WO2014063275A1 - 一种远距离同频干扰源的确定方法以及定位方法 - Google Patents

一种远距离同频干扰源的确定方法以及定位方法 Download PDF

Info

Publication number
WO2014063275A1
WO2014063275A1 PCT/CN2012/001610 CN2012001610W WO2014063275A1 WO 2014063275 A1 WO2014063275 A1 WO 2014063275A1 CN 2012001610 W CN2012001610 W CN 2012001610W WO 2014063275 A1 WO2014063275 A1 WO 2014063275A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal
interference
long
distance
Prior art date
Application number
PCT/CN2012/001610
Other languages
English (en)
French (fr)
Inventor
刘富强
王平
苏琳
周昊
唐沛文
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2014063275A1 publication Critical patent/WO2014063275A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method for performing long-distance co-channel interference source confirmation in a TD-LTE system and a positioning method for a long-distance co-channel interference source. Background technique
  • the cellular communication system In order to provide large-capacity communication over a limited frequency resource, the cellular communication system employs a frequency reuse technique, that is, the same communication frequency can be simultaneously used by a plurality of cells geographically far enough.
  • frequency reuse is becoming more and more dense, and the distance of cells using the same frequency (called “same frequency cell") is shortened, and co-channel interference is inevitable.
  • the downlink signal of the distant cell is received by the local cell base station in the receiving time slot of the base station of the local cell. Received, interferes with the uplink signal of the cell, thereby generating long-distance co-channel interference of the TDD system.
  • the second method that is, the relatively accurate traditional field test method, requires the use of a sports car to gradually approach the interference source along the direction of the strongest interference signal, and the entire process must be assisted by maintenance personnel, especially at a long distance. Positioning is more time-consuming and labor-intensive, and it has a lot of blindness.
  • a method and apparatus for locating a long-distance co-channel interference source is disclosed in Chinese Patent Application (Application No.: 201010107250.7).
  • the method for locating a long-distance co-channel interference source in the disclosed solution includes the steps of: determining the location of generating a long-distance co-channel interference and the victim base station after determining that the interference received by the victim base station is a long-distance co-channel interference The distance value between the distance and the scrambling code information used to obtain the interference signal received by the victim base station, and determining the victim base station generating the long-distance co-channel interference according to the determined distance value and the obtained scrambling code information, and determining The victim base station is the long-distance co-channel interference source of the victim base station.
  • the above positioning method first calculates the distance value between the local cell and the interference cell by using the transmission delay of the interference signal, and uses the scrambling code information to filter the cell within the range of the distance value, and the interference signal under special climatic conditions and complex terrain conditions.
  • the transmission path is complicated, and the method of calculating the interference source distance by using the delay of the received interference signal is inaccurate.
  • the first, second, and fourth types are based on the power of the received interference signal to determine whether it is subjected to long-distance co-channel interference.
  • the accuracy of the method may decrease.
  • the method 3 needs to obtain a large range of possible information about the base station to which the interference is applied, and the overhead is large, and the operation efficiency is relatively low.
  • the present invention provides a method for determining a long-distance co-channel interference source by detecting a problem existing in the prior art of determining a long-distance co-channel interference source, which method detects a difference in time domain between an interference source and a local main synchronizing signal. The value is used to confirm the long-distance co-channel interference source, which is fast and accurate.
  • the present invention also provides a long-distance co-channel interference in the prior art in the case of locating long-distance co-channel interference sources that are subject to environmental influences, inaccuracies or time-consuming and labor-intensive applications.
  • the location method of the source The method can adapt to changes in different terrains, weather and other factors, and ensures accurate positioning of long-distance co-channel interference sources while improving positioning efficiency.
  • a method for determining a long-distance co-channel interference source which detects a primary synchronization signal in an interference signal and compares it with a primary synchronization signal of a signal of the local cell in a time domain. If the time difference exceeds a certain threshold, the method
  • the interference signal is a long-distance co-channel interference source.
  • the determining method specifically includes the following steps:
  • the PSS sequence with greater correlation is the main synchronization signal of the interference signal
  • the interference received is long-distance co-channel interference, and comparing the primary synchronization signal of the interference signal detected in step (2) with the primary synchronization signal of the local cell signal, if the time difference exceeds a certain threshold It is considered that the interference received is long-distance co-channel interference, that is, the interference signal is a long-distance co-channel interference source. Further, in the step (1), the first half frame data in the frequency domain at the central 1.08 MHz position is extracted.
  • the sliding correlation operation in the step (2) is specifically: expanding the frequency domain signal of the three primary synchronization signal replicas by performing IDFT conversion, and obtaining a time domain signal of the primary synchronization signal replica, and according to step 1
  • Time domain data, N ras is the number of sampling points of the main synchronization signal, "used for the main synchronization signal sequence
  • the index value of the ZC sequence ⁇ is the sliding offset, ⁇ d ⁇ M, and M is the number of sampling points of the data of the first half of the signal.
  • the threshold is determined according to a configuration of a special subframe in a synchronization signal frame structure and a type of a cyclic prefix.
  • a positioning method for a long-distance co-channel interference source the method is After the fixed interference source is a long-distance co-channel interference source, the ID of the long-distance co-channel interference cell is determined by detecting the secondary synchronization signal in the interference signal and combining with the primary synchronization signal in the interference signal.
  • the positioning method specifically includes the following steps:
  • step (12) obtaining, according to the primary synchronization signal detected in step (2), a value of a physical layer cell ID representing a physical layer cell ID group;
  • the long-distance co-channel interference cell ID is obtained according to the formula, and the interference source location is achieved: where is the value of the physical layer ID of the cell, and is the value of the physical layer ID in the physical layer ID group.
  • the detection is performed by the following steps:
  • sequence detection method is used to detect the secondary synchronization signal.
  • the present invention uses the primary synchronization signal to determine that the received interference is a long-distance co-channel interference, and combines the detection result of the secondary synchronization signal to determine the location of the long-distance co-channel interference source.
  • the whole process does not require the participation of maintenance personnel, saves a lot of manpower and material resources, improves the efficiency of positioning, and at the same time, because the synchronization signal has good correlation characteristics, the invention can adapt to changes of different terrains, weather and other factors, and has better. Stability.
  • FIG. 1A is a schematic diagram of short-distance co-channel interference of a TD-LTE system
  • FIG. 1B is a schematic diagram of long-distance co-channel interference of a TD-LTE system
  • FIG. 2 is a schematic flow chart of a method for locating a long-distance co-channel interference source
  • Figure 3 is a schematic diagram showing the positions of the primary synchronization signal PSS and the secondary synchronization signal SSS of the TD-LTE system. detailed description
  • the present example details the determination and location of long-range co-channel interference using the scheme of the present application in a TD-LTE system.
  • FIG. 1A and FIG. 1B are schematic diagrams of short-distance co-channel interference and long-distance co-channel interference in the TD-LTE system, respectively. It can be seen from the figure that when the interfering cell is relatively close, the delay of the signal transmitted by the interfering cell to the local cell is small, and the uplink and downlink protection interval GP of the TD-LTE system is not exceeded. Therefore, the short-range co-channel interference appears as the downlink signal pair of the interfering cell. The interference of the downlink signal of the cell and the interference of the uplink signal of the interfering cell to the uplink signal of the cell.
  • the signal of the distant cell can reach the local cell through long-distance transmission, and the transmission delay is larger than the guard interval GP.
  • the interference appears as the downlink signal of the interfering cell to the cell. Interference from the upstream signal.
  • the downlink synchronization signal is divided into a primary synchronization signal PSS and a secondary synchronization signal SSS, which are fixed in the time domain in the entire frame structure, and are always in the center of the entire system bandwidth in the frequency domain of 1.08.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the base stations of each cell know the three primary synchronization signals (that is, the base station of each cell backs up the system's three primary synchronization signal sequences, that is, has performance
  • the three primary synchronization signals are duplicated, backed up or stenciled, and the primary synchronization signal of each cell is transmitted using only one of the sequences (the sequence used is related to the ID of the cell), and therefore, when detecting the primary synchronization signal of the interfering cell That is, the replicas of the three primary synchronization signals in the cell are respectively compared in the received signal (ie, the sliding correlation operation is performed to match), thereby determining the primary synchronization signal sequence used by the interfering cell.
  • the range for judging the time difference (i.e., the time difference threshold) in the present invention is determined according to the configuration of the special subframe and the type of the cyclic prefix.
  • subframes 1 and 6 are different from other subframes, and are composed of three parts: DwPTS, GP, and UpPTS, which are called special subframes.
  • special subframes have the following configurations. As shown in Table 1:
  • the time difference threshold for judging the long-distance co-channel interference source can be determined according to the configuration of the special subframe and the type of the cyclic prefix. If the cell and the interfering cell adopt the same special subframe configuration and the same The cyclic prefix type, then, the time threshold is the length of time occupied by the uplink and downlink protection interval GP of the cell. For example, if the special subframe of the cell adopts configuration 0 and the regular cyclic prefix, then the time difference threshold can select 10 OFDM symbols, which is 0.714 ms according to the TD-LTE standard.
  • the positioning of the long-distance co-channel interference cell can be implemented by detecting the cell ID of the interfering cell.
  • the cell ID of the TD-LTE system is closely related to the sequence used by the synchronization signal.
  • LTE supports 504 physical layer cell IDs. These physical layer cell IDs are divided into 168 groups, called physical layer cell ID groups, and each group contains 3 physical layer cell IDs.
  • a physical layer ID can be represented by a number representing the physical layer ID group (range 0 to 167, carried by the SSS) and a number representing the physical layer ID in the physical layer ID group (the range is 0 to 2,
  • the parameter ⁇ is obtained by detecting the index corresponding to the sequence used by the PSS.
  • the SSS sequence is composed of two binary sequences s of length 31. w and w «) interleaved into a sequence Column, it is noted that the combination of the two sequences of length 31 is different in even subframe 0 and odd subframe 5, as shown in the following formula:
  • [_ ⁇ " is rounded down, ⁇ ⁇ is the intermediate variable required for the calculation.
  • C. ("), ⁇ «), and 0) are scrambling sequences that generate SSS.
  • the two scrambling sequences ( «) and "determined by the primary synchronization signal are two cyclic shift sequences of the m-sequence), see the following equation.
  • the scrambling sequence is a cyclic shift of the m sequence, as shown in the following equation.
  • Zf" 0 )(") + (m 0 mod 8) mod 31)
  • the method for determining and locating a long-distance co-channel interference source in the TD-LTE system is as shown in FIG. 2, and includes the following steps: Step 20: extracting data in a preset time-frequency domain range; The location maps of PSS and SSS are shown.
  • the PSS and SSS signals are always at the center of the entire system bandwidth at 1.08 MHz in the frequency domain.
  • the primary synchronization signal is transmitted every 5 ms, and the sequences used in the first two frames are the same in one radio frame.
  • the SSS detection in this patent uses the sequence detection method, that is, only the data of the even subframe is used for detection, therefore, the patent It is only necessary to extract the first half of the data in the frequency domain at the central 1.08 MHz position.
  • Step 21 detects the primary synchronization signal in the interference signal; the primary synchronization signal uses the ZC sequence, and the ZC sequence is converted into the time domain signal, which still has good orthogonality, so that the three local primary synchronization signal replicas can be transformed from the frequency domain to the frequency domain.
  • the signal extracted in step 20 is subjected to a sliding correlation operation in the time domain from the time point of the primary synchronization signal of the current cell, and the PSS sequence having a large correlation is the primary synchronization signal of the interference cell, and the PSS is recorded.
  • the time domain location and its corresponding parameter N) > representing the physical layer ID in the physical layer ID group are used for the location of subsequent interference sources.
  • the specific process of the sliding correlation operation is: adding the frequency domain signals of the three main synchronization signal copies to zero extension and performing IDFT transformation to obtain the time domain signal of the primary synchronization signal replica, and simultaneously extracting the interference signal according to step 1) Domain data, calculate the value of the cross-correlation function according to the following formula -
  • the time domain signal of the replica of the primary synchronization signal is the time domain data of the interference signal extracted in step 1)
  • N res is the number of sampling points of the primary synchronization signal, "used as the primary synchronization signal sequence
  • Step 22 determines that the interference received is long-distance co-channel interference;
  • the primary synchronization signal of the interfering cell detected in step 21 is compared with the primary synchronization signal of the local cell in the time domain. If the time difference exceeds a certain range, the received interference is considered to be a long-distance co-channel interference.
  • Step 23 detects a secondary synchronization signal in the interference signal
  • the PSS occupies the third OFDM symbol of the subframes 1, 6, and the SSS occupies the last symbol of the subframes 0, 5.
  • the time domain locations of the PSS and SSS signals are relatively fixed, differing by 3 OFDM symbols. Therefore, the time domain location of the SSS of the interference cell can be determined according to the time domain location of the interfering cell PSS recorded in step 21.
  • SSS has good orthogonality in the frequency domain, so it needs to be transformed into the frequency domain before correlation detection.
  • SSS has two detection methods, sequence detection and joint detection. Sequence detection uses only one SSS symbol, and joint detection requires the use of SSS symbols in two fields before and after. Considering that serial detection can reduce the amount of computation by 30% compared with joint detection, the patent uses a sequence detection method as follows:
  • the received frequency domain secondary synchronization signal is recorded as), 0 ⁇ « ⁇ 61, > ⁇ 2 «) and 2 « + 1) respectively represent the even sequence and the odd sequence, which will construct the m sequence of the SSS ⁇ ) , Q ⁇ « ⁇ 3Q Repeat twice to get the detected value of the reference sequence / 3 ⁇ 4.
  • 3 ⁇ 4 obtained by:
  • Step 24 determines the location of the interfering cell.
  • the cell ID is obtained, the cell configuration table is searched, and the location of the interfering cell is determined.

Abstract

本发明公开了一种远距离同频干扰源的确定方法以及定位方法,本方法首先利用干扰小区的主同步信号确定所受到的干扰为远距离同频干扰后,再结合干扰小区的辅同步信号的检测结果确定远距离同频干扰源的位置。整个过程不需要维护人员的参与,节省了大量的人力物力,提高了定位的效率,同时由于同步信号具有很好的相关特性,因此本发明能够适应不同地形、天气等因素的变化,具有较好的稳定性。

Description

一种远距离同频干扰源的确定方法以及定位方法
技术领域
本发明涉及无线通信技术领域,具体涉及一种可应用于 TD-LTE系统中进 行远距离同频干扰源确认的方法以及远距离同频干扰源的定位方法。 背景技术
为了在有限的频率资源上提供大容量的通信,蜂窝通信系统采用了频率复 用技术, 即同一个通信频率可以被地理上距离足够远的多个小区同时使用。但 是, 随着现代蜂窝通信系统业务量的激增, 频率复用越来越密集, 使用相同频 率的小区 (称为"同频小区") 的距离縮短, 同频干扰便不可避免。
特别地, 在 TDD系统中, 不同基站在保持严格时间同步的前提下, 相邻 的同频小区会产生近距离同频干扰,具体表现为相邻的同频小区的下行信号对 本小区的下行信号所造成的干扰,以及相邻的同频小区的上行信号对本小区的 上行信号所造成的干扰。在某些特殊的气候效应下, 电磁波传输损耗很小, 可 以绕过地平面, 实现超视距传输, 因此在 TDD系统中, 当远处基站达到一定 的基站高度时,在某些特殊气候效应的情况下,远处小区的下行信号可以远距 离传输到达本小区, 由于远距离传输时间超过 TDD系统的上下行保护间隔, 远处小区的下行信号在本小区基站的接收时隙被本小区基站收到,干扰本小区 的上行信号, 从而产生 TDD系统远距离同频干扰。
现有的干扰源定位技术大多更适用于近距离同频干扰源的定位,例如:通 过波达角或干扰信号功率变化特点定位干扰源的方法,或者是采用相对较准确 的传统的实地路测方法, 这两种方法在实际的使用过程中都存在一定的缺陷: 对于第一种方法, 在电磁波经过超视距、超远距离的传输后, 定位通常不 准确, 不能适应地形和天气等因素的变化。
第二种方法, 即而相对较准确的传统的实地路测方法,其需使用跑车沿着 最强干扰信号的方向逐步逼近干扰源, 整个过程都必须由维护人员辅助完成, 特别是在远距离定位方面更加耗时费力, 具有很大的盲目性。
公开号: CN102149096A的中国专利申请 (申请号: 201010107250.7) 公 开了一种定位远距离同频干扰源的方法及装置。其所公开的方案中定位远距离 同频干扰源的方法包括步骤:在确定出受扰基站所受到的干扰为远距离同频干 扰后,确定产生远距离同频干扰的产生地点与受扰基站之间的距离值, 以及获 得受扰基站接收到的干扰信号所用的扰码信息,并根据确定出的距离值和获得 的扰码信息,确定产生远距离同频干扰的施扰基站,确定出的施扰基站即为受 扰基站的远距离同频干扰源。
上述定位方法先通过干扰信号的传输时延计算本小区与干扰小区的距离 值, 在符合距离值的范围内, 利用扰码信息筛选小区, 在特殊的气候条件及复 杂的地形条件下,干扰信号传输路径复杂,单单利用接收到的干扰信号的时延 计算干扰源距离的方法不准确。
上述申请中还公开了多种远距离同频干扰源的确定方法:
1、 判断所扰基站的受扰资源块 RB中是否存在未受到干扰的正交频分复 用 OFDM符号, 若存在则确定该干扰源为远距离同频干扰;
2、 获取受扰基站的受扰 RB中各受扰 OFDM符号的受扰强度, 若根据获 得的受扰强度,确定出受扰 RB中,按照时间先后顺序依次生成的各受扰 OFDM 符号的受扰强度依次减弱, 则确定受扰基站收到的干扰为远距离同频干扰;
3、 获得与受扰基站相邻的基站以受扰基站的越区基站的物理随机接入信 道 PRACH的分配信息和上行调度信息; 若根据获得的 PRACH的分配信息和 上行调度信息,确定出与受扰基站相邻的基站以及受扰基站的越区基站,均未 将所述受扰基站的受扰 RB分配给用户,则确定受扰基站受到的干扰为远距离 同频干扰;
4、 若判断出受扰基站的预设频率区域内受到恒定干扰, 则确定受扰基站 受到的干扰为远距离同频干扰。
上述方法中, 第 1、 2、 4种均是基于接收到的干扰信号的功率判断是否受 到远距离同频干扰, 当受到随机噪声的影响, 该方法准确度会有所下降。而方 法 3需要获得大范围可能的施加干扰的基站的相关信息, 开销较大,运行效率 比较低。 发明内容
本发明针对现有远距离同频干扰源确定技术上所存在的问题,而提供一种 远距离同频干扰源的确定方法,该方法通过检测干扰源与本地主同步信号在时 域上的差值, 以此实现对远距离同频干扰源的确认, 即快速又准确。
作为本发明的第二目的,本发明还针对现有技术在定位远距离同频干扰源 方面所存在受环境影响大, 不准确或费时费力不适用等问题,而提供一种远距 离同频干扰源的定位方法。 该方法能够适应不同地形、天气等因素的变化, 在 保证准确定位远距离同频干扰源的同时, 提高定位效率。
为了达到上述目的, 本发明采用如下的技术方案:
一种远距离同频干扰源的确定方法,该方法通过检测干扰信号中的主同步 信号,并将其与本小区信号的主同步信号进行时域上的比较, 如果时间差超过 一定阈值, 则该干扰信号为远距离同频干扰源。 在上述干扰源确定方法的优选方案中, 所述确定方法具体包括如下步骤:
( 1 ) 提取预设时频域范围内的数据;
(2) 检测干扰信号中的主同步信号, 将本小区 3个主同步信号序列的副 本从频域变换到时域, 与步骤 (1 ) 提取的信号从本小区的主同步信号的时间 点往后作时域上的滑动相关运算, 相关性较大的 PSS序列即为干扰信号的主 同步信号;
(3 )确定所受到的干扰为远距离同频干扰, 将步骤(2) 中检测出的干扰 信号的主同步信号与本小区信号的主同步信号进行时域上的比较,如果时间差 超过一定阈值,认为所受到的干扰为远距离同频干扰, 即干扰信号为远距离同 频干扰源。 进一步的, 所述步骤(1 ) 中提取出频域上处于中央 1.08MHz位置的前半 帧数据。
进一步的, 所述步骤 (2) 中的滑动相关运算具体为: 将 3个主同步信号 副本的频域信号补零扩展后进行 IDFT变换,得到主同步信号副本的时域信号, 同时根据步骤 1 )提取的干扰信号的时域数据, 根据以下公式计算互相关函数 值: = + ")«) "))* 式中, 为主同步信号副本的时域信号, 为步骤 1 ) 提取的干扰 信号的时域数据, Nras为主同步信号的采样点数, "为主同步信号序列使用的
ZC序列的索引值, ^为滑动偏移量, ≤d≤M, M为信号前半帧数据的采样 点数。
进一步的,所述阈值根据同步信号帧结构中特殊子帧的配置情况和循环前 缀的类型来确定。 作为本发明的第二目的,一种远距离同频干扰源的定位方法, 该方法在确 定干扰源为远距离同频干扰源后,通过检测干扰信号中的辅同步信号, 并与干 扰信号中的主同步信号组合配合来确定远距离同频干扰小区的 ID。
在干扰源定位方法的优选实例中, 所述定位方法具体包括如下步骤:
( 11 )检测干扰信号中的辅同步信号, 并根据该辅同步信号对应得到代表 物理层小区 ID组的数值;
( 12) 根据步骤 (2) 中检测得到的主同步信号对应得到代表物理层小区 ID组中的物理层小区 ID的数值;
( 13 )通过如下公式得到根据公式 , 得到远距离同频干扰小区 ID, 实现 干扰源定位: 其中 为小区物理层 ID组的数值, )为物理层 ID组中的物理层 ID的 数值。
进一步的, 所述步骤 (11 ) 中通过如下步骤进行检测:
( 111 ) 根据干扰信号中的主同步信号的时域位置确定干扰信号中的辅同 步信号的时域位置;
( 112) 将得到的时域辅同步信号变换到频域辅同步信号;
( 113 ) 对频域辅同步信号进行检测。
再进一步的, 采用序列检测方法检测辅同步信号。
与现有技术相比,本发明利用主同步信号确定所受到的干扰为远距离同频 干扰后, 并结合辅同步信号的检测结果确定远距离同频干扰源的位置。整个过 程不需要维护人员的参与, 节省了大量的人力物力, 提高了定位的效率, 同时 由于同步信号具有很好的相关特性, 因此本发明能够适应不同地形、天气等因 素的变化, 具有较好的稳定性。 附图说明
以下结合附图和具体实施方式来进一步说明本发明。
图 1A为 TD-LTE系统近距离同频干扰示意图;
图 1B为 TD-LTE系统远距离同频干扰示意图;
图 2为定位远距离同频干扰源的方法流程示意图;
图 3 为 TD-LTE系统的主同步信号 PSS和辅同步信号 SSS的位置示意图。 具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解, 下面结合具体图示, 进一步阐述本发明。
作为举例说明,本实例详细说明在 TD-LTE系统中利用本申请的方案进行 远距离同频干扰的确定和定位。
参见图 1A和图 1B,其分别为 TD-LTE系统近距离同频干扰和远距离同频 干扰的示意图。 由图可知, 当干扰小区比较近, 干扰小区的信号传输到本小区 时延较小, 未超过 TD-LTE系统上下行保护间隔 GP, 因此, 近距离同频干扰 表现为干扰小区的下行信号对本小区的下行信号的干扰,以及干扰小区的上行 信号对本小区上行信号的干扰。但是如果在特殊地形和气候条件因素下,远处 小区的信号可以经过远距离的传输到达本小区,传输时延较大,超过了保护间 隔 GP, 这时干扰表现为干扰小区的下行信号对本小区上行信号的干扰。
参见图 3, 在 TD-LTE系统中, 下行同步信号分为主同步信号 PSS和辅同 步信号 SSS,它们在整个帧结构中时域位置固定, 在频域上总是处于整个系统 带宽的中央 1.08MHz的位置。 因此可以先检测干扰小区的主同步信号, 与本 小区的主同步信号比较, 如果时间差超过一定范围,认为所受到的干扰为远距 离同频干扰, 反之认为是近距离同频干扰。
由于 TD-LTE系统中总共有三种主同步信号,而每个小区的基站都已知这 三种主同步信号 (即, 每个小区的基站都会备份系统的 3个主同步信号序列, 即具有表现这三种主同步信号的副本、 备份或者模板), 而每个小区的主同步 信号只使用其中一个序列发送(使用的序列与小区的 ID有关), 因此, 在检测 干扰小区的主同步信号时,即分别用本小区三种主同步信号的副本在接收信号 中进行比对 (即做滑动相关运算进行匹配), 从而确定干扰小区所使用的主同 步信号序列。
在本发明中用于判断时间差的范围 (即时间差阈值), 根据特殊子帧的配 置情况和循环前缀的类型来确定。
由图 3可以看出子帧 1和 6与其他子帧不同, 由 DwPTS、 GP和 UpPTS 三部分组成, 称为特殊子帧, 在 TD-LTE系统中, 特殊子帧有如下几种配置情 况, 如表一所示:
表 1
Figure imgf000009_0001
判断远距离同频干扰源的时间差阈值可根据特殊子帧的配置情况和循环 前缀的类型来确定。如果本小区与干扰小区采用相同的特殊子帧配置和相同的 循环前缀类型, 那么, 时间阈值就是本小区上下行保护间隔 GP所占用的时间 长度。例如, 本小区特殊子帧采用配置 0和常规循环前缀, 那么时间差阈值可 以选择 10个 OFDM符号, 按照 TD-LTE标准, 即为 0.714ms。 而远距离同频干扰小区的定位则可以通过检测干扰小区的小区 ID 来实 现。 TD-LTE系统的小区 ID与同步信号所使用的序列密切相关。 LTE支持 504 个物理层小区 ID, 这些物理层小区 ID被分为 168组, 称为物理层小区 ID组, 每一组包含 3个物理层小区 ID。这样,一个物理层 ID就可以由代表物理层 ID 组的数字/ (范围是 0〜167, 由 SSS承载)和代表该物理层 ID组中的物理层 ID的数字 (范围是 0〜2, 由 PSS承载)来唯一定义, 即通过 ' = +3 得 到同频干扰小区的 ID, 其中 为物理层小区 ID。 主同步信号 PSS由频域 ZC产生, 一共有 3个长度为 62的主同步序列, 见下式: e J 63 « = 0, 1,L ,30
e J ~ " « = 31, 32,L , 61 其中, 3个主同步序列使用的 ZC序列的索引"与 3个代表该物理层 ID组 中的物理层 ID的数字 ^^>有一一映射关系, 如表二所示:
表 2
Figure imgf000010_0001
因此, 通过检测 PSS所使用的序列对应的索引"得到参数^。
SSS 序列是由两个长度为 31 的二进制序列 s。w和 w«)交织后连接成的序 列, 记为 , 这两个长度为 31的序列的合并方式在偶数子帧 0和奇数子帧 5 是不同的, 具体方式见下式:
s^ n)c0(n)子帧 0
0)c。(")子帧 5
■^''("^(w)^™^")子帧 0
d(2n+\)- - ,
[s^^c^z^in)子帧 5 其中 0≤"≤30, w。和 ^是由物理层小区 ID组 决定, 关系如下式所示:
Figure imgf000011_0001
mi = (m0 + \_m' / 31」 + 1) mod 31
N^ +q q' + \)l2
,q' =
30
[_·」为向下取整, ^ ^等为计算所需的中间变量。
具体输出结果见表三。
这两个序列^ ^)、 是 m序列^)的两个循环移位序列, 见下式。
Figure imgf000011_0002
其中, ^) = l-2 ( ) , 0</<30 , ^, ^} x(f + 5) = (x(f + 2) + x(T)) mod 2 , 0≤T≤25初始 条件是 x(0) = 0,^(1) = 0,x(2) = 0,x(3) = 0,x(4) = 1。
C。(《)、 ^«)和0)均是产生 SSS的加扰序列。 两个加扰序列 («)和》由主 同步信号决定, 是 m序列 )的两个循环移位序列, 见下式。
Figure imgf000011_0003
其中, 8^i) = l-2x(i) , 0 < i < 30 , 定义为 x(T + 5) = (c(7 + 4) + ;c(7))mod2, 0≤7≤25初始 条件是 x( ) = 0, :(1) = 0, χ 2) = 0, c(3) = 0, χ(4) = 1。
加扰序列 是 m序列 的循环移位, 见下式。 zf"0 )(") = + (m0 mod 8) mod 31) S^) = \-2x(i) f 0 < < 30 , ¾ ¾ (7 + 5) = (x(T + 4) + :(7 + 2) + :(7 + 1) + x(f)) mod 2 , 0<7<25 , 初始条件是 ) = 0,x(l) = 0,x(2) = ,x(3) = 0,^(4) = 1。
表 3 物理层小区组 和 。与 w '间的映射关系
Figure imgf000012_0001
因此, 可以通过检测 SSS得到参数 。和 Wl , 根据 m。、 ^与^的关系, 确 定物理层小区 ID组 ,从而结合 PSS检测得到的物理层 ID组中的物理层 ID , 确定干扰小区的小区 ID, 从而定位远距离同频干扰源。 基于上述原理,本实例在 TD-LTE系统中进行远距离同频干扰源的确定和 定位方法如图 2所示, 包括以下步骤: 步骤 20提取预设时频域范围内的数据; 图 3给出了 PSS和 SSS的位置示意图, 可以看出 PSS和 SSS信号在频域 上总是处于整个系统带宽中央 1.08MHz的位置。主同步信号每 5ms传输一次, 一个无线帧中前后两个半帧所使用的序列相同, 另外, 本专利的 SSS检测采 用序列检测方法, 即只利用偶数子帧的数据进行检测, 因此, 本专利只需要提 取出频域上处于中央 1.08MHz位置的前半帧数据。 步骤 21检测干扰信号中的主同步信号; 主同步信号使用 ZC序列, ZC序列转换成时域信号仍然有很好的正交性, 因此可以将 3个本地的主同步信号副本从频域变换到时域, 与步骤 20提取的 信号从本小区的主同步信号的时间点往后作时域上的滑动相关运算,相关性较 大的 PSS序列即为干扰小区的主同步信号, 并记录该 PSS的时域位置及其对 应的代表该物理层 ID组中的物理层 ID的参数 N) > , 用于后续干扰源的定位。
其中,滑动相关运算的具体过程为:将 3个主同步信号副本的频域信号补 零扩展后进行 IDFT变换, 得到主同步信号副本的时域信号, 同时根据步骤 1 ) 提取的干扰信号的时域数据, 根据以下公式计算互相关函数值-
Figure imgf000013_0001
式中, 为主同步信号副本的时域信号, 为步骤 1 ) 提取的干扰 信号的时域数据, Nres为主同步信号的采样点数, "为主同步信号序列使用的
ZC序列的索引值, ^为滑动偏移量, O ^ M , M为信号前半帧数据的采样 点数。 步骤 22确定所受到的干扰为远距离同频干扰; 将步骤 21检测出的干扰小区的主同步信号与本小区的主同步信号进行时 域上的比较,如果时间差超过一定范围,认为所受到的干扰为远距离同频干扰。
步骤 23检测干扰信号中的辅同步信号;
由图 3可以看出 PSS占用子帧 1、 6的第 3个 OFDM符号, SSS占用子帧 0、 5的最后 1个符号。 PSS和 SSS信号的时域位置相对固定,相差 3个 OFDM 符号, 因此, 根据步骤 21中记录的干扰小区 PSS的时域位置可以确定干扰小 区的 SSS的时域位置。
SSS采用的 m序列只有在频域上有好的正交性, 因此需要先变换到频域, 再进行相关检测。 SSS有两种检测方式, 序列检测和联合检测。序列检测仅利 用一个 SSS符号, 而联合检测需要利用前后两个半帧的 SSS符号。 考虑到序 列检测与联合检测相比, 可以减少 30%的运算量, 因此, 本专利采用序列检测 方法, 具体方法如下:
接收的频域辅同步信号记作 ), 0<«<61 , ><2«)和 2« + 1)分别表示偶数序列 和奇数序列,将构造 SSS的 m序列^) , Q«3Q两倍重复,得到参考序列 的检测值/ ¾。和 ¾,由下式得到:
0 =argmax= ∑ w(2n) - c (n) - ( s^f(n + m0))
m,
Figure imgf000014_0001
0 < 7w0 < 29, 1 < OT, < 30
其中, c0(")、 c,( ";)禾口 z,(w)是如前所述的加扰序列。 由上式得到的; ¾。和 , 查 找 TD-LTE标准中 和《。与 ^间的映射关系表得到 。
步骤 24确定干扰小区的位置。
根据步骤 21得到的干扰小区的主同步序列对应的参数 ', 和步骤 23得 到的干扰小区的辅同步序列对应的 , 根据公式 = ) +3 , 得到小区 ID, 査找小区配置表, 确定干扰小区的位置。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业 的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中 描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明 还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本 发明要求保护范围由所附的权利要求书及其等效物界定。

Claims

权 利 要 求
1、 一种远距离同频干扰源的确定方法, 其特征在于, 所述方法通过检测 干扰信号中的主同步信号,并将其与本小区信号的主同步信号进行时域上的比 较, 如果时间差超过一定阈值, 则该干扰信号为远距离同频干扰源。
2、 根据权利要求 1所述的一种远距离同频干扰源的确定方法, 其特征在 于, 所述确定方法具体包括如下步骤:
( 1 ) 提取预设时频域范围内的数据;
(2) 检测干扰信号中的主同步信号, 将本小区 3个主同步信号序列的副 本从频域变换到时域, 与步骤 (1 ) 提取的信号从本小区的主同步信号的时间 点往后作时域上的滑动相关运算, 相关性较大的 PSS序列即为干扰信号的主 同步信号;
(3)确定所受到的干扰为远距离同频干扰, 将步骤(2) 中检测出的干扰 信号的主同步信号与本小区信号的主同步信号进行时域上的比较,如果时间差 超过一定阈值, 认为所受到的干扰为远距离同频干扰, 即干扰信号为远距离同 频干扰源。
3、 根据权利要求 2所述的一种远距离同频干扰源的确定方法, 其特征在 于, 所述步骤 (1 ) 中提取出频域上处于中央 1.08MHz位置的前半帧数据。
4、 根据权利要求 2所述的一种远距离同频干扰源的确定方法, 其特征在 于, 所述步骤 (2) 中的滑动相关运算具体为: 将 3个主同步信号副本的频域 信号补零扩展后进行 IDFT变换, 得到主同步信号副本的时域信号, 同时根据 步骤 1 ) 提取的干扰信号的时域数据, 根据以下公式计算互相关函数值-
Figure imgf000016_0001
式中, O)为主同步信号副本的时域信号, 为步骤 1 ) 提取的干扰 信号的时域数据, Nras为主同步信号的采样点数, "为主同步信号序列使用的 ZC序列的索引值, t /为滑动偏移量, 0≤d≤M , M为信号前半帧数据的采样 点数。
5、 根据权利要求 2所述的一种远距离同频干扰源的确定方法, 其特征在 于,所述阈值根据同步信号帧结构中特殊子帧的配置情况和循环前缀的类型来 确定。
6、 一种远距离同频干扰源的定位方法, 其特征在于, 所述定位方法在确 定干扰源为远距离同频干扰源后,通过检测干扰信号中的辅同步信号, 并与干 扰信号中的主同步信号组合配合来确定远距离同频干扰小区的 ID。
7、 根据权利要求 6所述的一种远距离同频干扰源的定位方法, 其特征在 于, 所述定位方法具体包括如下步骤-
( 11 )检测干扰信号中的辅同步信号, 并根据该辅同步信号对应得到代表 物理层小区 ID组的数值;
( 12) 根据步骤 (2) 中检测得到的主同步信号对应得到代表物理层小区 ID组中的物理层小区 ID的数值;
( 13 ) 通过如下公式, 得到远距离同频干扰小区 ID, 实现干扰源定位-
其中 为小区物理层 ID组的数值, 为物理层 ID组中的物理层 ID的 数值。
8、 根据权利要求 7所述的一种远距离同频干扰源的定位方法, 其特征在 于, 所述步骤 (11 ) 中通过如下步骤进行检测:
( 111 ) 根据干扰信号中的主同步信号的时域位置确定干扰信号中的辅同 步信号的时域位置; (112) 将得到的时域辅同步信号变换到频域辅同步信号;
(113) 对频域辅同步信号进行检测。
9、 根据权利要求 8所述的一种远距离同频干扰源的定位方法, 其特征在 采用序列检测方法检测辅同步信号。
PCT/CN2012/001610 2012-10-26 2012-12-03 一种远距离同频干扰源的确定方法以及定位方法 WO2014063275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210418068.2A CN103796219B (zh) 2012-10-26 2012-10-26 Td‑lte系统的远距离同频干扰源检测及定位方法
CN201210418068.2 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014063275A1 true WO2014063275A1 (zh) 2014-05-01

Family

ID=50543838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001610 WO2014063275A1 (zh) 2012-10-26 2012-12-03 一种远距离同频干扰源的确定方法以及定位方法

Country Status (2)

Country Link
CN (1) CN103796219B (zh)
WO (1) WO2014063275A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109040947A (zh) * 2017-06-08 2018-12-18 中国移动通信有限公司研究院 定位远距离干扰源的方法、装置和计算机可读存储介质
EP3525505A4 (en) * 2016-10-08 2019-09-18 ZTE Corporation METHOD AND DEVICE FOR POSITIONING A DISTURBANCE AND CORRESPONDING BASE STATION
CN110677865A (zh) * 2019-09-25 2020-01-10 北京邮电大学 一种移动通信网络网外干扰源定位方法
CN111294920A (zh) * 2018-12-10 2020-06-16 中国移动通信集团四川有限公司 识别lte网内干扰的方法、装置、设备及介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828349B (zh) * 2015-01-04 2019-04-23 中国移动通信集团公司 一种基于td-lte系统的远端干扰检测方法及装置
CN107534876B (zh) * 2015-05-29 2021-04-20 瑞典爱立信有限公司 用于识别通过大气波导传播的干扰的源的方法和设备
CN106332109B (zh) * 2015-07-10 2019-10-18 中国移动通信集团公司 一种干扰源定位系统及方法
CN105530701B (zh) * 2015-12-11 2018-12-18 北京北方烽火科技有限公司 一种干扰源定位方法及装置
CN107018530B (zh) * 2016-01-28 2020-05-05 大唐移动通信设备有限公司 一种干扰源定位方法及装置
CN107466054A (zh) * 2016-06-06 2017-12-12 中兴通讯股份有限公司 干扰源小区的定位方法、装置及基站
CN107819491B (zh) * 2016-09-12 2021-07-02 中兴通讯股份有限公司 一种干扰源定位的方法及装置
CN110768741B (zh) * 2016-09-30 2021-11-02 中国移动通信有限公司研究院 干扰分析方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754352A (zh) * 2009-12-23 2010-06-23 北京北方烽火科技有限公司 一种lte系统同步过程中估计时偏的方法和装置
CN102573044A (zh) * 2012-01-09 2012-07-11 大唐移动通信设备有限公司 定位干扰源小区的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132223B (zh) * 2006-08-23 2011-11-16 北京信威通信技术股份有限公司 调整tdd无线通信系统中上行随机接入时隙的方法
KR101162727B1 (ko) * 2009-11-06 2012-07-05 최옥재 위치 측정을 위한 기준신호 송출 방법 및 시스템, 이를 이용한 위치 측정 방법, 장치 및 시스템, 이를 이용한 시각 동기 방법 및 장치
CN102655650B (zh) * 2012-01-05 2015-05-06 电信科学技术研究院 一种远端干扰基站的定位方法和设备
CN102655652B (zh) * 2012-01-05 2015-05-20 电信科学技术研究院 一种远端干扰的检测方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754352A (zh) * 2009-12-23 2010-06-23 北京北方烽火科技有限公司 一种lte系统同步过程中估计时偏的方法和装置
CN102573044A (zh) * 2012-01-09 2012-07-11 大唐移动通信设备有限公司 定位干扰源小区的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525505A4 (en) * 2016-10-08 2019-09-18 ZTE Corporation METHOD AND DEVICE FOR POSITIONING A DISTURBANCE AND CORRESPONDING BASE STATION
CN109040947A (zh) * 2017-06-08 2018-12-18 中国移动通信有限公司研究院 定位远距离干扰源的方法、装置和计算机可读存储介质
CN111294920A (zh) * 2018-12-10 2020-06-16 中国移动通信集团四川有限公司 识别lte网内干扰的方法、装置、设备及介质
CN111294920B (zh) * 2018-12-10 2021-05-18 中国移动通信集团四川有限公司 识别lte网内干扰的方法、装置、设备及介质
CN110677865A (zh) * 2019-09-25 2020-01-10 北京邮电大学 一种移动通信网络网外干扰源定位方法

Also Published As

Publication number Publication date
CN103796219A (zh) 2014-05-14
CN103796219B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2014063275A1 (zh) 一种远距离同频干扰源的确定方法以及定位方法
CN102469475B (zh) 一种无线通信系统中干扰抵消的方法及其装置
CN102457870B (zh) 主同步信号检测方法、装置及小区搜索方法、系统
US9107158B2 (en) Robust downlink timing synchronization method in LTE system
CN107820273B (zh) 一种检测D2D中sidelink的同步信号的方法及装置
CN111107033A (zh) 一种5g系统下行帧定时同步方法
CN101883412B (zh) Lte在高速移动条件下初始小区搜索方法
CN102469060B (zh) 一种ofdm系统同步估计方法
CN107819717B (zh) 一种lte干扰中基于pusch的频域场强搜索方法
CN111132272A (zh) 一种5g nr系统小区搜索定时同步方法
CN101414990A (zh) 一种单载波频域均衡系统中的载波频偏和时延的捕获方法
CN103095638B (zh) 一种多径衰落信道下ofdm系统的采样频率偏移盲估算方法
CN102413079A (zh) 3gpp-lte系统下行链路初始分数频偏估计方法
CN105530701B (zh) 一种干扰源定位方法及装置
CN105516045B (zh) 一种ofdm训练序列构造及同步方法
WO2011157134A2 (zh) 基站间干扰检测方法及基站
CN113612527B (zh) 一种低轨卫星移动通信系统初始同步方法
CN102271015A (zh) 一种lte系统终端频点盲搜方法及装置
CN102857996A (zh) 一种小区搜索定时同步的方法
CN108282434B (zh) 一种lte下行主同步信号的检测方法
CN104022996A (zh) 一种基于信道估计的ofdm系统定时同步方法
CN105791201B (zh) Lte/lte-a系统中上行信号的盲同步方法
CN101552635B (zh) 一种频偏捕获的方法及装置
CN102131289B (zh) 一种基于快速时延参数搜索的lte终端无线定位系统
CN102026231A (zh) 一种用于无线通信系统的随机接入检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.10.15)

122 Ep: pct application non-entry in european phase

Ref document number: 12887264

Country of ref document: EP

Kind code of ref document: A1