WO2014065215A1 - Transparent electrode, electronic device, and organic electroluminescent element - Google Patents

Transparent electrode, electronic device, and organic electroluminescent element Download PDF

Info

Publication number
WO2014065215A1
WO2014065215A1 PCT/JP2013/078343 JP2013078343W WO2014065215A1 WO 2014065215 A1 WO2014065215 A1 WO 2014065215A1 JP 2013078343 W JP2013078343 W JP 2013078343W WO 2014065215 A1 WO2014065215 A1 WO 2014065215A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
transparent electrode
compound
organic
Prior art date
Application number
PCT/JP2013/078343
Other languages
French (fr)
Japanese (ja)
Inventor
秀謙 尾関
貴之 飯島
和央 吉田
健 波木井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014543271A priority Critical patent/JP6187471B2/en
Publication of WO2014065215A1 publication Critical patent/WO2014065215A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/56One oxygen atom and one sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/101,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/36Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/70Sulfur atoms
    • C07D277/76Sulfur atoms attached to a second hetero atom
    • C07D277/78Sulfur atoms attached to a second hetero atom to a second sulphur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]

Definitions

  • the present invention relates to a transparent electrode, an electronic device, and an organic electroluminescence element, and more particularly, to a transparent electrode having both conductivity and light transmittance, and an electronic device and an organic electroluminescence element including the transparent electrode.
  • organic electroluminescence element (hereinafter also referred to as “organic EL element” or “organic electroluminescence element”) using an organic material electroluminescence (hereinafter abbreviated as “EL”) is several V to several It is a thin-film type completely solid element that can emit light at a low voltage of about 10 V, and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • Such an organic EL element has a structure in which a light emitting layer made of an organic material is sandwiched between two electrodes, and emitted light generated in the light emitting layer is transmitted through the electrode and taken out to the outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
  • an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide, hereinafter abbreviated as ITO) is generally used.
  • ITO indium tin oxide
  • Japanese Patent Laid-Open No. 2002-15623 and Japanese Patent Laid-Open No. 2006-16961 have examined materials aiming at low resistance by laminating silver.
  • ITO uses an indium element which is a rare metal, the material cost is high, and it is necessary to anneal at about 300 ° C. after film formation in order to reduce resistance.
  • Patent Document 1 there is a technique for forming a thin film using an alloy of silver (Ag) and magnesium (Mg) having high electrical conductivity, and a technique for forming a thin film using a cheap and easily available metal material instead of indium. It has been proposed (see, for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 by using an alloy of silver and magnesium as an electrode material, it is possible to obtain desired conductivity under thin film conditions as compared with an electrode formed by silver alone. It is said that both can be achieved.
  • the resistance value of the electrode obtained by the method described in Patent Document 1 is at most about 100 ⁇ / ⁇ , which is insufficient as the conductivity of the transparent electrode.
  • magnesium has a characteristic that it is easily oxidized. For this reason, there is a problem that the performance deteriorates when stored for a long period of time in a high temperature and high humidity environment, and specifically, the variation width of the resistance value of the transparent electrode is likely to increase.
  • a transparent conductive film using a metal material such as zinc (Zn) or tin (Sn) that is inexpensive and easily available as a raw material instead of indium (In) Is disclosed.
  • the resistance value does not sufficiently decrease with these alternative metals, and in addition, the ZnO-based transparent conductive film containing zinc has a characteristic that its performance tends to fluctuate by reacting with water. Further, it has been found that the SnO 2 -based transparent conductive film containing tin has a problem that it is difficult to process by etching.
  • an organic electroluminescence element using a thin film having a layer thickness of about 15 nm and a highly transmissive silver film as a cathode is disclosed (for example, see Patent Document 3).
  • Patent Document 3 since the formed silver film is still a thick film as an electrode, the light transmittance (transparency) as a transparent electrode is not sufficient, and migration (atomic It is easy to cause movement.
  • the present invention has been made in view of the above problems, and a solution to the problem is that it has sufficient conductivity and light transmittance, has a low sheet resistance value, and is durable (sheet resistance stability).
  • a solution to the problem is that it has sufficient conductivity and light transmittance, has a low sheet resistance value, and is durable (sheet resistance stability).
  • an excellent transparent electrode and an electronic device and an organic electroluminescent element that have the transparent electrode, have sufficient conductivity and light transmittance, have low driving voltage, and have excellent durability (dark spot resistance). That is.
  • the present inventor has a configuration having a conductive layer and an intermediate layer provided adjacent to the conductive layer, and as a transparent electrode, the light transmittance at a wavelength of 550 nm and A sheet resistance value is within a specific range, the intermediate layer contains two or more organic compounds, and a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the first organic compound, A transparent material comprising 50% by mass or more and less than 99.5% by mass of the total mass of the two or more organic compounds, and the conductive layer is composed mainly of silver.
  • the electrode has sufficient conductivity and light transmittance, has a low sheet resistance value, has excellent durability (sheet resistance stability), and has the transparent electrode, sufficient conductivity And light transmission, with low driving voltage, Found that it is possible to realize an electronic device and an organic electroluminescence device excellent in durability (dark spot resistance), a completed the invention.
  • a transparent electrode having a conductive layer and an intermediate layer provided adjacent to the conductive layer,
  • the transparent electrode has a light transmittance of 50% or more at a wavelength of 550 nm and a sheet resistance value of 20 ⁇ / ⁇ or less
  • the intermediate layer contains two or more organic compounds, and a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the first organic compound is a total mass of the two or more organic compounds.
  • a transparent electrode, wherein the conductive layer is composed mainly of silver.
  • the total content of the first organic compound and the second highest organic compound is 99.5% by mass or more, and the first organic compound
  • the transparent electrode according to item 2, wherein the content of is in the range of 50 to 90% by mass.
  • the total content of the first organic compound, the second highest organic compound, and the third highest organic compound is 99.5% by mass or more. And the total content of the organic compound having the second highest content and the organic compound having the third highest content is 10% by mass or more and less than 49.5% by mass.
  • the organic compound other than the first organic compound among the two or more organic compounds is an organic compound having a halogen atom, wherein the organic compound has a halogen atom.
  • Transparent electrode is an organic compound having a halogen atom, wherein the organic compound has a halogen atom.
  • the organic compound containing a sulfur atom having an unshared electron pair is at least one selected from compounds having structures represented by the following general formulas (S1) to (S4).
  • Formula (S1): R 1 —SR 2 Formula (S2): R 3 -SSR 4 Formula (S3): R 5 -SH Formula (S4): S C (R 6 ) -SH [Wherein R 1 to R 6 each represents a substituent. ] 13.
  • the organic compound other than the first organic compound is an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity.
  • the transparent electrode according to any one of Items 12 to 12.
  • An electronic device comprising the transparent electrode according to any one of items 1 to 13.
  • An organic electroluminescence device comprising the transparent electrode according to any one of items 1 to 13.
  • a transparent electrode having sufficient conductivity and light transmittance, having a low sheet resistance value and excellent in durability (sheet resistance stability), the transparent electrode, and sufficient It is possible to provide an electronic device and an organic electroluminescent element that have conductivity and light transmittance, are low in driving voltage, and are excellent in durability (dark spot resistance).
  • the transparent electrode of the present invention has a conductive layer containing silver as a main component above the intermediate layer, and the intermediate layer has an aromatic property as the first organic compound.
  • the second organic compound has a compound having a nitrogen atom having an unshared electron pair that does not participate in the compound (hereinafter also referred to as a silver affinity compound), and the second organic compound has a small content with respect to the first organic compound.
  • the third organic compound is allowed to coexist.
  • the silver atoms constituting the conductive layer are aromatic, which is the first organic compound contained in the intermediate layer.
  • the diffusion distance of silver atoms on the surface of the intermediate layer is reduced, and aggregation of silver atoms at specific locations can be suppressed. it can.
  • the silver affinity compound is a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity
  • the nitrogen atom having an unshared electron pair is an atom having an affinity for a silver atom.
  • the second organic compound and further the third organic compound are allowed to coexist in a smaller content than the first organic compound together with the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity.
  • a synergy effect is exhibited and the amorphous property of the intermediate layer containing a compound having a nitrogen atom having an unshared electron pair is increased, so that the film density, uniformity and durability of the intermediate layer are further improved, and the upper layer is improved.
  • the conductive layer composed mainly of silver is thin, uniform, and effectively suppresses variations in sheet resistance as a transparent electrode when stored in a high-temperature, high-humidity environment. Was able to.
  • the difference in glass transition point (Tg) between the first organic compound and the second organic compound is preferably within 30 ° C.
  • An intermediate layer formed by mixing compounds having a Tg difference of 30 ° C. or less has a small fluctuation with respect to the external temperature, and can be a transparent electrode excellent in durability (sheet resistance stability).
  • the silver atom has 2 on the surface of the intermediate layer containing a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity having an affinity for the silver atom and the second or third organic compound.
  • the film is formed by single-layer growth type (Frank-van der Merwe: FM type) film formation in which a two-dimensional single crystal layer is formed around a dimensional nucleus.
  • the silver atoms attached on the surface of the intermediate layer are bonded while diffusing on the surface to form three-dimensional nuclei and grow into three-dimensional islands (Volume- In the present invention, a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, which is considered to be easily formed into an island shape by film growth with (Weber: VW type). Thus, it is assumed that island-like growth in this manner is prevented and single layer growth is promoted.
  • Schematic sectional view showing an example of the configuration of the transparent electrode of the present invention Schematic sectional view showing an example of another configuration of the transparent electrode of the present invention
  • Schematic sectional view showing a third example of an organic EL device comprising the transparent electrode of the present invention The schematic sectional drawing which shows an example of the illuminating device which enlarged the light emission surface using the organic EL element which comprised the transparent electrode of this invention.
  • the transparent electrode of the present invention is a transparent electrode having a conductive layer and an intermediate layer provided adjacent to the conductive layer, and the transparent electrode has a light transmittance of 50% or more at a wavelength of 550 nm,
  • the sheet resistance value is 20 ⁇ / ⁇ or less
  • the intermediate layer contains two or more organic compounds
  • the first organic compound has a nitrogen atom having an unshared electron pair not involved in aromaticity.
  • the conductive layer is composed mainly of silver.
  • the content of the organic compound having the second highest content of two or more organic compounds is set to 0. 2)
  • the total content of the first organic compound and the second highest organic compound among the two or more organic compounds is 99.% by mass or more and less than 50% by mass. 5% by mass or more, and the content of the first organic compound is in the range of 50 to 90% by mass, or 3) of the two or more organic compounds, the first organic compound,
  • the total content of the organic compound having the second highest content and the organic compound having the third highest content is 99.5% by mass or more, and the organic compound having the second highest content and the third.
  • the total content of organic compounds with a high content is 10% by mass
  • the amorphous property of the intermediate layer is further improved, and further excellent suppression of the fluctuation range of the sheet resistance value and suppression of variation of the sheet resistance value can be obtained. It is preferable from the viewpoint.
  • the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has an azacarbazole ring, a pyridine ring, or a ⁇ , ⁇ '-diazacarbazole ring or ⁇ - It is preferable to have a carboline ring from the viewpoint of obtaining further excellent conductivity, light transmittance, and durability.
  • the other organic compound used in combination with the first organic compound is preferably an organic compound having a halogen atom, and further, the halogen atom contained in the organic compound having a halogen atom is bromine. Further excellent conductivity, light transmittance and durability can be obtained when the compound is an atom or iodine atom, or the organic compound having a halogen atom is a compound having a structure represented by the general formula (1). It is preferable from the viewpoint that
  • the other organic compound used in combination with the first organic compound is preferably an organic compound containing a sulfur atom having an unshared electron pair, and further, a sulfur atom having an unshared electron pair.
  • the organic compound containing is at least one selected from compounds having a structure represented by the general formulas (S1) to (S4), so that further excellent conductivity, light transmittance and durability can be obtained. It is preferable from a viewpoint which can be obtained.
  • the other organic compound used in combination with the first organic compound is an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, and further excellent conductivity. From the viewpoint of obtaining light transmittance and durability.
  • the electronic device of the present invention is characterized by including the transparent electrode of the present invention.
  • the organic electroluminescent element of this invention has comprised the transparent electrode of this invention, It is characterized by the above-mentioned.
  • is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • Transparent electrode >> 1A and 1B are schematic cross-sectional views each showing an example of the configuration of the transparent electrode of the present invention.
  • the transparent electrode 1 of the present invention shown in FIG. 1A is characterized in that the light transmittance at a wavelength of 550 nm is 50% or more and the sheet resistance value is 20 ⁇ / ⁇ or less, and the structure is intermediate.
  • the layer 1a has a two-layer structure in which a conductive layer 1b is stacked on the intermediate layer 1a.
  • the intermediate layer 1 a and the conductive layer 1 b are provided in this order on the base 11.
  • the intermediate layer 1a according to the present invention contains two or more kinds of organic compounds, and the first organic compound contains a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the two or more kinds.
  • the conductive layer 1b according to the present invention which is a layer containing 50% by mass or more and less than 99.5% by mass of the total mass of the organic compound, is composed mainly of silver. It is the layer currently made.
  • the main component of the conductive layer 1b means that the silver content in the conductive layer 1b is 60% by mass or more, and preferably the silver content is 80% by mass or more. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • transparent as used in the transparent electrode 1 of the present invention means that the light transmittance measured at a wavelength of 550 nm is 50% or more, preferably 70% or more, and more preferably 80% or more.
  • the transparent electrode 1 of the present invention has an intermediate layer 1a and a conductive layer 1b on a substrate 11, and a second layer on the conductive layer 1b. It is also a preferred embodiment that the intermediate layer 1c is laminated and the conductive layer 1b is sandwiched between the intermediate layer 1a and the intermediate layer 1c.
  • the upper portion of the conductive layer 1b is further covered with a protective layer.
  • a protective layer It may be a configuration, or a configuration in which the second conductive layer is laminated.
  • both the protective layer and the second conductive layer have high light transmittance so as not to impair the light transmittance of the transparent electrode 1.
  • Examples of the base material 11 used to hold the transparent electrode 1 of the present invention include, but are not limited to, glass and plastic. Moreover, although the base material 11 may be transparent or opaque, when the transparent electrode 1 of this invention is used for the electronic device which takes out light from the base material 11 side, the base material 11 is transparent. It is preferable that Examples of the transparent substrate 11 that is preferably used include glass, quartz, and a resin film.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoints of adhesion to the intermediate layer 1a, durability, and smoothness, the surface of these glass materials may be subjected to physical treatment such as polishing, if necessary, and from inorganic or organic substances. Or a hybrid film formed by combining these films may be used.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, Cellulose acetates such as cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polypheny Sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyary
  • a coating made of an inorganic material or an organic material (hereinafter also referred to as “barrier film”) or a hybrid coating combining these coatings may be formed.
  • Such coatings and hybrid coatings have a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992 of 0.01 g / (m (2 ⁇ 24 hours) or less is preferable.
  • the oxygen permeability measured by a method according to JIS-K-7126-1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less
  • the water vapor permeability is 1 ⁇ 10 ⁇ 5 g. / (M 2 ⁇ 24 hours) or less is preferable.
  • the material for forming the barrier film as described above may be any material having a function of suppressing the intrusion of factors that cause deterioration of electronic devices such as moisture and oxygen and organic EL elements, such as silicon dioxide, Silicon nitride or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers (organic layers) made of an organic material. Although there is no restriction
  • the method for producing the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A polymerization method, a plasma CVD method (CVD: Chemical Vapor Deposition), a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but the atmospheric pressure plasma weight described in JP-A-2004-68143 can be used. A legal method is particularly preferred.
  • the base 11 is made of an opaque material, for example, a metal substrate such as aluminum or stainless steel, a film or an opaque resin substrate, a ceramic substrate, or the like can be used.
  • the intermediate layer 1a according to the present invention contains two or more kinds of organic compounds, and the first organic compound contains a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the two or more kinds. It is a layer comprised by containing in the range of 50 mass% or more and less than 99.5 mass% of the total mass of an organic compound.
  • the content of the organic compound having the second highest content is 2% by mass or more and less than 50% by mass among the two or more organic compounds contained in the intermediate layer. Is a preferable configuration.
  • the first organic compound is a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity.
  • the total content of the organic compound having the second highest content is 99.5% by mass or more, and the first organic compound has a nitrogen atom having an unshared electron pair not involved in aromaticity. It is preferable that the content of the compound is in the range of 50 to 90% by mass.
  • the first organic compound, the second highest organic compound, and the third highest organic compound among the two or more organic compounds contained in the intermediate layer The total content of the organic compound having the second highest content and the third highest organic compound is 10% by mass or more and 49.5% by mass. It is a preferable structure that it is less than%.
  • the first organic compound has a nitrogen atom having a non-shared electron pair that does not participate in aromaticity, and the first organic compound has a structure different from that of the first organic compound and does not participate in other aromaticity.
  • a compound having a nitrogen atom having an electron pair can also be used as the second organic compound or the third organic compound.
  • the compound having a nitrogen atom having an unshared electron pair that is not involved in aromaticity with the highest content is the first organic compound, and the second organic compound, 3 in order of the higher content. It is defined as the second organic compound.
  • the organic compound other than the first organic compound contained in the intermediate layer is an organic compound having a halogen atom, a sulfur atom having an unshared electron pair, or unshared not involving aromaticity.
  • An asymmetric compound having a nitrogen atom having an electron pair is preferred.
  • the method for forming the film includes a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, or a vapor deposition method.
  • a method using a dry process such as resistance heating, EB method (electron beam method), sputtering method, CVD method, or the like.
  • the vapor deposition method is preferably applied.
  • the intermediate layer 1a includes, as the first organic compound, a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity, and an all organic material constituting the intermediate layer. It is contained within the range of 50% by mass or more and less than 99.5% by mass of the compound.
  • the “nitrogen atom having an unshared electron pair not involved in aromaticity” is a nitrogen atom having an unshared electron pair, and the unshared electron pair becomes an aromatic property of the unsaturated cyclic compound.
  • a nitrogen atom that is not directly involved as an essential element That is, a non-localized ⁇ electron system on a conjugated unsaturated ring structure (aromatic ring) has a nitrogen atom in which a lone pair is not involved as an essential element for aromatic expression in the chemical structural formula Say.
  • Nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs, so that the number of bonds of nitrogen atoms is usually three.
  • an amino group (—NR 1 R 2 ), an amide group (—C ( ⁇ O) NR 1 R 2 ), a nitro group (—NO 2 ), a cyano group (—CN), a diazo group (—N 2 ), An azide group (—N 3 ), a urea bond (—NR 1 C ⁇ ONR 2 —), an isothiocyanate group (—N ⁇ C ⁇ S), a thioamide group (—C ( ⁇ S) NR 1 R 2 ) and the like.
  • R 1 and R 2 each represent a substituent.
  • the resonance formula of a nitro group (—NO 2 ) can be expressed as follows. Strictly speaking, the unshared electron pair of the nitrogen atom in the nitro group is used for the resonance structure with the oxygen atom, but in the present invention, it is defined that the nitrogen atom of the nitro group also has an unshared electron pair.
  • a nitrogen atom can also create a fourth bond by utilizing an unshared electron pair.
  • TBAC tetrabutylammonium chloride
  • Tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ) is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated. Although these compounds have a nitrogen atom, the lone pair of electrons is used for ionic bond and coordinate bond, respectively. Is not applicable.
  • the present invention is to effectively utilize unshared electron pairs of nitrogen atoms that are not used for bonding.
  • the left side shows the structure of tetrabutylammonium chloride (abbreviation: TBAC), and the right side shows the structure of tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ).
  • nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity.
  • nitrogen-containing aromatic ring examples include a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, and a tetrazole ring.
  • the nitrogen atom of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention.
  • the molecular orbital of the pyridine ring is shown below.
  • a pyrrole ring As shown below, one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of ⁇ electrons is six and satisfies the Hückel rule.
  • a nitrogen-containing aromatic ring Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, an unshared electron pair is mobilized to the 6 ⁇ electron system.
  • the nitrogen atom of the pyrrole ring has an unshared electron pair, it has been utilized as an essential element for the expression of aromaticity, and therefore the “unshared electron pair not involved in aromaticity” of the present invention. Does not correspond to "nitrogen atom having".
  • the molecular orbital of the pyrrole ring is shown below.
  • the imidazole ring is a nitrogen-containing aromatic ring having a structure in which two nitrogen atoms are substituted at the 1- and 3-positions in a 5-membered ring, and also has 6 ⁇ electrons.
  • the nitrogen atom N 1 is a pyridine ring-type nitrogen atom in which only one unpaired electron is mobilized to the 6 ⁇ -electron system, and the unshared electron pair is not used for aromaticity expression.
  • the nitrogen atom N 2 is a pyrrole-ring nitrogen atom that mobilizes an unshared electron pair to the 6 ⁇ electron system.
  • the nitrogen atom N 1 of the imidazole ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” in the present invention.
  • the molecular orbital of the imidazole ring is shown below.
  • ⁇ -carboline is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order.
  • the nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron
  • the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the ⁇ -electron system, respectively, to form a ring.
  • the total number of ⁇ electrons is 14 aromatic rings.
  • the nitrogen atom N 3 of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention, but the nitrogen of the pyrrole ring The atom N 4 does not fall under this.
  • the “nitrogen atom having an unshared electron pair not involved in aromaticity” defined in the present invention expresses a strong interaction between the unshared electron pair and silver which is the main component of the conductive layer. Is important for.
  • a nitrogen atom is preferably a nitrogen atom in the nitrogen-containing aromatic ring from the viewpoint of stability and durability.
  • the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as long as it has a structure having a nitrogen atom having an unshared electron pair not involved in aromaticity in the molecule, although it is not limited, it is preferably a compound having an aromatic heterocycle in the molecule, a compound having an azacarbazole ring in the molecule, or ⁇ , ⁇ '-diazacarbazole ring or ⁇ -A compound having a carboline ring is preferred.
  • Specific examples of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention include an aromatic heterocyclic compound represented by the following general formula (1A).
  • the aromatic heterocyclic compound represented by the general formula (1A) is an aromatic heterocyclic compound represented by any of the following general formula (1B), general formula (1C), or general formula (1D). It is preferable. Further, an aromatic heterocyclic compound represented by the following general formula (1E) or general formula (1F) is also preferable as a nitrogen atom-containing compound having an unshared electron pair not involved in the aromaticity contained in the intermediate layer. Can be used.
  • E 101 to E 108 each represent C (R 12 ) or a nitrogen atom, and at least one of E 101 to E 108 is a nitrogen atom.
  • R ⁇ 11 > in General formula (1A) and said R ⁇ 12 > respectively represent a hydrogen atom or a substituent.
  • substituents examples include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group.
  • a cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • an alkenyl group for example, vinyl group, allyl group, etc.
  • an alkynyl group for example, ethynyl group, propargyl group, etc.
  • an aromatic hydrocarbon ring group also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl Group, pyrenyl group, biphenylyl group), aromatic heterocyclic group (eg For example, furyl, thienyl, pyridyl, pyridazinyl, pyr
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • the general formula (1B) is also a form of the general formula (1A).
  • Y 21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • E 201 to E 216 and E 221 to E 238 each represent C (R 21 ) or a nitrogen atom, and R 21 represents a hydrogen atom or a substituent.
  • R 21 represents a hydrogen atom or a substituent.
  • at least one of E 221 to E 229 and at least one of E 230 to E 238 represent a nitrogen atom.
  • k21 and k22 each represents an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
  • examples of the arylene group represented by Y 21 include o-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, and biphenyl.
  • Diyl groups eg, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.
  • terphenyldiyl group eg, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.
  • terphenyldiyl group eg, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.
  • terphenyldiyl group eg, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl
  • examples of the heteroarylene group represented by Y 21 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, one of carbon atoms constituting the carboline ring). From the group consisting of a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring. Examples are derived divalent groups and the like.
  • the divalent linking group comprising an arylene group, a heteroarylene group or a combination thereof represented by Y 21 , a condensed aromatic heterocyclic ring formed by condensing three or more rings among heteroarylene groups
  • the group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is preferably a group derived from a dibenzofuran ring or a dibenzothiophene ring. Preferred are the groups
  • E 201 to E 208 and 6 or more of E 209 to E 216 are each represented by C (R 21 ).
  • At least one of E 225 to E 229 and at least one of E 234 to E 238 are nitrogen atoms.
  • any one of E 225 to E 229 and any one of E 234 to E 238 are preferably nitrogen atoms.
  • E 221 to E 224 and E 230 to E 233 are each represented by C (R 21 ).
  • E 203 is represented by C (R 21 ) and R 21 represents a linking site
  • E 211 is also represented by C (R 21 ).
  • R 21 preferably represents a linking moiety.
  • E 225 and E 234 are preferably nitrogen atoms, and E 221 to E 224 and E 230 to E 233 are each preferably represented by C (R 21 ).
  • the general formula (1C) is also a form of the general formula (1A).
  • E 301 to E 312 each represent C (R 31 ), and R 31 represents a hydrogen atom or a substituent.
  • Y 31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • the general formula (1D) is also a form of the general formula (1A).
  • E 401 to E 414 each represent C (R 41 ), and R 41 represents a hydrogen atom or a substituent.
  • Ar 41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • k41 represents an integer of 3 or more.
  • Ar 41 represents an aromatic hydrocarbon ring
  • examples of the aromatic hydrocarbon ring include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, and pyrene.
  • These rings may further have the substituents exemplified as R 11 and R 12 in the general formula (1A).
  • Ar 41 represents an aromatic heterocyclic ring
  • examples of the aromatic heterocyclic ring include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, Pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring Carbazole ring, azacarbazole ring and the like.
  • the azacarbazole ring refers to one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom. These rings may further have the substituents exemplified as R 11 and R 12 in the general formula (1A).
  • At least one of E 501 and E 502 is a nitrogen atom
  • at least one of E 511 to E 515 is a nitrogen atom
  • one of E 521 to E 525 At least one is a nitrogen atom.
  • R 51 represents a substituent.
  • R 51 represents a substituent
  • examples of the substituent include the substituents exemplified as R 11 and R 12 in the general formula (1A).
  • E 601 to E 612 each represent C (R 61 ) or a nitrogen atom, and R 61 represents a hydrogen atom or a substituent.
  • Ar 61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • R 61 of C (R 61) represented by each of E 601 ⁇ E 612 is a substituent
  • examples of the substituent, R 11 in the general formula (1A) The substituents exemplified as R 12 apply in the same manner.
  • the substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar 61 may be the same as Ar 41 in the general formula (1D).
  • No. 1-No. 37 is a specific example of a compound having a structure represented by general formula (1A) to general formula (1F).
  • the compound having a nitrogen atom having an unshared electron pair not involved in the aromaticity according to the present invention which is contained in the intermediate layer 1a according to the present invention, is represented by the general formulas (1A) to (1F) below. Specific examples other than the compound having a structure are shown below, but are not limited thereto.
  • x and y represent the ratio of a random copolymer, respectively.
  • the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention can be easily synthesized according to a conventionally known synthesis method.
  • the organic compound other than the first organic compound is preferably an organic compound having a halogen atom.
  • the organic compound having a halogen atom according to the present invention is a compound containing at least a halogen atom and a carbon atom, and the structure thereof is not particularly limited, but the halogenated aryl compound represented by the following general formula (1) Is preferred.
  • Ar represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • X represents a halogen atom, and m is an integer of 1 to 5.
  • L represents a direct bond or a divalent linking group, and n represents 0 or 1.
  • R represents a hydrogen atom or a substituted ring group.
  • k represents an integer of 1 to 5.
  • examples of the aromatic hydrocarbon ring group represented by Ar include a phenyl group, a p-chlorophenyl group, a mesityl group, and tolyl.
  • Examples of the aromatic heterocyclic group represented by Ar include a pyridyl group, a pyrimidinyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a benzimidazolyl group, a pyrazolyl group, a pyrazinyl group, and a triazolyl group (for example, 1,2, Examples include 4-triazol-1-yl group and 1,2,3-triazol-1-yl group.
  • Ar is preferably an aromatic hydrocarbon ring group, more preferably a phenyl group.
  • halogen atom represented by X examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a chlorine atom, a bromine atom or an iodine atom is preferable, and a more preferable example is , Bromine atom or iodine atom.
  • M represents an integer of 1 to 5, preferably 1 or 2.
  • L represents a direct bond or a divalent linking group.
  • the divalent linking group include an alkylene group (eg, methylene group, ethylene group, trimethylene group, propylene group), a cycloalkylene group (eg, 1,2-cyclobutanediyl group, 1,2-cyclopentanediyl group, 1,3-cyclopentanediyl group, 1,2-cyclohexanediyl group, 1,3-cyclohexanediyl group, 1,4-cyclohexanediyl group, 1,2-cycloheptanediyl group, 1,3-cycloheptanediyl group 1,4-cycloheptanediyl group, etc.), arylene groups (for example, o-phenylene group, m-phenylene group, p-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,3 -Nap
  • the divalent linking group represented by L is preferably an alkylene group, and more preferably a methylene group.
  • N represents 0 or 1, but is preferably 0.
  • R represents a hydrogen atom or a substituent.
  • substituents include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group eg, vinyl group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic complex A group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imi
  • K represents an integer from 1 to 5.
  • the halogenated aryl compound represented by the general formula (1) is a compound further having a structure formed from seven phenyl groups represented by the following general formula (2) as a mother nucleus. Is preferred.
  • X represents a halogen atom
  • m1 to m3 are each an integer of 0 to 5.
  • m1 + m2 + m3 is at least 1 or more.
  • L represents a direct bond or a divalent linking group, and n1 to n3 each represents 0 or 1.
  • halogen atom represented by X examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a chlorine atom, a bromine atom or an iodine atom is preferable, and a bromine atom is more preferable.
  • it is an iodine atom.
  • L represents a direct bond or a divalent linking group and is synonymous with L in the general formula (1).
  • halogenated aryl compound represented by the general formula (1) according to the present invention are shown below, but the present invention is not limited to these exemplified compounds.
  • the halogenated aryl compound represented by the general formula (1) according to the present invention can be easily synthesized according to a conventionally known synthesis method.
  • the halogen atom ratio defined by the following formula (1) is within the range of 0.30 to 0.65. It is preferable from the viewpoint that the objective effect of the present invention can be expressed more.
  • the organic compound other than the first organic compound is preferably an organic compound containing a sulfur atom having an unshared electron pair.
  • the organic compound containing a sulfur atom having an unshared electron pair according to the present invention is preferably at least one selected from compounds having structures represented by the following general formulas (S1) to (S4).
  • Formula (S1): R 1 —SR 2 Formula (S2): R 3 -SSR 4 Formula (S3): R 5 -SH Formula (S4): S C (R 6 ) -SH
  • R 1 to R 6 each represents a substituent.
  • Examples of the substituent represented by R 1 to R 6 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, Tridecyl group, tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.) , Aromatic hydrocarbon groups (also referred to as aromatic carbocyclic groups, aryl groups, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group
  • Oxy group a Alkyloxy group (for example, phenoxy group, naphthyloxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group) Group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group) Group), aryloxycarbonyl group (eg, phenyloxycarbonyl
  • the compound having a structure represented by the general formula (3) includes a compound having a structure in which a hydrogen atom is desorbed and ionized.
  • the following is a compound other than the first organic compound that can be used in combination with a compound having a nitrogen atom having an unshared electron pair that is not involved in aromaticity, which is the first organic compound, in the intermediate layer according to the present invention.
  • a compound having a nitrogen atom having an unshared electron pair that is not involved in aromaticity
  • Specific examples of the organic compound containing a sulfur atom having an unshared electron pair are shown, but the invention is not limited thereto.
  • the organic compound containing a sulfur atom having an unshared electron pair according to the present invention can be easily synthesized according to a conventionally known synthesis method.
  • the first organic compound which has a nitrogen atom having a non-shared electron pair that does not participate in aromaticity, has a similar structure but does not participate in aromaticity. It is preferable to use an asymmetric compound having a nitrogen atom having a pair as an organic compound other than the first organic compound.
  • asymmetric compound means that the chemical structure of the compound does not have a line symmetry axis and a rotation axis. However, rotamers are not distinguished and are regarded as the same compound.
  • the comparative compounds (target compounds) shown below, ET-1 and ET-2 have a line symmetry axis at the center, and the left and right sides of the symmetry axis have mirror symmetry and line symmetry.
  • ET-3 overlaps itself and has three-fold rotational symmetry when rotated 120 degrees around the center of the molecule.
  • the asymmetric compound according to the present invention does not have an axis of line symmetry, and since it cannot overlap with itself even if it rotates about the center of the molecule, it has an axis of rotational symmetry. It is a structural feature that it is not.
  • an intermediate layer It is considered that the uniformity and the film density are improved, and as a result, the conductive layer composed mainly of silver formed in the upper layer is thin and uniform.
  • the content of nitrogen atom not involved in aromaticity defined by the following formula (2) is 0 It is preferably 40% or more.
  • Nitrogen atom content (number of nitrogen atoms having unshared electron pairs not involved in aromaticity / molecular weight of asymmetric compound) ⁇ 100 (%)
  • the nitrogen atom content defined in the present invention is more preferably 0.80% or more, and the upper limit value is preferably 1.50% or less.
  • Examples of the asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention include a group of compounds having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the invention exemplified above. Among them, a compound having a nitrogen atom having an unshared electron pair not having aromaticity and having an asymmetric structure corresponding to the above definition can be used.
  • the conductive layer 1b according to the present invention is a layer composed mainly of silver and is formed on the intermediate layer 1a.
  • Examples of the method for forming the conductive layer 1b according to the present invention include a method using a wet process such as a coating method, an inkjet method, a coating method, a dipping method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and the like. And a method using a dry process such as a CVD method.
  • the vapor deposition method is preferably applied.
  • the conductive layer 1b is formed on the intermediate layer 1a, so that the conductive layer 1b is sufficiently conductive even without a high-temperature annealing process (for example, a heating process at 150 ° C. or higher) after the formation of the conductive layer.
  • a high-temperature annealing process for example, a heating process at 150 ° C. or higher
  • high-temperature annealing may be performed after the film formation.
  • the layer composed mainly of silver in the present invention means that the silver content in the conductive layer 1b is 60% by mass or more, and preferably the silver content is 80%. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • the conductive layer 1b may be formed of silver alone or an alloy containing silver (Ag).
  • alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
  • the conductive layer 1b according to the present invention may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • the conductive layer 1b preferably has a layer thickness in the range of 5 to 8 nm.
  • a layer thickness of 8 nm or less is more preferable because the absorption component or reflection component of the layer is reduced and the transmittance of the transparent electrode is improved.
  • a layer thickness of 5 nm or more is preferable because the layer has sufficient conductivity.
  • the transparent electrode 1 of the present invention is composed mainly of silver on the intermediate layer 1a configured to contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity.
  • the conductive layer 1b is provided.
  • the nitrogen having the unshared electron pair in which the silver atoms constituting the conductive layer 1b are not involved in the aromaticity constituting the intermediate layer 1a By interacting with atoms, the diffusion distance of silver atoms on the surface of the intermediate layer 1a is reduced, and the formation of silver aggregates can be suppressed.
  • the film grows in an island-like growth type (Volume-Weber: VW type), so that silver particles are isolated in an island shape.
  • VW type island-like growth type
  • the layer thickness needs to be increased to some extent.
  • the layer thickness is increased, the light transmittance is lowered, which is not suitable as a transparent electrode.
  • the transparent electrode 1 having the configuration defined in the present invention, the interaction between the nitrogen atom and silver on the intermediate layer 1a containing the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. As a result, the aggregation of silver is suppressed, so that in the formation of the conductive layer 1b composed mainly of silver, the film grows in a single-layer growth type (Frank-van der Merwe: FM type). .
  • transparent in the transparent electrode 1 means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the above-described materials used as the intermediate layer 1a are mainly made of silver. Compared to the conductive layer 1b as a component, it is a good film having sufficient light transmittance.
  • the conductivity of the transparent electrode 1 is ensured mainly by the conductive layer 1b. Therefore, as described above, the conductive layer 1b composed mainly of silver has a thinner layer to ensure conductivity, thereby improving the conductivity and light transmission of the transparent electrode 1. It was possible to achieve a balance with improvement in performance.
  • the transparent electrode 1 of the present invention having the above-described configuration can be used for various electronic devices.
  • Examples of electronic devices include organic EL elements, LEDs (light emitting diodes), liquid crystal elements, solar cells, touch panels, etc.
  • the present invention is used as an electrode member that requires light transmission.
  • the transparent electrode 1 can be used.
  • FIG. 2 is a schematic cross-sectional view showing a first example of an organic EL element including the transparent electrode 1 of the present invention as an example of the electronic device of the present invention.
  • an example of the configuration of the organic EL element will be described with reference to FIG.
  • An organic EL element 100 shown in FIG. 2 is provided on a transparent substrate (base material) 13, and in order from the transparent substrate 13 side, a light emitting functional layer group 3 configured using the transparent electrode 1, an organic material, and the like, The counter electrode 5a is laminated in this order.
  • the transparent electrode 1 of the present invention described above is used as the transparent electrode 1.
  • the organic EL element 100 is configured to extract the emitted light L generated from the emission point h from at least the transparent substrate 13 side.
  • the layer structure of the organic EL element 100 will be described, but the present invention is not limited to these exemplified configuration examples, and a general layer structure may be used.
  • FIG. 2 shows a configuration in which the transparent electrode 1 functions as an anode (that is, an anode) and the counter electrode 5a functions as a cathode (that is, a cathode).
  • the hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d / electron injection are sequentially arranged from the transparent electrode 1 side which is an anode.
  • the layer 3e is stacked.
  • it is an indispensable condition for the organic EL element to provide at least the light emitting layer 3c composed of an organic material.
  • the hole injection layer 3a and the hole transport layer 3b may be provided as a hole transport / injection layer.
  • the electron transport layer 3d and the electron injection layer 3e may be provided as an electron transport / injection layer.
  • the electron injection layer 3e may be made of an inorganic material.
  • the light emitting functional layer group 3 may be laminated at a necessary place as necessary, such as a hole blocking layer and an electron blocking layer, in addition to the constituent layers exemplified above.
  • the light emitting layer 3c may have a structure in which each color light emitting layer that generates emitted light in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting auxiliary layer.
  • the auxiliary layer may function as a hole blocking layer or an electron blocking layer.
  • the counter electrode 5a which is a cathode, may have a laminated structure as necessary. In such a configuration, only the portion where the light emitting functional layer group 3 is sandwiched between the transparent electrode 1 and the counter electrode 5 a becomes a light emitting region in the organic EL element 100.
  • the auxiliary electrode 15 as shown in FIG. 2 is provided in contact with the conductive layer 1 b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. May be.
  • the organic EL element 100 having the above-described configuration is formed on the transparent substrate 13 with a sealing material 17 to be described later for the purpose of preventing deterioration of the light emitting functional layer group 3 configured mainly using an organic material or the like.
  • the sealing structure is formed.
  • the sealing material 17 is fixed to the transparent substrate 13 side with an adhesive 19.
  • the terminal portions of the transparent electrode 1 and the counter electrode 5a are provided on the transparent substrate 13 in a state of being exposed from the sealing material 17 while maintaining insulation from each other by the light emitting functional layer group 3.
  • the details of the main layers for constituting the organic EL element 100 shown in FIG. 2 are as follows: the transparent substrate 13, the transparent electrode 1, the counter electrode 5 a, the light emitting layer 3 c of the light emitting functional layer group 3, and the light emitting functional layer group 3.
  • Other functional layers, the auxiliary electrode 15, and the sealing material 17 will be described in this order.
  • the transparent substrate 13 is the base material 11 on which the transparent electrode 1 of the present invention described above is provided, and the transparent base material 11 having light transmittance among the base materials 11 described above is used.
  • the transparent electrode 1 (anode: anode) is the transparent electrode 1 of the present invention already described in detail, and contains, in order from the transparent substrate 13 side, a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity.
  • the intermediate layer 1a and the conductive layer 1b containing silver as a main component are sequentially formed.
  • the transparent electrode 1 functions as an anode (anode), and the conductive layer 1b is a substantial anode.
  • the counter electrode 5a (cathode: cathode) is an electrode film that functions as a cathode (cathode) for supplying electrons to the light emitting functional layer group 3, and is, for example, a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • Etc. aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
  • the counter electrode 5a can be produced by forming these conductive materials into a thin film by a method such as vapor deposition or sputtering.
  • the sheet resistance as the counter electrode 5a is preferably several hundred ⁇ / ⁇ or less, and the layer thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic EL element 100 In the case where the organic EL element 100 sometimes takes out the emitted light L from the counter electrode 5a side, it can be countered by selecting a conductive material having a good light transmission property from among the conductive materials described above. What is necessary is just to comprise the electrode 5a.
  • the light emitting layer 3c constituting the light emitting functional layer of the organic EL device of the present invention contains a light emitting material. Among them, it is preferable that a phosphorescent light emitting compound is contained as the light emitting material.
  • the light emitting layer 3c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 3d and holes injected from the hole transport layer 3b, and the light emitting portion is a light emitting layer. Even in the layer 3c, it may be an interface between the light emitting layer 3c and the adjacent layer.
  • the light emitting layer 3c is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer between the light emitting layers 3c.
  • the total thickness of the light emitting layer 3c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm from the viewpoint of obtaining a lower driving voltage.
  • the sum total of the layer thickness of the light emitting layer 3c is a layer thickness also including the said auxiliary layer, when a nonluminous auxiliary layer exists between the light emitting layers 3c.
  • the thickness of each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably adjusted within the range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to blue, green, and red light emission colors, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 3c configured as described above is formed by forming a light emitting material or a host compound, which will be described later, according to a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, and an ink jet method. Can be formed.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, and an ink jet method. Can be formed.
  • the light emitting layer 3c may be configured by mixing a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (hereinafter also referred to as “fluorescent dopant” or “fluorescent compound”). And may be configured.
  • the structure of the light emitting layer 3c contains a host compound (hereinafter also referred to as “light emitting host”) and a light emitting material (hereinafter also referred to as “light emitting dopant compound”, “light emitting dopant” or “dopant compound”), and emits light. It is preferable to make the material emit light.
  • a host compound hereinafter also referred to as “light emitting host”
  • a light emitting material hereinafter also referred to as “light emitting dopant compound”, “light emitting dopant” or “dopant compound”
  • ⁇ Host compound> As the host compound contained in the light emitting layer 3c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
  • the host compound a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, the charge transfer rate can be adjusted, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • Tg glass transition temperature
  • H1 to H79 Specific examples (H1 to H79) of host compounds that can be used in the present invention are shown below, but are not limited thereto.
  • x, y, p, q, and r described in the host compounds H68 to H71 each represent a ratio of the random copolymer.
  • N represents the degree of polymerization.
  • Light emitting material examples include phosphorescent compounds (hereinafter also referred to as “phosphorescent compounds” and “phosphorescent materials”).
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the light emission principle of the phosphorescent compound There are two methods for the light emission principle of the phosphorescent compound.
  • One method is that recombination of carriers occurs on a host compound to which carriers are transported, and an excited state of the host compound is generated, and this energy is transferred to the phosphorescent compound, thereby transferring the energy from the phosphorescent compound. It is an energy transfer type that obtains luminescence.
  • Another method is a carrier trap type in which a phosphorescent compound becomes a carrier trap, carrier recombination occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained. In either case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected and used from known compounds used in the light emitting layer of a general organic EL device.
  • a group 8-10 metal in the periodic table of elements is used. It is a complex compound to be contained, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • At least one light emitting layer 3c may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 3c is the thickness direction of the light emitting layer 3c. It may be an aspect that changes.
  • the content of the phosphorescent compound is preferably in the range of 0.1 to 30% by volume with respect to the total volume of the light emitting layer 3c.
  • the light emitting layer 3c according to the present invention contains a compound having a structure represented by the following general formula (A) as a phosphorescent compound. It is preferable.
  • the phosphorescent compound represented by the following general formula (A) (also referred to as a phosphorescent metal complex) is preferably contained in the light emitting layer 3c of the organic EL element 100 as a light emitting dopant. However, it may be contained in the light emitting functional layer group 3 other than the light emitting layer 3c.
  • P and Q each represent a carbon atom or a nitrogen atom.
  • a 1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C.
  • a 2 represents an atomic group that forms an aromatic heterocycle with QN.
  • P 1 -L 1 -P 2 represents a bidentate ligand, and P 1 and P 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with P 1 and P 2 .
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M 1 represents a group 8-10 transition metal element in the periodic table.
  • P and Q each represent a carbon atom or a nitrogen atom.
  • examples of the aromatic hydrocarbon ring that A 1 forms with P—C include, for example, a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • These rings may further have a substituent.
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group).
  • examples of the aromatic heterocycle formed by A 1 together with PC include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring And azacarbazole ring.
  • the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
  • examples of the aromatic heterocycle formed by A 2 together with QN include an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, a thiadiazole ring, and a thiatriazole ring.
  • P 1 -L 1 -P 2 represents a bidentate ligand
  • P 1 and P 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom
  • L 1 represents an atomic group forming a bidentate ligand together with P 1 and P 2 .
  • Examples of the bidentate ligand represented by P 1 -L 1 -P 2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone, picolinic acid, and the like.
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 represents 2 or 3
  • j2 is preferably 0.
  • a transition metal element of Group 8 to Group 10 (also simply referred to as a transition metal) in the periodic table is used, and among these, iridium is preferable.
  • Z represents a hydrocarbon ring group or a heterocyclic group.
  • P and Q each represent a carbon atom or a nitrogen atom.
  • a 1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C.
  • P 1 -L 1 -P 2 represents a bidentate ligand.
  • P 1 and P 2 each independently represent a carbon atom, a nitrogen atom, or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with P 1 and P 2 .
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M 1 represents a group 8-10 transition metal element in the periodic table.
  • examples of the hydrocarbon ring group represented by Z include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group. , Cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or may have the same substituents that the ring represented by A 1 in the general formula (A) may have.
  • aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl. Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
  • examples of the heterocyclic group represented by Z include a non-aromatic heterocyclic group and an aromatic heterocyclic group.
  • examples of the non-aromatic heterocyclic group include an epoxy ring and an aziridine group. Ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ - Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring
  • aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
  • oxazolyl group 1,2,3-triazol-1-yl group, etc.
  • benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
  • the group represented by Z is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • examples of the aromatic hydrocarbon ring that A 1 forms with PC include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • These rings may further have a substituent, and examples of such a substituent are the same as the substituent that the ring represented by A 1 in the general formula (A) may have. Things.
  • examples of the aromatic heterocycle formed by A 1 together with PC include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine.
  • the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
  • These rings may further have a substituent, and examples of such a substituent are the same as the substituent that the ring represented by A 1 in the general formula (A) may have. Things.
  • R 01 and the substituent represented by R 02 has the same meaning as the substituent which the ring represented by A 1 in the general formula (A) may have.
  • examples of the bidentate ligand represented by P 1 -L 1 -P 2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone, and picoline. An acid etc. are mentioned.
  • J1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 represents 2 or 3
  • j2 is preferably 0.
  • transition metal element of group 8 to group 10 in the periodic table of elements represented by M 1 (also simply referred to as transition metal) is the element represented by M 1 in the general formula (A). Synonymous with Group 8-10 transition metal elements in the periodic table.
  • R 03 represents a substituent.
  • R 04 represents a hydrogen atom or a substituent, and a plurality of R 04 may be bonded to each other to form a ring.
  • n01 represents an integer of 1 to 4.
  • R 05 represents a hydrogen atom or a substituent, and a plurality of R 05 may be bonded to each other to form a ring.
  • n02 represents an integer of 1 to 2.
  • R 06 represents a hydrogen atom or a substituent, and may combine with each other to form a ring.
  • n03 represents an integer of 1 to 4.
  • Z 1 represents an atomic group necessary for forming a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle with C—C.
  • Z 2 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group.
  • P 1 -L 1 -P 2 represents a bidentate ligand, and P 1 and P 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group forming a bidentate ligand together with P 1 and P 2 .
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M 1 represents a group 8-10 transition metal element in the periodic table.
  • R 03 and R 06 , R 04 and R 06, and R 05 and R 06 may be bonded to each other to form a ring.
  • each of the substituents represented by R 03 , R 04 , R 05 and R 06 may be substituted by the ring represented by A 1 in the general formula (A). Synonymous with group.
  • examples of the 6-membered aromatic hydrocarbon ring formed by Z 1 together with C—C include a benzene ring.
  • These rings may further have a substituent, and such a substituent is the same as the substituent which the ring represented by A 1 in the general formula (A) may have. Things.
  • examples of the 5-membered or 6-membered aromatic heterocycle formed by Z 1 together with C—C include, for example, an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, Examples include thiadiazole ring, thiatriazole ring, isothiazole ring, thiophene ring, furan ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, triazole ring and the like.
  • These rings may further have a substituent, and such a substituent is the same as the substituent which the ring represented by A 1 in the general formula (A) may have. Things.
  • examples of the hydrocarbon ring group represented by Z 2 include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include cyclopropyl. Group, cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or may have a substituent. Examples of such a substituent include a substituent that the ring represented by A 1 in General Formula (A) may have. The same thing as a group is mentioned.
  • aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl.
  • phenyl group p-chlorophenyl group
  • mesityl group tolyl group
  • xylyl group naphthyl group
  • anthryl group azulenyl.
  • acenaphthenyl group fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
  • These groups may be unsubstituted or may have a substituent. Examples of such a substituent include a substituent that the ring represented by A 1 in General Formula (A) may have. The same thing as a group is mentioned.
  • examples of the heterocyclic group represented by Z 2 include a non-aromatic heterocyclic group and an aromatic heterocyclic group.
  • examples of the non-aromatic heterocyclic group include an epoxy ring, Aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ -Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran
  • aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
  • oxazolyl group 1,2,3-triazol-1-yl group, etc.
  • benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
  • the group formed by Z 1 and Z 2 is preferably a benzene ring.
  • bidentate ligand represented by P 1 -L 1 -P 2 the In formula (A), the bidentate represented by P 1 -L 1 -P 2 Synonymous with ligand.
  • transition metal elements group 8-10 of the periodic table represented by M 1 is, in the general formula (A), group 8 in the periodic table represented by M 1 ⁇ 10 It is synonymous with the group transition metal element.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer 3c of the organic EL element 100.
  • the phosphorescent compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound.
  • Pt-1 to Pt-3, A-1, Ir-1 to Ir-45 Specific examples (Pt-1 to Pt-3, A-1, Ir-1 to Ir-45) of the phosphorescent compound according to the present invention are shown below, but the present invention is not limited to these.
  • m and n each represent the number of repetitions.
  • fluorescent light emitting materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, Examples thereof include stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the injection layer is a layer provided between the electrode and the light emitting layer 3c in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NTT
  • the details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer 3a and an electron injection layer 3e as injection layers. .
  • the injection layer can be provided as necessary.
  • the hole injection layer 3a may be present between the anode and the light emitting layer 3c or the hole transport layer 3b, and the electron injection layer 3e may be present between the cathode and the light emitting layer 3c or the electron transport layer 3d. Good.
  • hole injection layer 3a The details of the hole injection layer 3a are described in, for example, JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069, and a specific example is represented by copper phthalocyanine.
  • a specific example is represented by copper phthalocyanine.
  • examples thereof include a phthalocyanine layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer 3e are described, for example, in JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and are specifically represented by strontium, aluminum and the like.
  • Metal layers alkali metal halide layers typified by potassium fluoride, alkaline earth metal compound layers typified by magnesium fluoride, oxide layers typified by molybdenum oxide, and the like.
  • the electron injection layer 3e is a very thin film, and although depending on the material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer 3b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 3a and the electron blocking layer are also included in the hole transport layer 3b.
  • the hole transport layer 3b can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • polymer materials in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, these materials are preferably used from the viewpoint of obtaining a light-emitting element with higher efficiency.
  • the hole transport material may be a known material such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, an LB method (Langmuir Brodget, Langmuir Brodgett method), and the like.
  • the thin film can be formed by the method.
  • the layer thickness of the hole transport layer 3b is not particularly limited, but is usually in the range of about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 3b may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping the material of the hole transport layer 3b with an impurity.
  • impurity examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 3d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 3e and the hole blocking layer are also included in the electron transport layer 3d.
  • the electron transport layer 3d can be provided as a single layer structure or a multilayer structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 3c is an electron injected from the cathode.
  • an electron transport material also serving as a hole blocking material
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 3d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes
  • a metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as the material of the electron transport layer 3d.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 3d.
  • a distyrylpyrazine derivative exemplified also as the material of the light emitting layer 3c can be used as the material of the electron transport layer 3d.
  • n-type Si, n An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 3d.
  • the electron transport layer 3d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer 3d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 3d may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer 3d can be doped with an impurity to increase the n property.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 3d contains potassium, a potassium compound, or the like.
  • the potassium compound for example, potassium fluoride can be used.
  • the material (electron transporting compound) of the electron transport layer 3d the same material as that of the intermediate layer 1a described above may be used.
  • the electron transport layer 3d also serving as the electron injection layer 3e, and the same material as that constituting the intermediate layer 1a described above may be used.
  • the blocking layer is a layer provided as necessary in addition to the constituent layers of the light emitting functional layer group 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237.
  • the hole blocking layer has the function of the electron transport layer 3d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer 3d mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 3c.
  • the electron blocking layer has the function of the hole transport layer 3b in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of the positive hole transport layer 3b mentioned later can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the auxiliary electrode 15 is an electrode provided for the purpose of reducing the resistance of the transparent electrode 1, and is provided in contact with the conductive layer 1 b of the transparent electrode 1.
  • the material forming the auxiliary electrode 15 is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since many of these metals have low light transmittance, they are formed in a pattern as shown in FIG. 2 within a range not affected by extraction of the emitted light L from the light extraction surface 13a.
  • Examples of the method for forming the auxiliary electrode 15 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
  • the line width of the auxiliary electrode 15 is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio of the light extraction region, and the thickness of the auxiliary electrode 15 is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • the sealing material 17 covers the organic EL element 100 and may be a plate-shaped (film-shaped) sealing member that is fixed to the transparent substrate 13 by the adhesive 19. It may be a sealing film. Such a sealing material 17 is provided in a state of covering at least the light emitting functional layer group 3 in a state in which the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed. Moreover, an electrode may be provided on the sealing material 17 so that the transparent electrode 1 of the organic EL element 100 and the terminal portions of the counter electrode 5a are electrically connected to this electrode.
  • the plate-like (film-like) sealing material 17 include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrate materials may be used in the form of a thinner film.
  • the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a thin film-like polymer substrate or metal substrate can be preferably used as the sealing material.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method in accordance with the above is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferable.
  • the above substrate material may be processed into a concave plate shape and used as the sealing material 17.
  • the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.
  • An adhesive 19 for fixing the plate-shaped sealing material 17 to the transparent substrate 13 side seals the organic EL element 100 sandwiched between the sealing material 17 and the transparent substrate 13. It is used as a sealing agent.
  • Specific examples of such an adhesive 19 include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture curing types such as 2-cyanoacrylates, and the like. Can be mentioned.
  • examples of the adhesive 19 include an epoxy-based thermal and chemical curing type (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the adhesive 19 is preferably one that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.
  • Application of the adhesive 19 to the bonding portion between the sealing material 17 and the transparent substrate 13 may be performed using a commercially available dispenser or may be printed like screen printing.
  • an inert gas such as nitrogen or argon or a fluorine is used. It is preferable to inject an inert liquid such as activated hydrocarbon or silicon oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the sealing material 17 when a sealing film is used as the sealing material 17, the light emitting functional layer group 3 in the organic EL element 100 is completely covered and the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed.
  • a sealing film is provided on the transparent substrate 13.
  • Such a sealing film is composed of an inorganic material or an organic material.
  • it is made of a material having a function of suppressing intrusion of a substance that causes deterioration of the light emitting functional layer group 3 in the organic EL element 100 such as moisture and oxygen.
  • a material for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used.
  • a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for forming these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective film or a protective plate may be provided between the transparent substrate 13 and the organic EL element 100 and the sealing material 17.
  • This protective film or protective plate is for mechanically protecting the organic EL element 100, and in particular when the sealing material 17 is a sealing film, sufficient mechanical protection is provided for the organic EL element 100. Therefore, it is preferable to provide such a protective film or protective plate.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
  • a polymer film because it is light and thin.
  • an intermediate layer 1a containing two or more organic compounds according to the present invention is appropriately deposited on the transparent substrate 13 by a method such as vapor deposition so that the layer thickness is 1 ⁇ m or less, preferably in the range of 10 to 100 nm. Select and form.
  • a method such as vapor deposition is appropriately selected so that the conductive layer 1b composed of silver or an alloy containing silver as a main component has a layer thickness of 12 nm or less, preferably in the range of 4 to 9 nm.
  • a transparent electrode 1 formed on the intermediate layer 1a and serving as an anode is produced.
  • each layer constituting the light emitting functional layer group 3 includes a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but it is easy to obtain a homogeneous film and a pinhole is not easily generated. From this point, the vacuum evaporation method or the spin coating method is particularly preferable. Further, different film formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is 1 ⁇ 10 ⁇ 6 to 1 ⁇ .
  • Each condition is appropriately selected within a range of 10 ⁇ 2 Pa, a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m. Is desirable.
  • the counter electrode 5a serving as a cathode is formed thereon by appropriately selecting a film forming method such as a vapor deposition method or a sputtering method.
  • the counter electrode 5a is patterned in a shape in which a terminal portion is drawn from the upper side of the light emitting functional layer group 3 to the periphery of the transparent substrate 13 while being kept insulated from the transparent electrode 1 by the light emitting functional layer group 3. .
  • the organic EL element 100 is obtained.
  • a sealing material 17 that covers at least the light emitting functional layer group 3 is provided in a state where the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed.
  • an organic EL element having a desired configuration can be produced on the transparent substrate 13.
  • a method of producing from the light emitting functional layer group 3 to the counter electrode 5a consistently by a single vacuum is preferable, but the transparent substrate 13 is taken out from the vacuum atmosphere in the middle, Different film forming methods may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the transparent electrode 1 as an anode has a positive polarity
  • the counter electrode 5a as a cathode has a negative polarity
  • the voltage is 2 to 40 V.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL element 100 having the configuration shown in FIG. 2 described above uses the transparent electrode 1 of the present invention having both conductivity and light transmission as an anode, and is opposed to the light emitting functional layer group 3 and the cathode above this. It is the structure which provided the electrode 5a. For this reason, the extraction efficiency of the emitted light L from the transparent electrode 1 side is improved while applying a sufficient voltage between the transparent electrode 1 and the counter electrode 5a to realize high luminance light emission in the organic EL element 100. Thus, it is possible to increase the luminance. Further, in order to obtain a desired luminance, it is possible to improve the light emission lifetime by reducing the drive voltage.
  • FIG. 3 is a schematic cross-sectional view showing a second example of the organic EL element using the transparent electrode described above as an example of the electronic device of the present invention.
  • the organic EL element 200 of the second example shown in FIG. 3 is different from the organic EL element 100 of the first example shown in FIG. 2 in that the transparent electrode 1 is used as a cathode.
  • the transparent electrode 1 is used as a cathode.
  • the organic EL element 200 shown in FIG. 3 is provided on the transparent substrate 13, and the transparent electrode 1 of the present invention described above is used as the transparent electrode 1 on the transparent substrate 13 as in the first example. Yes. For this reason, the organic EL element 200 is configured to extract the emitted light L from at least the transparent substrate 13 side.
  • the transparent electrode 1 is used as a cathode (cathode), and the counter electrode 5b is used as an anode (anode).
  • the layer structure of the organic EL element 200 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
  • an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a are formed on the transparent electrode 1 functioning as a cathode.
  • the light emitting functional layer group 3 laminated in order is illustrated. However, among these, it is an essential condition to have at least the light emitting layer 3c made of an organic material.
  • the light emitting functional layer group 3 can incorporate various functional layers as necessary, as described in the first example. In such a configuration, only the portion where the light emitting functional layer group 3 is sandwiched between the transparent electrode 1 and the counter electrode 5b becomes the light emitting region in the organic EL element 200, as in the first example.
  • the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. Similar to the example.
  • the counter electrode 5b used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
  • the counter electrode 5b composed of the above materials can be formed by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the counter electrode 5b is preferably several hundred ⁇ / ⁇ or less, and the layer thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • this organic EL element 200 is comprised so that emitted light L can be taken out also from the counter electrode 5b side, as a material which comprises the counter electrode 5b, favorable light transmittance is mentioned among the electrically conductive materials mentioned above.
  • a suitable conductive material is selected and used.
  • the organic EL element 200 configured as described above is sealed with the sealing material 17 in the same manner as in the first example for the purpose of preventing deterioration of the light emitting functional layer group 3.
  • the detailed structure of the constituent elements other than the counter electrode 5b used as the anode and the method for producing the organic EL element 200 are the same as those in the first example. Therefore, detailed description is omitted.
  • the transparent electrode 1 of the present invention having both conductivity and light transmission is used as a cathode, and the light emitting functional layer group 3 and the counter electrode 5b serving as an anode are formed thereon. Is provided. For this reason, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5b to realize high-luminance light emission in the organic EL element 200, and light emitted from the transparent electrode 1 side. It is possible to increase the luminance by improving the L extraction efficiency. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • FIG. 4 is a schematic cross-sectional view showing a third example of the organic EL element using the above-described transparent electrode as an example of the electronic device of the present invention.
  • the organic EL element 300 of the third example shown in FIG. 4 is different from the organic EL element 100 of the first example described with reference to FIG. 2 in that a counter electrode 5c is provided on the substrate 131 side, and a light emitting functional layer is formed thereon.
  • the group 3 and the transparent electrode 1 are stacked in this order.
  • the detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic EL element 300 in the third example will be described.
  • the organic EL element 300 shown in FIG. 4 is provided on a substrate 131. From the substrate 131 side, the counter electrode 5c serving as an anode, the light emitting functional layer group 3, and the transparent electrode 1 serving as a cathode are laminated in this order. Yes. Among these, as the transparent electrode 1, the transparent electrode 1 of the present invention described above is used. For this reason, the organic EL element 300 is configured to extract the emitted light L from at least the transparent electrode 1 side opposite to the substrate 131.
  • the layer structure of the organic EL element 300 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
  • a hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d are formed on the counter electrode 5c functioning as an anode.
  • stacked in order is illustrated. However, it is essential to have at least the light emitting layer 3c configured using an organic material.
  • the electron transport layer 3d also serves as the electron injection layer 3e, and is provided as an electron transport layer 3d having electron injection properties.
  • the characteristic configuration of the organic EL element 300 shown as the third example is that an electron transport layer 3d having electron injection properties is provided as the intermediate layer 1a in the transparent electrode 1. That is, in the third example, the transparent electrode 1 used as a cathode is composed of an intermediate layer 1a also serving as an electron transport layer 3d having electron injection properties, and a conductive layer 1b provided on the intermediate layer 1a. It is.
  • Such an electron transport layer 3d is configured by using the material constituting the intermediate layer 1a of the transparent electrode 1 described above.
  • the light emitting functional layer group 3 can employ various functional layers as necessary, as described in the first example.
  • An electron injection layer or a hole blocking layer is not provided between the electron transport layer 3d serving also as 1a and the conductive layer 1b of the transparent electrode 1.
  • the portion where the light emitting functional layer group 3 is sandwiched between the transparent electrode 1 and the counter electrode 5c becomes the light emitting region in the organic EL element 300, as in the first example.
  • the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. The same as in the example.
  • the counter electrode 5c used as the anode is made of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
  • the counter electrode 5c made of the material as described above can be formed by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the counter electrode 5c is preferably several hundred ⁇ / ⁇ or less, and the layer thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the material constituting the counter electrode 5c is light among the above-described conductive materials.
  • a conductive material having good permeability is selected and used.
  • the substrate 131 is the same as the transparent substrate 13 described in the first example. In such a configuration, the surface facing the outside of the substrate 131 is also the light extraction surface 131a.
  • the electron transport layer 3d having the electron injecting property constituting the uppermost part of the light emitting functional layer group 3 is used as the intermediate layer 1a, and the conductive layer 1b is provided thereon.
  • the transparent electrode 1 composed of the intermediate layer 1a and the upper conductive layer 1b is provided as a cathode. Therefore, similarly to the first example and the second example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5c to realize high-luminance light emission in the organic EL element 300, while the transparent electrode 1 side. It is possible to increase the luminance by improving the extraction efficiency of the emitted light L from the light source.
  • the counter electrode 5c is made of a light-transmitting electrode material, the emitted light L can be extracted from the counter electrode 5c.
  • the intermediate layer 1a of the transparent electrode 1 has been described as also serving as the electron transport layer 3d having electron injection properties.
  • the configuration is limited to these examples.
  • the intermediate layer 1a may also serve as the electron transport layer 3d that does not have electron injection properties, or the intermediate layer 1a may serve as the electron injection layer instead of the electron transport layer. May be.
  • the intermediate layer 1a may be formed as an extremely thin film that does not affect the light emitting function of the organic EL element. In this case, the intermediate layer 1a has electron transport properties and electron injection properties. Not.
  • the intermediate layer 1a of the transparent electrode 1 is formed as an extremely thin film that does not affect the light emitting function of the organic EL element
  • the counter electrode on the substrate 131 side is used as a cathode
  • the light emitting functional layer group 3 The upper transparent electrode 1 may be an anode.
  • the light emitting functional layer group 3 includes, for example, an electron injection layer 3e / electron transport layer 3d / light emission layer 3c / hole transport layer 3b / hole injection layer in order from the counter electrode 5c (cathode) side on the substrate 131. 3a is laminated.
  • a transparent electrode 1 having a laminated structure of an extremely thin intermediate layer 1a and a conductive layer 1b is provided as an anode on the top.
  • the organic EL element which consists of each structure demonstrated with the said each figure is a surface light-emitting body as mentioned above, it can be applied as various light emission light sources.
  • lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystal display devices, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, optical communication processors
  • Examples include, but are not limited to, a light source and a light source of an optical sensor.
  • the light source can be effectively used as a backlight of a liquid crystal display device combined with a color filter and an illumination light source.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
  • Lighting device-1 The lighting device according to the present invention can include the organic EL element of the present invention.
  • the organic EL element used in the lighting device according to the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure.
  • the purpose of use of the organic EL element configured to have a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. It is not limited to. Moreover, you may use for the said use by making a laser oscillation.
  • the material used for the organic EL element of the present invention can be applied to an organic EL element that emits substantially white light (also referred to as a white organic EL element).
  • a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green and blue, or two using the complementary colors such as blue and yellow, blue green and orange. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
  • Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
  • any metal complex according to the present invention or a known light emitting material may be selected and combined to be whitened.
  • the white organic EL element described above it is possible to produce a lighting device that emits substantially white light.
  • FIG. 5 shows a schematic cross-sectional view of a lighting device in which a plurality of organic EL elements having the above-described configurations are used to increase the light emitting surface area.
  • the lighting device 21 shown in FIG. 5 has a large light emitting surface, for example, by arranging a plurality of light emitting panels 22 provided with the organic EL elements 100 on the transparent substrate 13 on the support substrate 23 (that is, tiling). It is the structure which made the area.
  • the support substrate 23 may also serve as a sealing material, and each light-emitting panel 22 is tied with the organic EL element 100 sandwiched between the support substrate 23 and the transparent substrate 13 of the light-emitting panel 22. Ring.
  • An adhesive 19 may be filled between the support substrate 23 and the transparent substrate 13, thereby sealing the organic EL element 100.
  • the edge part of the transparent electrode 1 which is an anode, and the counter electrode 5a which is a cathode are exposed around the light emission panel 22.
  • FIG. only the exposed portion of the counter electrode 5a is shown in the drawing.
  • the hole injection layer 3 a / hole transport layer 3 b / light emission layer 3 c / electron transport layer 3 d / electron injection are formed on the transparent electrode 1.
  • a configuration in which the layers 3e are sequentially stacked is shown as an example.
  • each light-emitting panel 22 is a light-emitting area A, and a non-light-emitting area B is generated between the light-emitting panels 22.
  • a light extraction member for increasing the light extraction amount from the non-light emitting region B may be provided in the non-light emitting region B of the light extraction surface 13a.
  • a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • Example 1 Preparation of transparent electrode >> According to the method described below, the transparent electrodes 1 to 125 were produced so that the area of the conductive region was 5 cm ⁇ 5 cm.
  • the transparent electrodes 1 to 4 are prepared as single layer transparent electrodes, the transparent electrodes 5 to 109 and the transparent electrodes 118 to 125 are transparent electrodes having a laminated structure of an intermediate layer and a conductive layer.
  • a transparent electrode having a laminated structure of three layers of an intermediate layer, a conductive layer, and a second intermediate layer was produced.
  • a transparent electrode 1 of a comparative example having a single layer structure was produced according to the method shown below.
  • a transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, and this was attached to a vacuum tank of the vacuum deposition apparatus.
  • a resistance heating boat made of tungsten was filled with silver (Ag) and mounted in the vacuum chamber.
  • the resistance heating boat is energized and heated to form silver on the base material within a deposition rate range of 0.1 to 0.2 nm / second.
  • a transparent electrode 1 was produced by depositing a single film of a conductive layer having a thickness of 5 ⁇ m.
  • transparent electrodes 2 to 4 In the production of the transparent electrode 1, transparent electrodes 2 to 4 were produced in the same manner except that the thickness of the conductive layer was changed to 9 nm, 11 nm, and 15 nm, respectively.
  • transparent electrode 5 On the transparent base made of alkali-free glass, Alq 3 having the following structure was formed as an intermediate layer having a layer thickness of 22 nm by a sputtering method, and a conductive layer was formed on the transparent electrode 1 on top of this.
  • a transparent electrode 5 was produced by vapor deposition of a conductive layer made of silver (Ag) having a layer thickness of 9 nm by the same method (vacuum vapor deposition method) used in the above.
  • a transparent non-alkali glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, ET-1 having the structure shown below is filled in a resistance heating boat made of tantalum, and the substrate holder and the heating boat are connected to each other. It attached to the 1st vacuum chamber of a vacuum evaporation system. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
  • the heating boat containing ET-1 was heated by energization, and the substrate was deposited within a deposition rate range of 0.1 to 0.2 nm / second.
  • the intermediate layer made of ET-1 having a layer thickness of 22 nm was formed by vapor deposition on the top.
  • the base material on which the intermediate layer is formed is transferred to the second vacuum chamber while being in a vacuum state, and after the pressure of the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver is energized and heated, A conductive layer made of silver having a layer thickness of 9 nm was deposited at a deposition rate of 0.1 to 0.2 nm / second to obtain a transparent electrode 6 in which an intermediate layer and a conductive layer made of silver were laminated thereon. .
  • Transparent electrodes 7 and 8 were produced in the same manner as in the production of the transparent electrode 6 except that ET-1 used for forming the intermediate layer was changed to ET-2 and ET-3, respectively.
  • a transparent non-alkali glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, and the exemplified compound “No. 2” as the first organic compound and the exemplified compound as the second organic compound
  • Each of “121” was filled in a resistance heating boat made of tantalum, and these substrate holder and heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
  • each tantalum resistance heating boat was heated by energization, and within the range of the deposition rate of 0.1 to 0.2 nm / second, the compound “ No. 2 ”:
  • the compound“ 121 ” was vapor-deposited on the substrate under the condition that the mass ratio (mass%) of the compound“ 121 ”was 99.7: 0.3, to form an intermediate layer 1a having a layer thickness of 22 nm.
  • the base material on which the intermediate layer 1a is formed is transferred to the second vacuum chamber in a vacuum state, and after the pressure of the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver is energized and heated.
  • the conductive layer 1b made of silver having a layer thickness of 3.5 nm was deposited at a deposition rate of 0.1 to 0.2 nm / second, and the intermediate layer 1a and the conductive layer 1b made of silver were laminated thereon.
  • a transparent electrode 13 was obtained.
  • Transparent electrodes 14 and 15 were produced in the same manner as in the production of the transparent electrode 13 except that the second organic compound was changed to the exemplified compounds “compound (7)” and “2-6”, respectively.
  • a transparent non-alkali glass substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, and the compound “No. 2” exemplified as the first organic compound and the compound “2” exemplified as the second organic compound are used.
  • ⁇ 6 ”and the compound“ 121 ”shown as the third organic compound were respectively filled in a resistance heating boat made of tantalum, and these substrate holder and heating boat were attached to the first vacuum chamber of the vacuum evaporation apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
  • each tantalum resistance heating boat was heated by energization, and within the range of the deposition rate of 0.1 to 0.2 nm / second, the compound “ No. 2 ”: Compound“ 2-6 ”: Compound“ 121 ”was vapor-deposited on the substrate under the condition that the mass ratio (mass%) was 85.0: 10.0: 5.0, and the layer thickness was 22 nm.
  • the intermediate layer 1a was formed.
  • the base material on which the intermediate layer 1a is formed is transferred to the second vacuum chamber in a vacuum state, and after the pressure of the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver is energized and heated.
  • the conductive layer 1b made of silver having a layer thickness of 3.5 nm was deposited at a deposition rate of 0.1 to 0.2 nm / second, and the intermediate layer 1a and the conductive layer 1b made of silver were laminated thereon.
  • a transparent electrode 21 was obtained.
  • transparent electrodes 23 to 25 were produced in the same manner except that the thickness of the conductive layer 1b was changed to 5 nm, 12 nm, and 20 nm, respectively.
  • a light transmittance (%) at a wavelength of 550 nm was measured using a spectrophotometer (U-3300, manufactured by Hitachi, Ltd.) with reference to the base material used for producing each transparent electrode.
  • Change width of sheet resistance value
  • the change width of the sheet resistance value of each transparent electrode was expressed as a relative value with the change ratio of the transparent electrode 8 being 100.
  • the variation resistance of the sheet resistance value was evaluated according to the following criteria.
  • Variation width of sheet resistance value ⁇ (maximum value of sheet resistance value ⁇ minimum value of sheet resistance value) / average value of sheet resistance value ⁇ ⁇ 100 (%) ⁇ : Sheet resistance value variation width is less than 2.0% ⁇ : Sheet resistance value variation width is 2.0% or more and less than 5.0% ⁇ ⁇ : Sheet resistance value variation width , 5.0% or more and less than 10.0% ⁇ : variation width of sheet resistance value is 10.0% or more and less than 15.0% ⁇ : variation width of sheet resistance value is 15.0 % Or more and less than 30.0% XX: Variation width of sheet resistance value is 30.0% or more Tables 6 to 8 show the results obtained as described above.
  • the transparent electrodes 1 to 4 of Comparative Examples having no intermediate layer although the sheet resistance value decreases as the layer thickness of the conductive layer which is a silver layer is increased, the formation of the conductive layer Decrease in light transmittance due to silver aggregation (motor) at the time becomes remarkable, and it is impossible to achieve both light transmittance and sheet resistance value. Further, even in the transparent electrodes 5 to 8 using Alq 3 or ET-1 to ET-3 as the intermediate layer, the light transmittance was low and the sheet resistance value could not be lowered to a desired condition. In addition, the transparent electrodes 1 to 4 were not able to be measured because the sheet resistance value after forced deterioration was remarkably reduced.
  • the transparent electrodes 9 to 12 using an organic compound alone can obtain a certain degree of light transmittance and sheet resistance value, but the sheet resistance value fluctuates as durability after energization under fairly severe conditions. Resistance and variation resistance within the electrode surface of the sheet resistance value were somewhat inferior.
  • Example 2 ⁇ Production of light emitting panel> [Preparation of light-emitting panel 1] Using the transparent electrode 1 produced in Example 1 as an anode, a double-sided light emitting panel 1 having the configuration shown in FIG. 6 (but not having the intermediate layer 1a) was produced according to the following procedure.
  • the transparent substrate 13 having the transparent electrode 1 formed only with the conductive layer 1b produced in Example 1 is fixed to a substrate holder of a commercially available vacuum deposition apparatus, and the transparent electrode 1 (only the conductive layer 1b) is formed.
  • a vapor deposition mask was placed opposite to the surface side.
  • each material which comprises the light emission functional layer group 3 was filled with the optimal quantity for film-forming of each layer in each heating boat in a vacuum evaporation system.
  • a heating boat what was produced with the resistance heating material made from tungsten was used as a heating boat.
  • the inside of the vapor deposition chamber of the vacuum vapor deposition apparatus is depressurized to a vacuum degree of 4 ⁇ 10 ⁇ 4 Pa, and each layer constituting the light emitting functional layer group 3 shown below is heated by sequentially energizing a heating boat containing each material. Was deposited.
  • a hole-transporting / injecting layer that serves as both a hole-injecting layer and a hole-transporting layer made of ⁇ -NPD by energizing and heating a heating boat containing the following ⁇ -NPD as a hole-transporting injecting material 31 was formed on the conductive layer 1 b constituting the transparent electrode 1.
  • the vapor deposition rate was in the range of 0.1 to 0.2 nm / second, and the vapor deposition was performed under the condition that the layer thickness was 20 nm.
  • the heating boat containing Exemplified Compound H4 as the host compound and the heating boat containing Exemplified Compound Ir-4 as the phosphorescent compound were energized independently, respectively, and Exemplified Compound H4 as the host compound and Phosphorus
  • the deposition rate nm / sec
  • Exemplified Compound Ir-4 100: 6
  • the energization condition of the heating boat is adjusted as appropriate so that the thickness of the light emitting layer becomes 30 nm. I made it.
  • a heating boat containing BAlq shown below as a hole blocking material was energized and heated to form a hole blocking layer 33 made of BAlq on the light emitting layer 3c.
  • the deposition was performed under the condition that the deposition rate was 0.1 to 0.2 nm / second and the layer thickness was 10 nm.
  • a heating boat containing ET-4 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently, and an electron transport layer composed of ET-4 and potassium fluoride. 3d was deposited on the hole blocking layer 33.
  • the energization conditions of the heating boat are adjusted as appropriate so that the layer thickness of the electron transport layer 3d is 30 nm. And deposited.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer 3e made of potassium fluoride on the electron transport layer 3d.
  • the deposition was performed so that the layer thickness was 1 nm at a deposition rate of 0.01 to 0.02 nm / second.
  • the transparent substrate 13 formed up to the electron injection layer 3e was transferred from the vapor deposition chamber of the vacuum vapor deposition apparatus to the processing chamber of the sputtering apparatus to which an ITO target as a counter electrode material was attached while maintaining the vacuum state.
  • a light-transmitting counter electrode 5a made of ITO having a layer thickness of 150 nm was formed as a cathode at a film formation rate of 0.3 to 0.5 nm / second.
  • the organic EL element 400 was formed on the transparent substrate 13.
  • the organic EL element 400 is covered with a sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m, and the adhesive 19 (sealing material) is interposed between the sealing material 17 and the transparent substrate 13 so as to surround the organic EL element 400.
  • a sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m
  • the adhesive 19 (sealing material) is interposed between the sealing material 17 and the transparent substrate 13 so as to surround the organic EL element 400. ).
  • an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used.
  • the adhesive 19 filled between the sealing material 17 and the transparent substrate 13 is irradiated with UV light from the glass substrate (sealing material 17) side to cure the adhesive 19 and seal the organic EL element 400. Stopped.
  • the organic EL element 400 In forming the organic EL element 400, an evaporation mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm transparent substrate 13 is defined as the light emitting region A, and the entire circumference of the light emitting region A is formed. A non-light emitting region B having a width of 0.25 cm was provided. Further, the transparent electrode 1 as the anode and the counter electrode 5a as the cathode are insulated from each other by the light emitting functional layer group 3 from the hole transport / injection layer 31 to the electron injection layer 35, and on the periphery of the transparent substrate 13. The terminal portion was formed in a drawn shape.
  • the light-emitting panel 1 in which the organic EL element 400 was provided on the transparent substrate 13 and sealed with the sealing material 17 and the adhesive 19 was produced.
  • the light emission L of each color generated in the light emitting layer 3c is extracted from both the transparent electrode 1 side, that is, the transparent substrate 13 side, and the counter electrode 5a side, that is, the sealing material 17 side. It has become.
  • the light-emitting panels 1-125 produced above were evaluated for light transmittance, driving voltage, and durability according to the following methods.
  • the light transmittance (%) in wavelength 550nm was measured using the base material used for preparation of each transparent electrode using the spectrophotometer (Hitachi U-3300).
  • the front luminance is measured on both sides of the transparent electrode 1 side (that is, the transparent substrate 13 side) and the counter electrode 5a side (that is, the sealing material 17 side) of each of the produced light emitting panels, and the sum is 1000 cd / m 2.
  • V drive voltage
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta was used. It represents that it is so preferable that the numerical value of the obtained drive voltage is small.
  • the display screen was divided into a total of 100 blocks of 10 ⁇ 10, and then light was emitted. The presence or absence of dark spots was confirmed, and the ratio of blocks where dark spots were generated was measured in%.
  • Evaluation was expressed as a relative value with the dark spot generation area ratio of the light emitting panel 8 being 100. The smaller the value, the better the durability (dark spot resistance).
  • the emission luminance variation resistance was evaluated according to the following criteria.
  • Variation width of light emission luminance ⁇ (maximum value of light emission luminance ⁇ minimum value of light emission luminance) / average value of light emission luminance ⁇ ⁇ 100 (%)
  • the light-emitting panels 1 to 8 using the transparent electrode of the comparative example as the anode of the organic EL element have a light transmittance of less than 56%, and do not emit light even when a voltage is applied. Or even if it emitted light, the drive voltage exceeded 3.8V.
  • the light emitting panels 9 to 12 using the transparent electrode using an organic compound alone a certain degree of light transmittance and driving voltage can be obtained, but the dark spot resistance after energization under fairly severe conditions, and The result was slightly inferior to the variation in emission luminance.
  • the light-emitting panel including the organic EL element of the present invention using the transparent electrode having the configuration defined in the present invention can emit high-intensity light at a low driving voltage, and is durable in harsh environments. It was confirmed to be excellent. In addition, it has been confirmed that this is expected to reduce the driving voltage for obtaining a predetermined luminance and improve the light emission lifetime.
  • the transparent electrode of the present invention has sufficient conductivity and light transmittance, has a low sheet resistance value, is excellent in durability, has sufficient conductivity and light transmittance, and has a low driving voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention addresses the problem of providing: a transparent electrode provided with conductivity and light transmissivity, having low sheet resistance, and exhibiting excellent durability; and an electronic device and an organic electroluminescent element which are equipped with this transparent electrode, have sufficient conductivity and light transmissivity, have low drive voltages, and exhibit excellent durability. This transparent electrode is one having a conductive layer and an intermediate layer provided adjacent to the conductive layer, and is characterized in that: the transparent electrode has a light transmissivity of 50% or higher at a wavelength of 550nm, and has a sheet resistance of 20Ω/sq. or less; the intermediate layer contains two or more types of organic compounds, and contains, as the first organic compound, a compound having nitrogen atoms which have an unshared electron pair which does not contribute to aromaticity in an amount within the range of 50 mass% or more of the total mass of the two or more types of organic compounds, and less than 99.5 mass% thereof; and the conductive layer is configured with silver as the principal component thereof.

Description

透明電極、電子デバイス及び有機エレクトロルミネッセンス素子Transparent electrode, electronic device, and organic electroluminescence element
 本発明は、透明電極、電子デバイス及び有機エレクトロルミネッセンス素子に関し、特には、導電性と光透過性とを兼ね備えた透明電極、この透明電極を具備した電子デバイス及び有機エレクトロルミネッセンス素子に関する。 The present invention relates to a transparent electrode, an electronic device, and an organic electroluminescence element, and more particularly, to a transparent electrode having both conductivity and light transmittance, and an electronic device and an organic electroluminescence element including the transparent electrode.
 有機材料のエレクトロルミネッセンス(electroluminescence:以下、「EL」と略記する。)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」、「有機電界発光素子」ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。 An organic electroluminescence element (hereinafter also referred to as “organic EL element” or “organic electroluminescence element”) using an organic material electroluminescence (hereinafter abbreviated as “EL”) is several V to several It is a thin-film type completely solid element that can emit light at a low voltage of about 10 V, and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
 このような有機EL素子は、2枚の電極間に有機材料からなる発光層を挟持させた構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成される。 Such an organic EL element has a structure in which a light emitting layer made of an organic material is sandwiched between two electrodes, and emitted light generated in the light emitting layer is transmitted through the electrode and taken out to the outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
 透明電極の構成材料としては、酸化インジウムスズ(SnO-In:Indium Tin Oxide、以下ITOと略記。)等の酸化物半導体系の材料が一般的に用いられているが、ITOと銀とを積層して低抵抗化を狙った材料の検討が、例えば、特開2002-15623号公報、特開2006-164961号公報においてなされている。しかしながら、ITOはレアメタルであるインジウム元素を使用しているため、材料コストが高く、また抵抗を下げるために成膜後に300℃程度でアニール処理する必要がある。 As a constituent material of the transparent electrode, an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide, hereinafter abbreviated as ITO) is generally used. For example, Japanese Patent Laid-Open No. 2002-15623 and Japanese Patent Laid-Open No. 2006-16961 have examined materials aiming at low resistance by laminating silver. However, since ITO uses an indium element which is a rare metal, the material cost is high, and it is necessary to anneal at about 300 ° C. after film formation in order to reduce resistance.
 そこで、電気伝導率の高い銀(Ag)とマグネシウム(Mg)との合金を用いて薄膜を構成する技術や、インジウムに代えて、安価で入手容易な金属材料を原料として薄膜を構成する技術が提案されている(例えば、特許文献1及び特許文献2参照。)。特許文献1に記載の発明では、電極材料として銀とマグネシウムの合金を用いることにより、銀単独で形成した電極に比べ、薄膜条件で所望の導電性を得ることができ、透過率と導電性の両立を図ることができるとされている。 Therefore, there is a technique for forming a thin film using an alloy of silver (Ag) and magnesium (Mg) having high electrical conductivity, and a technique for forming a thin film using a cheap and easily available metal material instead of indium. It has been proposed (see, for example, Patent Document 1 and Patent Document 2). In the invention described in Patent Document 1, by using an alloy of silver and magnesium as an electrode material, it is possible to obtain desired conductivity under thin film conditions as compared with an electrode formed by silver alone. It is said that both can be achieved.
 しかしながら、特許文献1に記載されている方法で得られる電極の抵抗値としては、せいぜい100Ω/□前後で、透明電極の導電性としては不十分であり、加えてマグネシウムは、酸化されやすい特性であるため、高温高湿環境下で長期間にわたり保存した際により性能が劣化し、具体的には透明電極の抵抗値のバラツキ幅が増大しやすいという問題を抱えている。また、特許文献2に記載されている発明おいては、インジウム(In)の代わりに、安価で入手が容易な亜鉛(Zn)や錫(Sn)などの金属材料を原料として用いた透明導電膜が開示されている。しかしながら、これらの代替金属では十分に抵抗値が下がらないこと、加えて、亜鉛を含有したZnO系の透明導電膜は、水と反応して性能が変動しやすくなる特性を有している。また、錫を含有したSnO系の透明導電膜は、エッチングによる加工が困難であるという問題を有していることが判明した。 However, the resistance value of the electrode obtained by the method described in Patent Document 1 is at most about 100Ω / □, which is insufficient as the conductivity of the transparent electrode. In addition, magnesium has a characteristic that it is easily oxidized. For this reason, there is a problem that the performance deteriorates when stored for a long period of time in a high temperature and high humidity environment, and specifically, the variation width of the resistance value of the transparent electrode is likely to increase. In the invention described in Patent Document 2, a transparent conductive film using a metal material such as zinc (Zn) or tin (Sn) that is inexpensive and easily available as a raw material instead of indium (In) Is disclosed. However, the resistance value does not sufficiently decrease with these alternative metals, and in addition, the ZnO-based transparent conductive film containing zinc has a characteristic that its performance tends to fluctuate by reacting with water. Further, it has been found that the SnO 2 -based transparent conductive film containing tin has a problem that it is difficult to process by etching.
 一方、層厚が15nm程度の薄膜で、透過性が高い銀膜を蒸着して陰極として用いた有機エレクトロルミネッセンス素子が開示されている(例えば、特許文献3参照。)。しかしながら、特許文献3で提案されている方法では、形成している銀膜は、電極としては依然として厚膜のため、透明電極としての光透過率(透明性)が十分でなく、マイグレーション(原子の移動)を起こしやすい。また、銀膜を更に薄くすると、導電性等を維持することが困難となり、また高温高湿環境下で長期間にわたり保存した際に、透明電極の抵抗値のバラツキ幅が増大しやすくなり、光透過性と導電性を両立共に、高い耐久性能を実現する技術開発が切望されている。更に、このような透明電極を電子デバイス、例えば、有機エレクトロルミネッセンス素子に具備した際、得られる導電性や光透過性が不十分であり、駆動電圧を十分に低下させることができず、かつ高温高湿環境下で長期間にわたり保存した際に、画像面でダークスポット故障が発生しやすいことが判明した。 On the other hand, an organic electroluminescence element using a thin film having a layer thickness of about 15 nm and a highly transmissive silver film as a cathode is disclosed (for example, see Patent Document 3). However, in the method proposed in Patent Document 3, since the formed silver film is still a thick film as an electrode, the light transmittance (transparency) as a transparent electrode is not sufficient, and migration (atomic It is easy to cause movement. Further, if the silver film is made thinner, it becomes difficult to maintain conductivity and the like, and when stored for a long period of time in a high-temperature and high-humidity environment, the variation width of the resistance value of the transparent electrode tends to increase, and light There is an urgent need for the development of technology that achieves both high permeability and both permeability and electrical conductivity. Furthermore, when such a transparent electrode is provided in an electronic device, for example, an organic electroluminescence element, the obtained conductivity and light transmittance are insufficient, the driving voltage cannot be lowered sufficiently, and the temperature is high. It was found that dark spot failures are likely to occur on the image surface when stored for a long time in a high humidity environment.
特開2006-344497号公報JP 2006-344497 A 特開2007-031786号公報JP 2007-031786 A 米国特許出願公開第2011/0260148号明細書US Patent Application Publication No. 2011/0260148
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、十分な導電性と光透過性とを兼ね備え、かつ低シート抵抗値を有し、耐久性(シート抵抗安定性)に優れた透明電極と、当該透明電極を具備し、十分な導電性と光透過性を有し、低駆動電圧で、耐久性(ダークスポット耐性)に優れた電子デバイス及び有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above problems, and a solution to the problem is that it has sufficient conductivity and light transmittance, has a low sheet resistance value, and is durable (sheet resistance stability). Provided are an excellent transparent electrode, and an electronic device and an organic electroluminescent element that have the transparent electrode, have sufficient conductivity and light transmittance, have low driving voltage, and have excellent durability (dark spot resistance). That is.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、導電性層と、該導電性層に隣接して設けられる中間層とを有する構成とし、透明電極として、波長550nmにおける光透過率及びシート抵抗値が特定の範囲内にあり、中間層が2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、前記2種以上の有機化合物の総質量の50質量%以上、99.5質量%未満の範囲内で含有し、かつ導電性層が、銀を主成分として構成されていることを特徴とする透明電極により、十分な導電性と光透過性とを兼ね備え、かつ低シート抵抗値を有し、耐久性(シート抵抗安定性)に優れた透明電極と、当該透明電極を具備し、十分な導電性と光透過性を有し、低駆動電圧で、耐久性(ダークスポット耐性)に優れた電子デバイス及び有機エレクトロルミネッセンス素子を実現することができることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor has a configuration having a conductive layer and an intermediate layer provided adjacent to the conductive layer, and as a transparent electrode, the light transmittance at a wavelength of 550 nm and A sheet resistance value is within a specific range, the intermediate layer contains two or more organic compounds, and a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the first organic compound, A transparent material comprising 50% by mass or more and less than 99.5% by mass of the total mass of the two or more organic compounds, and the conductive layer is composed mainly of silver. The electrode has sufficient conductivity and light transmittance, has a low sheet resistance value, has excellent durability (sheet resistance stability), and has the transparent electrode, sufficient conductivity And light transmission, with low driving voltage, Found that it is possible to realize an electronic device and an organic electroluminescence device excellent in durability (dark spot resistance), a completed the invention.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.導電性層と、当該導電性層に隣接して設けられる中間層とを有する透明電極であって、
 前記透明電極は、波長550nmにおける光透過率が50%以上で、かつシート抵抗値が20Ω/□以下であり、
 前記中間層が2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、前記2種以上の有機化合物の総質量の50質量%以上、99.5質量%未満の範囲内で含有し、
 かつ前記導電性層が、銀を主成分として構成されていることを特徴とする透明電極。
1. A transparent electrode having a conductive layer and an intermediate layer provided adjacent to the conductive layer,
The transparent electrode has a light transmittance of 50% or more at a wavelength of 550 nm and a sheet resistance value of 20Ω / □ or less,
The intermediate layer contains two or more organic compounds, and a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the first organic compound is a total mass of the two or more organic compounds. In a range of 50% by weight or more and less than 99.5% by weight,
A transparent electrode, wherein the conductive layer is composed mainly of silver.
 2.前記2種以上の有機化合物のうち、2番目に含有率の高い有機化合物の含有率が、0.5質量%以上、50質量%未満であることを特徴とする第1項に記載の透明電極。 2. 2. The transparent electrode according to item 1, wherein the content of the organic compound having the second highest content of the two or more organic compounds is 0.5% by mass or more and less than 50% by mass. .
 3.前記2種以上の有機化合物のうち、前記第1の有機化合物と前記2番目に含有率の高い有機化合物との総含有率が、99.5質量%以上であり、かつ前記第1の有機化合物の含有率が、50~90質量%の範囲内にあることを特徴とする第2項に記載の透明電極。 3. Of the two or more organic compounds, the total content of the first organic compound and the second highest organic compound is 99.5% by mass or more, and the first organic compound The transparent electrode according to item 2, wherein the content of is in the range of 50 to 90% by mass.
 4.前記2種以上の有機化合物のうち、前記第1の有機化合物、前記2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、99.5質量%以上であり、かつ前記2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、10質量%以上、49.5質量%未満であることを特徴とする第2項に記載の透明電極。 4. Of the two or more organic compounds, the total content of the first organic compound, the second highest organic compound, and the third highest organic compound is 99.5% by mass or more. And the total content of the organic compound having the second highest content and the organic compound having the third highest content is 10% by mass or more and less than 49.5% by mass. The transparent electrode according to 1.
 5.前記芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、アザカルバゾール環を有することを特徴とする第1項から第4項までのいずれか一項に記載の透明電極。 5. The transparent electrode according to any one of Items 1 to 4, wherein the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has an azacarbazole ring.
 6.前記芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、ピリジン環を有することを特徴とする第1項から第4項までのいずれか一項に記載の透明電極。 6. The transparent electrode according to any one of Items 1 to 4, wherein the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has a pyridine ring.
 7.前記芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、γ、γ′-ジアザカルバゾール環又はβ-カルボリン環を有することを特徴とする第1項から第4項までのいずれか一項に記載の透明電極。 7. Items 1 to 4, wherein the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has a γ, γ′-diazacarbazole ring or a β-carboline ring. The transparent electrode as described in any one.
 8.前記2種以上の有機化合物のうち、前記第1の有機化合物以外の有機化合物が、ハロゲン原子を有する有機化合物であることを特徴とする第1項から第7項までのいずれか一項に記載の透明電極。 8. The organic compound other than the first organic compound among the two or more organic compounds is an organic compound having a halogen atom, wherein the organic compound has a halogen atom. Transparent electrode.
 9.前記ハロゲン原子を有する有機化合物が含有するハロゲン原子が、臭素原子又はヨウ素原子であることを特徴とする第8項に記載の透明電極。 9. 9. The transparent electrode according to item 8, wherein the halogen atom contained in the organic compound having a halogen atom is a bromine atom or an iodine atom.
 10.前記ハロゲン原子を有する有機化合物が、下記一般式(1)で表される構造を有する化合物であることを特徴とする第8項又は第9項に記載の透明電極。 10. 10. The transparent electrode according to item 8 or 9, wherein the organic compound having a halogen atom is a compound having a structure represented by the following general formula (1).
 一般式(1)
   (R)k-Ar-〔(L)-X〕
〔式中、Arは芳香族炭化水素環基又は芳香族複素環基を表す。Xはハロゲン原子を表し、mは1~5の整数である。Lは直接結合又は2価の連結基を表し、nは0又は1を表す。Rは水素原子又は置環基を表す。kは1~5の整数を表す。〕
 11.前記2種以上の有機化合物のうち、前記第1の有機化合物以外の有機化合物が、非共有電子対を有する硫黄原子を含む有機化合物であることを特徴とする第1項から第10項までのいずれか一項に記載の透明電極。
General formula (1)
(R) k -Ar-[(L) n -X] m
[Wherein, Ar represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X represents a halogen atom, and m is an integer of 1 to 5. L represents a direct bond or a divalent linking group, and n represents 0 or 1. R represents a hydrogen atom or a substituted ring group. k represents an integer of 1 to 5. ]
11. Of the two or more organic compounds, the organic compound other than the first organic compound is an organic compound containing a sulfur atom having an unshared electron pair. The transparent electrode as described in any one.
 12.前記非共有電子対を有する硫黄原子を含む有機化合物が、下記一般式(S1)~一般式(S4)で表される構造を有する化合物から選ばれる少なくとも1種であることを特徴とする第11項に記載の透明電極。 12. The organic compound containing a sulfur atom having an unshared electron pair is at least one selected from compounds having structures represented by the following general formulas (S1) to (S4). The transparent electrode according to item.
 一般式(S1):R-S-R
 一般式(S2):R-S-S-R
 一般式(S3):R-SH
 一般式(S4):S=C(R)-SH
〔式中、R~Rは、各々置換基を表す。〕
 13.前記2種以上の有機化合物のうち、第1の有機化合物以外の有機化合物が、芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物であることを特徴とする第1項から第12項までのいずれか一項に記載の透明電極。
Formula (S1): R 1 —SR 2
Formula (S2): R 3 -SSR 4
Formula (S3): R 5 -SH
Formula (S4): S = C (R 6 ) -SH
[Wherein R 1 to R 6 each represents a substituent. ]
13. Of the two or more organic compounds, the organic compound other than the first organic compound is an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. The transparent electrode according to any one of Items 12 to 12.
 14.第1項から第13項までのいずれか一項に記載の透明電極を具備していることを特徴とする電子デバイス。 14. An electronic device comprising the transparent electrode according to any one of items 1 to 13.
 15.第1項から第13項までのいずれか一項に記載の透明電極を具備していることを特徴とする有機エレクトロルミネッセンス素子。 15. An organic electroluminescence device comprising the transparent electrode according to any one of items 1 to 13.
 本発明によれば、十分な導電性と光透過性とを兼ね備え、かつ低シート抵抗値を有し、耐久性(シート抵抗安定性)に優れた透明電極と、当該透明電極を備え、十分な導電性と光透過性を有し、低駆動電圧で、耐久性(ダークスポット耐性)に優れた電子デバイス及び有機エレクトロルミネッセンス素子を提供することができる。 According to the present invention, a transparent electrode having sufficient conductivity and light transmittance, having a low sheet resistance value and excellent in durability (sheet resistance stability), the transparent electrode, and sufficient It is possible to provide an electronic device and an organic electroluminescent element that have conductivity and light transmittance, are low in driving voltage, and are excellent in durability (dark spot resistance).
 本発明で規定する構成により、上記問題を解決することができた本発明の効果の発現機構、作用機構については、全てが明確にはなっていないが、以下のように推察される。 Although the expression mechanism and action mechanism of the effect of the present invention that could solve the above problems by the configuration defined in the present invention are not all clarified, it is presumed as follows.
 すなわち、本発明の透明電極は、中間層の上部に、銀を主成分として含有している導電性層を有しており、かつ前記中間層には、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物(以下、銀親和性化合物ともいう。)を有し、更に第1の有機化合物に対し、含有量として少ない条件で、第2の有機化合物、あるいは第3の有機化合物を共存させることを構成上の特徴とするものである。 That is, the transparent electrode of the present invention has a conductive layer containing silver as a main component above the intermediate layer, and the intermediate layer has an aromatic property as the first organic compound. The second organic compound has a compound having a nitrogen atom having an unshared electron pair that does not participate in the compound (hereinafter also referred to as a silver affinity compound), and the second organic compound has a small content with respect to the first organic compound. Alternatively, the third organic compound is allowed to coexist.
 この様な構成とすることにより、中間層上に導電性層を成膜する際に、導電性層を構成する銀原子が、中間層に含有されている第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と相互作用を生じることにより、該中間層表面上での銀原子の拡散距離が減少し、特定箇所での銀原子の凝集を抑えることができる。 With such a configuration, when the conductive layer is formed on the intermediate layer, the silver atoms constituting the conductive layer are aromatic, which is the first organic compound contained in the intermediate layer. By interacting with a compound having a nitrogen atom having an unshared electron pair that is not involved in the diffusion, the diffusion distance of silver atoms on the surface of the intermediate layer is reduced, and aggregation of silver atoms at specific locations can be suppressed. it can.
 本発明においては、銀親和性化合物が芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物であり、非共有電子対を持つ窒素原子が銀原子と親和性のある原子である。本発明では、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と共に、第2の有機化合物、更には第3の有機化合物を、第1の有機化合物より少ない含有量で共存させることにより、シナジー効果が発現し、非共有電子対を持つ窒素原子を有する化合物を含有した中間層のアモルファス性が増すために、さらに中間層の膜密度や均一性、耐久性が向上し、上層に形成される銀を主成分として構成されている導電性層が薄膜で、均一になり、かつ高温高湿環境下で保存した際の透明電極としてのシート抵抗値のバラツキを効果的に抑制することができたものである。 In the present invention, the silver affinity compound is a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity, and the nitrogen atom having an unshared electron pair is an atom having an affinity for a silver atom. In the present invention, the second organic compound and further the third organic compound are allowed to coexist in a smaller content than the first organic compound together with the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. As a result, a synergy effect is exhibited and the amorphous property of the intermediate layer containing a compound having a nitrogen atom having an unshared electron pair is increased, so that the film density, uniformity and durability of the intermediate layer are further improved, and the upper layer is improved. The conductive layer composed mainly of silver is thin, uniform, and effectively suppresses variations in sheet resistance as a transparent electrode when stored in a high-temperature, high-humidity environment. Was able to.
 前記第1の有機化合物と前記第2の有機化合物のガラス転移点(Tg)の差は、30℃以内であることが好ましい。Tgの差が30℃以内である化合物同士を混合して成膜した中間層は、外部の温度に対する変動が小さくなり、耐久性(シート抵抗安定性)に優れた透明電極とすることができる。 The difference in glass transition point (Tg) between the first organic compound and the second organic compound is preferably within 30 ° C. An intermediate layer formed by mixing compounds having a Tg difference of 30 ° C. or less has a small fluctuation with respect to the external temperature, and can be a transparent electrode excellent in durability (sheet resistance stability).
 加えて、銀原子は、銀原子と親和性のある芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物及び第2、あるいは第3の有機化合物を含有する中間層表面上で2次元的な核を形成し,それを中心に2次元の単結晶層を形成するという単層成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。 In addition, the silver atom has 2 on the surface of the intermediate layer containing a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity having an affinity for the silver atom and the second or third organic compound. The film is formed by single-layer growth type (Frank-van der Merwe: FM type) film formation in which a two-dimensional single crystal layer is formed around a dimensional nucleus.
 なお、一般的には、中間層表面において付着した銀原子が表面を拡散しながら結合し、3次元的な核を形成し,3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により島状に成膜し易いと考えられるが、本発明では、中間層に含有されている芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物により、このような様式の島状成長が防止され、単層成長が促進されると推察される。 In general, the silver atoms attached on the surface of the intermediate layer are bonded while diffusing on the surface to form three-dimensional nuclei and grow into three-dimensional islands (Volume- In the present invention, a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, which is considered to be easily formed into an island shape by film growth with (Weber: VW type). Thus, it is assumed that island-like growth in this manner is prevented and single layer growth is promoted.
 したがって、薄膜でありながらも、銀原子が均一に分布し、かつ均一な層厚の導電性層が得られるようになる。この結果、より薄い層厚として光透過率を保ちつつも、導電性が確保された透明電極とすることができたものと推測している。 Therefore, it is possible to obtain a conductive layer having a uniform thickness and a uniform thickness even though it is a thin film. As a result, it is presumed that a transparent electrode having conductivity can be obtained while maintaining light transmittance with a thinner layer thickness.
本発明の透明電極の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent electrode of the present invention 本発明の透明電極の他の構成の一例を示す概略断面図Schematic sectional view showing an example of another configuration of the transparent electrode of the present invention 本発明の透明電極を具備した有機EL素子の第1例を示す概略断面図Schematic sectional view showing a first example of an organic EL device provided with a transparent electrode of the present invention 本発明の透明電極を具備した有機EL素子の第2例を示す概略断面図Schematic sectional view showing a second example of an organic EL device comprising the transparent electrode of the present invention 本発明の透明電極を具備した有機EL素子の第3例を示す概略断面図Schematic sectional view showing a third example of an organic EL device comprising the transparent electrode of the present invention 本発明の透明電極を具備した有機EL素子を用いて、発光面を大面積化した照明装置の一例を示す概略断面図The schematic sectional drawing which shows an example of the illuminating device which enlarged the light emission surface using the organic EL element which comprised the transparent electrode of this invention. 実施例にて作製した有機EL素子を具備した発光パネルの構成を説明する概略断面図Schematic sectional drawing explaining the structure of the light emission panel which comprised the organic EL element produced in the Example
 本発明の透明電極は、導電性層と、当該導電性層に隣接して設けられる中間層とを有する透明電極であって、前記透明電極は、波長550nmにおける光透過率が50%以上で、かつシート抵抗値が20Ω/□以下であり、前記中間層が2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、前記2種以上の有機化合物の総質量の50質量%以上、99.5質量%未満の範囲内で含有し、かつ前記導電性層が、銀を主成分として構成されていることを特徴とし、十分な導電性と光透過性とを兼ね備え、十分な導電性と光透過性とを兼ね備え、かつ低シート抵抗値を有し、耐久性、具体的にはシート抵抗値の変動幅の抑制性及びシート抵抗値のバラツキ変動の抑制性に優れた透明電極を実現することができる。この特徴は、請求項1から請求項15に係る発明に共通する技術的特徴である。 The transparent electrode of the present invention is a transparent electrode having a conductive layer and an intermediate layer provided adjacent to the conductive layer, and the transparent electrode has a light transmittance of 50% or more at a wavelength of 550 nm, The sheet resistance value is 20Ω / □ or less, the intermediate layer contains two or more organic compounds, and the first organic compound has a nitrogen atom having an unshared electron pair not involved in aromaticity. In a range of 50 mass% or more and less than 99.5 mass% of the total mass of the two or more organic compounds, and the conductive layer is composed mainly of silver. Combined with sufficient conductivity and light transmission, combined with sufficient conductivity and light transmission, low sheet resistance, durability, specifically, suppression of fluctuation range of sheet resistance And suppression of variation in sheet resistance variation It is possible to realize an excellent transparent electrode. This feature is a technical feature common to the inventions according to claims 1 to 15.
 本発明の実施態様としては、本発明の目的とする上記効果をより発現できる観点から、1)2種以上の有機化合物のうち、2番目に含有率の高い有機化合物の含有率を、0.5質量%以上、50質量%未満とすること、2)2種以上の有機化合物のうち、前記第1の有機化合物と前記2番目に含有率の高い有機化合物との総含有率が、99.5質量%以上であり、かつ前記第1の有機化合物の含有率が、50~90質量%の範囲とすること、あるいは、3)2種以上の有機化合物のうち、前記第1の有機化合物、前記2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、99.5質量%以上であり、かつ前記2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、10質量%以上、49.5質量%未満とすることにより、中間層のアモルファス性が一段と向上し、更に優れたシート抵抗値の変動幅の抑制性及びシート抵抗値のバラツキ変動の抑制性を得ることができる観点から好ましい。 As an embodiment of the present invention, from the viewpoint that the above-described effects of the present invention can be more manifested, 1) the content of the organic compound having the second highest content of two or more organic compounds is set to 0. 2) The total content of the first organic compound and the second highest organic compound among the two or more organic compounds is 99.% by mass or more and less than 50% by mass. 5% by mass or more, and the content of the first organic compound is in the range of 50 to 90% by mass, or 3) of the two or more organic compounds, the first organic compound, The total content of the organic compound having the second highest content and the organic compound having the third highest content is 99.5% by mass or more, and the organic compound having the second highest content and the third. The total content of organic compounds with a high content is 10% by mass In addition, when the content is less than 49.5% by mass, the amorphous property of the intermediate layer is further improved, and further excellent suppression of the fluctuation range of the sheet resistance value and suppression of variation of the sheet resistance value can be obtained. It is preferable from the viewpoint.
 また、本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、アザカルバゾール環を有する、ピリジン環を有すること、あるいはγ、γ′-ジアザカルバゾール環又はβ-カルボリン環を有することが、さらに優れた導電性、光透過性及び耐久性を得ることができる観点から好ましい。 Further, the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention has an azacarbazole ring, a pyridine ring, or a γ, γ'-diazacarbazole ring or β- It is preferable to have a carboline ring from the viewpoint of obtaining further excellent conductivity, light transmittance, and durability.
 また、本発明においては、第1の有機化合物と併用するその他の有機化合物が、ハロゲン原子を有する有機化合物であることが好ましく、更には、ハロゲン原子を有する有機化合物が含有するハロゲン原子が、臭素原子又はヨウ素原子であること、あるいはハロゲン原子を有する有機化合物が、一般式(1)で表される構造を有する化合物であることが、さらに優れた導電性、光透過性及び耐久性を得ることができる観点から好ましい。 In the present invention, the other organic compound used in combination with the first organic compound is preferably an organic compound having a halogen atom, and further, the halogen atom contained in the organic compound having a halogen atom is bromine. Further excellent conductivity, light transmittance and durability can be obtained when the compound is an atom or iodine atom, or the organic compound having a halogen atom is a compound having a structure represented by the general formula (1). It is preferable from the viewpoint that
 また、本発明においては、第1の有機化合物と併用するその他の有機化合物が、非共有電子対を有する硫黄原子を含む有機化合物であることが好ましく、更には、非共有電子対を有する硫黄原子を含む有機化合物が、前記一般式(S1)~一般式(S4)で表される構造を有する化合物から選ばれる少なくとも1種であることが、さらに優れた導電性、光透過性及び耐久性を得ることができる観点から好ましい。 In the present invention, the other organic compound used in combination with the first organic compound is preferably an organic compound containing a sulfur atom having an unshared electron pair, and further, a sulfur atom having an unshared electron pair. The organic compound containing is at least one selected from compounds having a structure represented by the general formulas (S1) to (S4), so that further excellent conductivity, light transmittance and durability can be obtained. It is preferable from a viewpoint which can be obtained.
 また、本発明においては、第1の有機化合物と併用するその他の有機化合物が、芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物であることが、さらに優れた導電性、光透過性及び耐久性を得ることができる観点から好ましい。 In the present invention, the other organic compound used in combination with the first organic compound is an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, and further excellent conductivity. From the viewpoint of obtaining light transmittance and durability.
 また、本発明の電子デバイスは、本発明の透明電極を具備していることを特徴とする。また、本発明の有機エレクトロルミネッセンス素子は、本発明の透明電極を具備していることを特徴とする。 The electronic device of the present invention is characterized by including the transparent electrode of the present invention. Moreover, the organic electroluminescent element of this invention has comprised the transparent electrode of this invention, It is characterized by the above-mentioned.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present invention, “˜” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 《1.透明電極》
 図1A及び図1Bは、それぞれ本発明の透明電極の構成の一例を示す概略断面図である。
<< 1. Transparent electrode >>
1A and 1B are schematic cross-sectional views each showing an example of the configuration of the transparent electrode of the present invention.
 図1Aに示す本発明の透明電極1は、波長550nmにおける光透過率が50%以上で、かつシート抵抗値が20Ω/□以下の特性値を備えていることを特徴とし、その構造は、中間層1aを有し、この中間層1aの上部に導電性層1bを積層した2層構造である。例えば、基材11の上部に、中間層1a、導電性層1bの順に設けられている。本発明に係る中間層1aは、2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、前記2種以上の有機化合物の総質量の50質量%以上、99.5質量%未満の範囲内で含有している層であり、その上に積層する本発明に係る導電性層1bは、銀を主成分として構成されている層であることを特徴とする。なお、本発明において、導電性層1bの主成分とは、導電性層1b中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。また、本発明の透明電極1でいう透明とは、波長550nmにて測定した光透過率が50%以上であることをいい、好ましくは70%以上であり、より好ましくは80%以上である。 The transparent electrode 1 of the present invention shown in FIG. 1A is characterized in that the light transmittance at a wavelength of 550 nm is 50% or more and the sheet resistance value is 20Ω / □ or less, and the structure is intermediate. The layer 1a has a two-layer structure in which a conductive layer 1b is stacked on the intermediate layer 1a. For example, the intermediate layer 1 a and the conductive layer 1 b are provided in this order on the base 11. The intermediate layer 1a according to the present invention contains two or more kinds of organic compounds, and the first organic compound contains a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the two or more kinds. The conductive layer 1b according to the present invention, which is a layer containing 50% by mass or more and less than 99.5% by mass of the total mass of the organic compound, is composed mainly of silver. It is the layer currently made. In the present invention, the main component of the conductive layer 1b means that the silver content in the conductive layer 1b is 60% by mass or more, and preferably the silver content is 80% by mass or more. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more. The term “transparent” as used in the transparent electrode 1 of the present invention means that the light transmittance measured at a wavelength of 550 nm is 50% or more, preferably 70% or more, and more preferably 80% or more.
 また、本発明の透明電極1の層構成としては、図1Bに示すように、基材11上に、中間層1a及び導電性層1bを有し、更に、導電性層1b上に、第2の中間層1cを積層し、中間層1aと中間層1cとで導電性層1bを挟持する層構成であることも、好ましい態様の一つである。 In addition, as shown in FIG. 1B, the transparent electrode 1 of the present invention has an intermediate layer 1a and a conductive layer 1b on a substrate 11, and a second layer on the conductive layer 1b. It is also a preferred embodiment that the intermediate layer 1c is laminated and the conductive layer 1b is sandwiched between the intermediate layer 1a and the intermediate layer 1c.
 また、本発明においては、中間層1aとこの上部に成膜された導電性層1bとを有する積層構造の透明電極1においては、更に、導電性層1bの上部が保護層で覆われている構成であること、あるいは第2の導電性層が積層されている構成であっても良い。この場合、透明電極1の光透過性を損なうことのないように、保護層及び第2の導電性層は、いずれも高い光透過性を有することが好ましい。また、中間層1aの下部、すなわち中間層1aと基材11との間にも、必要に応じ、機能層を設けても良い。 In the present invention, in the transparent electrode 1 having a laminated structure including the intermediate layer 1a and the conductive layer 1b formed thereon, the upper portion of the conductive layer 1b is further covered with a protective layer. It may be a configuration, or a configuration in which the second conductive layer is laminated. In this case, it is preferable that both the protective layer and the second conductive layer have high light transmittance so as not to impair the light transmittance of the transparent electrode 1. Moreover, you may provide a functional layer as needed also under the intermediate | middle layer 1a, ie, between the intermediate | middle layer 1a and the base material 11. FIG.
 次に、このような積層構造の透明電極1を保持するのに用いられる基材11と、透明電極1を構成する中間層1a及び導電性層1bの順に、更に詳細な構成要件について説明する。 Next, more detailed configuration requirements will be described in the order of the base material 11 used to hold the transparent electrode 1 having such a laminated structure, the intermediate layer 1a and the conductive layer 1b constituting the transparent electrode 1.
 〔基材〕
 本発明の透明電極1を保持するのに用いられる基材11は、例えば、ガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材11は、透明であっても不透明であってもよいが、本発明の透明電極1が、基材11側から光を取り出す電子デバイスに用いられる場合には、基材11は透明であることが好ましい。好ましく用いられる透明な基材11としては、ガラス、石英、樹脂フィルムを挙げることができる。
〔Base material〕
Examples of the base material 11 used to hold the transparent electrode 1 of the present invention include, but are not limited to, glass and plastic. Moreover, although the base material 11 may be transparent or opaque, when the transparent electrode 1 of this invention is used for the electronic device which takes out light from the base material 11 side, the base material 11 is transparent. It is preferable that Examples of the transparent substrate 11 that is preferably used include glass, quartz, and a resin film.
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、中間層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理が施されていても良いし、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されている構成であっても良い。 Examples of the glass include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoints of adhesion to the intermediate layer 1a, durability, and smoothness, the surface of these glass materials may be subjected to physical treatment such as polishing, if necessary, and from inorganic or organic substances. Or a hybrid film formed by combining these films may be used.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名;JSR社製)又はアペル(商品名;三井化学社製)といったシクロオレフィン系樹脂等を用いた樹脂フィルムが挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, Cellulose acetates such as cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polypheny Sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylates, Arton (trade name; manufactured by JSR) or Appel (trade name; Mitsui Chemicals, Inc.) And a resin film using a cycloolefin-based resin or the like.
 上記樹脂フィルムの表面には、無機物又は有機物からなる被膜(以下、「バリアー膜」ともいう)や、これらの被膜を組み合わせたハイブリッド被膜が形成されている構成であっても良い。このような被膜及びハイブリッド被膜は、JIS-K-7129-1992に準拠した方法で測定される水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下のバリアー性フィルムであることが好ましい。更には、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24時間・atm)以下、水蒸気透過度が1×10-5g/(m・24時間)以下の高バリアー性フィルムであることが好ましい。 On the surface of the resin film, a coating made of an inorganic material or an organic material (hereinafter also referred to as “barrier film”) or a hybrid coating combining these coatings may be formed. Such coatings and hybrid coatings have a water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2% RH) measured by a method according to JIS-K-7129-1992 of 0.01 g / (m (2 · 24 hours) or less is preferable. Furthermore, the oxygen permeability measured by a method according to JIS-K-7126-1987 is 1 × 10 −3 ml / (m 2 · 24 hours · atm) or less, and the water vapor permeability is 1 × 10 −5 g. / (M 2 · 24 hours) or less is preferable.
 以上のようなバリアー性フィルムを形成する材料としては、水分や酸素等の電子デバイスや有機EL素子の劣化を引き起こす要因の浸入を抑制する機能を備えた材料であればよく、例えば、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、当該バリアー性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film as described above may be any material having a function of suppressing the intrusion of factors that cause deterioration of electronic devices such as moisture and oxygen and organic EL elements, such as silicon dioxide, Silicon nitride or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers (organic layers) made of an organic material. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリアー性フィルムの作製方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法(CVD:化学蒸着法、Chemical Vapor Deposition)、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。 The method for producing the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A polymerization method, a plasma CVD method (CVD: Chemical Vapor Deposition), a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but the atmospheric pressure plasma weight described in JP-A-2004-68143 can be used. A legal method is particularly preferred.
 一方、基材11が不透明な材料で構成する場合には、例えば、アルミニウム、ステンレス等の金属基板、フィルムや不透明樹脂基板、セラミック製の基板等を用いることができる。 On the other hand, when the base 11 is made of an opaque material, for example, a metal substrate such as aluminum or stainless steel, a film or an opaque resin substrate, a ceramic substrate, or the like can be used.
 〔中間層〕
 本発明に係る中間層1aは、2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、前記2種以上の有機化合物の総質量の50質量%以上、99.5質量%未満の範囲内で含有して構成される層である。
[Middle layer]
The intermediate layer 1a according to the present invention contains two or more kinds of organic compounds, and the first organic compound contains a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the two or more kinds. It is a layer comprised by containing in the range of 50 mass% or more and less than 99.5 mass% of the total mass of an organic compound.
 本発明に係る中間層においては、中間層が含有する2種以上の有機化合物のうち、2番目に含有率の高い有機化合物の含有率が、0.5質量%以上、50質量%未満であることが好ましい構成である。 In the intermediate layer according to the present invention, the content of the organic compound having the second highest content is 2% by mass or more and less than 50% by mass among the two or more organic compounds contained in the intermediate layer. Is a preferable configuration.
 また、本発明に係る中間層においては、中間層が含有する2種以上の有機化合物のうち、第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と、2番目に含有率の高い有機化合物との総含有率が、99.5質量%以上であり、かつ第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物の含有率が、50~90質量%の範囲にあることが好ましい構成である。 In the intermediate layer according to the present invention, among the two or more organic compounds contained in the intermediate layer, the first organic compound is a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity. The total content of the organic compound having the second highest content is 99.5% by mass or more, and the first organic compound has a nitrogen atom having an unshared electron pair not involved in aromaticity. It is preferable that the content of the compound is in the range of 50 to 90% by mass.
 また、本発明に係る中間層においては、中間層が含有する2種以上の有機化合物のうち、第1の有機化合物、2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、99.5質量%以上であり、かつ2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、10質量%以上、49.5質量%未満であることが好ましい構成である。 In the intermediate layer according to the present invention, the first organic compound, the second highest organic compound, and the third highest organic compound among the two or more organic compounds contained in the intermediate layer The total content of the organic compound having the second highest content and the third highest organic compound is 10% by mass or more and 49.5% by mass. It is a preferable structure that it is less than%.
 本発明においては、第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と共に、第1の有機化合物と構造は異なる他の芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、2番目の有機化合物あるいは3番目の有機化合物として用いることもできる。この場合、最も含有率の高い芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が第1の有機化合物であり、順次、その含有率の高い順に、2番目の有機化合物、3番目の有機化合物であると定義する。 In the present invention, the first organic compound has a nitrogen atom having a non-shared electron pair that does not participate in aromaticity, and the first organic compound has a structure different from that of the first organic compound and does not participate in other aromaticity. A compound having a nitrogen atom having an electron pair can also be used as the second organic compound or the third organic compound. In this case, the compound having a nitrogen atom having an unshared electron pair that is not involved in aromaticity with the highest content is the first organic compound, and the second organic compound, 3 in order of the higher content. It is defined as the second organic compound.
 本発明に係る中間層においては、中間層が含有する第1の有機化合物以外の有機化合物が、ハロゲン原子を有する有機化合物、非共有電子対を有する硫黄原子、又は芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物であることが好ましい。 In the intermediate layer according to the present invention, the organic compound other than the first organic compound contained in the intermediate layer is an organic compound having a halogen atom, a sulfur atom having an unshared electron pair, or unshared not involving aromaticity. An asymmetric compound having a nitrogen atom having an electron pair is preferred.
 本発明に係る中間層1aを基材11上に成膜して形成する場合、その成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法(エレクトロンビーム法)など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。 When the intermediate layer 1a according to the present invention is formed on the substrate 11, the method for forming the film includes a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, or a vapor deposition method. Examples thereof include a method using a dry process such as resistance heating, EB method (electron beam method), sputtering method, CVD method, or the like. Of these, the vapor deposition method is preferably applied.
 以下、本発明に係る中間層の各構成要素について、その詳細を説明する。 Hereinafter, details of each component of the intermediate layer according to the present invention will be described.
 (芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物)
 本発明の透明電極1において、本発明に係る中間層1aは、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、中間層を構成する全有機化合物の50質量%以上、99.5質量%未満の範囲内で含有していることを特徴とする。
(Compounds with nitrogen atoms with unshared electron pairs not involved in aromaticity)
In the transparent electrode 1 of the present invention, the intermediate layer 1a according to the present invention includes, as the first organic compound, a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity, and an all organic material constituting the intermediate layer. It is contained within the range of 50% by mass or more and less than 99.5% by mass of the compound.
 本発明において、「芳香族性に関与しない非共有電子対を持つ窒素原子」とは、非共有電子対を持つ窒素原子であって、当該非共有電子対が不飽和環状化合物の芳香族性に必須要素として直接的に関与していない窒素原子のことをいう。すなわち、共役不飽和環構造(芳香環)上の非局在化したπ電子系に、非共有電子対が、化学構造式上、芳香性発現のために必須のものとして関与していない窒素原子をいう。 In the present invention, the “nitrogen atom having an unshared electron pair not involved in aromaticity” is a nitrogen atom having an unshared electron pair, and the unshared electron pair becomes an aromatic property of the unsaturated cyclic compound. A nitrogen atom that is not directly involved as an essential element. That is, a non-localized π electron system on a conjugated unsaturated ring structure (aromatic ring) has a nitrogen atom in which a lone pair is not involved as an essential element for aromatic expression in the chemical structural formula Say.
 以下、本発明に係る「芳香族性に関与しない非共有電子対を持つ窒素原子」について説明する。 Hereinafter, the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention will be described.
 窒素原子は第15族元素であり、最外殻に5個の電子を有する。このうち3個の不対電子は他の原子との共有結合に用いられ、残りの2個は一対の非共有電子対となるため、通常窒素原子の結合本数は3本である。 Nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs, so that the number of bonds of nitrogen atoms is usually three.
 例えば、アミノ基(-NR)、アミド基(-C(=O)NR)、ニトロ基(-NO)、シアノ基(-CN)、ジアゾ基(-N)、アジド基(-N)、ウレア結合(-NRC=ONR-)、イソチオシアネート基(-N=C=S)、チオアミド基(-C(=S)NR)などが挙げられ、これらは本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当する。なお、R及びRはそれぞれ置換基を表す。 For example, an amino group (—NR 1 R 2 ), an amide group (—C (═O) NR 1 R 2 ), a nitro group (—NO 2 ), a cyano group (—CN), a diazo group (—N 2 ), An azide group (—N 3 ), a urea bond (—NR 1 C═ONR 2 —), an isothiocyanate group (—N═C═S), a thioamide group (—C (═S) NR 1 R 2 ) and the like. These correspond to the “nitrogen atom having an unshared electron pair not involved in aromaticity” of the present invention. R 1 and R 2 each represent a substituent.
 このうち、例えば、ニトロ基(-NO)の共鳴式は、下記のように表すことができる。ニトロ基における窒素原子の非共有電子対は、厳密には、酸素原子との共鳴構造に利用されているが、本発明においては、ニトロ基の窒素原子も非共有電子対を持つこと定義する。 Among these, for example, the resonance formula of a nitro group (—NO 2 ) can be expressed as follows. Strictly speaking, the unshared electron pair of the nitrogen atom in the nitro group is used for the resonance structure with the oxygen atom, but in the present invention, it is defined that the nitrogen atom of the nitro group also has an unshared electron pair.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 一方、窒素原子は、非共有電子対を利用することで4本目の結合を作り出すこともできる。例えば、下記に示すように、テトラブチルアンモニウムクロライド(略称:TBAC)は、四つ目のブチル基が窒素原子とイオン結合しており、対イオンとして塩化物イオンを有する第四級アンモニウム塩である。また、トリス(2-フェニルピリジン)イリジウム(III)(略称:Ir(ppy))は、イリジウム原子と窒素原子が配位結合している中性の金属錯体である。これらの化合物は窒素原子を有するものの、その非共有電子対がそれぞれイオン結合、配位結合に利用されてしまっているため、本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」には該当しない。 On the other hand, a nitrogen atom can also create a fourth bond by utilizing an unshared electron pair. For example, as shown below, tetrabutylammonium chloride (abbreviation: TBAC) is a quaternary ammonium salt in which a fourth butyl group is ionically bonded to a nitrogen atom and has a chloride ion as a counter ion. . Tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ) is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated. Although these compounds have a nitrogen atom, the lone pair of electrons is used for ionic bond and coordinate bond, respectively. Is not applicable.
 すなわち、本発明は、結合に利用されていない窒素原子の非共有電子対を有効利用するというものである。 That is, the present invention is to effectively utilize unshared electron pairs of nitrogen atoms that are not used for bonding.
 下記に示す構造式において、左側はテトラブチルアンモニウムクロライド(略称:TBAC)、右側はトリス(2-フェニルピリジン)イリジウム(III)(略称:Ir(ppy))の構造を示す。 In the structural formulas shown below, the left side shows the structure of tetrabutylammonium chloride (abbreviation: TBAC), and the right side shows the structure of tris (2-phenylpyridine) iridium (III) (abbreviation: Ir (ppy) 3 ).
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 また、窒素原子は、芳香環を構成することのできるヘテロ原子として一般的であり、芳香族性の発現に寄与することができる。この「含窒素芳香環」としては、例えばピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、などが挙げられる。 Also, nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity. Examples of the “nitrogen-containing aromatic ring” include a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, and a tetrazole ring.
 ピリジン環の場合、下記に示すように、6員環状に並んだ共役(共鳴)不飽和環構造において、非局在化したπ電子の数が6個であるため、4n+2(n=0または自然数)のヒュッケル則を満たす。6員環内の窒素原子は、-CH=を置換したものであるため、1個の不対電子を6π電子系に動員するのみで、非共有電子対は、芳香族性発現のために必須のものとして関与していない。 In the case of a pyridine ring, as shown below, in a conjugated (resonant) unsaturated ring structure arranged in a 6-membered ring, the number of delocalized π electrons is 6, so that 4n + 2 (n = 0 or natural number) ) Satisfies the Hückel rule. Since the nitrogen atom in the six-membered ring is substituted with —CH═, only one unpaired electron is mobilized to the 6π-electron system, and the unshared electron pair is essential for aromatic expression. Not involved as a thing.
 したがって、ピリジン環の窒素原子は、本発明に係る「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当する。以下に、ピリジン環の分子軌道を示す。 Therefore, the nitrogen atom of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention. The molecular orbital of the pyridine ring is shown below.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 ピロール環の場合は、下記に示すように、5員環内を構成する炭素原子の一つが窒素原子に置換された構造であるが、やはりπ電子の数は6個であり、ヒュッケル則を満たした含窒素芳香環である。ピロール環の窒素原子は、水素原子とも結合しているため、非共有電子対が6π電子系に動員されている。 In the case of a pyrrole ring, as shown below, one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of π electrons is six and satisfies the Hückel rule. A nitrogen-containing aromatic ring. Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, an unshared electron pair is mobilized to the 6π electron system.
 したがって、ピロール環の窒素原子は、非共有電子対を有するものの、芳香族性発現のために必須のものとして利用されてしまっているため、本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」には該当しない。 Therefore, although the nitrogen atom of the pyrrole ring has an unshared electron pair, it has been utilized as an essential element for the expression of aromaticity, and therefore the “unshared electron pair not involved in aromaticity” of the present invention. Does not correspond to "nitrogen atom having".
 以下に、ピロール環の分子軌道を示す。 The molecular orbital of the pyrrole ring is shown below.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 一方、イミダゾール環は、下記に示すように、5員環内に二つの窒素原子が1、3位に置換した構造を有しており、やはりπ電子数が6個の含窒素芳香環である。窒素原子Nは、1個の不対電子のみを6π電子系に動員し、非共有電子対を芳香族性発現のために利用していないピリジン環型の窒素原子である。一方、窒素原子Nは、非共有電子対を6π電子系に動員しているピロール環型の窒素原子である。 On the other hand, as shown below, the imidazole ring is a nitrogen-containing aromatic ring having a structure in which two nitrogen atoms are substituted at the 1- and 3-positions in a 5-membered ring, and also has 6 π electrons. . The nitrogen atom N 1 is a pyridine ring-type nitrogen atom in which only one unpaired electron is mobilized to the 6π-electron system, and the unshared electron pair is not used for aromaticity expression. On the other hand, the nitrogen atom N 2 is a pyrrole-ring nitrogen atom that mobilizes an unshared electron pair to the 6π electron system.
 したがって、イミダゾール環の窒素原子Nは、本発明の「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当する。以下に、イミダゾール環の分子軌道を示す。 Therefore, the nitrogen atom N 1 of the imidazole ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” in the present invention. The molecular orbital of the imidazole ring is shown below.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 また、含窒素芳香環骨格を有する縮環化合物の場合も同様である。例えば、δ-カルボリンは、下記に示すように、ベンゼン環骨格、ピロール環骨格及びピリジン環骨格がこの順に縮合したアザカルバゾール化合物である。ピリジン環の窒素原子Nは、1個の不対電子のみを、ピロール環の窒素原子Nは、非共有電子対を、それぞれπ電子系に動員しており、環を形成している炭素原子からの11個のπ電子とともに、全体のπ電子数が14個の芳香環となっている。 The same applies to a condensed ring compound having a nitrogen-containing aromatic ring skeleton. For example, as shown below, δ-carboline is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order. The nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron, and the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the π-electron system, respectively, to form a ring. Together with 11 π electrons from the atoms, the total number of π electrons is 14 aromatic rings.
 したがって、δ-カルボリンの二つの窒素原子のうち、ピリジン環の窒素原子Nは本発明に係る「芳香族性に関与しない非共有電子対を持つ窒素原子」に該当するが、ピロール環の窒素原子Nはこれに該当しない。 Therefore, among the two nitrogen atoms of δ-carboline, the nitrogen atom N 3 of the pyridine ring corresponds to the “nitrogen atom having an unshared electron pair not involved in aromaticity” according to the present invention, but the nitrogen of the pyrrole ring The atom N 4 does not fall under this.
 このように、ピリジン環やピロール環は、その骨格が縮環化合物中に組み込まれている場合でも、その効果が阻害されたり抑制されたりすることはなく、単環として利用したときとなんら相違はない。以下に、δ-カルボリンの分子軌道を示す。 Thus, even when the pyridine ring or pyrrole ring is incorporated in a condensed ring compound, its effect is not inhibited or suppressed, and there is no difference from when it is used as a single ring. Absent. The molecular orbital of δ-carboline is shown below.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 以上のように、本発明で規定する「芳香族性に関与しない非共有電子対を持つ窒素原子」は、その非共有電子対を導電性層の主成分である銀と強い相互作用を発現するために重要である。そのような窒素原子としては、安定性、耐久性の観点から、含窒素芳香環中の窒素原であることが好ましい。 As described above, the “nitrogen atom having an unshared electron pair not involved in aromaticity” defined in the present invention expresses a strong interaction between the unshared electron pair and silver which is the main component of the conductive layer. Is important for. Such a nitrogen atom is preferably a nitrogen atom in the nitrogen-containing aromatic ring from the viewpoint of stability and durability.
 本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物としては、分子内に、芳香族性に関与しない非共有電子対を持つ窒素原子を有する構造であれば、特に限定されるものではないが、好ましくは、分子内に芳香族ヘテロ環を有する化合物であること、分子内にアザカルバゾール環を有する化合物であること、あるいはγ、γ′-ジアザカルバゾール環又はβ-カルボリン環を有する化合物であることが好ましい。 As the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, as long as it has a structure having a nitrogen atom having an unshared electron pair not involved in aromaticity in the molecule, Although it is not limited, it is preferably a compound having an aromatic heterocycle in the molecule, a compound having an azacarbazole ring in the molecule, or γ, γ'-diazacarbazole ring or β -A compound having a carboline ring is preferred.
 本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物の具体例としては、下記一般式(1A)で表される芳香族複素環化合物を挙げることができる。 Specific examples of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention include an aromatic heterocyclic compound represented by the following general formula (1A).
 また、一般式(1A)で表される芳香族複素環化合物が、下記一般式(1B)、一般式(1C)又は一般式(1D)のいずれかで表される芳香族複素環化合物であることが好ましい。さらに、下記一般式(1E)又は一般式(1F)で表される芳香族複素環化合物も、中間層に含有される芳香族性に関与しない非共有電子対を持つ窒素原子含有の化合物として好ましく用いることができる。 The aromatic heterocyclic compound represented by the general formula (1A) is an aromatic heterocyclic compound represented by any of the following general formula (1B), general formula (1C), or general formula (1D). It is preferable. Further, an aromatic heterocyclic compound represented by the following general formula (1E) or general formula (1F) is also preferable as a nitrogen atom-containing compound having an unshared electron pair not involved in the aromaticity contained in the intermediate layer. Can be used.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 上記一般式(1A)において、E101~E108は、各々C(R12)又は窒素原子を表し、E101~E108のうち少なくとも1つは窒素原子である。また、一般式(1A)におけるR11、及び上記R12は、各々水素原子又は置換基を表す。 In the general formula (1A), E 101 to E 108 each represent C (R 12 ) or a nitrogen atom, and at least one of E 101 to E 108 is a nitrogen atom. Moreover, R < 11 > in General formula (1A) and said R < 12 > respectively represent a hydrogen atom or a substituent.
 この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。 Examples of this substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group). Etc.), a cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), an alkenyl group (for example, vinyl group, allyl group, etc.), an alkynyl group (for example, ethynyl group, propargyl group, etc.), an aromatic hydrocarbon ring group ( Also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl Group, pyrenyl group, biphenylyl group), aromatic heterocyclic group (eg For example, furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, pyrazolyl, thiazolyl, quinazolinyl, carbazolyl, carbolinyl, diazacarbazolyl Any carbon atom constituting the carboline ring of the group is substituted with a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy Group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy Group (for example, Phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group) Etc.), arylthio groups (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl groups (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryl Oxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfur group) Sulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, Acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, Nylcarbonyloxy group, etc.), amide groups (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octyl) Carbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, Cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylamino Carbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group naphthylureido) Group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2 -Pyridylsulfinyl group, etc.), alkylsulfonyl groups (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group) 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino) Group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, piperidyl group (also called piperidinyl group), 2,2,6 , 6-tetramethylpiperidinyl group, etc.), halogen atoms (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon groups (eg fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, Pentafluorophenyl group), cyano , Nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphate ester group (for example, dihexyl phosphoryl group, etc.), phosphorous An acid ester group (for example, diphenylphosphinyl group etc.), a phosphono group, etc. are mentioned.
 これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。 Some of these substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 上記一般式(1B)は、一般式(1A)の一形態でもある。 The general formula (1B) is also a form of the general formula (1A).
 上記一般式(1B)において、Y21は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。E201~E216、E221~E238は、各々C(R21)又は窒素原子を表し、R21は水素原子又は置換基を表す。ただし、E221~E229の少なくとも1つ及びE230~E238の少なくとも1つは窒素原子を表す。k21及びk22は、各々0~4の整数を表すが、k21+k22は2以上の整数である。 In the general formula (1B), Y 21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof. E 201 to E 216 and E 221 to E 238 each represent C (R 21 ) or a nitrogen atom, and R 21 represents a hydrogen atom or a substituent. However, at least one of E 221 to E 229 and at least one of E 230 to E 238 represent a nitrogen atom. k21 and k22 each represents an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
 一般式(2)において、Y21で表されるアリーレン基としては、例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1′-ビフェニル]-4,4′-ジイル基、3,3′-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。 In the general formula (2), examples of the arylene group represented by Y 21 include o-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, and biphenyl. Diyl groups (eg, [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.), terphenyldiyl group, quaterphenyldiyl Group, kinkphenyldiyl group, sexiphenyldiyl group, septiphenyldiyl group, octiphenyldiyl group, nobiphenyldiyl group, deciphenyldiyl group and the like.
 また、一般式(1B)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。 In the general formula (1B), examples of the heteroarylene group represented by Y 21 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, one of carbon atoms constituting the carboline ring). From the group consisting of a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring. Examples are derived divalent groups and the like.
 Y21で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基又はジベンゾチオフェン環から導出される基が好ましい。 As a preferable embodiment of the divalent linking group comprising an arylene group, a heteroarylene group or a combination thereof represented by Y 21 , a condensed aromatic heterocyclic ring formed by condensing three or more rings among heteroarylene groups The group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is preferably a group derived from a dibenzofuran ring or a dibenzothiophene ring. Preferred are the groups
 一般式(1B)において、E201~E216、E221~E238で各々表されるC(R21)のR21が置換基である場合、その置換基の例としては、一般式(1A)のR11、12として例示した置換基が同様に適用される。 In the general formula (1B), when R 21 of C (R 21) represented by each of E 201 ~ E 216, E 221 ~ E 238 is a substituent, and examples of the substituent of the general formula (1A The substituents exemplified as R 11 and R 12 in the above formula are similarly applied.
 一般式(1B)において、E201~E208のうちの6つ以上、及びE209~E216のうちの6つ以上が、各々C(R21)で表されることが好ましい。 In the general formula (1B), it is preferable that 6 or more of E 201 to E 208 and 6 or more of E 209 to E 216 are each represented by C (R 21 ).
 一般式(1B)において、E225~E229の少なくとも1つ、及びE234~E238の少なくとも1つが窒素原子であることが好ましい。 In the general formula (1B), it is preferable that at least one of E 225 to E 229 and at least one of E 234 to E 238 are nitrogen atoms.
 さらには、一般式(1B)において、E225~E229のいずれか1つ、及びE234~E238のいずれか1つが窒素原子であることが好ましい。 Furthermore, in the general formula (1B), any one of E 225 to E 229 and any one of E 234 to E 238 are preferably nitrogen atoms.
 また、一般式(1B)において、E221~E224及びE230~E233が、各々C(R21)で表されることが好ましい態様として挙げられる。 In the general formula (1B), it is preferable that E 221 to E 224 and E 230 to E 233 are each represented by C (R 21 ).
 さらに、一般式(1B)で表される化合物において、E203がC(R21)で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時にC(R21)で表され、かつR21が連結部位を表すことが好ましい。 Furthermore, in the compound represented by the general formula (1B), it is preferable that E 203 is represented by C (R 21 ) and R 21 represents a linking site, and E 211 is also represented by C (R 21 ). And R 21 preferably represents a linking moiety.
 さらに、E225及びE234が窒素原子であることが好ましく、E221~E224及びE230~E233が、各々C(R21)で表されることが好ましい。 Further, E 225 and E 234 are preferably nitrogen atoms, and E 221 to E 224 and E 230 to E 233 are each preferably represented by C (R 21 ).
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 上記一般式(1C)は、一般式(1A)の一形態でもある。 The general formula (1C) is also a form of the general formula (1A).
 上記一般式(1C)において、E301~E312は、各々C(R31)を表し、R31は水素原子又は置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。 In the general formula (1C), E 301 to E 312 each represent C (R 31 ), and R 31 represents a hydrogen atom or a substituent. Y 31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
 上記一般式(1C)において、E301~E312で各々表されるC(R31)のR31が置換基である場合、その置換基の例としては、一般式(1A)のR11、R12として例示した置換基が同様に適用される。 In the general formula (1C), when R 31 of C (R 31) represented by each of E 301 ~ E 312 is a substituent, and examples of the substituent, R 11 in the general formula (1A), The substituents exemplified as R 12 apply analogously.
 また一般式(1C)において、Y31で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、一般式(1B)のY21と同様のものが挙げられる。 In the general formula (1C), as a preferred embodiment of the divalent linking group composed of an arylene group, heteroarylene group or a combination thereof represented by Y 31 , the same as Y 21 in the general formula (1B) may be used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 上記一般式(1D)は、一般式(1A)の一形態でもある。 The general formula (1D) is also a form of the general formula (1A).
 上記一般式(1D)において、E401~E414は、各々C(R41)を表し、R41は水素原子又は置換基を表す。また、Ar41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。さらにk41は3以上の整数を表す。 In the general formula (1D), E 401 to E 414 each represent C (R 41 ), and R 41 represents a hydrogen atom or a substituent. Ar 41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring. Furthermore, k41 represents an integer of 3 or more.
 上記一般式(1D)において、E401~E414で各々表されるC(R41)のR41が置換基である場合、その置換基の例としては、一般式(1A)のR11、R12として例示した置換基が同様に適用される。 In the general formula (1D), if R 41 in the C (R 41) represented by each of E 401 ~ E 414 is a substituent, and examples of the substituent, R 11 in the general formula (1A), The substituents exemplified as R 12 apply analogously.
 また一般式(1D)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1A)のR11、R12として例示した置換基を有しても良い。 In the general formula (1D), when Ar 41 represents an aromatic hydrocarbon ring, examples of the aromatic hydrocarbon ring include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, and pyrene. Ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene Ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene ring and the like. These rings may further have the substituents exemplified as R 11 and R 12 in the general formula (1A).
 また一般式(1D)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。なお、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1A)において、R11、R12として例示した置換基を有しても良い。 In the general formula (1D), when Ar 41 represents an aromatic heterocyclic ring, examples of the aromatic heterocyclic ring include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, Pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring Carbazole ring, azacarbazole ring and the like. The azacarbazole ring refers to one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom. These rings may further have the substituents exemplified as R 11 and R 12 in the general formula (1A).
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 上記一般式(1E)において、E501及びE502のうちの少なくとも1つは窒素原子であり、E511~E515のうちの少なくとも1つは窒素原子であり、E521~E525のうちの少なくとも1つは窒素原子である。またR51は置換基を表す。 In the general formula (1E), at least one of E 501 and E 502 is a nitrogen atom, at least one of E 511 to E 515 is a nitrogen atom, and one of E 521 to E 525 At least one is a nitrogen atom. R 51 represents a substituent.
 上記一般式(1E)において、R51が置換基を表す場合、その置換基の例としては、一般式(1A)のR11及びR12として例示した置換基が同様に適用される。 In the general formula (1E), when R 51 represents a substituent, examples of the substituent include the substituents exemplified as R 11 and R 12 in the general formula (1A).
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 上記一般式(1F)において、E601~E612は、各々C(R61)又は窒素原子を表し、R61は水素原子又は置換基を表す。またAr61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。 In the general formula (1F), E 601 to E 612 each represent C (R 61 ) or a nitrogen atom, and R 61 represents a hydrogen atom or a substituent. Ar 61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
 上記一般式(1F)において、E601~E612で各々表されるC(R61)のR61が置換基である場合、その置換基の例としては、前記一般式(1A)のR11、R12として例示した置換基が同様に適用される。 In the general formula (1F), when R 61 of C (R 61) represented by each of E 601 ~ E 612 is a substituent, and examples of the substituent, R 11 in the general formula (1A) The substituents exemplified as R 12 apply in the same manner.
 また一般式(1F)において、Ar61が表す、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環は、一般式(1D)のAr41と同様のものが挙げられる。 In the general formula (1F), the substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar 61 may be the same as Ar 41 in the general formula (1D).
 以下に、本発明に係る中間層1aに含有することができる本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物の具体例No.1~No.37を示す。No.1~No.37は一般式(1A)から一般式(1F)で表される構造を有する化合物の具体例である。 Specific examples of compounds having nitrogen atoms having unshared electron pairs not involved in aromaticity according to the present invention, which can be contained in the intermediate layer 1a according to the present invention, are shown below. 1-No. 37 is shown. No. 1-No. 37 is a specific example of a compound having a structure represented by general formula (1A) to general formula (1F).
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
 以下に、本発明に係る中間層1aに含有される、本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物で、一般式(1A)から(1F)で表される構造を有する化合物以外の具体例を示すが、これらに限定されるものではない。なお、x及びyは、各々ランダム共重合体の比率を表す。 The compound having a nitrogen atom having an unshared electron pair not involved in the aromaticity according to the present invention, which is contained in the intermediate layer 1a according to the present invention, is represented by the general formulas (1A) to (1F) below. Specific examples other than the compound having a structure are shown below, but are not limited thereto. In addition, x and y represent the ratio of a random copolymer, respectively.
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000047
 
 本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物は、従来公知の合成方法に準じて、容易に合成することができる。 The compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention can be easily synthesized according to a conventionally known synthesis method.
 (第1の有機化合物と併用可能な第1の有機化合物以外の化合物)
 次いで、本発明に係る中間層においては、第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物以外で、第1の有機化合物と併用することのできる化合物について説明する。
(Compounds other than the first organic compound that can be used in combination with the first organic compound)
Next, in the intermediate layer according to the present invention, a compound that can be used in combination with the first organic compound other than the first organic compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity Will be described.
 〈ハロゲン原子を有する有機化合物〉
 本発明に係る中間層においては、第1の有機化合物以外の有機化合物が、ハロゲン原子を有する有機化合物であることが好ましい。
<Organic compounds having halogen atoms>
In the intermediate layer according to the present invention, the organic compound other than the first organic compound is preferably an organic compound having a halogen atom.
 以下、本発明に適用が可能なハロゲン原子を有する有機化合物について説明する。 Hereinafter, organic compounds having a halogen atom that can be applied to the present invention will be described.
 本発明に係るハロゲン原子を有する有機化合物としては、少なくとも、ハロゲン原子と炭素原子とを含む化合物であり、その構造に特に制限はないが、下記一般式(1)で表されるハロゲン化アリール化合物が好ましい。 The organic compound having a halogen atom according to the present invention is a compound containing at least a halogen atom and a carbon atom, and the structure thereof is not particularly limited, but the halogenated aryl compound represented by the following general formula (1) Is preferred.
 以下、本発明に好適に用いることができる一般式(1)で表されるハロゲン化アリール化合物について説明する。 Hereinafter, the halogenated aryl compound represented by the general formula (1) that can be suitably used in the present invention will be described.
 一般式(1)
   (R)-Ar-〔(L)-X〕
 上記一般式(1)において、Arは芳香族炭化水素環基又は芳香族複素環基を表す。Xはハロゲン原子を表し、mは1~5の整数である。Lは直接結合又は2価の連結基を表し、nは0又は1を表す。Rは水素原子又は置環基を表す。kは1~5の整数を表す。
 一般式(1)において、Arで表される芳香族炭化水素環基(芳香族炭素環基、あるいはアリール基等ともいう。)としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等を挙げることができる。
General formula (1)
(R) k -Ar-[(L) n -X] m
In the general formula (1), Ar represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X represents a halogen atom, and m is an integer of 1 to 5. L represents a direct bond or a divalent linking group, and n represents 0 or 1. R represents a hydrogen atom or a substituted ring group. k represents an integer of 1 to 5.
In the general formula (1), examples of the aromatic hydrocarbon ring group represented by Ar (also referred to as an aromatic carbocyclic group or an aryl group) include a phenyl group, a p-chlorophenyl group, a mesityl group, and tolyl. Group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
 また、Arで表される芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等を挙げることができる。 Examples of the aromatic heterocyclic group represented by Ar include a pyridyl group, a pyrimidinyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a benzimidazolyl group, a pyrazolyl group, a pyrazinyl group, and a triazolyl group (for example, 1,2, Examples include 4-triazol-1-yl group and 1,2,3-triazol-1-yl group.
 本発明においては、Arとしては、芳香族炭化水素環基であることが好ましく、更に好ましくはフェニル基である。 In the present invention, Ar is preferably an aromatic hydrocarbon ring group, more preferably a phenyl group.
 Xで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、その中でも、塩素原子、臭素原子又はヨウ素原子であることが好ましく、更に好ましくは、臭素原子又はヨウ素原子である。 Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among them, a chlorine atom, a bromine atom or an iodine atom is preferable, and a more preferable example is , Bromine atom or iodine atom.
 mは1~5の整数を表すが、好ましくは1又は2である。 M represents an integer of 1 to 5, preferably 1 or 2.
 Lは直接結合又は2価の連結基を表す。2価の連結基としては、アルキレン基(例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基など)、シクロアルキレン基(例えば、1,2-シクロブタンジイル基、1,2-シクロペンタンジイル基、1,3-シクロペンタンジイル基、1,2-シクロヘキサンジイル基、1,3-シクロヘキサンジイル基、1,4-シクロヘキサンジイル基、1,2-シクロヘプタンジイル基、1,3-シクロヘプタンジイル基、1,4-シクロヘプタンジイル基、など)、アリーレン基(例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、1,2-ナフチレン基、2,3-ナフトレン基、1,3-ナフチレン基、1,4-ナフチレン基、2,7-ナフチレン基など)、ヘテロアリーレン基(例えば、チオフェン-2,5-ジイル基、2,6-ピリジンジイル基、2,3-ピリジンジイル基、2,4-ピリジンジイル基、2,4-ジベンゾフランジイル基、2,8-ジベンゾフランジイル基、4,6-ジベンゾフランジイル基、3,7-ジベンゾフランジイル基、2,4-ジベンゾチオフェンジイル基、2,8-ジベンゾチオフェンジイル基、4,6-ジベンゾチオフェンジイル基、3,7-ジベンゾチオフェンジイル基、1,3-カルバゾールジイル基、1,8-カルバゾールジイル基、3,6-カルバゾールジイル基、2,7-カルバゾールジイル基、1,9-カルバゾールジイル基、2,9-カルバゾールジイル基、3,9-カルバゾールジイル基、4,9-カルバゾールジイル基、など)、-O-基、-CO-基、-O-CO-基、-CO-O-基、-O-CO-O-基、-S-基、-SO-基、-SO-基等を挙げることができる。 L represents a direct bond or a divalent linking group. Examples of the divalent linking group include an alkylene group (eg, methylene group, ethylene group, trimethylene group, propylene group), a cycloalkylene group (eg, 1,2-cyclobutanediyl group, 1,2-cyclopentanediyl group, 1,3-cyclopentanediyl group, 1,2-cyclohexanediyl group, 1,3-cyclohexanediyl group, 1,4-cyclohexanediyl group, 1,2-cycloheptanediyl group, 1,3-cycloheptanediyl group 1,4-cycloheptanediyl group, etc.), arylene groups (for example, o-phenylene group, m-phenylene group, p-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,3 -Naphthylene group, 1,4-naphthylene group, 2,7-naphthylene group, etc.), heteroarylene group (for example, thiophene-2,5- Yl group, 2,6-pyridinediyl group, 2,3-pyridinediyl group, 2,4-pyridinediyl group, 2,4-dibenzofuranyl group, 2,8-dibenzofuranyl group, 4,6-dibenzofuranyl group 3,7-dibenzofurandiyl group, 2,4-dibenzothiophenediyl group, 2,8-dibenzothiophenediyl group, 4,6-dibenzothiophenediyl group, 3,7-dibenzothiophenediyl group, 1,3-carbazole Diyl group, 1,8-carbazolediyl group, 3,6-carbazolediyl group, 2,7-carbazolediyl group, 1,9-carbazolediyl group, 2,9-carbazolediyl group, 3,9-carbazolediyl group , 4,9-carbazolediyl group, etc.), —O— group, —CO— group, —O—CO— group, —CO—O— group, —O CO-O- group, -S- group, -SO- group, -SO 2 - and the groups and the like.
 Lで表される2価の連結基として、好ましくはアルキレン基であり、更に好ましくはメチレン基である。 The divalent linking group represented by L is preferably an alkylene group, and more preferably a methylene group.
 nは0又は1を表すが、好ましくは0である。 N represents 0 or 1, but is preferably 0.
 Rは、水素原子又は置換基を表す。置換基としては、例えば、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。これらの置換基のうち、好ましいものはアリール基であり、更に複数のアリール基を有し、これらのアリール基が更にハロゲン原子を置換している構造が好ましい。 R represents a hydrogen atom or a substituent. Examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group). Group), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic complex A group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2, 3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzo Thienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl group, pyridazinyl group, triazinyl Group, quinazolinyl group, lid Dinyl group etc.), heterocyclic group (eg pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group etc.), alkoxy group (eg methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group) Group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, Propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxy Carbonyl group (for example, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (for example, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.) Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, Naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl groups (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, Tilcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, Butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group) Group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenyl Carbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group) Octylureido group, dodecylureido group, phenylureido group naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methyl Rusulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl Group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group) Etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino) , Dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyl) A diethylsilyl group), a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.). Among these substituents, preferred is an aryl group, and a structure having a plurality of aryl groups and further substituted with a halogen atom is preferred.
 kは、1~5の整数を表す。 K represents an integer from 1 to 5.
 本発明においては、一般式(1)で表されるハロゲン化アリール化合物が、更に、下記一般式(2)で表される7つのフェニル基から形成される構造を母核として有する化合物であることが好ましい。 In the present invention, the halogenated aryl compound represented by the general formula (1) is a compound further having a structure formed from seven phenyl groups represented by the following general formula (2) as a mother nucleus. Is preferred.
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000048
 
 上記一般式(2)において、Xはハロゲン原子を表し、m1~m3は、各々0~5の整数である。ただし、m1+m2+m3は、少なくとも1以上である。Lは直接結合又は2価の連結基を表し、n1~n3は、各々0又は1を表す。 In the above general formula (2), X represents a halogen atom, and m1 to m3 are each an integer of 0 to 5. However, m1 + m2 + m3 is at least 1 or more. L represents a direct bond or a divalent linking group, and n1 to n3 each represents 0 or 1.
 Xで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子を挙げることができるが、その中でも、塩素原子、臭素原子又はヨウ素原子が好ましく、更に好ましくは、臭素原子又はヨウ素原子である。 Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among them, a chlorine atom, a bromine atom or an iodine atom is preferable, and a bromine atom is more preferable. Or it is an iodine atom.
 Lは直接結合又は2価の連結基を表し、一般式(1)におけるLと同義である。 L represents a direct bond or a divalent linking group and is synonymous with L in the general formula (1).
 以下に、本発明に係る一般式(1)で表されるハロゲン化アリール化合物の具体的化合物例を示すが、本発明はこれら例示する化合物に限定されるものではない。 Specific examples of the halogenated aryl compound represented by the general formula (1) according to the present invention are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000056
 
 本発明に係る一般式(1)で表されるハロゲン化アリール化合物は、従来公知の合成方法に準じて、容易に合成することができる。 The halogenated aryl compound represented by the general formula (1) according to the present invention can be easily synthesized according to a conventionally known synthesis method.
 また、本発明に係る一般式(1)で表されるハロゲン化アリール化合物においては、下式(1)で規定するハロゲン原子比率が、0.30~0.65の範囲内であることが、本発明の目的効果をより発現することができる観点から好ましい。 In the halogenated aryl compound represented by the general formula (1) according to the present invention, the halogen atom ratio defined by the following formula (1) is within the range of 0.30 to 0.65. It is preferable from the viewpoint that the objective effect of the present invention can be expressed more.
 式(1):有機化合物中のハロゲン原子比率=(有機化合物中のハロゲン原子の総質量/有機化合物の分子量)
 〈非共有電子対を有する硫黄原子を含む有機化合物〉
 本発明に係る中間層においては、第1の有機化合物以外の有機化合物が、非共有電子対を有する硫黄原子を含む有機化合物であることが好ましい。
Formula (1): Halogen atom ratio in organic compound = (total mass of halogen atoms in organic compound / molecular weight of organic compound)
<Organic compounds containing sulfur atoms with unshared electron pairs>
In the intermediate layer according to the present invention, the organic compound other than the first organic compound is preferably an organic compound containing a sulfur atom having an unshared electron pair.
 以下、本発明に適用が可能な非共有電子対を有する硫黄原子を含む有機化合物について説明する。 Hereinafter, an organic compound containing a sulfur atom having an unshared electron pair applicable to the present invention will be described.
 本発明に係る非共有電子対を有する硫黄原子を含む有機化合物が、下記一般式(S1)~一般式(S4)で表される構造を有する化合物から選ばれる少なくとも1種であることが好ましい。 The organic compound containing a sulfur atom having an unshared electron pair according to the present invention is preferably at least one selected from compounds having structures represented by the following general formulas (S1) to (S4).
 一般式(S1):R-S-R
 一般式(S2):R-S-S-R
 一般式(S3):R-SH
 一般式(S4):S=C(R)-SH
 上記一般式(S1)~一般式(S4)において、R~Rは、各々置換基を表す。
Formula (S1): R 1 —SR 2
Formula (S2): R 3 -SSR 4
Formula (S3): R 5 -SH
Formula (S4): S = C (R 6 ) -SH
In the general formulas (S1) to (S4), R 1 to R 6 each represents a substituent.
 R~Rで表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。 Examples of the substituent represented by R 1 to R 6 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, Tridecyl group, tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.) , Aromatic hydrocarbon groups (also referred to as aromatic carbocyclic groups, aryl groups, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, Fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.) Aromatic heterocyclic groups (for example, furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, pyrazolyl, thiazolyl, quinazolinyl, carbazolyl, carbolinyl, diazacarba A zolyl group (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (for example, a pyrrolidyl group, an imidazolidyl group, a morpholyl group) , Oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyl). Oxy group), a Alkyloxy group (for example, phenoxy group, naphthyloxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group) Group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group) Group), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl) Group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.) An acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc. ), Acyloxy groups (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecyl) Sulfonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonyl) Amino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentyl) Aminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl Nyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, Phenylureido group naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, Naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclyl) Rohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino Group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, piperidyl group (also called piperidinyl group), 2 , 2,6,6-tetramethylpiperidinyl group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, penta) Fluoroethyl group, pentafluoro Phenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (eg, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphate ester group (eg, dihexyl) Phosphoryl group, etc.), phosphite group (eg, diphenylphosphinyl group, etc.), phosphono group and the like.
 ただし、一般式(3)で表される構造を有する化合物には、水素原子が脱離してイオン化した構造を有する化合物も含むこととする。 However, the compound having a structure represented by the general formula (3) includes a compound having a structure in which a hydrogen atom is desorbed and ionized.
 以下に、本発明に係る中間層において、第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と共に併用が可能な第1の有機化合物以外の化合物である非共有電子対を有する硫黄原子を含む有機化合物(上記一般式(S1)~(S4)で表される構造を有する化合物)の具体例を示すが、これらに限定されるものではない。 The following is a compound other than the first organic compound that can be used in combination with a compound having a nitrogen atom having an unshared electron pair that is not involved in aromaticity, which is the first organic compound, in the intermediate layer according to the present invention. Specific examples of the organic compound containing a sulfur atom having an unshared electron pair (a compound having a structure represented by the above general formulas (S1) to (S4)) are shown, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000068
 
Figure JPOXMLDOC01-appb-C000068
 
Figure JPOXMLDOC01-appb-C000069
 
Figure JPOXMLDOC01-appb-C000069
 
Figure JPOXMLDOC01-appb-C000070
 
Figure JPOXMLDOC01-appb-C000070
 
Figure JPOXMLDOC01-appb-C000071
 
Figure JPOXMLDOC01-appb-C000071
 
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000073
 
Figure JPOXMLDOC01-appb-C000073
 
Figure JPOXMLDOC01-appb-C000074
 
Figure JPOXMLDOC01-appb-C000074
 
Figure JPOXMLDOC01-appb-C000075
 
Figure JPOXMLDOC01-appb-C000075
 
Figure JPOXMLDOC01-appb-C000076
 
Figure JPOXMLDOC01-appb-C000076
 
Figure JPOXMLDOC01-appb-C000077
 
Figure JPOXMLDOC01-appb-C000077
 
Figure JPOXMLDOC01-appb-C000078
 
Figure JPOXMLDOC01-appb-C000078
 
Figure JPOXMLDOC01-appb-C000079
 
Figure JPOXMLDOC01-appb-C000079
 
Figure JPOXMLDOC01-appb-C000080
 
Figure JPOXMLDOC01-appb-C000080
 
Figure JPOXMLDOC01-appb-C000081
 
Figure JPOXMLDOC01-appb-C000081
 
Figure JPOXMLDOC01-appb-C000082
 
Figure JPOXMLDOC01-appb-C000082
 
Figure JPOXMLDOC01-appb-C000083
 
Figure JPOXMLDOC01-appb-C000083
 
Figure JPOXMLDOC01-appb-C000084
 
Figure JPOXMLDOC01-appb-C000084
 
Figure JPOXMLDOC01-appb-C000085
 
Figure JPOXMLDOC01-appb-C000085
 
Figure JPOXMLDOC01-appb-C000086
 
Figure JPOXMLDOC01-appb-C000086
 
Figure JPOXMLDOC01-appb-C000087
 
Figure JPOXMLDOC01-appb-C000087
 
Figure JPOXMLDOC01-appb-C000088
 
Figure JPOXMLDOC01-appb-C000088
 
Figure JPOXMLDOC01-appb-C000089
 
Figure JPOXMLDOC01-appb-C000089
 
Figure JPOXMLDOC01-appb-C000090
 
Figure JPOXMLDOC01-appb-C000090
 
Figure JPOXMLDOC01-appb-C000091
 
Figure JPOXMLDOC01-appb-C000091
 
 本発明に係る非共有電子対を有する硫黄原子を含む有機化合物は、従来公知の合成方法に準じて、容易に合成することができる。 The organic compound containing a sulfur atom having an unshared electron pair according to the present invention can be easily synthesized according to a conventionally known synthesis method.
 〈芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称化合物〉
 本発明に係る中間層においては、第1の有機化合物である芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と共に、同類構造ではあるが、芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称化合物を、第1の有機化合物以外の有機化合物として用いることが好ましい。
<Asymmetric compounds having nitrogen atoms with unshared electron pairs not involved in aromaticity>
In the intermediate layer according to the present invention, the first organic compound, which has a nitrogen atom having a non-shared electron pair that does not participate in aromaticity, has a similar structure but does not participate in aromaticity. It is preferable to use an asymmetric compound having a nitrogen atom having a pair as an organic compound other than the first organic compound.
 本発明でいう「非対称化合物」とは、化合物の化学構造が線対称軸及び回転軸を有していないことを意味する。但し、回転異性体は区別せず、同一化合物とみなす。 In the present invention, the term “asymmetric compound” means that the chemical structure of the compound does not have a line symmetry axis and a rotation axis. However, rotamers are not distinguished and are regarded as the same compound.
 例えば、下記に示す比較化合物(対象化合物)であるET-1及びET-2は、中央に線対称軸を有しており、この対称軸の左右は、鏡像で線対称を有しており、このような構造は、非対称性ではない。また、ET-3は、分子の中心を軸として、120度回転させると、自らと重なり3回回転対称性を有している。これに対して、本発明に係る非対称化合物は、線対称軸を有しておらず、また、分子の中心を軸に回転させても、自らと重ねることができないため、回転対称軸を有していないことが構造上の特徴である。 For example, the comparative compounds (target compounds) shown below, ET-1 and ET-2, have a line symmetry axis at the center, and the left and right sides of the symmetry axis have mirror symmetry and line symmetry. Such a structure is not asymmetric. ET-3 overlaps itself and has three-fold rotational symmetry when rotated 120 degrees around the center of the molecule. On the other hand, the asymmetric compound according to the present invention does not have an axis of line symmetry, and since it cannot overlap with itself even if it rotates about the center of the molecule, it has an axis of rotational symmetry. It is a structural feature that it is not.
Figure JPOXMLDOC01-appb-C000092
 
Figure JPOXMLDOC01-appb-C000092
 
 本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物と共に、芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物を併用することにより、中間層の均一性と膜密度が向上し、その結果、上層に形成される銀を主成分として構成されている導電性層が薄膜で、均一になると考えられる。 By using together the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity and an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, an intermediate layer It is considered that the uniformity and the film density are improved, and as a result, the conductive layer composed mainly of silver formed in the upper layer is thin and uniform.
 また、本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物においては、下式(2)で規定する芳香族性に関与しない窒素原子の含有率が、0.40%以上であることが好ましい。 In the asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, the content of nitrogen atom not involved in aromaticity defined by the following formula (2) is 0 It is preferably 40% or more.
 式(2):窒素原子含有率=(芳香族性に関与しない非共有電子対を持つ窒素原子数/非対称性化合物の分子量)×100(%)
 本発明で規定する窒素原子含有率としては、更に好ましくは0.80%以上であり、上限値としては、1.50%以下であることが好ましい。上記の範囲で窒素原子を含有している非対称性化合物を、本発明に係る中間層に適用することにより、上部に形成する導電性層を構成する銀原子が、モトル等の凝集を生じることなく、均一性に優れた導電性層を形成でき、その結果、光透過性と導電性とを兼ね備え、かつ耐久性に優れた透明電極を得ることができる。
Formula (2): Nitrogen atom content = (number of nitrogen atoms having unshared electron pairs not involved in aromaticity / molecular weight of asymmetric compound) × 100 (%)
The nitrogen atom content defined in the present invention is more preferably 0.80% or more, and the upper limit value is preferably 1.50% or less. By applying an asymmetric compound containing a nitrogen atom in the above range to the intermediate layer according to the present invention, the silver atom constituting the conductive layer formed on the upper part does not cause aggregation such as mottle. Thus, it is possible to form a conductive layer having excellent uniformity, and as a result, it is possible to obtain a transparent electrode having both light transmittance and conductivity and excellent durability.
 本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物としては、上記例示した発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物群の中より、上記定義に該当する非対称構造を有する芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を用いることができる。 Examples of the asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention include a group of compounds having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the invention exemplified above. Among them, a compound having a nitrogen atom having an unshared electron pair not having aromaticity and having an asymmetric structure corresponding to the above definition can be used.
 〔導電性層〕
 本発明に係る導電性層1bは、銀を主成分として構成されている層であって、中間層1a上に形成される。本発明に係る導電性層1bの成膜方法としては、例えば、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。上記成膜方法のなかでも、蒸着法が好ましく適用される。また、導電性層1bは、中間層1a上に成膜されることにより、導電性層成膜後の高温アニール処理(例えば、150℃以上の加熱プロセス)等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を施しても良い。
[Conductive layer]
The conductive layer 1b according to the present invention is a layer composed mainly of silver and is formed on the intermediate layer 1a. Examples of the method for forming the conductive layer 1b according to the present invention include a method using a wet process such as a coating method, an inkjet method, a coating method, a dipping method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and the like. And a method using a dry process such as a CVD method. Among the film forming methods, the vapor deposition method is preferably applied. Further, the conductive layer 1b is formed on the intermediate layer 1a, so that the conductive layer 1b is sufficiently conductive even without a high-temperature annealing process (for example, a heating process at 150 ° C. or higher) after the formation of the conductive layer. However, if necessary, high-temperature annealing may be performed after the film formation.
 本発明でいう銀を主成分として構成されている層とは、前述のとおり、導電性層1b中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。 As described above, the layer composed mainly of silver in the present invention means that the silver content in the conductive layer 1b is 60% by mass or more, and preferably the silver content is 80%. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
 導電性層1bは、銀単独で形成する、あるいは銀(Ag)を含有する合金から構成されていてもよい。そのような合金としては、例えば、銀・マグネシウム(Ag・Mg)、銀・銅(Ag・Cu)、銀・パラジウム(Ag・Pd)、銀・パラジウム・銅(Ag・Pd・Cu)、銀・インジウム(Ag・In)などが挙げられる。 The conductive layer 1b may be formed of silver alone or an alloy containing silver (Ag). Examples of such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
 本発明に係る導電性層1bにおいては、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であっても良い。 The conductive layer 1b according to the present invention may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
 更に、当該導電性層1bは、層厚が5~8nmの範囲にあることが好ましい。層厚が8nm以下であれば、層の吸収成分又は反射成分が少なくなり、透明電極の透過率が向上するためより好ましい。また、層厚が5nm以上であれば、層の導電性が十分になるため好ましい。 Furthermore, the conductive layer 1b preferably has a layer thickness in the range of 5 to 8 nm. A layer thickness of 8 nm or less is more preferable because the absorption component or reflection component of the layer is reduced and the transmittance of the transparent electrode is improved. A layer thickness of 5 nm or more is preferable because the layer has sufficient conductivity.
 〔透明電極の効果〕
 以上説明したように、本発明の透明電極1は、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有して構成された中間層1a上に、銀を主成分として構成されている導電性層1bを設けた構成である。これにより、中間層1aの上部に導電性層1bを成膜する際には、導電性層1bを構成する銀原子が中間層1aを構成する芳香族性に関与しない非共有電子対を持つ窒素原子と相互作用し、銀原子の中間層1a表面における拡散距離が減少し、銀の凝集の生成を抑制することができる。
[Effect of transparent electrode]
As described above, the transparent electrode 1 of the present invention is composed mainly of silver on the intermediate layer 1a configured to contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. The conductive layer 1b is provided. Thus, when the conductive layer 1b is formed on the upper part of the intermediate layer 1a, the nitrogen having the unshared electron pair in which the silver atoms constituting the conductive layer 1b are not involved in the aromaticity constituting the intermediate layer 1a. By interacting with atoms, the diffusion distance of silver atoms on the surface of the intermediate layer 1a is reduced, and the formation of silver aggregates can be suppressed.
 前述のように、銀を主成分として構成されている導電性層1bの成膜においては、島状成長型(Volumer-Weber:VW型)で膜成長するため、銀粒子が島状に孤立し易く、層厚が薄いときは導電性を得ることが困難となり、シート抵抗値が高くなる。したがって、導電性を確保するにはある程度層厚を厚くする必要があるが、層厚を厚くすると光透過率が低下し、透明電極としては不適であった。 As described above, in the formation of the conductive layer 1b composed mainly of silver, the film grows in an island-like growth type (Volume-Weber: VW type), so that silver particles are isolated in an island shape. When the layer thickness is thin, it is difficult to obtain conductivity, and the sheet resistance value is increased. Therefore, in order to ensure conductivity, the layer thickness needs to be increased to some extent. However, if the layer thickness is increased, the light transmittance is lowered, which is not suitable as a transparent electrode.
 しかしながら、本発明で規定する構成の透明電極1によれば、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する中間層1a上において、窒素原子と銀との相互作用により、銀の凝集が抑えられるため、銀を主成分として構成されている導電性層1bの成膜においては、単層成長型(Frank-van der Merwe:FM型)で膜成長するようになる。 However, according to the transparent electrode 1 having the configuration defined in the present invention, the interaction between the nitrogen atom and silver on the intermediate layer 1a containing the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. As a result, the aggregation of silver is suppressed, so that in the formation of the conductive layer 1b composed mainly of silver, the film grows in a single-layer growth type (Frank-van der Merwe: FM type). .
 なお、本発明に係る透明電極1でいう「透明」とは、波長550nmでの光透過率が50%以上であることをいうが、中間層1aとして用いられる上述した各材料は、銀を主成分とした導電性層1bと比較して、十分な光透過性を備えた良好な膜である。一方、透明電極1の導電性は、主に導電性層1bによって確保される。したがって、上述のように、銀を主成分として構成されている導電性層1bが、より薄い層厚で導電性が確保されたものとなることにより、透明電極1の導電性の向上と光透過性の向上との両立を図ることができたものである。 The term “transparent” in the transparent electrode 1 according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more. However, the above-described materials used as the intermediate layer 1a are mainly made of silver. Compared to the conductive layer 1b as a component, it is a good film having sufficient light transmittance. On the other hand, the conductivity of the transparent electrode 1 is ensured mainly by the conductive layer 1b. Therefore, as described above, the conductive layer 1b composed mainly of silver has a thinner layer to ensure conductivity, thereby improving the conductivity and light transmission of the transparent electrode 1. It was possible to achieve a balance with improvement in performance.
 《2.透明電極の用途》
 上記構成からなる本発明の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機EL素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて、光透過性を必要とされる電極部材として、本発明の透明電極1を用いることができる。
<< 2. Applications of transparent electrodes >>
The transparent electrode 1 of the present invention having the above-described configuration can be used for various electronic devices. Examples of electronic devices include organic EL elements, LEDs (light emitting diodes), liquid crystal elements, solar cells, touch panels, etc. In these electronic devices, the present invention is used as an electrode member that requires light transmission. The transparent electrode 1 can be used.
 以下、用途の一例として、透明電極を用いた有機EL素子の実施の形態について説明する。 Hereinafter, as an example of the application, an embodiment of an organic EL element using a transparent electrode will be described.
 《3.有機EL素子の第1例》
 〔有機EL素子の構成〕
 図2は、本発明の電子デバイスの一例として、本発明の透明電極1を具備した有機EL素子の第1例を示す概略断面図である。以下、図2に基づいて有機EL素子の構成の一例を説明する。
<< 3. First Example of Organic EL Device >>
[Configuration of organic EL element]
FIG. 2 is a schematic cross-sectional view showing a first example of an organic EL element including the transparent electrode 1 of the present invention as an example of the electronic device of the present invention. Hereinafter, an example of the configuration of the organic EL element will be described with reference to FIG.
 図2に示す有機EL素子100は、透明基板(基材)13上に設けられており、透明基板13側から順に、透明電極1、有機材料等を用いて構成された発光機能層群3、及び対向電極5aをこの順に積層して構成されている。この有機EL素子100においては、透明電極1として、先に説明した本発明の透明電極1を用いている。このため有機EL素子100は、発光点hから発生させた発光光Lを、少なくとも透明基板13側から取り出すように構成されている。 An organic EL element 100 shown in FIG. 2 is provided on a transparent substrate (base material) 13, and in order from the transparent substrate 13 side, a light emitting functional layer group 3 configured using the transparent electrode 1, an organic material, and the like, The counter electrode 5a is laminated in this order. In the organic EL element 100, the transparent electrode 1 of the present invention described above is used as the transparent electrode 1. For this reason, the organic EL element 100 is configured to extract the emitted light L generated from the emission point h from at least the transparent substrate 13 side.
 次いで、有機EL素子100の層構造を説明するが、本発明においてはこれら例示する構成例に限定されることはなく、一般的な層構造であっても良い。 Next, the layer structure of the organic EL element 100 will be described, but the present invention is not limited to these exemplified configuration examples, and a general layer structure may be used.
 図2には、透明電極1がアノード(すなわち陽極)として機能し、対向電極5aがカソード(すなわち陰極)として機能する構成を示してある。この場合、発光機能層群3としては、図2に示すように、アノードである透明電極1側から順に正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eを積層した構成を有している。このうち少なくとも有機材料を用いて構成された発光層3cを設けることが有機EL素子としては必須の条件である。正孔注入層3a及び正孔輸送層3bは、正孔輸送・注入層として設けられていても良い。また、電子輸送層3d及び電子注入層3eは、電子輸送・注入層として設けられていても良い。また、これらの発光機能層群3のうち、例えば、電子注入層3eは、無機材料で構成されていても良い。 FIG. 2 shows a configuration in which the transparent electrode 1 functions as an anode (that is, an anode) and the counter electrode 5a functions as a cathode (that is, a cathode). In this case, as the light emitting functional layer group 3, as shown in FIG. 2, the hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d / electron injection are sequentially arranged from the transparent electrode 1 side which is an anode. The layer 3e is stacked. Among these, it is an indispensable condition for the organic EL element to provide at least the light emitting layer 3c composed of an organic material. The hole injection layer 3a and the hole transport layer 3b may be provided as a hole transport / injection layer. The electron transport layer 3d and the electron injection layer 3e may be provided as an electron transport / injection layer. Of these light emitting functional layer groups 3, for example, the electron injection layer 3e may be made of an inorganic material.
 また、発光機能層群3は、これらの例示した各構成層の他に、正孔阻止層や電子阻止層等、必要に応じて必要箇所に積層してもよい。更に、発光層3cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の補助層を介して積層させた構造としても良い。補助層は、正孔阻止層、電子阻止層として機能しても良い。更に、カソードである対向電極5aも、必要に応じ、積層構造をとっても良い。このような構成においては、透明電極1と対向電極5aとで発光機能層群3が挟持された部分のみが、有機EL素子100における発光領域となる。 Further, the light emitting functional layer group 3 may be laminated at a necessary place as necessary, such as a hole blocking layer and an electron blocking layer, in addition to the constituent layers exemplified above. Furthermore, the light emitting layer 3c may have a structure in which each color light emitting layer that generates emitted light in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting auxiliary layer. The auxiliary layer may function as a hole blocking layer or an electron blocking layer. Furthermore, the counter electrode 5a, which is a cathode, may have a laminated structure as necessary. In such a configuration, only the portion where the light emitting functional layer group 3 is sandwiched between the transparent electrode 1 and the counter electrode 5 a becomes a light emitting region in the organic EL element 100.
 また、上記のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の導電性層1bに接して、図2に示すような補助電極15が設けられていても良い。 Further, in the layer configuration as described above, the auxiliary electrode 15 as shown in FIG. 2 is provided in contact with the conductive layer 1 b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. May be.
 以上のような構成の有機EL素子100は、主に有機材料等を用いて構成された発光機能層群3の劣化を防止することを目的として、透明基板13上に、後述する封止材17を付与し、封止構造が形成されている。この封止材17は、接着剤19を介して透明基板13側に固定されている。ただし、透明電極1及び対向電極5aの端子部分は、透明基板13上において発光機能層群3によって互いに絶縁性を保った状態で封止材17から露出させた状態で設けられている。 The organic EL element 100 having the above-described configuration is formed on the transparent substrate 13 with a sealing material 17 to be described later for the purpose of preventing deterioration of the light emitting functional layer group 3 configured mainly using an organic material or the like. The sealing structure is formed. The sealing material 17 is fixed to the transparent substrate 13 side with an adhesive 19. However, the terminal portions of the transparent electrode 1 and the counter electrode 5a are provided on the transparent substrate 13 in a state of being exposed from the sealing material 17 while maintaining insulation from each other by the light emitting functional layer group 3.
 以下、図2で示した有機EL素子100を構成するための主要各層の詳細を、透明基板13、透明電極1、対向電極5a、発光機能層群3の発光層3c、発光機能層群3の他の機能性層、補助電極15、及び封止材17の順に説明する。 Hereinafter, the details of the main layers for constituting the organic EL element 100 shown in FIG. 2 are as follows: the transparent substrate 13, the transparent electrode 1, the counter electrode 5 a, the light emitting layer 3 c of the light emitting functional layer group 3, and the light emitting functional layer group 3. Other functional layers, the auxiliary electrode 15, and the sealing material 17 will be described in this order.
 〔透明基板〕
 透明基板13は、先に説明した本発明の透明電極1が設けられる基材11であり、先に説明した基材11のうち、光透過性を有する透明な基材11が用いられる。
[Transparent substrate]
The transparent substrate 13 is the base material 11 on which the transparent electrode 1 of the present invention described above is provided, and the transparent base material 11 having light transmittance among the base materials 11 described above is used.
 〔透明電極〕
 透明電極1(アノード:陽極)は、既に詳述した本発明の透明電極1であり、透明基板13側から順に、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する中間層1a及び銀を主成分とする導電性層1bを順に成膜した構成である。ここでは特に、透明電極1はアノード(陽極)として機能するものであり、導電性層1bが実質的なアノードとなる。
[Transparent electrode]
The transparent electrode 1 (anode: anode) is the transparent electrode 1 of the present invention already described in detail, and contains, in order from the transparent substrate 13 side, a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. The intermediate layer 1a and the conductive layer 1b containing silver as a main component are sequentially formed. Here, in particular, the transparent electrode 1 functions as an anode (anode), and the conductive layer 1b is a substantial anode.
 〔対向電極〕
 対向電極5a(カソード:陰極)は、発光機能層群3に電子を供給するカソード(陰極)として機能する電極膜であり、例えば、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体などが挙げられる。
[Counter electrode]
The counter electrode 5a (cathode: cathode) is an electrode film that functions as a cathode (cathode) for supplying electrons to the light emitting functional layer group 3, and is, for example, a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Etc. Specifically, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
 対向電極5aは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜形成させることにより作製することができる。また、対向電極5aとしてのシート抵抗は、数百Ω/□以下が好ましく、層厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。 The counter electrode 5a can be produced by forming these conductive materials into a thin film by a method such as vapor deposition or sputtering. The sheet resistance as the counter electrode 5a is preferably several hundred Ω / □ or less, and the layer thickness is usually selected in the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、この有機EL素子100が、対向電極5a側からも発光光Lを取り出すことがある場合には、上述した導電性材料のうち、光透過性の良好な導電性材料を選択することにより対向電極5aを構成すれば良い。 In the case where the organic EL element 100 sometimes takes out the emitted light L from the counter electrode 5a side, it can be countered by selecting a conductive material having a good light transmission property from among the conductive materials described above. What is necessary is just to comprise the electrode 5a.
 〔発光機能層〕
 (発光層)
 本発明の有機EL素子の発光機能層を構成する発光層3cには、発光材料が含有されているが、その中でも、発光材料としてリン光発光化合物が含有されていることが好ましい。
(Light emitting functional layer)
(Light emitting layer)
The light emitting layer 3c constituting the light emitting functional layer of the organic EL device of the present invention contains a light emitting material. Among them, it is preferable that a phosphorescent light emitting compound is contained as the light emitting material.
 この発光層3cは、電極又は電子輸送層3dから注入された電子と、正孔輸送層3bから注入された正孔とが再結合することにより発光を呈する層であり、発光する部分は発光層3cの層内であっても発光層3cと隣接する層との界面であってもよい。 The light emitting layer 3c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 3d and holes injected from the hole transport layer 3b, and the light emitting portion is a light emitting layer. Even in the layer 3c, it may be an interface between the light emitting layer 3c and the adjacent layer.
 このような発光層3cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層3c間には非発光性の補助層を有していることが好ましい。 The light emitting layer 3c is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer between the light emitting layers 3c.
 発光層3cの層厚の総和は、好ましくは、1~100nmの範囲内であり、更に好ましくは、より低い駆動電圧を得ることができる観点から、1~30nmの範囲内である。なお、発光層3cの層厚の総和とは、発光層3c間に非発光性の補助層が存在する場合には、当該補助層も含む層厚である。 The total thickness of the light emitting layer 3c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm from the viewpoint of obtaining a lower driving voltage. In addition, the sum total of the layer thickness of the light emitting layer 3c is a layer thickness also including the said auxiliary layer, when a nonluminous auxiliary layer exists between the light emitting layers 3c.
 複数層を積層した構成からなる発光層3cの場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の層厚の関係については、特に制限はない。 In the case of the light emitting layer 3c having a structure in which a plurality of layers are laminated, the thickness of each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably adjusted within the range of 1 to 20 nm. . When the plurality of stacked light emitting layers correspond to blue, green, and red light emission colors, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
 以上のように構成されている発光層3cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法に従って製膜して形成することができる。 The light emitting layer 3c configured as described above is formed by forming a light emitting material or a host compound, which will be described later, according to a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, and an ink jet method. Can be formed.
 また、発光層3cは、複数の発光材料が混合されて構成されていてもよく、またリン光発光材料と蛍光発光材料(以下、「蛍光ドーパント」あるいは「蛍光性化合物」ともいう。)が混合されて構成されていてもよい。 The light emitting layer 3c may be configured by mixing a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (hereinafter also referred to as “fluorescent dopant” or “fluorescent compound”). And may be configured.
 発光層3cの構成として、ホスト化合物(以下、「発光ホスト」ともいう。)、発光材料(以下、「発光ドーパント化合物」、「発光ドーパント」あるいは「ドーパント化合物」ともいう。)を含有し、発光材料を発光させることが好ましい。 The structure of the light emitting layer 3c contains a host compound (hereinafter also referred to as “light emitting host”) and a light emitting material (hereinafter also referred to as “light emitting dopant compound”, “light emitting dopant” or “dopant compound”), and emits light. It is preferable to make the material emit light.
 〈ホスト化合物〉
 発光層3cに含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。更に好ましくは、リン光量子収率が0.01未満である。また、ホスト化合物は、発光層3cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
<Host compound>
As the host compound contained in the light emitting layer 3c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動速度を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, the charge transfer rate can be adjusted, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)の化合物が好ましい。ここでいうガラス転移温度(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. The glass transition temperature (Tg) here is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 以下に、本発明で用いることのできるホスト化合物の具体例(H1~H79)を示すが、これらに限定されない。なお、ホスト化合物H68~H71に記載のx、y、p、q、rは、それぞれランダム共重合体の比率を表す。その比率は、例えば、x:y=1:10などとすることができる。また、nは重合度を表す。 Specific examples (H1 to H79) of host compounds that can be used in the present invention are shown below, but are not limited thereto. Note that x, y, p, q, and r described in the host compounds H68 to H71 each represent a ratio of the random copolymer. The ratio can be, for example, x: y = 1: 10. N represents the degree of polymerization.
Figure JPOXMLDOC01-appb-C000093
 
Figure JPOXMLDOC01-appb-C000093
 
Figure JPOXMLDOC01-appb-C000094
 
Figure JPOXMLDOC01-appb-C000094
 
Figure JPOXMLDOC01-appb-C000095
 
Figure JPOXMLDOC01-appb-C000095
 
Figure JPOXMLDOC01-appb-C000096
 
Figure JPOXMLDOC01-appb-C000096
 
Figure JPOXMLDOC01-appb-C000097
 
Figure JPOXMLDOC01-appb-C000097
 
Figure JPOXMLDOC01-appb-C000098
 
Figure JPOXMLDOC01-appb-C000098
 
Figure JPOXMLDOC01-appb-C000099
 
Figure JPOXMLDOC01-appb-C000099
 
Figure JPOXMLDOC01-appb-C000100
 
Figure JPOXMLDOC01-appb-C000100
 
Figure JPOXMLDOC01-appb-C000101
 
Figure JPOXMLDOC01-appb-C000101
 
Figure JPOXMLDOC01-appb-C000102
 
Figure JPOXMLDOC01-appb-C000102
 
Figure JPOXMLDOC01-appb-C000103
 
Figure JPOXMLDOC01-appb-C000103
 
Figure JPOXMLDOC01-appb-C000104
 
Figure JPOXMLDOC01-appb-C000104
 
Figure JPOXMLDOC01-appb-C000105
 
Figure JPOXMLDOC01-appb-C000105
 
Figure JPOXMLDOC01-appb-C000106
 
Figure JPOXMLDOC01-appb-C000106
 
Figure JPOXMLDOC01-appb-C000107
 
Figure JPOXMLDOC01-appb-C000107
 
 本発明に適用可能なその他の公知のホスト化合物の具体例としては、以下の各文献に記載されている化合物を挙げることができる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等に記載されている化合物が挙げられる。 Specific examples of other known host compounds applicable to the present invention include compounds described in the following documents. For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. Examples thereof include compounds described in JP-A Nos. 2002-302516, 2002-305083, 2002-305084, and 2002-308837.
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物(以下、「リン光性化合物」、「リン光発光材料」ともいう。)が挙げられる。
<Light emitting material>
Examples of the light-emitting material that can be used in the present invention include phosphorescent compounds (hereinafter also referred to as “phosphorescent compounds” and “phosphorescent materials”).
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物の発光の原理としては、2つの方法が挙げられる。1つの方法は、キャリアが輸送されるホスト化合物上で、キャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型である。もう1つの方法は、リン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が生じ、リン光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光性化合物の励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件となる。 There are two methods for the light emission principle of the phosphorescent compound. One method is that recombination of carriers occurs on a host compound to which carriers are transported, and an excited state of the host compound is generated, and this energy is transferred to the phosphorescent compound, thereby transferring the energy from the phosphorescent compound. It is an energy transfer type that obtains luminescence. Another method is a carrier trap type in which a phosphorescent compound becomes a carrier trap, carrier recombination occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained. In either case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8族~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected and used from known compounds used in the light emitting layer of a general organic EL device. Preferably, a group 8-10 metal in the periodic table of elements is used. It is a complex compound to be contained, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
 本発明においては、少なくとも一つの発光層3cが、2種以上のリン光発光性化合物が含有されていてもよく、発光層3cにおけるリン光発光性化合物の濃度比が発光層3cの厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer 3c may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 3c is the thickness direction of the light emitting layer 3c. It may be an aspect that changes.
 リン光発光性化合物の含有量としては、好ましくは発光層3cの総体積に対し0.1~30体積%の範囲である。 The content of the phosphorescent compound is preferably in the range of 0.1 to 30% by volume with respect to the total volume of the light emitting layer 3c.
 〈1〉一般式(A)で表される構造を有する化合物
 本発明に係る発光層3cにおいては、リン光発光性化合物として、下記一般式(A)で表される構造を有する化合物を含有することが好ましい。
<1> Compound having structure represented by general formula (A) The light emitting layer 3c according to the present invention contains a compound having a structure represented by the following general formula (A) as a phosphorescent compound. It is preferable.
 なお、下記一般式(A)で表されるリン光発光性化合物(リン光発光性の金属錯体ともいう)は、有機EL素子100の発光層3cに発光ドーパントとして含有されることが好ましい態様であるが、発光層3c以外の発光機能層群3に含有されていてもよい。 The phosphorescent compound represented by the following general formula (A) (also referred to as a phosphorescent metal complex) is preferably contained in the light emitting layer 3c of the organic EL element 100 as a light emitting dopant. However, it may be contained in the light emitting functional layer group 3 other than the light emitting layer 3c.
Figure JPOXMLDOC01-appb-C000108
 
Figure JPOXMLDOC01-appb-C000108
 
 上記一般式(A)において、P及びQは、各々炭素原子又は窒素原子を表す。Aは、P-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。Aは、Q-Nと共に芳香族複素環を形成する原子群を表す。P-L-Pは2座の配位子を表し、P及びPは各々独立に炭素原子、窒素原子又は酸素原子を表す。Lは、P及びPと共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。 In the general formula (A), P and Q each represent a carbon atom or a nitrogen atom. A 1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C. A 2 represents an atomic group that forms an aromatic heterocycle with QN. P 1 -L 1 -P 2 represents a bidentate ligand, and P 1 and P 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L 1 represents an atomic group that forms a bidentate ligand together with P 1 and P 2 . j1 represents an integer of 1 to 3, j2 represents an integer of 0 to 2, and j1 + j2 is 2 or 3. M 1 represents a group 8-10 transition metal element in the periodic table.
 一般式(A)において、P及びQは、各々炭素原子又は窒素原子を表す。 In the general formula (A), P and Q each represent a carbon atom or a nitrogen atom.
 一般式(A)において、AがP-Cと共に形成する芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 In the general formula (A), examples of the aromatic hydrocarbon ring that A 1 forms with P—C include, for example, a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
 これらの環は、更に置換基を有していてもよく、そのような置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えば、ジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。 These rings may further have a substituent. Examples of such a substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group). Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.), alkynyl group (For example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group Group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group Group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group) , A carbazolyl group, a carbolinyl group, a diazacarbazolyl group (in which one of carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group, etc., a heterocyclic group (for example, , Pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy Groups (eg cyclopentyloxy) Cyclohexyloxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group etc.), A cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), an arylthio group (eg, phenylthio group, naphthylthio group, etc.), an alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, Octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminos) Sulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, butylaminosulfonyl, hexylaminosulfonyl, cyclohexylaminosulfonyl, octylaminosulfonyl, dodecylaminosulfonyl, phenylaminosulfonyl, naphthylaminosulfonyl, 2- Pyridylaminosulfonyl group, etc.), acyl groups (eg acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl) Group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, Tilcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (eg, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino) Group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, Propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylamino Carbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group) , Dodecylureido group, phenylureido group naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group) Phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfuryl group, etc.) Sulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), An amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, piperidyl group (piperidinyl group); Group), 2,2,6,6-tetramethylpiperidinyl group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg fluoromethyl group, Trifluoromethyl group, pen Fluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphoric acid Examples include ester groups (for example, dihexyl phosphoryl group), phosphite groups (for example, diphenylphosphinyl group), phosphono groups, and the like.
 上記一般式(A)において、AがP-Cと共に形成する芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。 In the general formula (A), examples of the aromatic heterocycle formed by A 1 together with PC include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring And azacarbazole ring.
 ここで、アザカルバゾール環とは、前記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。 Here, the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
 これらの環は更に、上記した置換基を有していてもよい。 These rings may further have the above-described substituent.
 一般式(A)において、AがQ-Nと共に形成する芳香族複素環としては、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。 In the general formula (A), examples of the aromatic heterocycle formed by A 2 together with QN include an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, a thiadiazole ring, and a thiatriazole ring. , Isothiazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, triazole ring and the like.
 これらの環は更に、上記した置換基を有していてもよい。 These rings may further have the above-described substituent.
 一般式(A)において、P-L-Pは2座の配位子を表し、P及びPは各々独立に炭素原子、窒素原子又は酸素原子を表す。LはP及びPと共に2座の配位子を形成する原子群を表す。 In the general formula (A), P 1 -L 1 -P 2 represents a bidentate ligand, and P 1 and P 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L 1 represents an atomic group forming a bidentate ligand together with P 1 and P 2 .
 P-L-Pで表される2座の配位子としては、例えば、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。 Examples of the bidentate ligand represented by P 1 -L 1 -P 2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone, picolinic acid, and the like.
 一般式(A)において、j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3を表す、中でも、j2は0である場合が好ましい。 In the general formula (A), j1 represents an integer of 1 to 3, j2 represents an integer of 0 to 2, j1 + j2 represents 2 or 3, and j2 is preferably 0.
 一般式(A)において、Mとしては、元素周期表における8族~10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でも、イリジウム好ましい。 In the general formula (A), as M 1 , a transition metal element of Group 8 to Group 10 (also simply referred to as a transition metal) in the periodic table is used, and among these, iridium is preferable.
 〈2〉一般式(B)で表される構造を有する化合物
 上記説明した一般式(A)で表される構造を有する化合物が、更には、下記一般式(B)で表される構造を有する化合物であることが好ましい。
<2> Compound having structure represented by general formula (B) The compound having the structure represented by general formula (A) described above further has a structure represented by the following general formula (B). A compound is preferred.
Figure JPOXMLDOC01-appb-C000109
 
Figure JPOXMLDOC01-appb-C000109
 
 上記一般式(B)において、Zは、炭化水素環基又は複素環基を表す。P及びQは、各々炭素原子又は窒素原子を表す。Aは、P-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。Aは-C(R01)=C(R02)-、-N=C(R02)-、-C(R01)=N-又は-N=N-を表し、R01及びR02は、各々水素原子又は置換基を表す。P-L-Pは、2座の配位子を表す。P及びPは、各々独立に炭素原子、窒素原子、又は酸素原子を表す。Lは、P及びPと共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。 In the general formula (B), Z represents a hydrocarbon ring group or a heterocyclic group. P and Q each represent a carbon atom or a nitrogen atom. A 1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C. A 3 represents -C (R 01 ) = C (R 02 )-, -N = C (R 02 )-, -C (R 01 ) = N- or -N = N-, and R 01 and R 02 Each represents a hydrogen atom or a substituent. P 1 -L 1 -P 2 represents a bidentate ligand. P 1 and P 2 each independently represent a carbon atom, a nitrogen atom, or an oxygen atom. L 1 represents an atomic group that forms a bidentate ligand together with P 1 and P 2 . j1 represents an integer of 1 to 3, j2 represents an integer of 0 to 2, and j1 + j2 is 2 or 3. M 1 represents a group 8-10 transition metal element in the periodic table.
 一般式(B)において、Zで表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも、あるいは前記一般式(A)においてAで表される環が有していても良い置換基と同様のものを有していてもよい。 In the general formula (B), examples of the hydrocarbon ring group represented by Z include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group. , Cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or may have the same substituents that the ring represented by A 1 in the general formula (A) may have.
 また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。 Examples of the aromatic hydrocarbon ring group (also referred to as aromatic hydrocarbon group, aryl group, etc.) include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl. Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
 これらの基は、無置換でも良いし、置換基を有していてもよく、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These groups may be unsubstituted or may have a substituent, and as such a substituent, the ring represented by A 1 in the general formula (A) may have. The same thing as a substituent is mentioned.
 一般式(B)において、Zで表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等から導出される基を挙げられる。 In the general formula (B), examples of the heterocyclic group represented by Z include a non-aromatic heterocyclic group and an aromatic heterocyclic group. Examples of the non-aromatic heterocyclic group include an epoxy ring and an aziridine group. Ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε- Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine Ring, thiomorpholine-1,1-dioxy And groups derived from a dodo ring, a pyranose ring, a diazabicyclo [2,2,2] -octane ring, and the like.
 これらの基は、無置換でも良いし、置換基を有していてもよく、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These groups may be unsubstituted or may have a substituent, and as such a substituent, the ring represented by A 1 in the general formula (A) may have. The same thing as a substituent is mentioned.
 芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。 Examples of the aromatic heterocyclic group include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl). Group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
 これらの基は、無置換でも良いし、置換基を有していてもよく、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These groups may be unsubstituted or may have a substituent, and as such a substituent, the ring represented by A 1 in the general formula (A) may have. The same thing as a substituent is mentioned.
 好ましくは、Zで表される基は、芳香族炭化水素環基又は芳香族複素環基である。 Preferably, the group represented by Z is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
 一般式(B)において、AがP-Cと共に形成する芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 In the general formula (B), examples of the aromatic hydrocarbon ring that A 1 forms with PC include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
 これらの環は更に、置換基を有していても良く、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These rings may further have a substituent, and examples of such a substituent are the same as the substituent that the ring represented by A 1 in the general formula (A) may have. Things.
 一般式(B)において、AがP-Cと共に形成する芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、アザカルバゾール環等が挙げられる。 In the general formula (B), examples of the aromatic heterocycle formed by A 1 together with PC include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine. Ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, Examples thereof include a carboline ring and an azacarbazole ring.
 ここで、アザカルバゾール環とは、前記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。 Here, the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
 これらの環は更に、置換基を有していても良く、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These rings may further have a substituent, and examples of such a substituent are the same as the substituent that the ring represented by A 1 in the general formula (A) may have. Things.
 一般式(B)のAで表される-C(R01)=C(R02)-、-N=C(R02)-、又は-C(R01)=N-において、R01及びR02で各々表される置換基は、前記一般式(A)においてAで表される環が有していても良い置換基と同義である。 In —C (R 01 ) ═C (R 02 ) —, —N═C (R 02 ) —, or —C (R 01 ) ═N— represented by A 3 in the general formula (B), R 01 And the substituent represented by R 02 has the same meaning as the substituent which the ring represented by A 1 in the general formula (A) may have.
 一般式(B)において、P-L-Pで表される2座の配位子としては、例えば、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。 In the general formula (B), examples of the bidentate ligand represented by P 1 -L 1 -P 2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone, and picoline. An acid etc. are mentioned.
 また、j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3を表す、中でも、j2は0である場合が好ましい。 J1 represents an integer of 1 to 3, j2 represents an integer of 0 to 2, j1 + j2 represents 2 or 3, and j2 is preferably 0.
 一般式(B)において、Mで表される元素周期表における8族~10族の遷移金属元素(単に遷移金属ともいう)は、前記一般式(A)において、Mで表される元素周期表における8族~10族の遷移金属元素と同義である。 In the general formula (B), the transition metal element of group 8 to group 10 in the periodic table of elements represented by M 1 (also simply referred to as transition metal) is the element represented by M 1 in the general formula (A). Synonymous with Group 8-10 transition metal elements in the periodic table.
 〈3〉一般式(C)で表される構造を有する化合物
 本発明においては、上記一般式(B)で表される構造を有する化合物の好ましい態様の一つとして、下記一般式(C)で表される構造を有する化合物が挙げられる。
<3> Compound having the structure represented by the general formula (C) In the present invention, as one of the preferred embodiments of the compound having the structure represented by the general formula (B), the following general formula (C) Examples include compounds having the structure represented.
Figure JPOXMLDOC01-appb-C000110
 
Figure JPOXMLDOC01-appb-C000110
 
 上記一般式(C)において、R03は置換基を表す。R04は水素原子又は置換基を表し、複数のR04は互いに結合して環を形成してもよい。n01は1~4の整数を表す。R05は水素原子又は置換基を表し、複数のR05は互いに結合して環を形成してもよい。n02は1~2の整数を表す。R06は水素原子又は置換基を表し、互いに結合して環を形成してもよい。n03は1~4の整数を表す。Zは、C-Cと共に6員の芳香族炭化水素環若しくは、5員又は6員の芳香族複素環を形成するのに必要な原子群を表す。Zは、炭化水素環基又は複素環基を形成するのに必要な原子群を表す。P-L-Pは2座の配位子を表し、P及びPは各々独立に炭素原子、窒素原子又は酸素原子を表す。LはP及びPと共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。また、R03とR06、R04とR06及びR05とR06は、それぞれ互いに結合して環を形成していてもよい。 In the above general formula (C), R 03 represents a substituent. R 04 represents a hydrogen atom or a substituent, and a plurality of R 04 may be bonded to each other to form a ring. n01 represents an integer of 1 to 4. R 05 represents a hydrogen atom or a substituent, and a plurality of R 05 may be bonded to each other to form a ring. n02 represents an integer of 1 to 2. R 06 represents a hydrogen atom or a substituent, and may combine with each other to form a ring. n03 represents an integer of 1 to 4. Z 1 represents an atomic group necessary for forming a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle with C—C. Z 2 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group. P 1 -L 1 -P 2 represents a bidentate ligand, and P 1 and P 2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L 1 represents an atomic group forming a bidentate ligand together with P 1 and P 2 . j1 represents an integer of 1 to 3, j2 represents an integer of 0 to 2, and j1 + j2 is 2 or 3. M 1 represents a group 8-10 transition metal element in the periodic table. R 03 and R 06 , R 04 and R 06, and R 05 and R 06 may be bonded to each other to form a ring.
 一般式(C)において、R03、R04、R05及びR06で各々表される置換基は、前記一般式(A)において、Aで表される環が有していても良い置換基と同義である。 In the general formula (C), each of the substituents represented by R 03 , R 04 , R 05 and R 06 may be substituted by the ring represented by A 1 in the general formula (A). Synonymous with group.
 一般式(C)において、ZがC-Cと共に形成する6員の芳香族炭化水素環としては、ベンゼン環等が挙げられる。 In the general formula (C), examples of the 6-membered aromatic hydrocarbon ring formed by Z 1 together with C—C include a benzene ring.
 これらの環は、更に置換基を有していても良く、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These rings may further have a substituent, and such a substituent is the same as the substituent which the ring represented by A 1 in the general formula (A) may have. Things.
 一般式(C)において、ZがC-Cと共に形成する5員又は6員の芳香族複素環としては、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。 In the general formula (C), examples of the 5-membered or 6-membered aromatic heterocycle formed by Z 1 together with C—C include, for example, an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, Examples include thiadiazole ring, thiatriazole ring, isothiazole ring, thiophene ring, furan ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, triazole ring and the like.
 これらの環は、更に置換基を有していても良く、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 These rings may further have a substituent, and such a substituent is the same as the substituent which the ring represented by A 1 in the general formula (A) may have. Things.
 一般式(C)において、Zで表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも良いし、置換基を有していても良く、そのような置換基としては、一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 In the general formula (C), examples of the hydrocarbon ring group represented by Z 2 include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include cyclopropyl. Group, cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or may have a substituent. Examples of such a substituent include a substituent that the ring represented by A 1 in General Formula (A) may have. The same thing as a group is mentioned.
 また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。これらの基は、無置換でも良いし、置換基を有していてもよく、そのような置換基としては、一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 Examples of the aromatic hydrocarbon ring group (also referred to as aromatic hydrocarbon group, aryl group, etc.) include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl. Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like. These groups may be unsubstituted or may have a substituent. Examples of such a substituent include a substituent that the ring represented by A 1 in General Formula (A) may have. The same thing as a group is mentioned.
 一般式(C)において、Zで表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等から導出される基を挙げることができる。これらの基は無置換でも良いし、置換基を有していても良く、そのような置換基としては、一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 In the general formula (C), examples of the heterocyclic group represented by Z 2 include a non-aromatic heterocyclic group and an aromatic heterocyclic group. Examples of the non-aromatic heterocyclic group include an epoxy ring, Aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε -Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thio Morpholine ring, thiomorpholine-1,1-dioxy De ring, pyranose ring, a diazabicyclo [2,2,2] - and the groups derived from the octane ring. These groups may be unsubstituted or may have a substituent. Examples of such a substituent include a substituent that the ring represented by A 1 in the general formula (A) may have. The same thing is mentioned.
 芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。 Examples of the aromatic heterocyclic group include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl). Group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
 これらの環は無置換でも良いし、置換基を有していてもよく、そのような置換基としては、前記一般式(A)においてAで表される環が有していても良い置換基と同様のものが挙げられる。 It These rings may be unsubstituted, may have a substituent, and examples of the substituent which may have the rings represented by A 1 in the general formula (A) substitution The same thing as a group is mentioned.
 一般式(C)において、Z及びZで形成される基としてはベンゼン環が好ましい。 In the general formula (C), the group formed by Z 1 and Z 2 is preferably a benzene ring.
 一般式(C)において、P-L-Pで表される2座の配位子は、前記一般式(A)において、P-L-Pで表される2座の配位子と同義である。 In formula (C), bidentate ligand represented by P 1 -L 1 -P 2, the In formula (A), the bidentate represented by P 1 -L 1 -P 2 Synonymous with ligand.
 一般式(C)において、Mで表される元素周期表における8族~10族の遷移金属元素は、前記一般式(A)において、Mで表される元素周期表における8族~10族の遷移金属元素と同義である。 In the formula (C), transition metal elements group 8-10 of the periodic table represented by M 1 is, in the general formula (A), group 8 in the periodic table represented by M 1 ~ 10 It is synonymous with the group transition metal element.
 また、リン光発光性化合物は、有機EL素子100の発光層3cに使用される公知のものの中から適宜選択して用いることができる。 The phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer 3c of the organic EL element 100.
 本発明に係るリン光発光性化合物は、好ましくは元素の周期表で8族~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound.
 本発明に係るリン光発光性化合物の具体例(Pt-1~Pt-3、A-1、Ir-1~Ir-45)を以下に示すが、本発明はこれらに限定されない。なお、これらの化合物において、m及びnは各々繰り返し数を表す。 Specific examples (Pt-1 to Pt-3, A-1, Ir-1 to Ir-45) of the phosphorescent compound according to the present invention are shown below, but the present invention is not limited to these. In these compounds, m and n each represent the number of repetitions.
Figure JPOXMLDOC01-appb-C000111
 
Figure JPOXMLDOC01-appb-C000111
 
Figure JPOXMLDOC01-appb-C000112
 
Figure JPOXMLDOC01-appb-C000112
 
Figure JPOXMLDOC01-appb-C000113
 
Figure JPOXMLDOC01-appb-C000113
 
Figure JPOXMLDOC01-appb-C000114
 
Figure JPOXMLDOC01-appb-C000114
 
Figure JPOXMLDOC01-appb-C000115
 
Figure JPOXMLDOC01-appb-C000115
 
Figure JPOXMLDOC01-appb-C000116
 
Figure JPOXMLDOC01-appb-C000116
 
Figure JPOXMLDOC01-appb-C000117
 
Figure JPOXMLDOC01-appb-C000117
 
Figure JPOXMLDOC01-appb-C000118
 
Figure JPOXMLDOC01-appb-C000118
 
 上記のリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、更にこれらの文献中の参考文献等に記載されている方法を適用することにより合成できる。 The above phosphorescent compounds (also referred to as phosphorescent metal complexes) are described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and the methods described in references in these documents should be applied. Can be synthesized.
 〈蛍光発光材料〉
 蛍光発光材料としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent material>
Examples of fluorescent light emitting materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, Examples thereof include stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 (注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために、電極と発光層3cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、注入層としては、正孔注入層3aと電子注入層3eとがある。
(Injection layer)
The injection layer is a layer provided between the electrode and the light emitting layer 3c in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NTT) The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer 3a and an electron injection layer 3e as injection layers. .
 注入層は、必要に応じて設けることができる。正孔注入層3aであれば、アノードと発光層3c又は正孔輸送層3bとの間に、電子注入層3eであればカソードと発光層3c又は電子輸送層3dとの間に存在させてもよい。 The injection layer can be provided as necessary. The hole injection layer 3a may be present between the anode and the light emitting layer 3c or the hole transport layer 3b, and the electron injection layer 3e may be present between the cathode and the light emitting layer 3c or the electron transport layer 3d. Good.
 正孔注入層3aは、例えば、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。 The details of the hole injection layer 3a are described in, for example, JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069, and a specific example is represented by copper phthalocyanine. Examples thereof include a phthalocyanine layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 電子注入層3eは、例えば、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明においては、電子注入層3eはごく薄い膜であることが望ましく、素材にもよるが、その層厚は1nm~10μmの範囲が好ましい。 The details of the electron injection layer 3e are described, for example, in JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and are specifically represented by strontium, aluminum and the like. Metal layers, alkali metal halide layers typified by potassium fluoride, alkaline earth metal compound layers typified by magnesium fluoride, oxide layers typified by molybdenum oxide, and the like. In the present invention, it is desirable that the electron injection layer 3e is a very thin film, and although depending on the material, the layer thickness is preferably in the range of 1 nm to 10 μm.
 (正孔輸送層)
 正孔輸送層3bは、正孔を輸送する機能を有する正孔輸送材料から構成されており、広い意味で正孔注入層3a、電子阻止層も正孔輸送層3bに含まれる。正孔輸送層3bは単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer 3b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 3a and the electron blocking layer are also included in the hole transport layer 3b. The hole transport layer 3b can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール等が挙げられ、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(略称:NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(略称:MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like, and further US Pat. No. 5,061,569 Having two condensed aromatic rings described in 1), for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: N D) 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N— in which three triphenylamine units described in JP-A-4-308688 are linked in a starburst type. Phenylamino] triphenylamine (abbreviation: MTDATA) and the like.
 更に、これらの材料を高分子鎖に導入した、あるいはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Furthermore, polymer materials in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られる観点から、これらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. A so-called p-type hole transport material as described in 139 can also be used. In the present invention, these materials are preferably used from the viewpoint of obtaining a light-emitting element with higher efficiency.
 正孔輸送層3bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層3bの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。この正孔輸送層3bは、上記材料の1種又は2種以上からなる一層構造であってもよい。 For the hole transport layer 3b, the hole transport material may be a known material such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, an LB method (Langmuir Brodget, Langmuir Brodgett method), and the like. The thin film can be formed by the method. The layer thickness of the hole transport layer 3b is not particularly limited, but is usually in the range of about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer 3b may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層3bの材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping the material of the hole transport layer 3b with an impurity. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層3bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer 3b because a device with lower power consumption can be manufactured.
 (電子輸送層)
 電子輸送層3dは、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層3e、正孔阻止層も電子輸送層3dに含まれる。電子輸送層3dは、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer 3d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 3e and the hole blocking layer are also included in the electron transport layer 3d. The electron transport layer 3d can be provided as a single layer structure or a multilayer structure of a plurality of layers.
 単層構造の電子輸送層3d、及び積層構造の電子輸送層3dにおいて、発光層3cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層3cに伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層3dの材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer 3d having a single layer structure and the electron transport layer 3d having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 3c is an electron injected from the cathode. As long as it has a function of transmitting the light to the light emitting layer 3c. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Further, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 3d. Can do. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層3dの材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes A metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as the material of the electron transport layer 3d.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層3dの材料として好ましく用いることができる。また、発光層3cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層3dの材料として用いることができるし、正孔注入層3a及び正孔輸送層3bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層3dの材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 3d. Further, a distyrylpyrazine derivative exemplified also as the material of the light emitting layer 3c can be used as the material of the electron transport layer 3d. Similarly to the hole injection layer 3a and the hole transport layer 3b, n-type Si, n An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 3d.
 電子輸送層3dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層3dの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層3dは上記材料の1種又は2種以上からなる一層構造であってもよい。 The electron transport layer 3d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer 3d is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer 3d may have a single layer structure composed of one or more of the above materials.
 また、電子輸送層3dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。更に、電子輸送層3dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように、電子輸送層3dのn性を高くすることにより、より低消費電力の有機EL素子を得ることができる。 Further, the electron transport layer 3d can be doped with an impurity to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable that the electron transport layer 3d contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, by increasing the n property of the electron transport layer 3d, an organic EL element with lower power consumption can be obtained.
 また、電子輸送層3dの材料(電子輸送性化合物)として、上述した中間層1aを構成する材料と同様のものを用いても良い。これは、電子注入層3eを兼ねた電子輸送層3dであっても同様であり、上述した中間層1aを構成する材料と同様のものを用いても良い。 Further, as the material (electron transporting compound) of the electron transport layer 3d, the same material as that of the intermediate layer 1a described above may be used. The same applies to the electron transport layer 3d also serving as the electron injection layer 3e, and the same material as that constituting the intermediate layer 1a described above may be used.
 (阻止層)
 阻止層は、上記説明した発光機能層群3の各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。阻止層としては、正孔阻止層及び電子阻止層が挙げられる。
(Blocking layer)
The blocking layer is a layer provided as necessary in addition to the constituent layers of the light emitting functional layer group 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like. Examples of the blocking layer include a hole blocking layer and an electron blocking layer.
 正孔阻止層とは、広い意味では、電子輸送層3dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層3dの構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層3cに隣接して設けられていることが好ましい。 The hole blocking layer has the function of the electron transport layer 3d in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of the electron carrying layer 3d mentioned later can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer 3c.
 一方、電子阻止層とは、広い意味では、正孔輸送層3bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層3bの構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。 On the other hand, the electron blocking layer has the function of the hole transport layer 3b in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of the positive hole transport layer 3b mentioned later can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 〔補助電極〕
 補助電極15は、透明電極1の抵抗を下げる目的で設けられる電極であって、透明電極1の導電性層1bに接して設けられる。補助電極15を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属の多くは光透過性が低いため、光取り出し面13aからの発光光Lの取り出しの影響のない範囲で、図2に示すようなパターン状で形成される。このような補助電極15の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極15の線幅は、光を取り出す領域の開口率の観点から、50μm以下であることが好ましく、補助電極15の厚さは、導電性の観点から、1μm以上であることが好ましい。
[Auxiliary electrode]
The auxiliary electrode 15 is an electrode provided for the purpose of reducing the resistance of the transparent electrode 1, and is provided in contact with the conductive layer 1 b of the transparent electrode 1. The material forming the auxiliary electrode 15 is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since many of these metals have low light transmittance, they are formed in a pattern as shown in FIG. 2 within a range not affected by extraction of the emitted light L from the light extraction surface 13a. Examples of the method for forming the auxiliary electrode 15 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method. The line width of the auxiliary electrode 15 is preferably 50 μm or less from the viewpoint of the aperture ratio of the light extraction region, and the thickness of the auxiliary electrode 15 is preferably 1 μm or more from the viewpoint of conductivity.
 〔封止材〕
 封止材17は、有機EL素子100を覆うものであって、板状(フィルム状)の封止部材であって、接着剤19によって透明基板13側に固定される方式であっても良く、封止膜であっても良い。このような封止材17は、有機EL素子100における透明電極1及び対向電極5aの端子部分を露出させる状態で、少なくとも発光機能層群3を覆う状態で設けられている。また、封止材17に電極を設け、有機EL素子100の透明電極1及び対向電極5aの端子部分と、この電極とを導通させるように構成されていても良い。
[Encapsulant]
The sealing material 17 covers the organic EL element 100 and may be a plate-shaped (film-shaped) sealing member that is fixed to the transparent substrate 13 by the adhesive 19. It may be a sealing film. Such a sealing material 17 is provided in a state of covering at least the light emitting functional layer group 3 in a state in which the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed. Moreover, an electrode may be provided on the sealing material 17 so that the transparent electrode 1 of the organic EL element 100 and the terminal portions of the counter electrode 5a are electrically connected to this electrode.
 板状(フィルム状)の封止材17としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板材料を更に薄型のフィルム状にして用いても良い。ガラス基板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。 Specific examples of the plate-like (film-like) sealing material 17 include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrate materials may be used in the form of a thinner film. Examples of the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 なかでも、有機EL素子を薄膜化できるという観点から、封止材としてポリマー基板や金属基板を薄型のフィルム状にしたものを好ましく使用することができる。 Among these, from the viewpoint that the organic EL element can be thinned, a thin film-like polymer substrate or metal substrate can be preferably used as the sealing material.
 更には、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。 Furthermore, the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method in accordance with the above is 1 × 10 −3 g / (m 2 · 24 h) or less. It is preferable.
 以上のような基板材料は、凹板状に加工して封止材17として用いても良い。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。 The above substrate material may be processed into a concave plate shape and used as the sealing material 17. In this case, the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.
 また、このような板状の封止材17を、透明基板13側に固定するための接着剤19は、封止材17と透明基板13との間に挟持された有機EL素子100を封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。 An adhesive 19 for fixing the plate-shaped sealing material 17 to the transparent substrate 13 side seals the organic EL element 100 sandwiched between the sealing material 17 and the transparent substrate 13. It is used as a sealing agent. Specific examples of such an adhesive 19 include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture curing types such as 2-cyanoacrylates, and the like. Can be mentioned.
 また、このような接着剤19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Further, examples of the adhesive 19 include an epoxy-based thermal and chemical curing type (two-component mixing). Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子100を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。 In addition, the organic material which comprises the organic EL element 100 may deteriorate by heat processing. For this reason, the adhesive 19 is preferably one that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.
 封止材17と透明基板13との接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Application of the adhesive 19 to the bonding portion between the sealing material 17 and the transparent substrate 13 may be performed using a commercially available dispenser or may be printed like screen printing.
 また、板状の封止材17と透明基板13と接着剤19との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In addition, when a gap is formed between the plate-shaped sealing material 17, the transparent substrate 13, and the adhesive 19, in this gap, in the gas phase and the liquid phase, an inert gas such as nitrogen or argon or a fluorine is used. It is preferable to inject an inert liquid such as activated hydrocarbon or silicon oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 一方、封止材17として封止膜を用いる場合、有機EL素子100における発光機能層群3を完全に覆い、かつ有機EL素子100における透明電極1及び対向電極5aの端子部分を露出させる状態で、透明基板13上に封止膜が設けられる。 On the other hand, when a sealing film is used as the sealing material 17, the light emitting functional layer group 3 in the organic EL element 100 is completely covered and the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed. A sealing film is provided on the transparent substrate 13.
 このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機EL素子100における発光機能層群3の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成される。このような材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が用いられる。更に封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて積層構造としても良い。 Such a sealing film is composed of an inorganic material or an organic material. In particular, it is made of a material having a function of suppressing intrusion of a substance that causes deterioration of the light emitting functional layer group 3 in the organic EL element 100 such as moisture and oxygen. As such a material, for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
 これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 〔保護膜、保護板〕
 先に例示した図ではその記載を省略したが、透明基板13との間に有機EL素子100及び封止材17を挟んで保護膜若しくは保護板を設けても良い。この保護膜若しくは保護板は、有機EL素子100を機械的に保護するためのものであり、特に封止材17が封止膜である場合には、有機EL素子100に対する機械的な保護が十分ではないため、このような保護膜若しくは保護板を設けることが好ましい。
[Protective film, protective plate]
Although not shown in the drawings illustrated above, a protective film or a protective plate may be provided between the transparent substrate 13 and the organic EL element 100 and the sealing material 17. This protective film or protective plate is for mechanically protecting the organic EL element 100, and in particular when the sealing material 17 is a sealing film, sufficient mechanical protection is provided for the organic EL element 100. Therefore, it is preferable to provide such a protective film or protective plate.
 以上のような保護膜若しくは保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 As the above protective film or protective plate, a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied. Among these, it is particularly preferable to use a polymer film because it is light and thin.
 〔有機EL素子の製造方法〕
 ここでは一例として、図2に示す有機EL素子100の製造方法について説明する。
[Method for producing organic EL element]
Here, as an example, a method for manufacturing the organic EL element 100 shown in FIG. 2 will be described.
 まず、透明基板13上に、本発明に係る2種以上の有機化合物を含有する中間層1aを、1μm以下、好ましくは10~100nmの範囲の層厚になるように蒸着法等の方法を適宜選択して形成する。次に、銀又は銀を主成分とした合金から構成される導電性層1bを、12nm以下、好ましくは4~9nmの範囲の層厚になるように、蒸着法等の方法を適宜選択して中間層1a上に形成し、アノードとなる透明電極1を作製する。 First, an intermediate layer 1a containing two or more organic compounds according to the present invention is appropriately deposited on the transparent substrate 13 by a method such as vapor deposition so that the layer thickness is 1 μm or less, preferably in the range of 10 to 100 nm. Select and form. Next, a method such as vapor deposition is appropriately selected so that the conductive layer 1b composed of silver or an alloy containing silver as a main component has a layer thickness of 12 nm or less, preferably in the range of 4 to 9 nm. A transparent electrode 1 formed on the intermediate layer 1a and serving as an anode is produced.
 次に、この透明電極1上に、正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d、電子注入層3eの順に成膜し、発光機能層群3を形成する。発光機能層群3を構成する各層の成膜は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる成膜法を適用してもよい。これら各層の成膜に蒸着法を適用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度として50~450℃の範囲、真空度として1×10-6~1×10-2Paの範囲、蒸着速度として0.01~50nm/秒の範囲、基板温度として-50~300℃の範囲、層厚として0.1~5μmの範囲で、各条件を適宜選択することが望ましい。 Next, the hole injection layer 3a, the hole transport layer 3b, the light emitting layer 3c, the electron transport layer 3d, and the electron injection layer 3e are formed in this order on the transparent electrode 1 to form the light emitting functional layer group 3. Film formation of each layer constituting the light emitting functional layer group 3 includes a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc., but it is easy to obtain a homogeneous film and a pinhole is not easily generated. From this point, the vacuum evaporation method or the spin coating method is particularly preferable. Further, different film formation methods may be applied for each layer. When a vapor deposition method is applied to the film formation of each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is 1 × 10 −6 to 1 ×. Each condition is appropriately selected within a range of 10 −2 Pa, a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a layer thickness of 0.1 to 5 μm. Is desirable.
 以上のようにして発光機能層群3を形成した後、この上部にカソードとなる対向電極5aを、蒸着法やスパッタ法などの成膜法を適宜選択して形成する。この際、対向電極5aは、発光機能層群3によって透明電極1に対して絶縁状態を保ちつつ、発光機能層群3の上方から透明基板13の周縁に端子部分を引き出した形状にパターン形成する。これにより、有機EL素子100が得られる。また、その後には、有機EL素子100における透明電極1及び対向電極5aの端子部分を露出させた状態で、少なくとも発光機能層群3を覆う封止材17を設ける。 After the light emitting functional layer group 3 is formed as described above, the counter electrode 5a serving as a cathode is formed thereon by appropriately selecting a film forming method such as a vapor deposition method or a sputtering method. At this time, the counter electrode 5a is patterned in a shape in which a terminal portion is drawn from the upper side of the light emitting functional layer group 3 to the periphery of the transparent substrate 13 while being kept insulated from the transparent electrode 1 by the light emitting functional layer group 3. . Thereby, the organic EL element 100 is obtained. Thereafter, a sealing material 17 that covers at least the light emitting functional layer group 3 is provided in a state where the terminal portions of the transparent electrode 1 and the counter electrode 5a in the organic EL element 100 are exposed.
 以上により、透明基板13上に所望の構成からなる有機EL素子を作製することができる。このような有機EL素子100の作製においては、一回の真空引きで一貫して発光機能層群3から対向電極5aまで作製する方式が好ましいが、途中で真空雰囲気から透明基板13を取り出して、異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 As described above, an organic EL element having a desired configuration can be produced on the transparent substrate 13. In the production of such an organic EL element 100, a method of producing from the light emitting functional layer group 3 to the counter electrode 5a consistently by a single vacuum is preferable, but the transparent substrate 13 is taken out from the vacuum atmosphere in the middle, Different film forming methods may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 このようにして得られた有機EL素子100に直流電圧を印加する場合には、アノードである透明電極1を+の極性とし、カソードである対向電極5aを-の極性として、電圧として2~40Vの範囲で印加すると、発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL device 100 thus obtained, the transparent electrode 1 as an anode has a positive polarity, the counter electrode 5a as a cathode has a negative polarity, and the voltage is 2 to 40 V. When it is applied in the range, light emission can be observed. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 〔第1例(図2)で示す有機EL素子の効果〕
 以上説明した図2で示す構成からなる有機EL素子100は、導電性と光透過性とを兼ね備えた本発明の透明電極1をアノードとして用い、この上部に発光機能層群3とカソードとなる対向電極5aとを設けた構成である。このため、透明電極1と対向電極5aとの間に十分な電圧を印加して有機EL素子100での高輝度発光を実現しつつ、透明電極1側からの発光光Lの取り出し効率が向上することにより、高輝度化を図ることが可能である。更に、所望の輝度を得るため、駆動電圧の低減による発光寿命の向上を図ることも可能になる。
[Effect of organic EL element shown in first example (FIG. 2)]
The organic EL element 100 having the configuration shown in FIG. 2 described above uses the transparent electrode 1 of the present invention having both conductivity and light transmission as an anode, and is opposed to the light emitting functional layer group 3 and the cathode above this. It is the structure which provided the electrode 5a. For this reason, the extraction efficiency of the emitted light L from the transparent electrode 1 side is improved while applying a sufficient voltage between the transparent electrode 1 and the counter electrode 5a to realize high luminance light emission in the organic EL element 100. Thus, it is possible to increase the luminance. Further, in order to obtain a desired luminance, it is possible to improve the light emission lifetime by reducing the drive voltage.
 《4.有機EL素子の第2例》
 〔有機EL素子の構成〕
 図3は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機EL素子の第2例を示す概略断面図である。図3に示す第2例の有機EL素子200が、図2に示した第1例の有機EL素子100と異なるところは、透明電極1をカソードとして用いるところにある。以下、図2に示した第1例と同様の構成要素についての重複する詳細な説明は省略し、第2例の有機EL素子200の特徴的な構成について、以下に説明する。
<< 4. Second Example of Organic EL Device >>
[Configuration of organic EL element]
FIG. 3 is a schematic cross-sectional view showing a second example of the organic EL element using the transparent electrode described above as an example of the electronic device of the present invention. The organic EL element 200 of the second example shown in FIG. 3 is different from the organic EL element 100 of the first example shown in FIG. 2 in that the transparent electrode 1 is used as a cathode. Hereinafter, the detailed description of the same components as those in the first example shown in FIG. 2 will be omitted, and the characteristic configuration of the organic EL element 200 in the second example will be described below.
 図3に示す有機EL素子200は、透明基板13上に設けられており、第1例と同様に、透明基板13上の透明電極1として、先に説明した本発明の透明電極1を用いている。このため、有機EL素子200は、少なくとも透明基板13側から発光光Lを取り出せるように構成されている。ただし、この透明電極1は、カソード(陰極)として用いられ、対向電極5bはアノード(陽極)として用いられることになる。 The organic EL element 200 shown in FIG. 3 is provided on the transparent substrate 13, and the transparent electrode 1 of the present invention described above is used as the transparent electrode 1 on the transparent substrate 13 as in the first example. Yes. For this reason, the organic EL element 200 is configured to extract the emitted light L from at least the transparent substrate 13 side. However, the transparent electrode 1 is used as a cathode (cathode), and the counter electrode 5b is used as an anode (anode).
 このように構成される有機EL素子200の層構造は、以下に説明する例に限定されることはなく、一般的な層構造であっても良いことは、第1例と同様である。 The layer structure of the organic EL element 200 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example.
 第2例で示す層構成の一例としては、カソードとして機能する透明電極1の上部に、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aをこの順に積層した発光機能層群3が例示される。ただし、このうち少なくとも有機材料で構成される発光層3cを有することが必須の条件である。 As an example of the layer structure shown in the second example, an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a are formed on the transparent electrode 1 functioning as a cathode. The light emitting functional layer group 3 laminated in order is illustrated. However, among these, it is an essential condition to have at least the light emitting layer 3c made of an organic material.
 なお、発光機能層群3は、これらの層の他にも、第1例で説明したのと同様に、必要に応じ、様々な機能層を組み入れることができる。このような構成において、透明電極1と対向電極5bとで発光機能層群3が挟持された部分のみが、有機EL素子200における発光領域となることも、第1例と同様である。 In addition to these layers, the light emitting functional layer group 3 can incorporate various functional layers as necessary, as described in the first example. In such a configuration, only the portion where the light emitting functional layer group 3 is sandwiched between the transparent electrode 1 and the counter electrode 5b becomes the light emitting region in the organic EL element 200, as in the first example.
 また、以上のような層構成においては、透明電極1の低抵抗化を図ることを目的として透明電極1の導電性層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。 In the layer configuration as described above, the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. Similar to the example.
 ここで、アノードとして用いられる対向電極5bは、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体などが挙げられる。 Here, the counter electrode 5b used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Specific examples include metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
 以上のような材料で構成される対向電極5bは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより形成することができる。また、対向電極5bとしてのシート抵抗は、数百Ω/□以下が好ましく、層厚は通常5nm~5μm、好ましくは5~200nmの範囲内で選ばれる。 The counter electrode 5b composed of the above materials can be formed by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the counter electrode 5b is preferably several hundred Ω / □ or less, and the layer thickness is usually selected within the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、この有機EL素子200が、対向電極5b側からも発光光Lを取り出せるように構成されている場合、対向電極5bを構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料が選択されて用いられる。 In addition, when this organic EL element 200 is comprised so that emitted light L can be taken out also from the counter electrode 5b side, as a material which comprises the counter electrode 5b, favorable light transmittance is mentioned among the electrically conductive materials mentioned above. A suitable conductive material is selected and used.
 以上のような構成の有機EL素子200は、発光機能層群3の劣化を防止することを目的として、第1例と同様に封止材17で封止されている。 The organic EL element 200 configured as described above is sealed with the sealing material 17 in the same manner as in the first example for the purpose of preventing deterioration of the light emitting functional layer group 3.
 以上説明した有機EL素子200を構成する主要各層のうち、アノードとして用いられる対向電極5b以外の構成要素の詳細な構成、及び有機EL素子200の作製方法は、第1例と同様である。このため詳細な説明は省略する。 Of the main layers constituting the organic EL element 200 described above, the detailed structure of the constituent elements other than the counter electrode 5b used as the anode and the method for producing the organic EL element 200 are the same as those in the first example. Therefore, detailed description is omitted.
 〔第2例(図3)で示す有機EL素子の効果〕
 以上説明した図3で示す有機EL素子200は、導電性と光透過性とを兼ね備えた本発明の透明電極1をカソードとして用い、この上部に発光機能層群3とアノードとなる対向電極5bとを設けた構成である。このため、第1例と同様に、透明電極1と対向電極5bとの間に十分な電圧を印加して有機EL素子200での高輝度発光を実現しつ、透明電極1側からの発光光Lの取り出し効率が向上することによる高輝度化を図ることが可能である。更に、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
[Effect of the organic EL element shown in the second example (FIG. 3)]
In the organic EL element 200 shown in FIG. 3 described above, the transparent electrode 1 of the present invention having both conductivity and light transmission is used as a cathode, and the light emitting functional layer group 3 and the counter electrode 5b serving as an anode are formed thereon. Is provided. For this reason, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5b to realize high-luminance light emission in the organic EL element 200, and light emitted from the transparent electrode 1 side. It is possible to increase the luminance by improving the L extraction efficiency. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
 《5.有機EL素子の第3例》
 〔有機EL素子の構成〕
 図4は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機EL素子の第3例を示す概略断面図である。図4に示す第3例の有機EL素子300が、図2を用いて説明した第1例の有機EL素子100と異なるところは、基板131側に対向電極5cを設け、この上部に発光機能層群3と透明電極1とをこの順に積層したところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第3例の有機EL素子300の特徴的な構成を説明する。
<< 5. Third Example of Organic EL Device >>
[Configuration of organic EL element]
FIG. 4 is a schematic cross-sectional view showing a third example of the organic EL element using the above-described transparent electrode as an example of the electronic device of the present invention. The organic EL element 300 of the third example shown in FIG. 4 is different from the organic EL element 100 of the first example described with reference to FIG. 2 in that a counter electrode 5c is provided on the substrate 131 side, and a light emitting functional layer is formed thereon. The group 3 and the transparent electrode 1 are stacked in this order. Hereinafter, the detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic EL element 300 in the third example will be described.
 図4に示す有機EL素子300は、基板131上に設けられており、基板131側から、アノードとなる対向電極5c、発光機能層群3、及びカソードとなる透明電極1がこの順に積層されている。このうち、透明電極1としては、先に説明した本発明の透明電極1を用いている。このため有機EL素子300は、少なくとも基板131とは逆の透明電極1側から発光光Lを取り出せるように構成されている。 The organic EL element 300 shown in FIG. 4 is provided on a substrate 131. From the substrate 131 side, the counter electrode 5c serving as an anode, the light emitting functional layer group 3, and the transparent electrode 1 serving as a cathode are laminated in this order. Yes. Among these, as the transparent electrode 1, the transparent electrode 1 of the present invention described above is used. For this reason, the organic EL element 300 is configured to extract the emitted light L from at least the transparent electrode 1 side opposite to the substrate 131.
 このように構成される有機EL素子300の層構造は、以下に説明する例に限定されることはなく、一般的な層構造であっても良いことは、第1例と同様である。第3例の場合の一例としては、図4に示すように、アノードとして機能する対向電極5cの上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3dをこの順に積層した構成が例示される。ただし、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。また、電子輸送層3dは、電子注入層3eを兼ねたもので、電子注入性を有する電子輸送層3dとして設けられていることとする。 The layer structure of the organic EL element 300 configured as described above is not limited to the example described below, and may be a general layer structure as in the first example. As an example in the case of the third example, as shown in FIG. 4, a hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d are formed on the counter electrode 5c functioning as an anode. The structure laminated | stacked in order is illustrated. However, it is essential to have at least the light emitting layer 3c configured using an organic material. The electron transport layer 3d also serves as the electron injection layer 3e, and is provided as an electron transport layer 3d having electron injection properties.
 特に、第3例として示す有機EL素子300の特徴的な構成としては、電子注入性を有する電子輸送層3dが、透明電極1における中間層1aとして設けられているところにある。すなわち、第3例においては、カソードとして用いられる透明電極1が、電子注入性を有する電子輸送層3dを兼ねる中間層1aと、その上部に設けられた導電性層1bとで構成されているものである。 In particular, the characteristic configuration of the organic EL element 300 shown as the third example is that an electron transport layer 3d having electron injection properties is provided as the intermediate layer 1a in the transparent electrode 1. That is, in the third example, the transparent electrode 1 used as a cathode is composed of an intermediate layer 1a also serving as an electron transport layer 3d having electron injection properties, and a conductive layer 1b provided on the intermediate layer 1a. It is.
 このような電子輸送層3dは、上述した透明電極1の中間層1aを構成する材料を用いて構成されている。 Such an electron transport layer 3d is configured by using the material constituting the intermediate layer 1a of the transparent electrode 1 described above.
 なお、発光機能層群3は、これらの層の他にも、第1例で説明したのと同様に、必要に応じた様々な機能層を採用することができるが、透明電極1の中間層1aを兼ねる電子輸送層3dと、透明電極1の導電性層1bとの間には、電子注入層や正孔阻止層が設けられることはない。以上のような構成において、透明電極1と対向電極5cとで発光機能層群3が挟持された部分のみが、有機EL素子300における発光領域となることは、第1例と同様である。 In addition to these layers, the light emitting functional layer group 3 can employ various functional layers as necessary, as described in the first example. An electron injection layer or a hole blocking layer is not provided between the electron transport layer 3d serving also as 1a and the conductive layer 1b of the transparent electrode 1. In the configuration as described above, only the portion where the light emitting functional layer group 3 is sandwiched between the transparent electrode 1 and the counter electrode 5c becomes the light emitting region in the organic EL element 300, as in the first example.
 また、以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の導電性層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。 In the layer structure as described above, the auxiliary electrode 15 may be provided in contact with the conductive layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. The same as in the example.
 更に、アノードとして用いられる対向電極5cは、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体などが挙げられる。 Furthermore, the counter electrode 5c used as the anode is made of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. Specific examples include metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
 以上のような材料で構成されている対向電極5cは、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより形成することができる。また、対向電極5cとしてのシート抵抗は、数百Ω/□以下が好ましく、層厚は通常5nm~5μm、好ましくは5nm~200nmの範囲内で選ばれる。 The counter electrode 5c made of the material as described above can be formed by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the counter electrode 5c is preferably several hundred Ω / □ or less, and the layer thickness is usually selected within the range of 5 nm to 5 μm, preferably 5 nm to 200 nm.
 なお、図4に示す有機EL素子300が、対向電極5c側からも発光光Lを取り出せるように構成されている場合、対向電極5cを構成する材料としては、上述した導電性材料のうち、光透過性の良好な導電性材料が選択されて用いられる。また、この場合は、基板131としても、第1例で説明した透明基板13と同様のものが用いられ、このような構成においては、基板131の外側に向かう面も光取り出し面131aとなる。 In addition, when the organic EL element 300 shown in FIG. 4 is configured so that the emitted light L can be extracted also from the counter electrode 5c side, the material constituting the counter electrode 5c is light among the above-described conductive materials. A conductive material having good permeability is selected and used. In this case, the substrate 131 is the same as the transparent substrate 13 described in the first example. In such a configuration, the surface facing the outside of the substrate 131 is also the light extraction surface 131a.
 〔第3例(図4)で示す有機EL素子の効果〕
 以上説明した第3例で示す有機EL素子300は、発光機能層群3の最上部を構成する電子注入性を有する電子輸送層3dを中間層1aとし、この上部に導電性層1bを設けることにより、中間層1aとこの上部の導電性層1bとからなる透明電極1をカソードとして設けた構成である。このため、第1例及び第2例と同様に、透明電極1と対向電極5cとの間に十分な電圧を印加して有機EL素子300での高輝度発光を実現しつつ、透明電極1側からの発光光Lの取り出し効率が向上することによる高輝度化を図ることが可能である。更に、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。また、対向電極5cが光透過性を有する電極材料で構成されている場合には、対向電極5cからも発光光Lを取り出すことができる。
[Effect of organic EL element shown in third example (FIG. 4)]
In the organic EL element 300 shown in the third example described above, the electron transport layer 3d having the electron injecting property constituting the uppermost part of the light emitting functional layer group 3 is used as the intermediate layer 1a, and the conductive layer 1b is provided thereon. Thus, the transparent electrode 1 composed of the intermediate layer 1a and the upper conductive layer 1b is provided as a cathode. Therefore, similarly to the first example and the second example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5c to realize high-luminance light emission in the organic EL element 300, while the transparent electrode 1 side. It is possible to increase the luminance by improving the extraction efficiency of the emitted light L from the light source. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance. Further, when the counter electrode 5c is made of a light-transmitting electrode material, the emitted light L can be extracted from the counter electrode 5c.
 なお、上述の第3例においては、透明電極1の中間層1aが電子注入性を有する電子輸送層3dを兼ねているものとして説明したが、本発明においては、これら例示する構成に限られるものではなく、中間層1aが電子注入性を有していない電子輸送層3dを兼ねているものであっても良いし、中間層1aが電子輸送層ではなく電子注入層を兼ねているものであっても良い。また、中間層1aが有機EL素子の発光機能に影響を及ぼさない程度の極薄膜として形成されているものとしても良く、この場合には、中間層1aは電子輸送性及び電子注入性を有していない。 In the third example described above, the intermediate layer 1a of the transparent electrode 1 has been described as also serving as the electron transport layer 3d having electron injection properties. However, in the present invention, the configuration is limited to these examples. Instead, the intermediate layer 1a may also serve as the electron transport layer 3d that does not have electron injection properties, or the intermediate layer 1a may serve as the electron injection layer instead of the electron transport layer. May be. In addition, the intermediate layer 1a may be formed as an extremely thin film that does not affect the light emitting function of the organic EL element. In this case, the intermediate layer 1a has electron transport properties and electron injection properties. Not.
 更に、透明電極1の中間層1aが、有機EL素子の発光機能に影響を及ぼさない程度の極薄膜として形成されている場合には、基板131側の対向電極をカソードとし、発光機能層群3上の透明電極1をアノードとしても良い。この場合、発光機能層群3は、基板131上の対向電極5c(カソード)側から順に、例えば、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aが積層される。そして、この上部に極薄い中間層1aと導電性層1bとの積層構造からなる透明電極1が、アノードとして設けられている。 Further, when the intermediate layer 1a of the transparent electrode 1 is formed as an extremely thin film that does not affect the light emitting function of the organic EL element, the counter electrode on the substrate 131 side is used as a cathode, and the light emitting functional layer group 3 The upper transparent electrode 1 may be an anode. In this case, the light emitting functional layer group 3 includes, for example, an electron injection layer 3e / electron transport layer 3d / light emission layer 3c / hole transport layer 3b / hole injection layer in order from the counter electrode 5c (cathode) side on the substrate 131. 3a is laminated. A transparent electrode 1 having a laminated structure of an extremely thin intermediate layer 1a and a conductive layer 1b is provided as an anode on the top.
 《6.有機EL素子の用途》
 上記各図を交えて説明した各構成からなる有機EL素子は、上述したように面発光体であるため、各種の発光光源として適用することができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶表示装置用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特に、カラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源の用途として有効に用いることができる。
<< 6. Applications of organic EL devices >>
Since the organic EL element which consists of each structure demonstrated with the said each figure is a surface light-emitting body as mentioned above, it can be applied as various light emission light sources. For example, lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystal display devices, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, optical communication processors Examples include, but are not limited to, a light source and a light source of an optical sensor. In particular, the light source can be effectively used as a backlight of a liquid crystal display device combined with a color filter and an illumination light source.
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機EL素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化しても良い。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display). In this case, with the recent increase in the size of lighting devices and displays, the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. A color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
 以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。 In the following, a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
 《7.照明装置-1》
 本発明に係る照明装置では、本発明の有機EL素子を具備することができる。
<< 7. Lighting device-1 >>
The lighting device according to the present invention can include the organic EL element of the present invention.
 本発明に係る照明装置に用いる有機EL素子は、上述した構成の各有機EL素子に共振器構造を持たせた設計としてもよい。共振器構造を有するように構成された有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic EL element used in the lighting device according to the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure. The purpose of use of the organic EL element configured to have a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. It is not limited to. Moreover, you may use for the said use by making a laser oscillation.
 なお、本発明の有機EL素子に用いられる材料は、実質的に白色の発光を生じる有機EL素子(白色有機EL素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。 In addition, the material used for the organic EL element of the present invention can be applied to an organic EL element that emits substantially white light (also referred to as a white organic EL element). For example, a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green and blue, or two using the complementary colors such as blue and yellow, blue green and orange. The thing containing the light emission maximum wavelength may be used.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機EL素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
 このような白色有機EL素子は、各色発光の有機EL素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機EL素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。 Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
 また、このような白色有機EL素子の発光層に用いる発光材料としては、特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 Moreover, there is no restriction | limiting in particular as a light emitting material used for the light emitting layer of such a white organic EL element, For example, if it is a backlight in a liquid crystal display element, it will fit in the wavelength range corresponding to CF (color filter) characteristic. As described above, any metal complex according to the present invention or a known light emitting material may be selected and combined to be whitened.
 以上説明した白色有機EL素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。 If the white organic EL element described above is used, it is possible to produce a lighting device that emits substantially white light.
 《8.照明装置-2》
 図5には、上記各構成の有機EL素子を複数用いて発光面を大面積化した照明装置の概略断面図を示す。図5で示す照明装置21は、例えば、透明基板13上に有機EL素子100を設けた複数の発光パネル22を、支持基板23上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化した構成である。支持基板23は、封止材を兼ねるものであっても良く、この支持基板23と、発光パネル22の透明基板13との間に有機EL素子100を挟持する状態で、各発光パネル22をタイリングする。支持基板23と透明基板13との間には接着剤19を充填し、これによって有機EL素子100を封止しても良い。なお、発光パネル22の周囲には、アノードである透明電極1及びカソードである対向電極5aの端部を露出させておく。ただし、図面においては対向電極5aの露出部分のみを図示した。また、図5では、有機EL素子100を構成する発光機能層群3としては、透明電極1上に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eを順次積層した構成を一例として示してある。
<< 8. Illumination device-2 >>
FIG. 5 shows a schematic cross-sectional view of a lighting device in which a plurality of organic EL elements having the above-described configurations are used to increase the light emitting surface area. The lighting device 21 shown in FIG. 5 has a large light emitting surface, for example, by arranging a plurality of light emitting panels 22 provided with the organic EL elements 100 on the transparent substrate 13 on the support substrate 23 (that is, tiling). It is the structure which made the area. The support substrate 23 may also serve as a sealing material, and each light-emitting panel 22 is tied with the organic EL element 100 sandwiched between the support substrate 23 and the transparent substrate 13 of the light-emitting panel 22. Ring. An adhesive 19 may be filled between the support substrate 23 and the transparent substrate 13, thereby sealing the organic EL element 100. In addition, the edge part of the transparent electrode 1 which is an anode, and the counter electrode 5a which is a cathode are exposed around the light emission panel 22. FIG. However, only the exposed portion of the counter electrode 5a is shown in the drawing. In FIG. 5, as the light emitting functional layer group 3 constituting the organic EL element 100, the hole injection layer 3 a / hole transport layer 3 b / light emission layer 3 c / electron transport layer 3 d / electron injection are formed on the transparent electrode 1. A configuration in which the layers 3e are sequentially stacked is shown as an example.
 図5に示す構成の照明装置21では、各発光パネル22の中央が発光領域Aとなり、発光パネル22間には非発光領域Bが発生する。このため、非発光領域Bからの光取り出し量を増加させるための光取り出し部材を、光取り出し面13aの非発光領域Bに設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。 5, the center of each light-emitting panel 22 is a light-emitting area A, and a non-light-emitting area B is generated between the light-emitting panels 22. For this reason, a light extraction member for increasing the light extraction amount from the non-light emitting region B may be provided in the non-light emitting region B of the light extraction surface 13a. As the light extraction member, a light collecting sheet or a light diffusion sheet can be used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 実施例1
 《透明電極の作製》
 以下に示す方法に従って、透明電極1~125を、導電性領域の面積が5cm×5cmとなるように作製した。透明電極1~4は、単層構造の透明電極として作製し、透明電極5~109、透明電極118~125は、中間層と導電性層との積層構造からなる透明電極を作製し、透明電極110~117は、中間層、導電性層及び第2の中間層の3層の積層構造からなる透明電極を作製した。
Example 1
<< Preparation of transparent electrode >>
According to the method described below, the transparent electrodes 1 to 125 were produced so that the area of the conductive region was 5 cm × 5 cm. The transparent electrodes 1 to 4 are prepared as single layer transparent electrodes, the transparent electrodes 5 to 109 and the transparent electrodes 118 to 125 are transparent electrodes having a laminated structure of an intermediate layer and a conductive layer. For 110 to 117, a transparent electrode having a laminated structure of three layers of an intermediate layer, a conductive layer, and a second intermediate layer was produced.
 〔透明電極1の作製〕
 下記に示す方法に従って、単層構造からなる比較例の透明電極1を作製した。
[Preparation of transparent electrode 1]
A transparent electrode 1 of a comparative example having a single layer structure was produced according to the method shown below.
 透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、これを真空蒸着装置の真空槽に取り付けた。一方、タングステン製の抵抗加熱ボートに銀(Ag)を充填し、当該真空槽内に取り付けた。次に、真空槽内を4×10-4Paまで減圧した後、抵抗加熱ボートを通電及び加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基材上に銀からなる層厚5μmの導電性層の単膜を蒸着して、透明電極1を作製した。 A transparent non-alkali glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, and this was attached to a vacuum tank of the vacuum deposition apparatus. On the other hand, a resistance heating boat made of tungsten was filled with silver (Ag) and mounted in the vacuum chamber. Next, after reducing the pressure in the vacuum chamber to 4 × 10 −4 Pa, the resistance heating boat is energized and heated to form silver on the base material within a deposition rate range of 0.1 to 0.2 nm / second. A transparent electrode 1 was produced by depositing a single film of a conductive layer having a thickness of 5 μm.
 〔透明電極2~4の作製〕
 上記透明電極1の作製において、導電性層の層厚を、それぞれ9nm、11nm及び15nmに変更した以外は同様にして、透明電極2~4を作製した。
[Production of transparent electrodes 2 to 4]
In the production of the transparent electrode 1, transparent electrodes 2 to 4 were produced in the same manner except that the thickness of the conductive layer was changed to 9 nm, 11 nm, and 15 nm, respectively.
 〔透明電極5の作製〕
 透明な無アルカリガラス製の基材上に、下記に構造を示すAlqをスパッタ法により層厚22nmの中間層として成膜し、この上部に、透明電極1の作製において、導電性層の形成に用いたのと同様の方法(真空蒸着法)で、層厚が9nmの銀(Ag)からなる導電性層を蒸着成膜して透明電極5を作製した。
[Preparation of transparent electrode 5]
On the transparent base made of alkali-free glass, Alq 3 having the following structure was formed as an intermediate layer having a layer thickness of 22 nm by a sputtering method, and a conductive layer was formed on the transparent electrode 1 on top of this. A transparent electrode 5 was produced by vapor deposition of a conductive layer made of silver (Ag) having a layer thickness of 9 nm by the same method (vacuum vapor deposition method) used in the above.
Figure JPOXMLDOC01-appb-C000119
 
Figure JPOXMLDOC01-appb-C000119
 
 〔透明電極6の作製〕
 透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定し、下記に示す構造のET-1をタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
[Preparation of transparent electrode 6]
A transparent non-alkali glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, ET-1 having the structure shown below is filled in a resistance heating boat made of tantalum, and the substrate holder and the heating boat are connected to each other. It attached to the 1st vacuum chamber of a vacuum evaporation system. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
 次いで、第1真空槽を4×10-4Paまで減圧した後、ET-1の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で基材上に蒸着し、層厚が22nmのET-1からなる中間層を形成した。 Next, after reducing the pressure in the first vacuum tank to 4 × 10 −4 Pa, the heating boat containing ET-1 was heated by energization, and the substrate was deposited within a deposition rate range of 0.1 to 0.2 nm / second. The intermediate layer made of ET-1 having a layer thickness of 22 nm was formed by vapor deposition on the top.
 次に、中間層を形成した基材を真空状態のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電及び加熱し、蒸着速度0.1~0.2nm/秒の範囲で、層厚9nmの銀からなる導電性層を蒸着し、中間層とこの上部に銀からなる導電性層を積層した透明電極6を得た。 Next, the base material on which the intermediate layer is formed is transferred to the second vacuum chamber while being in a vacuum state, and after the pressure of the second vacuum chamber is reduced to 4 × 10 −4 Pa, the heating boat containing silver is energized and heated, A conductive layer made of silver having a layer thickness of 9 nm was deposited at a deposition rate of 0.1 to 0.2 nm / second to obtain a transparent electrode 6 in which an intermediate layer and a conductive layer made of silver were laminated thereon. .
 〔透明電極7及び8の作製〕
 上記透明電極6の作製において、中間層の形成に用いたET-1を、それぞれ、ET-2、ET-3に変更した以外は同様にして、透明電極7及び8を作製した。
[Preparation of transparent electrodes 7 and 8]
Transparent electrodes 7 and 8 were produced in the same manner as in the production of the transparent electrode 6 except that ET-1 used for forming the intermediate layer was changed to ET-2 and ET-3, respectively.
Figure JPOXMLDOC01-appb-C000120
 
Figure JPOXMLDOC01-appb-C000120
 
 〔透明電極9~12の作製〕
 上記透明電極6の作製において、中間層の形成に用いたET-1を、それぞれ、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物として例示した「No.2」、芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物として例示した「121」、ハロゲン原子を有する有機化合物として例示した「化合物(7)」、非共有電子対を有する硫黄原子を含む有機化合物として例示した「2-6」の単独構成に変更した以外は同様にして、透明電極9~12を作製した。
[Preparation of transparent electrodes 9 to 12]
In the production of the transparent electrode 6, "No. 2" exemplified as a compound having a nitrogen atom having an unshared electron pair that does not participate in aromaticity, ET-1 used for forming the intermediate layer, aromatic "121" exemplified as an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in sex, "compound (7)" exemplified as an organic compound having a halogen atom, containing a sulfur atom having an unshared electron pair Transparent electrodes 9 to 12 were produced in the same manner except that the single composition of “2-6” exemplified as the organic compound was changed.
 〔透明電極13の作製〕
 透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定し、第1の有機化合物として、例示した化合物「No.2」と、第2の有機化合物として、例示した化合物「121」をそれぞれタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
[Preparation of transparent electrode 13]
A transparent non-alkali glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, and the exemplified compound “No. 2” as the first organic compound and the exemplified compound as the second organic compound Each of “121” was filled in a resistance heating boat made of tantalum, and these substrate holder and heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
 次いで、第1真空槽を4×10-4Paまで減圧した後、それぞれのタンタル製抵抗加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、化合物「No.2」:化合物「121」の質量比(質量%)が99.7:0.3となる条件で基材上に蒸着し、層厚が22nmの中間層1aを形成した。 Next, after reducing the pressure in the first vacuum tank to 4 × 10 −4 Pa, each tantalum resistance heating boat was heated by energization, and within the range of the deposition rate of 0.1 to 0.2 nm / second, the compound “ No. 2 ”: The compound“ 121 ”was vapor-deposited on the substrate under the condition that the mass ratio (mass%) of the compound“ 121 ”was 99.7: 0.3, to form an intermediate layer 1a having a layer thickness of 22 nm.
 次に、中間層1aを形成した基材を真空状態のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電及び加熱し、蒸着速度0.1~0.2nm/秒の範囲で、層厚3.5nmの銀からなる導電性層1bを蒸着し、中間層1aとこの上部に銀からなる導電性層1bを積層した透明電極13を得た。 Next, the base material on which the intermediate layer 1a is formed is transferred to the second vacuum chamber in a vacuum state, and after the pressure of the second vacuum chamber is reduced to 4 × 10 −4 Pa, the heating boat containing silver is energized and heated. The conductive layer 1b made of silver having a layer thickness of 3.5 nm was deposited at a deposition rate of 0.1 to 0.2 nm / second, and the intermediate layer 1a and the conductive layer 1b made of silver were laminated thereon. A transparent electrode 13 was obtained.
 〔透明電極14及び15の作製〕
 上記透明電極13の作製において、第2の有機化合物を、それぞれ例示した化合物「化合物(7)」、「2-6」にそれぞれ変更した以外は同様にして、透明電極14及び15を作製した。
[Production of transparent electrodes 14 and 15]
Transparent electrodes 14 and 15 were produced in the same manner as in the production of the transparent electrode 13 except that the second organic compound was changed to the exemplified compounds “compound (7)” and “2-6”, respectively.
 〔透明電極16~20の作製〕
 上記透明電極15の作製において、化合物「No.2」:化合物「2-6」の質量比(質量%)を、表1に記載の比率に変更した以外は同様にして、透明電極16~20を作製した。
[Preparation of transparent electrodes 16 to 20]
In the production of the transparent electrode 15, the transparent electrodes 16 to 20 were prepared in the same manner except that the mass ratio (% by mass) of the compound “No. 2”: the compound “2-6” was changed to the ratio shown in Table 1. Was made.
 〔透明電極21の作製〕
 透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定し、第1の有機化合物として例示した化合物「No.2」と、第2の有機化合物として例示した化合物「2-6」と、第3の有機化合物として示した化合物「121」をそれぞれタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
[Preparation of transparent electrode 21]
A transparent non-alkali glass substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, and the compound “No. 2” exemplified as the first organic compound and the compound “2” exemplified as the second organic compound are used. −6 ”and the compound“ 121 ”shown as the third organic compound were respectively filled in a resistance heating boat made of tantalum, and these substrate holder and heating boat were attached to the first vacuum chamber of the vacuum evaporation apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
 次いで、第1真空槽を4×10-4Paまで減圧した後、それぞれのタンタル製抵抗加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、化合物「No.2」:化合物「2-6」:化合物「121」の質量比(質量%)が85.0:10.0:5.0となる条件で基材上に蒸着し、層厚が22nmの中間層1aを形成した。 Next, after reducing the pressure in the first vacuum tank to 4 × 10 −4 Pa, each tantalum resistance heating boat was heated by energization, and within the range of the deposition rate of 0.1 to 0.2 nm / second, the compound “ No. 2 ”: Compound“ 2-6 ”: Compound“ 121 ”was vapor-deposited on the substrate under the condition that the mass ratio (mass%) was 85.0: 10.0: 5.0, and the layer thickness was 22 nm. The intermediate layer 1a was formed.
 次に、中間層1aを形成した基材を真空状態のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電及び加熱し、蒸着速度0.1~0.2nm/秒の範囲で、層厚3.5nmの銀からなる導電性層1bを蒸着し、中間層1aとこの上部に銀からなる導電性層1bを積層した透明電極21を得た。 Next, the base material on which the intermediate layer 1a is formed is transferred to the second vacuum chamber in a vacuum state, and after the pressure of the second vacuum chamber is reduced to 4 × 10 −4 Pa, the heating boat containing silver is energized and heated. The conductive layer 1b made of silver having a layer thickness of 3.5 nm was deposited at a deposition rate of 0.1 to 0.2 nm / second, and the intermediate layer 1a and the conductive layer 1b made of silver were laminated thereon. A transparent electrode 21 was obtained.
 〔透明電極22の作製〕
 上記透明電極21の作製において、化合物「No.2」:化合物「2-6」:化合物「121」の質量比(質量%)を、55.0:35.0:10.0に変更した以外は同様にして、透明電極22を作製した。
[Preparation of transparent electrode 22]
In the production of the transparent electrode 21, the mass ratio (mass%) of the compound “No. 2”: the compound “2-6”: the compound “121” was changed to 55.0: 35.0: 10.0. Similarly, a transparent electrode 22 was produced.
 〔透明電極23~25の作製〕
 上記透明電極16の作製において、導電性層1bの層厚を、それぞれ、5nm、12nm、20nmに変更した以外は同様にして、透明電極23~25を作製した。
[Preparation of transparent electrodes 23 to 25]
In the production of the transparent electrode 16, transparent electrodes 23 to 25 were produced in the same manner except that the thickness of the conductive layer 1b was changed to 5 nm, 12 nm, and 20 nm, respectively.
 〔透明電極26~109の作製〕
 上記透明電極16の作製において、第1の有機化合物の種類と構成比率(質量%)、第2の有機化合物の種類と構成比率(質量%)、第3の有機化合物の種類と構成比率(質量%)を、表1~表5に記載の組み合わせに変更した以外は同様にして、透明電極26~109を作製した。
[Production of transparent electrodes 26 to 109]
In the production of the transparent electrode 16, the type and composition ratio (% by mass) of the first organic compound, the type and composition ratio (% by mass) of the second organic compound, and the type and composition ratio (mass of the third organic compound). %) Were changed to the combinations shown in Tables 1 to 5, and transparent electrodes 26 to 109 were produced in the same manner.
 〔透明電極110~117の作製〕
 上記透明電極18、21、54、60、81、92、104、108の作製において、基材上に中間層1a及び導電性層1bを同様の方法で形成した後、更に、導電性層1b上に、中間層1aの形成方法と同様の方法で、第2の中間層1cを形成し、図1の(b)に記載の導電性層1bを2層の中間層1a及び1cで挟持した構成の透明電極110~117を作製した。
[Preparation of transparent electrodes 110 to 117]
In the production of the transparent electrodes 18, 21, 54, 60, 81, 92, 104, 108, after the intermediate layer 1a and the conductive layer 1b are formed on the substrate by the same method, the conductive layer 1b is further formed. The second intermediate layer 1c is formed by the same method as the intermediate layer 1a, and the conductive layer 1b shown in FIG. 1B is sandwiched between the two intermediate layers 1a and 1c. Transparent electrodes 110 to 117 were prepared.
 〔透明電極118~125の作製〕
 上記透明電極17、48、71,101、21、60,93,109の作製において、基材を無アルカリガラスからPET(ポリエチレンテレフタレート)フィルムに変更した以外は同様にして、透明電極118~125を作製した。
[Production of transparent electrodes 118 to 125]
In the production of the transparent electrodes 17, 48, 71, 101, 21, 60, 93, 109, the transparent electrodes 118 to 125 were formed in the same manner except that the base material was changed from non-alkali glass to PET (polyethylene terephthalate) film. Produced.
Figure JPOXMLDOC01-appb-T000121
 
Figure JPOXMLDOC01-appb-T000121
 
Figure JPOXMLDOC01-appb-T000122
 
Figure JPOXMLDOC01-appb-T000122
 
Figure JPOXMLDOC01-appb-T000123
 
Figure JPOXMLDOC01-appb-T000123
 
Figure JPOXMLDOC01-appb-T000124
 
Figure JPOXMLDOC01-appb-T000124
 
Figure JPOXMLDOC01-appb-T000125
 
Figure JPOXMLDOC01-appb-T000125
 
 なお、上記表1~表5に記載した透明電極1~125の作製に用いた各有機化合物の分類は、以下のとおりである。 In addition, the classification of each organic compound used for the production of the transparent electrodes 1 to 125 described in the above Tables 1 to 5 is as follows.
 (芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物)
 例示化合物番号:No.2、No.7、No.15、No.37、17、27、41、50
 (ハロゲン原子を有する有機化合物)
 例示化合物番号:化合物(7)、化合物(16)、化合物(23)、化合物(32)、化合物(33)、化合物(47)
 (非共有電子対を有する硫黄原子を含む有機化合物)
 例示化合物番号:1-9、1-18、2-6,2-21、2-34,3-10、3-39、3-84、4-5、4-16、4-28
 (芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物)
 例示化合物番号:8、84、121、125
 《透明電極の評価》
 上記作製した透明電極1~125について、下記の方法に従って、光透過率、シート抵抗値及び耐久性の測定を行った。
(Compounds with nitrogen atoms with unshared electron pairs not involved in aromaticity)
Exemplified compound number: No. 2, no. 7, no. 15, no. 37, 17, 27, 41, 50
(Organic compounds having halogen atoms)
Illustrative compound numbers: Compound (7), Compound (16), Compound (23), Compound (32), Compound (33), Compound (47)
(Organic compounds containing sulfur atoms with unshared electron pairs)
Exemplary compound numbers: 1-9, 1-18, 2-6, 2-21, 34, 3-10, 3-39, 3-84, 4-5, 4-16, 4-28
(Asymmetric compounds having nitrogen atoms with unshared electron pairs not involved in aromaticity)
Illustrative compound numbers: 8, 84, 121, 125
<< Evaluation of transparent electrode >>
With respect to the produced transparent electrodes 1 to 125, light transmittance, sheet resistance value and durability were measured according to the following method.
 〔光透過率の測定〕
 上記作製した各透明電極について、分光光度計(日立製作所製U-3300)を用い、各透明電極の作製に用いた基材をリファレンスとして、波長550nmにおける光透過率(%)を測定した。
(Measurement of light transmittance)
For each of the produced transparent electrodes, a light transmittance (%) at a wavelength of 550 nm was measured using a spectrophotometer (U-3300, manufactured by Hitachi, Ltd.) with reference to the base material used for producing each transparent electrode.
 〔シート抵抗値の測定〕
 上記作製した各透明電極について、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式でシート抵抗値(Ω/□)の測定を行った。
[Measurement of sheet resistance]
About each produced transparent electrode, the sheet resistance value (ohm / square) was measured by the 4 terminal 4 probe method constant current application system using the resistivity meter (MCP-T610 by Mitsubishi Chemical Corporation).
 〔耐久性の評価1:定電流下でのシート抵抗の変化幅〕
 上記作製した各透明電極について、40℃で125mA/cmの電流を250時間流し、下式に従って初期のシート抵抗値に対する250時間後のシート抵抗値の変化幅を測定した。
[Durability Evaluation 1: Change width of sheet resistance under constant current]
About each produced said transparent electrode, the electric current of 125 mA / cm < 2 > was flowed for 250 hours at 40 degreeC, and the change width of the sheet resistance value after 250 hours with respect to the initial sheet resistance value was measured according to the following formula.
 シート抵抗値の変化幅={│初期のシート抵抗値-250時間後のシート抵抗値│/初期のシート抵抗値}×100
 各透明電極のシート抵抗値の変化幅は、透明電極8の変化比率を100とする相対値で表示した。
Change width of sheet resistance value = {| initial sheet resistance value−sheet resistance value after 250 hours | / initial sheet resistance value} × 100
The change width of the sheet resistance value of each transparent electrode was expressed as a relative value with the change ratio of the transparent electrode 8 being 100.
 〔耐久性の評価2:強制劣化後のシート抵抗値のバラツキ耐性の評価〕
 上記作製した各透明電極について、40℃で125mA/cmの電流を250時間流した後、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式で、ランダムに選択した100箇所におけるシート抵抗値(Ω/□)を測定し、シート抵抗値の最大値(Ω/□)、最小値(Ω/□)及び平均シート抵抗値(Ω/□)を算出し、下式に従ってシート抵抗値のバラツキ幅の測定を行った。
[Evaluation of durability 2: Evaluation of variation resistance of sheet resistance value after forced deterioration]
For each of the transparent electrodes produced above, a current of 125 mA / cm 2 was passed at 40 ° C. for 250 hours, and then a resistivity meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation) was used, with a 4-terminal 4-probe method constant current application method. The sheet resistance value (Ω / □) at 100 randomly selected points is measured, and the maximum value (Ω / □), minimum value (Ω / □) and average sheet resistance value (Ω / □) are calculated. Then, the variation width of the sheet resistance value was measured according to the following formula.
 次いで、得られたシート抵抗値のバラツキ幅を基に、下記の基準に従ってシート抵抗値のバラツキ耐性を評価した。 Next, based on the obtained variation width of the sheet resistance value, the variation resistance of the sheet resistance value was evaluated according to the following criteria.
 シート抵抗値のバラツキ幅={(シート抵抗値の最大値-シート抵抗値の最小値)/シート抵抗値の平均値}×100(%)
 ◎:シート抵抗値のバラツキ幅が、2.0%未満である
 ○:シート抵抗値のバラツキ幅が、2.0%以上、5.0%未満である
 ○△:シート抵抗値のバラツキ幅が、5.0%以上、10.0%未満である
 △:シート抵抗値のバラツキ幅が、10.0%以上、15.0%未満である
 ×:シート抵抗値のバラツキ幅が、15.0%以上、30.0%未満である
 ××:シート抵抗値のバラツキ幅が、30.0%以上である
 以上により得られた結果を、表6~表8に示す。
Variation width of sheet resistance value = {(maximum value of sheet resistance value−minimum value of sheet resistance value) / average value of sheet resistance value} × 100 (%)
◎: Sheet resistance value variation width is less than 2.0% ○: Sheet resistance value variation width is 2.0% or more and less than 5.0% ○ △: Sheet resistance value variation width , 5.0% or more and less than 10.0% Δ: variation width of sheet resistance value is 10.0% or more and less than 15.0% ×: variation width of sheet resistance value is 15.0 % Or more and less than 30.0% XX: Variation width of sheet resistance value is 30.0% or more Tables 6 to 8 show the results obtained as described above.
Figure JPOXMLDOC01-appb-T000126
 
Figure JPOXMLDOC01-appb-T000126
 
Figure JPOXMLDOC01-appb-T000127
 
Figure JPOXMLDOC01-appb-T000127
 
Figure JPOXMLDOC01-appb-T000128
 
Figure JPOXMLDOC01-appb-T000128
 
 表6~表8に記載の結果より明らかなように、2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、総質量の50質量%以上、99.5質量%未満の範囲内で含有して構成した中間層上にモトルの発生を抑制することができ、ある程度の厚さを有する銀膜を形成しても、銀の凝集が抑制され、高い光透過性と低いシート抵抗値の両立を果たすことができた。更に、2種以上の有機化合物を用いて中間層を構成することにより、高温環境下で長時間にわたり駆動させた後でもシート抵抗値の変動幅が小さく、且つシート抵抗値の電極面内バラツキが小さく、安定性(耐久性)に優れていることを確認することができた。 As is apparent from the results shown in Tables 6 to 8, a compound containing two or more organic compounds and having a nitrogen atom having an unshared electron pair not involved in aromaticity as the first organic compound. The generation of mottle can be suppressed on the intermediate layer formed by being contained within the range of 50% by mass or more and less than 99.5% by mass of the total mass, and a silver film having a certain thickness is formed. However, aggregation of silver was suppressed, and both high light transmittance and low sheet resistance value could be achieved. Further, by forming the intermediate layer using two or more organic compounds, the fluctuation range of the sheet resistance value is small even after being driven for a long time in a high-temperature environment, and the variation of the sheet resistance value in the electrode surface is small. It was small and it was confirmed that it was excellent in stability (durability).
 更に、導電性層を、2層の中間層で挟持した構成として透明電極110~117においても、より好ましい結果を得ることができることを確認することができた。 Furthermore, it was confirmed that more preferable results can be obtained even in the transparent electrodes 110 to 117 in which the conductive layer is sandwiched between two intermediate layers.
 これに対し、中間層を有していない比較例の透明電極1~4では、銀層である導電性層の層厚を厚くするに従い、シート抵抗値の低下は認められるものの、導電性層形成時の銀の凝集(モトル)に起因する光透過率の低下が著しくなり、光透過性とシート抵抗値の両立を達成することができない。また、中間層としてAlqあるいはET-1~ET-3を用いた透明電極5~8でも、光透過率が低く、かつシート抵抗値が所望の条件まで低下させることができなかった。また、透明電極1~4は、強制劣化後のシート抵抗値の低下が著しく、測定不可であった。 On the other hand, in the transparent electrodes 1 to 4 of Comparative Examples having no intermediate layer, although the sheet resistance value decreases as the layer thickness of the conductive layer which is a silver layer is increased, the formation of the conductive layer Decrease in light transmittance due to silver aggregation (motor) at the time becomes remarkable, and it is impossible to achieve both light transmittance and sheet resistance value. Further, even in the transparent electrodes 5 to 8 using Alq 3 or ET-1 to ET-3 as the intermediate layer, the light transmittance was low and the sheet resistance value could not be lowered to a desired condition. In addition, the transparent electrodes 1 to 4 were not able to be measured because the sheet resistance value after forced deterioration was remarkably reduced.
 また、有機化合物を単独で使用した透明電極9~12では、ある程度の光透過率とシート抵抗値を得ることができるが、かなり過酷な条件で通電した後の耐久性であるシート抵抗値の変動耐性、及びシート抵抗値の電極面内のバラツキ耐性が、やや劣る結果となった。 In addition, the transparent electrodes 9 to 12 using an organic compound alone can obtain a certain degree of light transmittance and sheet resistance value, but the sheet resistance value fluctuates as durability after energization under fairly severe conditions. Resistance and variation resistance within the electrode surface of the sheet resistance value were somewhat inferior.
 実施例2
 《発光パネルの作製》
 〔発光パネル1の作製〕
 実施例1で作製した透明電極1をアノードとして用い、図6に記載の構成(ただし、中間層1aは有していない)の両面発光型の発光パネル1を、下記の手順に従って作製した。
Example 2
<Production of light emitting panel>
[Preparation of light-emitting panel 1]
Using the transparent electrode 1 produced in Example 1 as an anode, a double-sided light emitting panel 1 having the configuration shown in FIG. 6 (but not having the intermediate layer 1a) was produced according to the following procedure.
 はじめに、実施例1で作製した導電性層1bのみを形成した透明電極1を有する透明基板13を、市販の真空蒸着装置の基板ホルダーに固定し、透明電極1(導電性層1bのみ)の形成面側に蒸着マスクを対向配置した。また、真空蒸着装置内の加熱ボートの各々に、発光機能層群3を構成する各材料を、それぞれの層の成膜に最適な量で充填した。なお、加熱ボートとしては、タングステン製抵抗加熱用材料で作製されたものを用いた。 First, the transparent substrate 13 having the transparent electrode 1 formed only with the conductive layer 1b produced in Example 1 is fixed to a substrate holder of a commercially available vacuum deposition apparatus, and the transparent electrode 1 (only the conductive layer 1b) is formed. A vapor deposition mask was placed opposite to the surface side. Moreover, each material which comprises the light emission functional layer group 3 was filled with the optimal quantity for film-forming of each layer in each heating boat in a vacuum evaporation system. In addition, as a heating boat, what was produced with the resistance heating material made from tungsten was used.
 次いで、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下に示す発光機能層群3を構成する各層を成膜した。 Next, the inside of the vapor deposition chamber of the vacuum vapor deposition apparatus is depressurized to a vacuum degree of 4 × 10 −4 Pa, and each layer constituting the light emitting functional layer group 3 shown below is heated by sequentially energizing a heating boat containing each material. Was deposited.
 はじめに、正孔輸送注入材料として下記に示すα-NPDが入った加熱ボートを通電及び加熱して、α-NPDからなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31を、透明電極1を構成する導電性層1b上に成膜した。この際、蒸着速度は0.1~0.2nm/秒の範囲内とし、層厚が20nmとなる条件で蒸着した。 First, a hole-transporting / injecting layer that serves as both a hole-injecting layer and a hole-transporting layer made of α-NPD by energizing and heating a heating boat containing the following α-NPD as a hole-transporting injecting material 31 was formed on the conductive layer 1 b constituting the transparent electrode 1. At this time, the vapor deposition rate was in the range of 0.1 to 0.2 nm / second, and the vapor deposition was performed under the condition that the layer thickness was 20 nm.
Figure JPOXMLDOC01-appb-C000129
 
Figure JPOXMLDOC01-appb-C000129
 
 次いで、ホスト化合物として例示化合物H4の入った加熱ボートと、リン光発光性化合物として例示化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト化合物である例示化合物H4と、リン光発光性化合物である例示化合物Ir-4とからなる発光層3cを、正孔輸送・注入層31上に成膜した。この際、蒸着速度(nm/秒)が例示化合物H4:例示化合物Ir-4=100:6となる条件で、加熱ボートの通電条件を適宜調節して、発光層の層厚が30nmとなるようにした。 Next, the heating boat containing Exemplified Compound H4 as the host compound and the heating boat containing Exemplified Compound Ir-4 as the phosphorescent compound were energized independently, respectively, and Exemplified Compound H4 as the host compound and Phosphorus A light emitting layer 3 c made of the example compound Ir-4, which is a light emitting compound, was formed on the hole transport / injection layer 31. At this time, under the condition that the deposition rate (nm / sec) is Exemplified Compound H4: Exemplified Compound Ir-4 = 100: 6, the energization condition of the heating boat is adjusted as appropriate so that the thickness of the light emitting layer becomes 30 nm. I made it.
 次いで、正孔阻止材料として下記に示すBAlqが入った加熱ボートを通電及び加熱して、BAlqよりなる正孔阻止層33を、発光層3c上に形成した。この際、蒸着速度0.1~0.2nm/秒の範囲とし、層厚が10nmとなる条件で蒸着した。 Next, a heating boat containing BAlq shown below as a hole blocking material was energized and heated to form a hole blocking layer 33 made of BAlq on the light emitting layer 3c. At this time, the deposition was performed under the condition that the deposition rate was 0.1 to 0.2 nm / second and the layer thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000130
 
Figure JPOXMLDOC01-appb-C000130
 
 その後、電子輸送材料として下記に示すET-4の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-4とフッ化カリウムから構成される電子輸送層3dを、正孔阻止層33上に成膜した。この際、蒸着速度(nm/秒)としてET-4:フッ化カリウム=75:25となる条件で、加熱ボートの通電条件を適宜調節し、電子輸送層3dの層厚が30nmとなるようにして蒸着した。 Thereafter, a heating boat containing ET-4 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently, and an electron transport layer composed of ET-4 and potassium fluoride. 3d was deposited on the hole blocking layer 33. At this time, under the condition that the deposition rate (nm / second) is ET-4: potassium fluoride = 75: 25, the energization conditions of the heating boat are adjusted as appropriate so that the layer thickness of the electron transport layer 3d is 30 nm. And deposited.
Figure JPOXMLDOC01-appb-C000131
 
Figure JPOXMLDOC01-appb-C000131
 
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートを通電及び加熱して、フッ化カリウムよりなる電子注入層3eを、電子輸送層3d上に成膜した。この際、蒸着速度0.01~0.02nm/秒の範囲で、層厚1nmとなるように蒸着した。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer 3e made of potassium fluoride on the electron transport layer 3d. At this time, the deposition was performed so that the layer thickness was 1 nm at a deposition rate of 0.01 to 0.02 nm / second.
 その後、電子注入層3eまで成膜した透明基板13を、真空蒸着装置の蒸着室から、対向電極材料としてITOのターゲットが取り付けられたスパッタ装置の処理室内に、真空状態を保持したまま移送した。次いで、処理室内において、成膜速度0.3~0.5nm/秒の範囲で、層厚150nmのITOからなる光透過性の対向電極5aをカソードとして成膜した。 Thereafter, the transparent substrate 13 formed up to the electron injection layer 3e was transferred from the vapor deposition chamber of the vacuum vapor deposition apparatus to the processing chamber of the sputtering apparatus to which an ITO target as a counter electrode material was attached while maintaining the vacuum state. Next, in the processing chamber, a light-transmitting counter electrode 5a made of ITO having a layer thickness of 150 nm was formed as a cathode at a film formation rate of 0.3 to 0.5 nm / second.
 以上により、透明基板13上に有機EL素子400を形成した。 Thus, the organic EL element 400 was formed on the transparent substrate 13.
 次いで、有機EL素子400を、厚さ300μmのガラス基板からなる封止材17で覆い、有機EL素子400を囲む状態で、封止材17と透明基板13との間に接着剤19(シール材)を充填した。接着剤19としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。封止材17と透明基板13との間に充填した接着剤19に対して、ガラス基板(封止材17)側からUV光を照射し、接着剤19を硬化させて有機EL素子400を封止した。 Next, the organic EL element 400 is covered with a sealing material 17 made of a glass substrate having a thickness of 300 μm, and the adhesive 19 (sealing material) is interposed between the sealing material 17 and the transparent substrate 13 so as to surround the organic EL element 400. ). As the adhesive 19, an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used. The adhesive 19 filled between the sealing material 17 and the transparent substrate 13 is irradiated with UV light from the glass substrate (sealing material 17) side to cure the adhesive 19 and seal the organic EL element 400. Stopped.
 なお、有機EL素子400の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである透明電極1とカソードである対向電極5aとは、正孔輸送・注入層31~電子注入層35までの発光機能層群3によって絶縁された状態で、透明基板13の周縁に端子部分を引き出された形状で形成した。 In forming the organic EL element 400, an evaporation mask is used for forming each layer, and the central 4.5 cm × 4.5 cm of the 5 cm × 5 cm transparent substrate 13 is defined as the light emitting region A, and the entire circumference of the light emitting region A is formed. A non-light emitting region B having a width of 0.25 cm was provided. Further, the transparent electrode 1 as the anode and the counter electrode 5a as the cathode are insulated from each other by the light emitting functional layer group 3 from the hole transport / injection layer 31 to the electron injection layer 35, and on the periphery of the transparent substrate 13. The terminal portion was formed in a drawn shape.
 以上のようにして、透明基板13上に有機EL素子400を設け、これを封止材17と接着剤19とで封止した発光パネル1を作製した。この発光パネル1においては、発光層3cで発生した各色の発光光Lが、透明電極1側、すなわち透明基板13側と、対向電極5a側すなわち封止材17側との両方から取り出される構成となっている。 As described above, the light-emitting panel 1 in which the organic EL element 400 was provided on the transparent substrate 13 and sealed with the sealing material 17 and the adhesive 19 was produced. In this light emitting panel 1, the light emission L of each color generated in the light emitting layer 3c is extracted from both the transparent electrode 1 side, that is, the transparent substrate 13 side, and the counter electrode 5a side, that is, the sealing material 17 side. It has become.
 〔発光パネル2~125の作製〕
 上記発光パネル1の作製において、透明電極1に代えて、実施例1で作製した透明電極2~125をそれぞれ用いた以外は同様にして、発光パネル2~125を作製した。
[Production of light-emitting panels 2 to 125]
In the production of the light-emitting panel 1, light-emitting panels 2 to 125 were produced in the same manner except that the transparent electrodes 2 to 125 produced in Example 1 were used in place of the transparent electrode 1, respectively.
 《発光パネルの評価》
 上記作製した発光パネル1~125について、下記の方法に従って、光透過率、駆動電圧及び耐久性の評価を行った。
<Evaluation of luminous panel>
The light-emitting panels 1-125 produced above were evaluated for light transmittance, driving voltage, and durability according to the following methods.
 〔光透過率の測定〕
 上記作製した各発光パネルについて、分光光度計(日立製作所製U-3300)を用い、各透明電極の作製に用いた基材をリファレンスとして、波長550nmにおける光透過率(%)を測定した。
(Measurement of light transmittance)
About each produced said light emission panel, the light transmittance (%) in wavelength 550nm was measured using the base material used for preparation of each transparent electrode using the spectrophotometer (Hitachi U-3300).
 〔駆動電圧の測定〕
 上記作製した各発光パネルの透明電極1側(すなわち透明基板13側)と、対向電極5a側(すなわち封止材17側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ社製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表す。
[Measurement of drive voltage]
The front luminance is measured on both sides of the transparent electrode 1 side (that is, the transparent substrate 13 side) and the counter electrode 5a side (that is, the sealing material 17 side) of each of the produced light emitting panels, and the sum is 1000 cd / m 2. Was measured as a drive voltage (V). For measurement of luminance, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used. It represents that it is so preferable that the numerical value of the obtained drive voltage is small.
 〔耐久性の評価1:定電流下でのダークスポット耐性の評価〕
 上記作製した各発光パネルについて、40℃で125mA/cmの電流を250時間流して連続発光させた。
[Durability Evaluation 1: Evaluation of Dark Spot Resistance under Constant Current]
About each produced said light emission panel, the electric current of 125 mA / cm < 2 > was flowed at 40 degreeC for 250 hours, and it was made to light-emit continuously.
 次いで、表示画面を縦10×横10で計100個のブロックに分割した後に発光させ、ダークスポット発生の有無を確認し、ダークスポットが発生しているブロックの比率を%で測定した。 Next, the display screen was divided into a total of 100 blocks of 10 × 10, and then light was emitted. The presence or absence of dark spots was confirmed, and the ratio of blocks where dark spots were generated was measured in%.
 評価は、発光パネル8のダークスポット発生面積比率を100とする相対値で表示した。数値が小さいほど、耐久性(ダークスポット耐性)に優れていることを表す。 Evaluation was expressed as a relative value with the dark spot generation area ratio of the light emitting panel 8 being 100. The smaller the value, the better the durability (dark spot resistance).
 〔耐久性の評価2:定電流下での発光輝度バラツキ耐性の評価〕
 上記作製した各発光パネルについて、40℃で125mA/cmの電流を250時間流して連続発光させた。次いで、分光放射輝度計CS-1000(コニカミノルタ社製)を用い、発光輝度の和が1000cd/mとなる条件で発光させ、ランダムに選択した画面100箇所について、それぞれの発光輝度を測定し、発光輝度の最大値、最小値及び平均発光輝度を算出し、下式に従って発光輝度のバラツキ幅の測定を行った。
[Durability Evaluation 2: Evaluation of Emission Luminance Variation Resistance Under Constant Current]
About each produced said light emission panel, the electric current of 125 mA / cm < 2 > was flowed at 40 degreeC for 250 hours, and it was made to light-emit continuously. Next, using a spectral radiance meter CS-1000 (manufactured by Konica Minolta), light was emitted under the condition that the sum of the light emission luminances was 1000 cd / m 2, and the respective light emission luminances were measured at 100 randomly selected screen locations. The maximum value, the minimum value, and the average light emission luminance of the light emission luminance were calculated, and the variation width of the light emission luminance was measured according to the following formula.
 次いで、得られた発光輝度のバラツキ幅を基に、下記の基準に従って発光輝度のバラツキ耐性を評価した。 Next, based on the obtained emission luminance variation width, the emission luminance variation resistance was evaluated according to the following criteria.
 発光輝度のバラツキ幅={(発光輝度の最大値-発光輝度の最小値)/発光輝度の平均値}×100(%)
 ◎:発光輝度のバラツキ幅が、2.0%未満である
 ○:発光輝度のバラツキ幅が、2.0%以上、5.0%未満である
 ○△:発光輝度のバラツキ幅が、5.0%以上、10.0%未満である
 △:発光輝度のバラツキ幅が、10.0%以上、15.0%未満である
 ×:発光輝度のバラツキ幅が、15.0%以上、30.0%未満である
 ××:発光輝度のバラツキ幅が、30.0%以上である
 以上により得られた結果を、表9~表11に示す。
Variation width of light emission luminance = {(maximum value of light emission luminance−minimum value of light emission luminance) / average value of light emission luminance} × 100 (%)
A: The variation width of the emission luminance is less than 2.0%. O: The variation width of the emission luminance is 2.0% or more and less than 5.0%. O: The variation width of the emission luminance is 5. 0% or more and less than 10.0% Δ: The variation width of the emission luminance is 10.0% or more and less than 15.0% ×: The variation width of the emission luminance is 15.0% or more, 30. Less than 0% XX: The variation width of the emission luminance is 30.0% or more Tables 9 to 11 show the results obtained as described above.
Figure JPOXMLDOC01-appb-T000132
 
Figure JPOXMLDOC01-appb-T000132
 
Figure JPOXMLDOC01-appb-T000133
 
Figure JPOXMLDOC01-appb-T000133
 
Figure JPOXMLDOC01-appb-T000134
 
Figure JPOXMLDOC01-appb-T000134
 
 表9~表11に記載の結果より明らかなように、本発明の透明電極を有機EL素子のアノードに用いた本発明の発光パネル16~125は、いずれも光透過率が60%以上であり、且つ駆動電圧が3.7V以下に抑えられている。更に、高温環境下で長時間にわたり駆動させた後でも、光透過率の変動幅が小さく、且つ画像面内における発光輝度のバラツキが小さく、安定性(耐久性)に極めて優れていることを確認することができた。 As is clear from the results shown in Tables 9 to 11, all of the light emitting panels 16 to 125 of the present invention using the transparent electrode of the present invention as the anode of the organic EL element have a light transmittance of 60% or more. In addition, the drive voltage is suppressed to 3.7 V or less. Furthermore, even after being driven for a long time in a high temperature environment, it is confirmed that the fluctuation range of the light transmittance is small, the variation of the light emission luminance in the image plane is small, and the stability (durability) is extremely excellent. We were able to.
 これに対して、比較例の透明電極を有機EL素子のアノードに用いた発光パネル1~8は、光透過率がいずれも56%未満であり、しかも、電圧を印加しても発光しないか、又は発光しても駆動電圧が3.8Vを超えるものがあった。また、有機化合物を単独で使用した透明電極を用いた発光パネル9~12では、ある程度の光透過率と駆動電圧を得ることはできるが、かなり過酷な条件で通電した後のダークスポット耐性、及び発光輝度のバラツキ耐性が、やや劣る結果となった。 On the other hand, the light-emitting panels 1 to 8 using the transparent electrode of the comparative example as the anode of the organic EL element have a light transmittance of less than 56%, and do not emit light even when a voltage is applied. Or even if it emitted light, the drive voltage exceeded 3.8V. In addition, in the light emitting panels 9 to 12 using the transparent electrode using an organic compound alone, a certain degree of light transmittance and driving voltage can be obtained, but the dark spot resistance after energization under fairly severe conditions, and The result was slightly inferior to the variation in emission luminance.
 これにより、本発明で規定する構成からなる透明電極を用いた本発明の有機EL素子を具備した発光パネルは、低い駆動電圧で高輝度発光が可能であり、かつ過酷な環境下での耐久性に優れていることが確認された。また、これにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。 As a result, the light-emitting panel including the organic EL element of the present invention using the transparent electrode having the configuration defined in the present invention can emit high-intensity light at a low driving voltage, and is durable in harsh environments. It was confirmed to be excellent. In addition, it has been confirmed that this is expected to reduce the driving voltage for obtaining a predetermined luminance and improve the light emission lifetime.
 本発明の透明電極は、十分な導電性と光透過性とを兼ね備え、低シート抵抗値を有し、耐久性に優れており、十分な導電性と光透過性を有し、低駆動電圧で、耐久性に優れた電子デバイスや有機EL素子を提供でき、家庭用照明や車内照明などの照明装置、時計や液晶表示装置用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等に好適に利用できる。 The transparent electrode of the present invention has sufficient conductivity and light transmittance, has a low sheet resistance value, is excellent in durability, has sufficient conductivity and light transmittance, and has a low driving voltage. Can provide electronic devices and organic EL elements with excellent durability, lighting devices for home lighting and interior lighting, backlights for clocks and liquid crystal display devices, lighting for billboard advertisements, light sources for traffic lights, optical storage media It can be suitably used as a light source, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like.
 1 透明電極
 1a、1c 中間層
 1b 導電性層
 3 発光機能層群
 3a 正孔注入層
 3b 正孔輸送層
 3c 発光層
 3d 電子輸送層
 3e 電子注入層
 5a、5b,5c 対向電極
 11 基材
 13、131 透明基板
  13a、131a 光取り出し面
 15 補助電極
 17 封止材
 19 接着剤
 21 照明装置
 22 発光パネル
 23 支持基板
 31 正孔輸送・注入層
 33 正孔阻止層
 100、200、300、400 有機EL素子
 A 発光領域
 B 非発光領域
 h 発光点
 L 発光光
DESCRIPTION OF SYMBOLS 1 Transparent electrode 1a, 1c Intermediate | middle layer 1b Conductive layer 3 Light emission functional layer group 3a Hole injection layer 3b Hole transport layer 3c Light emission layer 3d Electron transport layer 3e Electron injection layer 5a, 5b, 5c Counter electrode 11 Base material 13, 131 Transparent substrate 13a, 131a Light extraction surface 15 Auxiliary electrode 17 Sealant 19 Adhesive 21 Lighting device 22 Light emitting panel 23 Support substrate 31 Hole transport / injection layer 33 Hole blocking layer 100, 200, 300, 400 Organic EL element A Light-emitting area B Non-light-emitting area h Light-emitting point L Light-emitting light

Claims (15)

  1.  導電性層と、当該導電性層に隣接して設けられる中間層とを有する透明電極であって、
     前記透明電極は、波長550nmにおける光透過率が50%以上で、かつシート抵抗値が20Ω/□以下であり、
     前記中間層が2種以上の有機化合物を含有し、第1の有機化合物として、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を、前記2種以上の有機化合物の総質量の50質量%以上、99.5質量%未満の範囲内で含有し、
     かつ前記導電性層が、銀を主成分として構成されていることを特徴とする透明電極。
    A transparent electrode having a conductive layer and an intermediate layer provided adjacent to the conductive layer,
    The transparent electrode has a light transmittance of 50% or more at a wavelength of 550 nm and a sheet resistance value of 20Ω / □ or less,
    The intermediate layer contains two or more organic compounds, and a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity as the first organic compound is a total mass of the two or more organic compounds. In a range of 50% by weight or more and less than 99.5% by weight,
    A transparent electrode, wherein the conductive layer is composed mainly of silver.
  2.  前記2種以上の有機化合物のうち、2番目に含有率の高い有機化合物の含有率が、0.5質量%以上、50質量%未満であることを特徴とする請求項1に記載の透明電極。 2. The transparent electrode according to claim 1, wherein the content of the second highest organic compound among the two or more organic compounds is 0.5% by mass or more and less than 50% by mass. .
  3.  前記2種以上の有機化合物のうち、前記第1の有機化合物と前記2番目に含有率の高い有機化合物との総含有率が、99.5質量%以上であり、かつ前記第1の有機化合物の含有率が、50~90質量%の範囲内にあることを特徴とする請求項2に記載の透明電極。 Of the two or more organic compounds, the total content of the first organic compound and the second highest organic compound is 99.5% by mass or more, and the first organic compound The transparent electrode according to claim 2, wherein the content of is in the range of 50 to 90 mass%.
  4.  前記2種以上の有機化合物のうち、前記第1の有機化合物、前記2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、99.5質量%以上であり、かつ前記2番目に含有率の高い有機化合物及び3番目に含有率が高い有機化合物の総含有率が、10質量%以上、49.5質量%未満であることを特徴とする請求項2に記載の透明電極。 Of the two or more organic compounds, the total content of the first organic compound, the second highest organic compound, and the third highest organic compound is 99.5% by mass or more. The total content of the organic compound having the second highest content and the organic compound having the third highest content is 10% by mass or more and less than 49.5% by mass. The transparent electrode according to 1.
  5.  前記芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、アザカルバゾール環を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明電極。 The transparent electrode according to any one of claims 1 to 4, wherein the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has an azacarbazole ring.
  6.  前記芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、ピリジン環を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明電極。 The transparent electrode according to any one of claims 1 to 4, wherein the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has a pyridine ring.
  7.  前記芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、γ、γ′-ジアザカルバゾール環又はβ-カルボリン環を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明電極。 5. The compound having a nitrogen atom having an unshared electron pair not involved in aromaticity has a γ, γ′-diazacarbazole ring or β-carboline ring. The transparent electrode as described in any one.
  8.  前記2種以上の有機化合物のうち、前記第1の有機化合物以外の有機化合物が、ハロゲン原子を有する有機化合物であることを特徴とする請求項1から請求項7までのいずれか一項に記載の透明電極。 The organic compound other than the first organic compound among the two or more kinds of organic compounds is an organic compound having a halogen atom, according to any one of claims 1 to 7. Transparent electrode.
  9.  前記ハロゲン原子を有する有機化合物が含有するハロゲン原子が、臭素原子又はヨウ素原子であることを特徴とする請求項8に記載の透明電極。 The transparent electrode according to claim 8, wherein the halogen atom contained in the organic compound having a halogen atom is a bromine atom or an iodine atom.
  10.  前記ハロゲン原子を有する有機化合物が、下記一般式(1)で表される構造を有する化合物であることを特徴とする請求項8又は請求項9に記載の透明電極。
     一般式(1)
       (R)k-Ar-〔(L)-X〕
    〔式中、Arは芳香族炭化水素環基又は芳香族複素環基を表す。Xはハロゲン原子を表し、mは1~5の整数である。Lは直接結合又は2価の連結基を表し、nは0又は1を表す。Rは水素原子又は置環基を表す。kは1~5の整数を表す。〕
    The transparent electrode according to claim 8 or 9, wherein the organic compound having a halogen atom is a compound having a structure represented by the following general formula (1).
    General formula (1)
    (R) k -Ar-[(L) n -X] m
    [Wherein, Ar represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group. X represents a halogen atom, and m is an integer of 1 to 5. L represents a direct bond or a divalent linking group, and n represents 0 or 1. R represents a hydrogen atom or a substituted ring group. k represents an integer of 1 to 5. ]
  11.  前記2種以上の有機化合物のうち、前記第1の有機化合物以外の有機化合物が、非共有電子対を有する硫黄原子を含む有機化合物であることを特徴とする請求項1から請求項10までのいずれか一項に記載の透明電極。 The organic compound other than the first organic compound among the two or more organic compounds is an organic compound containing a sulfur atom having an unshared electron pair. The transparent electrode as described in any one.
  12.  前記非共有電子対を有する硫黄原子を含む有機化合物が、下記一般式(S1)~一般式(S4)で表される構造を有する化合物から選ばれる少なくとも1種であることを特徴とする請求項11に記載の透明電極。
     一般式(S1):R-S-R
     一般式(S2):R-S-S-R
     一般式(S3):R-SH
     一般式(S4):S=C(R)-SH
    〔式中、R~Rは、各々置換基を表す。〕
    The organic compound containing a sulfur atom having an unshared electron pair is at least one selected from compounds having structures represented by the following general formulas (S1) to (S4). The transparent electrode according to 11.
    Formula (S1): R 1 —SR 2
    Formula (S2): R 3 -SSR 4
    Formula (S3): R 5 -SH
    Formula (S4): S = C (R 6 ) -SH
    [Wherein R 1 to R 6 each represents a substituent. ]
  13.  前記2種以上の有機化合物のうち、第1の有機化合物以外の有機化合物が、芳香族性に関与しない非共有電子対を持つ窒素原子を有する非対称性化合物であることを特徴とする請求項1から請求項12までのいずれか一項に記載の透明電極。 2. The organic compound other than the first organic compound among the two or more organic compounds is an asymmetric compound having a nitrogen atom having an unshared electron pair not involved in aromaticity. The transparent electrode according to any one of claims 1 to 12.
  14.  請求項1から請求項13までのいずれか一項に記載の透明電極を具備していることを特徴とする電子デバイス。 An electronic device comprising the transparent electrode according to any one of claims 1 to 13.
  15.  請求項1から請求項13までのいずれか一項に記載の透明電極を具備していることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the transparent electrode according to any one of claims 1 to 13.
PCT/JP2013/078343 2012-10-24 2013-10-18 Transparent electrode, electronic device, and organic electroluminescent element WO2014065215A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543271A JP6187471B2 (en) 2012-10-24 2013-10-18 Transparent electrode, electronic device, and organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012234848 2012-10-24
JP2012-234848 2012-10-24

Publications (1)

Publication Number Publication Date
WO2014065215A1 true WO2014065215A1 (en) 2014-05-01

Family

ID=50544595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078343 WO2014065215A1 (en) 2012-10-24 2013-10-18 Transparent electrode, electronic device, and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP6187471B2 (en)
WO (1) WO2014065215A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014057796A1 (en) * 2012-10-11 2016-09-05 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescence element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103174A (en) * 2005-10-04 2007-04-19 Kuraray Co Ltd Electroluminescent element and its manufacturing method
JP2011077028A (en) * 2009-09-04 2011-04-14 Hitachi Displays Ltd Organic el display device
JP2011249089A (en) * 2010-05-25 2011-12-08 Panasonic Corp Organic el display panel and method of manufacturing the same, and organic el display
WO2013141097A1 (en) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescent element
WO2013161750A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescence element
WO2013161639A1 (en) * 2012-04-23 2013-10-31 コニカミノルタ株式会社 Transparent electrode, method for manufacturing transparent electrode, electronic device, and organic electroluminescence element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106015A (en) * 2006-10-27 2008-05-08 Chemiprokasei Kaisha Ltd New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
JP5063992B2 (en) * 2006-11-20 2012-10-31 ケミプロ化成株式会社 Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103174A (en) * 2005-10-04 2007-04-19 Kuraray Co Ltd Electroluminescent element and its manufacturing method
JP2011077028A (en) * 2009-09-04 2011-04-14 Hitachi Displays Ltd Organic el display device
JP2011249089A (en) * 2010-05-25 2011-12-08 Panasonic Corp Organic el display panel and method of manufacturing the same, and organic el display
WO2013141097A1 (en) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescent element
WO2013161639A1 (en) * 2012-04-23 2013-10-31 コニカミノルタ株式会社 Transparent electrode, method for manufacturing transparent electrode, electronic device, and organic electroluminescence element
WO2013161750A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescence element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014057796A1 (en) * 2012-10-11 2016-09-05 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescence element

Also Published As

Publication number Publication date
JPWO2014065215A1 (en) 2016-09-08
JP6187471B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6287834B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6015765B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6020472B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP6036804B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6241193B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6231009B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6241189B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP6112107B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6142645B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP5967047B2 (en) Transparent electrode, method for producing transparent electrode, electronic device, and organic electroluminescence element
JP6295958B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6432124B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP2016058205A (en) Transparent electrode, electronic device and organic electroluminescent element
JP6468186B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6028668B2 (en) Transparent electrodes, electronic devices and organic electroluminescence devices
JP6187471B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6028806B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6119521B2 (en) Transparent electrode, electronic device, and organic electroluminescence element
JP6237638B2 (en) Transparent electrode, electronic device, and organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848359

Country of ref document: EP

Kind code of ref document: A1