WO2014063238A1 - Centre de données intérieur sécurisé - Google Patents

Centre de données intérieur sécurisé Download PDF

Info

Publication number
WO2014063238A1
WO2014063238A1 PCT/CA2013/000918 CA2013000918W WO2014063238A1 WO 2014063238 A1 WO2014063238 A1 WO 2014063238A1 CA 2013000918 W CA2013000918 W CA 2013000918W WO 2014063238 A1 WO2014063238 A1 WO 2014063238A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
air
data center
fluid
air flow
Prior art date
Application number
PCT/CA2013/000918
Other languages
English (en)
Inventor
Kamal ATHWAL
Mirza Kamaludeen
Kumaran Ratnam
Karthigesu Vijayasuganthan
Original Assignee
Cloud Dynamics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cloud Dynamics Inc. filed Critical Cloud Dynamics Inc.
Publication of WO2014063238A1 publication Critical patent/WO2014063238A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/14Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20609Air circulating in closed loop within cabinets wherein heat is removed through air-to-liquid heat-exchanger
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Data center cooling systems which utilize a circulating coolant, as for example water, are known where the heated air generated by the IT equipment is cooled by passing the heated air through a heat exchanger, where the heat from the air is transferred to the circulating coolant and the subsequently cooled air is returned to the data center cabinets.
  • the resultant heated coolant is typically circulated through a heat rejection system having compressors which rejects the heat from the coolant to the environment outside of the data center, and the subsequently cooled coolant is then re-circulated back to the heat exchanger of the cooling unit.
  • These heat rejection apparatuses are typically oversized for the cooling required, and electrical consumption at the compressors is costly.
  • Free cooling type heat rejection systems as for example cooling towers, are also know in the art and reject heat from the circulating coolant to the environment outside of the data center. These free cooling type heat rejection system are located outside of the secure building structure of the data center, and therefore pose significant security problems to the proper function of the cooling system of the data center.
  • the heat rejection apparatus may include at least one sensor for measuring the environmental conditions, and a controller for controlling the valve based on the measured environmental conditions.
  • the heat rejection apparatus may include at least one sensor for measuring air flow rate and coolant flow rate through the heat rejection apparatus, and a controller for controlling the air flow rate and the coolant flow rate through the heat rejection apparatus based on a measurement of electrical consumption by IT equipment housed in the data center.
  • the enclosure is a standard data center server cabinet enclosure.
  • coolant flow through the fluid coils is cooled by convective cooling by air flow moving across the fluid coils through the air flow path.
  • the air/coolant interface comprises packing to increase splashing of the coolant in the air/coolant interface.
  • the fluid coils are arranged below the packing and support the packing thereon.
  • the enclosure is substantially cylindrical.
  • the cabinet 12 has a box-like frame defining a cabinet interior space. Within the cabinet interior space there is provided a number of horizontal shelves for supporting IT equipment, such as servers. Sensors are provided which measure the amount of electricity consumed by the IT equipment, which is monitored and recorded by a metering system of the data center.
  • the interior space of the cabinet 12 is in air flow communication with the heat exchanger unit 14 through corresponding rear air inlets and front air outlets (not illustrated) provided in the cabinet 12 and the heat exchanger 14.
  • a air/fluid heat exchanger and first and second sets of directional fans/blowers arranged height-wise in the heat exchanger unit 14 (not shown).
  • the first set of directional fans/blowers are arranged at a front portion of the heat exchanger unit 14.
  • the second set of directional fans/blowers are arranged at a back portion of the heat exchanger unit 14.
  • Fluid cooler tubes/fins 38 are arranged within the enclosure space of the fluid heat rejection unit 16 and are connected to the coolant inlet and outlet 20, 22 through corresponding tube inlet 40 and tube outlet 42.
  • the fluid cooler tubes/fins are made from a copper material.
  • a valve switch 50 is arranged between the coolant inlet 20, the upper sprinkler 32 and the tube inlet 40 so that the valve 50 is operable to selectively direct the circulating coolant (i.e. water) between the sprinkler 32 for evaporative heat rejection or the fluid cooler tubes 38 for convective heat rejection.
  • the packed bed 34 is provided with plastic or ceramic packing to increases the "wet surface area" between the circulating water and the dehumidified air blown through the fluid heat rejection unit 16, resulting in improved evaporation cooling of the water, which is re-supplied to the heat exchanger unit 14.
  • the heated water can be cooled to a temperature lower than the ambient air dry-bulb temperature, if the external (dehumidified) air is relatively dry (below dew point).
  • the present invention provides a cooling system utilizing combined evaporative and convective cooling technology in an enclosed, protected unit that can be located inside of the data center structural facility.
  • the combined packed bed and fluid cooler tubing/fins are housed in a single unit, preferably being a rectangular or cylindrical enclosure.
  • the fluid heat rejection unit 16 has a width of about 18 inches to 12 ft and a height of about 5 ft to 180 ft.
  • the unit 16 may also contain a chemical treatment system, where the water hardness is monitored and chemical treated to maintain an acceptable concentration of ions and total dissolved solids.
  • Coolant or water flow path through the fluid heat rejection unit 16 may be based on the measured ambient air temperature.
  • the fluid heat rejection unit 16 may be built to fit within a standard data center cabinet, as for example 2 ft by 4 ft by 6.6 ft tall or larger (standard 42 U or 52 U server cabinets).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

L'invention concerne un appareil de rejet de chaleur pour rejeter la chaleur d'un liquide de refroidissement circulant à travers un échangeur thermique air/fluide logé dans un centre de données. L'appareil comprend une entrée de liquide de refroidissement pour recevoir le liquide de refroidissement de l'échangeur thermique ; une sortie de liquide de refroidissement pour alimenter le liquide de refroidissement à l'échangeur thermique ; une unité de refroidissement de fluide par évaporation, disposée dans une enceinte, l'unité de refroidissement de fluide par évaporation comprenant une interface air/liquide de refroidissement comprenant un remplissage disposé dans une voie de circulation d'air, au moins un asperseur au-dessus de l'interface air/liquide et relié à l'entrée de liquide de refroidissement, et un réservoir à liquide de refroidissement en dessous de l'interface air/liquide et relié à la sortie de liquide de refroidissement ; une unité de refroidisseur de fluide à convection dans l'enceinte, l'unité de refroidisseur de fluide à convection comprenant des serpentins à fluide disposés dans la voie de circulation d'air et étant reliée à l'entrée de liquide de refroidissement et à la sortie de liquide de refroidissement ; et une vanne raccordée entre l'entrée de liquide de refroidissement, l'au moins un asperseur et les serpentins à fluide ; caractérisé en ce que la vanne dirige le liquide de refroidissement de l'entrée de liquide de refroidissement à un des serpentins à fluide et l'au moins un asperseur sur base des conditions environnementales. Les serpentins à fluide sont disposés en dessous du remplissage et soutiennent le remplissage au-dessus.
PCT/CA2013/000918 2012-10-25 2013-10-25 Centre de données intérieur sécurisé WO2014063238A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261718531P 2012-10-25 2012-10-25
US61/718,531 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014063238A1 true WO2014063238A1 (fr) 2014-05-01

Family

ID=50543811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2013/000918 WO2014063238A1 (fr) 2012-10-25 2013-10-25 Centre de données intérieur sécurisé

Country Status (1)

Country Link
WO (1) WO2014063238A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032522A1 (fr) * 2015-02-10 2016-08-12 Clauger Systeme d'echange thermique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052105A (en) * 1960-06-15 1962-09-04 Carrier Corp Heat exchanger
US3899553A (en) * 1973-07-27 1975-08-12 Ecodyne Corp Cooling tower plume control
US20060197242A1 (en) * 2005-03-01 2006-09-07 Marley Cooling Technologies, Inc. Fluid cooler with evaporative heat exchanger and intermediate distribution
EP1818640A2 (fr) * 2006-02-13 2007-08-15 Baltimore Aircoil Company, Inc. Tour de réfrigération dotée de sections de réfrigération directe et indirecte
US20090283245A1 (en) * 2008-05-19 2009-11-19 Spx Cooling Technologies, Inc. Wet/dry cooling tower and method
US20110100593A1 (en) * 2009-11-04 2011-05-05 Evapco, Inc. Hybrid heat exchange apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052105A (en) * 1960-06-15 1962-09-04 Carrier Corp Heat exchanger
US3899553A (en) * 1973-07-27 1975-08-12 Ecodyne Corp Cooling tower plume control
US20060197242A1 (en) * 2005-03-01 2006-09-07 Marley Cooling Technologies, Inc. Fluid cooler with evaporative heat exchanger and intermediate distribution
EP1818640A2 (fr) * 2006-02-13 2007-08-15 Baltimore Aircoil Company, Inc. Tour de réfrigération dotée de sections de réfrigération directe et indirecte
US20090283245A1 (en) * 2008-05-19 2009-11-19 Spx Cooling Technologies, Inc. Wet/dry cooling tower and method
US20110100593A1 (en) * 2009-11-04 2011-05-05 Evapco, Inc. Hybrid heat exchange apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032522A1 (fr) * 2015-02-10 2016-08-12 Clauger Systeme d'echange thermique

Similar Documents

Publication Publication Date Title
AU2010254402B2 (en) Systems and methods for controlling load dynamics in a pumped refrigerant cooling system
CN114440353B (zh) 具有精确温度控制的直接蒸发冷却系统
JP5479374B2 (ja) 減湿装置及び方法
JP5932350B2 (ja) 空調装置および空調制御方法
NL2007293C2 (en) Cooling system for cooling air in a room and data centre comprising such cooling system.
JP2003166729A (ja) 通信・情報処理機器室等の空調システム
JP4816974B2 (ja) 電子機器の冷却システム
JP2011242010A (ja) サーバ室管理用の空調システムおよび空調制御方法
KR101436754B1 (ko) 옷 건조시스템
JP2011242011A (ja) サーバ用空調システム
JP2011238806A (ja) 局所冷却ユニット、及び冷却システム
KR20160096106A (ko) 액체 볼륨을 통해 공기 스트림을 생성하기 위한 디바이스
JP5736979B2 (ja) 冷却システム
JP2018066503A (ja) データセンター
US20200217523A1 (en) An air treatment system
US20230389485A1 (en) Method and system for dehumidifying an enclosure
WO2014063238A1 (fr) Centre de données intérieur sécurisé
JP2016205688A (ja) ダクト及びデータセンター
JP6028819B2 (ja) 冷却システム
TWI479301B (zh) 資料中心之冷卻
JP2002156137A (ja) 空調用加湿設備
JP2020159654A (ja) 空調システム
JP5541107B2 (ja) 空調システム
KR101388073B1 (ko) 기화식 가습기가 구비된 에너지 절약형 항온항습기
RU2433447C1 (ru) Система кондиционирования и распределения воздушных потоков в цод

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848207

Country of ref document: EP

Kind code of ref document: A1