WO2015042965A1 - 信号测量方法、用户设备以及基站 - Google Patents

信号测量方法、用户设备以及基站 Download PDF

Info

Publication number
WO2015042965A1
WO2015042965A1 PCT/CN2013/084737 CN2013084737W WO2015042965A1 WO 2015042965 A1 WO2015042965 A1 WO 2015042965A1 CN 2013084737 W CN2013084737 W CN 2013084737W WO 2015042965 A1 WO2015042965 A1 WO 2015042965A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
measurement
signal
user equipment
information
Prior art date
Application number
PCT/CN2013/084737
Other languages
English (en)
French (fr)
Inventor
王轶
张磊
张翼
Original Assignee
富士通株式会社
王轶
张磊
张翼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 王轶, 张磊, 张翼 filed Critical 富士通株式会社
Priority to KR1020167009491A priority Critical patent/KR20160057423A/ko
Priority to PCT/CN2013/084737 priority patent/WO2015042965A1/zh
Priority to EP13894736.1A priority patent/EP3054719A1/en
Priority to CN201380079467.3A priority patent/CN105519174A/zh
Priority to JP2016517430A priority patent/JP2016536838A/ja
Publication of WO2015042965A1 publication Critical patent/WO2015042965A1/zh
Priority to US15/073,032 priority patent/US20160198355A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal measurement method, a user equipment, and a base station. Background technique
  • the user equipment can measure the received signal, and can measure the reference signal received power (RSRP, Reference Signal Received Power) of the serving cell and the neighboring cell, or receive the signal strength indication (RSSI). , Received Signal Strength Indicator), or Reference Signal Received Quality (RSRQ, Reference Signal Received Quality).
  • RSRP Reference Signal received power
  • RSSI Received Signal Strength Indicator
  • RSSRQ Reference Signal Received Quality
  • RSRP is defined as the linear average of the received signal power on all resource particles (REs) carrying a Cell-specific Reference Signal within a symbol.
  • the RSSI is considered to be a linear average of the total received power, including co-channel serving cell and non-serving cell signals, adjacent channel interference, and thermal noise.
  • RSRQ is defined as N*RSRP/(LTE Carrier RSSI), where N is the number of resource blocks (RBs) of the LTE carrier RSSI measurement bandwidth.
  • the user equipment may also perform channel state information (CSI) measurement, for example, by measuring a channel state information reference signal (CSI-RS, Channel State Information Reference Signal) of the serving cell or a cell-specific common reference signal (CRS, Common Reference Signal) Obtain the channel information of the serving cell, and measure the interference generated by the neighboring cell by measuring the configured interference (IMR) or CRS, thereby estimating the channel quality indicator (CQI, channel quality indicator) o and Radio Resource Management (RRM) measures the long-term statistical quality of the acquired channel, and the CSI measurement is more focused on the short-term channel quality.
  • CSI-RS Channel State Information Reference Signal
  • CRS Cell-specific common reference signal
  • RRM Radio Resource Management
  • the small cell in the closed or dormant state (hereinafter referred to as the cell in the off state) transmits the discovery signal only in a long period, or transmits the discovery signal and the measurement signal; Data demodulated signal.
  • the small cell in the on state and the small cell in the off state send signals of multiple cells in the same subframe, some signals may be power boosted, or some signals may be power reduced.
  • the signal of the small cell in the closed state can enhance the power, or the message of the small cell in the open state. The number can reduce the power.
  • the embodiments of the present invention provide a signal measurement method, a user equipment, and a base station, and the purpose is to accurately obtain the measurement result by considering the influence of the cell in the closed state when measuring the received signal.
  • a signal measurement method includes: a user equipment measures a received signal on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result. And the second measurement result;
  • the first measurement result is a sum of received equivalent noise and interference power
  • the second measurement result is a pair of The result of measuring the reference signal on the time-frequency resource.
  • a signal measurement method includes:
  • the user equipment measures the received signal on the time-frequency resources in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result;
  • a signal measurement method is provided, and the signal measurement method includes:
  • the base station allocates resources to the user equipment by using the high layer signaling, so that the user equipment measures the received signal on the time-frequency resources in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result;
  • the first measurement result is a sum of received equivalent noise and interference power; and the second measurement result is a result of measuring a reference signal on the time-frequency resource.
  • a signal measurement method is provided, and the signal measurement method package Includes:
  • the base station configures, for the user equipment, resources for the first measurement result and the second measurement result respectively, so that the user equipment measures the received signal on the time-frequency resources in the partial subframe or all the subframes to obtain the first The measurement result and the second measurement result.
  • a user equipment includes: a signal measurement unit that measures a received signal on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement. And a second measurement result; wherein the first measurement result is a sum of noise and interference power, and the second measurement result is a result of measuring a reference signal on the time-frequency resource;
  • the information acquisition unit obtains information for indicating channel quality based on the first measurement result and the second measurement result.
  • a user equipment includes: a signal measurement unit that measures a received signal on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement. And a second measurement result; wherein, the resource of the first measurement result and the resource of the second measurement result are respectively configured;
  • the information acquisition unit obtains information for indicating channel quality based on the first measurement result and the second measurement result.
  • a base station is provided, where the base station includes:
  • a resource configuration unit configured to allocate a resource to the user equipment by using the high layer signaling, so that the user equipment measures the received signal on the time-frequency resource in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result;
  • the first measurement result is a sum of received equivalent noise and interference power; and the second measurement result is a result of measuring a reference signal on the time-frequency resource.
  • a base station is provided, where the base station includes:
  • a resource configuration unit configured to separately obtain resources for obtaining the first measurement result and the second measurement result for the user equipment; causing the user equipment to measure the received signal on the time-frequency resource in the partial subframe or all the subframes to obtain the a first measurement result and the second measurement result.
  • a communication system including a user equipment and a base station as described above.
  • a computer readable program is provided, wherein when at a user equipment When the program is executed, the program causes a computer to perform a signal measurement method as described above in the user equipment.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a signal measurement method as described above in a user equipment.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform a signal measurement method as described above in the base station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a signal measurement method as described above in a base station.
  • An advantageous embodiment of the present invention is to measure a received signal on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and according to the first measurement result and the second measurement. As a result, information for indicating the channel quality is obtained, and the influence of the cell in the off state can be considered, thereby obtaining the measurement result accurately.
  • 1 is a flow chart of a signal measurement method according to an embodiment of the present invention
  • 2 is another flow chart of a signal measurement method according to an embodiment of the present invention
  • Fig. 3 shows a case where measurement is performed on all 14 OFDM symbols in one subframe
  • Fig. 4 shows a case where measurement is performed on a partial OFDM symbol in one subframe
  • FIG. 5 is another flowchart of a signal measurement method according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of signal measurement according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is another schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 10 is another flowchart of a signal measurement method according to an embodiment of the present invention.
  • FIG. 11 is another flowchart of a signal measurement method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another structure of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another structure of a base station according to an embodiment of the present invention.
  • Figure 14 is a block diagram showing the configuration of a communication system according to an embodiment of the present invention.
  • the embodiment of the invention provides a signal measurement method, which is described from the user equipment side.
  • the signal measurement method includes:
  • Step 101 The user equipment measures the received signal on the time-frequency resources in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result.
  • Step 102 The user equipment obtains information used to indicate channel quality according to the first measurement result and the second measurement result.
  • the first measurement result may be the sum of the received equivalent noise and the interference power (ie, I+N); the second measurement result may be a result of measuring the reference signal (RS) on the time-frequency resource.
  • RS reference signal
  • the information used to indicate the channel quality may be the channel quality of the RRM measurement, including Signal to Interference plus Noise Ratio (SINR), or include RSSI and/or RSRQ.
  • SINR Signal to Interference plus Noise Ratio
  • the information used to indicate the channel quality may also be a measurement result of a CSI measurement, such as CQI.
  • the present invention is not limited thereto, and specific information can be determined according to actual conditions.
  • the user equipment can calculate the SINR according to the measured RSRP and the sum of the measured equivalent noise and the interference power, and report the SINR to the base station according to the requirement.
  • the user equipment may calculate and obtain the RSSI and/or the RSRQ according to the measured RSRP and the sum of the measured equivalent noise and the interference power, and report the calculated RSSI and RSRQ to the base station according to the requirement.
  • the above merely illustrates the first measurement result, the second measurement result, and information for indicating the channel quality in the present invention.
  • the present invention is not limited thereto, and a specific first measurement result, a second measurement result, and how to calculate information for indicating channel quality may be determined according to actual conditions.
  • the present invention obtains information for indicating channel quality according to the first measurement result and the second measurement result, and can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • the following is an example in which the first measurement result is I+N, and the second measurement result is RSRP.
  • the signal measurement method includes:
  • Step 201 The user equipment measures the received signal on a time-frequency resource in a partial subframe or all subframes to obtain an equivalent noise and interference power, and measures the received signal to obtain an RSRP.
  • Step 202 The user equipment obtains information for indicating channel quality according to the sum of equivalent noise and interference power, and RSRP.
  • Step 203 The user equipment sends the measurement information to the base station.
  • the user equipment can send measurement information to the base station as needed.
  • the measurement information may include one or a combination of the following: a first measurement result, a second measurement result, and information obtained by the user equipment for indicating channel quality.
  • the sum of the received equivalent noise and the interference power may be: a linear average of the received power observed within the measurement bandwidth over all OFDM symbols; or, without including a signal for measurement On the OFDM symbol, a linear average of the received power observed over the bandwidth is measured.
  • the sum of the received equivalent noise and the interference power may include: a result of measuring the same-frequency non-serving cell signal, adjacent channel interference, and thermal noise.
  • the A measurement can be an RSRQ measurement, or a SINR measurement.
  • the received equivalent noise and interference power are measured on the OFDM symbol in the indicated subframe that does not contain the signal for measurement.
  • the second measurement result may also be defined.
  • the definition of the SINR may be as shown in Table 4 below, and the definition of the RSRQ may be as shown in Table 5.
  • Table 4 Define the Signal to Interference and Noise Ratio (SINR) as Where N is the number of RBs measuring the measurement bandwidth of A3 ⁇ 4 ⁇ +/ «ter/£ ⁇ c ⁇ .
  • SINR Signal to Interference and Noise Ratio
  • the received equivalent noise and interference power are included on all OFDM symbols, measuring the linear average of the received power within the bandwidth.
  • the definition reference signal reception quality is defined as NXRSRPI Noise+Interferece+RSRP), where N is the measurement (N ( ⁇ e+/ «ter/£ ⁇ c ⁇ measurement bandwidth RB number. The denominator and numerator measurements should be the same) In the resource block collection.
  • the received equivalent noise and interference power are included on all OFDM symbols, measuring the linear average of the received power within the bandwidth.
  • the received equivalent noise and interference power are measured on all OFDM symbols in the indicated subframe.
  • the same manner as the existing RSSI measurement can be adopted in the embodiment of the present invention.
  • the linear average value of the received power observed in the bandwidth can be measured on all OFDM symbols.
  • the result of the RSSI measurement is the service cell, the non-serving cell of the same frequency, the adjacent channel interference and the thermal noise.
  • the result measured on the same time-frequency resource is equivalent to Only non-serving cells in the same state with the same frequency, adjacent channel interference and thermal noise are included. Therefore, the measured result is the equivalent noise and interference power received.
  • the first measurement result and the second measurement result are separately measured, and the required channel strength can be obtained by combining the first measurement result and the second measurement result. Thereby, the influence of the cell in the off state can be taken into consideration, and the measurement result can be accurately obtained.
  • the time-frequency resource that obtains the first measurement result may include: all or part of sub-carriers of multiple physical resource blocks of all OFDM symbols in a partial subframe or all subframes; or a partial subframe or all sub-carriers All or part of subcarriers of multiple physical resource blocks of a partial OFDM symbol in a frame.
  • the subframe may not be configured, that is, the sum of equivalent noise and interference power may be measured on all or part of the OFDM symbols in all available downlink subframes. For example, measurements can be made on 14 OFDM symbols and the measurements can be averaged; they can also be averaged over measurements on OFDM symbols that do not contain reference signals (RS).
  • RS reference signals
  • FIG. 3 shows a case where measurement is performed on all 14 OFDM symbols in one subframe
  • FIG. 4 shows a case where measurement is performed on a partial OFDM symbol in one subframe, as shown in FIG. Measurements are made on 10 OFDM symbols that do not contain a reference signal (RS).
  • RS reference signal
  • the partial subframe may be configured by higher layer signaling, and the configuration information of the partial subframe may include period information and partial subframe indication information in each period.
  • some OFDM symbols can be configured or pre-defined by higher layer signaling. For example, it can be configured as an OFDM symbol that does not contain an RS.
  • the period may be indicated by log 2 M or M bits, for example, 2 bits indicates that the period is one of ⁇ 0, 50, 100, 200 ⁇ ; and M bits are used to indicate which subframes are available for measurement in each period. For example, use 2 bits to indicate one of ⁇ 1, 5, 10, 20 ⁇ .
  • the starting point may be indicated by K bits, for example, one of the ⁇ 0, M/4, 2/M, 3/4M ⁇ starting points may be indicated by 2 bits.
  • These indications can be in the form of a bitmap or other form.
  • the first measurement result is the sum of the equivalent noise and the interference power in the RRM measurement
  • the second measurement result is an example of the RSRP in the RRM measurement.
  • the present invention is not limited thereto, and specific measurement results may be determined according to actual conditions.
  • the first measurement result may be the sum of the equivalent noise and the interference power in the CSI measurement
  • the second measurement result is the pilot received power in the CSI measurement. .
  • the received signal is measured on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and is obtained according to the first measurement result and the second measurement result.
  • the information indicating the channel quality can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • FIG. 5 is another flow chart of a signal measuring method according to an embodiment of the present invention. As shown in FIG. 5, the signal measurement method includes:
  • Step 501 The user equipment measures the received signal on the time-frequency resource in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result, where the resource of the first measurement result and the second measurement result are Resources are configured separately.
  • Step 502 The user equipment obtains information used to indicate channel quality according to the first measurement result and the second measurement result.
  • the first measurement result and the second measurement result may also be defined.
  • Tables 6 to 8 show examples of different definitions of the second measurement result.
  • the reference signal reception quality is defined as NX RSRP/Noise+Interferece+RSRP), where N is the number of RBs measuring the measurement bandwidth of No ⁇ +/ «ter/£ ⁇ ce.
  • the denominator and numerator measurements in the above equation should In the respective set of resource blocks configured.
  • the received equivalent noise and interference power are included on all OFDM symbols, measuring the linear average of the received power within the bandwidth.
  • the received equivalent noise and interference power are measured on all OFDM symbols in the indicated subframe.
  • the resources for obtaining the first measurement result and obtaining the second measurement result are respectively configured and may be different; for example, the measured subframe patterns may be separately configured, Table 9 to Table 11 shows an example in which separate configurations are separately performed.
  • measSubframePatternNeigh-rlO is the configuration of the object
  • measSubframePattern eighl-rl2 is the configuration of the second measurement object.
  • measSubframePatternNeighl-rl2 is the configuration of the first measurement object
  • measSubframePattern eigh2-rl2 is the configuration of the second measurement object
  • measSubframePattemConfigNeigh-rlO is the configuration of the first measurement object
  • measSubframePattemConfigNeigh -rl2 is the configuration of the second measurement object. Similar modifications can be made in the corresponding measSubframePatternPCell.
  • the present invention is not limited thereto.
  • the OFDM symbols and/or subcarriers for obtaining the first measurement result and the second measurement result may also be different; may be predefined, or configured by a higher layer.
  • the resource configured by the first measurement result and the resource configured by the second measurement result may not have an intersection.
  • the subframe configuration for obtaining the first measurement result and obtaining the second measurement result may be non-overlapping.
  • a subframe may be configured, so that when the user equipment performs interference-related measurement, the other small cell may be distinguished from the signal. Subframes and sub-frames without the signal sent by the small Cell.
  • a small Cell cluster may include three cells Cell 1/2/3 in a closed state and an open state.
  • each small cell (Cell 1/2/3) in the off state transmits signals for discovery and/or measurement in the same subframe, and the transmission interval period is N ms within every N ms.
  • the small cell (Cell 4) in the on state can transmit signals for discovery and/or measurement in the same subframe, and can also be sent in other subframes.
  • the user equipment can be configured to measure the interference of all the cells in the open state only in the subframe in which the small cell transmits signals without other closed states, avoiding the first 5 ms every 200 ms.
  • the measurement is performed in the sub-frame of the circled portion in Fig. 6, and the measurement result is the first measurement result; and the second measurement result is obtained in the other non-overlapping sub-frames.
  • multiple sets of resources may be configured to obtain the first measurement result, and/or multiple sets of resources are configured to obtain the second measurement result.
  • the user equipment may be configured with multiple sets of resources for obtaining different second measurement results, but only one set of resources for obtaining the first measurement result may be configured; the user equipment may compare different second measurement results with the first measurement result. Plus, get different RSSI. Further, the user equipment may also correspond to the RSSI corresponding to the second measurement result to obtain different RSRQs.
  • the user equipment may be configured with a set of resources for obtaining the second measurement result, but multiple sets of resources for obtaining different first measurement results are configured; the user equipment may compare the second measurement result with different first measurement results. Plus, get different RSSI. Further, the user equipment can also compare the corresponding first measurement result with
  • the RSSI corresponds to get different RSRQs.
  • the user equipment may be configured with multiple sets of resources for obtaining different second measurement results, and configured with multiple sets of resources for obtaining different first measurement results; the user equipment may use different second measurement results with different numbers.
  • a measurement result is added to obtain different RSSI.
  • the measurement result 1 can be obtained in the sub-frame of the circled part in FIG. 6; the small cell of the small cell with the other closed state can be configured when the user equipment measures the RSRP of the small cell in the open state.
  • the signal strength is measured in the sub-frame of the transmitted signal, and the measurement result is the measurement result 2.a.
  • the user equipment can only perform measurement in the subframe of the measurement signal it sends.
  • the measurement result is the measurement result 2.b.
  • the user equipment can calculate the RSRQ considering only the influence of the cell in the on state according to the requirement, for example, the measurement result 2.a/measurement result 1.
  • the user equipment can calculate the SINR considering only the impact of the cell in the on state according to the requirement, for example, the measurement result 2.b/measurement result 1.
  • the user equipment can calculate the RSRQ considering the influence of the cell in the closed state according to the requirement, and can add the measurement result 1 and the measurement result 2.b, for example, the measurement result 2.b/ (measurement result 1+ measurement result 2 .b).
  • FIG. 7 is another exemplary diagram of signal measurement according to an embodiment of the present invention.
  • the user equipment may be configured to perform measurements in different subframes.
  • the measurement result is the measurement result l .a.
  • the user equipment can be configured to measure interference of all cells only in subframes in which other small cells in the closed state transmit signals, that is, the first 5 ms every 200 ms, for example, the subframe of the second part in FIG. 7, the measurement result is Measurement result l.b.
  • the user equipment can separately calculate the RSRQ or SINR considering the impact of the cell in the off state and considering only the cell in the on state according to the demand. For example, you can calculate the measurement result 2.a/measurement result l .a, and the measurement result 2.a/measurement result l .b.
  • the user equipment may report the measurement information to the base station as needed.
  • the measurement information may include one or a combination of the following: a first measurement result, a second measurement result, and information obtained by the user equipment for indicating channel quality.
  • the received signal is measured on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and is obtained according to the first measurement result and the second measurement result.
  • the information indicating the channel quality can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • An embodiment of the present invention provides a user equipment, which corresponds to the signal measurement described in Embodiment 1 or Embodiment 2.
  • the method is the same as that of Embodiment 1 or Embodiment 2 and will not be described again.
  • FIG. 8 is a schematic diagram of a configuration of a user equipment according to an embodiment of the present invention.
  • the user equipment 800 includes: a signal measurement unit 801 and an information acquisition unit 802.
  • the user equipment 800 includes: a signal measurement unit 801 and an information acquisition unit 802.
  • the user equipment 800 includes: a signal measurement unit 801 and an information acquisition unit 802.
  • other parts of the user equipment 800 are not shown. Reference can be made to the prior art.
  • the signal measuring unit 801 measures the received signal on the time-frequency resource in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result; the information acquiring unit 802 is configured according to the first measurement result and the second measurement. As a result, information for indicating the channel quality is obtained.
  • the resources of the first measurement result and the resources of the second measurement result are separately configured, and the resource configuration may be different.
  • FIG. 9 is another schematic diagram of the configuration of the user equipment according to the embodiment of the present invention.
  • the user equipment 900 includes: a signal measurement unit 801 and an information acquisition unit 802; as described above.
  • the user equipment 900 may further include: an information reporting unit 903, which reports the measurement information to the base station.
  • the measurement information may include one or a combination of the following: a first measurement result, a second measurement result, and information indicating a channel quality.
  • the received signal is measured on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and is obtained according to the first measurement result and the second measurement result.
  • the information indicating the channel quality can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • the embodiment of the invention provides a signal measurement method, which is described from the base station side. The same contents as those in Embodiment 1 will not be described again.
  • FIG. 10 is a flowchart of a signal measurement method according to an embodiment of the present invention. As shown in FIG. 10, the signal measurement method includes:
  • Step 1001 The base station configures resources for the user equipment by using the high layer signaling, so that the user equipment measures the received signal on the time-frequency resources in the partial subframe or all the subframes to obtain the first measurement result and the second measurement result.
  • the first measurement result is the sum of the received equivalent noise and the interference power;
  • the second measurement result is a result of measuring the reference signal on the time-frequency resource.
  • the method may further include:
  • Step 1002 The base station receives measurement information sent by the user equipment.
  • the measurement information may be a first measurement result, or may be a second measurement result, and may also be information for indicating channel quality, where the information for indicating channel quality is determined by the user equipment according to the first measurement result and the second Obtained from the measurement results.
  • the base station may directly receive information used by the user equipment to indicate channel quality, such as SINR, RSSI, RSRQ, and the like.
  • the base station can also calculate information indicating the channel quality based on the received measurement information as needed.
  • the base station may receive a first measurement (e.g., I+N) and a second measurement (e.g., RSRP) to calculate the SINR.
  • a second measurement e.g., RSRP
  • information e.g., SINR
  • the present invention is not limited thereto, and a specific embodiment may be determined according to actual conditions.
  • the received signal is measured on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and is obtained according to the first measurement result and the second measurement result.
  • the information indicating the channel quality can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • the embodiment of the invention provides a signal measurement method, which is described from the base station side. The same contents as in Embodiment 2 will not be described again.
  • FIG. 11 is a flowchart of a signal measurement method according to an embodiment of the present invention. As shown in FIG. 11, the signal measurement method includes:
  • Step 1101 The base station separately configures resources for the first measurement result and the second measurement result for the user equipment, so that the user equipment measures the received signal on the time-frequency resource in the partial subframe or all the subframes to obtain the first measurement. Results and second measurement results.
  • the method may further include:
  • Step 1102 The base station receives measurement information sent by the user equipment.
  • the measurement information may be the first
  • the measurement result may also be a second measurement result, and may also be information for indicating channel quality, and the information for indicating channel quality is obtained by the user equipment according to the first measurement result and the second measurement result.
  • the base station may directly receive information used by the user equipment to indicate channel quality, such as SINR, RSSI, RSRQ, and the like.
  • the base station can also calculate information indicating the channel quality based on the received measurement information as needed.
  • the base station may receive a first measurement (e.g., I+N) and a second measurement (e.g., RSRP) to calculate the SINR.
  • a second measurement e.g., RSRP
  • information e.g., SINR
  • the present invention is not limited thereto, and a specific embodiment may be determined according to actual conditions.
  • the base station may configure multiple sets of resources for the user equipment to obtain the first measurement result, and/or the base station may configure multiple sets of resources for the user equipment to obtain the second measurement result.
  • the received signal is measured on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and is obtained according to the first measurement result and the second measurement result.
  • the information indicating the channel quality can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • the embodiment of the present invention provides a base station, which corresponds to the signal measurement method described in Embodiment 4 or Embodiment 5, and the same content as Embodiment 4 or Embodiment 5 is not described herein.
  • FIG. 12 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • the base station 1200 includes: a resource configuration unit 1201.
  • a resource configuration unit 1201 For the sake of simplicity, other parts of the base station 1200 are not shown, and reference may be made to the prior art.
  • the resource configuration unit 1201 configures resources for the user equipment by using the high layer signaling, so that the user equipment measures the received signal on the time-frequency resources in the partial subframe or all the subframes to obtain the first measurement result and the first
  • the second measurement result is: the first measurement result is the sum of the received equivalent noise and the interference power; and the second measurement result is a result of measuring the reference signal on the time-frequency resource.
  • the resource configuration unit 1201 separately configures resources for the first measurement result and the second measurement result for the user equipment; so that the user equipment receives the signal on the time-frequency resource in the partial subframe or all the subframes. A measurement is taken to obtain a first measurement result and a second measurement result.
  • FIG. 13 is a schematic diagram of another structure of a base station according to an embodiment of the present invention. As shown in FIG. 13, the base station 1300 includes: a resource configuration unit 1201. For the sake of simplicity, other parts of the base station 1300 are not shown, and reference may be made to the prior art.
  • the base station 1300 may further include: an information receiving unit 1302.
  • the information receiving unit 1202 receives measurement information sent by the user equipment.
  • the measurement information may include one or a combination of the following information: a first measurement result, a second measurement result, and information for indicating channel quality; the information used to indicate channel quality is determined by the user equipment according to the first measurement result and Obtained from the second measurement result.
  • the received signal is measured on a time-frequency resource in a partial subframe or all subframes to obtain a first measurement result and a second measurement result, and is obtained according to the first measurement result and the second measurement result.
  • the information indicating the channel quality can take into account the influence of the cell in the off state, thereby accurately obtaining the measurement result.
  • the embodiment of the present invention further provides a communication system, including the user equipment as described in Embodiment 3 and the base station as shown in Embodiment 6.
  • Figure 14 is a block diagram showing a configuration of a communication system according to an embodiment of the present invention.
  • the communication system 1400 includes a user equipment 1401 and a base station 1402.
  • the user equipment 1401 may be the user equipment 800 or 900 in Embodiment 3;
  • the base station 1402 may be the base station 1200 or 1300 in Embodiment 6.
  • Base station 1402 can be a base station of a cell that is in an off state or an on state.
  • An embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a user equipment, the program causes a computer to perform a signal measurement method as described in Embodiment 1 or 2 above in the user equipment .
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a signal measurement method as described in Embodiment 1 or 2 above in a user equipment.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to perform a signal measurement method as described in Embodiment 4 or 5 above in the base station.
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a signal measurement method as described in Embodiment 4 or 5 above in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • This invention Reference is made to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to implement the various methods or steps described above.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Abstract

本发明实施例提供一种信号测量方法、用户设备以及基站。所述信号测量方法包括:用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得第一测量结果和第二测量结果;根据所述第一测量结果和第二测量结果获得用于表示信道质量的信息。通过本发明实施例,可以考虑到处于关闭状态的小区的影响,由此准确地获得测量结果。

Description

信号测量方法、 用户设备以及基站 技术领域
本发明涉及通信领域, 特别涉及一种信号测量方法、 用户设备以及基站。 背景技术
在已有的 LTE/LTE-A系统中, 用户设备可以对接收信号进行测量, 可以测量服 务小区以及邻接小区等的参考信号接收功率 (RSRP, Reference Signal Received Power), 或者接收信号强度指示 (RSSI, Received Signal Strength Indicator), 或者参 考信号接收质量 (RSRQ, Reference Signal Received Quality) 等。
例如, RSRP 被定义为在某个符号内承载小区相关的参考信号 (Cell-specific Reference Signal) 的所有资源粒子 (RE) 上接收到的信号功率的线性平均值。 RSSI 被认为是接收到的总功率的线性平均, 包括同频 (Co-channel) 的服务小区和非服务 小区信号、 邻近信道干扰以及热噪声等。 RSRQ被定义为 N*RSRP/(LTE载波 RSSI), 其中 N是 LTE载波 RSSI测量带宽的资源块 (RB) 个数。
用户设备也可以进行信道状态信息(CSI, Channel State Information)测量,例如, 通过测量服务小区的信道状态信息参考信号 (CSI-RS , Channel State Information Reference Signal) 或小区专用的公共参考信号 (CRS, Common Reference Signal) 获 得服务小区的信道信息, 并通过测量所配置的用于测量干扰的资源 (IMR) 或 CRS 测量邻小区产生的干扰, 从而估计出信道质量指示 (CQI, Channel quality indicator ) o 与无线资源管理(RRM, Radio Resource Management)测量获取信道的长期统计质量 不同, CSI测量更偏重短期信道质量。
另一方面, 目前出现了包括小小区 (Small Cell) 的异构网络。 出于节能等方面 的考虑, 某些小小区在某个时刻可能处于关闭或者休眠状态。 在这种情况下, 处于关 闭或者休眠状态的小小区(以下简称为处于关闭状态的小区)仅在较长的周期内发送 发现(Discovery)信号, 或者发送发现信号和测量信号; 而不发送支持数据解调的信 号。
并且, 处于开启状态的 Small cell和处于关闭状态的 small cell, 如果在相同的子 帧中发送多个 cell的信号, 可以有些信号是功率增强, 也可以有些信号是功率减少。 例如处于关闭状态的 small cell的信号可以增强功率, 或者开启状态的 small cell的信 号可以减少功率。
但是, 发明人发现目前测量接收信号的方案没有考虑处于关闭状态的小区的影 响, 由此, 不能准确地获得测量结果。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例提供一种信号测量方法、用户设备以及基站, 目的在于在测量接收 信号时考虑处于关闭状态的小区的影响, 准确地获得测量结果。
根据本发明实施例的一个方面,提供一种信号测量方法,所述信号测量方法包括: 用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得 第一测量结果和第二测量结果;
根据所述第一测量结果和第二测量结果获得用于表示信道质量的信息; 其中, 所述第一测量结果为接收的等效噪声与干扰功率之和; 所述第二测量结果 为对所述时频资源上的参考信号进行测量的结果。
根据本发明实施例的另一个方面, 提供一种信号测量方法, 所述信号测量方法包 括:
用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得 第一测量结果和第二测量结果;
根据所述第一测量结果和第二测量结果获得用于表示信道质量的信息; 其中, 所述第一测量结果的资源和所述第二测量结果的资源是分别配置的。 根据本发明实施例的另一个方面, 提供一种信号测量方法, 所述信号测量方法包 括:
基站通过高层信令为用户设备配置资源,使得所述用户设备在部分子帧或全部子 帧中的时频资源上对接收信号进行测量而获得第一测量结果和第二测量结果;
其中, 所述第一测量结果为接收的等效噪声与干扰功率之和; 所述第二测量结果 为对所述时频资源上的参考信号进行测量的结果。
根据本发明实施例的另一个方面, 提供一种信号测量方法, 所述信号测量方法包 括:
基站为用户设备分别配置用于第一测量结果和第二测量结果的资源;使得所述用 户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得所述第 一测量结果和所述第二测量结果。
根据本发明实施例的另一个方面, 提供一种用户设备, 所述用户设备包括: 信号测量单元,在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以 获得第一测量结果和第二测量结果; 其中所述第一测量结果为噪声与干扰功率之和, 所述第二测量结果为对所述时频资源上的参考信号进行测量的结果;
信息获取单元,根据所述第一测量结果和第二测量结果获得用于表示信道质量的 信息。
根据本发明实施例的另一个方面, 提供一种用户设备, 所述用户设备包括: 信号测量单元,在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以 获得第一测量结果和第二测量结果; 其中, 所述第一测量结果的资源和所述第二测量 结果的资源是分别配置的;
信息获取单元,根据所述第一测量结果和第二测量结果获得用于表示信道质量的 信息。
根据本发明实施例的另一个方面, 提供一种基站, 所述基站包括:
资源配置单元, 通过高层信令为用户设备配置资源, 使得所述用户设备在部分子 帧或全部子帧中的时频资源上对接收信号进行测量而获得第一测量结果和第二测量 结果;
其中, 所述第一测量结果为接收的等效噪声与干扰功率之和; 所述第二测量结果 为对所述时频资源上的参考信号进行测量的结果。
根据本发明实施例的另一个方面, 提供一种基站, 所述基站包括:
资源配置单元, 为用户设备分别配置获得第一测量结果和第二测量结果的资源; 使得所述用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以 获得所述第一测量结果和所述第二测量结果。
根据本发明实施例的另一个方面, 提供一种通信系统, 包括如上所述的用户设备 以及基站。
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中当在用户设备 中执行所述程序时,所述程序使得计算机在所述用户设备中执行如上所述的信号测量 方法。
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算机在用户设备中执行如上所述的信号测量方法。
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中当在基站中执 行所述程序时, 所述程序使得计算机在所述基站中执行如上所述的信号测量方法。
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算机在基站中执行如上所述的信号测量方法。
本发明实施例的有益效果在于,在部分子帧或者所有子帧中的时频资源上对接收 信号进行测量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量 结果获得用于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准 确地获得测量结果。
参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。 应该理解, 本发明的实施方式在范围上并不因而受到限制。 在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语 "包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。 附图中的部件不是成比例 绘制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附 图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个 其它附图或实施方式中示出的元素和特征相结合。 此外, 在附图中, 类似的标号表示 几个附图中对应的部件, 并可用于指示多于一种实施方式中使用的对应部件。
图 1是本发明实施例的信号测量方法的一流程图; 图 2是本发明实施例的信号测量方法的另一流程图;
图 3示出了在一个子帧中的全部 14个 OFDM符号上进行测量的情况; 图 4示出了在一个子帧中的部分 OFDM符号上进行测量的情况;
图 5是本发明实施例的信号测量方法的另一流程图;
图 6是本发明实施例的信号测量的一示例图;
图 7是本发明实施例的信号测量的另一示例图;
图 8是本发明实施例的用户设备的一构成示意图;
图 9是本发明实施例的用户设备的另一构成示意图;
图 10是本发明实施例的信号测量方法的另一流程图;
图 11是本发明实施例的信号测量方法的另一流程图;
图 12是本发明实施例的基站的另一构成示意图;
图 13是本发明实施例的基站的另一构成示意图;
图 14是本发明实施例的通信系统的一构成示意图。
具体实施方式
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得明显。在说明 书和附图中, 具体公开了本发明的特定实施方式, 其表明了其中可以采用本发明的原 则的部分实施方式, 应了解的是, 本发明不限于所描述的实施方式, 相反, 本发明包 括落入所附权利要求的范围内的全部修改、 变型以及等同物。
实施例 1
本发明实施例提供一种信号测量方法, 从用户设备侧对本发明进行说明。
图 1是本发明实施例的信号测量方法的一流程图。如图 1所示, 所述信号测量方 法包括:
步骤 101, 用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果;
步骤 102, 用户设备根据第一测量结果和第二测量结果获得用于表示信道质量的 信息。
在本实施例中, 第一测量结果可以为接收的等效噪声与干扰功率之和(即 I+N); 第二测量结果可以为对时频资源上的参考信号 (RS) 进行测量的结果, 例如可以是 RSRP。用于表示信道质量的信息可以是 RRM测量的信道质量,包括信干噪比(SINR, Signal to Interference plus Noise Ratio ); 或者, 包括 RSSI禾口 /或 RSRQ。 用于表示信道 质量的信息也可以是 CSI测量的测量结果, 例如 CQI。本发明不限于此, 可以根据实 际情况确定具体的信息。
例如, 用户设备可以根据测量的 RSRP以及测量的等效噪声与干扰功率之和, 计 算获得 SINR, 并根据需求将该 SINR上报给基站。 或者, 用户设备可以根据测量的 RSRP以及测量的等效噪声与干扰功率之和, 计算获得 RSSI和 /或 RSRQ, 并根据需 求将该计算所得的 RSSI和或 RSRQ上报给基站。
在本实施例中, 用户设备可以根据第一测量结果和第二测量结果, 来获得用于表 示信道质量的信息。 例如, 第一测量结果为 I+N, 第二测量结果为 RSRP, 则可以根 据 SINR=RSRP/ (I+N) 进行计算。
值得注意的是, 以上仅示意性说明了本发明中的第一测量结果、第二测量结果以 及用于表示信道质量的信息。但本发明不限于此, 可以根据实际情况确定具体的第一 测量结果、 第二测量结果以及具体如何计算用于表示信道质量的信息。
由此, 与现有技术不同的是, 本发明根据第一测量结果和第二测量结果获得用于 表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测量 结果。 以下仅以第一测量结果为 I+N, 第二测量结果为 RSRP为例进行说明。
图 2是本发明实施例的信号测量方法的另一流程图。如图 2所示, 所述信号测量 方法包括:
步骤 201, 用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得等效的噪声与干扰功率之和, 并对接收信号进行测量以获得 RSRP。
步骤 202, 用户设备根据等效的噪声与干扰功率之和, 以及 RSRP获得用于表示 信道质量的信息。
步骤 203, 用户设备将测量信息发送给基站。
在本实施例中, 用户设备可以根据需要将测量信息发送给基站。该测量信息可以 包括如下信息的其中一种或其组合: 第一测量结果, 第二测量结果以及由用户设备获 得的用于表示信道质量的信息。
在本实施例中, 接收的等效噪声与干扰功率之和可以为: 在所有 OFDM符号上, 测量带宽内所观察到的接收功率的线性平均值; 或者, 在不包含用于测量的信号的 OFDM符号上, 测量带宽内所观察到的接收功率的线性平均值。其中, 接收的等效噪 声与干扰功率之和可以包括: 对同频的非服务小区信号、相邻信道干扰以及热噪声进 行测量的结果。
表 1至表 3示出了第一测量结果的不同定义的例子。 其中 A测量可以为 RSRQ 测量, 或者 SINR测量等。
1
定义 接收的等效噪声与干扰功率, 定义为:
在所有 OFDM符号上,测量带宽内所观察到的接收功率的线性平均值。 若高层信令指示部分子帧用于 A测量, 则接收的等效噪声与干扰功率 在所指示的子帧中的所有 OFDM符号上被测量。 表 2
定义 接收的等效噪声与干扰功率, 定义为:
在不包含用于测量的信号的 OFDM符号上, 测量带宽内所观察到的接 收功率的线性平均值。
若高层信令指示部分子帧用于 A测量, 则接收的等效噪声与干扰功率 在所指示的子帧中的不包含用于测量的信号的 OFDM符号上被测量。
定义 接收的等效噪声与干扰功率, 定义为;
在所有 OFDM符号上,测量带宽内所观察到的接收功率的线性平均值。 在本实施例中, 还可以对第二测量结果进行定义, 例如 SINR的定义可以如下表 4所示, RSRQ的定义可以如表 5所示。
表 4 定义 信干噪比 (SINR) 定义为
Figure imgf000010_0001
其中 N为测量 (A¾^+/«ter/£^c^的测量带宽的 RB数。 分母与分子的测量应该在相同的 资源块集合中。
接收的等效噪声与干扰功率包含在所有 OFDM符号上, 测量带宽内所 观察到的接收功率的线性平均值。
若高层信令指示部分子帧用于 A测量, 则接收的等效噪声与干扰功率 在所指示的子帧中的所有 OFDM符号上被测量。 表 5
定义 参考信号接收质量(RSRQ )定义为 NXRSRPI Noise+Interferece+RSRP), 其 中 N为测量 (N(^e+/«ter/£^c^的测量带宽的 RB数。 分母与分子的测量应 该在相同的资源块集合中。
接收的等效噪声与干扰功率包含在所有 OFDM符号上, 测量带宽内所 观察到的接收功率的线性平均值。
若高层信令指示部分子帧用于 A测量, 则接收的等效噪声与干扰功率 在所指示的子帧中的所有 OFDM符号上被测量。 由上述表 1至表 3可知,本发明实施例中可以采用和现有 RSSI测量相同的方式, 例如, 可以在所有 OFDM符号上, 测量带宽内所观察到的接收功率的线性平均值。 但是, 其效果是不同的。 RSSI 测量的结果是包含服务小区, 同频的非服务小区, 相 邻信道干扰以及热噪声, 但当考虑了处于关闭状态的小区时, 在相同的时频资源上测 得的结果, 等效为仅包含同频的处于开启状态的非服务小区, 相邻信道干扰以及热噪 声。 因此, 测得的结果是接收的等效噪声与干扰功率。
在本实施例中, 将第一测量结果和第二测量结果分别测量, 并且可以通过合并第 一测量结果和第二测量结果, 来获得所需信道强度。 由此可以考虑到处于关闭状态的 小区的影响, 准确地获得测量结果。
在本实施例中, 获得第一测量结果的时频资源可以包括: 部分子帧或者所有子帧 中的所有 OFDM符号的多个物理资源块的所有或者部分子载波; 或者部分子帧或者 所有子帧中的部分 OFDM符号的多个物理资源块的所有或者部分子载波。 在一个实施方式中, 对于测量关闭状态 small cell的用户设备, 可以不配置子帧, 即可以在所有可用的下行子帧中的全部或者部分 OFDM符号上测量等效的噪声与干 扰功率之和。 例如, 可以在 14个 OFDM符号上进行测量, 并将测量结果进行平均; 也可以在不包含参考信号 (RS) 的 OFDM符号上的测量结果进行平均。
图 3示出了在一个子帧中的全部 14个 OFDM符号上进行测量的情况; 图 4示出 了在一个子帧中的部分 OFDM符号上进行测量的情况, 如图 4所示, 可以仅在不包 含参考信号 (RS) 的 10个 OFDM符号上进行测量。
在又一个实施方式中, 部分子帧可以由高层信令配置, 部分子帧的配置信息可以 包括周期信息以及每个周期内的部分子帧指示信息。 其中, 部分 OFDM符号可以由 高层信令配置或预先定义。 例如, 可以配置为不含有 RS的 OFDM符号。
具体地,可以用 log2M 或 M 比特指示周期,例如 2 bits指示周期为 { 0, 50, 100, 200 }中的一种; 并且用 M bits指示在每个周期内哪些子帧可用于测量, 例如用 2 bits 指示 { 1, 5, 10, 20 } 中的一种。
或者,还可以用 K比特指示起点,例如可以 2比特指示起点为 {0, M/4, 2/M, 3/4M} 中的一种。 这些指示可以是 bitmap的形式, 也可以是其它形式。
或者,还可以直接以一定长度指示部分子帧,例如长度为 M=100的 bitmap信令, 表示以 100为周期, 若取值为 1则表示该子帧用于测量。
值得注意的是,以上以第一测量结果为 RRM测量中的等效噪声与干扰功率之和, 第二测量结果为 RRM测量中的 RSRP为例进行了说明。 但本发明不限于此, 可以根 据实际情况确定具体的测量结果,例如可以第一测量结果为 CSI测量中的等效噪声与 干扰功率之和, 第二测量结果为 CSI测量中的导频接收功率。
由上述实施例可知,在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量结果获得用 于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测 量结果。 实施例 2
本发明实施例提供一种信号测量方法,在实施例 1的基础上对本发明进行进一步 说明; 相同的内容不再赘述。 图 5是本发明实施例的信号测量方法的另一流程图。如图 5所示, 所述信号测量 方法包括:
步骤 501, 用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果; 其中, 第一测量结果的资源和第二测量结果 的资源是分别配置的。
步骤 502, 用户设备根据第一测量结果以及第二测量结果获得用于表示信道质量 的信息。
在本实施例中, 也可以对第一测量结果和第二测量结果进行定义。表 6至表 8示 出了第二测量结果的不同定义的例子。
表 6
Figure imgf000012_0001
表 8 参考信号接收质量(RSRQ )定义为 N X RSRP/ Noise+Interferece+RSRP) , 其 中 N为测量 (No ^+/«ter/£^ce的测量带宽的 RB数。 上式中分母与分子的 测量应该在各自所配置的资源块集合中。
接收的等效噪声与干扰功率包含在所有 OFDM符号上, 测量带宽内所 观察到的接收功率的线性平均值。
若高层信令指示部分子帧用于 A测量, 则接收的等效噪声与干扰功率 在所指示的子帧中的所有 OFDM符号上被测量。 在本实施例中, 获取第一测量结果和获取第二测量结果的资源是分别配置的, 可 以是不同的; 例如测量的子帧图样 (pattern)可以是分别独立地进行配置, 表 9至表 11示出了分别进行独立配置的例子。
表 9
Figure imgf000013_0001
如表 9 所示, 其中, measSubframePatternNeigh-rlO 为第 :对象的配置 : measSubframePattern eighl-rl2为第二测量对象的配置。
表 10
Figure imgf000013_0002
Figure imgf000014_0001
如表 10所示, 其中, measSubframePatternNeighl-rl2为第一测量对象的配置, measSubframePattern eigh2-rl2为第二测量对象的配置。
表 11
Figure imgf000014_0002
如表 11所示, 其中, measSubframePattemConfigNeigh-rlO为第一测量对象的配 置, measSubframePattemConfigNeigh -rl2 为第二测量对象的配置。 在相应的 measSubframePatternPCell中也可以做类似的修改。
以上示出了分别独立地进行配置的情况, 本发明不限于此。 又例如, 可以依靠信 令仅显式地 (explicitly) 配置一套图样, 为其中一种测量结果, 而另一种测量结果的 图样是可以由这一套图样隐式地(implicitly)获得, 例如可以是这套图样的补集。 此 夕卜, 获取第一测量结果和第二测量结果的 OFDM符号和 /或子载波也可以是不同的; 可以是预定义的, 或由高层配置的。
进一步地, 第一测量结果配置的资源和第二测量结果配置的资源可以没有交集。 例如, 获取第一测量结果和获取第二测量结果的子帧配置可以是没有交叠的。
在本实施例中, 对于测量开启状态和 /或关闭状态 small cell的用户设备, 可以配 置子帧, 使得用户设备进行和干扰有关的测量时, 可以区分其它 small Cell发送信号 的子帧和没有 small Cell发送信号的子帧。
图 6是本发明实施例的信号测量的一示例图,如图 6所示,一个 small Cell cluster (簇) 内可以包括三个处于关闭状态的小区 Cell 1/2/3以及一个处于开启状态的小区 Cell 4。
如图 6所示, 假设各个处于关闭状态的 small cell ( Cell 1/2/3 )在相同的子帧发送 用于发现和 /或测量的信号,发送间隔周期为 N ms,在每 N ms内的 L ms内发送信号, L=l或小于 N的整数或等于 N的整数。 例如, N=200 ms, L=5 ms。 所有处于关闭状 态的 small cell在每 200 ms的前 5 ms内发送用于发现和 /或测量的信号。 而处于开启 状态的 small cell ( Cell 4),可以在相同的 subframe内发送用于发现和 /或测量的信号, 并且也可以在其它 subframe内发送。
那么, 可以配置用户设备仅在没有其它关闭状态的 small Cell发送信号的子帧中 测量所有处于开启状态的小区的干扰, 避开每 200 ms的前 5 ms。 例如在图 6中画圈 部分的子帧中进行测量, 测量结果为第一测量结果; 而在其他不相交叠的子帧中获得 第二测量结果。
在本实施例中, 还可以配置多套资源用于获得第一测量结果, 和 /或配置多套资 源用于获得第二测量结果。
例如, 可以为用户设备配置多套用于获得不同的第二测量结果的资源, 但仅配置 一套用于获得第一测量结果的资源;用户设备可以将不同的第二测量结果与第一测量 结果相加, 获得不同的 RSSI。 进一步的, 用户设备还可以将相应的第二测量结果与 RSSI对应, 获得不同的 RSRQ。
或者, 还可以为用户设备配置一套用于获得第二测量结果的资源, 但配置多套用 于获得不同的第一测量结果的资源;用户设备可以将第二测量结果与不同的第一测量 结果相加, 获得不同的 RSSI。 进一步的, 用户设备还可以将相应的第一测量结果与
RSSI对应, 获得不同的 RSRQ。
或者, 还可以为用户设备配置多套用于获得不同的第二测量结果的资源, 并配置 多套用于获得不同的第一测量结果的资源;用户设备可以将不同的第二测量结果与不 同的第一测量结果相加, 获得不同的 RSSI。
仍以图 6为例, 可以在图 6中画圈部分的子帧中获得测量结果 1 ; 可以配置用户 设备在测量处于开启状态的 small cell的 RSRP时,仅在没有其它关闭状态的 small Cell 发送信号的子帧中测量信号强度, 其测量结果为测量结果 2.a。 可以配置用户设备在 测量处于关闭状态的 small cell的 RSRP时, 仅在其所发送测量信号的子帧中进行测 量, 其测量结果为测量结果 2.b。
由此,用户设备可以根据需求,计算出仅考虑处于开启状态的小区影响的 RSRQ, 例如测量结果 2.a/测量结果 1。 或者, 用户设备可以根据需求, 计算出仅考虑处于开 启状态的小区影响的 SINR, 例如测量结果 2.b/测量结果 1。 或者, 用户设备可以根据 需求, 计算出考虑了处于关闭状态的小区影响的 RSRQ, 可以将测量结果 1与测量结 果 2.b相加, 例如测量结果 2.b/ (测量结果 1+测量结果 2.b)。
图 7是本发明实施例的信号测量的另一示例图, 如图 7所示, 为了体现关闭状态 small cell的影响, 可以配置用户设备在不同的子帧进行测量。
例如可以仅在没有其它处于关闭状态的 small Cell发送信号的子帧中测量所有处 于开启状态的小区的干扰, 即避开每 200 ms的前 5 ms。例如图 7中第一部分的子帧, 其测量结果为测量结果 l .a。
并且, 可以配置用户设备仅在有其它处于关闭状态的 small Cell发送信号的子帧 中测量所有小区的干扰, 即每 200ms的前 5ms, 例如图 7中第二部分的子帧, 其测量 结果为测量结果 l .b。
此外, 用户设备可以根据需求, 分别计算出考虑了处于关闭状态小区影响和仅考 虑处于开启状态的小区影响的 RSRQ或 SINR。 例如, 可以计算测量结果 2.a/测量结 果 l .a, 以及测量结果 2.a/测量结果 l .b。
在本实施例中, 用户设备还可以根据需要将测量信息上报给基站。该测量信息可 以包括如下信息的其中一种或其组合: 第一测量结果, 第二测量结果以及由用户设备 获得的用于表示信道质量的信息。
由上述实施例可知,在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量结果获得用 于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测 量结果。 实施例 3
本发明实施例提供一种用户设备,对应于实施例 1或者实施例 2所述的信号测量 方法, 与实施例 1或实施例 2相同的内容不再赘述。
图 8是本发明实施例的用户设备的一构成示意图, 如图 8所示, 用户设备 800包 括: 信号测量单元 801和信息获取单元 802; 为简单起见, 用户设备 800的其他部分 没有示出, 可以参考现有技术。
其中,信号测量单元 801在部分子帧或者所有子帧中的时频资源上对接收信号进 行测量以获得第一测量结果和第二测量结果;信息获取单元 802根据第一测量结果和 第二测量结果获得用于表示信道质量的信息。
在一个实施方式中, 第一测量结果可以为噪声与干扰功率之和; 第二测量结果可 以为对时频资源上的参考信号进行测量的结果。
在另一个实施方式中, 第一测量结果的资源和第二测量结果的资源是分别配置 的, 资源配置可以是不同的。
图 9是本发明实施例的用户设备的另一构成示意图, 如图 9所示, 用户设备 900 包括: 信号测量单元 801和信息获取单元 802; 如上所述。
如图 9所示, 用户设备 900还可以包括: 信息上报单元 903, 将测量信息上报给 基站。 该测量信息可以包括如下信息的其中一种或其组合: 第一测量结果, 第二测量 结果以及用于表示信道质量的信息。
由上述实施例可知,在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量结果获得用 于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测 量结果。 实施例 4
本发明实施例提供一种信号测量方法, 从基站侧对本发明进行说明。 与实施例 1 相同的内容不再赘述。
图 10是本发明实施例的信号测量方法的一流程图, 如图 10所示, 所述信号测量 方法包括:
步骤 1001, 基站通过高层信令为用户设备配置资源, 使得用户设备在部分子帧 或者所有子帧中的时频资源上对接收信号进行测量而获得第一测量结果和第二测量 结果; 其中, 第一测量结果为接收的等效噪声与干扰功率之和; 第二测量结果为对时频 资源上的参考信号进行测量的结果。
如图 10所示, 该方法还可以包括:
步骤 1002, 基站接收用户设备发送的测量信息。
其中, 该测量信息可以是第一测量结果, 也可以是第二测量结果, 还可以是用于 表示信道质量的信息,该用于表示信道质量的信息由用户设备根据第一测量结果和第 二测量结果而获得。
在本实施例中, 基站可以直接接收用户设备发送的用于表示信道质量的信息, 例 如 SINR、 RSSI、 RSRQ等。 此外, 基站还可以根据需要, 基于接收到的测量信息来 计算用于表示信道质量的信息。
在一个实施方式中, 基站可以接收第一测量结果 (例如 I+N) 以及第二测量结果 (例如 RSRP)来计算 SINR。在另一个实施方式中, 基站可以接收第二测量结果(例 如 RSRP) 以及用于表示信道质量的信息 (例如 SINR), 来计算 RSSI和 /或 RSRQ。 本发明不限于此, 可以根据实际情况确定具体的实施方式。
由上述实施例可知,在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量结果获得用 于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测 量结果。 实施例 5
本发明实施例提供一种信号测量方法, 从基站侧对本发明进行说明。 与实施例 2 相同的内容不再赘述。
图 11是本发明实施例的信号测量方法的一流程图, 如图 11所示, 所述信号测量 方法包括:
步骤 1101, 基站为用户设备分别配置用于第一测量结果和第二测量结果的资源; 使得用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得 第一测量结果和第二测量结果。
如图 11所示, 该方法还可以包括:
步骤 1102, 基站接收用户设备发送的测量信息。 其中, 该测量信息可以是第一 测量结果, 也可以是第二测量结果, 还可以是用于表示信道质量的信息, 该用于表示 信道质量的信息由用户设备根据第一测量结果和第二测量结果而获得。
在本实施例中, 基站可以直接接收用户设备发送的用于表示信道质量的信息, 例 如 SINR、 RSSI、 RSRQ等。 此外, 基站还可以根据需要, 基于接收到的测量信息来 计算用于表示信道质量的信息。
在一个实施方式中, 基站可以接收第一测量结果 (例如 I+N) 以及第二测量结果 (例如 RSRP)来计算 SINR。在另一个实施方式中, 基站可以接收第二测量结果(例 如 RSRP) 以及用于表示信道质量的信息 (例如 SINR), 来计算 RSSI和 /或 RSRQ。 本发明不限于此, 可以根据实际情况确定具体的实施方式。
在本实施例中, 基站可以为用户设备配置多套资源用于获得第一测量结果, 和 / 或基站可以为用户设备配置多套资源用于获得第二测量结果。
由上述实施例可知,在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量结果获得用 于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测 量结果。 实施例 6
本发明实施例提供一种基站,对应于实施例 4或者实施例 5所述的信号测量方法, 与实施例 4或实施例 5相同的内容不再赘述。
图 12是本发明实施例的基站的一构成示意图, 如图 12所示, 基站 1200包括: 资源配置单元 1201。 为了简单起见, 基站 1200其他部分没有示出, 可以参考现有技 术。
在一个实施方式中, 资源配置单元 1201通过高层信令为用户设备配置资源, 使 得用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量而获得第 —测量结果和第二测量结果;其中,第一测量结果为接收的等效噪声与干扰功率之和; 第二测量结果为对时频资源上的参考信号进行测量的结果。
在另一个实施方式中, 资源配置单元 1201为用户设备分别配置用于第一测量结 果和第二测量结果的资源;使得用户设备在部分子帧或者所有子帧中的时频资源上对 接收信号进行测量以获得第一测量结果和第二测量结果。 图 13是本发明实施例的基站的另一构成示意图, 如图 13所示, 基站 1300包括: 资源配置单元 1201。 为了简单起见, 基站 1300其他部分没有示出, 可以参考现有技 术。
如图 13所示, 基站 1300还可以包括: 信息接收单元 1302; 信息接收单元 1202 接收用户设备发送的测量信息。 该测量信息可以包括如下信息的其中一种或其组合: 第一测量结果、第二测量结果以及用于表示信道质量的信息; 该用于表示信道质量的 信息由用户设备根据第一测量结果和第二测量结果而获得。
由上述实施例可知,在部分子帧或者所有子帧中的时频资源上对接收信号进行测 量以获得第一测量结果和第二测量结果,并根据第一测量结果和第二测量结果获得用 于表示信道质量的信息, 可以考虑到处于关闭状态的小区的影响, 由此准确地获得测 量结果。 实施例 7
本发明实施例还提供一种通信系统,包括如实施例 3所述的用户设备以及如实施 例 6所示的基站。
图 14是本发明实施例的通信系统的一构成示意图, 如图 14所示, 该通信系统 1400包括用户设备 1401和基站 1402。 其中, 用户设备 1401可以是实施例 3中的用 户设备 800或 900; 基站 1402可以是实施例 6中的基站 1200或 1300。 基站 1402可 以是处于关闭状态或者开启状态的小区的基站。
本发明实施例还提供一种计算机可读程序, 其中当在用户设备中执行所述程序 时,所述程序使得计算机在所述用户设备中执行如上面实施例 1或 2所述的信号测量 方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在用户设备中执行如上面实施例 1或 2所述的信号测量方法。
本发明实施例还提供一种计算机可读程序, 其中当在基站中执行所述程序时, 所 述程序使得计算机在所述基站中执行如上面实施例 4或 5所述的信号测量方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在基站中执行如上面实施例 4或 5所述的信号测量方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。本发 明还涉及用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器 等。 针对附图中描述的功能方框中的一个或多个和 /或功能方框的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、 数字信号处理器 (DSP)、 专 用集成电路 (ASIC)、 现场可编程门阵列 (FPGA) 或者其它可编程逻辑器件、 分立 门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方 框中的一个或多个和 /或功能方框的一个或多个组合, 还可以实现为计算设备的组合, 例如, DSP和微处理器的组合、 多个微处理器、 与 DSP通信结合的一个或多个微处 理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员应该清楚, 这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权利 要求书
1、 一种信号测量方法, 所述信号测量方法包括:
用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得 第一测量结果和第二测量结果;
根据所述第一测量结果和第二测量结果获得用于表示信道质量的信息; 其中, 所述第一测量结果为接收的等效噪声与干扰功率之和; 所述第二测量结果 为对所述时频资源上的参考信号进行测量的结果。
2、 根据权利要求 1所述的信号测量方法, 其中, 所述接收的等效噪声与干扰功 率之和为: 在所有 OFDM符号上, 测量带宽内所观察到的接收功率的线性平均值; 或者, 在不包含用于测量的信号的 OFDM符号上, 测量带宽内所观察到的接收功率 的线性平均值。
3、 根据权利要求 1所述的信号测量方法, 其中, 所述部分子帧由高层信令配置, 所述部分子帧的配置信息包括周期信息以及每个周期内部分子帧的指示信息。
4、 根据权利要求 1所述的信号测量方法, 其中, 所述用于表示信道质量的信息 包括信干噪比; 或者, 包括接收信号强度指示和 /或参考信号接收质量。
5、 根据权利要求 1所述的信号测量方法, 其中, 用于获得所述第一测量结果的 时频资源包括所述部分子帧或者所有子帧中的所有 OFDM符号的多个物理资源块的 所有或者部分子载波; 或者
所述部分子帧或者所有子帧中的部分 OFDM符号的多个物理资源块的所有或者 部分子载波。
6、 根据权利要求 1所述的信号测量方法, 其中, 所述方法还包括:
所述用户设备将测量信息上报给基站;
其中, 所述测量信息包括如下信息的其中一种或其组合: 所述第一测量结果, 所 述第二测量结果以及所述用于表示信道质量的信息。
7、 一种信号测量方法, 所述信号测量方法包括:
用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得 第一测量结果和第二测量结果; 其中, 所述第一测量结果的资源和所述第二测量结果 的资源是分别配置的; 根据所述第一测量结果和第二测量结果获得用于表示信道质量的信息。
8、 根据权利要求 7所述的信号测量方法, 其中, 所述第一测量结果与所述第二 测量结果分别采用信令显式地配置测量的子帧图样。
9、 根据权利要求 7所述的信号测量方法, 其中, 采用信令配置一套测量的子帧 图样, 显式地用于其中一种测量结果, 而隐式地指示另一种测量结果的子帧图样。
10、 根据权利要求 7所述的信号测量方法, 其中, 所述第一测量结果配置的资源 和所述第二测量结果配置的资源没有交集。
11、 根据权利要求 7所述的信号测量方法, 其中, 所述第一测量结果配置的资源 和所述第二测量结果配置的资源不能完全重叠。
12、 根据权利要求 7所述的信号测量方法, 其中, 根据所述第一测量结果和第二 测量结果获得用于表示信道质量的信息具体包括:将所述第一测量结果和所述第二测 量结果相加, 获得接收信号强度指示信息。
13、 根据权利要求 7所述的信号测量方法, 其中, 所述方法还包括: 配置多套资 源用于获得所述第一测量结果, 和 /或配置多套资源用于获得所述第二测量结果。
14、 根据权利要求 7所述的信号测量方法, 其中, 通过仅在不包括处于关闭状态 的小区所发送的信号的子帧中测量处于开启状态的小区的干扰,来获得所述第一测量 结果。
15、 根据权利要求 14所述的信号测量方法, 其中, 所述方法还包括: 通过在不包括处于关闭状态的小区所发送的信号的子帧中测量信号强度,来获得 处于开启状态的小区的第二检测结果; 或者
通过在处于关闭状态的小区所发送的信号的子帧中进行测量信号强度,来获得所 述处于关闭状态的小区的第二检测结果。
16、 根据权利要求 7所述的信号测量方法, 其中, 所述方法还包括: 所述用户设备将测量信息上报给基站;
其中, 所述测量信息包括如下信息的其中一种或其组合: 所述第一测量结果, 所 述第二测量结果以及所述用于表示信道质量的信息。
17、 一种信号测量方法, 所述信号测量方法包括:
基站通过高层信令为用户设备配置资源,使得所述用户设备在部分子帧或全部子 帧中的时频资源上对接收信号进行测量而获得第一测量结果和第二测量结果; 其中, 所述第一测量结果为接收的等效噪声与干扰功率之和; 所述第二测量结果 为对所述时频资源上的参考信号进行测量的结果。
18、 根据权利要求 17所述的信号测量方法, 其中, 所述方法还包括: 所述基站接收用户设备发送的测量信息;
19、 根据权利要求 18所述的信号测量方法, 其中, 所述测量信息包括如下信息 的其中一种或其组合: 第一测量结果、 第二测量结果以及用于表示信道质量的信息; 所述用于表示信道质量的信息由所述用户设备根据所述第一测量结果和所述第二测 量结果而获得。
20、 根据权利要求 18所述的信号测量方法, 其中, 所述方法还包括: 所述基站根据所述测量信息计算用于表示信道质量的信息。
21、 一种信号测量方法, 所述信号测量方法包括:
基站为用户设备分别配置获得第一测量结果和第二测量结果的资源;使得所述用 户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以获得所述第 一测量结果和所述第二测量结果。
22、 根据权利要求 21所述的信号测量方法, 其中, 所述方法还包括: 所述基站接收用户设备发送的测量信息。
23、 根据权利要求 22所述的信号测量方法, 其中, 所述测量信息包括如下信息 的其中一种或其组合: 第一测量结果、 第二测量结果以及用于表示信道质量的信息; 所述用于表示信道质量的信息由所述用户设备根据所述第一测量结果和所述第二测 量结果而获得。
24、 根据权利要求 22所述的信号测量方法, 其中, 所述方法还包括: 所述基站根据所述测量信息计算用于表示信道质量的信息。
25、 根据权利要求 21所述的信号测量方法, 其中, 所述方法还包括: 所述基站为所述用户设备配置多套资源用于获得所述第一测量结果, 和 /或配置 多套资源用于获得所述第二测量结果。
26、 一种用户设备, 所述用户设备包括:
信号测量单元,在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以 获得第一测量结果和第二测量结果; 其中所述第一测量结果为噪声与干扰功率之和, 所述第二测量结果为对所述时频资源上的参考信号进行测量的结果; 信息获取单元,根据所述第一测量结果和第二测量结果获得用于表示信道质量的 信息。
27、 根据权利要求 26所述的用户设备, 其中, 所述用户设备还包括: 信息上报单元, 将测量信息上报给基站;
其中, 所述测量信息包括如下信息的其中一种或其组合: 所述第一测量结果, 所 述第二测量结果以及所述用于表示信道质量的信息。
28、 一种用户设备, 所述用户设备包括:
信号测量单元,在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以 获得第一测量结果和第二测量结果; 其中, 所述第一测量结果的资源和所述第二测量 结果的资源是分别配置的;
信息获取单元,根据所述第一测量结果和第二测量结果获得用于表示信道质量的 信息。
29、 根据权利要求 28所述的用户设备, 其中, 所述用户设备还包括: 信息上报单元, 将测量信息上报给基站;
其中, 所述测量信息包括如下信息的其中一种或其组合: 所述第一测量结果, 所 述第二测量结果以及所述用于表示信道质量的信息。
30、 一种基站, 所述基站包括:
资源配置单元, 通过高层信令为用户设备配置资源, 使得所述用户设备在部分子 帧或全部子帧中的时频资源上对接收信号进行测量而获得第一测量结果和第二测量 结果;
其中, 所述第一测量结果为接收的等效噪声与干扰功率之和; 所述第二测量结果 为对所述时频资源上的参考信号进行测量的结果。
31、 根据权利要求 30所述的基站, 其中, 所述基站还包括:
信息接收单元, 接收所述用户设备发送的测量信息;
其中, 所述测量信息包括如下信息的其中一种或其组合: 第一测量结果、第二测 量结果以及用于表示信道质量的信息;所述用于表示信道质量的信息由所述用户设备 根据所述第一测量结果和所述第二测量结果而获得。
32、 一种基站, 所述基站包括:
资源配置单元, 为用户设备分别配置用于第一测量结果和第二测量结果的资源; 使得所述用户设备在部分子帧或者所有子帧中的时频资源上对接收信号进行测量以 获得所述第一测量结果和所述第二测量结果。
33、 根据权利要求 32所述的基站, 其中, 所述基站还包括:
信息接收单元, 接收所述用户设备发送的测量信息;
其中, 所述测量信息包括如下信息的其中一种或其组合: 第一测量结果、第二测 量结果以及用于表示信道质量的信息;所述用于表示信道质量的信息由所述用户设备 根据所述第一测量结果和所述第二测量结果而获得。
34、 一种通信系统, 包括如权利要求 26或 27所述的用户设备, 以及权利要求 30或 31所述的基站;
或者, 包括如权利要求 28或 29所述的用户设备, 以及如权利要求 32或 33所述 的基站。
35、 一种计算机可读程序, 其中当在用户设备中执行所述程序时, 所述程序使得 计算机在所述用户设备中执行如权利要求 1至 16任一项所述的信号测量方法。
36、一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算 机在用户设备中执行如权利要求 1至 16任一项所述的信号测量方法。
37、 一种计算机可读程序, 其中当在基站中执行所述程序时, 所述程序使得计算 机在所述基站中执行如权利要求 17至 25任一项所述的信号测量方法。
38、一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算 机在基站中执行如权利要求 17至 25任一项所述的信号测量方法。
PCT/CN2013/084737 2013-09-30 2013-09-30 信号测量方法、用户设备以及基站 WO2015042965A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167009491A KR20160057423A (ko) 2013-09-30 2013-09-30 신호 측정 방법, 사용자 장비, 및 기지국
PCT/CN2013/084737 WO2015042965A1 (zh) 2013-09-30 2013-09-30 信号测量方法、用户设备以及基站
EP13894736.1A EP3054719A1 (en) 2013-09-30 2013-09-30 Signal measurement method, user equipment, and base station
CN201380079467.3A CN105519174A (zh) 2013-09-30 2013-09-30 信号测量方法、用户设备以及基站
JP2016517430A JP2016536838A (ja) 2013-09-30 2013-09-30 信号測定方法、ユーザ装置及び基地局
US15/073,032 US20160198355A1 (en) 2013-09-30 2016-03-17 Signal Measurement Method, User Equipment and Base Station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084737 WO2015042965A1 (zh) 2013-09-30 2013-09-30 信号测量方法、用户设备以及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/073,032 Continuation US20160198355A1 (en) 2013-09-30 2016-03-17 Signal Measurement Method, User Equipment and Base Station

Publications (1)

Publication Number Publication Date
WO2015042965A1 true WO2015042965A1 (zh) 2015-04-02

Family

ID=52741887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084737 WO2015042965A1 (zh) 2013-09-30 2013-09-30 信号测量方法、用户设备以及基站

Country Status (6)

Country Link
US (1) US20160198355A1 (zh)
EP (1) EP3054719A1 (zh)
JP (1) JP2016536838A (zh)
KR (1) KR20160057423A (zh)
CN (1) CN105519174A (zh)
WO (1) WO2015042965A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996265A (zh) * 2019-04-02 2019-07-09 华为技术有限公司 波束测量方法、装置、系统、网络设备和终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103504B2 (ja) * 2014-03-19 2017-03-29 パナソニックIpマネジメント株式会社 端末、基地局、受信品質報告方法及びデータ送信状態切替方法
WO2019032021A1 (en) 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) MEASUREMENT AND REPORT FOR CROSS-LINK INTERFERENCE MANAGEMENT BASED ON SIGNAL INTENSITY
US20200107337A1 (en) * 2018-09-28 2020-04-02 Mediatek Inc. Measurement for Layer-1 Reference Signal Received Power (L1-RSRP)
CN112911651B (zh) * 2019-12-04 2022-11-08 大唐移动通信设备有限公司 一种物理传输速率调整方法和系统
US20220303048A1 (en) * 2020-09-15 2022-09-22 Apple Inc. Receiving interference and noise power fluctuations reports from a user equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202330A (zh) * 2011-05-23 2011-09-28 北京邮电大学 蜂窝移动通信系统的覆盖自优化方法
US20130114454A1 (en) * 2011-11-07 2013-05-09 Mediatek, Inc. Minimization of Drive Tests for Uplink Link Coverage
CN103220704A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 无线通信系统中测量增强的方法和装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553594B2 (en) * 2007-03-20 2013-10-08 Motorola Mobility Llc Method and apparatus for resource allocation within a multi-carrier communication system
CN101409583B (zh) * 2007-10-11 2013-02-13 电信科学技术研究院 信号发送方法、信号发送装置
JP5684581B2 (ja) * 2008-03-13 2015-03-11 アイディーティーピー ホールディングス インコーポレイテッド 通信システムにおける隣接セル品質測定
US8300757B2 (en) * 2008-08-08 2012-10-30 Motorola Mobility Llc Methods for detection of failure and recovery in a radio link
JP5420673B2 (ja) * 2008-11-03 2014-02-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複数のアンテナポートを有するセルラ通信システムにおいてセル測定を行うための方法および構成
US8457112B2 (en) * 2008-11-07 2013-06-04 Motorola Mobility Llc Radio link performance prediction in wireless communication terminal
WO2010081388A1 (zh) * 2009-01-14 2010-07-22 大唐移动通信设备有限公司 一种协同传输的方法、系统,及移动终端、网络侧设备
US9049702B2 (en) * 2009-01-27 2015-06-02 Motorola Solutions, Inc. Method and apparatus for scheduling various types of peer-to-peer communication links
US8879479B2 (en) * 2009-01-27 2014-11-04 Motorola Solutions, Inc. Reactive scheduling methods and apparatus to enable peer-to-peer communication links in a wireless OFDMA system
US8331965B2 (en) * 2009-06-12 2012-12-11 Qualcomm Incorporated Methods and apparatus for controlling resource use in a wireless communications system
JP5016006B2 (ja) * 2009-08-24 2012-09-05 株式会社エヌ・ティ・ティ・ドコモ 受信装置及び干渉電力推定方法
US20110217985A1 (en) * 2009-09-28 2011-09-08 Qualcomm Incorporated Predictive short-term channel quality reporting utilizing reference signals
US8520617B2 (en) * 2009-11-06 2013-08-27 Motorola Mobility Llc Interference mitigation in heterogeneous wireless communication networks
EP2518919A4 (en) * 2009-12-22 2016-12-28 Lg Electronics Inc METHOD AND APPARATUS FOR EFFICIENT CHANNEL MEASUREMENT IN A MULTI-CARRIER WIRELESS COMMUNICATION SYSTEM
KR101604702B1 (ko) * 2010-01-25 2016-03-18 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 방법 및 장치
WO2011105938A1 (en) * 2010-02-24 2011-09-01 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling energy consumption in a multi-antenna base station
US8929230B2 (en) * 2010-04-15 2015-01-06 Qualcomm Incorporated Coordinated silent period with sounding reference signal (SRS) configuration
US8654734B2 (en) * 2010-06-01 2014-02-18 Texas Instruments Incorporated Multi-cell channel state information-reference symbol patterns for long term evolution extended cyclic prefix and code division multiplexing-time multiplexing
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
US9210584B2 (en) * 2010-11-29 2015-12-08 Telefonaktiebolaget L M Ericsson (Publ) Measuring signal interference using user equipment measurements
US9252930B2 (en) * 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN102651910A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 一种管理用户设备的方法及装置
WO2012169949A1 (en) * 2011-06-06 2012-12-13 Telefonaktiebolaget L M Ericsson (Publ) Ue signal quality measurements on a subset of radio resource elements
CN102821393B (zh) * 2011-06-09 2014-11-05 华为技术有限公司 处理小区间干扰的方法及装置
EP2538713B1 (en) * 2011-06-24 2014-08-06 Alcatel Lucent Performing measurements in a digital cellular wireless telecommunication network
US8977307B2 (en) * 2011-11-04 2015-03-10 Intel Corporation Beamforming coordination in heterogeneous networks
US9332505B2 (en) * 2011-11-11 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for performing measurements in adaptive downlink power transmission
CN104025673B (zh) * 2012-01-03 2018-06-19 Lg电子株式会社 用于在无线接入系统中设置下行发射功率的方法及其设备
KR102031093B1 (ko) * 2012-01-11 2019-10-11 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 방법 및 장치
CN102546113B (zh) * 2012-01-19 2014-11-26 新邮通信设备有限公司 一种lte的信道测量及反馈方法
CN106899331B (zh) * 2012-01-30 2020-08-28 日本电气株式会社 无线电通信系统和方法
WO2013162233A1 (ko) * 2012-04-22 2013-10-31 엘지전자 주식회사 무선 통신 시스템에서 채널 상태를 측정하는 방법 및 이를 위한 장치
CN104521269B (zh) * 2012-04-27 2018-05-11 马维尔国际贸易有限公司 用于基站和移动通信终端之间的多点协作(CoMP)通信方法和装置
CN105813216B (zh) * 2012-08-29 2020-02-21 华为技术有限公司 一种基站调度方法和装置
JP2014058178A (ja) * 2012-09-14 2014-04-03 Kojima Press Industry Co Ltd エンジンアンダーカバー
US9503216B2 (en) * 2012-11-02 2016-11-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices related to effective measurements
EP3337228A1 (en) * 2012-11-14 2018-06-20 Huawei Technologies Co., Ltd. Systems and methods for adaptation and reconfiguration in a wireless network
EP2944036B1 (en) * 2013-01-09 2021-05-12 LG Electronics Inc. Method and apparatus for performing measurement in wireless communication system
US9380466B2 (en) * 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
KR20140125926A (ko) * 2013-04-19 2014-10-30 삼성전자주식회사 협력 통신을 위한 기지국 간 정보 교환 방법 및 장치
CN104219724A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种小区间协作进行干扰测量的方法和节点
JP6096142B2 (ja) * 2013-08-08 2017-03-15 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202330A (zh) * 2011-05-23 2011-09-28 北京邮电大学 蜂窝移动通信系统的覆盖自优化方法
US20130114454A1 (en) * 2011-11-07 2013-05-09 Mediatek, Inc. Minimization of Drive Tests for Uplink Link Coverage
CN103220704A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 无线通信系统中测量增强的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996265A (zh) * 2019-04-02 2019-07-09 华为技术有限公司 波束测量方法、装置、系统、网络设备和终端设备
CN109996265B (zh) * 2019-04-02 2021-08-03 华为技术有限公司 波束测量方法、装置、系统、网络设备和终端设备

Also Published As

Publication number Publication date
CN105519174A (zh) 2016-04-20
JP2016536838A (ja) 2016-11-24
EP3054719A1 (en) 2016-08-10
KR20160057423A (ko) 2016-05-23
US20160198355A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US10284314B2 (en) Measurements in a wireless system
WO2016019884A1 (zh) 基站、用户设备及相关方法
EP2962409B1 (en) Method and apparatus for transmitting control information for interference measurement in a wireless communication system
KR101616236B1 (ko) 채널 측정을 위한 방법, 채널 측정을 구성하기 위한 방법 및 그것을 위한 장치
WO2015035841A1 (zh) Nct scc的激活控制装置和方法、管理方法、以及基站装置
BR112013033312B1 (pt) Métodos de medição de interferência de uma estação base e de um equipamento de usuário em um sistema de comunicações sem fio, estação base e equipamento de usuário
WO2013166932A1 (zh) 参考信号接收功率的上报方法和设备
WO2015042965A1 (zh) 信号测量方法、用户设备以及基站
US20220039099A1 (en) Triggering of aperiodic channel state information reference signals with mixed numerology
EP3857756A1 (en) Signalling for repetition
US20210392648A1 (en) Transport block size determination for repetition
WO2013113151A1 (zh) 下行功率分配的信令指示方法、基站和用户设备
US20230067324A1 (en) On triggering measurements in lte-nr interworking
WO2016119761A1 (zh) 信道质量指示cqi估计方法及装置
WO2013166657A1 (zh) 参考信号的测量方法、基站及用户设备
EP3858028B1 (en) Methods of signaling reserved resources for ultra-reliable low latency communication (urllc) traffic
JPWO2019030928A1 (ja) ユーザ端末及び無線通信方法
US20240032018A1 (en) Methods of calculating physical resource block utilization and related network nodes
US20230020284A1 (en) Method and Device For Providing Resource Status Information
US20230036989A1 (en) Methods and apparatuses for providing transmit/receive relative radio alignment verification
US20230029484A1 (en) Frequency domain scheduling with time domain beamforming
EP4042614B1 (en) Rv sequence for enhanced multi-segment pusch
US9894543B2 (en) Evaluation of radio network feature
WO2022086433A1 (en) Methods and systems for handling high-priority scheduling requests and low-priority uplink control information
WO2014183297A1 (zh) 下行数据的解调方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894736

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013894736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013894736

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016517430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009491

Country of ref document: KR

Kind code of ref document: A