WO2014065171A1 - Bonded substrate manufacturing method - Google Patents

Bonded substrate manufacturing method Download PDF

Info

Publication number
WO2014065171A1
WO2014065171A1 PCT/JP2013/078060 JP2013078060W WO2014065171A1 WO 2014065171 A1 WO2014065171 A1 WO 2014065171A1 JP 2013078060 W JP2013078060 W JP 2013078060W WO 2014065171 A1 WO2014065171 A1 WO 2014065171A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
substrate
sealing material
organic
solvent
Prior art date
Application number
PCT/JP2013/078060
Other languages
French (fr)
Japanese (ja)
Inventor
有希 安田
通 園田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014065171A1 publication Critical patent/WO2014065171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • This invention relates to the manufacturing method of the bonding board
  • an EL (electroluminescence) display panel is known.
  • An EL (organic EL, inorganic EL) display panel is an EL element (organic EL element or inorganic EL element) electrically connected to a driving element on a substrate provided with a driving element such as a TFT (thin film transistor). ) Is provided.
  • the EL element is a light-emitting element capable of high-luminance emission by low-voltage direct current drive, and has a structure in which a first electrode, an EL layer (organic EL layer or inorganic EL layer), and a second electrode are stacked in this order. ing.
  • the EL element is bonded to the counter substrate through a sealing material, by bonding the element substrate on which the EL element is formed, It is sealed between the pair of substrates.
  • a filler may be enclosed (filled) between the element substrate and the counter substrate.
  • the filler is not sealed.
  • sealing when sealing is performed without sealing the filler, when the pair of substrates are bonded together in a vacuum and then returned to atmospheric pressure, the vicinity of the seal portion around the substrate Is held at the same inter-substrate gap as the height of the sealing material, but the inter-substrate gap near the center of the panel cannot be controlled. Therefore, in order to obtain a desired inter-substrate gap over the entire panel, it is preferable that a filler is enclosed between the pair of substrates.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-173868 (published on June 20, 2003)”
  • 6 (a) and 6 (b) are cross-sectional views showing an example of a method for manufacturing an organic EL display panel in which a filler is enclosed.
  • 6A shows the state before bonding the substrates
  • FIG. 6B shows the state after bonding the substrates. Further, in FIGS. 6A and 6B, illustration of components other than the organic EL layer 22 and the sealing film 31 in the element substrate 30 is omitted.
  • the structure has a sealing film 31 on the organic EL layer 22. Even if there is a pinhole 111 in the sealing film 31, the filler 52 gradually soaks into the organic EL layer 22 from the pinhole 111. Even if the filler 52 is a curable filler, the solvent contained in the filler 52 soaks into the organic EL layer 22 from the pinhole 111 until the filler 52 is cured.
  • the solvent of the filler 52 soaked from the pinhole 111 becomes a dark spot as shown in FIG.
  • the solvent of the filler 52 soaked from the pinhole 111 is a solvent that damages the organic EL element, it causes deterioration of the element. Such a problem also occurs when the sealing film 31 contains foreign matter.
  • Patent Document 1 discloses a method for manufacturing an organic EL display panel in which a filler 52 is applied to the counter substrate 40 side.
  • 7A to 7C are cross-sectional views showing the method of manufacturing the organic EL display panel described in Patent Document 1 in the order of steps.
  • a UV (ultraviolet) sealing material is applied as a sealing material 51 on a counter substrate 40 made of a glass substrate or the like to partition a panel region.
  • the counter substrate 40 is cut for each element substrate 30 to obtain individual organic EL display panels.
  • sealing material 51 and the filling material 52 are applied on the same substrate, these materials may influence each other or mix.
  • the sealing material 51 and the filling material 52 are applied on the same substrate even if the filling material 52 is not in contact with the sealing material 51, the sealing material 51 is filled.
  • the material 52 is affected by the solvent atmosphere.
  • FIG. 6B when the element substrate 30 and the counter substrate 40 are bonded to each other even when the filler 52 is not in contact with the seal material 51, the seal material 51 is sealed. Insertion or seal breakage may occur.
  • the sealing material 51 and the filler 52 are conventionally applied on the same substrate.
  • the sealing material 51 is broken by the high-viscosity filler 52 and the sealing property cannot be maintained.
  • the viscosity of the sealing material 51 when the viscosity of the sealing material 51 is increased so that the sealing material 51 is not broken by the high-viscosity filling material 52, the viscosity of the sealing material 51 becomes too high, so that there is a limit in terms of the coating apparatus.
  • the present invention has been made in view of the above problems, and its purpose is to suppress seal insertion and seal breakage when bonding an element substrate and a counter substrate through a sealing material and a filler, and element degradation. It is providing the manufacturing method of the bonding board
  • the manufacturing method of the bonding substrate concerning one mode of the present invention is a manufacturing method of the bonding substrate which bonds an element substrate and a counter substrate through a sealing material and a filler, in order to solve the above-mentioned subject,
  • the sealing material and the filler are applied to different substrates of the element substrate and the counter substrate.
  • the filler is applied until the sealant is cured by applying the sealant and the filler to different substrates of the pair of substrates. It is possible to shorten the time during which is in contact with or close to the sealing material. For this reason, such seal insertion and seal breakage can be prevented.
  • any material for example, when the filler contains a volatile component that causes deterioration of the element, such as The pair of substrates can be attached after removing volatile components.
  • the element substrate cannot be heated to a very high temperature.
  • the counter substrate there is no such limitation on the counter substrate.
  • the pair of substrates can be bonded together after the sealing material has a viscosity higher than that of the filler. For this reason, even when a high-viscosity filler is used as the filler, the sealing material can be made highly viscous so that the high-viscosity filler does not break the sealant.
  • a tact up can be aimed at by apply
  • (A)-(f) is sectional drawing which shows an example of the manufacturing method of the organic electroluminescent display panel concerning Embodiment 1 of this invention in order of a process. It is sectional drawing which shows schematic structure of the principal part of the organic electroluminescence display panel concerning Embodiment 2 of this invention. It is sectional drawing which shows the board
  • (b) is a figure which shows typically the cross section of the seal
  • (A) * (b) is a figure which shows typically the cross section of the seal
  • (A) * (b) is sectional drawing which shows an example of the manufacturing method of the organic electroluminescent display panel with which the filler was enclosed.
  • (A)-(c) is sectional drawing which shows the manufacturing method of the organic electroluminescent display panel of patent document 1 in order of a process.
  • an organic EL display panel in an organic EL display device will be described as an example as a bonding substrate according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a main part of the organic EL display panel 1 according to the present embodiment.
  • the organic EL display panel 1 includes an element substrate 30 provided with an organic EL element 20 as an element, a counter substrate 40, a sealing material 51, and a filler 52.
  • the element substrate 30 and the counter substrate 40 are bonded to each other with a sealant 51 and a filler 52 interposed therebetween.
  • the filler 52 is filled in a space surrounded by the pair of substrates including the element substrate 30 and the counter substrate 40 and the sealing material 51.
  • the element substrate 30 has a configuration in which the organic EL element 20 is provided on a semiconductor substrate such as a TFT (thin film transistor) substrate.
  • a semiconductor substrate such as a TFT (thin film transistor) substrate.
  • a TFT substrate 10 is formed on a base substrate 11 such as a glass substrate, a TFT 12 as a driving element, a signal line 13 (wiring) such as a gate line and a source line for driving the TFT 12, and an interlayer insulation.
  • the film 14, the first electrode 21 in the organic EL element 20, the edge cover 15, and the like are formed.
  • the edge cover 15 is an insulating layer for preventing the first electrode 21 and the second electrode 23 in the organic EL element 20 from being short-circuited at the end portion of the first electrode 21, and is an organic layer constituting each pixel 2. It also functions as an element isolation film that partitions the EL element 20.
  • the edge cover 15 is formed on the interlayer insulating film 14 so as to cover the end of the first electrode 21, and the first electrode 21 is exposed in the opening 15 a of the edge cover 15.
  • the organic EL element 20 uses the opening 15a of the edge cover 15 (that is, the portion where the first electrode 21 is exposed) as the light emitting region 3 of each organic EL element 20, and the organic EL layer 22 and the organic EL layer 22 on the first electrode 21. It is produced by forming the second electrode 23.
  • the organic EL display panel 1 is, for example, a full-color active matrix organic EL display panel.
  • the pixels 2 of each color composed of the organic EL elements 20 having 3 are arranged in a matrix.
  • a region other than the light emitting region 3 in the pixel 2 is a non-light emitting region 4.
  • the interlayer insulating film 14 is provided with a contact hole 13 a for electrically connecting the first electrode 21 in the organic EL element 20 to the TFT 12. Thereby, the TFT 12 is electrically connected to the organic EL element 20 through the contact hole 13a.
  • the organic EL element 20 is a light emitting element that can emit light with high luminance by low voltage direct current drive, and a first electrode 21, an organic EL layer 22, and a second electrode 23 are laminated in this order.
  • the organic EL layer 22 may be a single-layer type including only a light-emitting layer, or may be a multilayer type including a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like. There may be.
  • the organic EL layer 22 from the first electrode 21 side for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer
  • the electron injection layer and the like are stacked in this order, and the second electrode is formed thereon.
  • the first electrode 21 injects (supply) holes into the organic EL layer 22, and the second electrode 23 injects (supply) electrons into the organic EL layer 22. Note that the layers between the first electrode 21 and the second electrode 23 are collectively referred to as an organic EL layer.
  • a single layer may have two or more functions.
  • the hole injection layer and the hole transport layer may be formed as independent layers as described above, or may be provided integrally with each other as the hole injection layer / hole transport layer.
  • the electron transport layer and the electron injection layer may be formed as layers independent from each other as described above, or may be integrally provided as an electron transport layer / electron injection layer.
  • a carrier blocking layer or the like for blocking the flow of carriers such as holes and electrons may be appropriately inserted.
  • a hole blocking layer as a carrier blocking layer between the light emitting layer and the electron transporting layer, it is possible to prevent holes from escaping to the electron transporting layer and to improve the light emission efficiency.
  • an electron blocking layer as a carrier blocking layer between the light emitting layer and the hole transport layer, it is possible to prevent electrons from escaping to the hole transport layer.
  • the stacking order is that in which the first electrode 21 is an anode and the second electrode 23 is a cathode.
  • the stacking order of the organic EL layers 22 is reversed.
  • the configuration of the organic EL element 20 is not limited to the above-described exemplary layer configuration, and a desired layer configuration can be adopted according to the required characteristics of the organic EL element 20.
  • the organic EL display panel 1 may be a bottom emission type that emits light from the element substrate 30 side or a top emission type that emits light from the counter substrate 40 side.
  • the bottom emission type organic EL element 20 is formed by using the first electrode 21 as a transparent electrode or a semi-transparent electrode and the second electrode 23 as a reflective electrode.
  • the top emission type organic EL element 20 is formed by using the first electrode 21 as a reflective electrode and the second electrode 23 as a transparent electrode or a semi-transparent electrode.
  • the reflective electrode may be composed of a single layer or may have a laminated structure of a reflective electrode layer and a transparent electrode layer.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • GZO gallium-doped zinc oxide
  • the translucent electrode for example, a metal translucent electrode alone or a laminate of a metal translucent electrode layer and a transparent electrode layer can be used.
  • a conductive metal material such as Al (aluminum) or Ag (silver) is used.
  • sealing film 31 As a protective film for protecting the element, for example, oxygen and moisture enter the organic EL element 20 from the outside so as to cover the second electrode 23 on the second electrode 23.
  • a sealing film 31 is provided to prevent this. Thereby, for example, the organic EL layer 22 can be protected from moisture entering from the contact interface with the sealing material 51.
  • the sealing film 31 may have a single layer or a laminated structure of an inorganic film, or may have a laminated structure of an inorganic film and an organic film.
  • the inorganic film examples include films made of inorganic materials such as Si (silicon), Al oxides (SiO 2 , Al 2 O 3, etc.) and nitrides (SiNx, SiCN).
  • examples of the organic film include films made of organic materials such as acrylate, polyurea, parylene, polyimide, polyamide, and the like.
  • the counter substrate 40 is used as a so-called sealing substrate that encapsulates the organic EL element 20 by being disposed opposite to the element substrate 30 via the sealing material 51 and the filler 52.
  • the counter substrate 40 may have a configuration in which a CF (color filter) layer is formed on a base substrate.
  • a CF layer may be formed on the element substrate 30 side.
  • a base substrate used for the element substrate 30 and the counter substrate 40 for example, a glass substrate or a plastic substrate can be used.
  • An example of the base substrate is a transparent insulating substrate such as an alkali-free glass substrate.
  • the present invention is not limited to this, and an opaque material such as a metal plate can also be used as the substrate on the side that does not emit light.
  • sealing material 51 and the filling material 52 used in the present embodiment will be described.
  • sealing material 51 a well-known sealing material used for bonding of substrates, such as an ultraviolet curable resin or a thermosetting resin, can be used.
  • sealing material 51 for example, an ultraviolet curable or thermosetting epoxy resin adhesive may be used.
  • the sealing material 51 may be an epoxy resin material having a getter function.
  • the viscosity of the sealing material 51 is not particularly limited as long as it can be patterned.
  • a material in the range of 100 to 1000 Pa ⁇ s is used.
  • the sealing material 51 has little or no outgas during curing, and a lower shrinkage rate during curing is preferable because it does not damage the organic EL layer 22.
  • the sealing material 51 is a thermosetting type, there is a heat resistance limit of the light emitting layer. preferable.
  • the moisture permeability of the sealing material 51 is preferably low. Further, in order to adjust the height (gap) of the sealing material 51 between the pair of substrates, it is preferable that a spacer or the like having a desired height is mixed in the sealing material 51.
  • a space between the pair of substrates surrounded by the sealing material 51 is filled with a filler 52 in order to protect the organic EL element 20 from moisture, oxygen, or external impact.
  • Examples of the filler 52 include resins such as epoxy resins and silicon resins.
  • the filler 52 may contain a desiccant such as CaO.
  • the filler 52 may or may not have adhesiveness.
  • the filler 52 may be a filled resin layer having adhesiveness containing a desiccant.
  • the filler 52 may be a material that only needs to be sealed, or may be a curable material. That is, the filler 52 may be a curable filler or a non-curable filler such as liquid or gel. Further, a material that undergoes phase transition by external energy such as heat or ultraviolet light may be used, or a material that does not undergo phase transition may be used. For example, it may be a material that solidifies or vaporizes by heating, may be a material that does not solidify and increases in viscosity, or a material that decreases in viscosity, such as a gel becoming liquid.
  • the sealing material 51 and the filler 52 are applied to different substrates of the pair of substrates. For this reason, it goes without saying that a material that can be applied to the substrate, such as liquid or gel, is used as the filler 52.
  • the curable filler may be an ultraviolet curable filler, a thermosetting filler, or an ultraviolet and heat curable filler.
  • the viscosity of the sealing material 51 is not particularly limited, and the desired viscosity varies depending on the application method.
  • the viscosity of the filler 52 is preferably about 0.1 to 1 Pa ⁇ s at the time of application. Further, when the filler 52 is applied by a slit coater, it is desirable that the viscosity at the time of application is lower.
  • the viscosity of the filler 52 is preferably in the range of 100 to 1000 Pa ⁇ s.
  • the viscosity of the filler 52 at the time of bonding the substrates is not particularly limited as long as it is a viscosity that can be patterned, but is about 10 to 1000 Pa ⁇ s. Is desirable, and more desirably within the range of 100 to 1000 Pa ⁇ s.
  • the filler 52 is a curable filler
  • the outgas at the time of curing is small or not like the sealing material 51, and the shrinkage rate at the time of curing is as follows. The lower one is preferable because it does not damage the organic EL layer 22.
  • the filler 52 is a thermosetting type, since there is a limit to the heat resistance of the light emitting layer, the filler 52 is preferably curable at 100 ° C. or less, similarly to the seal material 51, at 80 ° C. or less. More preferred is curable.
  • the filler 52 it is desirable to use a filler having a getter function as the filler 52 because the organic EL element 20 can be more reliably protected from moisture and oxygen. For this reason, the one where the moisture absorption amount of the filler 52 is higher is preferable.
  • the color of the filler 52 affects the light emission luminance and the light emission color, so that it is preferable that the color is high and the transmittance is high.
  • the manufacturing method of the organic EL display panel 1 according to the present embodiment can be applied to the case where the organic EL display panel 1 is either a top emission type or a bottom emission type.
  • a case where the EL display panel 1 is a top emission type will be described as an example.
  • FIG. 1A to 1F are cross-sectional views showing an example of a method for manufacturing the organic EL display panel 1 according to the present embodiment in the order of steps.
  • an organic EL element 20 is formed on a TFT substrate 10 by a known method.
  • a TFT 12 and a signal line 13 such as a gate line and a source line are formed on a base substrate 11 made of, for example, a glass substrate by a known method.
  • An interlayer insulating film 14 provided with contact holes 14a is formed thereon by a known method so as to cover these TFTs 12 and signal lines 13.
  • the interlayer insulating film 14 and the contact hole 14a are formed by applying a photosensitive resin such as an acrylic resin or a polyimide resin on the base substrate 11 on which the TFT 12 and the signal line 13 are formed, and patterning by a photolithography technique. It is formed.
  • a photosensitive resin such as an acrylic resin or a polyimide resin
  • the first electrode 21 and the edge cover 15 are formed on the interlayer insulating film 14.
  • 1st electrode 21 can be formed by laminating
  • the edge cover 15 is fabricated so as to cover the end portion (pattern end portion) of the first electrode 21 on the interlayer insulating film 14 and to form the opening portion 15 a for each pixel 2. Similar to the interlayer insulating film 14, a known photosensitive resin such as an acrylic resin or a polyimide resin can be used for the edge cover 15.
  • the TFT substrate 10 on which the first electrode 21 and the edge cover 15 are formed is manufactured.
  • the organic EL layer 22 and the second electrode 23 that form the light emitting portion of the organic EL display panel 1 together with the first electrode 21 are sequentially formed on the TFT substrate.
  • the organic EL layer 22 may be a single layer type or a multilayer type.
  • This organic EL layer 22 can be formed by, for example, vacuum deposition.
  • the second electrode 23 is formed, for example, by vacuum deposition of a metal such as Al having conductivity.
  • the organic EL element 20 including the first electrode 21, the organic EL layer 22, and the second electrode 23 is formed on the TFT substrate 10.
  • a sealing film 31 is formed so as to cover the organic EL element 20 across the light emitting region 3 and the non-light emitting region 4 of the organic EL element 20.
  • the sealing film 31 may have a single layer or a laminated structure of an inorganic film, or may have a laminated structure of an inorganic film and an organic film.
  • the inorganic film can be formed by, for example, the above-described inorganic material by plasma CVD, thermal CVD, vacuum deposition, sputtering, or the like.
  • the organic film can be formed, for example, by vacuum deposition of the above-described organic material.
  • the element substrate 30 used in the present embodiment is manufactured.
  • a sealing material 51 is applied to the element substrate 30.
  • the sealing material 51 is applied on the sealing film 31, for example, in a frame shape so as to surround the organic EL element 20.
  • Examples of the method for applying the sealing material 51 include drawing with a dispenser or screen printing.
  • the type and viscosity of the sealing material 51 are as described above, and the description thereof is omitted here.
  • a filler 52 is applied to the counter substrate 40.
  • the configuration of the counter substrate 40 is as described above.
  • a sealing glass made of a glass substrate is used as the counter substrate 40.
  • the filler 52 is applied on the sealing glass.
  • Examples of the method for applying the filler 52 include drawing with a dispenser, screen printing, ink jet printing, and application with a slit coater.
  • the type and viscosity of the filler 52 are as described above, and the description thereof is omitted here.
  • a filler having a desiccant function is used as the filler 52.
  • the counter substrate 40 may be heated (for example, baked) with an oven or a hot plate, for example, in order to remove a part of the solvent contained in the filler 52. Good.
  • the solvent contained in the filler 52 is a volatile component, it is not always necessary to heat, and after the filler 52 is applied to the counter substrate 40, it may be left until the volatile component is volatilized to some extent. Absent.
  • the element substrate 30 coated with the sealing material 51 and the counter substrate 40 coated with the filler 52 are bonded together by a vacuum bonding apparatus (not shown). Seal.
  • the vacuum bonding apparatus after the pair of substrates are bonded together in a vacuum, the pressure is returned to atmospheric pressure, and the sealing material 51 is cured by heat or ultraviolet rays (UV).
  • the organic EL display panel 1 shown in FIG. 1F and FIG. 2 in which the element substrate 30 and the counter substrate 40 are bonded together with the sealing material 51 is manufactured.
  • each component in each substrate described above may be appropriately set to a desired thickness and size according to the application and the like, and are not particularly limited.
  • the thickness and size of these components can be set, for example, in the same manner as in the past.
  • the counter substrate 40 may have the same size as the element substrate 30, or after using a larger substrate than the element substrate and sealing the organic EL element 20 between the pair of substrates. Further, it may be divided according to the size of the target organic EL display panel 1.
  • the sealing material 51 and the filler 52 are applied to different substrates of the pair of substrates until the sealing material 51 is cured.
  • the time during which the filler 52 is in contact with or close to the sealing material 51 can be shortened. For this reason, such seal insertion and seal breakage can be prevented.
  • a part of the solvent contained in the filler 52 is applied by applying the sealing material 51 to the element substrate 30 and applying the filler 52 to the counter substrate 40. After removing the substrate, the pair of substrates can be sealed.
  • the viscosity of the filler 52 can be made higher than when the filler 52 is applied.
  • the penetration speed of the filler 52 into the sealing film 31 can be reduced. Therefore, for example, even when the filler 52 is curable and the solvent contained in the filler 52 causes a large damage to the organic EL element 20, before the organic EL element 20 is damaged, The filler 52 can be cured by bonding the pair of substrates. Thereby, deterioration of the organic EL element 20 can be prevented.
  • a curable filler when used as the filler 52 in this way, a low-viscosity material that can be easily applied can be used as the filler 52 by applying the filler 52 to the counter substrate 40. Even when such a low-viscosity material is used as the filler 52, the pair of substrates is bonded to each other by evaporating the solvent to some extent by baking the counter substrate 40 after applying the filler. After that, it is possible to prevent the solvent from penetrating into the organic EL element 20 until the filler 52 is cured.
  • the filler 52 contains a volatile component that causes deterioration of the organic EL element 20, or outgas that causes deterioration of the organic EL element 20 due to heating or the like when the pair of substrates is bonded to each other.
  • the volatile component as described above is obtained by removing a part of the solvent contained in the filler 52 by, for example, heating or leaving in advance after applying the filler 52 to the counter substrate 40 as described above. After the outgas is removed, the pair of substrates can be attached.
  • the filler 52 is a curable type or a non-curable type
  • a filler containing a solvent that generates such a volatile component or outgas can be used.
  • the filler 52 when the filler 52 is applied to the element substrate 30, in order to prevent the organic EL element 20 from deteriorating, it is usually impossible to apply a temperature of 80 ° C. or higher.
  • the filler 52 when the filler 52 is applied to the counter substrate 40 as in the present embodiment, there is no such limitation. For this reason, even if it is a solvent with a high boiling point, it can be evaporated. Therefore, even if the filler 52 contains such a solvent, such a solvent can be removed. Therefore, it is possible to efficiently and sufficiently remove the solvent / volatile component that causes the deterioration of the organic EL element 20. For this reason, deterioration of the organic EL element 20 can be suppressed.
  • the solvent removal process of evaporating a part of the solvent contained in the filler 52 (that is, the filler 52 applied to the counter substrate 40) between the application process of the filler 52 and the substrate bonding process.
  • the sealing is performed. Since it can be performed, deterioration of the organic EL element 20 can be prevented, and seal insertion and seal failure can be prevented.
  • the filler 52 may contain only one type of solvent, but contains two or more types of solvents having different boiling points. May be.
  • the filler 52 includes two or more kinds of solvents having different boiling points (for example, when the filler 52 is constituted of two or more kinds of solvents having a composition ratio of 5% by weight or more), the filler After coating 52 on the counter substrate 40, the counter substrate 40 is heated to a temperature not lower than the boiling point of the first solvent and lower than the boiling point of the second solvent among the solvents contained in the filler 52, thereby filling the filler. After removing the first solvent from 52, the counter substrate 40 and the element substrate 30 can be bonded together.
  • the pair of substrates can be bonded together in a state where the filler 52 is maintained at a certain viscosity (desired viscosity). It can. Thereby, mixing of bubbles between the pair of substrates can be prevented, and the gap between the pair of substrates can be filled with the filler 52.
  • the 1st solvent contains the component which degrades the organic EL element 20
  • the 1st solvent which degrades the organic EL element 20 can be removed completely before bonding a pair of said board
  • FIG. 3 is a cross-sectional view showing a substrate bonding step in the method of manufacturing the organic EL display panel 1 according to the present embodiment.
  • FIG. 3 shows the same step as the step shown in FIG.
  • the sealing material 51 is applied to the element substrate 30 and the filling material 52 is applied to the counter substrate 40.
  • the present embodiment is different from the first embodiment in that the filler 52 is applied to the element substrate 30 and the sealing material 51 is applied to the counter substrate 40 as shown in FIG.
  • the configuration of the organic EL display panel 1 finally obtained is the same as that of the first embodiment.
  • the filler 52 may be applied to the element substrate 30 as shown in FIG.
  • the sealant 51 and the filler 52 are applied to the same substrate, even when the filler 52 is not in contact with the sealant 51, when the pair of substrates is bonded, Seal insertion or seal breakage occurs. For this reason, as shown in FIG. 3, when the filler 52 is applied to the element substrate 30, the sealing material 51 must be applied to the counter substrate 40.
  • the sealant 51 and the filler 52 are applied to different substrates of the pair of substrates, so that the filler 52 is cured until the sealant 51 is cured.
  • the time during which the sealing material 51 is in contact with or close to the sealing material 51 can be shortened. For this reason, seal insertion and seal breakage can be prevented.
  • the unevenness of the element formation surface (active surface) in the element substrate 30 is filled by applying the sealing material 51 to the counter substrate 40 and applying the filler 52 to the element substrate 30.
  • the material 52 can be easily filled with no gap.
  • the sealing material 51 and the filler 52 are applied on the same substrate as in the prior art, if a high-viscosity filler is used as the filler 52, the filler 52 is applied or the pair of substrates is At the time of bonding, there is a problem that the sealing material 51 is broken by the high-viscosity filler 52 and the sealing property cannot be maintained. In addition, there is a limit from the viewpoint of the coating apparatus to increase the viscosity of the sealing material 51 so that the sealing material 51 is not broken by the high-viscosity filler 52.
  • the sealing material 51 by applying the sealing material 51 to the counter substrate 40 as described above, the counter substrate 40 to which the sealing material 51 is applied is heated before the substrate bonding step. Thus, a part of the solvent of the sealing material 51 can be removed.
  • the sealing material 51 is made higher in viscosity than the viscosity of the filler 52 in advance, and then the pair of substrates. Can be pasted together.
  • the filler 52 even when a highly viscous filler is used as the filler 52, the unevenness of the surface of the element substrate 30 due to the organic EL element 20 can be filled without a gap. For this reason, air bubbles can be prevented from being mixed between the pair of substrates.
  • the sealing can be performed even when the high-viscosity filler 52 is used, a filler with less outgas can be used as the filler 52, so that the reliability can be improved.
  • the high-viscosity filler 52 in this way, it is possible to suppress element deterioration due to seal insertion, seal breakage, and penetration of the solvent in the filler 52.
  • Embodiments 1 and 2 differences from Embodiments 1 and 2 will be mainly described, and the same components as those used in Embodiments 1 and 2 have the same functions. A number is assigned and description thereof is omitted.
  • whether or not the organic EL element 20 is damaged selects which of the pair of substrates the filler 52 is applied to. Used as a selective material for.
  • the sealing material 51 is applied to the element substrate 30 side as shown in the first embodiment. Alternatively, it may be applied to the counter substrate 40 side as shown in the second embodiment. For this reason, when the wiring in the element substrate 30 has a forward taper shape, the sealing material 51 is a substrate on which the filler 52 is applied depending on which of the pair of substrates the filler 52 is applied. What is necessary is just to apply
  • the upper part of the element substrate 30 indicates the surface side of the element substrate 30 (that is, the element formation surface side). Therefore, the direction from the lower part to the upper part of the element substrate 30 indicates the direction from the element substrate 30 side to the counter substrate 40 side.
  • the sealing material 51 when the sealing material 51 is applied to the counter substrate 40 side, the pair of substrates are bonded together. In addition, there may be a gap between the sealing material 51 and the wiring.
  • FIGS. 4A and 4B are diagrams schematically showing a cross section of the seal portion before and after the substrates are bonded together when the sealing material 51 is applied to the element substrate 30 side when the wiring is reversely tapered. It is. 5A and 5B schematically show a cross section of the seal portion before and after the substrates are bonded together when the sealing material 51 is applied to the counter substrate 40 side when the wiring is reversely tapered.
  • FIG. 4A and 5A show the state before the substrates are bonded together
  • FIG. 4B and FIG. 5B show the state after the substrates are bonded together.
  • the terminal wiring 16 (for example, TFT terminal wiring) that is the wiring in the seal portion is opposed when it has an inversely tapered shape that becomes thicker from the lower part to the upper part of the element substrate 30.
  • the sealing material 51 is applied to the substrate 40, the sealing material 51 is cured without the sealing material 51 entering the reverse tapered portion of the terminal wiring 16 when the substrates are bonded. This is because the sealing material 51 does not easily spread in the reverse taper portion of the terminal wiring 16, and the reverse taper portion is difficult to be filled with the sealing material 51.
  • the spacer is connected to the terminal wiring 16. This hinders the spread of the sealing material 51 to the reverse taper portion, and further increases the possibility of the gap 101 as described above.
  • the organic EL element and the inorganic EL element are different in material
  • the bonded substrate may be an inorganic EL display panel. That is, the method for manufacturing a bonded substrate according to Embodiments 1 to 3 is similarly applied to the manufacture of an inorganic EL display panel using an inorganic EL device substrate including an inorganic EL device instead of the organic EL device substrate. Is possible.
  • the manufacturing method of the bonded substrate is used to attach the sealing material 51 and the filler 52 to the pair of substrates.
  • the manufacturing method of the above-mentioned bonded substrate is not limited to the EL display panel, and is filled between an element substrate (for example, an element substrate such as a TFT substrate) having a driving element such as a TFT as an element and a counter substrate.
  • an element substrate for example, an element substrate such as a TFT substrate
  • a driving element such as a TFT as an element and a counter substrate.
  • the configuration of the liquid crystal display panel is conventionally known, and the description and illustration thereof are omitted here.
  • the manufacturing method of the bonding substrate concerning the aspect 1 of this invention is a manufacturing method of the bonding substrate which bonds an element substrate and a counter substrate through a sealing material and a filler as mentioned above, Comprising: The said sealing material And the filler are applied to different substrates of the element substrate and the counter substrate.
  • the sealant and filler When the sealant and filler are applied to the same substrate, the sealant is affected by the solvent atmosphere of the filler even if the filler is not in contact with the sealant, and seals when a pair of substrates are bonded together Insertion or seal breakage occurs.
  • the sealing material and the filler are applied to different substrates of the pair of substrates, so that the filler contacts or approaches the sealing material until the sealing material is cured. You can shorten your time. For this reason, such seal insertion and seal breakage can be prevented.
  • any material for example, when the filler contains a volatile component that causes deterioration of the element, such as The pair of substrates can be attached after removing volatile components.
  • the element substrate cannot be heated to a very high temperature.
  • the element substrate is an organic EL (electroluminescence) substrate
  • a temperature of 80 ° C. or higher cannot be applied to the element substrate in order to prevent deterioration of the organic EL element.
  • the counter substrate there is no such limitation on the counter substrate, and even a solvent having a high boiling point can be evaporated. That is, by applying the sealing material and the filler to different substrates of the pair of substrates, the material applied to the counter substrate side can be heated to a temperature equal to or higher than the heat resistance temperature of the element.
  • the filler contains a solvent that causes deterioration of the element provided on the element substrate, such as an organic EL element, before the pair of substrates are bonded together, It is possible to remove an unnecessary solvent and to suppress / prevent deterioration of the element.
  • the pair of substrates can be bonded together after the sealing material has a viscosity higher than that of the filler. For this reason, even when a high-viscosity filler is used as the filler, the sealing material can be made highly viscous so that the high-viscosity filler does not break the sealant.
  • tact-up can be achieved by applying the sealing material and the filler to different substrates.
  • the sealing material is applied to the element substrate and the filler is applied to the counter substrate.
  • substrate concerning the aspect 3 of this invention is the said filling in the said aspect 2, after apply
  • the method for manufacturing the bonded substrate in particular, by applying the sealing material to the element substrate and applying the filler to the counter substrate, for example, after applying the filler to the counter substrate, Before the element substrate and the counter substrate are bonded to each other, a part of the solvent contained in the filler can be evaporated.
  • the viscosity of the filler can be made higher than that at the time of applying the filler.
  • the filler in the element The penetration speed can be reduced. For this reason, for example, even when the filler is curable and the solvent contained in the filler gives a large damage to the element, the pair of substrates is bonded before the element is damaged. And the filler can be cured. Thereby, deterioration of an element can be prevented.
  • a low-viscosity material that can be easily applied can be used as the filler. Even when such a low-viscosity material is used as the filler, a part of the solvent can be evaporated by heating the counter substrate after applying the filler.
  • the filler contains a solvent that causes deterioration of the element or when outgas that causes deterioration of the element due to heating or the like is generated, the filler is applied to the counter substrate side.
  • the pair of substrates can be bonded together after removing such a solvent or outgas by volatilization or heating.
  • the sealing material it is preferable to apply the sealing material to the element substrate and apply the filler to the counter substrate.
  • the filler is applied to the counter substrate. Thereafter, before the element substrate and the counter substrate are bonded to each other, a part of the solvent contained in the filler is evaporated to remove the solvent so that the viscosity of the filler is higher than that during the application of the filler. More preferably, the method includes a step.
  • the method for manufacturing a bonded substrate according to Aspect 4 of the present invention is the above-mentioned Aspect 3 (that is, when the method for manufacturing a bonded substrate includes the solvent removal step as described above), the filler has a boiling point.
  • the counter substrate is heated to a temperature equal to or higher than the boiling point of the first solvent and lower than the boiling point of the second solvent. It is more preferable to remove the first solvent.
  • the pair of substrates can be bonded together after removing the first solvent from the filler.
  • the pair of substrates can be bonded together while the filler is maintained at a desired viscosity. Thereby, mixing of bubbles between the pair of substrates can be prevented, and the gap between the pair of substrates can be filled with the sealing material.
  • the first solvent may be a solvent that degrades the element.
  • the first solvent is a solvent that deteriorates the device, a more remarkable effect can be obtained.
  • the solvent can be completely removed before the pair of substrates are bonded to each other.
  • the wiring of the seal portion in the element substrate becomes thicker from the lower part to the upper part of the element substrate.
  • the sealing material is applied to the element substrate, and It is desirable to apply a filler to the counter substrate.
  • the wiring has a reverse taper shape
  • a sealing material is applied to the counter substrate, the sealing material does not enter the reverse taper portion of the wiring, and a gap is generated in the reverse taper portion of the wiring.
  • the gap in the seal portion can be eliminated by applying the seal material to the element substrate.
  • the method for manufacturing a bonded substrate according to aspect 7 of the present invention may be a method of applying the filler to the element substrate and applying the sealing material to the counter substrate in the aspect 1.
  • the unevenness of the element formation surface (active surface) in the element substrate is formed by applying the filler to the element substrate and applying the sealing material to the counter substrate. Can be filled easily without gaps.
  • the method for manufacturing a bonded substrate according to Aspect 8 of the present invention is the method for manufacturing a bonded substrate according to Aspect 7, wherein the sealing material is applied to the counter substrate and then bonded to the counter substrate before the element substrate and the counter substrate are bonded to each other. It is preferable to include a solvent removing step of evaporating a part of the contained solvent to make the viscosity of the sealing material higher than that of the filler.
  • the filler to the element substrate and applying the sealing material to the counter substrate, the counter material to which the sealing material is applied before the substrate bonding step is applied.
  • a part of the solvent of the sealing material can be removed by heating the substrate.
  • the above method can seal even when a highly viscous filler is used, a filler with less outgas can be used as the filler. For this reason, the reliability of the bonding substrate can be improved.
  • the filler is preferably a curable filler.
  • the above method it is possible to shorten the time during which the filler or the solvent contained in the filler contacts the element before the filler is cured.
  • the filler may contain a solvent that causes deterioration of the element. For this reason, the above method is particularly suitable when the filler is a curable filler.
  • the element substrate is preferably an organic EL (electroluminescence) element substrate.
  • Organic EL elements are vulnerable to moisture, oxygen, etc., and must be protected from external impacts, etc. Filled between the element substrate and the counter substrate to enhance protection and maintain a gap between substrates. It is preferable that the material is enclosed.
  • a temperature of 80 ° C. or higher cannot be applied to the element substrate.
  • the manufacturing method of the said bonded substrate is especially suitable when the element substrate is an organic EL element substrate.
  • substrate can be used especially suitably for the manufacturing method of the organic EL display panel which used the organic EL element substrate as an element substrate.
  • the present invention can be suitably used in a method for producing a bonded substrate such as an organic EL display panel, an inorganic EL display panel, and a liquid crystal display panel.
  • Organic EL display panel (bonding substrate) 2 pixel 3 light emitting area 4 non-light emitting area 10 TFT substrate 11 base substrate 12 TFT 13 signal line 13a contact hole 14 interlayer insulating film 14a contact hole 15 edge cover 15a opening 16 terminal wiring 20 organic EL element (element) 21 First electrode 22 Organic EL layer 23 Second electrode 30 Element substrate 31 Sealing film 40 Counter substrate 51 Sealing material 52 Filling material 101 Crevice 111 Pinhole

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

When bonding an element substrate (30) and an opposing substrate (40) with a sealing material (51) and a filling material (52) interposed therebetween, each of the sealing material (51) and the filling material (52) is applied to a different one of the element substrate (30) and the opposing substrate (40).

Description

貼合基板の製造方法Manufacturing method of bonded substrate
 本発明は、シール材および充填材を介して素子基板と対向基板とを貼り合わせる貼合基板の製造方法に関するものである。 This invention relates to the manufacturing method of the bonding board | substrate which bonds an element substrate and a counter substrate through a sealing material and a filler.
 近年、様々な商品や分野でフラットディスプレイが活用されている。そのようなフラットディスプレイに用いられる貼合基板の1つとして、例えば、EL(エレクトロルミネッセンス)表示パネルが知られている。 In recent years, flat displays have been used in various products and fields. As one of the bonding substrates used for such a flat display, for example, an EL (electroluminescence) display panel is known.
 EL(有機EL、無機EL)表示パネルは、例えば、TFT(薄膜トランジスタ)等の駆動素子が設けられた基板上に、該駆動素子に電気的に接続されたEL素子(有機EL素子または無機EL素子)が設けられた構成を有している。 An EL (organic EL, inorganic EL) display panel is an EL element (organic EL element or inorganic EL element) electrically connected to a driving element on a substrate provided with a driving element such as a TFT (thin film transistor). ) Is provided.
 EL素子は、低電圧直流駆動による高輝度発光が可能な発光素子であり、第1電極、EL層(有機EL層または無機EL層)、第2電極が、この順に積層された構造を有している。 The EL element is a light-emitting element capable of high-luminance emission by low-voltage direct current drive, and has a structure in which a first electrode, an EL layer (organic EL layer or inorganic EL layer), and a second electrode are stacked in this order. ing.
 EL素子は、該EL素子を、水分や酸素、あるいは、外部からの衝撃等から保護するために、該EL素子が形成された素子基板を、シール材を介して対向基板と貼り合わせることで、これら一対の基板間に封入されている。 In order to protect the EL element from moisture, oxygen, external impact, etc., the EL element is bonded to the counter substrate through a sealing material, by bonding the element substrate on which the EL element is formed, It is sealed between the pair of substrates.
 また、保護の強化のために、素子基板と対向基板との間に、充填材が封入(充填)される場合もある。 Also, in order to enhance protection, a filler may be enclosed (filled) between the element substrate and the counter substrate.
 なお、充填材を封入しない場合もあるが、充填材を封入せずに封止を行う場合、上記一対の基板を真空中で貼り合わせた後に大気圧に戻したとき、基板周辺のシール部付近は、シール材の高さと同じ基板間ギャップに保持されるが、パネル中央付近の基板間ギャップは制御できない。そのため、パネル全体に渡って所望の基板間ギャップを得るためにも、上記一対の基板間に充填材が封入されている方が好ましい。 In some cases, the filler is not sealed. However, when sealing is performed without sealing the filler, when the pair of substrates are bonded together in a vacuum and then returned to atmospheric pressure, the vicinity of the seal portion around the substrate Is held at the same inter-substrate gap as the height of the sealing material, but the inter-substrate gap near the center of the panel cannot be controlled. Therefore, in order to obtain a desired inter-substrate gap over the entire panel, it is preferable that a filler is enclosed between the pair of substrates.
日本国公開特許公報「特開2003-173868号公報(2003年6月20日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-173868 (published on June 20, 2003)”
 しかしながら、上記一対の基板間に充填材を封入する場合、以下の問題点がある。なお、以下では、EL表示パネルとして有機EL表示パネルを例に挙げて説明する。 However, when a filler is sealed between the pair of substrates, there are the following problems. Hereinafter, an organic EL display panel will be described as an example of the EL display panel.
 図6の(a)・(b)は、充填材が封入された有機EL表示パネルの製造方法の一例を示す断面図である。なお、図6の(a)は、基板貼り合わせ前を示し、図6の(b)は、基板貼り合わせ後を示す。また、図6の(a)・(b)では、素子基板30における、有機EL層22および封止膜31以外の構成要素の図示を省略している。 6 (a) and 6 (b) are cross-sectional views showing an example of a method for manufacturing an organic EL display panel in which a filler is enclosed. 6A shows the state before bonding the substrates, and FIG. 6B shows the state after bonding the substrates. Further, in FIGS. 6A and 6B, illustration of components other than the organic EL layer 22 and the sealing film 31 in the element substrate 30 is omitted.
 図6の(a)に示すように、素子基板30に充填材52を塗布してから素子基板30と対向基板40とを貼り合わせる場合、有機EL層22上に封止膜31を有する構造であっても、封止膜31にピンホール111があると、該ピンホール111から充填材52が有機EL層22に除々に浸み込む。なお、たとえ充填材52が硬化型の充填材であったとしても、充填材52を硬化するまでの間に、充填材52に含まれる溶媒がピンホール111から有機EL層22に浸み込む。 As shown in FIG. 6A, when the element substrate 30 and the counter substrate 40 are bonded together after the filler 52 is applied to the element substrate 30, the structure has a sealing film 31 on the organic EL layer 22. Even if there is a pinhole 111 in the sealing film 31, the filler 52 gradually soaks into the organic EL layer 22 from the pinhole 111. Even if the filler 52 is a curable filler, the solvent contained in the filler 52 soaks into the organic EL layer 22 from the pinhole 111 until the filler 52 is cured.
 このピンホール111から浸み込んだ充填材52の溶媒は、図6の(b)に示すように、ダークスポットとなる。このように、ピンホール111から浸み込んだ充填材52の溶媒が有機EL素子にダメージを与える溶媒である場合、素子劣化の原因となる。なお、このような問題は、封止膜31に異物が含まれている場合にも同様に生じる。 The solvent of the filler 52 soaked from the pinhole 111 becomes a dark spot as shown in FIG. As described above, when the solvent of the filler 52 soaked from the pinhole 111 is a solvent that damages the organic EL element, it causes deterioration of the element. Such a problem also occurs when the sealing film 31 contains foreign matter.
 一方、特許文献1には、対向基板40側に充填材52を塗布する有機EL表示パネルの製造方法が開示されている。 On the other hand, Patent Document 1 discloses a method for manufacturing an organic EL display panel in which a filler 52 is applied to the counter substrate 40 side.
 図7の(a)~(c)は、特許文献1に記載の有機EL表示パネルの製造方法を工程順に示す断面図である。 7A to 7C are cross-sectional views showing the method of manufacturing the organic EL display panel described in Patent Document 1 in the order of steps.
 特許文献1では、まず、図7の(a)に示すように、ガラス基板等からなる対向基板40上に、シール材51として、UV(紫外線)シール材を塗布してパネル領域を仕切る。 In Patent Document 1, first, as shown in FIG. 7A, a UV (ultraviolet) sealing material is applied as a sealing material 51 on a counter substrate 40 made of a glass substrate or the like to partition a panel region.
 その後、図7の(b)に示すように、シール材51で囲まれた領域に、真空中で、シリコンオイル等の充填材52を充填した後、図7の(c)に示すように、上記対向基板40に、有機EL素子20が形成された素子基板30をシール材51により貼り合わせる。 Then, as shown in FIG. 7B, after filling the region surrounded by the sealing material 51 with a filler 52 such as silicon oil in a vacuum, as shown in FIG. The element substrate 30 on which the organic EL element 20 is formed is bonded to the counter substrate 40 with a sealing material 51.
 次いで、UV照射を行ってシール材51を硬化させた後、対向基板40を素子基板30ごとに切断して、個別の有機EL表示パネルを得る。 Next, after UV irradiation is performed to cure the sealing material 51, the counter substrate 40 is cut for each element substrate 30 to obtain individual organic EL display panels.
 しかしながら、シール材51と充填材52とを同じ基板上に塗布すると、これらの材料が互いに影響し合ったり、混ざり合ったりする可能性がある。  However, if the sealing material 51 and the filling material 52 are applied on the same substrate, these materials may influence each other or mix.
 特に、図7の(b)に示すように、シリコンオイルのような封止用液体からなる充填材52が流れ出ないように充填材52をシール材51で塞き止めるように塗布した場合には、その影響が顕著に現れる。 In particular, as shown in FIG. 7B, when the filler 52 is applied so as to be blocked by the sealant 51 so that the filler 52 made of a sealing liquid such as silicon oil does not flow out. , The effect appears prominently.
 なお、図6の(a)に示すように、充填材52がシール材51に接触していなくても、シール材51と充填材52とを同じ基板上に塗布する場合、シール材51が充填材52の溶媒雰囲気の影響を受ける。この結果、図6の(b)に示すように、充填材52がシール材51に接触していなくても、素子基板30と対向基板40とを貼り合わせたときに、シール材51に、シール差し込みやシール切れが生じる場合がある。 As shown in FIG. 6A, when the sealing material 51 and the filling material 52 are applied on the same substrate even if the filling material 52 is not in contact with the sealing material 51, the sealing material 51 is filled. The material 52 is affected by the solvent atmosphere. As a result, as shown in FIG. 6B, when the element substrate 30 and the counter substrate 40 are bonded to each other even when the filler 52 is not in contact with the seal material 51, the seal material 51 is sealed. Insertion or seal breakage may occur.
 なお、このようなシール差し込みやシール切れ、あるいは、充填材52の溶媒の浸み込みによる素子劣化は、充填材52の粘度が低いほど起こり易い。 It should be noted that the deterioration of the element due to such insertion or breakage of the seal or penetration of the solvent of the filler 52 is more likely as the viscosity of the filler 52 is lower.
 しかしながら、充填材52として高粘度の充填材を使用すると、従来は、シール材51と充填材52とが同じ基板上に塗布していることから、充填材52の塗布時、もしくは、上記一対の基板を貼り合わせる時に、高粘度の充填材52によってシール材51が破れ、密閉性を保つことができないという問題があった。 However, when a high-viscosity filler is used as the filler 52, the sealing material 51 and the filler 52 are conventionally applied on the same substrate. When the substrates are bonded together, there is a problem that the sealing material 51 is broken by the high-viscosity filler 52 and the sealing property cannot be maintained.
 また、高粘度の充填材52によってシール材51が破れないようにシール材51を高粘度化した場合、シール材51の粘度が高くなりすぎるため、塗布装置の点から限界があった。 In addition, when the viscosity of the sealing material 51 is increased so that the sealing material 51 is not broken by the high-viscosity filling material 52, the viscosity of the sealing material 51 becomes too high, so that there is a limit in terms of the coating apparatus.
 このため、従来は、あまり高粘度の充填材52を使用することはできないという問題点があった。 For this reason, there has been a problem in the prior art that it is not possible to use the filler 52 having a very high viscosity.
 本発明は、上記問題点に鑑みなされたものであり、その目的は、シール材および充填材を介して素子基板と対向基板とを貼り合わせるに際し、シール差し込みやシール切れを抑制するとともに、素子劣化を抑制することができる貼合基板の製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to suppress seal insertion and seal breakage when bonding an element substrate and a counter substrate through a sealing material and a filler, and element degradation. It is providing the manufacturing method of the bonding board | substrate which can suppress this.
 本発明の一態様にかかる貼合基板の製造方法は、上記課題を解決するために、素子基板と対向基板とをシール材および充填材を介して貼り合わせる貼合基板の製造方法であって、上記シール材と充填材とを、上記素子基板および対向基板のうち互いに異なる基板に塗布する。 The manufacturing method of the bonding substrate concerning one mode of the present invention is a manufacturing method of the bonding substrate which bonds an element substrate and a counter substrate through a sealing material and a filler, in order to solve the above-mentioned subject, The sealing material and the filler are applied to different substrates of the element substrate and the counter substrate.
 本実施の一形態にかかる貼合基板の製造方法によれば、シール材と充填材とを、一対の基板のうち互いに異なる基板に塗布することで、シール材を硬化させるまでの間に充填材がシール材と接触または近接している時間を短くすることができる。このため、そのようなシール差し込みやシール切れを防ぐことができる。 According to the method for manufacturing a bonded substrate according to one embodiment of the present invention, the filler is applied until the sealant is cured by applying the sealant and the filler to different substrates of the pair of substrates. It is possible to shorten the time during which is in contact with or close to the sealing material. For this reason, such seal insertion and seal breakage can be prevented.
 また、シール材と充填材とを、一対の基板のうち互いに異なる基板に塗布することで、何れかの材料、例えば充填材が素子の劣化の原因となる揮発成分等を含む場合、そのような揮発成分を除去してから上記一対の基板を貼り合わせることができる。 In addition, when a sealing material and a filler are applied to different substrates of a pair of substrates, any material, for example, when the filler contains a volatile component that causes deterioration of the element, such as The pair of substrates can be attached after removing volatile components.
 特に、素子の劣化を防ぐため、素子基板は、あまり高い温度に加熱することができない。しかしながら、対向基板にはそのような制限がない。 Especially, in order to prevent deterioration of the element, the element substrate cannot be heated to a very high temperature. However, there is no such limitation on the counter substrate.
 このため、例えば充填材が素子の劣化の原因となる溶媒を含む場合であっても、上記一対の基板を貼り合わせる前に、そのような溶媒を除去することができ、素子の劣化を抑制・防止することができる。 For this reason, for example, even when the filler contains a solvent that causes deterioration of the element, such a solvent can be removed before the pair of substrates are bonded together, thereby suppressing deterioration of the element. Can be prevented.
 また、素子劣化を防ぐために充填材として高粘度の充填材を用いた場合であっても、シール材を、充填材の粘度よりも高粘度化してから上記一対の基板を貼り合わせることができる。このため、充填材として高粘度の充填材を使用した場合であっても、高粘度の充填材によってシール材が破れないようにシール材を高粘度化することができる。 In addition, even when a high-viscosity filler is used as a filler in order to prevent element deterioration, the pair of substrates can be bonded together after the sealing material has a viscosity higher than that of the filler. For this reason, even when a high-viscosity filler is used as the filler, the sealing material can be made highly viscous so that the high-viscosity filler does not break the sealant.
 このため、本実施の一形態にかかる貼合基板の製造方法によれば、シール材および充填材を介して素子基板と対向基板とを貼り合わせるに際し、シール差し込みやシール切れを抑制するとともに、素子劣化を抑制することができる。 For this reason, according to the manufacturing method of the bonded substrate concerning this embodiment, while sticking an element substrate and a counter substrate via a sealing material and a filler, while suppressing seal insertion and a seal break, Deterioration can be suppressed.
 また、上記貼合基板の製造方法によれば、シール材と充填材とを互いに異なる基板に塗布することで、タクトアップを図ることができる。 Moreover, according to the manufacturing method of the said bonding board | substrate, a tact up can be aimed at by apply | coating a sealing material and a filler to a mutually different board | substrate.
(a)~(f)は、本発明の実施形態1にかかる有機EL表示パネルの製造方法の一例を、工程順に示す断面図である。(A)-(f) is sectional drawing which shows an example of the manufacturing method of the organic electroluminescent display panel concerning Embodiment 1 of this invention in order of a process. 本発明の実施形態2にかかる有機EL表示パネルの要部の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the principal part of the organic electroluminescence display panel concerning Embodiment 2 of this invention. 本発明の実施形態2にかかる有機EL表示パネルの製造方法における基板貼合工程を示す断面図である。It is sectional drawing which shows the board | substrate bonding process in the manufacturing method of the organic electroluminescence display panel concerning Embodiment 2 of this invention. (a)・(b)は、配線が逆テーパ状であるときにシール材を素子基板側に塗布した場合における、基板貼り合わせ前後のシール部の断面を模式的に示す図である。(A) * (b) is a figure which shows typically the cross section of the seal | sticker part before and behind bonding of a board | substrate when a sealing material is apply | coated to the element substrate side when wiring is reverse taper shape. (a)・(b)は、配線が逆テーパ状であるときにシール材を対向基板側に塗布した場合における、基板貼り合わせ前後のシール部の断面を模式的に示す図である。(A) * (b) is a figure which shows typically the cross section of the seal | sticker part before and behind bonding of a board | substrate when a sealing material is apply | coated to the opposing board | substrate side when wiring is reverse taper shape. (a)・(b)は、充填材が封入された有機EL表示パネルの製造方法の一例を示す断面図である。(A) * (b) is sectional drawing which shows an example of the manufacturing method of the organic electroluminescent display panel with which the filler was enclosed. (a)~(c)は、特許文献1に記載の有機EL表示パネルの製造方法を工程順に示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing method of the organic electroluminescent display panel of patent document 1 in order of a process.
 以下、本発明の実施の一形態について、詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
 〔実施の形態1〕
 本実施の形態について、主に図1の(a)~(f)および図2に基づいて説明すれば以下の通りである。
[Embodiment 1]
This embodiment will be described as follows mainly based on FIGS. 1A to 1F and FIG.
 本実施の形態では、本実施の形態にかかる貼合基板として、有機EL表示装置における有機EL表示パネルを例に挙げて説明する。 In the present embodiment, an organic EL display panel in an organic EL display device will be described as an example as a bonding substrate according to the present embodiment.
 <有機EL表示パネル1の概略構成>
 図2は、本実施の形態にかかる有機EL表示パネル1の要部の概略構成を示す断面図である。
<Schematic configuration of organic EL display panel 1>
FIG. 2 is a cross-sectional view showing a schematic configuration of a main part of the organic EL display panel 1 according to the present embodiment.
 図2に示すように、有機EL表示パネル1は、素子として有機EL素子20が設けられた素子基板30と、対向基板40と、シール材51と、充填材52とを備えている。素子基板30と対向基板40とは、シール材51および充填材52を介して互いに貼り合わされている。充填材52は、これら素子基板30および対向基板40からなる一対の基板とシール材51とで囲まれた空間内に充填されている。 As shown in FIG. 2, the organic EL display panel 1 includes an element substrate 30 provided with an organic EL element 20 as an element, a counter substrate 40, a sealing material 51, and a filler 52. The element substrate 30 and the counter substrate 40 are bonded to each other with a sealant 51 and a filler 52 interposed therebetween. The filler 52 is filled in a space surrounded by the pair of substrates including the element substrate 30 and the counter substrate 40 and the sealing material 51.
 本実施の形態にかかる有機EL表示パネル1の製造方法について説明する前に、まず、上記素子基板30および対向基板40の概略構成について、その材料と併せて以下に説明する。 Before describing the manufacturing method of the organic EL display panel 1 according to the present embodiment, first, the schematic configuration of the element substrate 30 and the counter substrate 40 will be described below together with the materials thereof.
 <素子基板30の概略構成>
 素子基板30は、例えばTFT(薄膜トランジスタ)基板等の半導体基板上に、有機EL素子20が設けられた構成を有している。以下、本実施の形態では、半導体基板として、TFT基板10を用いる場合を例に挙げて説明する。
<Schematic configuration of element substrate 30>
The element substrate 30 has a configuration in which the organic EL element 20 is provided on a semiconductor substrate such as a TFT (thin film transistor) substrate. Hereinafter, in this embodiment, a case where the TFT substrate 10 is used as a semiconductor substrate will be described as an example.
 (TFT基板10の構成)
 図2に示すように、TFT基板10は、ガラス基板等のベース基板11上に、駆動素子としてのTFT12、TFT12を駆動するためのゲートラインおよびソースライン等の信号線13(配線)、層間絶縁膜14、有機EL素子20における第1電極21、エッジカバー15等が形成された構成を有している。
(Configuration of TFT substrate 10)
As shown in FIG. 2, a TFT substrate 10 is formed on a base substrate 11 such as a glass substrate, a TFT 12 as a driving element, a signal line 13 (wiring) such as a gate line and a source line for driving the TFT 12, and an interlayer insulation. The film 14, the first electrode 21 in the organic EL element 20, the edge cover 15, and the like are formed.
 エッジカバー15は、第1電極21の端部で、有機EL素子20における第1電極21と第2電極23とが短絡することを防止するための絶縁層であり、各画素2を構成する有機EL素子20を仕切る素子分離膜としても機能する。 The edge cover 15 is an insulating layer for preventing the first electrode 21 and the second electrode 23 in the organic EL element 20 from being short-circuited at the end portion of the first electrode 21, and is an organic layer constituting each pixel 2. It also functions as an element isolation film that partitions the EL element 20.
 エッジカバー15は、層間絶縁膜14上に、第1電極21の端部を覆うように形成されており、第1電極21は、エッジカバー15の開口部15a内でそれぞれ露出している。 The edge cover 15 is formed on the interlayer insulating film 14 so as to cover the end of the first electrode 21, and the first electrode 21 is exposed in the opening 15 a of the edge cover 15.
 有機EL素子20は、上記エッジカバー15の開口部15a(すなわち、第1電極21が露出した部分)を各有機EL素子20の発光領域3として、第1電極21上に、有機EL層22および第2電極23を形成することで作製される。 The organic EL element 20 uses the opening 15a of the edge cover 15 (that is, the portion where the first electrode 21 is exposed) as the light emitting region 3 of each organic EL element 20, and the organic EL layer 22 and the organic EL layer 22 on the first electrode 21. It is produced by forming the second electrode 23.
 有機EL表示パネル1は、例えばフルカラーのアクティブマトリクス型の有機EL表示パネルであり、TFT基板10上には、例えば、赤(R)、緑(G)、青(B)等の各色の発光領域3を有する有機EL素子20からなる各色の画素2が、マトリクス状に配列されている。なお、画素2における発光領域3以外の領域が、非発光領域4である。 The organic EL display panel 1 is, for example, a full-color active matrix organic EL display panel. On the TFT substrate 10, for example, light emission regions of various colors such as red (R), green (G), and blue (B). The pixels 2 of each color composed of the organic EL elements 20 having 3 are arranged in a matrix. A region other than the light emitting region 3 in the pixel 2 is a non-light emitting region 4.
 層間絶縁膜14には、有機EL素子20における第1電極21をTFT12に電気的に接続するためのコンタクトホール13aが設けられている。これにより、TFT12は、上記コンタクトホール13aを介して、有機EL素子20に電気的に接続されている。 The interlayer insulating film 14 is provided with a contact hole 13 a for electrically connecting the first electrode 21 in the organic EL element 20 to the TFT 12. Thereby, the TFT 12 is electrically connected to the organic EL element 20 through the contact hole 13a.
 (有機EL素子20の構成)
 有機EL素子20は、低電圧直流駆動による高輝度発光が可能な発光素子であり、第1電極21、有機EL層22、第2電極23が、この順に積層されている。
(Configuration of organic EL element 20)
The organic EL element 20 is a light emitting element that can emit light with high luminance by low voltage direct current drive, and a first electrode 21, an organic EL layer 22, and a second electrode 23 are laminated in this order.
 有機EL層22は、発光層のみからなる単層型であってもよいし、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等を備えた多層型であってもよい。 The organic EL layer 22 may be a single-layer type including only a light-emitting layer, or may be a multilayer type including a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like. There may be.
 第1電極21が陽極であり、第2電極23が陰極である場合、第1電極21側から、有機EL層22として、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等が、この順に積層され、その上に、第2電極が形成される。 When the first electrode 21 is an anode and the second electrode 23 is a cathode, as the organic EL layer 22 from the first electrode 21 side, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer The electron injection layer and the like are stacked in this order, and the second electrode is formed thereon.
 第1電極21は、有機EL層22に正孔を注入(供給)し、第2電極23は、有機EL層22に電子を注入(供給)する。なお、第1電極21と第2電極23との間の層を総称して有機EL層と称する。 The first electrode 21 injects (supply) holes into the organic EL layer 22, and the second electrode 23 injects (supply) electrons into the organic EL layer 22. Note that the layers between the first electrode 21 and the second electrode 23 are collectively referred to as an organic EL layer.
 上記有機EL層22では、単一の層が、2つ以上の機能を有していてもよい。例えば、正孔注入層と正孔輸送層とは、上記したように互いに独立した層として形成されていてもよく、正孔注入層兼正孔輸送層として、互いに一体化して設けられていてもよい。同様に、電子輸送層と電子注入層とは、上記したように互いに独立した層として形成されていてもよく、電子輸送層兼電子注入層として、互いに一体化して設けられていてもよい。 In the organic EL layer 22, a single layer may have two or more functions. For example, the hole injection layer and the hole transport layer may be formed as independent layers as described above, or may be provided integrally with each other as the hole injection layer / hole transport layer. . Similarly, the electron transport layer and the electron injection layer may be formed as layers independent from each other as described above, or may be integrally provided as an electron transport layer / electron injection layer.
 また、必要に応じて、正孔、電子といったキャリアの流れを塞き止めるキャリアブロッキング層等が、適宜挿入されていてもよい。例えば、発光層と電子輸送層との間にキャリアブロッキング層として正孔ブロッキング層を追加することで、正孔が電子輸送層に抜けるのを阻止し、発光効率を向上することができる。同様に、発光層と正孔輸送層との間に、キャリアブロッキング層として電子ブロッキング層を追加することで、電子が正孔輸送層に抜けるのを阻止することができる。 Further, if necessary, a carrier blocking layer or the like for blocking the flow of carriers such as holes and electrons may be appropriately inserted. For example, by adding a hole blocking layer as a carrier blocking layer between the light emitting layer and the electron transporting layer, it is possible to prevent holes from escaping to the electron transporting layer and to improve the light emission efficiency. Similarly, by adding an electron blocking layer as a carrier blocking layer between the light emitting layer and the hole transport layer, it is possible to prevent electrons from escaping to the hole transport layer.
 なお、上記積層順は、第1電極21を陽極とし、第2電極23を陰極としたものである。第1電極21を陰極とし、第2電極23を陽極とする場合には、有機EL層22の積層順は反転する。 Note that the stacking order is that in which the first electrode 21 is an anode and the second electrode 23 is a cathode. When the first electrode 21 is a cathode and the second electrode 23 is an anode, the stacking order of the organic EL layers 22 is reversed.
 また、有機EL素子20の構成は上記例示の層構成に限定されるものではなく、要求される有機EL素子20の特性に応じて所望の層構成を採用することができる。 Further, the configuration of the organic EL element 20 is not limited to the above-described exemplary layer configuration, and a desired layer configuration can be adopted according to the required characteristics of the organic EL element 20.
 有機EL表示パネル1は、素子基板30側から光を射出するボトムエミッション型であってもよく、対向基板40側から光を射出するトップエミッション型であってもよい。第1電極21を透明電極あるいは半透明電極とし、第2電極23を、反射電極とすることで、ボトムエミッション型の有機EL素子20が形成される。一方、第1電極21を反射電極とし、第2電極23を透明電極あるいは半透明電極とすることで、トップエミッション型の有機EL素子20が形成される。 The organic EL display panel 1 may be a bottom emission type that emits light from the element substrate 30 side or a top emission type that emits light from the counter substrate 40 side. The bottom emission type organic EL element 20 is formed by using the first electrode 21 as a transparent electrode or a semi-transparent electrode and the second electrode 23 as a reflective electrode. On the other hand, the top emission type organic EL element 20 is formed by using the first electrode 21 as a reflective electrode and the second electrode 23 as a transparent electrode or a semi-transparent electrode.
 なお、上記反射電極は、単層で構成されていてもよく、反射電極層と透明電極層との積層構造を有してもよい。 The reflective electrode may be composed of a single layer or may have a laminated structure of a reflective electrode layer and a transparent electrode layer.
 上記透明電極または透明電極層に用いられる透明電極材料としては、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ガリウム添加酸化亜鉛(GZO)等を用いることができる。 As the transparent electrode material used for the transparent electrode or the transparent electrode layer, ITO (indium tin oxide), IZO (indium zinc oxide), gallium-doped zinc oxide (GZO), or the like can be used.
 一方、半透明電極としては、例えば、金属の半透明電極単体、金属の半透明電極層と透明電極層との積層体を用いることができる。 On the other hand, as the translucent electrode, for example, a metal translucent electrode alone or a laminate of a metal translucent electrode layer and a transparent electrode layer can be used.
 また、反射電極あるいは反射電極層としては、導電性を有する、Al(アルミニウム)、Ag(銀)等の金属材料が用いられる。 Further, as the reflective electrode or the reflective electrode layer, a conductive metal material such as Al (aluminum) or Ag (silver) is used.
 (封止膜31)
 また、素子基板30には、素子を保護する保護膜として、例えば、上記第2電極23上に、該第2電極23を覆うように、酸素や水分が外部から有機EL素子20内に浸入することを阻止する封止膜31が設けられている。これにより、例えば、シール材51との接触界面から浸入する水分から有機EL層22を保護することができる。
(Sealing film 31)
Further, as a protective film for protecting the element, for example, oxygen and moisture enter the organic EL element 20 from the outside so as to cover the second electrode 23 on the second electrode 23. A sealing film 31 is provided to prevent this. Thereby, for example, the organic EL layer 22 can be protected from moisture entering from the contact interface with the sealing material 51.
 封止膜31は、無機膜の単層または積層構造を有していてもよく、無機膜と有機膜との積層構造を有していてもよい。 The sealing film 31 may have a single layer or a laminated structure of an inorganic film, or may have a laminated structure of an inorganic film and an organic film.
 上記無機膜としては、例えば、Si(ケイ素)やAlの酸化物(SiO、Al等)や窒化物(SiNx、SiCN)等の無機材料からなる膜が挙げられる。 Examples of the inorganic film include films made of inorganic materials such as Si (silicon), Al oxides (SiO 2 , Al 2 O 3, etc.) and nitrides (SiNx, SiCN).
 また、有機膜としては、アクリレート、ポリ尿素、パリレン、ポリイミド、ポリアミド等の有機材料からなる膜が挙げられる。 Further, examples of the organic film include films made of organic materials such as acrylate, polyurea, parylene, polyimide, polyamide, and the like.
 <対向基板40の概略構成>
 対向基板40は、シール材51および充填材52を介して素子基板30に対向配置されることで、有機EL素子20を封入する、いわゆる封止基板として使用される。
<Schematic configuration of counter substrate 40>
The counter substrate 40 is used as a so-called sealing substrate that encapsulates the organic EL element 20 by being disposed opposite to the element substrate 30 via the sealing material 51 and the filler 52.
 なお、有機EL表示パネル1がトップエミッション型の場合、対向基板40としては、ベース基板上にCF(カラーフィルタ)層が形成された構成を有していてもよい。一方、有機EL表示パネル1がボトムエミッション型の場合、素子基板30側にCF層が形成されていてもよい。このように有機EL素子20にCF層を併用する場合、有機EL素子20から出射した光のスペクトルをCF層によって調整することができる。 In addition, when the organic EL display panel 1 is a top emission type, the counter substrate 40 may have a configuration in which a CF (color filter) layer is formed on a base substrate. On the other hand, when the organic EL display panel 1 is a bottom emission type, a CF layer may be formed on the element substrate 30 side. Thus, when using a CF layer together with the organic EL element 20, the spectrum of the light emitted from the organic EL element 20 can be adjusted by the CF layer.
 素子基板30および対向基板40に用いられるベース基板としては、例えばガラス基板やプラスチック基板等を用いることができる。該ベース基板の一例としては、例えば、無アルカリガラス基板等の透明な絶縁基板が挙げられる。 As a base substrate used for the element substrate 30 and the counter substrate 40, for example, a glass substrate or a plastic substrate can be used. An example of the base substrate is a transparent insulating substrate such as an alkali-free glass substrate.
 但し、これに限定されるものではなく、光を射出しない側の基板としては、金属板等の不透明材料を用いることもできる。 However, the present invention is not limited to this, and an opaque material such as a metal plate can also be used as the substrate on the side that does not emit light.
 次に、本実施の形態で用いられるシール材51および充填材52について説明する。 Next, the sealing material 51 and the filling material 52 used in the present embodiment will be described.
 <シール材51>
 シール材51としては、紫外線硬化性樹脂や熱硬化性樹脂等、基板の貼り合わせに使用される公知のシール材を使用することができる。
<Sealant 51>
As the sealing material 51, a well-known sealing material used for bonding of substrates, such as an ultraviolet curable resin or a thermosetting resin, can be used.
 シール材51の一例としては、例えば、紫外線硬化型あるいは熱硬化型のエポキシ樹脂系の接着剤が挙げられる。また、シール材51は、ゲッター機能を有するエポキシ樹脂材料であってもよい。 As an example of the sealing material 51, for example, an ultraviolet curable or thermosetting epoxy resin adhesive may be used. Moreover, the sealing material 51 may be an epoxy resin material having a getter function.
 シール材51の粘度は、パターニングできる粘度であればよいが、例えば、100~1000Pa・sの範囲内のものが使用される。 The viscosity of the sealing material 51 is not particularly limited as long as it can be patterned. For example, a material in the range of 100 to 1000 Pa · s is used.
 また、シール材51としては、硬化の際のアウトガスが少ないか、もしくは無い方が好ましく、硬化時の収縮率も、低い方が、有機EL層22にダメージを与えないので好ましい。 Further, it is preferable that the sealing material 51 has little or no outgas during curing, and a lower shrinkage rate during curing is preferable because it does not damage the organic EL layer 22.
 また、シール材51が熱硬化型である場合、発光層の熱耐性限界があるので、シール材51としては、100℃以下で硬化可能なものが好ましく、80℃以下で硬化可能なものがより好ましい。 In addition, when the sealing material 51 is a thermosetting type, there is a heat resistance limit of the light emitting layer. preferable.
 また、シール材51の水分透湿量は低い方が好ましい。また、上記一対の基板間のシール材51の高さ(ギャップ)を調整するために、シール材51に、所望の高さのスペーサ等が混入されていることが好ましい。 Further, the moisture permeability of the sealing material 51 is preferably low. Further, in order to adjust the height (gap) of the sealing material 51 between the pair of substrates, it is preferable that a spacer or the like having a desired height is mixed in the sealing material 51.
 <充填材52>
 上記一対の基板間における、上記シール材51で囲まれた空間には、有機EL素子20を、水分や酸素、あるいは、外部からの衝撃から保護するために、充填材52が封入される。
<Filler 52>
A space between the pair of substrates surrounded by the sealing material 51 is filled with a filler 52 in order to protect the organic EL element 20 from moisture, oxygen, or external impact.
 充填材52としては、例えば、エポキシ系樹脂やシリコン系樹脂等の樹脂が挙げられる。 Examples of the filler 52 include resins such as epoxy resins and silicon resins.
 また、水分の吸着機能を向上させるために、充填材52に、CaO等の乾燥剤が含有されている場合もある。なお、充填材52は、接着性を有していても有していなくても構わない。例えば、充填材52が、乾燥剤を含有した接着性を有する充填樹脂層であってもよい。 Also, in order to improve the moisture adsorption function, the filler 52 may contain a desiccant such as CaO. The filler 52 may or may not have adhesiveness. For example, the filler 52 may be a filled resin layer having adhesiveness containing a desiccant.
 充填材52は、封入するだけの材料であってもよく、硬化型の材料であってもよい。すなわち、充填材52は、硬化型の充填材であってもよく、液状またはゲル状等の非硬化型の充填材であってもよい。また、熱や紫外線等の外部エネルギーにより相転移する材料であってもよく、相転移しない材料であってもよい。例えば、加熱により固化または気化する材料であってもよく、固化せず、粘性が増す材料、あるいは、ゲルが液体化する等、粘性が低下する材料であってもよい。 The filler 52 may be a material that only needs to be sealed, or may be a curable material. That is, the filler 52 may be a curable filler or a non-curable filler such as liquid or gel. Further, a material that undergoes phase transition by external energy such as heat or ultraviolet light may be used, or a material that does not undergo phase transition may be used. For example, it may be a material that solidifies or vaporizes by heating, may be a material that does not solidify and increases in viscosity, or a material that decreases in viscosity, such as a gel becoming liquid.
 但し、本実施の形態において、上記シール材51と充填材52とは、上記一対の基板のうち互いに異なる基板に塗布される。このため、充填材52としては、液状あるいはゲル状のように、基板への塗布が可能な材料が用いられることは、言うまでもない。 However, in the present embodiment, the sealing material 51 and the filler 52 are applied to different substrates of the pair of substrates. For this reason, it goes without saying that a material that can be applied to the substrate, such as liquid or gel, is used as the filler 52.
 また、上記硬化型の充填材としては、紫外線硬化型の充填材であってもよく、熱硬化型の充填材であってもよく、紫外線および熱による硬化型の充填材であってもよい。 Further, the curable filler may be an ultraviolet curable filler, a thermosetting filler, or an ultraviolet and heat curable filler.
 上記シール材51の粘度は、特に限定されるものではなく、塗布方法によって望ましい粘度が異なる。 The viscosity of the sealing material 51 is not particularly limited, and the desired viscosity varies depending on the application method.
 例えば、充填材52をディスペンサ描画により塗布する場合、充填材52の粘度は、塗布時で0.1~1Pa・s程度であることが好ましい。また、充填材52をスリットコーターで塗布する場合には、塗布時の粘度は、さらに低い方が望ましい。 For example, when applying the filler 52 by dispenser drawing, the viscosity of the filler 52 is preferably about 0.1 to 1 Pa · s at the time of application. Further, when the filler 52 is applied by a slit coater, it is desirable that the viscosity at the time of application is lower.
 特に、充填材52を素子基板30に塗布する場合、充填材52の粘度は、100~1000Pa・sの範囲内であることが好ましい。 In particular, when the filler 52 is applied to the element substrate 30, the viscosity of the filler 52 is preferably in the range of 100 to 1000 Pa · s.
 なお、充填材52として塗布し易い粘度の充填材を使用して基板への塗布を行い、その後、充填材52に含まれる溶媒の一部を蒸発させて充填材の粘度を高めてから基板の貼り合わせを行う場合、基板貼り合わせ時(例えば溶媒蒸発後)における充填材52の粘度は、パターニング可能な粘度であれば、特に限定されるものではないが、10~1000Pa・s程度であることが望ましく、100~1000Pa・sの範囲内であることがより望ましい。 In addition, it applies to the board | substrate using the filler of the viscosity which is easy to apply | coat as the filler 52, and after evaporating a part of solvent contained in the filler 52 to raise the viscosity of the filler, In the case of bonding, the viscosity of the filler 52 at the time of bonding the substrates (for example, after evaporation of the solvent) is not particularly limited as long as it is a viscosity that can be patterned, but is about 10 to 1000 Pa · s. Is desirable, and more desirably within the range of 100 to 1000 Pa · s.
 また、充填材52は、該充填材52が硬化型の充填材である場合、シール材51と同様に、硬化の際のアウトガスが少ないか、もしくは無い方が好ましく、硬化時の収縮率も、低い方が、有機EL層22にダメージを与えないので好ましい。 In addition, when the filler 52 is a curable filler, it is preferable that the outgas at the time of curing is small or not like the sealing material 51, and the shrinkage rate at the time of curing is as follows. The lower one is preferable because it does not damage the organic EL layer 22.
 また、充填材52が熱硬化型である場合、発光層の熱耐性限界があるので、充填材52も、シール材51と同様に、100℃以下で硬化可能なものが好ましく、80℃以下で硬化可能なものがより好ましい。 Further, when the filler 52 is a thermosetting type, since there is a limit to the heat resistance of the light emitting layer, the filler 52 is preferably curable at 100 ° C. or less, similarly to the seal material 51, at 80 ° C. or less. More preferred is curable.
 また、充填材52としては、ゲッター機能を有する充填材を用いることが、有機EL素子20を水分や酸素からより確実に保護することができることから、望ましい。このため、充填材52の水分吸収量は、高い方が好ましい。 Further, it is desirable to use a filler having a getter function as the filler 52 because the organic EL element 20 can be more reliably protected from moisture and oxygen. For this reason, the one where the moisture absorption amount of the filler 52 is higher is preferable.
 また、有機EL表示パネル1がトップエミッション構造を有する場合、充填材52の色は、発光輝度や発光色に影響を与えることから、無色で透過率が高い方が好ましい。 In addition, when the organic EL display panel 1 has a top emission structure, the color of the filler 52 affects the light emission luminance and the light emission color, so that it is preferable that the color is high and the transmittance is high.
 <有機EL表示パネル1の製造方法>
 次に、本実施の形態にかかる有機EL表示パネル1の製造方法について以下に説明する。なお、本実施の形態にかかる有機EL表示パネル1の製造方法は、有機EL表示パネル1が、トップエミッション型およびボトムエミッション型の何れである場合にも適用が可能であるが、以下では、有機EL表示パネル1がトップエミッション型である場合を例に挙げて説明する。
<Method for Manufacturing Organic EL Display Panel 1>
Next, the manufacturing method of the organic EL display panel 1 according to the present embodiment will be described below. The manufacturing method of the organic EL display panel 1 according to the present embodiment can be applied to the case where the organic EL display panel 1 is either a top emission type or a bottom emission type. A case where the EL display panel 1 is a top emission type will be described as an example.
 図1の(a)~(f)は、本実施の形態にかかる有機EL表示パネル1の製造方法の一例を、工程順に示す断面図である。 1A to 1F are cross-sectional views showing an example of a method for manufacturing the organic EL display panel 1 according to the present embodiment in the order of steps.
 まず、図1の(a)に示すように、TFT基板10上に、既知の方法で、有機EL素子20を形成する。 First, as shown in FIG. 1A, an organic EL element 20 is formed on a TFT substrate 10 by a known method.
 具体的には、図1の(a)に示すように、例えばガラス基板からなるベース基板11上に、既知の方法で、TFT12、並びに、ゲートラインおよびソースライン等の信号線13を形成し、その上に、これらTFT12および信号線13を覆うように、既知の方法で、コンタクトホール14aが設けられた層間絶縁膜14を形成する。 Specifically, as shown in FIG. 1A, a TFT 12 and a signal line 13 such as a gate line and a source line are formed on a base substrate 11 made of, for example, a glass substrate by a known method. An interlayer insulating film 14 provided with contact holes 14a is formed thereon by a known method so as to cover these TFTs 12 and signal lines 13.
 なお、層間絶縁膜14およびコンタクトホール14aは、TFT12並びに信号線13が形成されたベース基板11上に、アクリル樹脂やポリイミド樹脂等の感光性樹脂を塗布し、フォトリソグラフィ技術によりパターニングを行うことで形成される。 The interlayer insulating film 14 and the contact hole 14a are formed by applying a photosensitive resin such as an acrylic resin or a polyimide resin on the base substrate 11 on which the TFT 12 and the signal line 13 are formed, and patterning by a photolithography technique. It is formed.
 続いて、上記層間絶縁膜14上に、第1電極21およびエッジカバー15を形成する。 Subsequently, the first electrode 21 and the edge cover 15 are formed on the interlayer insulating film 14.
 第1電極21は、ITO等の、導電性および透過性を有する透明電極材料を、例えばスパッタ法等を用いて積層することで形成することができる。 1st electrode 21 can be formed by laminating | stacking the transparent electrode material which has electroconductivity and permeability | transmittance, such as ITO, using a sputtering method etc., for example.
 その後、上記層間絶縁膜14上に、第1電極21の端部(パターン端部)を被覆するとともに、画素2毎に開口部15aが形成されるようにエッジカバー15を作製する。なお、層間絶縁膜14同様、エッジカバー15には、アクリル樹脂やポリイミド樹脂等の、既知の感光性樹脂を用いることができる。 Thereafter, the edge cover 15 is fabricated so as to cover the end portion (pattern end portion) of the first electrode 21 on the interlayer insulating film 14 and to form the opening portion 15 a for each pixel 2. Similar to the interlayer insulating film 14, a known photosensitive resin such as an acrylic resin or a polyimide resin can be used for the edge cover 15.
 以上の工程により、第1電極21およびエッジカバー15が形成されたTFT基板10が作製される。 Through the above steps, the TFT substrate 10 on which the first electrode 21 and the edge cover 15 are formed is manufactured.
 次いで、上記TFT基板上に、上記第1電極21とともに有機EL表示パネル1の発光部を形成する有機EL層22および第2電極23を、順次形成する。なお、有機EL層22は、前述したように、単層型であってもよいし、多層型であってもよい。この有機EL層22は、例えば真空蒸着により形成することができる。また、第2電極23は、例えば、導電性を有する、Al等の金属の真空蒸着により形成される。 Next, the organic EL layer 22 and the second electrode 23 that form the light emitting portion of the organic EL display panel 1 together with the first electrode 21 are sequentially formed on the TFT substrate. As described above, the organic EL layer 22 may be a single layer type or a multilayer type. This organic EL layer 22 can be formed by, for example, vacuum deposition. The second electrode 23 is formed, for example, by vacuum deposition of a metal such as Al having conductivity.
 これにより、TFT基板10に、第1電極21、有機EL層22、および第2電極23からなる有機EL素子20が形成される。 Thereby, the organic EL element 20 including the first electrode 21, the organic EL layer 22, and the second electrode 23 is formed on the TFT substrate 10.
 その後、図1の(b)に示すように、有機EL素子20を、該有機EL素子20の発光領域3と非発光領域4とに渡って覆うように、封止膜31が形成される。 Thereafter, as shown in FIG. 1B, a sealing film 31 is formed so as to cover the organic EL element 20 across the light emitting region 3 and the non-light emitting region 4 of the organic EL element 20.
 なお、封止膜31は、前述したように、無機膜の単層または積層構造を有していてもよく、無機膜と有機膜との積層構造を有していてもよい。 Note that, as described above, the sealing film 31 may have a single layer or a laminated structure of an inorganic film, or may have a laminated structure of an inorganic film and an organic film.
 上記無機膜は、例えば、前述した無機材料を、プラズマCVDや熱CVD、真空蒸着、スパッタ等によって形成することができる。 The inorganic film can be formed by, for example, the above-described inorganic material by plasma CVD, thermal CVD, vacuum deposition, sputtering, or the like.
 また、有機膜は、例えば、前述した有機材料を、真空蒸着することによって形成することができる。 Further, the organic film can be formed, for example, by vacuum deposition of the above-described organic material.
 なお、何れの場合にも、有機EL層22が形成された素子基板30の温度を大幅に上昇させることがない手法、好適には、素子基板30を100℃以下に維持することができる手法が用いられる。 In any case, there is a technique that does not significantly increase the temperature of the element substrate 30 on which the organic EL layer 22 is formed, preferably a technique that can maintain the element substrate 30 at 100 ° C. or lower. Used.
 以上の工程により、本実施の形態で用いられる素子基板30が作製される。 Through the above process, the element substrate 30 used in the present embodiment is manufactured.
 次いで、図1の(c)に示すように、上記素子基板30に、シール材51を塗布する。素子基板30に封止膜31が設けられている場合、シール材51は、封止膜31上に、有機EL素子20を囲むように、例えば枠状に塗布される。 Next, as shown in FIG. 1C, a sealing material 51 is applied to the element substrate 30. When the sealing film 31 is provided on the element substrate 30, the sealing material 51 is applied on the sealing film 31, for example, in a frame shape so as to surround the organic EL element 20.
 シール材51の塗布方法としては、例えば、ディスペンサによる描画、もしくは、スクリーン印刷等が挙げられる。なお、シール材51の種類および粘度等については、前述した通りであり、ここでは、その説明を省略する。 Examples of the method for applying the sealing material 51 include drawing with a dispenser or screen printing. The type and viscosity of the sealing material 51 are as described above, and the description thereof is omitted here.
 一方、図1の(d)に示すように、対向基板40に、充填材52を塗布する。対向基板40の構成は、前述した通りである。ここでは、対向基板40として、例えば、ガラス基板からなる封止ガラスを用いるものとする。充填材52は、この封止ガラス上に塗布される。 On the other hand, as shown in FIG. 1D, a filler 52 is applied to the counter substrate 40. The configuration of the counter substrate 40 is as described above. Here, for example, a sealing glass made of a glass substrate is used as the counter substrate 40. The filler 52 is applied on the sealing glass.
 充填材52の塗布方法としては、例えば、ディスペンサによる描画、スクリーン印刷、インクジェット印刷、スリットコーターによる塗布等が挙げられる。なお、充填材52の種類および粘度等については、前述した通りであり、ここでは、その説明を省略する。上記充填材52としては、例えば、デシカント機能を有する充填材が用いられる。 Examples of the method for applying the filler 52 include drawing with a dispenser, screen printing, ink jet printing, and application with a slit coater. The type and viscosity of the filler 52 are as described above, and the description thereof is omitted here. As the filler 52, for example, a filler having a desiccant function is used.
 また、対向基板40に充填材52を塗布した後、充填材52に含まれる溶媒の一部を除去するために、例えばオーブンやホットプレート等で上記対向基板40を加熱(例えば焼成)してもよい。勿論、上記充填材52に含まれる溶媒が揮発成分である場合には、必ずしも加熱する必要はなく、充填材52を対向基板40に塗布した後、揮発成分がある程度揮発するまで放置しても構わない。 In addition, after applying the filler 52 to the counter substrate 40, the counter substrate 40 may be heated (for example, baked) with an oven or a hot plate, for example, in order to remove a part of the solvent contained in the filler 52. Good. Of course, when the solvent contained in the filler 52 is a volatile component, it is not always necessary to heat, and after the filler 52 is applied to the counter substrate 40, it may be left until the volatile component is volatilized to some extent. Absent.
 その後、図1の(e)に示すように、シール材51が塗布された素子基板30と、充填材52が塗布された対向基板40とを、図示しない真空貼合装置にて貼り合わせることにより封止する。真空貼合装置では、上記一対の基板を真空中で貼り合わせた後、大気圧に戻し、シール材51を熱や紫外線(UV)により硬化させる。 Thereafter, as shown in FIG. 1E, the element substrate 30 coated with the sealing material 51 and the counter substrate 40 coated with the filler 52 are bonded together by a vacuum bonding apparatus (not shown). Seal. In the vacuum bonding apparatus, after the pair of substrates are bonded together in a vacuum, the pressure is returned to atmospheric pressure, and the sealing material 51 is cured by heat or ultraviolet rays (UV).
 これにより、素子基板30と対向基板40とがシール材51で貼り合わされた、図1の(f)および図2に示す有機EL表示パネル1が作製される。 Thereby, the organic EL display panel 1 shown in FIG. 1F and FIG. 2 in which the element substrate 30 and the counter substrate 40 are bonded together with the sealing material 51 is manufactured.
 なお、上記各基板における各構成要素の厚み並びに大きさは、用途等に応じて、所望の厚み並びに大きさに適宜設定すればよく、特に限定されるものではない。これら構成要素の厚み並びに大きさは、例えば、従来と同様に設定することができる。 It should be noted that the thickness and size of each component in each substrate described above may be appropriately set to a desired thickness and size according to the application and the like, and are not particularly limited. The thickness and size of these components can be set, for example, in the same manner as in the past.
 また、対向基板40は、素子基板30と同等の大きさを有していてもよいし、素子基板よりも大きな基板を使用し、上記一対の基板間に有機EL素子20を封止した後で、目的とする有機EL表示パネル1のサイズに従って分断してもよい。 The counter substrate 40 may have the same size as the element substrate 30, or after using a larger substrate than the element substrate and sealing the organic EL element 20 between the pair of substrates. Further, it may be divided according to the size of the target organic EL display panel 1.
 <効果>
 図6の(a)・(b)に示したように、シール材51および充填材52を、同じ基板に塗布すると、充填材52がシール材51に接触していなくても、シール材51が充填材52の溶媒雰囲気の影響を受け、一対の基板を貼り合わせたときにシール差し込みやシール切れが生じる。
<Effect>
As shown in FIGS. 6A and 6B, when the sealing material 51 and the filling material 52 are applied to the same substrate, the sealing material 51 is formed even if the filling material 52 is not in contact with the sealing material 51. Under the influence of the solvent atmosphere of the filler 52, seal insertion and seal breakage occur when a pair of substrates are bonded together.
 しかしながら、本実施の形態によれば、上述したように、シール材51と充填材52とを、上記一対の基板のうち互いに異なる基板に塗布することで、シール材51を硬化させるまでの間に充填材52がシール材51と接触または近接している時間を短くすることができる。このため、そのようなシール差し込みやシール切れを防ぐことができる。 However, according to the present embodiment, as described above, the sealing material 51 and the filler 52 are applied to different substrates of the pair of substrates until the sealing material 51 is cured. The time during which the filler 52 is in contact with or close to the sealing material 51 can be shortened. For this reason, such seal insertion and seal breakage can be prevented.
 また、本実施の形態によれば、素子基板30にシール材51を塗布し、対向基板40に充填材52を塗布することで、上述したように、充填材52中に含まれる溶媒の一部を取り除いた後で、上記一対の基板を封止することができる。 Further, according to the present embodiment, as described above, a part of the solvent contained in the filler 52 is applied by applying the sealing material 51 to the element substrate 30 and applying the filler 52 to the counter substrate 40. After removing the substrate, the pair of substrates can be sealed.
 このように充填材52に含まれる溶媒の一部を除去することで、充填材52の塗布時よりも充填材52の粘度を高くすることができる。 Thus, by removing a part of the solvent contained in the filler 52, the viscosity of the filler 52 can be made higher than when the filler 52 is applied.
 このため、たとえ封止膜31にピンホールや異物があった場合でも、封止膜31内への充填材52の浸み込み速度を遅くすることができる。このため、例えば、充填材52が硬化型であり、該充填材52中に含まれる溶媒が有機EL素子20に与えるダメージが大きい場合であったとしても、有機EL素子20にダメージを与える前に上記一対の基板の貼り合わせを行い、充填材52を硬化させることができる。これにより、有機EL素子20の劣化を防止することができる。 For this reason, even if there is a pinhole or foreign matter in the sealing film 31, the penetration speed of the filler 52 into the sealing film 31 can be reduced. Therefore, for example, even when the filler 52 is curable and the solvent contained in the filler 52 causes a large damage to the organic EL element 20, before the organic EL element 20 is damaged, The filler 52 can be cured by bonding the pair of substrates. Thereby, deterioration of the organic EL element 20 can be prevented.
 また、このように充填材52として硬化型の充填材を用いる場合、対向基板40に充填材52を塗布すれば、充填材52として、塗布し易い低粘度材料を用いることができる。そして、充填材52としてこのような低粘度材料を用いた場合であっても、充填材塗布後に、対向基板40を焼成する等して溶媒をある程度蒸発させることで、上記一対の基板を貼り合わせた後、上記充填材52が硬化するまでの間に、溶媒が有機EL素子20にまで浸み込むことを防ぐことができる。 Further, when a curable filler is used as the filler 52 in this way, a low-viscosity material that can be easily applied can be used as the filler 52 by applying the filler 52 to the counter substrate 40. Even when such a low-viscosity material is used as the filler 52, the pair of substrates is bonded to each other by evaporating the solvent to some extent by baking the counter substrate 40 after applying the filler. After that, it is possible to prevent the solvent from penetrating into the organic EL element 20 until the filler 52 is cured.
 また、充填材52が、有機EL素子20の劣化の原因となる揮発成分を含む場合、あるいは、上記一対の基板を貼り合わせる際の加熱等により、有機EL素子20の劣化の原因となるアウトガスを発生する場合、上記したように対向基板40に充填材52を塗布した後で予め加熱あるいは放置する等して充填材52に含まれる溶媒の一部を除去することで、上記したような揮発成分やアウトガスを取り除いてから、上記一対の基板を貼り合わせることができる。 In addition, when the filler 52 contains a volatile component that causes deterioration of the organic EL element 20, or outgas that causes deterioration of the organic EL element 20 due to heating or the like when the pair of substrates is bonded to each other. When generated, the volatile component as described above is obtained by removing a part of the solvent contained in the filler 52 by, for example, heating or leaving in advance after applying the filler 52 to the counter substrate 40 as described above. After the outgas is removed, the pair of substrates can be attached.
 したがって、充填材52が硬化型であるか非硬化型であるかに拘らず、このような揮発成分やアウトガスが発生する溶媒を含む充填材であっても使用が可能であり、そのような溶媒を、例えば塗布時の粘度を下げるために充填材に添加して使用することも可能である。 Therefore, regardless of whether the filler 52 is a curable type or a non-curable type, even a filler containing a solvent that generates such a volatile component or outgas can be used. Can be used, for example, by adding to the filler in order to lower the viscosity during coating.
 また、素子基板30に充填材52を塗布した場合、有機EL素子20の劣化を防ぐため、通常、80℃以上の温度を加えることができない。しかしながら、本実施の形態のように対向基板40に充填材52を塗布する場合には、そのような制限が無い。このため、沸点が高い溶媒であったとしても蒸発させることができる。したがって、充填材52が、そのような溶媒を含んでいたとしても、そのような溶媒を除去することができる。このため、有機EL素子20の劣化の原因となる溶媒・揮発成分を、効率良くかつ十分に取り除くことができる。このため、有機EL素子20の劣化を抑えることができる。 In addition, when the filler 52 is applied to the element substrate 30, in order to prevent the organic EL element 20 from deteriorating, it is usually impossible to apply a temperature of 80 ° C. or higher. However, when the filler 52 is applied to the counter substrate 40 as in the present embodiment, there is no such limitation. For this reason, even if it is a solvent with a high boiling point, it can be evaporated. Therefore, even if the filler 52 contains such a solvent, such a solvent can be removed. Therefore, it is possible to efficiently and sufficiently remove the solvent / volatile component that causes the deterioration of the organic EL element 20. For this reason, deterioration of the organic EL element 20 can be suppressed.
 このように、充填材52の塗布工程と基板貼合工程との間に、充填材52(つまり、対向基板40に塗布された充填材52)に含まれる溶媒の一部を蒸発させる溶媒除去工程を備えることで、上記充填材52に含まれる、有機EL素子20を劣化させる溶媒を取り除いた後、もしくは、充填材52の塗布時よりも充填材52の粘度を高くした後で上記封止を行うことができるので、有機EL素子20の劣化を防ぐことができるとともに、シール差し込みやシール切れを防ぐことができる。 Thus, the solvent removal process of evaporating a part of the solvent contained in the filler 52 (that is, the filler 52 applied to the counter substrate 40) between the application process of the filler 52 and the substrate bonding process. After removing the solvent that degrades the organic EL element 20 contained in the filler 52, or after increasing the viscosity of the filler 52 than when applying the filler 52, the sealing is performed. Since it can be performed, deterioration of the organic EL element 20 can be prevented, and seal insertion and seal failure can be prevented.
 なお、上記したように充填材52に含まれる溶媒の一部を蒸発させる場合、充填材52は、一種類の溶媒のみを含んでいてもよいが、沸点が異なる2種類以上の溶媒を含んでいてもよい。 In addition, when a part of the solvent contained in the filler 52 is evaporated as described above, the filler 52 may contain only one type of solvent, but contains two or more types of solvents having different boiling points. May be.
 充填材52が、沸点が異なる2種類以上の溶媒を含んでいる場合(例えば、充填材52が、構成比が5重量%以上からなる2種類以上の溶媒から構成されている場合)、充填材52を対向基板40に塗布後に、該対向基板40を、上記充填材52に含まれる溶媒のうち第1の溶媒の沸点以上、第2の溶媒の沸点未満の温度に加熱することで、充填材52から第1の溶媒を取り除いた後で、対向基板40と素子基板30とを貼り合わせることができる。 When the filler 52 includes two or more kinds of solvents having different boiling points (for example, when the filler 52 is constituted of two or more kinds of solvents having a composition ratio of 5% by weight or more), the filler After coating 52 on the counter substrate 40, the counter substrate 40 is heated to a temperature not lower than the boiling point of the first solvent and lower than the boiling point of the second solvent among the solvents contained in the filler 52, thereby filling the filler. After removing the first solvent from 52, the counter substrate 40 and the element substrate 30 can be bonded together.
 これにより、充填材52を、対向基板40に、塗布し易い粘度で塗布した後、充填材52を、ある程度の粘度(所望の粘度)に維持した状態で、上記一対の基板を貼り合わせることができる。これにより、上記一対の基板間への気泡の混入を防ぎ、上記一対の基板間の隙間を上記充填材52で満たすことができる。 Thus, after applying the filler 52 to the counter substrate 40 with a viscosity that is easy to apply, the pair of substrates can be bonded together in a state where the filler 52 is maintained at a certain viscosity (desired viscosity). it can. Thereby, mixing of bubbles between the pair of substrates can be prevented, and the gap between the pair of substrates can be filled with the filler 52.
 また、第1の溶媒が有機EL素子20を劣化させる成分を含んでいる場合、有機EL素子20を劣化させる第1の溶媒を、上記一対の基板を貼り合わせる前に完全に除去することが可能となる。したがって、充填材52が第1の溶媒として有機EL素子20を劣化させる溶媒を含む場合、充填材52に、第1の溶媒よりも沸点が高い第2の溶媒を混合して使用することが好ましい。 Moreover, when the 1st solvent contains the component which degrades the organic EL element 20, the 1st solvent which degrades the organic EL element 20 can be removed completely before bonding a pair of said board | substrate. It becomes. Therefore, when the filler 52 contains a solvent that degrades the organic EL element 20 as the first solvent, it is preferable to use the filler 52 mixed with a second solvent having a boiling point higher than that of the first solvent. .
 また、本実施の形態によれば、上記したようにシール材51と充填材52とを互いに異なる基板に塗布することで、タクトアップを図ることができる。 Further, according to the present embodiment, it is possible to improve the tact time by applying the sealing material 51 and the filler 52 to different substrates as described above.
 なお、上述したように、充填材52を塗布後、溶媒の一部を蒸発させるために加熱するプロセスを用いる場合、先に充填材52を塗布した基板を準備しておくことも可能である。このプロセスに、塗布後、直ぐに基板の貼り合わせを行わないとシール差し込み・切れが生じる材料を用いる場合には、特に有効である。 As described above, when a heating process is used to evaporate a part of the solvent after applying the filler 52, it is also possible to prepare a substrate on which the filler 52 has been previously applied. This process is particularly effective in the case of using a material that will cause a seal insertion / cut if the substrates are not bonded immediately after application.
 〔実施の形態2〕
 本実施の形態について主に図3に基づいて説明すれば、以下の通りである。
[Embodiment 2]
This embodiment will be described mainly with reference to FIG.
 なお、本実施の形態では、主に、実施の形態1との相違点について説明するものとし、実施の形態1で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。 In the present embodiment, differences from the first embodiment will be mainly described. Components having the same functions as those used in the first embodiment are denoted by the same reference numerals. The description is omitted.
 図3は、本実施の形態にかかる有機EL表示パネル1の製造方法における基板貼合工程を示す断面図である。なお、図3は、実施の形態1における図1の(e)に示す工程と同じ工程を示している。 FIG. 3 is a cross-sectional view showing a substrate bonding step in the method of manufacturing the organic EL display panel 1 according to the present embodiment. FIG. 3 shows the same step as the step shown in FIG.
 図1の(e)に示したように、実施の形態1では素子基板30にシール材51を塗布し、対向基板40に充填材52を塗布した。これに対し、本実施の形態では、図3に示すように、素子基板30に充填材52を塗布し、対向基板40にシール材51を塗布した点で、実施の形態1と異なっている。 As shown in FIG. 1E, in the first embodiment, the sealing material 51 is applied to the element substrate 30 and the filling material 52 is applied to the counter substrate 40. On the other hand, the present embodiment is different from the first embodiment in that the filler 52 is applied to the element substrate 30 and the sealing material 51 is applied to the counter substrate 40 as shown in FIG.
 なお、本実施の形態において、最終的に得られる有機EL表示パネル1の構成は、実施の形態1と同じである。 In the present embodiment, the configuration of the organic EL display panel 1 finally obtained is the same as that of the first embodiment.
 充填材52が有機EL素子20に浸み込んでも有機EL素子20にダメージを与えない場合、図3に示すように、充填材52を素子基板30に塗布してもよい。但し、本実施の形態でも、シール材51と充填材52とを同じ基板に塗布すると、たとえ充填材52がシール材51に接触していなくても、上記一対の基板を貼り合わせたときに、シール差し込みやシール切れが生じる。このため、図3に示すように、充填材52を素子基板30に塗布する場合、シール材51は、対向基板40に塗布しなければならない。 In the case where the organic EL element 20 is not damaged even if the filler 52 soaks into the organic EL element 20, the filler 52 may be applied to the element substrate 30 as shown in FIG. However, also in this embodiment, when the sealant 51 and the filler 52 are applied to the same substrate, even when the filler 52 is not in contact with the sealant 51, when the pair of substrates is bonded, Seal insertion or seal breakage occurs. For this reason, as shown in FIG. 3, when the filler 52 is applied to the element substrate 30, the sealing material 51 must be applied to the counter substrate 40.
 <効果>
 本実施の形態でも、上述したように、シール材51と充填材52とを、上記一対の基板のうち互いに異なる基板に塗布することで、シール材51を硬化させるまでの間に充填材52がシール材51と接触または近接している時間を短くすることができる。このため、シール差し込みやシール切れを防ぐことができる。
<Effect>
Also in this embodiment, as described above, the sealant 51 and the filler 52 are applied to different substrates of the pair of substrates, so that the filler 52 is cured until the sealant 51 is cured. The time during which the sealing material 51 is in contact with or close to the sealing material 51 can be shortened. For this reason, seal insertion and seal breakage can be prevented.
 また、本実施の形態によれば、シール材51を対向基板40に塗布し、充填材52を素子基板30に塗布することで、素子基板30における素子形成面(能動面)の凸凹を、充填材52で容易に隙間無く埋めることができる。 Further, according to the present embodiment, the unevenness of the element formation surface (active surface) in the element substrate 30 is filled by applying the sealing material 51 to the counter substrate 40 and applying the filler 52 to the element substrate 30. The material 52 can be easily filled with no gap.
 また、従来のようにシール材51と充填材52とを同じ基板上に塗布する場合、充填材52として高粘度の充填材を使用すると、充填材52の塗布時、もしくは、上記一対の基板を貼り合わせる時に、高粘度の充填材52によってシール材51が破れ、密閉性を保つことができないという問題点がある。また、高粘度の充填材52によってシール材51が破れないようにシール材51を高粘度化することも、塗布装置の点から限界がある。 Further, when the sealing material 51 and the filler 52 are applied on the same substrate as in the prior art, if a high-viscosity filler is used as the filler 52, the filler 52 is applied or the pair of substrates is At the time of bonding, there is a problem that the sealing material 51 is broken by the high-viscosity filler 52 and the sealing property cannot be maintained. In addition, there is a limit from the viewpoint of the coating apparatus to increase the viscosity of the sealing material 51 so that the sealing material 51 is not broken by the high-viscosity filler 52.
 しかしながら、本実施の形態によれば、上記したように対向基板40にシール材51を塗布することで、基板貼合工程の前に、シール材51が塗布された対向基板40を加熱する等して、シール材51の溶媒の一部を除去することができる。 However, according to the present embodiment, by applying the sealing material 51 to the counter substrate 40 as described above, the counter substrate 40 to which the sealing material 51 is applied is heated before the substrate bonding step. Thus, a part of the solvent of the sealing material 51 can be removed.
 このため、本実施の形態によれば、シール材51の塗布後、基板貼合工程の前に、シール材51を、予め充填材52の粘度よりも高粘度化した後で、上記一対の基板を貼り合わせることができる。このため、充填材52として高粘度の充填材を使用した場合であっても、有機EL素子20による素子基板30の表面の凹凸を、隙間無く埋めることができる。このため、上記一対の基板間に気泡が混入されることを防ぐことができる。 For this reason, according to the present embodiment, after the sealing material 51 is applied and before the substrate bonding step, the sealing material 51 is made higher in viscosity than the viscosity of the filler 52 in advance, and then the pair of substrates. Can be pasted together. For this reason, even when a highly viscous filler is used as the filler 52, the unevenness of the surface of the element substrate 30 due to the organic EL element 20 can be filled without a gap. For this reason, air bubbles can be prevented from being mixed between the pair of substrates.
 また、高粘度の充填材52を用いた場合でもシールすることができるため、充填材52として、アウトガスの少ない充填材を用いることができるので、信頼性を向上させることができる。 Further, since the sealing can be performed even when the high-viscosity filler 52 is used, a filler with less outgas can be used as the filler 52, so that the reliability can be improved.
 また、このように高粘度の充填材52を使用することで、シール差し込みやシール切れ、充填材52の溶媒の浸み込みによる素子劣化を抑制することができる。 Further, by using the high-viscosity filler 52 in this way, it is possible to suppress element deterioration due to seal insertion, seal breakage, and penetration of the solvent in the filler 52.
 〔実施の形態3〕
 本実施の形態について主に図4の(a)・(b)および図5の(a)・(b)に基づいて説明すれば、以下の通りである。
[Embodiment 3]
The following will describe the present embodiment mainly based on FIGS. 4A and 4B and FIGS. 5A and 5B.
 なお、本実施の形態では、主に、実施の形態1、2との相違点について説明するものとし、実施の形態1、2で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。 In this embodiment, differences from Embodiments 1 and 2 will be mainly described, and the same components as those used in Embodiments 1 and 2 have the same functions. A number is assigned and description thereof is omitted.
 実施の形態1、2で説明したように、充填材52に関しては、有機EL素子20にダメージを与えるか否かが、上記一対の基板のうち何れの基板に充填材52を塗布するか選択するための選択材料として用いられる。 As described in the first and second embodiments, regarding the filler 52, whether or not the organic EL element 20 is damaged selects which of the pair of substrates the filler 52 is applied to. Used as a selective material for.
 しかしながら、素子基板30における配線が、該素子基板30の下部から上部に向かうにしたがって細くなる順テーパ状である場合、シール材51は、実施の形態1に示したように素子基板30側に塗布してもよく、実施の形態2に示したように対向基板40側に塗布しても構わない。このため、素子基板30における配線が、順テーパ状である場合、シール材51は、充填材52を上記一対の基板のうち何れの基板に塗布するかに応じて、充填材52を塗布する基板とは異なる側の基板に塗布すればよい。 However, when the wiring in the element substrate 30 has a forward taper shape that becomes thinner from the lower part to the upper part of the element substrate 30, the sealing material 51 is applied to the element substrate 30 side as shown in the first embodiment. Alternatively, it may be applied to the counter substrate 40 side as shown in the second embodiment. For this reason, when the wiring in the element substrate 30 has a forward taper shape, the sealing material 51 is a substrate on which the filler 52 is applied depending on which of the pair of substrates the filler 52 is applied. What is necessary is just to apply | coat to the board | substrate of a different side.
 なお、ここで、素子基板30の上部とは、素子基板30の表面側(つまり、素子形成面側)を示す。したがって、素子基板30の下部から上部に向かう方向とは、素子基板30側から対向基板40側に向かう方向を示す。 Here, the upper part of the element substrate 30 indicates the surface side of the element substrate 30 (that is, the element formation surface side). Therefore, the direction from the lower part to the upper part of the element substrate 30 indicates the direction from the element substrate 30 side to the counter substrate 40 side.
 しかしながら、素子基板30における配線の形状(より厳密には、シール材51によるシール部における配線の形状)によっては、シール材51を対向基板40側に塗布すると、上記一対の基板を貼り合わせたときに、シール材51と配線との間に隙間ができる場合がある。 However, depending on the shape of the wiring in the element substrate 30 (more strictly, the shape of the wiring in the seal portion by the sealing material 51), when the sealing material 51 is applied to the counter substrate 40 side, the pair of substrates are bonded together. In addition, there may be a gap between the sealing material 51 and the wiring.
 図4の(a)・(b)は、配線が逆テーパ状であるときにシール材51を素子基板30側に塗布した場合における、基板貼り合わせ前後のシール部の断面を模式的に示す図である。また、図5の(a)・(b)は、配線が逆テーパ状であるときにシール材51を対向基板40側に塗布した場合における、基板貼り合わせ前後のシール部の断面を模式的に示す図である。なお、図4の(a)および図5の(a)が基板貼り合わせ前を示し、図4の(b)および図5の(b)が基板貼り合わせ後を示す。 FIGS. 4A and 4B are diagrams schematically showing a cross section of the seal portion before and after the substrates are bonded together when the sealing material 51 is applied to the element substrate 30 side when the wiring is reversely tapered. It is. 5A and 5B schematically show a cross section of the seal portion before and after the substrates are bonded together when the sealing material 51 is applied to the counter substrate 40 side when the wiring is reversely tapered. FIG. 4A and 5A show the state before the substrates are bonded together, and FIG. 4B and FIG. 5B show the state after the substrates are bonded together.
 図5の(a)に示すように、シール部における配線である端子配線16(例えばTFT端子配線)が、該素子基板30の下部から上部に向かうにしたがって太くなる逆テーパ状である場合に対向基板40にシール材51を塗布すると、基板貼り合わせ時に、端子配線16の逆テーパ部分までシール材51が入り込まないままシール材51が硬化される。これは、上記端子配線16の逆テーパ部分にシール材51が広がり難く、この逆テーパ部分がシール材51によって埋まり難いためである。 As shown in FIG. 5A, the terminal wiring 16 (for example, TFT terminal wiring) that is the wiring in the seal portion is opposed when it has an inversely tapered shape that becomes thicker from the lower part to the upper part of the element substrate 30. When the sealing material 51 is applied to the substrate 40, the sealing material 51 is cured without the sealing material 51 entering the reverse tapered portion of the terminal wiring 16 when the substrates are bonded. This is because the sealing material 51 does not easily spread in the reverse taper portion of the terminal wiring 16, and the reverse taper portion is difficult to be filled with the sealing material 51.
 このため、このように上記端子配線16が逆テーパ状である場合に対向基板40にシール材51を塗布すると、図5の(b)に示すように、上記端子配線16の逆テーパ部分に、隙間101が生じてしまう。 For this reason, when the sealing material 51 is applied to the counter substrate 40 when the terminal wiring 16 has a reverse taper shape as described above, as shown in FIG. A gap 101 is generated.
 また、上記一対の基板間のシール材51の高さ(すなわち、基板間ギャップ)を調整するために、シール材51に図示しないスペーサ等を混入している場合には、スペーサが、端子配線16の逆テーパ部分へのシール材51の広がりの妨げになり、上記したような隙間101が生じる可能性がさらに高くなる。 Further, when a spacer or the like (not shown) is mixed in the sealing material 51 in order to adjust the height of the sealing material 51 between the pair of substrates (that is, the gap between the substrates), the spacer is connected to the terminal wiring 16. This hinders the spread of the sealing material 51 to the reverse taper portion, and further increases the possibility of the gap 101 as described above.
 このため、このようにシール部における配線が逆テーパ状である場合、図4の(a)に示すように素子基板30側にシール材51を塗布して上記一対の基板を貼り合わせることが望ましい。 For this reason, when the wiring in the seal portion is reversely tapered as described above, it is desirable to apply the sealing material 51 on the element substrate 30 side and bond the pair of substrates together as shown in FIG. .
 <効果>
 本実施の形態によれば、図4の(a)に示すように端子配線16が逆テーパ状であっても、シール材51の濡れ広がりが良くなり、図4の(b)に示すように、シール部における隙間を無くすことができる(あるいは、隙間ができる可能性が低くなる)。
<Effect>
According to the present embodiment, even when the terminal wiring 16 is reversely tapered as shown in FIG. 4A, the wetting and spreading of the sealing material 51 is improved, as shown in FIG. 4B. , The gap in the seal portion can be eliminated (or the possibility of forming a gap is reduced).
 〔変形例〕
 なお、実施の形態1~3では、貼合基板の製造方法の一例として、素子基板30に、有機EL素子を備えた有機EL素子基板を用いた有機EL表示パネル1の製造方法を例に挙げて説明した。
[Modification]
In the first to third embodiments, as an example of a method for manufacturing a bonded substrate, a method for manufacturing an organic EL display panel 1 using an organic EL element substrate including an organic EL element as the element substrate 30 is taken as an example. Explained.
 しかしながら、有機EL素子と無機EL素子とは材料が異なるだけであり、上記貼合基板としては無機EL表示パネルであってもよいことは、言うまでもない。すなわち、実施の形態1~3にかかる貼合基板の製造方法は、有機EL素子基板に代えて、無機EL素子を備えた無機EL素子基板を用いた無機EL表示パネルの製造にも同様に適用が可能である。 However, it is needless to say that the organic EL element and the inorganic EL element are different in material, and the bonded substrate may be an inorganic EL display panel. That is, the method for manufacturing a bonded substrate according to Embodiments 1 to 3 is similarly applied to the manufacture of an inorganic EL display panel using an inorganic EL device substrate including an inorganic EL device instead of the organic EL device substrate. Is possible.
 また、上述したように、上記貼合基板の製造方法は、シール材51と充填材52とを介して一対の基板を貼り合わせるに際し、これらシール材51および充填材52を、上記一対の基板のうち互いに異なる基板に塗布するものである。したがって、上記貼合基板の製造方法は、EL表示パネルのみならず、素子としてTFT等の駆動素子を備えた素子基板(例えば、TFT基板等の素子基板)と、対向基板との間に、充填材として液晶が充填される液晶表示パネルにも、同様に適用が可能である。 In addition, as described above, when the pair of substrates are bonded to each other through the sealing material 51 and the filler 52, the manufacturing method of the bonded substrate is used to attach the sealing material 51 and the filler 52 to the pair of substrates. Of these, they are applied to different substrates. Therefore, the manufacturing method of the above-mentioned bonded substrate is not limited to the EL display panel, and is filled between an element substrate (for example, an element substrate such as a TFT substrate) having a driving element such as a TFT as an element and a counter substrate. The same applies to a liquid crystal display panel filled with liquid crystal as a material.
 なお、液晶表示パネルの構成は従来公知であり、ここでは、その説明並びに図示を省略する。 The configuration of the liquid crystal display panel is conventionally known, and the description and illustration thereof are omitted here.
 〔まとめ〕
 本発明の態様1にかかる貼合基板の製造方法は、以上のように、素子基板と対向基板とをシール材および充填材を介して貼り合わせる貼合基板の製造方法であって、上記シール材と充填材とを、上記素子基板および対向基板のうち互いに異なる基板に塗布する方法である。
[Summary]
The manufacturing method of the bonding substrate concerning the aspect 1 of this invention is a manufacturing method of the bonding substrate which bonds an element substrate and a counter substrate through a sealing material and a filler as mentioned above, Comprising: The said sealing material And the filler are applied to different substrates of the element substrate and the counter substrate.
 シール材と充填材とを同じ基板に塗布すると、たとえ充填材がシール材に接触していなくても、シール材が充填材の溶媒雰囲気の影響を受け、一対の基板を貼り合わせたときにシール差し込みやシール切れが生じる。 When the sealant and filler are applied to the same substrate, the sealant is affected by the solvent atmosphere of the filler even if the filler is not in contact with the sealant, and seals when a pair of substrates are bonded together Insertion or seal breakage occurs.
 しかしながら、上記の方法によれば、シール材と充填材とを、一対の基板のうち互いに異なる基板に塗布することで、シール材を硬化させるまでの間に充填材がシール材と接触または近接している時間を短くすることができる。このため、そのようなシール差し込みやシール切れを防ぐことができる。 However, according to the above method, the sealing material and the filler are applied to different substrates of the pair of substrates, so that the filler contacts or approaches the sealing material until the sealing material is cured. You can shorten your time. For this reason, such seal insertion and seal breakage can be prevented.
 また、シール材と充填材とを、一対の基板のうち互いに異なる基板に塗布することで、何れかの材料、例えば充填材が素子の劣化の原因となる揮発成分等を含む場合、そのような揮発成分を除去してから上記一対の基板を貼り合わせることができる。 In addition, when a sealing material and a filler are applied to different substrates of a pair of substrates, any material, for example, when the filler contains a volatile component that causes deterioration of the element, such as The pair of substrates can be attached after removing volatile components.
 特に、素子の劣化を防ぐため、素子基板は、あまり高い温度に加熱することができない。例えば上記素子基板が有機EL(エレクトロルミネッセンス)基板である場合、有機EL素子の劣化を防ぐため、素子基板には、80℃以上の温度を加えることができない。 Especially, in order to prevent deterioration of the element, the element substrate cannot be heated to a very high temperature. For example, when the element substrate is an organic EL (electroluminescence) substrate, a temperature of 80 ° C. or higher cannot be applied to the element substrate in order to prevent deterioration of the organic EL element.
 しかしながら、対向基板にはそのような制限がなく、沸点が高い溶媒であっても蒸発させることができる。つまり、シール材と充填材とを一対の基板のうち互いに異なる基板に塗布することで、対向基板側に塗布した材料については、素子の耐熱温度以上の温度に加熱することができる。 However, there is no such limitation on the counter substrate, and even a solvent having a high boiling point can be evaporated. That is, by applying the sealing material and the filler to different substrates of the pair of substrates, the material applied to the counter substrate side can be heated to a temperature equal to or higher than the heat resistance temperature of the element.
 このため、例えば充填材が、有機EL素子のように、上記素子基板に設けられた素子の劣化の原因となる溶媒を含む場合であっても、上記一対の基板を貼り合わせる前に、そのような溶媒を除去することができ、素子の劣化を抑制・防止することができる。 For this reason, for example, even when the filler contains a solvent that causes deterioration of the element provided on the element substrate, such as an organic EL element, before the pair of substrates are bonded together, It is possible to remove an unnecessary solvent and to suppress / prevent deterioration of the element.
 また、素子劣化を防ぐために充填材として高粘度の充填材を用いた場合であっても、シール材を、充填材の粘度よりも高粘度化してから上記一対の基板を貼り合わせることができる。このため、充填材として高粘度の充填材を使用した場合であっても、高粘度の充填材によってシール材が破れないようにシール材を高粘度化することができる。 In addition, even when a high-viscosity filler is used as a filler in order to prevent element deterioration, the pair of substrates can be bonded together after the sealing material has a viscosity higher than that of the filler. For this reason, even when a high-viscosity filler is used as the filler, the sealing material can be made highly viscous so that the high-viscosity filler does not break the sealant.
 このため、上記の方法によれば、シール材および充填材を介して素子基板と対向基板とを貼り合わせるに際し、シール差し込みやシール切れを抑制するとともに、素子劣化を抑制することができる。 For this reason, according to the above method, when the element substrate and the counter substrate are bonded to each other through the sealant and the filler, it is possible to suppress seal insertion and seal breakage and to suppress element deterioration.
 また、上記の方法によれば、シール材と充填材とを互いに異なる基板に塗布することで、タクトアップを図ることができる。 Also, according to the above method, tact-up can be achieved by applying the sealing material and the filler to different substrates.
 本発明の態様2にかかる貼合基板の製造方法は、上記態様1において、上記シール材を上記素子基板に塗布し、上記充填材を上記対向基板に塗布することが好ましい。 In the method for manufacturing a bonded substrate according to aspect 2 of the present invention, in the aspect 1, it is preferable that the sealing material is applied to the element substrate and the filler is applied to the counter substrate.
 また、本発明の態様3にかかる貼合基板の製造方法は、上記態様2において、上記充填材を上記対向基板に塗布した後、上記素子基板と上記対向基板とを貼り合わせる前に、上記充填材に含まれる溶媒の一部を蒸発させて上記充填材の粘度を上記充填材の塗布時よりも高粘度化する溶媒除去工程を含むことが好ましい。 Moreover, the manufacturing method of the bonding board | substrate concerning the aspect 3 of this invention is the said filling in the said aspect 2, after apply | coating the said filler to the said opposing substrate, before bonding the said element substrate and the said opposing substrate. It is preferable to include a solvent removal step of evaporating a part of the solvent contained in the material so that the viscosity of the filler becomes higher than that during the application of the filler.
 上記貼合基板の製造方法において、特に、上記シール材を上記素子基板に塗布し、上記充填材を上記対向基板に塗布することで、例えば、上記充填材を上記対向基板に塗布した後、上記素子基板と上記対向基板とを貼り合わせる前に、上記充填材に含まれる溶媒の一部を蒸発させることができる。 In the method for manufacturing the bonded substrate, in particular, by applying the sealing material to the element substrate and applying the filler to the counter substrate, for example, after applying the filler to the counter substrate, Before the element substrate and the counter substrate are bonded to each other, a part of the solvent contained in the filler can be evaporated.
 また、上記の方法によれば、上記充填材に含まれる溶媒の一部を蒸発させることで、上記充填材の粘度を上記充填材の塗布時よりも高粘度化することができる。 Further, according to the above method, by evaporating a part of the solvent contained in the filler, the viscosity of the filler can be made higher than that at the time of applying the filler.
 このように上記充填材の粘度を上記充填材の塗布時よりも高粘度化することで、素子を覆う保護膜等の膜にピンホールや異物があった場合でも、素子内への充填材の浸み込み速度を遅くすることができる。このため、例えば、充填材が硬化型であり、該充填材中に含まれる溶媒が素子に与えるダメージが大きい場合であったとしても、素子にダメージを与える前に上記一対の基板の貼り合わせを行い、充填材を硬化させることができる。これにより、素子の劣化を防止することができる。 Thus, by making the viscosity of the filler higher than that at the time of application of the filler, even if there is a pinhole or a foreign object in a film such as a protective film covering the element, the filler in the element The penetration speed can be reduced. For this reason, for example, even when the filler is curable and the solvent contained in the filler gives a large damage to the element, the pair of substrates is bonded before the element is damaged. And the filler can be cured. Thereby, deterioration of an element can be prevented.
 また、上記したように対向基板側に充填材を塗布する場合、充填材として、塗布し易い低粘度材料を用いることができる。そして、充填材としてこのような低粘度材料を用いた場合であっても、充填材塗布後に、対向基板を加熱する等して溶媒の一部を蒸発させることができる。 Also, as described above, when the filler is applied to the counter substrate side, a low-viscosity material that can be easily applied can be used as the filler. Even when such a low-viscosity material is used as the filler, a part of the solvent can be evaporated by heating the counter substrate after applying the filler.
 また、充填材が素子の劣化の原因となる溶媒を含む場合、あるいは、加熱等により素子の劣化の原因となるアウトガスを発生する場合であっても、対向基板側に充填材を塗布することで、上述したように、揮発あるいは加熱等により、そのような溶媒やアウトガスを取り除いてから、上記一対の基板を貼り合わせることができる。 Even when the filler contains a solvent that causes deterioration of the element or when outgas that causes deterioration of the element due to heating or the like is generated, the filler is applied to the counter substrate side. As described above, the pair of substrates can be bonded together after removing such a solvent or outgas by volatilization or heating.
 したがって、上記貼合基板の製造方法においては、上記シール材を上記素子基板に塗布し、上記充填材を上記対向基板に塗布することが好ましく、この場合、上記充填材を上記対向基板に塗布した後、上記素子基板と上記対向基板とを貼り合わせる前に、上記充填材に含まれる溶媒の一部を蒸発させて上記充填材の粘度を上記充填材の塗布時よりも高粘度化する溶媒除去工程を含むことがより好ましい。 Therefore, in the method for manufacturing the bonded substrate, it is preferable to apply the sealing material to the element substrate and apply the filler to the counter substrate. In this case, the filler is applied to the counter substrate. Thereafter, before the element substrate and the counter substrate are bonded to each other, a part of the solvent contained in the filler is evaporated to remove the solvent so that the viscosity of the filler is higher than that during the application of the filler. More preferably, the method includes a step.
 本発明の態様4にかかる貼合基板の製造方法は、上記態様3(つまり、上述したように上記貼合基板の製造方法が上記溶媒除去工程を含む場合)において、上記充填材は、沸点が異なる2種類以上の溶媒を含み、上記溶媒除去工程では、上記対向基板を、上記充填材に含まれる溶媒のうち第1の溶媒の沸点以上、第2の溶媒の沸点未満の温度に加熱して上記第1の溶媒を除去することがより好ましい。 The method for manufacturing a bonded substrate according to Aspect 4 of the present invention is the above-mentioned Aspect 3 (that is, when the method for manufacturing a bonded substrate includes the solvent removal step as described above), the filler has a boiling point. In the solvent removal step, the counter substrate is heated to a temperature equal to or higher than the boiling point of the first solvent and lower than the boiling point of the second solvent. It is more preferable to remove the first solvent.
 上記の方法によれば、上記充填材を上記対向基板に塗布後に、上記充填材から上記第1の溶媒を取り除いた後で、上記一対の基板を貼り合わせることができる。 According to the above method, after the filler is applied to the counter substrate, the pair of substrates can be bonded together after removing the first solvent from the filler.
 これにより、充填材を、対向基板に、塗布し易い粘度で塗布した後、充填材を、所望の粘度に維持した状態で、上記一対の基板を貼り合わせることができる。これにより、上記一対の基板間への気泡の混入を防ぎ、上記一対の基板間の隙間を上記封止材で満たすことができる。 Thus, after the filler is applied to the counter substrate with a viscosity that is easy to apply, the pair of substrates can be bonded together while the filler is maintained at a desired viscosity. Thereby, mixing of bubbles between the pair of substrates can be prevented, and the gap between the pair of substrates can be filled with the sealing material.
 本発明の態様5にかかる貼合基板の製造方法は、上記態様4において、上記第1の溶媒は、素子を劣化させる溶媒であってもよい。 In the method for manufacturing a bonded substrate according to aspect 5 of the present invention, in the aspect 4, the first solvent may be a solvent that degrades the element.
 このように、上記第1の溶媒が、素子を劣化させる溶媒であると、より顕著な効果を得ることができる。 As described above, when the first solvent is a solvent that deteriorates the device, a more remarkable effect can be obtained.
 すなわち、上記第1の溶媒が素子を劣化させる溶媒である場合、該溶媒を、上記一対の基板を貼り合わせる前に完全に除去することが可能となる。 That is, in the case where the first solvent is a solvent that degrades the element, the solvent can be completely removed before the pair of substrates are bonded to each other.
 また、本発明の態様6にかかる貼合基板の製造方法は、上記態様2~5の何れかにおいて、上記素子基板におけるシール部の配線が、該素子基板の下部から上部に向かうにしたがって太くなる逆テーパ状である場合(言い換えれば、上記素子基板側から上記対向基板側に向かうにしたがって太くなる逆テーパ状である場合)、上記したように、上記シール材を上記素子基板に塗布し、上記充填材を上記対向基板に塗布することが望ましい。 In the bonded substrate manufacturing method according to Aspect 6 of the present invention, in any one of Aspects 2 to 5, the wiring of the seal portion in the element substrate becomes thicker from the lower part to the upper part of the element substrate. In the case of a reverse taper shape (in other words, in the case of a reverse taper shape that becomes thicker from the element substrate side toward the counter substrate side), as described above, the sealing material is applied to the element substrate, and It is desirable to apply a filler to the counter substrate.
 上記配線が逆テーパ状である場合、上記対向基板にシール材を塗布すると、上記配線の逆テーパ部分までシール材が入り込まず、上記配線の逆テーパ部分に隙間が生じてしまう。 When the wiring has a reverse taper shape, if a sealing material is applied to the counter substrate, the sealing material does not enter the reverse taper portion of the wiring, and a gap is generated in the reverse taper portion of the wiring.
 しかしながら、上記シール材を上記素子基板に塗布することで、シール部における上記隙間を無くすことができる。 However, the gap in the seal portion can be eliminated by applying the seal material to the element substrate.
 本発明の態様7にかかる貼合基板の製造方法は、上記態様1において、上記充填材を上記素子基板に塗布し、上記シール材を上記対向基板に塗布する方法であってもよい。 The method for manufacturing a bonded substrate according to aspect 7 of the present invention may be a method of applying the filler to the element substrate and applying the sealing material to the counter substrate in the aspect 1.
 上記貼合基板の製造方法において、上記充填材を上記素子基板に塗布し、上記シール材を上記対向基板に塗布することで、上記素子基板における素子形成面(能動面)の凸凹を、充填材で容易に隙間無く埋めることができる。 In the method for manufacturing the bonded substrate, the unevenness of the element formation surface (active surface) in the element substrate is formed by applying the filler to the element substrate and applying the sealing material to the counter substrate. Can be filled easily without gaps.
 また、この場合、上記対向基板に塗布されたシール材に含まれる溶媒の一部を蒸発させることができる。 In this case, a part of the solvent contained in the sealing material applied to the counter substrate can be evaporated.
 本発明の態様8にかかる貼合基板の製造方法は、上記態様7において、上記シール材を上記対向基板に塗布した後、上記素子基板と上記対向基板とを貼り合わせる前に、上記シール材に含まれる溶媒の一部を蒸発させて上記シール材の粘度を上記充填材の粘度よりも高粘度化する溶媒除去工程を含むことが好ましい。 The method for manufacturing a bonded substrate according to Aspect 8 of the present invention is the method for manufacturing a bonded substrate according to Aspect 7, wherein the sealing material is applied to the counter substrate and then bonded to the counter substrate before the element substrate and the counter substrate are bonded to each other. It is preferable to include a solvent removing step of evaporating a part of the contained solvent to make the viscosity of the sealing material higher than that of the filler.
 充填材として高粘度の充填材を使用することで、シール差し込みやシール切れ、充填材の溶媒の浸み込みによる素子劣化を抑制することができる。 ∙ By using a high-viscosity filler as the filler, it is possible to suppress element deterioration due to seal insertion, seal breakage, and penetration of the solvent of the filler.
 しかしながら、従来は、シール材と充填材とを同じ基板上に塗布していたため、高粘度の充填材によってシール材が破れ、密閉性を保つことができないという問題や、塗布装置の点から、高粘度の充填材によってシール材が破れないようにシール材を高粘度化することに限界がある等の理由から、高粘度の充填材を使用することは難しかった。 However, in the past, since the sealing material and the filler were applied on the same substrate, the sealing material was broken by the high-viscosity filler, and the sealing performance could not be maintained. It has been difficult to use a high-viscosity filler because there is a limit to increasing the viscosity of the sealing material so that the sealing material is not broken by the viscous filler.
 しかしながら、上記の方法によれば、上記充填材を上記素子基板に塗布し、上記シール材を上記対向基板に塗布することで、基板貼合工程の前に、上記シール材が塗布された上記対向基板を加熱する等して、シール材の溶媒の一部を除去することができる。 However, according to the above method, by applying the filler to the element substrate and applying the sealing material to the counter substrate, the counter material to which the sealing material is applied before the substrate bonding step is applied. A part of the solvent of the sealing material can be removed by heating the substrate.
 このため、上記の方法によれば、シール材の塗布後、基板貼合工程の前に、シール材を、予め充填材の粘度よりも高粘度化した後で、上記一対の基板を貼り合わせることができる。このため、充填材として高粘度の充填材を使用した場合であっても、素子基板の表面の凹凸を、隙間無く埋めることができ、上記一対の基板間に気泡が混入されることを防ぐことができる。 For this reason, according to said method, after apply | coating a sealing material and before a board | substrate bonding process, after making a sealing material into viscosity higher than the viscosity of a filler previously, bonding a pair of said board | substrate. Can do. For this reason, even when a high-viscosity filler is used as the filler, the irregularities on the surface of the element substrate can be filled without gaps, and air bubbles are prevented from being mixed between the pair of substrates. Can do.
 また、上記の方法は、高粘度の充填材を用いた場合でもシールすることができるため、充填材として、アウトガスの少ない充填材を用いることができる。このため、貼合基板の信頼性を向上させることができる。 Further, since the above method can seal even when a highly viscous filler is used, a filler with less outgas can be used as the filler. For this reason, the reliability of the bonding substrate can be improved.
 また、本発明の態様9にかかる貼合基板の製造方法は、上記態様1~8の何れかにおいて、上記充填材は硬化型の充填材であることが好ましい。 Further, in the method for producing a bonded substrate according to the ninth aspect of the present invention, in any one of the first to eighth aspects, the filler is preferably a curable filler.
 上記の方法によれば、充填材を硬化させるまでに充填材あるいは充填材中に含まれる溶媒が素子と接触する時間を短くすることができる。また、充填材には、素子の劣化の原因となる溶媒が含まれる場合がある。このため、上記の方法は、充填材が硬化型の充填材である場合に、特に好適である。 According to the above method, it is possible to shorten the time during which the filler or the solvent contained in the filler contacts the element before the filler is cured. In addition, the filler may contain a solvent that causes deterioration of the element. For this reason, the above method is particularly suitable when the filler is a curable filler.
 また、本発明の態様10にかかる貼合基板の製造方法は、上記態様1~9の何れかにおいて、上記素子基板は、有機EL(エレクトロルミネッセンス)素子基板であることが好ましい。 In addition, in the method for manufacturing a bonded substrate according to aspect 10 of the present invention, in any one of the above aspects 1 to 9, the element substrate is preferably an organic EL (electroluminescence) element substrate.
 有機EL素子は、水分や酸素等に弱く、また、外部からの衝撃等から保護する必要があり、保護の強化並びに基板間ギャップの維持のために、素子基板と対向基板との間に、充填材が封入されていることが好ましい。 Organic EL elements are vulnerable to moisture, oxygen, etc., and must be protected from external impacts, etc. Filled between the element substrate and the counter substrate to enhance protection and maintain a gap between substrates. It is preferable that the material is enclosed.
 また、有機EL素子の劣化を防ぐため、素子基板には、80℃以上の温度を加えることができない。 Also, in order to prevent the deterioration of the organic EL element, a temperature of 80 ° C. or higher cannot be applied to the element substrate.
 このため、上記貼合基板の製造方法は、素子基板が有機EL素子基板である場合に特に適している。言い換えれば、上記貼合基板の製造方法は、素子基板として有機EL素子基板を用いた有機EL表示パネルの製造方法に特に好適に用いることができる。 For this reason, the manufacturing method of the said bonded substrate is especially suitable when the element substrate is an organic EL element substrate. In other words, the manufacturing method of the said bonding board | substrate can be used especially suitably for the manufacturing method of the organic EL display panel which used the organic EL element substrate as an element substrate.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、有機EL表示パネル、無機EL表示パネル、液晶表示パネル等の貼合基板の製造方法に好適に利用することができる。 The present invention can be suitably used in a method for producing a bonded substrate such as an organic EL display panel, an inorganic EL display panel, and a liquid crystal display panel.
  1  有機EL表示パネル(貼合基板)
  2  画素
  3  発光領域
  4  非発光領域
 10  TFT基板
 11  ベース基板
 12  TFT
 13  信号線
 13a コンタクトホール
 14  層間絶縁膜
 14a コンタクトホール
 15  エッジカバー
 15a 開口部
 16  端子配線
 20  有機EL素子(素子)
 21  第1電極
 22  有機EL層
 23  第2電極
 30  素子基板
 31  封止膜
 40  対向基板
 51  シール材
 52  充填材
101  隙間
111  ピンホール
1 Organic EL display panel (bonding substrate)
2 pixel 3 light emitting area 4 non-light emitting area 10 TFT substrate 11 base substrate 12 TFT
13 signal line 13a contact hole 14 interlayer insulating film 14a contact hole 15 edge cover 15a opening 16 terminal wiring 20 organic EL element (element)
21 First electrode 22 Organic EL layer 23 Second electrode 30 Element substrate 31 Sealing film 40 Counter substrate 51 Sealing material 52 Filling material 101 Crevice 111 Pinhole

Claims (10)

  1.  素子基板と対向基板とをシール材および充填材を介して貼り合わせる貼合基板の製造方法であって、上記シール材と充填材とを、上記素子基板および対向基板のうち互いに異なる基板に塗布することを特徴とする貼合基板の製造方法。 A method for manufacturing a bonded substrate in which an element substrate and a counter substrate are bonded together via a sealant and a filler, wherein the sealant and the filler are applied to different substrates of the element substrate and the counter substrate. The manufacturing method of the bonding board | substrate characterized by the above-mentioned.
  2.  上記シール材を上記素子基板に塗布し、上記充填材を上記対向基板に塗布することを特徴とする請求項1に記載の貼合基板の製造方法。 The method for producing a bonded substrate according to claim 1, wherein the sealing material is applied to the element substrate, and the filler is applied to the counter substrate.
  3.  上記充填材を上記対向基板に塗布した後、上記素子基板と上記対向基板とを貼り合わせる前に、上記充填材に含まれる溶媒の一部を蒸発させて上記充填材の粘度を上記充填材の塗布時よりも高粘度化する溶媒除去工程を含むことを特徴とする請求項2に記載の貼合基板の製造方法。 After the filler is applied to the counter substrate, before the element substrate and the counter substrate are bonded together, a part of the solvent contained in the filler is evaporated to reduce the viscosity of the filler. The method for producing a bonded substrate according to claim 2, further comprising a solvent removal step of increasing the viscosity as compared with the time of application.
  4.  上記充填材は、沸点が異なる2種類以上の溶媒を含み、
     上記溶媒除去工程では、上記対向基板を、上記充填材に含まれる溶媒のうち第1の溶媒の沸点以上、第2の溶媒の沸点未満の温度に加熱して上記第1の溶媒を除去することを特徴とする請求項3に記載の貼合基板の製造方法。
    The filler includes two or more solvents having different boiling points,
    In the solvent removal step, the counter substrate is removed by heating the counter substrate to a temperature not lower than the boiling point of the first solvent and lower than the boiling point of the second solvent among the solvents contained in the filler. The manufacturing method of the bonding board | substrate of Claim 3 characterized by these.
  5.  上記第1の溶媒は、素子を劣化させる溶媒であることを特徴とする請求項4に記載の貼合基板の製造方法。 The method for producing a bonded substrate according to claim 4, wherein the first solvent is a solvent that deteriorates the element.
  6.  上記素子基板におけるシール部の配線が、該素子基板の下部から上部に向かうにしたがって太くなる逆テーパ状であることを特徴とする請求項2~5の何れか1項に記載の貼合基板の製造方法。 The bonding substrate according to any one of claims 2 to 5, wherein the wiring of the seal portion in the element substrate has an inversely tapered shape that increases in thickness from the lower part to the upper part of the element substrate. Production method.
  7.  上記充填材を上記素子基板に塗布し、上記シール材を上記対向基板に塗布することを特徴とする請求項1に記載の貼合基板の製造方法。 The method for producing a bonded substrate according to claim 1, wherein the filler is applied to the element substrate, and the sealing material is applied to the counter substrate.
  8.  上記シール材を上記対向基板に塗布した後、上記素子基板と対向基板とを貼り合わせる前に、上記シール材に含まれる溶媒の一部を蒸発させて上記シール材の粘度を上記充填材の粘度よりも高粘度化する溶媒除去工程を含むことを特徴とする請求項7に記載の貼合基板の製造方法。 After the sealing material is applied to the counter substrate, before the element substrate and the counter substrate are bonded to each other, a part of the solvent contained in the sealing material is evaporated to obtain the viscosity of the sealing material. The manufacturing method of the bonding board | substrate of Claim 7 characterized by including the solvent removal process which makes it more viscous than this.
  9.  上記充填材は硬化型の充填材であることを特徴とする請求項1~8の何れか1項に記載の貼合基板の製造方法。 The method for producing a bonded substrate according to any one of claims 1 to 8, wherein the filler is a curable filler.
  10.  上記素子基板は、有機エレクトロルミネッセンス素子基板であることを特徴とする請求項1~9の何れか1項に記載の貼合基板の製造方法。 The method for producing a bonded substrate according to any one of claims 1 to 9, wherein the element substrate is an organic electroluminescence element substrate.
PCT/JP2013/078060 2012-10-23 2013-10-16 Bonded substrate manufacturing method WO2014065171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012234133 2012-10-23
JP2012-234133 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014065171A1 true WO2014065171A1 (en) 2014-05-01

Family

ID=50544551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078060 WO2014065171A1 (en) 2012-10-23 2013-10-16 Bonded substrate manufacturing method

Country Status (1)

Country Link
WO (1) WO2014065171A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076873A (en) * 1999-06-28 2001-03-23 Semiconductor Energy Lab Co Ltd Manufacture of electro-optical device
JP2006210406A (en) * 2005-01-25 2006-08-10 Fujikura Ltd Wiring and semiconductor device provided therewith
WO2008102694A1 (en) * 2007-02-21 2008-08-28 Ulvac, Inc. Display device, apparatus for manufacturing display device, and method for manufacturing display device
WO2009044583A1 (en) * 2007-10-02 2009-04-09 Sharp Kabushiki Kaisha Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device
JP2009187857A (en) * 2008-02-08 2009-08-20 Seiko Epson Corp Organic el device, and manufacturing method thereof
JP2009252687A (en) * 2008-04-10 2009-10-29 Seiko Epson Corp Method for manufacturing of organic electroluminescent device, and the organic electroluminescent device
JP2010238606A (en) * 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
WO2011001573A1 (en) * 2009-06-29 2011-01-06 シャープ株式会社 Organic el display device and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076873A (en) * 1999-06-28 2001-03-23 Semiconductor Energy Lab Co Ltd Manufacture of electro-optical device
JP2006210406A (en) * 2005-01-25 2006-08-10 Fujikura Ltd Wiring and semiconductor device provided therewith
WO2008102694A1 (en) * 2007-02-21 2008-08-28 Ulvac, Inc. Display device, apparatus for manufacturing display device, and method for manufacturing display device
WO2009044583A1 (en) * 2007-10-02 2009-04-09 Sharp Kabushiki Kaisha Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device
JP2009187857A (en) * 2008-02-08 2009-08-20 Seiko Epson Corp Organic el device, and manufacturing method thereof
JP2009252687A (en) * 2008-04-10 2009-10-29 Seiko Epson Corp Method for manufacturing of organic electroluminescent device, and the organic electroluminescent device
JP2010238606A (en) * 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
WO2011001573A1 (en) * 2009-06-29 2011-01-06 シャープ株式会社 Organic el display device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4612009B2 (en) Organic light-emitting display device and method for manufacturing the same
KR101603145B1 (en) Method of fabricating for dual panel type organic electro-luminescent device
KR101745644B1 (en) Organic light emitting diode display and manufacturing method thereof
KR101421168B1 (en) Organic light emitting display device and method of fabricating thereof
EP1811590A2 (en) Organic light-emitting display and method of making the same
KR101927334B1 (en) Organic electro luminescence device and method for fabricating the same
WO2016163367A1 (en) El display device and method for manufacturing el display device
US7872255B2 (en) Organic light-emitting device
US20090066242A1 (en) Display device
CN101227773A (en) Organic light emitting display device and method for fabricating the same
KR20140031003A (en) Organic light emitting display apparatus and method of manufacturing thereof
KR102439308B1 (en) Display apparutus
US9583730B2 (en) Display device including a sealing member and method of manufacturing the same
JP6463876B1 (en) Substrate sealing structure, display device and manufacturing method thereof
JP2012209215A (en) Manufacturing method of organic el device and electronic apparatus
KR20110072131A (en) Organic electro-luminescent device
KR102378362B1 (en) Display device
KR20200071429A (en) Organic light emitting display device and metho of fabricating thereof
KR20220062481A (en) Organic light emitting diode display and manufacturing method of the same
KR20130007871A (en) Organic light emitting diodes
KR101587097B1 (en) Method of fabricating for dual panel type organic electro-luminescent device
JP2016031889A (en) Display divice and manufacturing method thereof
JP2012109030A (en) Organic el display device
KR102094143B1 (en) Fabricating Method Of Organic Light Emitting Diode Display
WO2014065171A1 (en) Bonded substrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP