WO2014065110A1 - Gas discharge structure for battery module - Google Patents

Gas discharge structure for battery module Download PDF

Info

Publication number
WO2014065110A1
WO2014065110A1 PCT/JP2013/077284 JP2013077284W WO2014065110A1 WO 2014065110 A1 WO2014065110 A1 WO 2014065110A1 JP 2013077284 W JP2013077284 W JP 2013077284W WO 2014065110 A1 WO2014065110 A1 WO 2014065110A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell unit
partition wall
internal pressure
pressure release
battery module
Prior art date
Application number
PCT/JP2013/077284
Other languages
French (fr)
Japanese (ja)
Inventor
尚美 長田
毅之 小久保
徹夫 佐々木
森田 剛
卓弥 島本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014543217A priority Critical patent/JP5939307B2/en
Publication of WO2014065110A1 publication Critical patent/WO2014065110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gas discharge structure of a battery module constituting an assembled battery mounted on an electric vehicle or a hybrid vehicle.
  • Patent Document 1 when gas is generated in the cell due to overcharge, the high temperature and high pressure gas is not released from the module case as it is, and an opening forming means provided in the outer casing of the cell is provided in the module case.
  • a battery module having an arrangement configuration in which the formed through-holes do not face each other is disclosed.
  • the present invention is a battery module capable of avoiding the outflow from the internal pressure release portion provided in the module case as it is to the outside regardless of where the cell film bonding portion is opened and the generated gas is released.
  • An object of the present invention is to provide a gas discharge structure.
  • the gas discharge structure of the battery module according to the present invention includes a cell unit in which a plurality of cells are stacked, a module case containing the cell unit, and a gas penetrating through the module case to discharge the gas accumulated inside.
  • the partition is arranged so as to shield a straight line connecting the internal pressure release portion and the outer peripheral edge of the cell unit.
  • the partition wall is always standing in front of the pressure release portion.
  • the substance can be prevented from flowing out to the outside directly by being blocked by the partition wall. Further, since the gas itself collides with the partition wall and the inner surface of the module case and detours, the effect of lowering the temperature is obtained.
  • FIG. 1 is a schematic perspective view showing a first embodiment of the present invention.
  • FIG. 2 is a schematic side cross-sectional view of the battery module shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • Sectional drawing which follows the BB line of FIG. Sectional drawing similar to FIG. 4 which shows 2nd Embodiment of this invention.
  • Sectional drawing similar to FIG. 4 which shows 3rd Embodiment of this invention.
  • Sectional drawing similar to FIG. 2 which shows 4th Embodiment of this invention.
  • Sectional drawing similar to FIG. 4 which shows 5th Embodiment of this invention.
  • the schematic perspective view which shows 6th Embodiment of this invention.
  • FIG. 1 is a schematic perspective view showing a first embodiment of the present invention.
  • FIG. 2 is a schematic side cross-sectional view of the battery module shown in FIG. 1.
  • FIG. 3
  • FIG. 11 is a schematic side cross-sectional view of the battery module shown in FIG. 10.
  • FIG. 13 is a schematic side cross-sectional view of the battery module shown in FIG. 12.
  • FIG. 13 is a schematic plan sectional view of the battery module shown in FIG. 12.
  • FIG. 1 shows the overall configuration of a first embodiment of a battery module according to the present invention, and in particular, the module case 4 is seen through to show the internal configuration of the module case 4.
  • the battery module 1 includes a cell unit 3 in which a plurality of thin rectangular cells 2 are stacked vertically, a module case 4 having a rectangular box shape containing the cell units 3, and a module case 4 penetratingly disposed.
  • the internal pressure release part 5 that discharges the gas accumulated inside to the outside and the partition wall 6 disposed between the cell unit 3 and the internal pressure release part 5 are provided.
  • the cell 2 is referred to as a laminate type cell in which the periphery of two film materials laminated by laminating a resin layer with an aluminum layer in between is bonded to each other and the power generation element is sealed.
  • the cell 2 has an explosion-proof valve 2a on one side, and when gas is generated due to overcharging, the explosion-proof valve 2a is opened to release the generated gas.
  • the module case 4 is made of a light metal having good thermal conductivity, such as aluminum or aluminum alloy, and the internal pressure releasing portion 5 is one end wall in the length direction of the module case 4 (the stacking direction of the cells 2). It is set at the bottom center of.
  • a constant pressure valve that opens when the internal pressure of the module case 4 becomes a predetermined value or more can be used, or it can be configured as a simple opening.
  • the cell unit 3 is configured by stacking a plurality of cells 2 vertically as described above by a binding means.
  • the cell 2 stack is sandwiched between the pair of end plates 7 in the length direction (stacking direction), the binding bolts 8 are passed through the four corners, and the binding bolts 8 are tightly fastened. ing.
  • the end plate 7 is made of a light metal having good heat conductivity, such as aluminum or aluminum alloy, like the module case 4, and has a flange 7a at the lower end as shown in FIG. 2, and the module is interposed through the flange 7a.
  • the case 4 is fastened and fixed to the inner surface of the bottom wall.
  • the cell binding end plate 7 disposed at the end in the length direction of the cell unit 3 is used as the partition wall 6 described above.
  • the end plates 7 arranged at both end portions in the length direction of the cell unit 3 are all formed sufficiently larger than the width and height dimensions of the cell unit 3 and contact the inner surfaces of both side walls in the width direction of the module case 4.
  • the partition wall is in contact with and close to the inner surface of the upper wall and separates the arrangement portion of the cell unit 3 (see FIG. 3).
  • the internal pressure release portion 5 and the outer peripheral edge of the cell unit 3 are separated by the partition wall 6 (that is, the end plate 7) facing the one end wall in the length direction where the internal pressure release portion 5 of the module case 4 is provided.
  • the straight line L connecting the two is blocked (see FIGS. 2 and 4).
  • the partition wall 6 (end plate 7) is provided over the entire circumference of one end surface of the cell unit 3 so as to intersect with the straight line L connecting the internal pressure release portion 5 and the outer peripheral edge of the cell unit 3. Yes.
  • the pair of end plates 7 have the same size, but the end plate 7 facing the other end wall of the module case 4 where the internal pressure releasing portion 5 is not provided may be small. .
  • the generated gas when gas is generated in the cell 2 due to overcharge, the generated gas is released into the module case 4 by opening the explosion-proof valve 2a due to an increase in internal pressure.
  • the filled gas is discharged from the internal pressure release part 5 to the outside of the case 4.
  • the gas released from the explosion-proof valve 2a of the cell 2 passes through the gap between the side surface of the cell unit 3 and the side wall of the module case 4 as shown by the arrow a in FIG. It flows toward.
  • the flow is once blocked by the partition wall 6 and directed upward in the case 4. Then, it passes over the upper end of the partition wall 6 and flows downward in the case 4 toward the internal pressure release portion 5, and is discharged from the internal pressure release portion 5 to the outside of the case 4.
  • the high-temperature and high-pressure gas released from the explosion-proof valve 2a of the cell 2 is repeatedly detoured due to the presence of the partition wall 6 in the flow process toward the internal pressure release portion 5, thereby generating power generation elements included in the gas.
  • the combustible substance is prevented from flowing out directly from the internal pressure release portion 5.
  • the partition wall 6 is arranged so as to shield the straight line L connecting the internal pressure release portion 5 provided in the module case 4 and the outer peripheral edge of the cell unit 3 as described above.
  • the partition wall 6 regardless of the position where the bonded portion of the film of the cell 2 other than the explosion-proof valve 2a is opened and the generated gas is released, the partition wall 6 always stands in front of the pressure release portion 5, and the above gas flow The detouring effect is obtained. Accordingly, it is possible to obtain the effect of preventing direct inflow of the combustible substance and the gas temperature lowering effect.
  • FIG. 5 shows a second embodiment of the present invention.
  • the partition wall 6 includes one end wall of the module case 4 provided with the internal pressure release portion 5 and one end portion of the cell unit 3. It is arranged at an intermediate position.
  • the dimension can be shortened to about the width dimension of the cell unit 3, and the partition wall 6 can be reduced in size and weight.
  • FIG. 6 shows a third embodiment of the present invention.
  • the internal pressure releasing portion 5 is set at a position offset toward one corner of the end wall of the module case 4.
  • the partition wall 6 is arranged so as to be offset to one side in the width direction of the module case 4 corresponding to the internal pressure release portion 5.
  • the width direction dimension of the partition wall 6 that can shield the straight line L can be shortened as much as possible.
  • the partition wall 6 can be further reduced in size and weight.
  • FIG. 7 shows several different examples of the partition wall 6.
  • the overall shape of the partition wall 6 shown in FIG. 7A is a bellows-like uneven shape.
  • the partition 6 shown in (b) of the figure has a louver structure at the center surrounded by the peripheral edge.
  • the partition wall 6 shown in (c) of the figure has a mesh structure at the center surrounded by the peripheral edge.
  • the partition wall 6 shown in (d) has a porous structure at the center surrounded by the peripheral edge.
  • the gas moving distance can be increased and the gas contact area can be increased, so that the gas cooling effect can be enhanced.
  • FIG. 8 shows a fourth embodiment of the present invention.
  • a bottom wall extending toward the center in the length direction of the cell unit 3 at the lower end of the end plate 7 constituting the partition wall 6 in the first embodiment.
  • a portion 7 b is provided, and the bottom wall portion 7 b is in surface contact with the bottom wall of the module case 4.
  • FIG. 9 shows a fifth embodiment of the present invention.
  • the side wall of the module case 4 integrally provided with the partition wall 6 has an uneven shape.
  • the heat radiation action of the side wall is enhanced as shown by the arrow h, and the side wall of the partition wall 6 and the module case 4 is increased.
  • the cooling effect of the gas that collides with the gas can be enhanced.
  • FIGS. 10 and 11 show a sixth embodiment of the present invention, in which a plurality of partition walls are used, and this is multistage so that the gas outflow path snakes between the cell unit 3 and the internal pressure release portion 5. It is arranged.
  • the internal pressure releasing portion 5 in the first embodiment is set at the upper center of one end wall of the module case 4. Then, a second partition 6A different from the partition 6 constituted by the end plate 7 is disposed at an intermediate position between the internal pressure release portion 5 and the end plate 7 facing the internal pressure release portion 5. The second partition 6A is attached to the upper wall of the module case 4 and extends downward.
  • the gas that is blocked and directed upward in the case 4 gets over the partition wall 6 and flows downward in the case 4, passes through the lower end of the second partition wall 6 ⁇ / b> A, and flows upward toward the internal pressure release portion 5.
  • the gas moving distance can be increased and the gas contact area can be increased, the effect of preventing direct flammable substances from flowing directly outside the gas can be enhanced, It is possible to improve the gas temperature lowering effect.
  • the explosion-proof valve 2a is provided in the cell 2 and the cell opening position at the time of gas generation is specified.
  • the present invention is not limited to this.
  • the present invention can also be applied to a battery module in which each cell 2 does not include the explosion-proof valve 2a.
  • the partition wall 6 is provided in the module case 4, but the present invention is not limited to this, and for example, the cell 2 or the cell unit 3 may be configured to support the partition wall 6. Good.
  • FIGS. 12 to 14 show a seventh embodiment of the present invention in which the cell unit 3 supports the partition wall 6.
  • the internal pressure releasing portion 5 is provided on one side wall of the module case 4.
  • the internal pressure release portion 5 is arranged at the center of the side wall of the module case 4 on the same side as the explosion-proof valve 2 a of each cell 2.
  • a cell unit 3 formed by laminating a plurality of cells 2 has a pair of end plates 7 at both ends, and is fixed in the module case 4 via the end plates 7.
  • the partition wall 6 is made of a rectangular metal plate, and is disposed on one side surface of the cell unit 3, particularly on the side surface facing the internal pressure release portion 5.
  • the partition wall 6 has a size that covers the entire side surface of the cell unit 3, and both end portions are attached to the end plate 7.
  • the partition wall 6 can also be configured by using a terminal connection substrate for connecting the terminals of the cells 2 of the cell unit 3 to each other.
  • the terminal connection board to be the partition wall 6 is made of a synthetic resin board including a metal bus bar, and is attached to one side surface of the cell unit 3 as in FIGS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention configures a cell unit (3) by stacking a plurality of cells (2) with end plates (7) on both ends, and stores the cell unit (3) inside a module case (4). Each cell (2) has an explosion-prevention valve (2a). One end-section wall of the module case (4) is provided with an internal-pressure release part (5). The end plate (7) functions as a partition (6) as a result of setting the size of the end plate (7) in a manner such that a straight line (L) connecting the outer-peripheral edges of the cell unit (3) and the internal-pressure release part (5) is blocked. As a result, the partition (6) prevents a direct release even when the attachment section of the film of the cells (2) becomes unsealed and a generated gas is discharged.

Description

電池モジュールのガス排出構造Battery module gas discharge structure
 本発明は、電気自動車やハイブリッド車に搭載される組電池を構成する電池モジュールのガス排出構造に関する。 The present invention relates to a gas discharge structure of a battery module constituting an assembled battery mounted on an electric vehicle or a hybrid vehicle.
 特許文献1には、過充電によりセルにガスが発生した場合に、この高温高圧のガスがモジュールケースからそのまま放出されないように、セルの外装体に設けられた開口形成手段と、モジュールケースに設けられた貫通孔とが対向しない配置構成とした電池モジュールが開示されている。 In Patent Document 1, when gas is generated in the cell due to overcharge, the high temperature and high pressure gas is not released from the module case as it is, and an opening forming means provided in the outer casing of the cell is provided in the module case. A battery module having an arrangement configuration in which the formed through-holes do not face each other is disclosed.
 しかし、発電要素を密封した外装体がフィルム材で形成されたラミネート型のセルは、ガス発生により内圧が上昇したときに開口形成手段(防爆弁)以外の部分でフィルムの貼り合わせ部が開封することがある。従って、特許文献1の開示技術では、モジュールケースの貫通孔に対向した部分でこの開封が生じると、高温,高圧のガスがそのままモジュールケース外に放出される可能性があり、モジュールケース外に樹脂製等の部品があった場合、部品の劣化を招く恐れがある。 However, in a laminate-type cell in which the outer package that seals the power generating element is formed of a film material, when the internal pressure rises due to gas generation, the bonded portion of the film is opened at a portion other than the opening forming means (explosion-proof valve). Sometimes. Therefore, in the disclosed technique of Patent Document 1, if this opening occurs at a portion facing the through hole of the module case, there is a possibility that high-temperature and high-pressure gas is released as it is outside the module case. If there are parts such as manufactured parts, the parts may be deteriorated.
 本発明は、セルのフィルムの貼り合わせ部がどの位置で開封して発生ガスが放出しても、モジュールケースに設けられた内圧開放部からそのまま外部へ流出するのを回避することができる電池モジュールのガス排出構造を提供することを目的とする。 The present invention is a battery module capable of avoiding the outflow from the internal pressure release portion provided in the module case as it is to the outside regardless of where the cell film bonding portion is opened and the generated gas is released. An object of the present invention is to provide a gas discharge structure.
特開2005-322434号公報JP 2005-322434 A
 本発明の電池モジュールのガス排出構造は、複数のセルを積層したセルユニットと、前記セルユニットを収納したモジュールケースと、前記モジュールケースに貫通配置されて、内部に溜まったガスを外部に放出する内圧開放部と、前記セルユニットと前記内圧開放部との間に配置した隔壁と、を備えている。 The gas discharge structure of the battery module according to the present invention includes a cell unit in which a plurality of cells are stacked, a module case containing the cell unit, and a gas penetrating through the module case to discharge the gas accumulated inside. An internal pressure release portion, and a partition wall disposed between the cell unit and the internal pressure release portion.
 そして、前記隔壁は、前記内圧開放部と前記セルユニットの外周縁とを結ぶ直線を遮蔽するように配置されている。 The partition is arranged so as to shield a straight line connecting the internal pressure release portion and the outer peripheral edge of the cell unit.
 本発明によれば、セルのフィルムの貼り合わせ部がどの位置で開封して発生ガスが放出しても、必ず圧力開放部の前には隔壁が立ちはだかっているので、発生ガスに含まれる可燃性物質は隔壁に妨げられて直接外部へ流出するのを防止できる。また、ガス自体も隔壁およびモジュールケース内面に衝突して迂回することから温度を下げる効果が得られる。 According to the present invention, even if the cell film laminating portion is opened at any position and the generated gas is released, the partition wall is always standing in front of the pressure release portion. The substance can be prevented from flowing out to the outside directly by being blocked by the partition wall. Further, since the gas itself collides with the partition wall and the inner surface of the module case and detours, the effect of lowering the temperature is obtained.
本発明の第1実施形態を示す略示的な斜視図。1 is a schematic perspective view showing a first embodiment of the present invention. 図1に示した電池モジュールの略示的な側面断面図。FIG. 2 is a schematic side cross-sectional view of the battery module shown in FIG. 1. 図2のA-A線に沿う断面図。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図2のB-B線に沿う断面図。Sectional drawing which follows the BB line of FIG. 本発明の第2実施形態を示す図4と同様の断面図。Sectional drawing similar to FIG. 4 which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す図4と同様の断面図。Sectional drawing similar to FIG. 4 which shows 3rd Embodiment of this invention. 隔壁の各異なる例(a)~(d)を示す図。The figure which shows each different example (a)-(d) of a partition. 本発明の第4実施形態を示す図2と同様の断面図。Sectional drawing similar to FIG. 2 which shows 4th Embodiment of this invention. 本発明の第5実施形態を示す図4と同様の断面図。Sectional drawing similar to FIG. 4 which shows 5th Embodiment of this invention. 本発明の第6実施形態を示す略示的な斜視図。The schematic perspective view which shows 6th Embodiment of this invention. 図10に示した電池モジュールの略示的な側面断面図。FIG. 11 is a schematic side cross-sectional view of the battery module shown in FIG. 10. 本発明の第7実施形態を示す略示的な斜視図。The schematic perspective view which shows 7th Embodiment of this invention. 図12に示した電池モジュールの略示的な側面断面図。FIG. 13 is a schematic side cross-sectional view of the battery module shown in FIG. 12. 図12に示した電池モジュールの略示的な平面断面図。FIG. 13 is a schematic plan sectional view of the battery module shown in FIG. 12.
 以下、本発明の実施形態を図面と共に詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係る電池モジュールの第1実施形態の全体構成を示し、特に、モジュールケース4内部の構成を示すためにモジュールケース4を透視して示している。 FIG. 1 shows the overall configuration of a first embodiment of a battery module according to the present invention, and in particular, the module case 4 is seen through to show the internal configuration of the module case 4.
 電池モジュール1は、薄型矩形状の複数のセル2を縦置きに積層したセルユニット3と、該セルユニット3を収納した矩形の箱状をなすモジュールケース4と、モジュールケース4に貫通配置されて、内部に溜まったガスを外部に放出する内圧開放部5と、これらセルユニット3と内圧開放部5との間に配置した隔壁6と、を備えている。 The battery module 1 includes a cell unit 3 in which a plurality of thin rectangular cells 2 are stacked vertically, a module case 4 having a rectangular box shape containing the cell units 3, and a module case 4 penetratingly disposed. The internal pressure release part 5 that discharges the gas accumulated inside to the outside and the partition wall 6 disposed between the cell unit 3 and the internal pressure release part 5 are provided.
 セル2は、アルミ層を中間にして樹脂層を積層してラミネート加工した2枚のフィルム材の周囲を互いに貼り合わせて発電要素を密封したラミネート型セルと称されるものである。このセル2は、一側部に防爆弁2aを備えて、過充電によりガスが発生した場合に、該防爆弁2aが開弁して発生ガスを放出可能としている。 The cell 2 is referred to as a laminate type cell in which the periphery of two film materials laminated by laminating a resin layer with an aluminum layer in between is bonded to each other and the power generation element is sealed. The cell 2 has an explosion-proof valve 2a on one side, and when gas is generated due to overcharging, the explosion-proof valve 2a is opened to release the generated gas.
 モジュールケース4は、アルミ,アルミ合金等の軽量で熱伝導性の良好な金属からなり、上述の内圧開放部5はモジュールケース4の長さ方向(セル2の積層方向)の一方の端部壁の下部中央に設定してある。 The module case 4 is made of a light metal having good thermal conductivity, such as aluminum or aluminum alloy, and the internal pressure releasing portion 5 is one end wall in the length direction of the module case 4 (the stacking direction of the cells 2). It is set at the bottom center of.
 この内圧開放部5として、モジュールケース4の内圧が所定値以上となると開弁する定圧弁を用いたり、単なる開口として構成することができる。 As the internal pressure release portion 5, a constant pressure valve that opens when the internal pressure of the module case 4 becomes a predetermined value or more can be used, or it can be configured as a simple opening.
 セルユニット3は、複数のセル2を結束手段により上述のように縦置きに積層して構成される。本実施形態にあっては一対のエンドプレート7でセル2の積層体を長さ方向(積層方向)に挟んで、4隅部に結束ボルト8を貫通させて、該結束ボルト8で緊締結束している。 The cell unit 3 is configured by stacking a plurality of cells 2 vertically as described above by a binding means. In this embodiment, the cell 2 stack is sandwiched between the pair of end plates 7 in the length direction (stacking direction), the binding bolts 8 are passed through the four corners, and the binding bolts 8 are tightly fastened. ing.
 エンドプレート7は、モジュールケース4と同様にアルミ,アルミ合金等の軽量で熱伝導性の良好な金属からなり、図2に示すように下端にフランジ7aを備えて、該フランジ7aを介してモジュールケース4の底壁内面に締結固定するようにしている。 The end plate 7 is made of a light metal having good heat conductivity, such as aluminum or aluminum alloy, like the module case 4, and has a flange 7a at the lower end as shown in FIG. 2, and the module is interposed through the flange 7a. The case 4 is fastened and fixed to the inner surface of the bottom wall.
 本実施形態ではこのセルユニット3の長さ方向端部に配置したセル結束用のエンドプレート7を、上述の隔壁6として利用している。 In this embodiment, the cell binding end plate 7 disposed at the end in the length direction of the cell unit 3 is used as the partition wall 6 described above.
 即ち、セルユニット3の長さ方向両端部に配置したエンドプレート7は、何れもセルユニット3の幅および高さ寸法よりも十分に大きく形成され、モジュールケース4の幅方向両側壁の内面に当接すると共に上壁内面の近傍にまで存在して、セルユニット3の配置部分を隔成する隔壁としている(図3参照)。 That is, the end plates 7 arranged at both end portions in the length direction of the cell unit 3 are all formed sufficiently larger than the width and height dimensions of the cell unit 3 and contact the inner surfaces of both side walls in the width direction of the module case 4. The partition wall is in contact with and close to the inner surface of the upper wall and separates the arrangement portion of the cell unit 3 (see FIG. 3).
 このように、モジュールケース4の内圧開放部5を設けた長さ方向の一方の端部壁に対向した隔壁6(つまりエンドプレート7)により、この内圧開放部5とセルユニット3の外周縁とを結ぶ直線Lが遮蔽される(図2,図4参照)。換言すれば、セルユニット3の一端面の全周に亘って、内圧開放部5とセルユニット3の外周縁とを結ぶ直線Lと交差するように、隔壁6(エンドプレート7)が設けられている。 In this way, the internal pressure release portion 5 and the outer peripheral edge of the cell unit 3 are separated by the partition wall 6 (that is, the end plate 7) facing the one end wall in the length direction where the internal pressure release portion 5 of the module case 4 is provided. The straight line L connecting the two is blocked (see FIGS. 2 and 4). In other words, the partition wall 6 (end plate 7) is provided over the entire circumference of one end surface of the cell unit 3 so as to intersect with the straight line L connecting the internal pressure release portion 5 and the outer peripheral edge of the cell unit 3. Yes.
 図示する例では、一対のエンドプレート7を同じ大きさとしているが、モジュールケース4の内圧開放部5を設けていない他方の端部壁に対向するエンドプレート7は小型のものであってもよい。 In the illustrated example, the pair of end plates 7 have the same size, but the end plate 7 facing the other end wall of the module case 4 where the internal pressure releasing portion 5 is not provided may be small. .
 この第1実施形態の構成によれば、過充電によりセル2内にガスが発生した場合、内圧の上昇により防爆弁2aが開いて発生したガスがモジュールケース4内に放出される。 According to the configuration of the first embodiment, when gas is generated in the cell 2 due to overcharge, the generated gas is released into the module case 4 by opening the explosion-proof valve 2a due to an increase in internal pressure.
 そして、モジュールケース4内にガスが充満するようになると、内圧開放部5から充満したガスがケース4外へ放出される。 Then, when the gas in the module case 4 is filled, the filled gas is discharged from the internal pressure release part 5 to the outside of the case 4.
 このとき、上述のようにセル2の防爆弁2aから放出されるガスは、図1の矢印aに示すようにセルユニット3の側面とモジュールケース4の側壁との間の間隙を内圧開放部5に向けて流動する。 At this time, as described above, the gas released from the explosion-proof valve 2a of the cell 2 passes through the gap between the side surface of the cell unit 3 and the side wall of the module case 4 as shown by the arrow a in FIG. It flows toward.
 このガスの流動過程で隔壁6により流動が一旦遮られてケース4内上方へ指向する。そして、隔壁6の上端を乗り越えて内圧開放部5に向けてケース4内下方へ流動し、該内圧開放部5からケース4外へ放出される。 In the gas flow process, the flow is once blocked by the partition wall 6 and directed upward in the case 4. Then, it passes over the upper end of the partition wall 6 and flows downward in the case 4 toward the internal pressure release portion 5, and is discharged from the internal pressure release portion 5 to the outside of the case 4.
 このようにして、セル2の防爆弁2aから放出された高温高圧のガスが内圧開放部5に向かう流動過程で、隔壁6の存在によって迂回が反復されることによって、ガスに含まれる発電要素の可燃性物質が内圧開放部5から直接外部へ流出するのが防止される。 In this manner, the high-temperature and high-pressure gas released from the explosion-proof valve 2a of the cell 2 is repeatedly detoured due to the presence of the partition wall 6 in the flow process toward the internal pressure release portion 5, thereby generating power generation elements included in the gas. The combustible substance is prevented from flowing out directly from the internal pressure release portion 5.
 また、ガス自体も隔壁6およびモジュールケース4の内面に衝突して迂回することから温度を下げる効果が得られる。 Also, since the gas itself collides with the inner surface of the partition wall 6 and the module case 4 and detours, the effect of lowering the temperature can be obtained.
 ここで、隔壁6は、上述のようにモジュールケース4に設けた内圧開放部5とセルユニット3の外周縁とを結ぶ直線Lを遮蔽可能な配置としてある。これにより、防爆弁2a以外でセル2のフィルムの貼り合わせ部がどの位置で開封して発生ガスが放出したとしても、必ず圧力開放部5の前には隔壁6が立ちはだかって、上述のガス流動の迂回作用が得られる。従って、可燃性物質の直接的な外部流出の防止効果と、ガスの温度低下作用と、が得られる。 Here, the partition wall 6 is arranged so as to shield the straight line L connecting the internal pressure release portion 5 provided in the module case 4 and the outer peripheral edge of the cell unit 3 as described above. As a result, regardless of the position where the bonded portion of the film of the cell 2 other than the explosion-proof valve 2a is opened and the generated gas is released, the partition wall 6 always stands in front of the pressure release portion 5, and the above gas flow The detouring effect is obtained. Accordingly, it is possible to obtain the effect of preventing direct inflow of the combustible substance and the gas temperature lowering effect.
 図5は本発明の第2実施形態を示すもので、本実施形態では、隔壁6を、内圧開放部5を設けたモジュールケース4の一方の端部壁と、セルユニット3の一方の端部と、の中間位置に配置してある。 FIG. 5 shows a second embodiment of the present invention. In this embodiment, the partition wall 6 includes one end wall of the module case 4 provided with the internal pressure release portion 5 and one end portion of the cell unit 3. It is arranged at an intermediate position.
 このように、隔壁6をセルユニット3の端部から離間させて内圧開放部5に近づけることにより、内圧開放部5とセルユニット3の外周縁とを結ぶ直線Lを遮蔽可能な隔壁6の幅寸法を、セルユニット3の幅寸法程度に短くすることが可能となり、隔壁6の小型,軽量化を図ることができる。 Thus, by separating the partition wall 6 from the end of the cell unit 3 and approaching the internal pressure release portion 5, the width of the partition wall 6 that can shield the straight line L connecting the internal pressure release portion 5 and the outer peripheral edge of the cell unit 3. The dimension can be shortened to about the width dimension of the cell unit 3, and the partition wall 6 can be reduced in size and weight.
 図6は本発明の第3実施形態を示すもので、第2実施形態と異なる点は、内圧開放部5を、モジュールケース4の端部壁の一方の隅部寄りに片寄った位置に設定すると共に、隔壁6を、この内圧開放部5に対応してモジュールケース4の幅方向の一方に片寄って配置したことにある。 FIG. 6 shows a third embodiment of the present invention. The difference from the second embodiment is that the internal pressure releasing portion 5 is set at a position offset toward one corner of the end wall of the module case 4. At the same time, the partition wall 6 is arranged so as to be offset to one side in the width direction of the module case 4 corresponding to the internal pressure release portion 5.
 このように、内圧開放部5と隔壁6とをモジュールケース4の幅方向の一方に偏在させることにより、上述の直線Lを遮蔽可能な隔壁6の幅方向寸法を可及的に短くすることができて、隔壁6をより一層小型,軽量化することができる。 In this way, by making the internal pressure release portion 5 and the partition wall 6 unevenly distributed on one side in the width direction of the module case 4, the width direction dimension of the partition wall 6 that can shield the straight line L can be shortened as much as possible. Thus, the partition wall 6 can be further reduced in size and weight.
 図7は隔壁6のいくつかの異なる例を示している。図7の(a)に示す隔壁6は、全体形状を蛇腹状の凹凸形状としてある。 FIG. 7 shows several different examples of the partition wall 6. The overall shape of the partition wall 6 shown in FIG. 7A is a bellows-like uneven shape.
 同図の(b)に示す隔壁6は、周縁部に囲まれた中央部分をルーバー構造としている。 The partition 6 shown in (b) of the figure has a louver structure at the center surrounded by the peripheral edge.
 同図の(c)に示す隔壁6は、周縁部に囲まれた中央部分をメッシュ構造にしたものである。(d)に示す隔壁6は、周縁部に囲まれた中央部分を多孔構造としている。 The partition wall 6 shown in (c) of the figure has a mesh structure at the center surrounded by the peripheral edge. The partition wall 6 shown in (d) has a porous structure at the center surrounded by the peripheral edge.
 (a)に示した凹凸形状の隔壁6では、ガスの移動距離を長くし、かつ、ガスの接触面積を増やすことができるため、ガスの冷却効果を高めることができる。 In the uneven-shaped partition wall 6 shown in (a), the gas moving distance can be increased and the gas contact area can be increased, so that the gas cooling effect can be enhanced.
 また、(b)~(d)に示したルーバー構造,メッシュ構造,多孔構造の隔壁6では、何れもガスの接触面積を増やすことができるため、ガスの冷却効果を高めることができる。 In the louver structure, mesh structure, and porous structure 6 shown in (b) to (d), since the gas contact area can be increased, the gas cooling effect can be enhanced.
 図8は本発明の第4実施形態を示すもので、前記第1実施形態における隔壁6を構成するエンドプレート7の下端に、セルユニット3の長さ方向の中央に向かって延在する底壁部7bを設け、該底壁部7bをモジュールケース4の底壁に面接触させている。 FIG. 8 shows a fourth embodiment of the present invention. A bottom wall extending toward the center in the length direction of the cell unit 3 at the lower end of the end plate 7 constituting the partition wall 6 in the first embodiment. A portion 7 b is provided, and the bottom wall portion 7 b is in surface contact with the bottom wall of the module case 4.
 このように、隔壁6を構成するエンドプレート7とモジュールケース4の底壁との接触面積を増大することによって、矢印hで示すように隔壁6からモジュールケース4の底壁への伝熱,放熱作用が高められて、ガスの冷却効果を高めることができる。 Thus, by increasing the contact area between the end plate 7 constituting the partition wall 6 and the bottom wall of the module case 4, heat transfer and heat dissipation from the partition wall 6 to the bottom wall of the module case 4 as indicated by an arrow h. The effect is enhanced, and the gas cooling effect can be enhanced.
 図9は本発明の第5実施形態を示すもので、本実施形態にあっては、隔壁6を一体に設けたモジュールケース4の側壁を凹凸形状としてある。 FIG. 9 shows a fifth embodiment of the present invention. In this embodiment, the side wall of the module case 4 integrally provided with the partition wall 6 has an uneven shape.
 このように、隔壁6と熱的に接続しているモジュールケース4の側壁を凹凸形状とすることにより、矢印hで示すように該側壁の放熱作用が高められて隔壁6およびモジュールケース4の側壁に衝突するガスの冷却効果を高めることができる。 Thus, by making the side wall of the module case 4 thermally connected to the partition wall 6 into an uneven shape, the heat radiation action of the side wall is enhanced as shown by the arrow h, and the side wall of the partition wall 6 and the module case 4 is increased. The cooling effect of the gas that collides with the gas can be enhanced.
 図10,図11は本発明の第6実施形態を示しており、隔壁を複数枚用いて、これをセルユニット3と内圧開放部5との間で、ガスの流出経路が蛇行するように多段配置したものである。 FIGS. 10 and 11 show a sixth embodiment of the present invention, in which a plurality of partition walls are used, and this is multistage so that the gas outflow path snakes between the cell unit 3 and the internal pressure release portion 5. It is arranged.
 図示する例では、前記第1実施形態における内圧開放部5を、モジュールケース4の一方の端部壁の上部中央に設定してある。そして、該内圧開放部5とこれに対向するエンドプレート7との中間位置に、エンドプレート7で構成された隔壁6とは別の第2の隔壁6Aが配置されている。この第2の隔壁6Aは、モジュールケース4の上壁に取り付けられ、下方へ向かって延びている。 In the illustrated example, the internal pressure releasing portion 5 in the first embodiment is set at the upper center of one end wall of the module case 4. Then, a second partition 6A different from the partition 6 constituted by the end plate 7 is disposed at an intermediate position between the internal pressure release portion 5 and the end plate 7 facing the internal pressure release portion 5. The second partition 6A is attached to the upper wall of the module case 4 and extends downward.
 これにより、蛇行したガス流出経路が構成される。つまり、セル2の防爆弁2aから放出されたガスが、セルユニット3の側面とモジュールケース4の側壁との間の間隙を内圧開放部5に向けて流動する過程で、隔壁6により流動が一旦遮られてケース4内上方へ指向したガスが、隔壁6を乗り越えてケース4内下方へ指向し、第2の隔壁6Aの下端をくぐり抜けて内圧開放部5へ向けて上方へ指向して流れる。 This forms a meandering gas outflow path. That is, in the process in which the gas released from the explosion-proof valve 2 a of the cell 2 flows toward the internal pressure release portion 5 through the gap between the side surface of the cell unit 3 and the side wall of the module case 4, the flow is once caused by the partition wall 6. The gas that is blocked and directed upward in the case 4 gets over the partition wall 6 and flows downward in the case 4, passes through the lower end of the second partition wall 6 </ b> A, and flows upward toward the internal pressure release portion 5.
 この第6実施形態の構成によれば、ガスの移動距離を長くでき、また、ガスの接触面積を増大できるので、ガス中の可燃性物質の直接的な外部流出の防止効果を高められると共に、ガスの温度低下作用を向上することができる。 According to the configuration of the sixth embodiment, since the gas moving distance can be increased and the gas contact area can be increased, the effect of preventing direct flammable substances from flowing directly outside the gas can be enhanced, It is possible to improve the gas temperature lowering effect.
 なお、前述の各実施形態ではセル2に防爆弁2aを設けて、ガス発生時のセル開封位置を特定するものを開示したが、これに限定されるものではない。各セル2が防爆弁2aを具備しない電池モジュールにおいても、本発明は適用可能である。 In each of the above-described embodiments, the explosion-proof valve 2a is provided in the cell 2 and the cell opening position at the time of gas generation is specified. However, the present invention is not limited to this. The present invention can also be applied to a battery module in which each cell 2 does not include the explosion-proof valve 2a.
 また、前述の各実施形態では、隔壁6がモジュールケース4に設けられているが、本発明はこれに限定されず、例えば、セル2ないしセルユニット3が隔壁6を支持する構成であってもよい。 Further, in each of the above-described embodiments, the partition wall 6 is provided in the module case 4, but the present invention is not limited to this, and for example, the cell 2 or the cell unit 3 may be configured to support the partition wall 6. Good.
 図12~図14は、セルユニット3が隔壁6を支持している本発明の第7実施形態を示している。この実施形態では、前述した各実施形態とは異なり、内圧開放部5がモジュールケース4の一方の側壁に設けられている。詳しくは、各セル2の防爆弁2aと同じ側となるモジュールケース4の側壁の中央に内圧開放部5が配置されている。複数のセル2が積層されてなるセルユニット3は、両端に一対のエンドプレート7を有し、該エンドプレート7を介してモジュールケース4内に固定されている。隔壁6は、矩形の金属板からなり、セルユニット3の一方の側面、特に内圧開放部5に対向する側の側面に配置されている。この隔壁6は、本実施形態では、セルユニット3の側面全体を覆う大きさを有し、両端部がエンドプレート7に取り付けられている。 FIGS. 12 to 14 show a seventh embodiment of the present invention in which the cell unit 3 supports the partition wall 6. In this embodiment, unlike each embodiment described above, the internal pressure releasing portion 5 is provided on one side wall of the module case 4. Specifically, the internal pressure release portion 5 is arranged at the center of the side wall of the module case 4 on the same side as the explosion-proof valve 2 a of each cell 2. A cell unit 3 formed by laminating a plurality of cells 2 has a pair of end plates 7 at both ends, and is fixed in the module case 4 via the end plates 7. The partition wall 6 is made of a rectangular metal plate, and is disposed on one side surface of the cell unit 3, particularly on the side surface facing the internal pressure release portion 5. In this embodiment, the partition wall 6 has a size that covers the entire side surface of the cell unit 3, and both end portions are attached to the end plate 7.
 また、セルユニット3の各セル2の端子を互いに接続する端子接続基板を利用して、上記隔壁6を構成することもできる。この場合、隔壁6となる端子接続基板は、金属製のバスバーを含む合成樹脂製の基板からなり、図12~図14と同様に、セルユニット3の一方の側面に取り付けられる。 Further, the partition wall 6 can also be configured by using a terminal connection substrate for connecting the terminals of the cells 2 of the cell unit 3 to each other. In this case, the terminal connection board to be the partition wall 6 is made of a synthetic resin board including a metal bus bar, and is attached to one side surface of the cell unit 3 as in FIGS.

Claims (8)

  1.  複数のセルを積層したセルユニットと、
     前記セルユニットを収納したモジュールケースと、
     前記モジュールケースに貫通配置されて、内部に溜まったガスを外部に放出する内圧開放部と、
     前記セルユニットと前記内圧開放部との間に配置した隔壁と、
     を備え、
     前記隔壁は、前記内圧開放部と前記セルユニットの外周縁とを結ぶ直線を遮蔽するように配置されている、電池モジュールのガス排出構造。
    A cell unit in which a plurality of cells are stacked;
    A module case containing the cell unit;
    An internal pressure release portion that is disposed through the module case and discharges gas accumulated inside to the outside;
    A partition wall disposed between the cell unit and the internal pressure release portion;
    With
    The battery partition gas discharge structure for a battery module, wherein the partition wall is arranged so as to shield a straight line connecting the internal pressure release portion and the outer peripheral edge of the cell unit.
  2.  前記隔壁は、壁面を凹凸形状としてある、請求項1に記載の電池モジュールのガス排出構造。 The gas discharge structure of a battery module according to claim 1, wherein the partition wall has a concave-convex shape.
  3.  前記隔壁は、ルーバー構造または多孔構造あるいはメッシュ構造としてある、請求項1に記載の電池モジュールのガス排出構造。 The battery module gas discharge structure according to claim 1, wherein the partition wall has a louver structure, a porous structure, or a mesh structure.
  4.  複数の前記隔壁を備え、
     前記セルユニットと前記内圧開放部との間で、ガスの流出経路が蛇行するように、複数の前記隔壁が多段に配置されている、請求項1~3の何れか1つに記載の電池モジュールのガス排出構造。
    A plurality of the partition walls,
    The battery module according to any one of claims 1 to 3, wherein a plurality of the partition walls are arranged in multiple stages so that a gas outflow path meanders between the cell unit and the internal pressure release portion. Gas exhaust structure.
  5.  前記モジュールケースは、その壁面を凹凸形状としてある、請求項1~4の何れか1つに記載の電池モジュールのガス排出構造。 The battery module gas discharge structure according to any one of claims 1 to 4, wherein the module case has an uneven wall surface.
  6.  前記セルユニットのセル積層方向の一端に対向する前記モジュールケースの一方の端部壁に前記内圧開放部が配置されており、
     前記セルユニットの一端に設けられたエンドプレートが前記隔壁を構成している、請求項1に記載の電池モジュールのガス排出構造。
    The internal pressure release portion is disposed on one end wall of the module case facing one end of the cell unit in the cell stacking direction,
    The gas discharge structure of the battery module according to claim 1, wherein an end plate provided at one end of the cell unit constitutes the partition wall.
  7.  前記隔壁は、前記モジュールケースに設けられている、請求項1に記載の電池モジュールのガス排出構造。 The battery module gas discharge structure according to claim 1, wherein the partition wall is provided in the module case.
  8.  前記隔壁は、前記セルユニットに支持されている、請求項1に記載の電池モジュールのガス排出構造。 The battery module gas discharge structure according to claim 1, wherein the partition wall is supported by the cell unit.
PCT/JP2013/077284 2012-10-25 2013-10-08 Gas discharge structure for battery module WO2014065110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543217A JP5939307B2 (en) 2012-10-25 2013-10-08 Battery module gas discharge structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012235426 2012-10-25
JP2012-235426 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014065110A1 true WO2014065110A1 (en) 2014-05-01

Family

ID=50544490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077284 WO2014065110A1 (en) 2012-10-25 2013-10-08 Gas discharge structure for battery module

Country Status (2)

Country Link
JP (1) JP5939307B2 (en)
WO (1) WO2014065110A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133253A1 (en) * 2014-03-07 2015-09-11 株式会社 豊田自動織機 Battery pack
GB2529612A (en) * 2014-06-25 2016-03-02 R & D Vehicle Systems Ltd Device for a battery assembly
WO2016053404A1 (en) * 2014-09-30 2016-04-07 Johnson Controls Technology Company Battery module vent system and method
US20170033343A1 (en) * 2015-07-30 2017-02-02 Gs Yuasa International Ltd. Energy storage apparatus
CN106605315A (en) * 2015-02-25 2017-04-26 松下知识产权经营株式会社 Battery module
KR20170074543A (en) * 2015-12-22 2017-06-30 주식회사 엘지화학 Secondary battery module improved in preventing structure of battery overcharge
JP2018073559A (en) * 2016-10-26 2018-05-10 三洋電機株式会社 Power supply device
WO2018221002A1 (en) * 2017-05-30 2018-12-06 日産自動車株式会社 Battery pack for mounting on vehicle
US10468646B2 (en) 2015-09-29 2019-11-05 Gs Yuasa International Ltd. Energy storage apparatus and manufacturing method of energy storage apparatus
EP3576182A1 (en) * 2018-05-31 2019-12-04 Airbus Operations, S.L.U. Protective device for a battery cell
DE202019101373U1 (en) * 2019-03-11 2020-06-15 Hoppecke Batterien Gmbh & Co. Kg Battery rack
WO2021019970A1 (en) * 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
EP3783734A1 (en) * 2019-07-26 2021-02-24 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
KR20210110695A (en) * 2019-01-09 2021-09-08 비와이디 컴퍼니 리미티드 Battery packs, vehicles, and energy storage devices
JP2022552154A (en) * 2020-01-23 2022-12-15 エルジー エナジー ソリューション リミテッド Battery pack with improved vibration resistance
JP2023500911A (en) * 2019-11-19 2023-01-11 寧徳時代新能源科技股▲分▼有限公司 Battery packs and transport equipment
EP4184654A1 (en) 2021-11-17 2023-05-24 Prime Planet Energy & Solutions, Inc. Battery module and method of manufacturing same
KR102704153B1 (en) * 2019-01-09 2024-09-10 비와이디 컴퍼니 리미티드 Power battery packs and electric vehicles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11569545B2 (en) 2017-01-27 2023-01-31 Cps Technology Holdings Llc Battery housing
CN117393868A (en) 2017-06-09 2024-01-12 Cps 科技控股有限公司 Lead-acid battery
US11936032B2 (en) 2017-06-09 2024-03-19 Cps Technology Holdings Llc Absorbent glass mat battery
CN116349076A (en) * 2021-03-22 2023-06-27 株式会社Lg新能源 Battery module and battery pack including the same
KR20220155879A (en) * 2021-05-17 2022-11-24 주식회사 엘지에너지솔루션 Battery pack having a gas venting path
KR20220169831A (en) * 2021-06-21 2022-12-28 주식회사 엘지에너지솔루션 Battery pack with improved gas venting path

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251308A (en) * 2007-03-30 2008-10-16 Toyota Motor Corp Power storage device, and vehicle
JP2011065906A (en) * 2009-09-18 2011-03-31 Panasonic Corp Battery module
WO2012081137A1 (en) * 2010-12-13 2012-06-21 パナソニック株式会社 Battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251308A (en) * 2007-03-30 2008-10-16 Toyota Motor Corp Power storage device, and vehicle
JP2011065906A (en) * 2009-09-18 2011-03-31 Panasonic Corp Battery module
WO2012081137A1 (en) * 2010-12-13 2012-06-21 パナソニック株式会社 Battery pack

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133253A1 (en) * 2014-03-07 2015-09-11 株式会社 豊田自動織機 Battery pack
US10056601B2 (en) 2014-03-07 2018-08-21 Kabushiki Kaisha Toyota Jidoshokki Battery pack
JP2015170510A (en) * 2014-03-07 2015-09-28 株式会社豊田自動織機 battery pack
US20170012276A1 (en) * 2014-03-07 2017-01-12 Kabushiki Kaisha Toyota Jidoshokki Battery pack
GB2529612A (en) * 2014-06-25 2016-03-02 R & D Vehicle Systems Ltd Device for a battery assembly
US9614210B2 (en) 2014-09-30 2017-04-04 Johnson Controls Technology Company Battery module vent system and method
WO2016053404A1 (en) * 2014-09-30 2016-04-07 Johnson Controls Technology Company Battery module vent system and method
US10511002B2 (en) 2015-02-25 2019-12-17 Panasonic Intellectual Property Management Co., Ltd. Battery module
CN106605315A (en) * 2015-02-25 2017-04-26 松下知识产权经营株式会社 Battery module
EP3125334A3 (en) * 2015-07-30 2017-03-22 GS Yuasa International Ltd. Energy storage apparatus
JP2017033721A (en) * 2015-07-30 2017-02-09 株式会社Gsユアサ Power storage device
CN106410090B (en) * 2015-07-30 2021-02-09 株式会社杰士汤浅国际 Electricity storage device
US20170033343A1 (en) * 2015-07-30 2017-02-02 Gs Yuasa International Ltd. Energy storage apparatus
CN106410090A (en) * 2015-07-30 2017-02-15 株式会社杰士汤浅国际 Energy storage apparatus
US10333122B2 (en) 2015-07-30 2019-06-25 Gs Yuasa International Ltd. Energy storage apparatus
US10468646B2 (en) 2015-09-29 2019-11-05 Gs Yuasa International Ltd. Energy storage apparatus and manufacturing method of energy storage apparatus
KR102067711B1 (en) 2015-12-22 2020-01-17 주식회사 엘지화학 Secondary battery module improved in preventing structure of battery overcharge
KR20170074543A (en) * 2015-12-22 2017-06-30 주식회사 엘지화학 Secondary battery module improved in preventing structure of battery overcharge
JP2018073559A (en) * 2016-10-26 2018-05-10 三洋電機株式会社 Power supply device
JPWO2018221002A1 (en) * 2017-05-30 2020-01-09 日産自動車株式会社 Battery pack for vehicle mounting
CN110710018A (en) * 2017-05-30 2020-01-17 日产自动车株式会社 Battery pack for mounting on vehicle
US20200106066A1 (en) * 2017-05-30 2020-04-02 Nissan Motor Co., Ltd. On-vehicle battery pack
WO2018221002A1 (en) * 2017-05-30 2018-12-06 日産自動車株式会社 Battery pack for mounting on vehicle
US11133557B2 (en) 2017-05-30 2021-09-28 Nissan Motor Co., Ltd. On-vehicle battery pack
EP3576182A1 (en) * 2018-05-31 2019-12-04 Airbus Operations, S.L.U. Protective device for a battery cell
KR102654288B1 (en) * 2019-01-09 2024-04-05 비와이디 컴퍼니 리미티드 Battery packs, vehicles, and energy storage devices
KR102704153B1 (en) * 2019-01-09 2024-09-10 비와이디 컴퍼니 리미티드 Power battery packs and electric vehicles
US12068492B2 (en) 2019-01-09 2024-08-20 Byd Company Limited Power battery pack and electric vehicle
US11955651B2 (en) 2019-01-09 2024-04-09 Byd Company Limited Power battery pack and electric vehicle
KR20210110695A (en) * 2019-01-09 2021-09-08 비와이디 컴퍼니 리미티드 Battery packs, vehicles, and energy storage devices
DE202019101373U1 (en) * 2019-03-11 2020-06-15 Hoppecke Batterien Gmbh & Co. Kg Battery rack
EP3709383A1 (en) 2019-03-11 2020-09-16 HOPPECKE Batterien GmbH & Co. KG. Battery frame
US11923559B2 (en) 2019-07-26 2024-03-05 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
US11417932B2 (en) 2019-07-26 2022-08-16 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
EP3783734A1 (en) * 2019-07-26 2021-02-24 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
WO2021019970A1 (en) * 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
JP2023500911A (en) * 2019-11-19 2023-01-11 寧徳時代新能源科技股▲分▼有限公司 Battery packs and transport equipment
JP7417725B2 (en) 2019-11-19 2024-01-18 寧徳時代新能源科技股▲分▼有限公司 Battery packs and transportation equipment
US12074337B2 (en) 2019-11-19 2024-08-27 Contemporary Amperex Technology Co., Limited Battery pack and transportation vehicle
JP2022552154A (en) * 2020-01-23 2022-12-15 エルジー エナジー ソリューション リミテッド Battery pack with improved vibration resistance
JP7378877B2 (en) 2020-01-23 2023-11-14 エルジー エナジー ソリューション リミテッド Battery pack with improved vibration resistance
EP4044340A4 (en) * 2020-01-23 2024-06-12 Lg Energy Solution, Ltd. Battery pack having improved vibration resistance
EP4184654A1 (en) 2021-11-17 2023-05-24 Prime Planet Energy & Solutions, Inc. Battery module and method of manufacturing same

Also Published As

Publication number Publication date
JP5939307B2 (en) 2016-06-22
JPWO2014065110A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5939307B2 (en) Battery module gas discharge structure
KR100870355B1 (en) Pouch type battery pack
JP7082665B2 (en) Battery module with improved cooling structure
JP6090711B2 (en) Secondary battery and battery module
US8343650B2 (en) Modular plate carrier concept for mounting and embedded cooling of pouch cell battery assemblies
JP5594592B2 (en) Battery module and battery pack
EP3273195B1 (en) Cooling member and power storage module
WO2014192087A1 (en) Laminate-type lithium-ion secondary battery module
JP2012142144A5 (en) Film-clad battery, battery module, module assembly, method for producing film-clad battery, and electric vehicle
US9460862B2 (en) Electric storage cell, electric storage apparatus, and vehicle having electric storage apparatus
KR20190042804A (en) Battery pack having function to block the inflow of leakage coolant
JP4590869B2 (en) Laminated secondary battery
JP6601235B2 (en) Battery pack
JP2014112479A (en) Cooling structure of battery cell and battery pack including the same
JP2018190486A (en) Battery module
JP2013187003A (en) Film outer package battery
JP2012531717A (en) Battery structure manufacturing method
JP5910884B2 (en) battery
JP7475480B2 (en) Battery module and battery pack including same
JP7297376B2 (en) Battery module and battery pack containing same
JP6464958B2 (en) Battery pack
JP2006236827A (en) Heat insulation structure of battery pack
JP4029819B2 (en) Assembled battery
JP6519428B2 (en) Cooling device and power supply device having the cooling device
JP2011137573A (en) Heat exchange element and heat exchange unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849345

Country of ref document: EP

Kind code of ref document: A1