
  • the embodiment of the invention provides a signal sending method, so that the UE performs cell search and measurement according to the signal.
  • 2 is a flow chart of the method. Referring to FIG. 2, the method includes:
  • Step 201 The base station calculates a sequence (PSS sequence) of the PSS signal of the cell and a sequence of the SSS signal (SSS sequence) according to the cell ID of the cell cluster to which the cell belongs.
  • PSS sequence a sequence of the PSS signal of the cell
  • SSS sequence a sequence of the SSS signal
  • Step 202 The base station calculates an initial phase of the CRS sequence of the current cell according to the cell ID and the CP (Cyclic Prefix) type of the cell cluster to which the cell cluster belongs and the slot number of the CRS, and calculates the initial phase according to the CRS sequence.
  • the CRS sequence of the cell The CRS sequence of the cell;
  • Step 203 The base station determines a location of the CRS sequence according to a cell ID of a cell cluster to which the cell cluster belongs and a virtual cell ID of the local cell.
  • Step 204 The base station sends the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and sends the CRS sequence in a period of 5 ms.
  • the predetermined time-frequency resource refers to a time-frequency resource specified by the standard. Unless otherwise stated, its meaning is the same in the practice of the present invention.
  • the base station may send the CRS sequence at antenna port 0 or antenna port 0 and antenna port 1.
  • the CRS sequence is transmitted at the antenna port 0
  • all the cells in the cell cluster can transmit CRS sequences at different positions, and the available positions are at most 30, that is, the upper limit of the total number of cells in each cell cluster is 30.
  • the CRS sequence is independent of the cell virtual ID.
  • all cells in the cell can also send the same CRS sequence at different locations, and the available location is up to 15, that is, the upper limit of the total number of cells in each cell cluster is 15.
  • the bearer is a carrier that is not backward compatible with the LTE R8 ⁇ R11 carrier, that is, a new carrier type (NCT), and the CRS pilot of the cell is only 5 ms (ie, 5 subframes). Sent for the period at portO.
  • the starting position of the period may be configurable or fixed.
  • all cells in a cell cluster may send CRS sequences at different locations, and the C S sequence is determined only by the cell ID and CP type of the cell cluster and the slot number of the CRS signal, and is independent of the cell virtual ID.
  • the CRS pilot can be transmitted in each subframe, and in the frequency domain, there are six positions in each subframe that can be used to transmit CRS pilots. Therefore, when the CRS is transmitted at antenna port 0 When the signal is used, the available positions of the CRS pilots are up to 30, that is, the upper limit of the total number of cells in each cell cluster is 30.
  • the CRS sequence of each cell can be obtained by using the cell ID of the cell cluster, the CP type, and the slot number of the CS signal, and is obtained according to the existing standard.
  • the specific calculation method can refer to the existing standard, and is no longer referred to herein. Narration.
  • the location of the CRS sequence of each cell may be determined according to the cell ID of the cell cluster and the virtual ID of the cell.
  • the location of the CRS sequence of the cell with the virtual ID of 0 may be determined first, and then the offset of the location of the CRS of the cell with the virtual ID of 0 is calculated according to the virtual ID of the cell, thereby Obtain the location of the CRS sequence of the cell.
  • the CRS location of a cell with a virtual ID of 0 is determined only by the cell ID and the antenna port of the cell cluster to which the cell belongs.
  • the offset of the start position of the CRS sequence of the cell with the virtual ID of Virtual_ID is calculated according to the virtual ID of the cell with respect to the cell with the virtual ID of 0. among them:
  • the UE may generate a CRS sequence by itself, and perform detection at a predetermined location to determine a virtual ID and signal quality of different cells.
  • the carrier carried in the cell is also a carrier that is not backward compatible with the LTE Release 8 to Release 11 carrier, that is, a New Carrier Type.
  • the cell CRS pilot transmits only portO and port1, and transmits in a period of 5 ms (ie, 5 subframes). That is, the CRS pilot of the cell is transmitted in portO and portl only in a period of 5 ms (ie, 5 subframes).
  • the starting position of the period may be configurable or fixed.
  • all cells in a cell cluster may also send a CRS sequence at different locations, and the CRS sequence is determined only by the cell ID and CP type of the cell cluster and the slot number in which the CRS signal is located, and the cell virtual ID. None.
  • the CRS sequence is transmitted in portO and port1, and in the time domain, the CRS pilot can be transmitted in each subframe, and in the frequency domain, there are three positions in each subframe that can be used to transmit CRS pilots, The available positions of the CRS pilots are up to 15, that is, the upper limit of the total number of cells in each cell cluster is 15.
  • the CRS location of a cell with a virtual ID of 0 is determined only by the cell ID and the antenna port of the cell cluster to which the cell belongs.
  • the offset of the start position of the CRS sequence of the cell with the virtual ID of Virtual_ID is calculated according to the virtual ID of the cell with respect to the cell with the virtual ID of 0. among them:
  • the UE may generate a CRS sequence by itself, and perform detection at a predetermined location to determine a virtual ID and signal quality of different cells.
  • the cell search may be performed only once, that is, the PSS sequence and the SSS sequence detection, thereby effectively reducing the number of cell search times, and correspondingly reducing the computational complexity of the cell search.
  • the time for cell search is reduced.
  • the virtual ID is distinguished according to the position of the CRS sequence, that is, the relationship between the virtual ID and the CRS sequence has a one-to-one correspondence, the positions of the CRS sequence are different, and the virtual IDs are different, so that the virtual ID is detected and timed. Tracking can be done together without additional computational overhead.
  • the embodiment of the invention further provides a signal sending method, so that the UE performs cell search and measurement according to the signal.
  • Figure 3 is a flow chart of the method. Referring to Figure 3, the method includes:
  • Step 301 The base station calculates a PSS sequence and an SSS sequence of the current cell according to the cell ID of the cell cluster to which the cell cluster belongs.
  • Step 302 The base station according to the cell ID of the cell cluster to which the cell cluster belongs, the CP type, the slot number of the CRS signal, and the current cell. a virtual cell ID, calculating an initial phase of a CRS sequence of the local cell, and according to the CRS The initial phase of the sequence calculates the CRS sequence of the cell;
  • Step 303 The base station determines the location of the CRS sequence according to the cell ID of the cell cluster to which it belongs.
  • the carrier that is not compatible with the carrier of the LTE version 8 to the version 11 carrier, that is, the new carrier type, is different from the second embodiment.
  • the cell is The CRS pilot is transmitted in a period of 5ms (ie, 5 subframes), and does not limit the transmission port.
  • the start position of the period may be fixed, for example, starting from the 0th subframe, starting from the 5th subframe, or being configurable.
  • each cell in a cell cluster sends a different CRS sequence, that is, the CRS sequence of each cell is determined by the cell ID of the cell cluster, the CP type, and the slot number of the CRS signal, and the cell.
  • the virtual ID is determined.
  • the method for generating the CRS sequence is defined by a standard, and the initial phase of the CRS sequence is related to the Cell ID of the cell cluster and the virtual ID of the cell.
  • the location of the CRS sequence can be obtained by using the cell ID of the cell cluster according to the existing standard.
  • the existing standard For the specific calculation method, reference may be made to the existing standard, and details are not described herein again.
  • the CRS sequence of the cell with the virtual ID of 0 and its location are determined only according to the cell ID of the cell cluster to which the cell belongs, so as to be compatible with the case where only one cell constitutes one cell cluster.
  • the UE may generate a CRS sequence by itself, and perform matching detection at a fixed location to determine a virtual ID and signal quality of different cells.
  • the cell search may be performed only once, that is, the PSS and the SSS sequence detection, thereby effectively reducing the number of cell search times, and correspondingly reducing the computational complexity of the cell search and reducing Smaller time for cell search.
  • the virtual ID is distinguished according to the sequence of the CRS signal, that is, after the cell ID of the cell cluster is determined, the virtual ID (cell) and the CRS sequence in the cell cluster have a one-to-one correspondence, CRS. Different sequence virtual IDs (cells) make virtual ID detection and timing tracking complete, with no additional computational overhead.
  • Embodiments of the present invention provide a cell search and measurement method.
  • 4 is a flow chart of the method, wherein the method includes: Step 401: The UE searches for and detects the PSS sequence and the SSS sequence of the cluster of the cell to be tested according to the cell ID of the cell cluster to be tested, to obtain coarse-precision OFDM symbol synchronization information of the cluster of the cell to be tested.
  • Step 402 The UE calculates a CRS sequence and a location of each cell to be tested according to the cell ID of the cell cluster to be tested and the virtual ID of the cell to be tested in the cell cluster.
  • Step 403 The UE detects, according to the calculated CRS sequence and location of each cell to be tested, and the coarse-precision OFDM symbol synchronization information of the cluster to be tested, the CRS signal sent by each cell to be tested is detected;
  • Step 405 The UE reports a cell measurement result according to a predetermined policy.
  • all serving cells of the UE do not belong to the cell cluster to be tested, but the serving base station of the UE configures which cell cluster and which cells in the cell cluster need to be measured. That is, the UE's serving cell is outside the cell cluster to be tested, and the UE selects the cell cluster (referred to as the cell cluster to be tested) and the cell in the cell cluster according to the configuration information delivered by the serving base station. The cell to be tested is tested and measured.
  • the method further includes:
  • the UE receives the configuration information sent by the serving base station, where the configuration information includes the cell ID of the cell cluster to be tested, and the virtual ID list of the cell to be tested in the cluster to be tested or the cluster of the cell to be tested The maximum value of the virtual ID of the cell to be tested.
  • the cell to be tested may be all the cells in the cluster of the cell to be tested, and may also be a part of the cell in the cluster to be tested.
  • the configuration information is UE-specific information, which can be delivered through an RRC signaling.
  • the configuration information may further include a policy for reporting the measurement result, such as how to report the measurement result, the measurement result of which cells are reported, and the maximum number of reports. Therefore, in step 401, the UE may search and detect the PSS/SSS sequence of the cluster of the cell to be tested according to the cell ID of the cluster to be tested in the configuration information, thereby obtaining the cluster of the cell to be tested.
  • the coarse precision OFDM symbol synchronization information the UE may calculate the CRS sequence and location of each cell to be tested according to the cell ID of the cell cluster to be tested and the virtual ID of the cell to be tested in the cell cluster.
  • the cell to be tested is also determined according to the virtual ID of the cell to be tested.
  • the signal is detected, that is, it is determined whether the UE can receive the signal sent by the cell to be tested.
  • a threshold may be preset, and the calculated CRS sequence is used to detect whether there is a received signal at the calculated position of the CRS. If the received signal at the position of the CRS exceeds the threshold, it is determined to be detected. Signal, otherwise it is considered that no signal is detected.
  • step 404 when the UE detects the signal of the cell to be tested, the UE may determine the CRS sequence of the cell to be tested based on the coarse-precision OFDM symbol synchronization information of the cell cluster to be tested. Fine-precision OFDM symbol synchronization information of the cell to be tested, and performing cell measurement on the cell to be tested for detecting the signal.
  • the UE does not detect the signal of a certain cell to be tested, the UE ends the search and measurement of the cell to be tested, and then detects the next cell to be tested.
  • step 405 if the configuration information sent by the serving base station received by the UE includes a policy for reporting the measurement result, the UE reports according to the indication of the base station (that is, the policy for reporting the measurement result included in the configuration information). If the configuration information sent by the serving base station received by the UE does not include a policy for reporting the measurement result, the UE may use the measurement result of the best one or more cells to be tested and the virtual ID of the measurement result as the to-be-tested The measurement result of the cell cluster is reported to its serving base station.
  • the UE can traverse all the virtual IDs of the cells to be measured that need to be measured, thereby completing cell search and measurement. For example, if the base station is configured to the UE as the virtual ID list of the to-be-tested cell in the cluster to be tested, the UE traverses all the cells to be tested on the list. If the base station is configured to the UE, the maximum value of the virtual ID of the cell to be tested in the cluster of the cell to be tested, the UE starts to traverse to the cell to be tested with the virtual ID being the maximum to be tested.
  • At least one serving cell of the UE belongs to the cell cluster to be tested, that is, at least one serving cell of the UE is in the cell cluster to be tested, and the serving base station of the UE does not need to configure it. Which cells in the cell cluster are measured. Then, the UE performs blind detection and measurement on all cells except its serving cell in its cell cluster.
  • the method further includes:
  • the UE receives system information of the base station, and the system information of the base station includes the number of cells in the cell cluster of the UE and the virtual ID related information.
  • the system information of the base station can be obtained through a broadcast channel.
  • the system information of the base station can also be obtained through UE-specific RRC signaling.
  • the serving cell of the UE is a secondary cell (SCell) in the cell cluster, and the primary cell of the UE (Primary Cell) passes the UE-dedicated RRC.
  • the signaling informs the UE of the system information of the secondary serving cell (SCell) of the UE in the above cell cluster.
  • the virtual ID related information is, for example, a maximum value of a virtual ID in the cluster of the cell, a virtual ID list, and the like.
  • the UE can calculate the CRS sequence and location of each cell to be tested according to the cell ID of the cell cluster (the cell cluster to be tested) and the virtual ID of the cell to be tested in the cell cluster.
  • the signal of each cell to be tested is also detected, and when the signal is detected, the obtained cell to be tested is calculated in step 401.
  • the fine-precision OFDM symbol synchronization information of the to-be-measured cell is determined by using the CRS sequence of the to-be-detected cell that detects the signal.
  • the UE may selectively report the measurement result and the virtual ID of the corresponding cell to be tested to its serving base station. For example, the UE may report the measurement result of all cells and the corresponding virtual ID, and the UE may also report the best result.
  • the UE can traverse the virtual IDs of all possible cells to be tested, and completes the cell search and measurement.
  • At least one serving cell of the UE belongs to the cell cluster to be tested, that is, at least one serving cell of the UE is in the cell cluster to be tested, and the serving base station of the UE needs the configuration. Which cells in the cell cluster are measured.
  • the UE detects and measures the cell (the cell to be tested) in the cell cluster that needs to be measured according to the configuration information sent by the serving base station.
  • the method further includes:
  • the UE receives configuration information sent by its serving base station, where the configuration information includes a cell cluster of the UE
  • the configuration information is UE-specific information, which can be delivered through RRC signaling.
  • the configuration information may further include a policy for reporting the measurement result, such as how to report the measurement result, the measurement result of the reported cells, the maximum number of reports, and the like.
  • the UE can calculate the CRS sequence and location of each cell to be tested according to the cell ID of the cell cluster (the cell cluster to be tested) and the virtual ID of the cell to be tested in the cell cluster.
  • the signal of each cell to be tested is also detected, and when the signal is detected, the obtained cell to be tested is calculated in step 401.
  • the CRS sequence of the cell to be tested that detects the signal is used to determine the fine-precision OFDM symbol of the cell to be tested. Number synchronization information.
  • step 405 if the configuration information sent by the serving base station received by the UE includes a policy for reporting the measurement result, the UE reports according to the indication of the base station (that is, the policy for reporting the measurement result included in the configuration information). If the configuration information sent by the serving base station that is received by the UE does not include a policy for reporting the measurement result, the UE may selectively report the measurement result and the virtual ID of the corresponding cell to be reported to the serving base station. For example, the UE may report the measurement result of all the cells and the corresponding virtual ID; the UE may also report the best result; if the maximum number of reports needs to be reported in the configuration information, the UE may also report the best number of the above. the result of.
  • the UE can traverse all the virtual IDs of the cells to be measured that need to be measured, thereby completing cell search and measurement.
  • the method of the embodiment of the present invention can effectively reduce the computational complexity of the UE performing cell search and measurement.
  • the embodiment of the present invention further provides a base station, as described in Embodiment 4 below. Since the principle of solving the problem is similar to the method of Embodiment 1, the specific implementation may refer to the implementation of the method of Embodiment 1. The repetitions are not repeated here.
  • the embodiment of the present invention further provides a base station, and the range covered by the base station is called a cell, that is, the foregoing LTE-Advanced cell, and the cell may be a cell in a cell cluster.
  • 5 is a schematic diagram of the structure of the base station.
  • the base station includes: a calculating unit 51, a determining unit 52, and a sending unit 53, wherein: the calculating unit 51 calculates the PSS of the current cell according to the cell ID of the cell cluster to which the base station belongs.
  • the sequence and the SSS sequence are used to calculate the initial phase of the CRS sequence of the cell according to the cell ID, the CP type, and the slot number of the CRS signal to which the base station belongs, and calculate the CRS sequence of the cell according to the initial phase of the CRS sequence. ;
  • the determining unit 52 determines the location of the CRS sequence according to the cell ID of the cell cluster to which the base station belongs and the virtual cell ID of the local cell;
  • the transmitting unit 53 transmits the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and transmits the CRS sequence in a period of 5 ms.
  • the starting position of the cycle may be configurable or fixed.
  • the carrier carried in the cell is a carrier that is not backward compatible with the LTE Release 8 to Release 11 carrier. That is, the new carrier type, and the CRS pilot is transmitted at the antenna port 0 or the antenna port 0 and the antenna port 1 only in a period of 5 ms (ie, 5 subframes), and the start position of the transmission period may be configurable. , can also be fixed.
  • all cells in the cell cluster can transmit CRS sequences at different locations.
  • the available position of the CRS sequence is at most 30, that is, the upper limit of the total number of cells in each cell cluster is 30.
  • the CRS sequence of the cell may be determined according to the cell ID of the cell cluster, the CP type, and the slot number of the CRS, regardless of the virtual ID of the cell.
  • the location of the CRS of each cell is calculated based on the cell ID of the cell cluster and the virtual ID of the cell.
  • the CRS sequence and location of the cell with the virtual ID of 0 are determined only according to the cell ID of the cell cluster of the cell, so as to be compatible with the case of the individual cell.
  • the UE may generate a CRS sequence by itself, and perform detection at a predetermined location to determine a virtual ID and signal quality of different cells.
  • the cell search that is, the PSS sequence and the SSS sequence detection
  • the cell search can be performed only once, which effectively reduces the number of cell search times, and correspondingly reduces the computational complexity of the cell search and reduces Smaller time for cell search.
  • the virtual ID is distinguished according to the location of the CRS sequence, that is, the relationship between the virtual ID and the CRS sequence has a one-to-one correspondence, the CRS sequence has different positions, and the virtual IDs are different, so that the virtual ID is detected and timed. Tracking can be done together without additional computational overhead.
  • the embodiment of the present invention further provides a base station, as described in the following embodiment 5. Since the principle of solving the problem is similar to the method of the second embodiment, the specific implementation may refer to the implementation of the method of the second embodiment. The repetitions are not repeated here.
  • the embodiment of the present invention further provides a base station, which is similar to the fourth embodiment.
  • the coverage of the base station is called a cell, and the cell may be the aforementioned LTE-Advanced cell, and the cell may be a cell in a cell cluster.
  • 6 is a schematic diagram of the composition of the base station. Referring to FIG. 6, the base station includes: a calculating unit 61, a determining unit 62, and a sending unit 63, where:
  • the calculating unit 61 calculates the PSS sequence and the SSS sequence of the current cell according to the cell ID of the cell cluster to which the base station belongs, according to the cell ID, the CP type, and the slot number of the CRS signal to which the base station belongs. And calculating, by using the virtual cell ID of the current cell, an initial phase of the CRS sequence of the local cell, and calculating a CRS sequence of the local cell according to the initial phase of the CRS sequence;
  • the determining unit 62 determines the location of the CRS sequence according to the cell ID of the cell cluster to which the base station belongs; the sending unit 63 transmits the PSS sequence and the SSS sequence at a predetermined time-frequency resource location, and sends the sequence in a 5 ms period. CRS sequence.
  • the starting position of the cycle may be fixed or configurable.
  • the carrier carried in the small area is also a carrier that is not backward compatible with the LTE version 8 to version 11 carrier, that is, a new carrier type, and the cell CRS pilot is sent in a period of 5 ms (ie, 5 subframes).
  • the starting position of the period may be fixed or configurable. For example, in one example, the period can start from the 0th or 5th subframe.
  • each cell in the cell cluster transmits a different CRS sequence.
  • the method of calculating the CRS sequence is specified by the standard.
  • the initial phase of the CRS sequence is calculated based on the Cell ID of the cell cluster, the CP type, and the slot number of the CRS signal, and the virtual ID of the cell.
  • the transmission location of the CRS sequence is determined according to the cell ID of the cell cluster, which is consistent with the standard current CRS location method (within one subframe).
  • the CRS sequence and location of the cell with the virtual ID of 0 are determined only according to the cell ID of the cell cluster to be compatible with the case of the individual cell.
  • the UE may generate a CRS sequence by itself, and perform matching detection at a fixed location to determine a virtual ID and signal quality of different cells.
  • the cell search that is, the PSS and the SSS sequence detection
  • the cell search can be performed only once, which effectively reduces the number of cell search times, correspondingly reduces the computational complexity of the cell search and reduces The time used for cell search.
  • the virtual ID is distinguished according to the sequence of the CRS signal, that is, after the cell ID of the cell cluster is determined, the virtual ID (cell) and the CRS sequence in the cell cluster have a one-to-one correspondence, CRS
  • the different virtual IDs (cells) of the sequence make the virtual ID detection and timing tracking can be combined without additional computational overhead.
  • the embodiment of the present invention further provides a user equipment, as described in the following embodiment 6.
  • the principle of the user equipment is similar to that of the third embodiment. Therefore, the specific implementation may refer to the method of the third embodiment. Implementation, repetition will not be repeated.
  • Example 6 An embodiment of the present invention further provides a user equipment (UE).
  • FIG. 7 is a schematic diagram of the composition of the UE. Referring to FIG. 7, the UE includes: a searching unit 71, a calculating unit 72, a detecting unit 73, a measuring unit 74, and a reporting unit 75, where:
  • the searching unit 71 searches for and detects the PSS sequence and the SSS sequence of the cluster of the cell to be tested according to the cell ID of the cluster to be tested, to obtain coarse-precision OFDM symbol synchronization information of the cluster of the cell to be tested.
  • the calculating unit 72 calculates the CRS sequence and location of each cell to be tested according to the cell ID of the cell cluster to be tested and the virtual ID of the cell to be tested in the cell cluster.
  • the cell cluster to be tested may be determined according to the configuration information of the serving base station, and the cell to be tested in the cell cluster to be tested may be determined according to the configuration information of the serving base station, or may be determined according to system information of the base station, which will be specifically described below.
  • the detecting unit 73 detects the CRS signal sent by each cell to be tested according to the calculated CRS sequence and location of each cell to be tested and the coarse-precision OFDM symbol synchronization information of the cluster to be tested.
  • the measuring unit 74 is configured to use, according to the coarse-precision OFDM symbol synchronization information of the cluster of the to-be-tested cell, the calculated CRS sequence of the to-be-tested cell, after the detecting unit 53 detects the signal, Obtaining fine-precision OFDM symbol synchronization information of the cell to be tested, and performing cell measurement on the cell to be tested by using the fine-precision OFDM symbol synchronization information.
  • the specific measurement method is not limited in this embodiment. In specific implementation, reference may be made to existing standards.
  • the reporting unit 75 reports the cell measurement result according to a predetermined policy.
  • the predetermined policy may be determined according to the system configuration, or may be determined according to its own configuration, which will be specifically described below.
  • the UE further includes:
  • a first receiving unit 76 which receives the configuration information sent by the serving base station, where the configuration information includes a cell ID of the cell cluster to be tested, and a virtual ID list of the cell to be tested in the cluster to be tested or the to-be-tested The maximum value of the virtual ID of the cell to be tested in the cell cluster.
  • the reporting unit 75 performs reporting according to the indication of the base station (that is, the policy for reporting the measurement result included in the configuration information). If the configuration information sent by the serving base station received by the receiving unit 76 does not include a policy for reporting the measurement result, the reporting unit 75 will use the best one of all the measured cells. The measurement result and its virtual ID are reported to the serving base station as the measurement result of the cluster to be tested.
  • the UE further includes:
  • a second receiving unit 76' which receives system information of the base station, where the system information of the base station includes the number of cells in the cluster of the cell to be tested and the virtual ID related information, so that the UE determines the cluster of the cell to be tested The cell to be tested and its virtual ID.
  • the reporting unit 75 selectively reports the measurement result and the virtual ID of the corresponding cell to be tested to its serving base station.
  • the UE further The method includes: a third receiving unit 76", which receives configuration information sent by the serving base station, where the configuration information includes a virtual ID list of the to-be-tested cell in the cell cluster to be tested.
  • the reporting unit 75 performs the reporting according to the indication of the base station (that is, the policy for reporting the measurement result included in the configuration information). If the configuration information sent by the serving base station received by the receiving unit 76 does not include the policy for reporting the measurement result, the reporting unit 75 selectively reports the measurement result and the virtual ID of the corresponding cell to be reported to the serving base station. .
  • the embodiment of the present invention further provides a communication system, which includes any combination of one or more of the UE described in Embodiment 6 and the base station described in Embodiment 4-5.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes the computer to execute the signal transmitting method described in Embodiment 1-2 in the base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the signal transmission method described in Embodiment 1-2 in a base station.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in the terminal device, the program causes the computer to execute the search measurement method of the cell described in Embodiment 3 in the terminal device.
  • the embodiment of the invention further provides a storage medium storing a computer readable program, wherein the computer can
  • the reading program causes the computer to execute the search measurement method of the cell described in Embodiment 3 in the terminal device.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Abstract

一种用于小区搜索和测量的方法、装置和系统,其中,该方法包括:UE根据待测小区簇的小区ID,搜索并检测该待测小区簇的PSS序列和SSS序列,获得该待测小区簇的粗精度同步信息;UE根据该小区ID和该小区簇内待测小区的虚拟ID,计算每一个待测小区的CRS序列和位置;UE根据每一个待测小区的CRS序列和位置,以及该粗精度同步信息,检测每一个待测小区发送的CRS信号;对于每一个待测小区,如果检测出CRS信号,则UE以该粗精度同步信息为基础,利用该待测小区的CRS序列,获得该待测小区的细精度同步信息,并利用该细精度同步信息,对该待测小区进行小区测量;UE按照预定策略上报小区测量结果。通过本发明,可有效降低UE进行小区簇内的小区搜索和测量的计算复杂度。

Description

的方法、 装置和系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种用于小区搜索和测量的方法、装置 和系统。 背景技术
Small cell (小小区) 是 LTE Advanced (Long Term Evolution Advanced, 增强的 长期演进) 版本 12讨论中最热门的话题之一。
现阶段, 电费成为移动通信网络运营商的运营成本的主要部分之一。 电能主要消 耗在基站侧的运转上。研究表明,在覆盖面积相等的前提下,用若干小小区(small cell) 代替一个宏小区 (macro cell), 可以有效节省电力开销。 这主要是由于 Small Cell的 基站功率小, 产生的热能小, 不需要冷却设备。 此外, 宏站选址越来越困难, 因此与 宏基站相比, Small cell还有成本低, 利于部署等特点。
在 Small cell的典型部署场景中, 密集部署场景 (dense deployment scenario) 是 最重要的场景之一。在密集部署场景中, small cell通常用来提高小区吞吐量和小区容 量。 因此, 会有若干 small cell密集的部署在一起, 它们的覆盖彼此相接, 可以实现 无缝覆盖。 这样的一些 small cell被称为 cell cluster (小区簇) 或者 cell group (小区 组)。 如图 1所示, F1为宏基站覆盖的区域, F2为 small cell覆盖的区域, 图中相邻 的若干个 (一个或多个) small cell构成一个小区簇或者小区组。
由于 Small cell的覆盖面积远小于宏基站,因此,如果有一个用户在一个 small cell cluster的覆盖范围内移动,就可能需要频繁的切换,相应地,该用户的手机终端(UE, User Equipment)也需要频繁地进行小区搜索(cell search)和测量(RRM measurement, Radio Resource Management measurement, 无线资源管理测量), 增加了搜索和测量的 复杂度。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种用于小区搜索和测量的方法、装置和系统, 以 降低用户设备进行小区搜索和测量的计算复杂度。
根据本发明实施例的第一方面,提供了一种信号发送方法,其中,所述方法包括: 基站根据其所属小区簇的小区 ID计算本小区的 PSS序列和 SSS序列, 根据其所 属小区簇的小区 ID、 CP类型和 CRS所在时隙序号, 计算本小区的 CRS序列初始相 位, 并根据所述 CRS序列的初始相位计算本小区的 CRS序列;
所述基站根据其所属小区簇的小区 ID以及本小区的虚拟小区 ID确定所述 CRS 序列的位置;
所述基站在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms 为周期发送所述 CRS序列。
根据本发明实施例的第二方面,提供了一种信号发送方法,其中,所述方法包括: 基站根据其所属小区簇的小区 ID计算本小区的 PSS序列和 SSS序列, 并根据其 所属小区簇的小区 ID、 CP类型和 CRS所在时隙序号、 以及本小区的虚拟小区 ID, 计算本小区的 CRS序列的初始相位, 并根据所述 CRS序列的初始相位计算本小区的 C S序列;
所述基站根据其所属小区簇的小区 ID确定所述 CRS序列的位置;
所述基站在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms 为周期发送所述 CRS序列。
根据本发明实施例的第三方面, 提供了一种小区的搜索和测量的方法, 其中, 所 述方法包括:
UE根据待测小区簇的小区 ID,搜索该待测小区簇的 PSS序列和 SSS序列并对其 进行检测, 以获得所述待测小区簇的粗精度 OFDM符号同步信息;
UE根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID, 计算每一个 待测小区的 CRS序列和位置;
UE根据计算出的每一个待测小区的 CRS序列和位置, 以及所述待测小区簇的粗 精度 OFDM符号同步信息, 对每一个待测小区发送的 CRS信号进行检测;
对于每一个待测小区, 如果检测出该待测小区发送的 CRS信号, 则所述 UE以所 述待测小区簇的粗精度 OFDM 符号同步信息为基础, 利用计算出的该待测小区的 CRS序列, 获得该待测小区的细精度 OFDM符号同步信息, 并利用该细精度 OFDM 符号同步信息, 对该待测小区进行小区测量;
所述 UE按照预定策略上报小区测量结果。
根据本发明实施例的第四方面, 提供了一种基站, 其中, 所述基站包括: 计算单元, 其根据所述基站所属小区簇的小区 ID计算本小区的 PSS序列和 SSS 序列, 根据所述基站所属小区簇的小区 ID、 CP类型和 CRS所在的时隙序号, 计算 本小区的 CRS序列的初始相位,并根据所述 CRS序列的初始相位计算本小区的 CRS 序列;
确定单元, 其根据所述基站所属小区簇的小区 ID以及本小区的虚拟小区 ID, 确 定所述 CRS序列的位置;
发送单元, 其在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms为周期所述 CRS序列。
根据本发明实施例的第五方面, 提供了一种基站, 其中, 所述基站包括: 计算单元, 其根据所述基站所属小区簇的小区 ID计算本小区的 PSS序列和 SSS 序列, 根据所述基站所属小区簇的小区 ID、 CP类型和 CRS所在的时隙序号、 以及 本小区的虚拟小区 ID,计算本小区的 CRS序列的初始相位,根据所述 CRS序列的初 始相位计算本小区的 CRS序列;
确定单元, 其根据所述基站所属小区簇的小区 ID确定所述 CRS序列的位置; 发送单元, 其在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms为周期发送所述 CRS序列。
根据本发明实施例的第六方面, 提供了一种用户设备 (UE), 其中, 所述 UE包 括:
搜索单元, 其根据待测小区簇的小区 ID, 搜索该待测小区簇的 PSS序列和 SSS 序列并对其进行检测, 以获得所述待测小区簇的粗精度 OFDM符号同步信息;
计算单元, 其根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID, 计 算每一个待测小区的 CRS序列和位置;
检测单元, 其根据计算出的每一个待测小区的 CRS 序列和位置, 以及所述待测 小区簇的粗精度 OFDM符号同步信息,对每一个待测小区发送的 CRS信号进行检测; 测量单元, 其对于每一个待测小区, 在通过所述检测单元检测出信号后, 以所述 待测小区簇的粗精度 OFDM符号同步信息为基础, 利用计算出的该待测小区的 CRS 序列, 获得该待测小区的细精度 OFDM符号同步信息, 并利用该细精度 OFDM符号 同步信息, 对该待测小区进行小区测量;
上报单元, 其按照预定策略上报小区测量结果。
根据本发明实施例的第七方面, 提供了一种通信系统, 其中, 所述通信系统包括 前述的 UE以及前述基站的一个或多个的任意组合。
根据本发明实施例的其他方面, 提供了一种计算机可读程序, 其中当在基站中执 行该程序时, 该程序使得计算机在所述基站中执行前述的信号发送方法。
根据本发明实施例的其他方面, 提供了一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机在基站中执行前述的信号发送方法。
根据本发明实施例的其他方面, 提供了一种计算机可读程序, 其中当在终端设备 中执行该程序时,该程序使得计算机在所述终端设备中执行前述的小区搜索和测量的 方法。
根据本发明实施例的其他方面, 提供了一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机在终端设备中执行前述的小区搜索和测量的方法。
本发明实施例的有益效果在于: 通过本实施例的方法、装置和系统, 可以有效降 低用户设备进行小区搜索和测量的计算复杂度。
参照后文的说明和附图,详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或缩小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中, 类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中:
图 1是小基站与宏基站联合部署的示意图;
图 2是本发明第一实施例的方法流程图;
图 3是本发明第二实施例的方法流程图;
图 4是本发明第三实施例的方法流程图;
图 5是本发明第四实施例的基站的组成示意图;
图 6是本发明第五实施例的基站的组成示意图;
图 7是本发明第六实施例的 UE的组成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明实施例的前述以及其它特征将变得明显。 这些实施方式只是示例性的, 不是对本发明的限制。为了使本领域的技术人员能够容 易地理解本发明的原理和实施方式, 本发明的实施方式以多个 LTE-Advanced小区结 合成为一个小区簇的场景为例进行说明,但可以理解,本发明实施例并不限于上述场 景, 对于涉及小区搜索和小区测量的其他场景均适用。
在本发明实施例中, 若干个 LTE-Advanced 小区可以结合成为一个小区簇 (Cell cluster), 这些小区具有这样的特点:
1 . 在同一个 eNB下;
2. 帧结构类型 (Frame Structure Type) 相同;
3. 载频频点相同, 即所有小区是同频 (intra-frequency) 的;
4. 具有相同的物理小区 ID (physical Cell ID), 称为小区簇的小区 ID。 也即所 有小区在同样的位置发送相同的 PSS (Primary Synchronization Signal, 主同步信号)
/SSS ( Secondary Synchronization Signal, 辅同步信号) 序列。
其中, 小区簇内的每一个小区具有一个独立的虚拟 ID (virtual ID), 用以区分小 区簇内的小区。 而小区的虚拟 ID可以由 UE通过盲检测获知。
另外,一个小区簇内的小区不限于背景技术部分提到的 small cell,也可以是其他 的 LTE-Advanced小区, 只要满足以上条件即可。
通过以上配置, 可以降低 UE对小区簇内的小区进行小区搜索 (Cell Search) 和 定时跟踪的计算复杂度。 UE可以以小区簇为对象进行小区搜索(Cell search ), 也即 PSS/SSS检测, 从而获得该小区簇的物理小区 ID (physical Cell ID)和系统同步信息 (粗精度 OFDM 符号同步信息), 之后对小区簇内任意小区进行定时跟踪 (timing tracking) 的时候, 均可以以小区簇的粗精度 OFDM (Orthogonal Frequency Division Multiplexing, 正交频分复用)符号同步信息为基础,利用 CRS (Cell-specific reference signal, 小区专用参考信号) 得到细精度 OFDM符号同步信息。
在本发明实施例中, "小区簇" 的说法也是为了方便说明, 在本领域, 对于这一 类小区的集合, 也可以采用其他表述, 例如背景技术提到的 "小区组"等, 本发明实 施例并不以此作为限制。
实施例 1
本发明实施例提供了一种信号发送方法, 以便于 UE根据该信号进行小区搜索和 测量。 图 2是该方法的流程图, 请参照图 2, 该方法包括:
步骤 201 : 基站根据其所属小区簇的小区 ID计算本小区的 PSS信号的序列(PSS 序列) 和 SSS信号的序列 (SSS序列);
步骤 202: 基站根据其所属小区簇的小区 ID和 CP (Cyclic Prefix, 循环前缀)类 型以及 CRS所在的时隙序号, 计算本小区的 CRS序列的初始相位, 并根据所述 CRS 序列的初始相位计算本小区的 CRS序列;
步骤 203: 所述基站根据其所属小区簇的小区 ID以及本小区的虚拟小区 ID确定 所述 CRS序列的位置;
步骤 204: 所述基站在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms为周期发送所述 CRS序列。
其中, 预定的时频资源是指标准规定的时频资源。 若无特殊说明, 其含义在本发 明实施中相同。
其中, 该基站可以在天线端口 0或者天线端口 0和天线端口 1发送所述 CRS序 列。 当在天线端口 0发送所述 CRS序列时, 小区簇内的所有小区可以在不同位置发 送 CRS序列, 可用位置最多为 30个, 也即, 每个小区簇内小区总数的上限为 30。 其中所述 CRS序列与小区虚拟 ID无关。当在天线端口 0和天线端口 1发送所述 CRS 序列时, 小区内的所有小区也可以在不同位置发送相同的 CRS序列, 可用位置最多 为 15个, 也即, 每一个小区簇内小区总数的上限为 15。
在一个实施例中, 小区内承载的是对 LTE R8~R11载波非后相兼容的载波, 即新 型载波 (NCT, New Carrier Type), 且小区的 CRS导频仅以 5ms (即 5个子帧)为周 期在 portO发送。 在本实施例中, 周期的起始位置可以是可配的, 也可以是固定的。
在本实施例中, 一个小区簇内的所有小区可以在不同的位置发送 CRS 序列, 该 C S序列仅由小区簇的小区 ID和 CP类型以及 CRS信号所在时隙序号确定, 与小区 虚拟 ID无关。 又由于在时域上, 该 CRS导频可以在每个子帧发送, 而在频域上, 每 一个子帧有六个位置可以用于发送 CRS导频, 因此, 当在天线端口 0发送该 CRS信 号时, CRS导频的可用位置最多为 30个, 也即每一个小区簇内小区总数的上限为 30 个。 在本实施例中, 各个小区的 CRS序列可以利用小区簇的小区 ID、 CP类型以及 C S 信号所在时隙序号, 根据现有标准计算获得, 具体的计算方法可以参考现有标 准, 在此不再赘述。
在本实施例中, 每个小区的 CRS序列的位置可以根据小区簇的小区 ID和小区的 虚拟 ID确定。 在一个实施方式中, 可以先确定虚拟 ID为 0的小区的 CRS序列的位 置, 再根据本小区的虚拟 ID计算本小区相对于该虚拟 ID为 0的小区的 CRS的位置 的偏移量, 从而获得本小区的 CRS序列的位置。
例如, 虚拟 ID为 0的小区的 CRS位置仅由该小区所属的小区簇的小区 ID和天 线端口确定。 相对于虚拟 ID为 0的小区, 虚拟 ID为 Virtual_ID的小区的 CRS序列 的起始位置的偏移量根据该小区的虚拟 ID计算得到。 其中:
时域偏移量 v' = Virtual ID mod 5;
Figure imgf000009_0001
这样做的好处是可以兼容只有一个小区构成一个小区簇的情况。 在具体实施中, UE可以自行生成 CRS序列,在事先约定的位置进行检测,以确定不同小区的虚拟 ID 和信号质量。
在另外一个实施例中, 小区内承载的也是对 LTE版本 8至版本 11载波非后相兼 容的载波, 即新型载波 (New Carrier Type )。 然而与前一实施例不同的是, 在本实施 例中, 小区 CRS导频仅发送 portO和 portl, 且以 5ms (即 5子帧) 为周期发送, 也 即小区的 CRS导频仅以 5ms (即 5个子帧) 为周期在 portO和 portl发送。 在本实施 例中, 周期的起始位置可以是可配的, 也可以是固定的。
在本实施例中, 一个小区簇内的所有小区也可以在不同的位置发送 CRS 序列, 该 CRS序列仅由小区簇的小区 ID和 CP类型以及 CRS信号所在的时隙序号确定,与 小区虚拟 ID无关。 又由于该 CRS序列在 portO和 portl发送, 且在时域上, 该 CRS 导频可以在每个子帧发送, 而在频域上, 每一个子帧有三个位置可以用于发送 CRS 导频, 因此, CRS导频的可用位置最多为 15个, 也即每一个小区簇内小区总数的上 限为 15个。
例如, 虚拟 ID为 0的小区的 CRS位置仅由该小区所属的小区簇的小区 ID和天 线端口确定。 相对于虚拟 ID为 0的小区, 虚拟 ID为 Virtual_ID的小区的 CRS序列 的起始位置的偏移量根据该小区的虚拟 ID计算得到。 其中:
时域偏移量 v' = Virtual ID mod 5;
Virtual ID
Figure imgf000010_0001
mod3。 这样做的好处是可以兼容只有一个小区构成一个小区簇的情况。 在具体实施中, UE可以自行生成 CRS序列,在事先约定的位置进行检测,以确定不同小区的虚拟 ID 和信号质量。
通过本发明实施例的方法, UE 在一个小区簇内移动时, 可以仅做一次小区搜索 即 PSS序列和 SSS序列检测, 有效降低了小区搜索的次数, 相应地降低了小区搜索 的计算复杂度并减小了用于小区搜索的时间。并且,在本实施例中,虚拟 ID根据 CRS 序列的位置区分, 也即, 虚拟 ID和 CRS序列的位置有一一对应的关系, CRS序列的 位置不同, 虚拟 ID不同, 使得虚拟 ID检测和定时跟踪可以合并完成, 没有额外的计 算开销。 实施例 2
本发明实施例还提供了一种信号发送方法, 以便于 UE根据该信号进行小区搜索 和测量。 图 3是该方法的流程图, 请参照图 3, 该方法包括:
步骤 301 :基站根据其所属小区簇的小区 ID计算本小区的 PSS序列和 SSS序列; 步骤 302: 基站根据其所属小区簇的小区 ID、 CP类型和 CRS信号所在的时隙序 号、以及本小区的虚拟小区 ID,计算本小区的 CRS序列的初始相位,并根据所述 CRS 序列的初始相位计算本小区的 CRS序列;
步骤 303: 所述基站根据其所属小区簇的小区 ID确定所述 CRS序列的位置; 步骤 304: 所述基站在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms为周期发送所述 CRS序列。
在本实施例中, 小区内承载的也是对 LTE版本 8至版本 11载波非后相兼容的载 波, 即新型载波(New Carrier Type),与实施例 2不同的是,在本实施例中,小区 CRS 导频以 5ms (即 5子帧) 为周期发送, 并不限制发送端口。
在本实施例中, 周期的起始位置可以是固定的, 例如可以从第 0个子帧开始, 也 可以从第 5个子帧开始, 也可以是可配的。
在本实施例中, 一个小区簇内的每个小区发送不同的 CRS 序列, 也即, 每一个 小区的 CRS序列由小区簇的小区 ID、 CP类型和 CRS信号所在的时隙序号、 以及小 区的虚拟 ID确定。 其中, CRS序列的生成方法由标准规定, CRS序列的初始相位与 小区簇的 Cell ID和小区的虚拟 ID相关。
在本实施例中, CRS序列的位置可以利用小区簇的小区 ID, 根据现有标准计算 获得, 具体的计算方法可以参考现有标准, 在此不再赘述。
在本实施例的一个实施方式中, 虚拟 ID为 0的小区的 CRS序列及其位置仅根据 该小区所属的小区簇的小区 ID确定, 以兼容只有一个小区构成一个小区簇的情况。 在具体实施中, UE可以自行生成 CRS序列, 在固定位置进行匹配检测, 以确定不同 小区的虚拟 ID和信号质量。
通过本发明实施例的方法, UE 在一个小区簇内移动时, 可以仅做一次小区搜索 即 PSS和 SSS序列检测, 有效降低了小区搜索的次数, 相应地降低了小区搜索的计 算复杂度并减小了用于小区搜索的时间。 并且, 在本实施例中, 虚拟 ID根据 CRS信 号的序列区分, 也即, 当小区簇的小区 ID确定后, 该小区簇内的虚拟 ID (小区)和 CRS序列有一一对应的关系, CRS序列不同虚拟 ID (小区) 不同, 使得虚拟 ID检 测和定时跟踪可以合并完成, 没有额外的计算开销。 实施例 3
本发明实施例提供了一种小区搜索和测量方法。 图 4是该方法的流程图, 其中, 该方法包括: 步骤 401 : UE根据待测小区簇的小区 ID, 搜索该待测小区簇的 PSS序列和 SSS 序列并对其进行检测, 以获得所述待测小区簇的粗精度 OFDM符号同步信息;
步骤 402: UE根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID, 计 算每一个待测小区的 CRS序列和位置;
步骤 403: UE根据计算出的每一个待测小区的 CRS序列和位置, 以及所述待测 小区簇的粗精度 OFDM符号同步信息,对每一个待测小区发送的 CRS信号进行检测; 步骤 404: 对于每一个待测小区, 如果检测出该待测小区发送的 CRS信号, 则所 述 UE以所述待测小区簇的粗精度 OFDM符号同步信息为基础, 利用计算出的该待 测小区的 CRS序列, 获得该待测小区的细精度 OFDM符号同步信息, 并利用该细精 度 OFDM符号同步信息, 对该待测小区进行小区测量;
步骤 405: 所述 UE按照预定策略上报小区测量结果。
在本实施例的一个实施方式中, UE的所有服务小区都不属于待测小区簇, 但 UE 的服务基站为其配置了需要对哪个小区簇以及该小区簇中的哪些小区进行测量。 也 即, UE的服务小区在待测小区簇之外, 则 UE根据其服务基站下发的配置信息, 对 需要进行测量的小区簇(称为待测小区簇)和该小区簇中的小区(待测小区)进行检 测和测量。
则在该实施方式中, 在步骤 401之前, 该方法还包括:
SI : UE接收其服务基站发送的配置信息, 所述配置信息包括待测小区簇的小区 ID, 以及所述待测小区簇中的待测小区的虚拟 ID列表或者所述待测小区簇中的待测 小区的虚拟 ID的最大值。
其中, 待测小区可能是该待测小区簇中的所有小区, 也可能是该待测小区簇中的 部分小区。 其中, 该配置信息是 UE专用 (UE-Specific) 信息, 其可以通过 RRC信 令来传递。其中, 该配置信息还可以包括上报测量结果的策略, 例如如何上报测量结 果、 上报哪些小区的测量结果、 最大上报数量等。 由此, 在步骤 401中, UE可以根 据所述配置信息中的待测小区簇的小区 ID, 搜索该待测小区簇的 PSS/SSS序列并对 其进行检测, 从而获得所述待测小区簇的粗精度 OFDM符号同步信息。 并且, 在步 骤 402中, UE可以根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID, 计算每一个待测小区的 CRS序列和位置。
在步骤 403中, 当确定了待测小区, 还要根据待测小区的虚拟 ID对该待测小区 的信号进行检测, 也即, 确定 UE是否能接收到该待测小区发送的信号。 在一个实施 例中, 可以预先设置一个阈值, 利用计算出的 CRS序列在计算出的该 CRS的位置上 检测是否有接收信号, 如果该 CRS的位置上的接收信号超过前述阈值, 则确定检测 出信号, 否则认为没有检测出信号。
在步骤 404中, 当 UE检测出某一个待测小区的信号时, UE可以以该待测小区 簇的粗精度 OFDM符号同步信息为基础, 利用计算出的该待测小区的 CRS序列, 确 定该待测小区的细精度 OFDM符号同步信息, 并对该检测到信号的待测小区进行小 区测量。 当 UE没有检测出某一个待测小区的信号时, UE则结束对该待测小区的搜 索和测量, 转而对下一个待测小区进行检测。
在步骤 405中, 如果上述 UE接收的服务基站发送的配置信息中包含了上报测量 结果的策略, UE按照基站指示 (也即该配置信息所包含的上报测量结果的策略) 进 行上报。如果上述 UE接收的服务基站发送的配置信息中未包含上报测量结果的策略, 该 UE可以将所有测量结果中最好的一个或多个待测小区的测量结果及其虚拟 ID作 为所述待测小区簇的测量结果上报给其服务基站。
通过本实施方式的方法, UE可以遍历所有的需要测量的待测小区的虚拟 ID, 由 此完成了小区搜索和测量。例如, 如果基站配置给 UE的是所述待测小区簇中的待测 小区的虚拟 ID列表, 则 UE遍历列表上所有待测小区。 如果基站配置给 UE的是所 述待测小区簇中的待测小区的虚拟 ID的最大值,则 UE从虚拟 ID为 0的待测小区开 始遍历到虚拟 ID为最大值的待测小区。
在本实施例的另外一个实施方式中, UE 的至少一个服务小区属于待测小区簇, 也即, UE的至少一个服务小区在待测小区簇之内, 而 UE的服务基站没有为其配置 需要对其小区簇中的哪些小区进行测量。则 UE对其小区簇内的除其服务小区以外的 所有小区进行盲检测和测量。
则在该实施方式中, 在步骤 401之后, 该方法还包括:
SI ': UE接收基站的系统信息, 所述基站的系统信息包括所述 UE的小区簇中的 小区数量以及虚拟 ID相关信息。
其中, 所述基站的系统信息可以通过广播信道获取。 所述基站的系统信息也可以 通过 UE 专用的 RRC 信令获取。 例如, UE 的服务小区是小区簇内的次服务小区 ( Secondary Cell, SCell), UE的主服务小区 (Primary Cell) 会通过 UE专用的 RRC 信令告知 UE上述小区簇内的 UE的次服务小区 (SCell) 的系统信息。
其中, 所述虚拟 ID相关信息例如为该小区簇内虚拟 ID的最大值、 虚拟 ID列表 等。
由此, UE可以根据其小区簇(待测小区簇) 的小区 ID和所述小区簇内待测小区 的虚拟 ID, 计算每一个待测小区的 CRS序列和位置。 与前一实施例相同, 当计算出 每一个待测小区的 CRS序列和位置后, 还要检测该每一个待测小区的信号, 并在检 测出信号时, 以步骤 401计算获得的待测小区簇的粗精度 OFDM符号同步信息为基 础, 利用检测出信号的该待测小区的 CRS序列, 确定该待测小区的细精度 OFDM符 号同步信息。
在步骤 405 中, 该 UE可以有选择性的将测量结果及相应的待测小区的虚拟 ID 上报给其服务基站。 例如, UE可以上报所有小区的测量结果及相应的虚拟 ID, UE 也可以上报最好的结果。
通过本实施方式的方法, UE可以遍历所有可能的待测小区的虚拟 ID, 完成了小 区搜索和测量。
在本实施例的另外一个实施方式中, UE 的至少一个服务小区属于待测小区簇, 也即, UE的至少一个服务小区在待测小区簇之内, 而 UE的服务基站为其配置了需 要对其小区簇中的哪些小区进行测量。 则 UE根据其服务基站下发的配置信息, 对其 小区簇中需要进行测量的小区 (待测小区) 进行检测和测量。
则在该实施方式中, 在步骤 401之后, 该方法还包括:
SI ": UE接收其服务基站发送的配置信息, 所述配置信息包括所述 UE的小区簇
(待测小区簇) 中的待测小区的虚拟 ID列表。
其中,该配置信息是 UE专用(UE-Specific)信息,其可以通过 RRC信令来传递。 其中, 该配置信息还可以包括上报测量结果的策略, 例如如何上报测量结果、上报哪 些小区的测量结果、 最大上报数量等。
由此, UE可以根据其小区簇(待测小区簇) 的小区 ID和所述小区簇内待测小区 的虚拟 ID, 计算每一个待测小区的 CRS序列和位置。 与前一实施例相同, 当计算出 每一个待测小区的 CRS序列和位置后, 还要检测该每一个待测小区的信号, 并在检 测出信号时, 以步骤 401计算获得的待测小区簇的粗精度 OFDM符号同步信息为基 础, 利用检测出信号的该待测小区的 CRS序列, 确定该待测小区的细精度 OFDM符 号同步信息。
在步骤 405中, 如果上述 UE接收的服务基站发送的配置信息中包含了上报测量 结果的策略, UE按照基站指示 (也即该配置信息所包含的上报测量结果的策略) 进 行上报。如果上述 UE接收的服务基站发送的配置信息中未包含上报测量结果的策略, 该 UE可以有选择性的将测量结果及相应的待测小区的虚拟 ID上报给其服务基站。 例如, UE可以上报所有小区的测量结果及相应的虚拟 ID; UE也可以上报最好的结 果; 如果所述配置信息中给出了需要上报的最大数量, 则 UE还可以上报上述数量的 最好的结果。
通过本实施方式的方法, UE可以遍历所有的需要测量的待测小区的虚拟 ID, 由 此完成了小区搜索和测量。
通过本发明实施例的方法,可以有效降低 UE进行小区搜索和测量的计算复杂度。 本发明实施例还提供了一种基站, 如下面的实施例 4所述, 由于该基站解决问题 的原理与实施例 1的方法类似, 因此其具体的实施可以参照实施例 1的方法的实施, 重复之处不再赘述。
实施例 4
本发明实施例还提供了一种基站, 该基站所覆盖的范围称为小区, 也即前述提到 的 LTE-Advanced小区, 该小区可以是一个小区簇内的小区。 图 5是该基站的组成示 意图, 请参照图 5, 该基站包括: 计算单元 51、确定单元 52以及发送单元 53, 其中: 计算单元 51根据所述基站所属小区簇的小区 ID计算本小区的 PSS序列和 SSS 序列, 根据所述基站所属小区簇的小区 ID、 CP类型和 CRS信号所在时隙序号, 计 算本小区的 CRS序列初始相位,并根据所述 CRS序列的初始相位计算本小区的 CRS 序列;
确定单元 52根据所述基站所属的小区簇的小区 ID以及本小区的虚拟小区 ID确 定所述 CRS序列的位置;
发送单元 53在预定的时频资源位置发送所述 PSS序列和所述 SSS序列,并以 5ms 为周期发送所述 CRS序列。
在本实施例中, 所述周期的起始位置可以是可配的, 也可以是固定的。
在本实施例中,小区内承载的是对 LTE版本 8至版本 11载波非后相兼容的载波, 即新型载波 (New Carrier Type), 且仅以 5ms (即 5子帧) 为周期在天线端口 0或者 天线端口 0和天线端口 1发送 CRS导频, 且发送周期的起始位置可以是可配的, 也 可以是固定的。
在本实施例中, 小区簇内的所有小区可以在不同位置发送 CRS序列。 而 CRS序 列的可用位置最多为 30, 即每个小区簇内小区总数的上限为 30。
在本实施例中, 小区的 CRS序列可以根据小区簇的小区 ID、 CP类型和 CRS所 在时隙序号确定, 与小区的虚拟 ID无关。而每个小区的 CRS的位置根据小区簇的小 区 ID和该小区的虚拟 ID计算获得。
其中,虚拟 ID为 0的小区的 CRS序列和位置, 仅根据该小区的小区簇的小区 ID 决定, 以兼容单独小区的情况。 具体实施中, UE可以自行生成 CRS序列, 在事先约 定的位置进行检测, 以确定不同小区的虚拟 ID和信号质量。
本实施例的其他功能或组成与现有技术相同, 在此不再赘述。
通过本实施例的基站, UE在一个小区簇内移动时,可以仅做一次小区搜索即 PSS 序列和 SSS 序列检测, 有效降低了小区搜索的次数, 相应地降低了小区搜索的计算 复杂度并减小了用于小区搜索的时间。 并且, 在本实施例中, 虚拟 ID根据 CRS序列 的位置区分, 也即, 虚拟 ID和 CRS序列的位置有一一对应的关系, CRS序列的位置 不同, 虚拟 ID不同, 使得虚拟 ID检测和定时跟踪可以合并完成, 没有额外的计算开 销。 本发明实施例还提供了一种基站, 如下面的实施例 5所述, 由于该基站解决问题 的原理与实施例 2的方法类似, 因此其具体的实施可以参照实施例 2的方法的实施, 重复之处不再赘述。
实施例 5
本发明实施例还提供了一种基站,与实施例 4类似,该基站的覆盖范围称为小区, 该小区可以是前述提到的 LTE-Advanced小区, 该小区可以是一个小区簇内的小区。 图 6是该基站的组成示意图, 请参照图 6, 该基站包括: 计算单元 61、 确定单元 62 以及发送单元 63, 其中:
计算单元 61根据所述基站所属小区簇的小区 ID计算本小区的 PSS序列和 SSS 序列, 根据所述基站所属小区簇的小区 ID、 CP类型和 CRS信号所在时隙序号、 以 及本小区的虚拟小区 ID计算本小区的 CRS序列的初始相位, 并根据所述 CRS序列 的初始相位计算本小区的 CRS序列;
确定单元 62根据所述基站所属小区簇的小区 ID确定所述 CRS序列的位置; 发送单元 63在预定的时频资源位置发送所述 PSS序列和所述 SSS序列,并以 5ms 为周期发送所述 CRS序列。
在本实施例中, 所述周期的起始位置可以是固定的, 也可以是可配的。
在本实施例中, 小区内承载的也是对 LTE版本 8至版本 11载波非后相兼容的载 波, 即新型载波(New Carrier Type), 小区 CRS导频以 5ms (即 5子帧)为周期发送。 其中, 周期的起始位置可以是固定的, 也可以是可配的。 例如, 在一个例子中, 周期 可以从第 0或者第 5子帧开始。
在本实施例中, 小区簇内的每个小区发送不同的 CRS序列。 CRS序列的计算方 法由标准规定。 CRS序列的初始相位根据小区簇的 Cell ID、 CP类型和 CRS信号所 在时隙序号、和小区的虚拟 ID计算获得。 CRS序列的发送位置根据小区簇的小区 ID 确定, 与标准现计算 CRS位置方法一致 (一个子帧内)。
在本实施例中, 虚拟 ID为 0的小区的 CRS序列和位置仅根据小区簇的小区 ID 确定, 以兼容单独小区的情况。 在具体实施中, UE可以自行生成 CRS序列, 在固定 位置进行匹配检测, 以确定不同小区的虚拟 ID和信号质量。
本实施例的其他功能或组成与现有技术相同, 在此不再赘述。
通过本实施例的基站, UE在一个小区簇内移动时,可以仅做一次小区搜索即 PSS 和 SSS 序列检测, 有效降低了小区搜索的次数, 相应地降低了小区搜索的计算复杂 度并减小了用于小区搜索的时间。 并且, 在本实施例中, 虚拟 ID根据 CRS信号的序 列区分, 也即, 当小区簇的小区 ID确定后, 该小区簇内的虚拟 ID (小区) 和 CRS 序列有一一对应的关系, CRS序列不同虚拟 ID (小区)不同, 使得虚拟 ID检测和定 时跟踪可以合并完成, 没有额外的计算开销。 本发明实施例还提供了一种用户设备, 如下面的实施例 6所述, 由于该用户设备 解决问题的原理与实施例 3的方法类似,因此其具体的实施可以参照实施例 3的方法 的实施, 重复之处不再赘述。
实施例 6 本发明实施例还提供了一种用户设备 (UE)。 图 7是该 UE的组成示意图, 请参 照图 7, 该 UE包括: 搜索单元 71、 计算单元 72、 检测单元 73、 测量单元 74以及上 报单元 75, 其中:
搜索单元 71根据待测小区簇的小区 ID,搜索该待测小区簇的 PSS序列和 SSS序 列并对其进行检测, 以获得所述待测小区簇的粗精度 OFDM符号同步信息。
计算单元 72根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID,计算 每一个待测小区的 CRS序列和位置。
其中, 待测小区簇可以根据服务基站的配置信息确定, 待测小区簇中的待测小区 可以根据服务基站的配置信息确定, 也可以根据基站的系统信息确定, 具体将在以下 进行说明。
检测单元 73根据计算出的每一个待测小区的 CRS序列和位置, 以及所述待测小 区簇的粗精度 OFDM符号同步信息, 对每一个待测小区发送的 CRS信号进行检测。
测量单元 74用于针对每一个待测小区, 在检测单元 53检测出信号后, 以所述待 测小区簇的粗精度 OFDM符号同步信息为基础, 利用计算出的该待测小区的 CRS序 列, 获得该待测小区的细精度 OFDM符号同步信息, 并利用该细精度 OFDM符号同 步信息, 对该待测小区进行小区测量。
其中, 本实施例并不限制具体的测量方法, 具体实施时, 可以参照现有标准。 上报单元 75按照预定策略上报小区测量结果。
其中, 预定策略可以是根据系统配置确定, 也可以是根据自身配置确定, 具体将 在以下进行说明。
在一个实施方式中,如果所述 UE的服务小区不属于所述待测小区簇,则所述 UE 还包括:
第一接收单元 76,其接收其服务基站发送的配置信息,所述配置信息包括待测小 区簇的小区 ID, 以及所述待测小区簇中的待测小区的虚拟 ID列表或者所述待测小区 簇中的待测小区的虚拟 ID的最大值。
其中, 如果上述接收单元 76接收的服务基站发送的配置信息中包含了上报测量 结果的策略, 所述上报单元 75按照基站指示 (也即该配置信息所包含的上报测量结 果的策略) 进行上报。 如果上述接收单元 76接收的服务基站发送的配置信息中未包 含上报测量结果的策略, 所述上报单元 75将所有测量结果中最好的一个待测小区的 测量结果及其虚拟 ID作为所述待测小区簇的测量结果上报给其服务基站。
在另外一个实施方式中,如果所述 UE的至少一个服务小区属于所述待测小区簇, 且所述 UE的服务基站没有配置需要进行测量的所述待测小区簇内的待测小区,则所 述 UE还包括:
第二接收单元 76', 其接收基站的系统信息, 所述基站的系统信息包括所述待测 小区簇内的小区数量以及虚拟 ID相关信息, 以便所述 UE由此确定所述待测小区簇 内的待测小区及其虚拟 ID。
其中,所述上报单元 75有选择性的将测量结果及相应的待测小区的虚拟 ID上报 给其服务基站。
在另外一个实施方式中,如果所述 UE的至少一个服务小区属于所述待测小区簇, 且所述 UE的服务基站配置了所述待测小区簇内的待测小区, 则所述 UE还包括: 第三接收单元 76", 其接收其服务基站发送的配置信息, 所述配置信息包括待测 小区簇内的待测小区的虚拟 ID列表。
其中, 如果上述接收单元 76"接收的服务基站发送的配置信息中包含了上报测量 结果的策略, 所述上报单元 75按照基站指示 (也即该配置信息所包含的上报测量结 果的策略)进行上报。 如果上述接收单元 76"接收的服务基站发送的配置信息中未包 含上报测量结果的策略, 所述上报单元 75有选择性的将测量结果及相应的待测小区 的虚拟 ID上报给其服务基站。
通过本实施例的 UE, 可以有效降低进行小区搜索和测量的计算复杂度。 本发明实施例还提供了一种通信系统, 该通信系统包括实施例 6所述的 UE以及 实施例 4-5所述基站的一个或多个的任意组合。
本发明实施例还提供了一种计算机可读程序, 其中当在基站中执行该程序时, 该 程序使得计算机在所述基站中执行实施例 1-2所述的信号发送方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质, 其中该计算机可 读程序使得计算机在基站中执行实施例 1-2所述的信号发送方法。
本发明实施例还提供了一种计算机可读程序, 其中当在终端设备中执行该程序 时, 该程序使得计算机在所述终端设备中执行实施例 3所述的小区的搜索测量方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质, 其中该计算机可 读程序使得计算机在终端设备中执行实施例 3所述的小区的搜索测量方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种信号发送方法, 其中, 所述方法包括:
基站根据其所属小区簇的小区 ID计算本小区的主同步信号(PSS)序列和辅同步 信号 (SSS ) 序列, 根据其所属小区簇的小区 ID、 循环前缀 (CP) 类型和小区专用 参考信号(CRS)所在时隙序号,计算本小区的 CRS序列初始相位, 并根据所述 CRS 序列的初始相位计算本小区的 CRS序列;
所述基站根据其所属小区簇的小区 ID以及本小区的虚拟小区 ID确定所述 CRS 序列的位置;
所述基站在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms 为周期发送所述 CRS序列。
2、 根据权利要求 1 所述的方法, 其中, 所述周期的起始位置是可配的或者固定 的。
3、 一种信号发送方法, 其中, 所述方法包括:
基站根据其所属小区簇的小区 ID计算本小区的 PSS序列和 SSS序列, 并根据其 所属小区簇的小区 ID、 CP类型和 CRS所在时隙序号、 以及本小区的虚拟小区 ID, 计算本小区的 CRS序列的初始相位, 并根据所述 CRS序列的初始相位计算本小区的 C S序列;
所述基站根据其所属小区簇的小区 ID确定所述 CRS序列的位置;
所述基站在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms 为周期发送所述 CRS序列。
4、 根据权利要求 3所述的方法, 其中, 所述周期的起始位置是固定的或者可配 的。
5、 一种小区的搜索和测量的方法, 其中, 所述方法包括:
UE根据待测小区簇的小区 ID,搜索该待测小区簇的 PSS序列和 SSS序列并对其 进行检测, 以获得所述待测小区簇的粗精度 OFDM符号同步信息;
UE根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID, 计算每一个 待测小区的 CRS序列和位置;
UE根据计算出的每一个待测小区的 CRS序列和位置, 以及所述待测小区簇的粗 精度 OFDM符号同步信息, 对每一个待测小区发送的 CRS信号进行检测; 对于每一个待测小区, 如果检测出该待测小区发送的 CRS信号, 则所述 UE以所 述待测小区簇的粗精度 OFDM 符号同步信息为基础, 利用计算出的该待测小区的 CRS序列, 获得该待测小区的细精度 OFDM符号同步信息, 并利用该细精度 OFDM 符号同步信息, 对该待测小区进行小区测量;
所述 UE按照预定策略上报小区测量结果。
6、根据权利要求 5所述的方法, 其中, 如果所述 UE的服务小区不属于所述待测 小区簇, 则所述方法还包括:
所述 UE接收其服务基站发送的配置信息, 所述配置信息包括待测小区簇的小区 ID, 以及所述待测小区簇中的待测小区的虚拟 ID列表或者所述待测小区簇中的待测 小区的虚拟 ID的最大值。
7、根据权利要求 6所述的方法, 其中, 所述 UE按照预定策略上报小区测量结果 的步骤包括:
如果所述配置信息中包含上报测量结果的策略, 则所述 UE按照所述配置信息的 指示进行上报;
如果所述配置信息中不包含上报测量结果的策略, 则所述 UE将所有测量结果中 最好的一个待测小区的测量结果及其虚拟 ID作为所述待测小区簇的测量结果上报给 其服务基站。
8、根据权利要求 5所述的方法, 其中, 如果所述 UE的至少一个服务小区属于所 述待测小区簇,且所述 UE的服务基站没有配置需要进行测量的所述待测小区簇内的 待测小区, 则所述方法还包括:
所述 UE接收基站的系统信息, 所述基站的系统信息包括所述待测小区簇内的小 区数量以及虚拟 ID相关信息, 以便所述 UE由此确定所述待测小区簇内的待测小区 及其虚拟 ID。
9、根据权利要求 8所述的方法, 其中, 所述 UE按照预定策略上报小区测量结果 的步骤包括:
所述 UE有选择性的将测量结果及相应的待测小区的虚拟 ID上报给其服务基站。
10、 根据权利要求 5所述的方法, 其中, 如果所述 UE的至少一个服务小区属于 所述待测小区簇, 且所述 UE的服务基站配置了所述待测小区簇内的待测小区, 则所 述方法还包括:
所述 UE接收其服务基站发送的配置信息, 所述配置信息包括待测小区簇内的待 测小区的虚拟 ID列表。
11、根据权利要求 10所述的方法, 其中, 所述 UE按照预定策略上报小区测量结 果的步骤包括:
如果所述配置信息中包含上报测量结果的策略, 则所述 UE按照所述配置信息的 指示进行上报;
如果所述配置信息中不包含上报测量结果的策略, 则所述 UE有选择性的将测量 结果及相应的待测小区的虚拟 ID上报给其服务基站。
12、 根据权利要求 1-11任一项所述的方法, 其中,
所述待测小区簇内的所有小区属于同一个 eNB;
所述待测小区簇内的所有小区的帧结构类型相同;
所述待测小区簇内的所有小区的载频频点相同;
所述待测小区簇内的所有小区具有相同的物理小区 ID;
所述待测小区簇内的每一个小区具有一个独立的虚拟 ID。
13、 一种基站, 其中, 所述基站包括:
计算单元, 其根据所述基站所属小区簇的小区 ID计算本小区的 PSS序列和 SSS 序列, 根据所述基站所属小区簇的小区 ID、 CP类型和 CRS所在的时隙序号, 计算 本小区的 CRS序列的初始相位,并根据所述 CRS序列的初始相位计算本小区的 CRS 序列;
确定单元, 其根据所述基站所属小区簇的小区 ID以及本小区的虚拟小区 ID, 确 定所述 CRS序列的位置;
发送单元, 其在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms为周期所述 CRS序列。
14、 根据权利要求 13所述的基站, 其中, 所述周期的起始位置是可配的或者固 定的。
15、 一种基站, 其中, 所述基站包括:
计算单元, 其根据所述基站所属小区簇的小区 ID计算本小区的 PSS序列和 SSS 序列, 根据所述基站所属小区簇的小区 ID、 CP类型和 CRS所在的时隙序号、 以及 本小区的虚拟小区 ID,计算本小区的 CRS序列的初始相位,根据所述 CRS序列的初 始相位计算本小区的 CRS序列;
确定单元, 其根据所述基站所属小区簇的小区 ID确定所述 CRS序列的位置; 发送单元, 其在预定的时频资源位置发送所述 PSS序列和所述 SSS序列, 并以 5ms为周期发送所述 CRS序列。
16、 根据权利要求 15所述的基站, 其中, 所述周期的起始位置是固定的或者可 配的。
17、 一种用户设备 (UE), 其中, 所述 UE包括:
搜索单元, 其根据待测小区簇的小区 ID, 搜索该待测小区簇的 PSS序列和 SSS 序列并对其进行检测, 以获得所述待测小区簇的粗精度 OFDM符号同步信息;
计算单元, 其根据待测小区簇的小区 ID和所述小区簇内待测小区的虚拟 ID, 计 算每一个待测小区的 CRS序列和位置;
检测单元, 其根据计算出的每一个待测小区的 CRS 序列和位置, 以及所述待测 小区簇的粗精度 OFDM符号同步信息,对每一个待测小区发送的 CRS信号进行检测; 测量单元, 其对于每一个待测小区, 在通过所述检测单元检测出信号后, 以所述 待测小区簇的粗精度 OFDM符号同步信息为基础, 利用计算出的该待测小区的 CRS 序列, 获得该待测小区的细精度 OFDM符号同步信息, 并利用该细精度 OFDM符号 同步信息, 对该待测小区进行小区测量;
上报单元, 其按照预定策略上报小区测量结果。
18、 根据权利要求 17所述的 UE, 其中, 如果所述 UE的服务小区不属于所述待 测小区簇, 则所述 UE还包括:
第一接收单元, 其接收其服务基站发送的配置信息, 所述配置信息包括待测小区 簇的小区 ID, 以及所述待测小区簇中的待测小区的虚拟 ID列表或者所述待测小区簇 中的待测小区的虚拟 ID的最大值。
19、 根据权利要求 18所述的 UE, 其中, 所述上报单元在所述配置信息中包含上 报测量结果的策略时, 按照所述配置信息的指示进行上报; 在所述配置信息中不包含 上报测量结果的策略时,将所有测量结果中最好的一个待测小区的测量结果及其虚拟 ID作为所述待测小区簇的测量结果上报给其服务基站。
20、 根据权利要求 17所述的 UE, 其中, 如果所述 UE的至少一个服务小区属于 所述待测小区簇,且所述 UE的服务基站没有配置需要进行测量的所述待测小区簇内 的待测小区, 则所述 UE还包括:
第二接收单元, 其接收基站的系统信息, 所述基站的系统信息包括所述待测小区 簇内的小区数量以及虚拟 ID相关信息, 以便所述 UE由此确定所述待测小区簇内的 待测小区及其虚拟 ID。
21、 根据权利要求 20所述的 UE, 其中, 所述上报单元有选择性的将测量结果及 相应的待测小区的虚拟 ID上报给其服务基站。
22、 根据权利要求 17所述的 UE, 其中, 如果所述 UE的至少一个服务小区属于 所述待测小区簇, 且所述 UE的服务基站配置了所述待测小区簇内的待测小区, 则所 述 UE还包括:
第三接收单元, 其接收其服务基站发送的配置信息, 所述配置信息包括待测小区 簇内的待测小区的虚拟 ID列表。
23、 根据权利要求 22所述的 UE, 其中, 所述上报单元在所述配置信息中包含上 报测量结果的策略时, 按照所述配置信息的指示进行上报; 在所述配置信息中不包含 上报测量结果的策略时, 有选择性的将测量结果及相应的待测小区的虚拟 ID上报给 其服务基站。
24、 一种通信系统, 其中, 所述通信系统包括权利要求 17-23任一项所述的 UE 以及权利要求 13-16所述基站的一个或多个的任意组合。
25、 一种计算机可读程序, 其中当在基站中执行该程序时, 该程序使得计算机在 所述基站中执行权利要求 1-4任一项所述的信号发送方法。
26、 一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机 在基站中执行权利要求 1-4任一项所述的信号发送方法。
27、 一种计算机可读程序, 其中当在终端设备中执行该程序时, 该程序使得计算 机在所述终端设备中执行权利要求 5-12任一项所述的小区搜索和测量的方法。
28、 一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机 在终端设备中执行权利要求 5-12任一项所述的小区搜索和测量的方法。
PCT/CN2012/083996 2012-11-02 2012-11-02 用于小区搜索和测量的方法、装置和系统 WO2014067132A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280075933.6A CN104641688A (zh) 2012-11-02 2012-11-02 用于小区搜索和测量的方法、装置和系统
PCT/CN2012/083996 WO2014067132A1 (zh) 2012-11-02 2012-11-02 用于小区搜索和测量的方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083996 WO2014067132A1 (zh) 2012-11-02 2012-11-02 用于小区搜索和测量的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2014067132A1 true WO2014067132A1 (zh) 2014-05-08

Family

ID=50626351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083996 WO2014067132A1 (zh) 2012-11-02 2012-11-02 用于小区搜索和测量的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN104641688A (zh)
WO (1) WO2014067132A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023193A1 (zh) * 2014-08-13 2016-02-18 华为技术有限公司 同步信号发送和接收方法及装置
CN107431944A (zh) * 2015-03-16 2017-12-01 株式会社Ntt都科摩 用户装置、基站和通信方法
US10045371B2 (en) 2014-03-21 2018-08-07 Huawei Device (Dongguan) Co., Ltd. Method for detecting device-to-device signal, user equipment, and base station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867043B (zh) * 2015-09-24 2022-08-09 华为技术有限公司 同步方法、用户设备和基站
CN113177514B (zh) * 2021-05-20 2023-06-16 浙江波誓盾科技有限公司 无人机信号检测方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741445A (zh) * 2008-11-19 2010-06-16 中兴通讯股份有限公司 非码本预编码mimo传输方法及基站
CN102026205A (zh) * 2010-12-29 2011-04-20 大唐移动通信设备有限公司 一种物理小区id的规划方法及装置
US20120120910A1 (en) * 2010-11-15 2012-05-17 Futurewei Technologies, Inc. System and method for measuring channel state information in a communications system
CN102638801A (zh) * 2012-03-21 2012-08-15 大唐移动通信设备有限公司 一种lte系统中物理小区规划方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741445A (zh) * 2008-11-19 2010-06-16 中兴通讯股份有限公司 非码本预编码mimo传输方法及基站
US20120120910A1 (en) * 2010-11-15 2012-05-17 Futurewei Technologies, Inc. System and method for measuring channel state information in a communications system
CN102026205A (zh) * 2010-12-29 2011-04-20 大唐移动通信设备有限公司 一种物理小区id的规划方法及装置
CN102638801A (zh) * 2012-03-21 2012-08-15 大唐移动通信设备有限公司 一种lte系统中物理小区规划方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10045371B2 (en) 2014-03-21 2018-08-07 Huawei Device (Dongguan) Co., Ltd. Method for detecting device-to-device signal, user equipment, and base station
US10375724B2 (en) 2014-03-21 2019-08-06 Huawei Device Co., Ltd. Method for detecting device-to-device signal, user equipment, and base station
WO2016023193A1 (zh) * 2014-08-13 2016-02-18 华为技术有限公司 同步信号发送和接收方法及装置
US10129843B2 (en) 2014-08-13 2018-11-13 Huawei Technologies Co., Ltd. Synchronization signal sending method and apparatus, and synchronization signal receiving method and apparatus
CN107431944A (zh) * 2015-03-16 2017-12-01 株式会社Ntt都科摩 用户装置、基站和通信方法

Also Published As

Publication number Publication date
CN104641688A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
US20220312324A1 (en) Methods for Reducing User Equipment Power Consumption in Presence of Wake-Up Signal
KR102223685B1 (ko) FS3 SCell들에 대한 인터-주파수 측정들
CN105934973B (zh) 用于自适应无线电链路监控的方法、网络节点和用户设备
WO2018202157A1 (zh) 测量方法、终端设备和接入网设备
KR101616236B1 (ko) 채널 측정을 위한 방법, 채널 측정을 구성하기 위한 방법 및 그것을 위한 장치
WO2021160028A1 (zh) 控制信令的接收、发送方法和通信节点
EP3188534B1 (en) User device, and offset reporting method
BR112016006747B1 (pt) Métodos e arranjos de um nó de rede de uma rede de comunicação celular conectável a um ou mais dispositivos de comunicação sem fio e de um dispositivo de comunicação sem fio conectável a uma rede de comunicação celular, meio de armazenamento legível por computador, nó de rede para uma rede de comunicação celular, e, dispositivo de comunicação sem fio
CN111052796B (zh) 用于在同频操作和异频操作之间进行确定的方法
CN109315010A (zh) 用于UE eDRX下的小区验证的方法和设备
JP6805356B2 (ja) 拡大カバレッジの下での測定報告
WO2014177095A1 (zh) 上下行配置信息通知、获取方法,基站和用户设备
CN105359584B (zh) 小区的发现和测量方法、基站以及用户设备
WO2019106536A1 (en) Measurement reporting configuration for aiding the sorting of beam/cell level measurements
WO2014067132A1 (zh) 用于小区搜索和测量的方法、装置和系统
KR102205975B1 (ko) 셀이 다른 셀을 탐색하는 방법 및 장치
EP2842367A1 (en) Apparatus and method for cell information indication in a wireless network
WO2018000440A1 (zh) 信号检测的方法和装置
US20190349799A1 (en) Controlling lean carrier operation with configurable control channel monitoring
US20230007603A1 (en) Methods for enabling a reduced bandwidth wireless device to access a cell
WO2015109585A1 (zh) 一种用户设备、基站及小区发现的方法
US9986494B2 (en) Small cell discovery method and system, base station, and user equipment, and communication apparatus
WO2015042965A1 (zh) 信号测量方法、用户设备以及基站
CN103916903B (zh) 一种参考信号接收功率的测量方法及装置
WO2019000364A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887782

Country of ref document: EP

Kind code of ref document: A1