WO2014061776A1 - Steering gear and ship provided therewith - Google Patents

Steering gear and ship provided therewith Download PDF

Info

Publication number
WO2014061776A1
WO2014061776A1 PCT/JP2013/078297 JP2013078297W WO2014061776A1 WO 2014061776 A1 WO2014061776 A1 WO 2014061776A1 JP 2013078297 W JP2013078297 W JP 2013078297W WO 2014061776 A1 WO2014061776 A1 WO 2014061776A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
steering
pressure
input
Prior art date
Application number
PCT/JP2013/078297
Other languages
French (fr)
Japanese (ja)
Inventor
陽 秋山
修司 土橋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR20157006964A priority Critical patent/KR20150045489A/en
Priority to CN201380047365.3A priority patent/CN104619587B/en
Publication of WO2014061776A1 publication Critical patent/WO2014061776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/50Monitoring, detection and testing means for accumulators
    • F15B2201/51Pressure detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20592Combinations of pumps for supplying high and low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas

Definitions

  • the present invention relates to a steering gear and a ship equipped with the same.
  • a Rapson slide type steering gear drives a hydraulic actuator connected to a chiller that drives a steering shaft to turn, thereby turning the steering shaft (see, for example, Patent Document 1).
  • the rotary vane type steering gear has a movable vane integrated with the rudder shaft inside a housing surrounding the rudder shaft, and a plurality of working chambers partitioned by the movable vanes between the housing and the rudder shaft are formed. (For example, refer patent document 2).
  • a steering command input as a steering command of a rudder is generally input at a frequency of about 10 to 15 times per hour, for example.
  • the amount of steering input by the steering command is generally sufficiently smaller than the maximum amount of steering (for example, the amount of steering in a 70 ° steering angle range from -35 ° to + 35 °).
  • the present invention has been made in view of such circumstances, and is required even when power higher than the maximum power of the power generation unit for generating power for rotating the rudder shaft is required. It is an object of the present invention to provide a steering gear capable of transmitting a driving force to a rudder shaft and a ship provided with the same.
  • a steering gear according to the present invention is a steering gear that rotates a rudder shaft connected to a rudder of a ship, and includes a first power generation unit that generates a first power for rotating the rudder shaft.
  • a storage unit for storing the first power generated by the first power generation unit; and a first unit for transmitting the first power stored in the storage unit to the rudder shaft according to an input steering command.
  • a transmission unit, and a detection unit that detects an accumulation amount of the first power accumulated in the accumulation unit.
  • a steering gear according to the present invention is a steering gear that rotates a rudder shaft connected to a rudder of a ship, and a first power generating unit that generates a first power for rotating the rudder shaft is generated
  • the first power is accumulated by the accumulation unit.
  • the stored first power is transmitted to the rudder axle by the first transmission unit in response to the input steering command. In this way, the first power stored in the storage unit can be used as the rudder shaft even when a steering command that requires a power higher than the maximum power of the first power generation unit is input. Can be properly transmitted.
  • the steering gear according to the present invention includes the detection unit that detects the accumulation amount of the first power accumulated in the accumulation unit, for example, the driver stores the first power accumulated in the accumulation unit. After recognizing the amount, it is possible to give an appropriate steering command.
  • the steering gear according to the first aspect of the present invention generates a second power for rotating the rudder shaft, and a second power generation unit having a maximum power larger than that of the first power generation unit; And a second transmission unit for transmitting the second power generated by the second power generation unit to the rudder shaft in response to a steering command.
  • a second transmission unit for transmitting the second power generated by the second power generation unit to the rudder shaft in response to a steering command.
  • the first steering command for transmitting the first power to the rudder shaft or the second power is controlled according to an input instruction from the driver.
  • the first transmission unit is controlled to transmit the first power to the rudder axle, and when the second steering command is input to the input unit, the second transmission command is transmitted. It is good also as composition provided with a control part which controls the 2nd transmission part so that motive power may be transmitted to the rudder axle.
  • the first steering instruction or second power generation unit for transmitting the first power accumulated in the accumulation unit to the rudder shaft is generated after the rider recognizes the accumulation amount of the first power. It is possible to appropriately input any of the second steering commands for transmitting the second power to the steering shaft. Therefore, when the accumulated amount of the first power is small, it becomes possible to input an appropriate steering command such as inputting a second steering command for transmitting the second power generated by the second power generator to the rudder axle. .
  • the notification unit may notify the storage amount by displaying information indicating the storage amount on a display unit.
  • the first steering command or second power generation unit transmits the first power accumulated in the accumulation unit to the rudder shaft after the rider visually recognizes the accumulated amount of the first power.
  • the steering gear according to the first aspect of the present invention includes a control unit that controls the first transmission unit and the second transmission unit according to the accumulation amount of the first power detected by the detection unit. It is good also as composition. In this way, transmission of the first power to the rudder shaft and transmission of the second power to the rudder shaft are appropriately controlled according to the accumulated amount of the first power.
  • the steering command includes a command of a target steering angle
  • the control unit transmits the first transmission unit according to the command of the target steering angle and the accumulated amount of the first power.
  • the second transmission unit may be controlled. In this way, transmission of the first power to the rudder shaft and transmission of the second power to the rudder shaft are appropriately controlled according to the command of the target steering angle and the accumulated amount of the first power.
  • the control unit transmits the first power to the rudder shaft when the accumulated amount is larger than a predetermined amount, and the control unit transmits the first power when the accumulated amount is smaller than the predetermined amount.
  • the first transmission unit and the second transmission unit may be controlled to transmit two powers to the rudder shaft. In this way, when the accumulated amount is larger than the predetermined amount, the second power generation unit that consumes a large amount of energy can be prevented from operating, and the energy consumption of the steering gear can be suppressed.
  • the predetermined amount may be a predetermined invariant.
  • a storage unit storing the input history of the steering command and a threshold setting unit setting the predetermined amount based on the input history stored in the storage unit may be provided.
  • the first power generation unit is a pump that sucks in the working fluid and discharges it at high pressure, and the accumulation unit adds the working fluid discharged from the pump. It is characterized in that it is an accumulator that accumulates under pressure. In this way, the first power can be stored using the working fluid and used as the power of the rudder shaft.
  • a ship according to the present invention is characterized by including the steering gear described above.
  • the steering capable of transmitting the required power to the rudder shaft even when the motive power higher than the maximum motive power of the power generating unit for generating the power for rotating the rudder shaft is required.
  • FIG. 1 is a block diagram of the steering gear 100 of the first embodiment.
  • FIG. 2 is a partial longitudinal sectional view showing the structure of the accumulator 10b.
  • FIG. 3 is a block diagram showing a control configuration of the steering gear 100.
  • the steering gear 100 of the present embodiment is a device for steering a ship by rotating a rudder shaft 1 connected to a rudder (not shown) of the ship using hydraulic power.
  • the rudder axle 1 is connected to the rudder at the lower end and is connected to the chiller 2 at the upper end.
  • the chiller 2 is a member that rotates about the rudder shaft 1 and is provided with a notch 2a.
  • the hydraulic actuator 30 includes a ram 3 and cylinders 4a and 4b, and moves the rudder shaft 1 by moving the ram 3 by the hydraulic pressure of hydraulic fluid (hydraulic fluid) supplied to the oil chambers 5a and 5b.
  • the ram 3 is a substantially cylindrical shaft member, and is movable in a direction along the central axis (left and right direction in FIG. 1).
  • a ram pin 3a is provided which protrudes in a direction intersecting the central axis.
  • the ram pin 3a is assembled in a state in which the notch 2a of the chiller 2 is inserted.
  • the ram 3 moves along the central axis by hydraulic pressure as described later. With the movement of the ram 3, the ram pin 3 a rotates the chiller 2 clockwise or counterclockwise around the rudder shaft 1.
  • the ram pin 3 a moves to slide the notch 2 a of the chiller 2 as the ram 3 moves.
  • the steering gear 100 of the present embodiment includes a first hydraulic system 10 and a second hydraulic system 20, and oil is supplied from these hydraulic systems to the oil chambers 5a and 5b.
  • the first hydraulic system 10 includes a first oil pump 10a (first power generation unit), an accumulator 10b (accumulation unit), a pressure sensor 10c (detection unit), and a first switching valve 10d (first transmission unit).
  • the check valve 10e The second hydraulic system 20 includes a second oil pump 20 a (second power generation unit), a second switching valve 20 b (second transmission unit), and a check valve 20 c.
  • the accumulator 10b and the pressure sensor 10c are provided in the first hydraulic system 10
  • the second hydraulic system 20 is not provided with a configuration corresponding thereto.
  • the first hydraulic system 10 can accumulate the hydraulic oil supplied from the first oil pump 10 a in the accumulator 10 b and accumulate pressure (power) of the hydraulic oil. By using the pressure (power) accumulated in the accumulator 10b as described above, a small pump with a small maximum power can be used as the first oil pump 10a.
  • the first oil pump 10a of the first hydraulic system 10 pumps up the working oil from the oil tank 40, raises the pressure, and discharges it as a high pressure working oil.
  • the hydraulic oil discharged by the first oil pump 10 a is used as power (first power) for rotating the rudder shaft 1. Therefore, the first oil pump 10 a is a device that generates power (first power) for rotating the rudder shaft 1.
  • the high-pressure hydraulic fluid discharged from the first oil pump 10a flows into the accumulator 10b via the check valve 10e.
  • the hydraulic oil supplied from the first oil pump 10a to the accumulator 10b does not return to the first oil pump 10a via the check valve 10e due to the presence of the check valve 10e.
  • the accumulator 10 b of FIG. 2 is a device that accumulates the power (first power) generated by the first oil pump 10 a as hydraulic fluid under pressure and outputs the power as the power for rotating the rudder shaft 1.
  • the accumulator 10 b is a bladder type accumulator, and includes a main body 50, a bladder 51, a poppet 52, a spring 53, and a gas valve 54.
  • the main body 50 is a hollow casing made of, for example, metal, and the lower end portion thereof is connected to the oil passage 10 f, and the gas valve 54 is disposed at the upper end portion.
  • a bladder 51 which is a rubber diaphragm is disposed inside the main body 50, and an inert gas such as nitrogen gas can be enclosed in the bladder 51 via a gas valve 54.
  • a high pressure hydraulic oil supplied from the first oil pump 10a flows into the oil chamber 55 inside the main body 50.
  • the poppet 52 is pressed downward by the bladder 51. .
  • the force by which the bladder 51 presses the poppet 52 downward is stronger than the upward biasing force applied by the spring 53 to the poppet 52, and the poppet 52 breaks the circulation of the oil chamber 55 and the oil passage 10f.
  • a pressure sensor 10c for detecting the pressure of the hydraulic oil in the oil chamber 55 is disposed. The pressure sensor 10c detects the pressure in the oil chamber 55, and outputs an output signal (the amount of accumulated power) corresponding to the detected pressure to the control unit 60 described later.
  • the first switching valve 10d does not supply the hydraulic oil in the oil passage 10f to the oil chambers 5a and 5b of the hydraulic actuator 30.
  • the first switching valve 10d can also shut off the hydraulic oil of the oil passage 10f not to be supplied to another oil passage according to an instruction from the control unit 60. That is, the first switching valve 10d switches three states of supplying the working oil of the oil passage 10f to either of the oil passages 10g and 10h or not supplying any of them according to an instruction of the control unit 60. Can.
  • the oil passage 10i is used to return the hydraulic oil in the oil chambers 5a and 5b to the oil tank 40.
  • the instruction of the control unit 60 corresponds to the steering instruction of the ship steering person inputted through the input unit 70, and is performed by outputting a control signal from the control unit 60 to the first switching valve 10d.
  • the first switching valve 10d controls the pressure (power) of hydraulic fluid stored in the accumulator 10b through the hydraulic actuator 30 in accordance with the steering command of the ship's steering operator input through the input unit 70 via the hydraulic actuator 30. To communicate.
  • the second oil pump 20a of the second hydraulic system 20 pumps up the working oil from the oil tank 40, raises the pressure, and discharges it as a high-pressure working oil.
  • the hydraulic fluid discharged by the second oil pump 20 a is used as a power (second power) for rotating the rudder shaft 1. Therefore, the second oil pump 20 a is a device that generates power (second power) for rotating the rudder shaft 1.
  • the high-pressure hydraulic fluid discharged from the second oil pump 20a flows into the second switching valve 20b via the check valve 20c.
  • the hydraulic oil supplied from the second oil pump 20a to the second switching valve 20b is not returned to the second oil pump 20a via the check valve 20c due to the presence of the check valve 20c.
  • the second switching valve 20b supplies the high-pressure hydraulic oil supplied from the second oil pump 20a to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 20d according to an instruction from the control unit 60, or the oil passage It is possible to switch the supply to the oil chamber 5a of the hydraulic actuator 30 via 20e.
  • the second switching valve 20b can also return the hydraulic oil supplied from the second oil pump 20a to the oil tank 40 via the oil passage 20f according to an instruction from the control unit 60. That is, the second switching valve 20b can switch the three states of supplying the hydraulic oil supplied from the second oil pump 20a to any of the oil paths 20d, 20e, and 20f according to an instruction of the control unit 60. .
  • the instruction of the control unit 60 corresponds to the steering command of the ship's steerer input via the input unit 70, and is issued by the control unit 60 outputting a control signal to the second switching valve 20b.
  • the second switching valve 20b steers the pressure (power) of the hydraulic oil generated by the second oil pump 20a through the hydraulic actuator 30, in accordance with the steering command of the ship's steerer input via the input unit 70. Transmit to axis 1
  • the 2nd hydraulic system 20 is not provided with the structure corresponding to these.
  • the first hydraulic system 10 can use a small pump with a small maximum power as the first oil pump 10a.
  • a second oil pump 20a having a larger maximum power than the first oil pump 10a is used for the second hydraulic system 20.
  • the maximum power of the second oil pump 20a is the rudder shaft even if the pressure stored in the accumulator 10b is not sufficient and only the power of the second oil pump 20a can be used for turning the rudder shaft 1 It has sufficient power to rotate 1
  • the steering gear 100 of the first embodiment includes a control unit 60.
  • the control unit 60 includes an input unit 70, a pressure sensor 10c, a display unit 80, a storage unit 90, a first oil pump 10a, a first switching valve 10d, a second oil pump 20a, and a second switching valve. 20b inputs and outputs various signals.
  • the input unit 70 receives an input instruction from the ship's rider and inputs a steering command corresponding to the input instruction to the control unit 60.
  • a steering command (second steering command) to be transmitted to 1 is input by at least the input unit 70.
  • the pressure sensor 10c detects the pressure in the oil chamber 55 of the accumulator 10b, and outputs an output signal (the accumulated amount of the first power) corresponding to the detected pressure to the control unit 60.
  • the display unit 80 is used to notify the driver of various information, and is configured of a liquid crystal panel or the like.
  • the pressure in the oil chamber 55 of the accumulator 10b is displayed on the display unit 80 based on the output signal output from the pressure sensor 10c to the control unit 60.
  • the display unit 80 notifies the driver of the pressure (the accumulated amount of the first power) detected by the pressure sensor 10c in this manner.
  • the storage unit 90 stores various data for the control unit 60 to steer the ship.
  • the storage unit 90 stores a control program for steering the ship, and the control unit 60 steers the vessel by reading and executing the control program stored in the storage unit 90.
  • the storage unit 90 stores an input history of a steering command input by the driver via the input unit 70, and a history of an output signal output from the pressure sensor 10c to the control unit 60.
  • step S401 the control unit 60 outputs a control command to the pressure sensor 10c so as to detect a pressure.
  • the pressure sensor 10c detects the pressure in the oil chamber 55 of the accumulator 10b, and outputs an output signal corresponding to the detected pressure to the control unit 60.
  • step S402 the control unit 60 analyzes the output signal output from the pressure sensor 10c, calculates a numerical value indicating the pressure in the oil chamber 55 of the accumulator 10b, and displays the display data corresponding to the calculated numerical value.
  • Output to The display unit 80 notifies the driver of the pressure in the oil chamber 55 of the accumulator 10 b by displaying the display data input from the control unit 60.
  • step S403 the control unit 60 determines whether the input unit 70 receives an input instruction from the driver and outputs a steering instruction according to the input instruction to the control unit 60.
  • control unit 60 proceeds to step S404.
  • the steering command includes the steering command of the steering angle of the ship, the steering command (first steering command) for transmitting the power of the first hydraulic system 10 to the rudder shaft 1, and the power of the second hydraulic system 20. And at least a steering command (second steering command) for transmitting the steering wheel 1 to the steering shaft 1.
  • the power of the first hydraulic system 10 is used as the power for rotating the rudder shaft 1, and the steering angle is input and instructed.
  • the rudder axle 1 is turned is said. Also, for example, when the steering command of the steering angle and the second steering command are input, the power of the second hydraulic system 20 is used as the power for rotating the rudder shaft 1, and the steering angle instructed The case where the rudder axle 1 is turned so that it may become is said.
  • step S404 the control unit 60 determines whether the steering command input from the input unit 70 is a command to the first hydraulic system 10. If the command is to the first hydraulic system 10, the process proceeds to step S405. If the command is for the second hydraulic system 20, the process proceeds to step S406. At step S405, the control unit 60 transmits a control command to the first switching valve 10d. Specifically, high-pressure hydraulic oil supplied from the accumulator 10b via the oil passage 10f is supplied to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 10g or hydraulic pressure via the oil passage 10h A control command to cause the first switching valve 10d to execute either supply to the oil chamber 5a of the actuator 30 is transmitted.
  • Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S403. That is, the control unit 60 compares the current steering angle with the steering command of the steering angle input in step S403, and determines the supply destination of the hydraulic oil according to which rotation direction the steering shaft 1 is rotated. .
  • the current steering angle is detected by a steering angle detection sensor (not shown).
  • the control unit 60 transmits a control command to the second switching valve 20b. Specifically, the control unit 60 supplies high-pressure hydraulic oil supplied from the second oil pump 20a to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 20d or via the oil passage 20e. Then, a control command for switching the second switching valve 20b to either supply to the oil chamber 5a of the hydraulic actuator 30 is transmitted. Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S403.
  • control unit 60 determines whether or not the current steering angle has reached the target steering angle. If it is determined that the target steering angle has been reached, control proceeds to step S408. When the current steering angle detected by the steering angle detection sensor (not shown) matches the steering angle instructed by the steering command input in step S403, the control unit 60 sets the current steering angle to the target steering angle. Judge that it has arrived.
  • step S408 since the current steering angle has reached the target steering angle, the controller 60 holds the steering angle at the current position, so the hydraulic valve 30 is switched to the first switching valve 10d or the second switching valve 20b. Instruct to stop the supply of hydraulic oil. If the steering command input in step S403 is a command to the first hydraulic system 10, the control unit 60 instructs the first switching valve 10d to stop the supply of hydraulic fluid. In addition, when the steering command input in step S403 is a command to the second hydraulic system 20, the control unit 60 instructs the second switching valve 20b to stop the supply of the hydraulic oil. After step S408 is executed, the control unit 60 ends the process shown in FIG.
  • the steering gear 100 of the present embodiment rotates the rudder shaft 1 connected to the rudder of the ship, and generates a first power to generate the first power for rotating the rudder shaft 1
  • the pressure (first power) generated by 10a (first power generation unit) is accumulated as hydraulic fluid in a pressurized state by the accumulator 10b (accumulation unit).
  • the accumulated pressure is transmitted to the rudder axle 1 by the first switching valve 10d (first transmission unit) according to the input steering command.
  • the pressure accumulated in the accumulator 10b can be transmitted to the rudder axle 1 even when a steering command that requires power higher than the maximum power of the first oil pump 10a is input. It can be properly transmitted.
  • the steering gear 100 of the present embodiment includes the pressure sensor 10 c (detection unit) that detects the pressure (the accumulated amount of the first power) of the hydraulic oil accumulated in the accumulator 10 b, for example, the steering wheel After the pressure of the hydraulic fluid accumulated in the accumulator 10b is recognized by the display unit 80, an appropriate steering command can be issued.
  • the pressure sensor 10 c detection unit
  • the steering gear 100 of the present embodiment generates a second power for rotating the rudder shaft 1, and a second oil pump having a larger maximum power than the first oil pump 10a (first power generation unit).
  • a second switching valve 20b (second power) that transmits the pressure (second power) generated by the second oil pump 20a (second power generation unit) according to the steering command and the second power generation unit 20a (second power generation unit).
  • a second transmission unit (first power) generated by the first oil pump 10a (first power generation unit) can be stored and transmitted to the rudder shaft 1, while being stored in the accumulator 10b.
  • a second oil pump 20a (second power generation unit) having a maximum power larger than that of the first oil pump 10a (first power generation unit) even when the pressure (the accumulated amount of the first power) of the operating oil is small Pressure (second power) can be transmitted to the rudder shaft 1.
  • the steering gear 100 transmits a first steering command for transmitting the pressure (first power) generated by the first oil pump 10 a to the rudder shaft 1 or the first steering command based on the input instruction of the steerer.
  • Input unit 70 for inputting any of the second steering command for transmitting the pressure (second power) generated by the oil pump 20a to the rudder shaft 1, the pressure of the hydraulic oil detected by the pressure sensor 10c (first power
  • the display unit (notification unit) 80 notifies by displaying the stored amount of the vehicle to the steerer, and the first power is transmitted to the rudder axle 1 when the first steering command is input to the input unit 70.
  • the first motive power accumulated in the accumulator 10b is transmitted to the rudder axle 1 after the driver recognizes the pressure (the accumulated amount of the first motive power) of the hydraulic oil accumulated in the accumulator 10b.
  • the steering gear 100 of this embodiment notifies the pressure of hydraulic fluid by displaying the information which shows the pressure of the hydraulic fluid accumulate
  • the driver visually recognizes the pressure (accumulated amount of the first power) of the hydraulic oil stored in the accumulator 10b and then steers the pressure (first power) accumulated by the accumulator 10b.
  • the pressure (second power) generated by the second oil pump 20a (second power generating unit) is appropriate Can be entered.
  • FIG. 5 is a flow chart showing the operation of the steering gear of the second embodiment.
  • the steering command of the steering angle and the command to the first hydraulic system 10 or the command to any one of the second hydraulic systems 20 are input as the steering command. That is, the driver decides whether to rotate the rudder shaft 1 using the first hydraulic system 10 or to rotate the rudder shaft 1 using the second hydraulic system 20.
  • it is stored in the accumulator 10b whether to rotate the rudder shaft 1 using the first hydraulic system 10 or to rotate the rudder shaft 1 using the second hydraulic system 20.
  • the control unit 60 of the steering gear is automatically determined by the pressure of the operating oil (the accumulated amount of the first power).
  • the second embodiment is a modification of the first embodiment, and the other configuration is the same as that of the first embodiment except in the case where it is particularly described below, so the description thereof will be omitted.
  • step S501 the control unit 60 outputs a control command to the pressure sensor 10c so as to detect a pressure.
  • the pressure sensor 10c detects the pressure in the oil chamber 55 of the accumulator 10b, and outputs an output signal corresponding to the detected pressure to the control unit 60.
  • step S502 the control unit 60 analyzes the output signal output from the pressure sensor 10c, calculates a numerical value indicating the pressure in the oil chamber 55 of the accumulator 10b, and displays the display data corresponding to the calculated numerical value.
  • Output to The display unit 80 notifies the driver of the pressure in the oil chamber 55 of the accumulator 10 b by displaying the display data input from the control unit 60.
  • step S503 the control unit 60 determines whether the input unit 70 receives an input instruction from the driver and outputs a steering instruction according to the input instruction to the control unit 60. If a steering command is input from input unit 70, control unit 60 proceeds to step S504.
  • the steering command at least includes the steering command of the steering angle of the ship.
  • step S504 the control unit 60 determines whether the pressure in the oil chamber 55 of the accumulator 10b detected in step S501 is sufficient to issue a steering command of the steering angle input in step S503. Do. Specifically, the control unit 60 calculates an angle of the difference between the current steering angle and the steering angle of the steering command, and rotates the steering shaft 1 by the calculated angle, within the oil chamber 55 of the accumulator 10b. Determine if the pressure is sufficient. Relational information indicating the relationship between the angle at which the steering angle is turned and the pressure in the oil chamber 55 necessary to turn the angle is stored in the storage unit 90. The control unit 60 performs the determination in step S504 by reading out the relationship information stored in the storage unit 90. If control unit 60 determines that the pressure in oil chamber 55 is sufficient to cause the current steering angle to match the steering angle of the steering command, the process proceeds to step S505; otherwise, the process proceeds to step S506. Proceed with the process.
  • step S505 the control unit 60 transmits a control command to the first switching valve 10d.
  • high-pressure hydraulic oil supplied from the accumulator 10b via the oil passage 10f is supplied to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 10g or hydraulic pressure via the oil passage 10h
  • a control command to cause the first switching valve 10d to execute either supply to the oil chamber 5a of the actuator 30 is transmitted.
  • Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S503. That is, the control unit 60 compares the current steering angle with the steering command of the steering angle input in step S503, and determines the supply destination of hydraulic fluid according to which rotation direction the steering shaft 1 is rotated. .
  • the current steering angle is detected by a steering angle detection sensor (not shown).
  • the control unit 60 transmits a control command to the second switching valve 20b. Specifically, the control unit 60 supplies high-pressure hydraulic oil supplied from the second oil pump 20a to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 20d or via the oil passage 20e. Then, a control command for switching the second switching valve 20b to either supply to the oil chamber 5a of the hydraulic actuator 30 is transmitted. Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S503.
  • step S507 the control unit 60 determines whether the current steering angle has reached the target steering angle. If it is determined that the target steering angle has been reached, the process proceeds to step S508. When the current steering angle detected by the steering angle detection sensor (not shown) matches the steering angle instructed by the steering command input in step S503, the control unit 60 sets the current steering angle to the target steering angle. Judge that it has arrived.
  • step S508 since the current steering angle has reached the target steering angle, the controller 60 holds the steering angle at the current position, so the hydraulic valve 30 is switched to the first switching valve 10d or the second switching valve 20b. Instruct to stop the supply of hydraulic oil.
  • the control unit 60 instructs the first switching valve 10d to stop the supply of the hydraulic oil.
  • the control unit 60 instructs the second switching valve 20b to stop the supply of the hydraulic oil.
  • the first switching is performed according to the pressure (the accumulated amount of the first power) in the oil chamber 55 of the accumulator 10b detected by the pressure sensor (detection unit) 10c. It has the control part 60 which controls valve 10d (1st transmission part) and 2nd switching valve 20b (2nd transmission part).
  • the pressure (first power) generated by the first oil pump 10a is transmitted to the rudder shaft 1 in accordance with the pressure (the accumulated amount of the first power) in the oil chamber 55 of the accumulator 10b. Transmission of the pressure (second power) generated by the second oil pump 20a to the rudder shaft 1 is appropriately controlled.
  • the steering command includes a command for the target steering angle
  • the control unit 60 outputs the command for the target steering angle and the pressure in the oil chamber 55 of the accumulator 10b (the amount of accumulated first power And controls the first switching valve 10d (first transmission unit) and the second switching valve 20b (second transmission unit).
  • the rudder of the pressure (first power) generated by the first oil pump 10a according to the command of the target steering angle and the pressure in the oil chamber 55 of the accumulator 10b (the accumulated amount of the first power).
  • the transmission to the shaft 1 and the transmission of the pressure (second power) generated by the second oil pump 20a to the rudder shaft 1 are appropriately controlled.
  • FIG. 6 is a flow chart showing the operation of the steering gear of the third embodiment.
  • the hydraulic oil stored in the accumulator 10b is used to determine whether to rotate the rudder shaft 1 using the first hydraulic system 10 or to rotate the rudder shaft 1 using the second hydraulic system 20. It is determined depending on whether the pressure (the accumulated amount of the first power) is sufficient for the target steering angle.
  • the pressure is determined based on whether the pressure of the hydraulic oil stored in the accumulator 10b is equal to or more than a predetermined amount.
  • the third embodiment is a modification of the second embodiment, and the other configuration is the same as that of the second embodiment except the case where it is particularly described below, and therefore the description thereof will be omitted.
  • the control unit 60 of the steering gear executes the operation shown in FIG. 6 by reading out and executing the control program stored in the storage unit 90.
  • the operations in steps S601, S602, S603, S605, S606 and S608 are the same as the operations in steps S501, S502, S503, S505, S506 and S508 shown in FIG. Therefore, the explanation in the following is omitted.
  • the operations of steps S604 and S607 will be described.
  • step S604 the control unit 60 determines whether the pressure in the oil chamber 55 of the accumulator 10b detected in step S601 is equal to or higher than a predetermined value. If the control unit 60 determines that the pressure in the oil chamber 55 of the accumulator 10b is equal to or higher than a predetermined value (the accumulated amount of first power is equal to or higher than a predetermined amount), the process proceeds to step S605. The process advances to step S606.
  • step S607 the control unit 60 determines whether the current steering angle has reached the target steering angle. If it is determined that the target steering angle has been reached, the process proceeds to step S608.
  • the control unit 60 sets the current steering angle to the target steering angle. Judge that it has arrived. If it is determined in step S607 that the current steering angle has not reached the target steering angle, step S604 is executed again. This point is a point different from the second embodiment, and the determination of step S604 is repeatedly executed until the current steering angle reaches the target steering angle.
  • the accumulator 10b is used as power for steering (turning of the steering shaft 1).
  • the second oil pump 20a is used as the power of steering if the pressure of the pressure below the predetermined value.
  • FIG. 7 is a diagram showing changes in pressure of the accumulator.
  • the current time is t
  • the pressure of the accumulator 10b according to the input history of the past steering command is indicated by a solid line.
  • the pressure of the accumulator 10b decreases in response to steering and rises in response to stopping steering.
  • the time when the steering was stopped and the pressure of the accumulator 10b at that time are stored in the storage unit 90 as an input history. Then, based on the plurality of input histories, the time T at which the pressure of the accumulator 10b becomes a predetermined value (for example, a value indicating the atmospheric pressure) is predicted.
  • a predetermined value for example, a value indicating the atmospheric pressure
  • various prediction methods can be adopted, for example, as shown by a dotted line in FIG. 7, two places of the input history are connected by a straight line, and a linear function of pressure with time as a variable is calculated. do it. Then, by substituting the current time t into the calculated linear function, the pressure P indicating a predetermined value can be obtained.
  • step S604 by setting the pressure P to the predetermined value (threshold value) described above, the determination in step S604 can be performed using a variable value.
  • the calculation of the linear function and the setting of the pressure P are performed by the control unit (threshold setting unit) 60.
  • the control unit 60 when the pressure (accumulation amount) of the accumulator 10b is larger than the predetermined value (predetermined amount), the control unit 60 generates the first oil pump 10a. Pressure (first power) is transmitted to the rudder shaft 1, and if the pressure (accumulated amount) of the accumulator 10b is smaller than a predetermined value (predetermined amount), the pressure (second power) generated by the second oil pump 20a The first switching valve 10 d (first transmission unit) and the second switching valve 20 b (second transmission unit) are controlled to be transmitted to the rudder axle 1.
  • the predetermined value (predetermined amount) may be a predetermined invariant.
  • the input history of the steering command may be stored in the storage unit 90, and the predetermined amount may be set based on the input history stored in the storage unit 90.
  • the control unit 60 causes the display unit 80 to display display data corresponding to a numerical value indicating the pressure detected by the pressure sensor 10c.
  • the maximum pressure (maximum power) that can be accumulated in the accumulator 10b may be 100, and the ratio of the pressure detected by the pressure sensor 10c may be displayed. By doing this, the rider can easily recognize how much pressure (power) is stored with respect to the maximum power.
  • the pressure sensor 10 c is provided in the oil chamber 55 shown in FIG. 3, but may be provided inside the bladder 51. In this case, the pressure sensor 10c detects not the pressure of the hydraulic oil but the pressure of the inert gas in the bladder 51. Since the pressure of the inert gas and the pressure of the hydraulic oil in the oil chamber 55 coincide with each other, even if the pressure sensor 10c is provided in the inside of the bladder 51, it becomes the same as the embodiment described above.
  • the power from the second hydraulic system 20 is not supplied to the hydraulic actuator 30 when the power is supplied from the first hydraulic system 10, the other is described. It may be an aspect. For example, when power is supplied from the first hydraulic system 10, power from the second hydraulic system 20 may be supplied to compensate for the power of the first hydraulic system 10.
  • Reference Signs List 1 rudder shaft 2 chiller 3 ram 5a, 5b oil chamber 10 first hydraulic system 10a first oil pump 10b accumulator 10c pressure sensor 10d first switching valve 10e check valve 20 second hydraulic system 20a second oil pump 20b second switching Valve 20 c Check valve 60 Control unit 70 Input unit 80 Display unit 90 Storage unit 100 Steering gear

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The purpose of the present invention is to provide a steering gear capable of transmitting the needed power to a rudder shaft, and a ship provided with said steering gear. This steering gear (100) rotates a rudder shaft (1) linked to the rudder of a ship, and is provided with a first oil pump (10a) which generates a first power for rotating the rudder shaft (1), an accumulator (10b) which accumulates the first power generated by the first oil pump (10a), a first switching valve (10d) which, in response to an inputted steering command, transmits the first power accumulated by the accumulator (10b) to the rudder shaft (1), and a pressure sensor (10c) which detects the amount of the first power accumulated in the accumulator (10b).

Description

舵取機及びこれを備えた船舶Steering device and ship equipped with the same
 本発明は、舵取機及びこれを備えた船舶に関する。 The present invention relates to a steering gear and a ship equipped with the same.
 従来から、船舶の舵を動作する舵取機として、油圧アクチュエータで駆動されるラプソンスライド型又はロータリーベーン型の舵取機が知られている。ラプソンスライド型の舵取機は、舵軸を旋回駆動するチラーに接続された油圧アクチュエータを駆動することで、舵軸を旋回させるものである(例えば、特許文献1参照。)。ロータリーベーン型の舵取機は、舵軸を囲むハウジングの内部に舵軸と一体の可動ベーンを備え、ハウジングと舵軸の間に可動ベーンで仕切られた複数の作動室を形成したものである(例えば、特許文献2参照。)。 2. Description of the Related Art Conventionally, as a steering gear for operating a rudder of a ship, a Rapson slide type or rotary vane type steering gear driven by a hydraulic actuator is known. A Rappson slide type steering gear drives a hydraulic actuator connected to a chiller that drives a steering shaft to turn, thereby turning the steering shaft (see, for example, Patent Document 1). The rotary vane type steering gear has a movable vane integrated with the rudder shaft inside a housing surrounding the rudder shaft, and a plurality of working chambers partitioned by the movable vanes between the housing and the rudder shaft are formed. (For example, refer patent document 2).
国際公開第2010/052777号International Publication No. 2010/052777 特開2011-73526号公報JP 2011-73526 A
 従来の舵取機は、舵の操舵指令として入力され得る最大の操舵量に対応できるように、十分な能力を持った高価な油圧アクチュエータを用いている。しかしながら、舵の操舵指令として入力される操舵指令は、例えば1時間に10~15回程度の頻度で入力されることが一般的である。また、操舵指令により入力される操舵量も最大の操舵量(例えば、-35°から+35°に至る70°の舵角範囲となる操舵量)に比べれば十分に少ないのが一般的である。 Conventional steering gear systems use expensive hydraulic actuators with sufficient ability to cope with the maximum amount of steering that can be input as a steering command of the rudder. However, a steering command input as a steering command of a rudder is generally input at a frequency of about 10 to 15 times per hour, for example. In addition, the amount of steering input by the steering command is generally sufficiently smaller than the maximum amount of steering (for example, the amount of steering in a 70 ° steering angle range from -35 ° to + 35 °).
 このような事情を鑑みれば、一般的な操舵指令の頻度や操舵量を考慮し、従来よりも能力の低い安価な油圧アクチュエータを舵取機の動力源として採用することが考えられる。しかしながら、油圧アクチュエータが発生する最大動力を超えた動力が必要とされる操舵指令が入力された場合に、その操舵指令に対応できないとなると、舵取機としての本来の性能が満たされなくなってしまう。 In view of such circumstances, it is conceivable to adopt an inexpensive hydraulic actuator having a lower capability than that of the conventional one as a power source of a steering gear, in consideration of the frequency and the amount of steering command in general. However, when a steering command requiring power exceeding the maximum power generated by the hydraulic actuator is input, if it can not respond to the steering command, the original performance as a steering gear will not be satisfied. .
 本発明は、このような事情を鑑みてなされたものであり、舵軸を回動する動力を発生する動力発生部の最大動力よりも高い動力が必要とされる場合であっても必要とされる動力を舵軸に伝達可能な舵取機及びこれを備えた船舶を提供することを目的とする。 The present invention has been made in view of such circumstances, and is required even when power higher than the maximum power of the power generation unit for generating power for rotating the rudder shaft is required. It is an object of the present invention to provide a steering gear capable of transmitting a driving force to a rudder shaft and a ship provided with the same.
 上記目的を達成するために、本発明は、以下の手段を採用する。
 本発明に係る舵取機は、船舶の舵に連結された舵軸を回動する舵取機であって、前記舵軸を回動するための第1動力を発生する第1動力発生部と、前記第1動力発生部が発生した前記第1動力を蓄積する蓄積部と、入力される操舵指令に応じて、前記蓄積部に蓄積された前記第1動力を前記舵軸に伝達する第1伝達部と、前記蓄積部に蓄積されている前記第1動力の蓄積量を検知する検知部と、を備えることを特徴とする。
In order to achieve the above object, the present invention adopts the following means.
A steering gear according to the present invention is a steering gear that rotates a rudder shaft connected to a rudder of a ship, and includes a first power generation unit that generates a first power for rotating the rudder shaft. A storage unit for storing the first power generated by the first power generation unit; and a first unit for transmitting the first power stored in the storage unit to the rudder shaft according to an input steering command. A transmission unit, and a detection unit that detects an accumulation amount of the first power accumulated in the accumulation unit.
 本発明に係る舵取機は、船舶の舵に連結された舵軸を回動する舵取機であり、舵軸を回動するための第1動力を発生する第1動力発生部が発生した第1動力を、蓄積部により蓄積する。蓄積された第1動力は、入力される操舵指令に応じて第1伝達部により舵軸に伝達される。このようにすることで、第1動力発生部の最大動力よりも高い動力が必要とされるような操舵指令が入力される場合であっても、蓄積部に蓄積された第1動力を舵軸に適切に伝達することができる。また、本発明に係る舵取機は、蓄積部に蓄積されている第1動力の蓄積量を検知する検知部を備えるので、例えば、操舵者は、蓄積部に蓄積された第1動力の蓄積量を認識した上で、適切な操舵指令をすることができる。 A steering gear according to the present invention is a steering gear that rotates a rudder shaft connected to a rudder of a ship, and a first power generating unit that generates a first power for rotating the rudder shaft is generated The first power is accumulated by the accumulation unit. The stored first power is transmitted to the rudder axle by the first transmission unit in response to the input steering command. In this way, the first power stored in the storage unit can be used as the rudder shaft even when a steering command that requires a power higher than the maximum power of the first power generation unit is input. Can be properly transmitted. In addition, since the steering gear according to the present invention includes the detection unit that detects the accumulation amount of the first power accumulated in the accumulation unit, for example, the driver stores the first power accumulated in the accumulation unit. After recognizing the amount, it is possible to give an appropriate steering command.
 また、本発明の第1態様の舵取機は、前記舵軸を回動するための第2動力を発生し、前記第1動力発生部よりも最大動力が大きい第2動力発生部と、前記操舵指令に応じて、前記第2動力発生部が発生した前記第2動力を前記舵軸に伝達する第2伝達部と、を備えることを特徴とする。このようにすることで、第1動力発生部が発生する第1動力を蓄積して舵軸に伝達することを可能としつつ、第1動力の蓄積量が少ない場合であっても、第1動力発生部よりも最大動力が大きい第2動力発生部が発生する第2動力を舵軸に伝達することができる。 Further, the steering gear according to the first aspect of the present invention generates a second power for rotating the rudder shaft, and a second power generation unit having a maximum power larger than that of the first power generation unit; And a second transmission unit for transmitting the second power generated by the second power generation unit to the rudder shaft in response to a steering command. In this way, it is possible to store the first power generated by the first power generation unit and transmit it to the rudder shaft, and at the same time, even if the amount of stored first power is small, the first power The second power generated by the second power generation unit having the maximum power larger than that of the generation unit can be transmitted to the rudder shaft.
 また、本発明の第1態様の舵取機においては、操舵者の入力指示に基づいて、前記第1動力を前記舵軸に伝達する第1の前記操舵指令、または前記第2動力を前記舵軸に伝達する第2の前記操舵指令のいずれかを入力する入力部と、前記検知部が検知する前記第1動力の蓄積量を前記操舵者に通知する通知部と、前記入力部に前記第1の操舵指令が入力された場合は前記第1動力を前記舵軸に伝達するよう前記第1伝達部を制御し、前記入力部に前記第2の操舵指令が入力された場合は前記第2動力を前記舵軸に伝達するよう前記第2伝達部を制御する制御部とを備える構成としてもよい。 Further, in the steering gear according to the first aspect of the present invention, the first steering command for transmitting the first power to the rudder shaft or the second power is controlled according to an input instruction from the driver. An input unit for inputting any of the second steering command transmitted to the shaft; a notification unit for notifying the driver of the accumulated amount of the first power detected by the detection unit; When the steering command of 1 is input, the first transmission unit is controlled to transmit the first power to the rudder axle, and when the second steering command is input to the input unit, the second transmission command is transmitted. It is good also as composition provided with a control part which controls the 2nd transmission part so that motive power may be transmitted to the rudder axle.
 このようにすることで、操舵者が第1動力の蓄積量を認識した上で、蓄積部が蓄積する第1動力を舵軸に伝達する第1の操舵指令、または第2動力発生部が発生する第2動力を舵軸に伝達する第2の操舵指令のいずれかを適切に入力することができる。従って、第1動力の蓄積量が少ない場合には、第2動力発生部が発生する第2動力を舵軸に伝達する第2の操舵指令を入力するといった適切な操舵指令の入力が可能となる。 In this way, the first steering instruction or second power generation unit for transmitting the first power accumulated in the accumulation unit to the rudder shaft is generated after the rider recognizes the accumulation amount of the first power. It is possible to appropriately input any of the second steering commands for transmitting the second power to the steering shaft. Therefore, when the accumulated amount of the first power is small, it becomes possible to input an appropriate steering command such as inputting a second steering command for transmitting the second power generated by the second power generator to the rudder axle. .
 この構成において、前記通知部が、前記蓄積量を示す情報を表示部に表示することにより前記蓄積量を通知するようにしてもよい。このようにすることで、操舵者が第1動力の蓄積量を目視により認識した上で、蓄積部が蓄積する第1動力を舵軸に伝達する第1の操舵指令、または第2動力発生部が発生する第2動力を舵軸に伝達する第2の操舵指令のいずれかを適切に入力することができる。 In this configuration, the notification unit may notify the storage amount by displaying information indicating the storage amount on a display unit. In this way, the first steering command or second power generation unit transmits the first power accumulated in the accumulation unit to the rudder shaft after the rider visually recognizes the accumulated amount of the first power. Can appropriately input any of the second steering commands for transmitting the second power generated by the steering wheel to the steering shaft.
 また、本発明の第1態様の舵取機においては、前記検知部が検知する前記第1動力の蓄積量に応じて、前記第1伝達部および前記第2伝達部を制御する制御部を有する構成としてもよい。このようにすることで、第1動力の蓄積量に応じて、第1動力の舵軸への伝達と第2動力の舵軸への伝達が適切に制御される。 Further, the steering gear according to the first aspect of the present invention includes a control unit that controls the first transmission unit and the second transmission unit according to the accumulation amount of the first power detected by the detection unit. It is good also as composition. In this way, transmission of the first power to the rudder shaft and transmission of the second power to the rudder shaft are appropriately controlled according to the accumulated amount of the first power.
 また、前述した構成においては、前記操舵指令は、目標舵角の指令を含み、前記制御部が、前記目標舵角の指令と前記第1動力の蓄積量に応じて、前記第1伝達部および前記第2伝達部を制御するようにしてもよい。このようにすることで、目標舵角の指令と第1動力の蓄積量に応じて、第1動力の舵軸への伝達と第2動力の舵軸への伝達が適切に制御される。 Further, in the configuration described above, the steering command includes a command of a target steering angle, and the control unit transmits the first transmission unit according to the command of the target steering angle and the accumulated amount of the first power. The second transmission unit may be controlled. In this way, transmission of the first power to the rudder shaft and transmission of the second power to the rudder shaft are appropriately controlled according to the command of the target steering angle and the accumulated amount of the first power.
 また、前述した構成においては、前記制御部が、前記蓄積量が所定量よりも多い場合は前記第1動力を前記舵軸に伝達し、前記蓄積量が前記所定量よりも少ない場合は前記第2動力を前記舵軸に伝達するよう前記第1伝達部および前記第2伝達部を制御するようにしてもよい。このようにすることで、蓄積量が所定量よりも大きい場合にはエネルギー消費の大きい第2動力発生部を動作させないようにし、舵取機のエネルギー消費を抑えることができる。この場合、前記所定量が、予め定められた不変量であってもよい。また、この場合、前記操舵指令の入力履歴を記憶する記憶部と、前記記憶部に記憶される前記入力履歴に基づいて、前記所定量を設定する閾値設定部とを備えるようにしてもよい。このようにすることで、操舵指令の入力履歴に応じて適切に、第1動力の舵軸への伝達と第2動力の舵軸への伝達を制御することができる。 Further, in the configuration described above, the control unit transmits the first power to the rudder shaft when the accumulated amount is larger than a predetermined amount, and the control unit transmits the first power when the accumulated amount is smaller than the predetermined amount. The first transmission unit and the second transmission unit may be controlled to transmit two powers to the rudder shaft. In this way, when the accumulated amount is larger than the predetermined amount, the second power generation unit that consumes a large amount of energy can be prevented from operating, and the energy consumption of the steering gear can be suppressed. In this case, the predetermined amount may be a predetermined invariant. In this case, a storage unit storing the input history of the steering command and a threshold setting unit setting the predetermined amount based on the input history stored in the storage unit may be provided. By doing this, it is possible to appropriately control the transmission of the first power to the rudder shaft and the transmission of the second power to the rudder shaft according to the input history of the steering command.
 また、本発明の第2態様の舵取機は、前記第1動力発生部が、作動流体を吸入し高圧で吐出するポンプであり、前記蓄積部が、前記ポンプから吐出した前記作動流体を加圧状態で蓄積するアキュムレータであることを特徴とする。このようにすることで、作動流体を用いて第1動力を蓄積し、舵軸の動力として利用することができる。 In the steering gear according to the second aspect of the present invention, the first power generation unit is a pump that sucks in the working fluid and discharges it at high pressure, and the accumulation unit adds the working fluid discharged from the pump. It is characterized in that it is an accumulator that accumulates under pressure. In this way, the first power can be stored using the working fluid and used as the power of the rudder shaft.
 また、本発明に係る船舶は、前述した舵取機を備えることを特徴とする。 A ship according to the present invention is characterized by including the steering gear described above.
 本発明によれば、舵軸を回動する動力を発生する動力発生部の最大動力よりも高い動力が必要とされる場合であっても必要とされる動力を舵軸に伝達可能な舵取機及びこれを備えた船舶を提供することができる。 According to the present invention, the steering capable of transmitting the required power to the rudder shaft even when the motive power higher than the maximum motive power of the power generating unit for generating the power for rotating the rudder shaft is required. An aircraft and a ship equipped with the same can be provided.
第1実施形態の舵取機の構成図である。It is a block diagram of the steering gear of 1st Embodiment. アキュムレータの構造を示す部分縦断面図である。It is a fragmentary longitudinal cross-sectional view which shows the structure of an accumulator. 舵取機の制御構成を示すブロック図である。It is a block diagram showing control composition of a steering gear. 第1実施形態の舵取機の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the steering gear of 1st Embodiment. 第2実施形態の舵取機の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the steering gear of 2nd Embodiment. 第3実施形態の舵取機の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the steering gear of 3rd Embodiment. アキュムレータの圧力の変化を示す図である。It is a figure which shows the change of the pressure of an accumulator.
〔第1実施形態〕
 本発明の第1実施形態について、図1から図4を用いて説明する。図1は、第1実施形態の舵取機100の構成図である。図2は、アキュムレータ10bの構造を示す部分縦断面図である。図3は、舵取機100の制御構成を示すブロック図である。
 本実施形態の舵取機100は、船舶の舵(不図示)に連結された舵軸1を油圧による動力を用いて回動することによって船舶を操舵する装置である。舵軸1は、下端部において舵と連結されており、上端部においてチラー2に連結されている。チラー2は舵軸1を中心に回転する部材であり、切欠部2aが設けられている。
First Embodiment
A first embodiment of the present invention will be described using FIGS. 1 to 4. FIG. 1 is a block diagram of the steering gear 100 of the first embodiment. FIG. 2 is a partial longitudinal sectional view showing the structure of the accumulator 10b. FIG. 3 is a block diagram showing a control configuration of the steering gear 100. As shown in FIG.
The steering gear 100 of the present embodiment is a device for steering a ship by rotating a rudder shaft 1 connected to a rudder (not shown) of the ship using hydraulic power. The rudder axle 1 is connected to the rudder at the lower end and is connected to the chiller 2 at the upper end. The chiller 2 is a member that rotates about the rudder shaft 1 and is provided with a notch 2a.
 図1において、油圧アクチュエータ30は、ラム3と、シリンダ4a,4bとを備え、油室5a,5bに供給される作動油(作動流体)の油圧によってラム3を移動させることにより舵軸1を回動する。
 ラム3は、略円柱形状の軸部材であり、中心軸に沿った方向(図1の左右方向)に移動可能である。ラム3の中央部には中心軸に交差する方向に突出したラムピン3aが設けられている。ラムピン3aは、チラー2の切欠部2aの挿入した状態で組み付けられている。ラム3は、後述するように、油圧により中心軸に沿って移動する。ラム3の移動に伴って、ラムピン3aが、チラー2を舵軸1を中心とした時計回り方向または反時計回り方向に回動させる。ラムピン3aは、ラム3の移動に伴ってチラー2の切欠部2aをスライドするように移動する。
In FIG. 1, the hydraulic actuator 30 includes a ram 3 and cylinders 4a and 4b, and moves the rudder shaft 1 by moving the ram 3 by the hydraulic pressure of hydraulic fluid (hydraulic fluid) supplied to the oil chambers 5a and 5b. Rotate.
The ram 3 is a substantially cylindrical shaft member, and is movable in a direction along the central axis (left and right direction in FIG. 1). At a central portion of the ram 3, a ram pin 3a is provided which protrudes in a direction intersecting the central axis. The ram pin 3a is assembled in a state in which the notch 2a of the chiller 2 is inserted. The ram 3 moves along the central axis by hydraulic pressure as described later. With the movement of the ram 3, the ram pin 3 a rotates the chiller 2 clockwise or counterclockwise around the rudder shaft 1. The ram pin 3 a moves to slide the notch 2 a of the chiller 2 as the ram 3 moves.
 本実施形態の舵取機100は、第1油圧系統10と第2油圧系統20を備え、これらの油圧系統から油室5a,5bに油が供給される。第1油圧系統10は、第1油ポンプ10a(第1動力発生部)と、アキュムレータ10b(蓄積部)と、圧力センサ10c(検知部)と、第1切替弁10d(第1伝達部)と、逆止弁10eを備える。第2油圧系統20は、第2油ポンプ20a(第2動力発生部)と、第2切替弁20b(第2伝達部)と、逆止弁20cとを備える。第1油圧系統10にはアキュムレータ10bと圧力センサ10cが設けられているが、第2油圧系統20にはこれらに対応する構成が設けられていない。第1油圧系統10は、アキュムレータ10bに第1油ポンプ10aから供給される作動油を蓄積し作動油の圧力(動力)を蓄積することができる。このようにアキュムレータ10bに蓄積される圧力(動力)を用いることで、第1油ポンプ10aとして最大動力の小さい小型ポンプを用いることができる。 The steering gear 100 of the present embodiment includes a first hydraulic system 10 and a second hydraulic system 20, and oil is supplied from these hydraulic systems to the oil chambers 5a and 5b. The first hydraulic system 10 includes a first oil pump 10a (first power generation unit), an accumulator 10b (accumulation unit), a pressure sensor 10c (detection unit), and a first switching valve 10d (first transmission unit). , The check valve 10e. The second hydraulic system 20 includes a second oil pump 20 a (second power generation unit), a second switching valve 20 b (second transmission unit), and a check valve 20 c. Although the accumulator 10b and the pressure sensor 10c are provided in the first hydraulic system 10, the second hydraulic system 20 is not provided with a configuration corresponding thereto. The first hydraulic system 10 can accumulate the hydraulic oil supplied from the first oil pump 10 a in the accumulator 10 b and accumulate pressure (power) of the hydraulic oil. By using the pressure (power) accumulated in the accumulator 10b as described above, a small pump with a small maximum power can be used as the first oil pump 10a.
 次に、第1油圧系統10が作動油を油室5a,5bに供給する動作について説明する。
 第1油圧系統10の第1油ポンプ10aは、油タンク40から作動油を汲み上げ、圧力を高めて高圧の作動油として吐出する。第1油ポンプ10aが吐出する作動油は、舵軸1を回動するための動力(第1動力)として用いられる。従って、第1油ポンプ10aは、舵軸1を回動するため動力(第1動力)を発生する装置である。第1油ポンプ10aから吐出された高圧の作動油は、逆止弁10eを経由してアキュムレータ10bに流入する。なお、逆止弁10eの存在により、第1油ポンプ10aからアキュムレータ10bに供給された作動油は、逆止弁10eを経由して第1油ポンプ10aに戻ることはない。
Next, an operation in which the first hydraulic system 10 supplies hydraulic fluid to the oil chambers 5a and 5b will be described.
The first oil pump 10a of the first hydraulic system 10 pumps up the working oil from the oil tank 40, raises the pressure, and discharges it as a high pressure working oil. The hydraulic oil discharged by the first oil pump 10 a is used as power (first power) for rotating the rudder shaft 1. Therefore, the first oil pump 10 a is a device that generates power (first power) for rotating the rudder shaft 1. The high-pressure hydraulic fluid discharged from the first oil pump 10a flows into the accumulator 10b via the check valve 10e. The hydraulic oil supplied from the first oil pump 10a to the accumulator 10b does not return to the first oil pump 10a via the check valve 10e due to the presence of the check valve 10e.
 図2には、アキュムレータ10bの構造を示す部分縦断面図が示されている。図2のアキュムレータ10bは、第1油ポンプ10aが発生した動力(第1動力)を加圧状態の作動油として蓄積し、舵軸1を回動する動力として出力する装置である。
 アキュムレータ10bは、ブラダ型アキュムレータであり、本体50と、ブラダ51と、ポペット52と、スプリング53と、ガスバルブ54を備える。本体50は、例えば金属により形成された中空の筐体であり、下端部が油路10fに接続され、上端部にガスバルブ54が配置されている。本体50の内部にはゴム製の隔膜であるブラダ51が配置されておりブラダ51内にはガスバルブ54を介して窒素ガス等の不活性ガスが封入可能となっている。
A partial longitudinal sectional view showing the structure of the accumulator 10b is shown in FIG. The accumulator 10 b of FIG. 2 is a device that accumulates the power (first power) generated by the first oil pump 10 a as hydraulic fluid under pressure and outputs the power as the power for rotating the rudder shaft 1.
The accumulator 10 b is a bladder type accumulator, and includes a main body 50, a bladder 51, a poppet 52, a spring 53, and a gas valve 54. The main body 50 is a hollow casing made of, for example, metal, and the lower end portion thereof is connected to the oil passage 10 f, and the gas valve 54 is disposed at the upper end portion. A bladder 51 which is a rubber diaphragm is disposed inside the main body 50, and an inert gas such as nitrogen gas can be enclosed in the bladder 51 via a gas valve 54.
 本体50の内部の油室55には、第1油ポンプ10aから供給される高圧の作動油が流入する。第1油ポンプ10aから高圧の作動油が供給されておらず、不活性ガスにより本体50とブラダ51が密着する状態となっている場合、ポペット52はブラダ51により下方に押し付けられた状態となる。この状態では、スプリング53がポペット52に付与する上向きの付勢力よりもブラダ51がポペット52を下方に押し付ける力が強く、ポペット52により油室55と油路10fの流通が断たれた状態となる。油室55には、油室55内の作動油の圧力を検知するための圧力センサ10cが配置されている。圧力センサ10cは、油室55内の圧力を検知し、検知した圧力に応じた出力信号(動力の蓄積量)を、後述する制御部60に出力する。 A high pressure hydraulic oil supplied from the first oil pump 10a flows into the oil chamber 55 inside the main body 50. When the high pressure hydraulic oil is not supplied from the first oil pump 10a and the main body 50 and the bladder 51 are in close contact with each other by the inert gas, the poppet 52 is pressed downward by the bladder 51. . In this state, the force by which the bladder 51 presses the poppet 52 downward is stronger than the upward biasing force applied by the spring 53 to the poppet 52, and the poppet 52 breaks the circulation of the oil chamber 55 and the oil passage 10f. . In the oil chamber 55, a pressure sensor 10c for detecting the pressure of the hydraulic oil in the oil chamber 55 is disposed. The pressure sensor 10c detects the pressure in the oil chamber 55, and outputs an output signal (the amount of accumulated power) corresponding to the detected pressure to the control unit 60 described later.
 第1油ポンプ10aが動作を開始し、高圧の作動油の油路10fへの供給が開始されると、作動油の圧力により、ポペット52を上方へ押し上げる力が徐々に大きくなる。作動油がポペット52を上方へ押し上げる力と、スプリング53がポペット52を上方へ押し上げる付勢力の合力が、ブラダ51がポペット52を下方に押し付ける力に打ち勝つと、油路10fから油室55への作動油の流入が開始する。その後、第1油ポンプ10aからの作動油の供給が続くと油室55に流入する作動油の量が多くなり、それに伴ってブラダ51内の不活性ガスが圧縮される。アキュムレータ10bの本体50内では、ブラダ51内の不活性ガスの圧力と、油室55内の作動油の圧力が釣り合った状態となっている。従って、油室55に流入する作動油の量が多くなるに従って、油室55内の作動油の圧力が徐々に高くなっていく。このようにして第1油ポンプ10aが発生する圧力(第1動力)がアキュムレータ10bに蓄積される。なお、アキュムレータ10bに圧力を蓄積する段階では、第1切替弁10dは、油路10f内の作動油を油圧アクチュエータ30の油室5a,5bに供給しない状態となっている。 When the first oil pump 10a starts operating and supply of high pressure hydraulic oil to the oil passage 10f is started, the pressure of the hydraulic oil gradually increases the force for pushing the poppet 52 upward. When the force of the hydraulic oil pushing the poppet 52 upward and the resultant force of the spring 53 pushing the poppet 52 upward overcome the force of the bladder 51 pushing the poppet 52 downward, the oil passage 10 f to the oil chamber 55 Inflow of hydraulic oil starts. Thereafter, when the supply of hydraulic oil from the first oil pump 10a continues, the amount of hydraulic oil flowing into the oil chamber 55 increases, and the inert gas in the bladder 51 is compressed accordingly. In the main body 50 of the accumulator 10b, the pressure of the inert gas in the bladder 51 and the pressure of the hydraulic oil in the oil chamber 55 are in balance. Therefore, as the amount of hydraulic fluid flowing into the oil chamber 55 increases, the pressure of the hydraulic fluid in the oil chamber 55 gradually increases. Thus, the pressure (first power) generated by the first oil pump 10a is accumulated in the accumulator 10b. In the stage of accumulating pressure in the accumulator 10b, the first switching valve 10d does not supply the hydraulic oil in the oil passage 10f to the oil chambers 5a and 5b of the hydraulic actuator 30.
 第1切替弁10dは、制御部60の指示により、油路10fを介してアキュムレータ10bから供給される高圧の作動油を、油路10gを経由して油圧アクチュエータ30の油室5bへ供給するか、油路10hを経由して油圧アクチュエータ30の油室5aへ供給するかを切り替えることができる。また、第1切替弁10dは、制御部60の指示により、油路10fの作動油を他の油路へ供給しないように遮断することもできる。つまり、第1切替弁10dは、制御部60の指示により、油路10fの作動油を、油路10g,10hのいずれかに供給するか、いずれにも供給しないかの3つの状態を切り替えることができる。油路10iは、油室5a,5b内の作動油を油タンク40に戻す際に用いられる。 Does the first switching valve 10d supply high-pressure hydraulic oil supplied from the accumulator 10b via the oil passage 10f to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 10g according to an instruction from the control unit 60? It is possible to switch the supply to the oil chamber 5a of the hydraulic actuator 30 via the oil passage 10h. Further, the first switching valve 10d can also shut off the hydraulic oil of the oil passage 10f not to be supplied to another oil passage according to an instruction from the control unit 60. That is, the first switching valve 10d switches three states of supplying the working oil of the oil passage 10f to either of the oil passages 10g and 10h or not supplying any of them according to an instruction of the control unit 60. Can. The oil passage 10i is used to return the hydraulic oil in the oil chambers 5a and 5b to the oil tank 40.
 制御部60の指示は、入力部70を介して入力される船舶の操舵者の操舵指令に応じたものであり、制御部60から第1切替弁10dに制御信号を出力することにより行われる。第1切替弁10dは、入力部70を介して入力される船舶の操舵者の操舵指令に応じて、アキュムレータ10bに蓄積された作動油の圧力(動力)を油圧アクチュエータ30を介して舵軸1に伝達する。 The instruction of the control unit 60 corresponds to the steering instruction of the ship steering person inputted through the input unit 70, and is performed by outputting a control signal from the control unit 60 to the first switching valve 10d. The first switching valve 10d controls the pressure (power) of hydraulic fluid stored in the accumulator 10b through the hydraulic actuator 30 in accordance with the steering command of the ship's steering operator input through the input unit 70 via the hydraulic actuator 30. To communicate.
 次に、第2油圧系統20が作動油を油室5a,5bに供給する動作について説明する。
 第2油圧系統20の第2油ポンプ20aは、油タンク40から作動油を汲み上げ、圧力を高めて高圧の作動油として吐出する。第2油ポンプ20aが吐出する作動油は、舵軸1を回動するための動力(第2動力)として用いられる。従って、第2油ポンプ20aは、舵軸1を回動するため動力(第2動力)を発生する装置である。第2油ポンプ20aから吐出された高圧の作動油は、逆止弁20cを経由して第2切替弁20bに流入する。なお、逆止弁20cの存在により、第2油ポンプ20aから第2切替弁20bに供給された作動油は、逆止弁20cを経由して第2油ポンプ20aに戻ることはない。
Next, an operation in which the second hydraulic system 20 supplies hydraulic fluid to the oil chambers 5a and 5b will be described.
The second oil pump 20a of the second hydraulic system 20 pumps up the working oil from the oil tank 40, raises the pressure, and discharges it as a high-pressure working oil. The hydraulic fluid discharged by the second oil pump 20 a is used as a power (second power) for rotating the rudder shaft 1. Therefore, the second oil pump 20 a is a device that generates power (second power) for rotating the rudder shaft 1. The high-pressure hydraulic fluid discharged from the second oil pump 20a flows into the second switching valve 20b via the check valve 20c. The hydraulic oil supplied from the second oil pump 20a to the second switching valve 20b is not returned to the second oil pump 20a via the check valve 20c due to the presence of the check valve 20c.
 制御部60の指示により第2油ポンプ20aが動作を開始すると、高圧の作動油が第2切替弁20bに供給される。第2切替弁20bは、制御部60の指示により、第2油ポンプ20aから供給される高圧の作動油を、油路20dを経由して油圧アクチュエータ30の油室5bへ供給するか、油路20eを経由して油圧アクチュエータ30の油室5aへ供給するかを切り替えることができる。また、第2切替弁20bは、制御部60の指示により、第2油ポンプ20aから供給される作動油を油路20fを経由して油タンク40へ戻すこともできる。つまり、第2切替弁20bは、制御部60の指示により、第2油ポンプ20aから供給される作動油を、油路20d,20e,20fのいずれかに供給する3つの状態を切り替えることができる。 When the second oil pump 20a starts operation according to an instruction of the control unit 60, high-pressure hydraulic oil is supplied to the second switching valve 20b. The second switching valve 20b supplies the high-pressure hydraulic oil supplied from the second oil pump 20a to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 20d according to an instruction from the control unit 60, or the oil passage It is possible to switch the supply to the oil chamber 5a of the hydraulic actuator 30 via 20e. The second switching valve 20b can also return the hydraulic oil supplied from the second oil pump 20a to the oil tank 40 via the oil passage 20f according to an instruction from the control unit 60. That is, the second switching valve 20b can switch the three states of supplying the hydraulic oil supplied from the second oil pump 20a to any of the oil paths 20d, 20e, and 20f according to an instruction of the control unit 60. .
 制御部60の指示は、入力部70を介して入力される船舶の操舵者の操舵指令に応じたものであり、制御部60から第2切替弁20bに制御信号を出力することにより行われる。第2切替弁20bは、入力部70を介して入力される船舶の操舵者の操舵指令に応じて、第2油ポンプ20aが発生する作動油の圧力(動力)を油圧アクチュエータ30を介して舵軸1に伝達する。 The instruction of the control unit 60 corresponds to the steering command of the ship's steerer input via the input unit 70, and is issued by the control unit 60 outputting a control signal to the second switching valve 20b. The second switching valve 20b steers the pressure (power) of the hydraulic oil generated by the second oil pump 20a through the hydraulic actuator 30, in accordance with the steering command of the ship's steerer input via the input unit 70. Transmit to axis 1
 前述した様に、第1油圧系統10にはアキュムレータ10bと圧力センサ10cが設けられているが、第2油圧系統20にはこれらに対応する構成が設けられていない。第1油圧系統10には、アキュムレータ10bに蓄積される圧力(動力)を用いることで、第1油ポンプ10aとして最大動力の小さい小型ポンプを用いることができる。一方、第2油圧系統20には、第1油ポンプ10aよりも最大動力が大きい第2油ポンプ20aが用いられる。第2油ポンプ20aの最大動力は、アキュムレータ10bに蓄積される圧力が十分ではなく、第2油ポンプ20aの動力だけしか舵軸1の回動に用いることができない場合であっても、舵軸1を回動するのに十分な動力となっている。 As mentioned above, although the accumulator 10b and the pressure sensor 10c are provided in the 1st hydraulic system 10, the 2nd hydraulic system 20 is not provided with the structure corresponding to these. By using the pressure (power) stored in the accumulator 10b, the first hydraulic system 10 can use a small pump with a small maximum power as the first oil pump 10a. On the other hand, for the second hydraulic system 20, a second oil pump 20a having a larger maximum power than the first oil pump 10a is used. The maximum power of the second oil pump 20a is the rudder shaft even if the pressure stored in the accumulator 10b is not sufficient and only the power of the second oil pump 20a can be used for turning the rudder shaft 1 It has sufficient power to rotate 1
 次に、図3を用いて、第1実施形態の舵取機100の制御構成について説明する。
 図3に示されるように、第1実施形態の舵取機100は制御部60を備える。制御部60は、入力部70と、圧力センサ10cと、表示部80と、記憶部90と、第1油ポンプ10aと、第1切替弁10dと、第2油ポンプ20aと、第2切替弁20bとの間で各種の信号の入出力を行う。
Next, a control configuration of the steering gear 100 according to the first embodiment will be described with reference to FIG.
As shown in FIG. 3, the steering gear 100 of the first embodiment includes a control unit 60. The control unit 60 includes an input unit 70, a pressure sensor 10c, a display unit 80, a storage unit 90, a first oil pump 10a, a first switching valve 10d, a second oil pump 20a, and a second switching valve. 20b inputs and outputs various signals.
 入力部70は、船舶の操舵者の入力指示を受け付け、入力指示に応じた操舵指令を制御部60に入力するものである。本実施形態においては、船舶の舵角の操舵指令と、第1油圧系統10の動力を舵軸1に伝達する操舵指令(第1の操舵指令)と、第2油圧系統20の動力を舵軸1に伝達する操舵指令(第2の操舵指令)とが、少なくとも入力部70により入力される。 The input unit 70 receives an input instruction from the ship's rider and inputs a steering command corresponding to the input instruction to the control unit 60. In the present embodiment, the steering command of the steering angle of the ship, the steering command (first steering command) for transmitting the power of the first hydraulic system 10 to the rudder shaft 1, and the power of the second hydraulic system 20 as the rudder A steering command (second steering command) to be transmitted to 1 is input by at least the input unit 70.
 圧力センサ10cは、アキュムレータ10bの油室55内の圧力を検知し、検知した圧力に応じた出力信号(第1動力の蓄積量)を、制御部60に出力する。表示部80は、操舵者に各種の情報を通知するために用いられ、液晶パネル等により構成されている。表示部80には、圧力センサ10cから制御部60に出力された出力信号に基づいて、アキュムレータ10bの油室55内の圧力が表示される。表示部80は、このようにして圧力センサ10cが検知する圧力(第1動力の蓄積量)を操舵者に通知する。 The pressure sensor 10c detects the pressure in the oil chamber 55 of the accumulator 10b, and outputs an output signal (the accumulated amount of the first power) corresponding to the detected pressure to the control unit 60. The display unit 80 is used to notify the driver of various information, and is configured of a liquid crystal panel or the like. The pressure in the oil chamber 55 of the accumulator 10b is displayed on the display unit 80 based on the output signal output from the pressure sensor 10c to the control unit 60. The display unit 80 notifies the driver of the pressure (the accumulated amount of the first power) detected by the pressure sensor 10c in this manner.
 記憶部90は、制御部60が船舶の操舵を行うための各種のデータを記憶するものである。記憶部90には、船舶の操舵を行うための制御プログラムが記憶されており、制御部60は記憶部90に記憶された制御プログラムを読み出して実行することにより船舶の操舵を行う。また、記憶部90は、操舵者が入力部70を介して入力した操舵指令の入力履歴や、圧力センサ10cから制御部60に出力される出力信号の履歴を記憶する。 The storage unit 90 stores various data for the control unit 60 to steer the ship. The storage unit 90 stores a control program for steering the ship, and the control unit 60 steers the vessel by reading and executing the control program stored in the storage unit 90. In addition, the storage unit 90 stores an input history of a steering command input by the driver via the input unit 70, and a history of an output signal output from the pressure sensor 10c to the control unit 60.
 次に、図3に示す制御構成を備える舵取機100が実行する動作について図4を用いて説明する。前述したように、舵取機100の制御部60は、記憶部90に記憶された制御プログラムを読み出して実行することにより、図4に示される動作を実行する。
 図4に示される処理が開始されると、ステップS401で、制御部60は、圧力センサ10cに圧力を検知するように制御指令を出力する。この制御指令に応答して、圧力センサ10cは、アキュムレータ10bの油室55内の圧力を検知し、検知した圧力に応じた出力信号を、制御部60に出力する。
Next, an operation performed by the steering gear 100 having the control configuration shown in FIG. 3 will be described with reference to FIG. As described above, the control unit 60 of the steering gear 100 executes the operation shown in FIG. 4 by reading out and executing the control program stored in the storage unit 90.
When the process shown in FIG. 4 is started, in step S401, the control unit 60 outputs a control command to the pressure sensor 10c so as to detect a pressure. In response to the control command, the pressure sensor 10c detects the pressure in the oil chamber 55 of the accumulator 10b, and outputs an output signal corresponding to the detected pressure to the control unit 60.
 ステップS402で、制御部60は、圧力センサ10cから出力された出力信号を解析してアキュムレータ10bの油室55内の圧力を示す数値を算出し、算出した数値に応じた表示データを表示部80に出力する。表示部80は、制御部60から入力される表示データを表示することにより、操舵者にアキュムレータ10bの油室55内の圧力を通知する。 In step S402, the control unit 60 analyzes the output signal output from the pressure sensor 10c, calculates a numerical value indicating the pressure in the oil chamber 55 of the accumulator 10b, and displays the display data corresponding to the calculated numerical value. Output to The display unit 80 notifies the driver of the pressure in the oil chamber 55 of the accumulator 10 b by displaying the display data input from the control unit 60.
 ステップS403で、制御部60は、入力部70が操舵者の入力指示を受け付けて入力指示に応じた操舵指令を制御部60に出力したかどうかを判断する。制御部60は、入力部70から操舵指令が入力された場合にはステップS404に処理を進める。前述したとおり、操舵指令には、船舶の舵角の操舵指令と、第1油圧系統10の動力を舵軸1に伝達する操舵指令(第1の操舵指令)と、第2油圧系統20の動力を舵軸1に伝達する操舵指令(第2の操舵指令)とが少なくとも含まれる。例えば、舵角の操舵指令と第1の操舵指令が入力される場合とは、第1油圧系統10の動力を舵軸1を回動するための動力として用い、入力指示された舵角となるように舵軸1を回動させる場合をいう。また、例えば、舵角の操舵指令と第2の操舵指令が入力される場合とは、第2油圧系統20の動力を舵軸1を回動するための動力として用い、入力指示された舵角となるように舵軸1を回動させる場合をいう。 In step S403, the control unit 60 determines whether the input unit 70 receives an input instruction from the driver and outputs a steering instruction according to the input instruction to the control unit 60. When a steering command is input from input unit 70, control unit 60 proceeds to step S404. As described above, the steering command includes the steering command of the steering angle of the ship, the steering command (first steering command) for transmitting the power of the first hydraulic system 10 to the rudder shaft 1, and the power of the second hydraulic system 20. And at least a steering command (second steering command) for transmitting the steering wheel 1 to the steering shaft 1. For example, when the steering command of the steering angle and the first steering command are input, the power of the first hydraulic system 10 is used as the power for rotating the rudder shaft 1, and the steering angle is input and instructed. The case where the rudder axle 1 is turned is said. Also, for example, when the steering command of the steering angle and the second steering command are input, the power of the second hydraulic system 20 is used as the power for rotating the rudder shaft 1, and the steering angle instructed The case where the rudder axle 1 is turned so that it may become is said.
 ステップS404で、制御部60は、入力部70から入力された操舵指令が第1油圧系統10への指令であるかどうかを判断し、第1油圧系統10への指令であればステップS405へ処理を進め、第2油圧系統20への指令であればステップS406へ処理を進める。
 ステップS405で、制御部60は、第1切替弁10dへの制御指令を送信する。具体的には、油路10fを介してアキュムレータ10bから供給される高圧の作動油を、油路10gを経由して油圧アクチュエータ30の油室5bへ供給するか、油路10hを経由して油圧アクチュエータ30の油室5aへ供給するかのいずれかを第1切替弁10dに実行させる制御指令を送信する。作動油の供給先を、油圧アクチュエータ30の油室5bとするか油室5aとするかは、ステップS403で入力された舵角の操舵指令により決定される。つまり、制御部60は、現在の舵角とステップS403で入力された舵角の操舵指令とを比較し、舵軸1をいずれの回転方向に回動させるかによって作動油の供給先を決定する。なお、現在の舵角は舵角検知センサ(不図示)により検知されるものとする。
In step S404, the control unit 60 determines whether the steering command input from the input unit 70 is a command to the first hydraulic system 10. If the command is to the first hydraulic system 10, the process proceeds to step S405. If the command is for the second hydraulic system 20, the process proceeds to step S406.
At step S405, the control unit 60 transmits a control command to the first switching valve 10d. Specifically, high-pressure hydraulic oil supplied from the accumulator 10b via the oil passage 10f is supplied to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 10g or hydraulic pressure via the oil passage 10h A control command to cause the first switching valve 10d to execute either supply to the oil chamber 5a of the actuator 30 is transmitted. Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S403. That is, the control unit 60 compares the current steering angle with the steering command of the steering angle input in step S403, and determines the supply destination of the hydraulic oil according to which rotation direction the steering shaft 1 is rotated. . The current steering angle is detected by a steering angle detection sensor (not shown).
 ステップS406で、制御部60は、第2切替弁20bへの制御指令を送信する。具体的には、制御部60は、第2油ポンプ20aから供給される高圧の作動油を、油路20dを経由して油圧アクチュエータ30の油室5bへ供給するか、油路20eを経由して油圧アクチュエータ30の油室5aへ供給するかのいずれかを第2切替弁20bが切り替える制御指令を送信する。作動油の供給先を、油圧アクチュエータ30の油室5bとするか油室5aとするかは、ステップS403で入力された舵角の操舵指令により決定される。 At step S406, the control unit 60 transmits a control command to the second switching valve 20b. Specifically, the control unit 60 supplies high-pressure hydraulic oil supplied from the second oil pump 20a to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 20d or via the oil passage 20e. Then, a control command for switching the second switching valve 20b to either supply to the oil chamber 5a of the hydraulic actuator 30 is transmitted. Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S403.
 ステップS407で、制御部60は、現在の舵角が目標舵角に到達したかどうかを判断し、目標舵角に到達したと判断した場合はステップS408に処理を進める。制御部60は、舵角検知センサ(不図示)が検知する現在の舵角がステップS403で入力された操舵指令により指示された舵角と一致した場合に、現在の舵角が目標舵角に到達したと判断する。 At step S407, control unit 60 determines whether or not the current steering angle has reached the target steering angle. If it is determined that the target steering angle has been reached, control proceeds to step S408. When the current steering angle detected by the steering angle detection sensor (not shown) matches the steering angle instructed by the steering command input in step S403, the control unit 60 sets the current steering angle to the target steering angle. Judge that it has arrived.
 ステップS408で、制御部60は、現在の舵角が目標舵角に到達したことから、舵角を現在位置にて保持するため、第1切替弁10d又は第2切替弁20bに油圧アクチュエータ30への作動油の供給を停止するように指示する。制御部60は、ステップS403で入力された操舵指令が第1油圧系統10への指令である場合は、第1切替弁10dに作動油の供給を停止するよう指示する。また、制御部60は、ステップS403で入力された操舵指令が第2油圧系統20への指令である場合は、第2切替弁20bに作動油の供給を停止するよう指示する。
 ステップS408が実行された後、制御部60は、図4に示される処理を終了する。
In step S408, since the current steering angle has reached the target steering angle, the controller 60 holds the steering angle at the current position, so the hydraulic valve 30 is switched to the first switching valve 10d or the second switching valve 20b. Instruct to stop the supply of hydraulic oil. If the steering command input in step S403 is a command to the first hydraulic system 10, the control unit 60 instructs the first switching valve 10d to stop the supply of hydraulic fluid. In addition, when the steering command input in step S403 is a command to the second hydraulic system 20, the control unit 60 instructs the second switching valve 20b to stop the supply of the hydraulic oil.
After step S408 is executed, the control unit 60 ends the process shown in FIG.
 以上説明したように、本実施形態の舵取機100は、船舶の舵に連結された舵軸1を回動し、舵軸1を回動するための第1動力を発生する第1油ポンプ10a(第1動力発生部)が発生した圧力(第1動力)を、アキュムレータ10b(蓄積部)により加圧状態の作動油として蓄積する。蓄積された圧力は、入力される操舵指令に応じて第1切替弁10d(第1伝達部)により舵軸1に伝達される。このようにすることで、第1油ポンプ10aの最大動力よりも高い動力が必要とされるような操舵指令が入力される場合であっても、アキュムレータ10bに蓄積された圧力を舵軸1に適切に伝達することができる。また、本実施形態の舵取機100は、アキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)を検知する圧力センサ10c(検知部)を備えるので、例えば、操舵者は、アキュムレータ10bに蓄積された作動油の圧力を表示部80により認識した上で、適切な操舵指令をすることができる。 As explained above, the steering gear 100 of the present embodiment rotates the rudder shaft 1 connected to the rudder of the ship, and generates a first power to generate the first power for rotating the rudder shaft 1 The pressure (first power) generated by 10a (first power generation unit) is accumulated as hydraulic fluid in a pressurized state by the accumulator 10b (accumulation unit). The accumulated pressure is transmitted to the rudder axle 1 by the first switching valve 10d (first transmission unit) according to the input steering command. By doing this, the pressure accumulated in the accumulator 10b can be transmitted to the rudder axle 1 even when a steering command that requires power higher than the maximum power of the first oil pump 10a is input. It can be properly transmitted. In addition, since the steering gear 100 of the present embodiment includes the pressure sensor 10 c (detection unit) that detects the pressure (the accumulated amount of the first power) of the hydraulic oil accumulated in the accumulator 10 b, for example, the steering wheel After the pressure of the hydraulic fluid accumulated in the accumulator 10b is recognized by the display unit 80, an appropriate steering command can be issued.
 また、本実施形態の舵取機100は、舵軸1を回動するための第2動力を発生し、第1油ポンプ10a(第1動力発生部)よりも最大動力が大きい第2油ポンプ20a(第2動力発生部)と、操舵指令に応じて、第2油ポンプ20a(第2動力発生部)が発生した圧力(第2動力)を舵軸1に伝達する第2切替弁20b(第2伝達部)と、を備える。このようにすることで、第1油ポンプ10a(第1動力発生部)が発生する圧力(第1動力)を蓄積して舵軸1に伝達することを可能としつつ、アキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)が少ない場合であっても、第1油ポンプ10a(第1動力発生部)よりも最大動力が大きい第2油ポンプ20a(第2動力発生部)が発生する圧力(第2動力)を舵軸1に伝達することができる。 Further, the steering gear 100 of the present embodiment generates a second power for rotating the rudder shaft 1, and a second oil pump having a larger maximum power than the first oil pump 10a (first power generation unit). A second switching valve 20b (second power) that transmits the pressure (second power) generated by the second oil pump 20a (second power generation unit) according to the steering command and the second power generation unit 20a (second power generation unit). A second transmission unit). In this way, the pressure (first power) generated by the first oil pump 10a (first power generation unit) can be stored and transmitted to the rudder shaft 1, while being stored in the accumulator 10b. A second oil pump 20a (second power generation unit) having a maximum power larger than that of the first oil pump 10a (first power generation unit) even when the pressure (the accumulated amount of the first power) of the operating oil is small Pressure (second power) can be transmitted to the rudder shaft 1.
 また、本実施形態の舵取機100は、操舵者の入力指示に基づいて、第1油ポンプ10aが発生する圧力(第1動力)を舵軸1に伝達する第1の操舵指令、または第2油ポンプ20aが発生する圧力(第2動力)を舵軸1に伝達する第2の操舵指令のいずれかを入力する入力部70と、圧力センサ10cが検知する作動油の圧力(第1動力の蓄積量)を操舵者に表示することにより通知する表示部(通知部)80と、入力部70に第1の操舵指令が入力された場合は第1動力を舵軸1に伝達するよう第1切替弁10d(第1伝達部)を制御し、入力部70に第2の操舵指令が入力された場合は第2油ポンプ20aが発生する圧力(第2動力)を舵軸1に伝達するよう第2切替弁20b(第2伝達部)を制御する制御部60とを備える。 Further, the steering gear 100 according to the present embodiment transmits a first steering command for transmitting the pressure (first power) generated by the first oil pump 10 a to the rudder shaft 1 or the first steering command based on the input instruction of the steerer. 2 Input unit 70 for inputting any of the second steering command for transmitting the pressure (second power) generated by the oil pump 20a to the rudder shaft 1, the pressure of the hydraulic oil detected by the pressure sensor 10c (first power The display unit (notification unit) 80 notifies by displaying the stored amount of the vehicle to the steerer, and the first power is transmitted to the rudder axle 1 when the first steering command is input to the input unit 70. 1) Control the switching valve 10d (first transmission unit), and when the second steering command is input to the input unit 70, transmit the pressure (second power) generated by the second oil pump 20a to the rudder shaft 1 And a control unit 60 that controls the second switching valve 20b (second transmission unit).
 このようにすることで、操舵者がアキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)を認識した上で、アキュムレータ10bが蓄積する第1動力を舵軸1に伝達する第1の操舵指令、または第2油ポンプ20a(第2動力発生部)が発生する圧力(第2動力)を舵軸1に伝達する第2の操舵指令のいずれかを適切に入力することができる。従って、アキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)が少ない場合には、第2油ポンプ20a(第2動力発生部)が発生する圧力(第2動力)を舵軸1に伝達する第2の操舵指令を入力するといった適切な操舵指令の入力が可能となる。 In this way, the first motive power accumulated in the accumulator 10b is transmitted to the rudder axle 1 after the driver recognizes the pressure (the accumulated amount of the first motive power) of the hydraulic oil accumulated in the accumulator 10b. Appropriately inputting either the first steering command or the second steering command for transmitting the pressure (second power) generated by the second oil pump 20a (second power generating unit) to the rudder axle 1 it can. Therefore, when the pressure (accumulation amount of the first power) of the hydraulic oil stored in the accumulator 10b is small, the pressure (second power) generated by the second oil pump 20a (second power generation unit) It is possible to input an appropriate steering command such as inputting a second steering command to be transmitted to the shaft 1.
 また、本実施形態の舵取機100は、アキュムレータ10bに蓄積されている作動油の圧力を示す情報を表示部80に表示することにより作動油の圧力を通知する。このようにすることで、操舵者がアキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)を目視により認識した上で、アキュムレータ10bが蓄積する圧力(第1動力)を舵軸1に伝達する第1の操舵指令、または第2油ポンプ20a(第2動力発生部)が発生する圧力(第2動力)を舵軸1に伝達する第2の操舵指令のいずれかを適切に入力することができる。 Moreover, the steering gear 100 of this embodiment notifies the pressure of hydraulic fluid by displaying the information which shows the pressure of the hydraulic fluid accumulate | stored in the accumulator 10b on the display part 80. FIG. By doing this, the driver visually recognizes the pressure (accumulated amount of the first power) of the hydraulic oil stored in the accumulator 10b and then steers the pressure (first power) accumulated by the accumulator 10b. Either the first steering command transmitted to the shaft 1 or the second steering command transmitted to the rudder shaft 1 the pressure (second power) generated by the second oil pump 20a (second power generating unit) is appropriate Can be entered.
〔第2実施形態〕
 次に、本発明の第2実施形態について、図5を用いて説明する。図5は、第2実施形態の舵取機の動作を示すフローチャートである。
 第1実施形態は、操舵指令として、舵角の操舵指令と、第1油圧系統10への指令または第2油圧系統20のいずれかへの指令を入力するものであった。すなわち、第1油圧系統10を用いて舵軸1を回動させるか、第2油圧系統20を用いて舵軸1を回動させるかは、操舵者が決定するものであった。それに対して第2実施形態は、第1油圧系統10を用いて舵軸1を回動させるか、第2油圧系統20を用いて舵軸1を回動させるかを、アキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)により舵取機の制御部60が自動的に決定するものである。
 なお、第2実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、他の構成は第1実施形態と同様であるので、以下での説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described using FIG. FIG. 5 is a flow chart showing the operation of the steering gear of the second embodiment.
In the first embodiment, the steering command of the steering angle and the command to the first hydraulic system 10 or the command to any one of the second hydraulic systems 20 are input as the steering command. That is, the driver decides whether to rotate the rudder shaft 1 using the first hydraulic system 10 or to rotate the rudder shaft 1 using the second hydraulic system 20. On the other hand, in the second embodiment, it is stored in the accumulator 10b whether to rotate the rudder shaft 1 using the first hydraulic system 10 or to rotate the rudder shaft 1 using the second hydraulic system 20. The control unit 60 of the steering gear is automatically determined by the pressure of the operating oil (the accumulated amount of the first power).
The second embodiment is a modification of the first embodiment, and the other configuration is the same as that of the first embodiment except in the case where it is particularly described below, so the description thereof will be omitted.
 図3に示す制御構成を備える舵取機が実行する動作について図5を用いて説明する。前述したように、舵取機の制御部60は、記憶部90に記憶された制御プログラムを読み出して実行することにより、図5に示される動作を実行する。
 図5に示される処理が開始されると、ステップS501で、制御部60は、圧力センサ10cに圧力を検知するように制御指令を出力する。この制御指令に応答して、圧力センサ10cは、アキュムレータ10bの油室55内の圧力を検知し、検知した圧力に応じた出力信号を、制御部60に出力する。
The operation | movement which the steering gear provided with the control structure shown in FIG. 3 performs is demonstrated using FIG. As described above, the control unit 60 of the steering gear executes the operation shown in FIG. 5 by reading out and executing the control program stored in the storage unit 90.
When the process shown in FIG. 5 is started, in step S501, the control unit 60 outputs a control command to the pressure sensor 10c so as to detect a pressure. In response to the control command, the pressure sensor 10c detects the pressure in the oil chamber 55 of the accumulator 10b, and outputs an output signal corresponding to the detected pressure to the control unit 60.
 ステップS502で、制御部60は、圧力センサ10cから出力された出力信号を解析してアキュムレータ10bの油室55内の圧力を示す数値を算出し、算出した数値に応じた表示データを表示部80に出力する。表示部80は、制御部60から入力される表示データを表示することにより、操舵者にアキュムレータ10bの油室55内の圧力を通知する。 In step S502, the control unit 60 analyzes the output signal output from the pressure sensor 10c, calculates a numerical value indicating the pressure in the oil chamber 55 of the accumulator 10b, and displays the display data corresponding to the calculated numerical value. Output to The display unit 80 notifies the driver of the pressure in the oil chamber 55 of the accumulator 10 b by displaying the display data input from the control unit 60.
 ステップS503で、制御部60は、入力部70が操舵者の入力指示を受け付けて入力指示に応じた操舵指令を制御部60に出力したかどうかを判断する。制御部60は、入力部70から操舵指令が入力された場合にはステップS504に処理を進める。なお、第2実施形態では、操舵指令には、船舶の舵角の操舵指令が少なくとも含まれる。 In step S503, the control unit 60 determines whether the input unit 70 receives an input instruction from the driver and outputs a steering instruction according to the input instruction to the control unit 60. If a steering command is input from input unit 70, control unit 60 proceeds to step S504. In the second embodiment, the steering command at least includes the steering command of the steering angle of the ship.
 ステップS504で、制御部60は、ステップS501にて検知されたアキュムレータ10bの油室55内の圧力が、ステップS503にて入力された舵角の操舵指令を行うのに十分であるかどうかを判断する。具体的に、制御部60は、現在の舵角と操舵指令の舵角との差分の角度を算出し、算出した角度の分だけ舵軸1を回動させるのにアキュムレータ10bの油室55内の圧力が十分であるかどうかを判断する。舵角を回動させる角度と、その角度を回動させるために必要な油室55内の圧力との関係を示す関係情報は、記憶部90に記憶させておくものとする。制御部60は、記憶部90に記憶された関係情報を読み出すことによりステップS504の判断を行う。制御部60は、油室55内の圧力が、現在の舵角を操舵指令の舵角に一致させるのに十分であると判断した場合はステップS505に処理を進め、そうでなければステップS506へ処理を進める。 In step S504, the control unit 60 determines whether the pressure in the oil chamber 55 of the accumulator 10b detected in step S501 is sufficient to issue a steering command of the steering angle input in step S503. Do. Specifically, the control unit 60 calculates an angle of the difference between the current steering angle and the steering angle of the steering command, and rotates the steering shaft 1 by the calculated angle, within the oil chamber 55 of the accumulator 10b. Determine if the pressure is sufficient. Relational information indicating the relationship between the angle at which the steering angle is turned and the pressure in the oil chamber 55 necessary to turn the angle is stored in the storage unit 90. The control unit 60 performs the determination in step S504 by reading out the relationship information stored in the storage unit 90. If control unit 60 determines that the pressure in oil chamber 55 is sufficient to cause the current steering angle to match the steering angle of the steering command, the process proceeds to step S505; otherwise, the process proceeds to step S506. Proceed with the process.
 ステップS505で、制御部60は、第1切替弁10dへの制御指令を送信する。具体的には、油路10fを介してアキュムレータ10bから供給される高圧の作動油を、油路10gを経由して油圧アクチュエータ30の油室5bへ供給するか、油路10hを経由して油圧アクチュエータ30の油室5aへ供給するかのいずれかを第1切替弁10dに実行させる制御指令を送信する。作動油の供給先を、油圧アクチュエータ30の油室5bとするか油室5aとするかは、ステップS503で入力された舵角の操舵指令により決定される。つまり、制御部60は、現在の舵角とステップS503で入力された舵角の操舵指令とを比較し、舵軸1をいずれの回転方向に回動させるかによって作動油の供給先を決定する。なお、現在の舵角は舵角検知センサ(不図示)により検知されるものとする。 In step S505, the control unit 60 transmits a control command to the first switching valve 10d. Specifically, high-pressure hydraulic oil supplied from the accumulator 10b via the oil passage 10f is supplied to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 10g or hydraulic pressure via the oil passage 10h A control command to cause the first switching valve 10d to execute either supply to the oil chamber 5a of the actuator 30 is transmitted. Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S503. That is, the control unit 60 compares the current steering angle with the steering command of the steering angle input in step S503, and determines the supply destination of hydraulic fluid according to which rotation direction the steering shaft 1 is rotated. . The current steering angle is detected by a steering angle detection sensor (not shown).
 ステップS506で、制御部60は、第2切替弁20bへの制御指令を送信する。具体的には、制御部60は、第2油ポンプ20aから供給される高圧の作動油を、油路20dを経由して油圧アクチュエータ30の油室5bへ供給するか、油路20eを経由して油圧アクチュエータ30の油室5aへ供給するかのいずれかを第2切替弁20bが切り替える制御指令を送信する。作動油の供給先を、油圧アクチュエータ30の油室5bとするか油室5aとするかは、ステップS503で入力された舵角の操舵指令により決定される。 At step S506, the control unit 60 transmits a control command to the second switching valve 20b. Specifically, the control unit 60 supplies high-pressure hydraulic oil supplied from the second oil pump 20a to the oil chamber 5b of the hydraulic actuator 30 via the oil passage 20d or via the oil passage 20e. Then, a control command for switching the second switching valve 20b to either supply to the oil chamber 5a of the hydraulic actuator 30 is transmitted. Whether the hydraulic oil supply destination is the oil chamber 5b or the oil chamber 5a of the hydraulic actuator 30 is determined by the steering command of the steering angle input in step S503.
 ステップS507で、制御部60は、現在の舵角が目標舵角に到達したかどうかを判断し、目標舵角に到達したと判断した場合はステップS508に処理を進める。制御部60は、舵角検知センサ(不図示)が検知する現在の舵角がステップS503で入力された操舵指令により指示された舵角と一致した場合に、現在の舵角が目標舵角に到達したと判断する。 In step S507, the control unit 60 determines whether the current steering angle has reached the target steering angle. If it is determined that the target steering angle has been reached, the process proceeds to step S508. When the current steering angle detected by the steering angle detection sensor (not shown) matches the steering angle instructed by the steering command input in step S503, the control unit 60 sets the current steering angle to the target steering angle. Judge that it has arrived.
 ステップS508で、制御部60は、現在の舵角が目標舵角に到達したことから、舵角を現在位置にて保持するため、第1切替弁10d又は第2切替弁20bに油圧アクチュエータ30への作動油の供給を停止するように指示する。制御部60は、ステップS505で第1切替弁10dへ制御指令が送信された場合は、第1切替弁10dに作動油の供給を停止するよう指示する。また、制御部60は、ステップS506で第2切替弁20bへ制御指令が送信された場合は、第2切替弁20bに作動油の供給を停止するよう指示する。
 ステップS508が実行された後、制御部60は、図5に示される処理を終了する。
In step S508, since the current steering angle has reached the target steering angle, the controller 60 holds the steering angle at the current position, so the hydraulic valve 30 is switched to the first switching valve 10d or the second switching valve 20b. Instruct to stop the supply of hydraulic oil. When the control command is transmitted to the first switching valve 10d in step S505, the control unit 60 instructs the first switching valve 10d to stop the supply of the hydraulic oil. Further, when the control command is transmitted to the second switching valve 20b in step S506, the control unit 60 instructs the second switching valve 20b to stop the supply of the hydraulic oil.
After step S508 is executed, the control unit 60 ends the process shown in FIG.
 以上説明したように、第2実施形態の舵取機は、圧力センサ(検知部)10cが検知するアキュムレータ10bの油室55内の圧力(第1動力の蓄積量)に応じて、第1切替弁10d(第1伝達部)および第2切替弁20b(第2伝達部)を制御する制御部60を有する。このようにすることで、アキュムレータ10bの油室55内の圧力(第1動力の蓄積量)に応じて、第1油ポンプ10aが発生する圧力(第1動力)の舵軸1への伝達と第2油ポンプ20aが発生する圧力(第2動力)の舵軸1への伝達が適切に制御される。 As described above, in the steering gear of the second embodiment, the first switching is performed according to the pressure (the accumulated amount of the first power) in the oil chamber 55 of the accumulator 10b detected by the pressure sensor (detection unit) 10c. It has the control part 60 which controls valve 10d (1st transmission part) and 2nd switching valve 20b (2nd transmission part). In this way, the pressure (first power) generated by the first oil pump 10a is transmitted to the rudder shaft 1 in accordance with the pressure (the accumulated amount of the first power) in the oil chamber 55 of the accumulator 10b. Transmission of the pressure (second power) generated by the second oil pump 20a to the rudder shaft 1 is appropriately controlled.
 また、第2実施形態の舵取機は、操舵指令が目標舵角の指令を含み、制御部60が、目標舵角の指令とアキュムレータ10bの油室55内の圧力(第1動力の蓄積量)に応じて、第1切替弁10d(第1伝達部)および第2切替弁20b(第2伝達部)を制御する。このようにすることで、目標舵角の指令とアキュムレータ10bの油室55内の圧力(第1動力の蓄積量)に応じて、第1油ポンプ10aが発生する圧力(第1動力)の舵軸1への伝達と第2油ポンプ20aが発生する圧力(第2動力)の舵軸1への伝達が適切に制御される。 In the steering gear of the second embodiment, the steering command includes a command for the target steering angle, and the control unit 60 outputs the command for the target steering angle and the pressure in the oil chamber 55 of the accumulator 10b (the amount of accumulated first power And controls the first switching valve 10d (first transmission unit) and the second switching valve 20b (second transmission unit). By doing this, the rudder of the pressure (first power) generated by the first oil pump 10a according to the command of the target steering angle and the pressure in the oil chamber 55 of the accumulator 10b (the accumulated amount of the first power). The transmission to the shaft 1 and the transmission of the pressure (second power) generated by the second oil pump 20a to the rudder shaft 1 are appropriately controlled.
〔第3実施形態〕
 次に、本発明の第3実施形態について、図6を用いて説明する。図6は、第3実施形態の舵取機の動作を示すフローチャートである。
 第2実施形態は、第1油圧系統10を用いて舵軸1を回動させるか、第2油圧系統20を用いて舵軸1を回動させるかを、アキュムレータ10bに蓄積されている作動油の圧力(第1動力の蓄積量)が目標舵角に対して十分かどうかにより決定するものであった。それに対して第3実施形態は、アキュムレータ10bに蓄積されている作動油の圧力が所定量以上であるかどうかにより決定するものである。
 なお、第3実施形態は、第2実施形態の変形例であり、以下で特に説明する場合を除き、他の構成は第2実施形態と同様であるので、以下での説明を省略する。
Third Embodiment
Next, a third embodiment of the present invention will be described using FIG. FIG. 6 is a flow chart showing the operation of the steering gear of the third embodiment.
In the second embodiment, the hydraulic oil stored in the accumulator 10b is used to determine whether to rotate the rudder shaft 1 using the first hydraulic system 10 or to rotate the rudder shaft 1 using the second hydraulic system 20. It is determined depending on whether the pressure (the accumulated amount of the first power) is sufficient for the target steering angle. On the other hand, in the third embodiment, the pressure is determined based on whether the pressure of the hydraulic oil stored in the accumulator 10b is equal to or more than a predetermined amount.
The third embodiment is a modification of the second embodiment, and the other configuration is the same as that of the second embodiment except the case where it is particularly described below, and therefore the description thereof will be omitted.
 図3に示す制御構成を備える舵取機が実行する動作について図6を用いて説明する。前述したように、舵取機の制御部60は、記憶部90に記憶された制御プログラムを読み出して実行することにより、図6に示される動作を実行する。
 なお、図6に示される動作のうち、ステップS601,S602,S603,S605,S606,S608の動作は、図5に示されるステップS501,S502,S503,S505,S506,S508の動作と同様であるので、以下での説明を省略する。
 以下では、図6に示される動作のうちステップS604およびS607の動作について説明する。
The operation | movement which the steering gear provided with the control structure shown in FIG. 3 performs is demonstrated using FIG. As described above, the control unit 60 of the steering gear executes the operation shown in FIG. 6 by reading out and executing the control program stored in the storage unit 90.
Of the operations shown in FIG. 6, the operations in steps S601, S602, S603, S605, S606 and S608 are the same as the operations in steps S501, S502, S503, S505, S506 and S508 shown in FIG. Therefore, the explanation in the following is omitted.
Hereinafter, among the operations shown in FIG. 6, the operations of steps S604 and S607 will be described.
 ステップS604で、制御部60は、ステップS601にて検知されたアキュムレータ10bの油室55内の圧力が、所定値以上であるかどうかを判断する。制御部60は、アキュムレータ10bの油室55内の圧力が所定値以上である(第1動力の蓄積量が所定量以上である)と判断した場合はステップS605へ処理を進め、そうでなければステップS606へ処理を進める。 In step S604, the control unit 60 determines whether the pressure in the oil chamber 55 of the accumulator 10b detected in step S601 is equal to or higher than a predetermined value. If the control unit 60 determines that the pressure in the oil chamber 55 of the accumulator 10b is equal to or higher than a predetermined value (the accumulated amount of first power is equal to or higher than a predetermined amount), the process proceeds to step S605. The process advances to step S606.
 ステップS607で、制御部60は、現在の舵角が目標舵角に到達したかどうかを判断し、目標舵角に到達したと判断した場合はステップS608に処理を進める。制御部60は、舵角検知センサ(不図示)が検知する現在の舵角がステップS603で入力された操舵指令により指示された舵角と一致した場合に、現在の舵角が目標舵角に到達したと判断する。なお、ステップS607で現在の舵角が目標舵角に到達していないと判断される場合、ステップS604を再び実行する。この点は、第2実施形態と異なる点であり、現在の舵角が目標舵角に到達するまでは、ステップS604の判断が繰り返し実行される。つまり、転舵中にアキュムレータ10bの油室55内の圧力が所定値以上であれば、アキュムレータ10bが転舵(舵軸1の回動)の動力として用いられるが、アキュムレータ10bの油室55内の圧力が所定値を下回れば転舵の動力として第2油ポンプ20aが用いられることとなる。 In step S607, the control unit 60 determines whether the current steering angle has reached the target steering angle. If it is determined that the target steering angle has been reached, the process proceeds to step S608. When the current steering angle detected by the steering angle detection sensor (not shown) matches the steering angle instructed by the steering command input in step S603, the control unit 60 sets the current steering angle to the target steering angle. Judge that it has arrived. If it is determined in step S607 that the current steering angle has not reached the target steering angle, step S604 is executed again. This point is a point different from the second embodiment, and the determination of step S604 is repeatedly executed until the current steering angle reaches the target steering angle. That is, if the pressure in the oil chamber 55 of the accumulator 10b is equal to or higher than a predetermined value during steering, the accumulator 10b is used as power for steering (turning of the steering shaft 1). The second oil pump 20a is used as the power of steering if the pressure of the pressure below the predetermined value.
 なお、前述した圧力の所定値として、予め定められた不変値を用いることができる。また、例えば、前述した圧力の所定値として、可変値を設定することも可能である。例えば、以下の方法により可変値を設定することができる。
 図7は、アキュムレータの圧力の変化を示す図である。現在時刻がtであり、過去の操舵指令の入力履歴に応じたアキュムレータ10bの圧力が実線で示されている。アキュムレータ10bの圧力は、転舵を行うのに応じて減少し、転舵を停止するのに応じて上昇する。
In addition, a predetermined invariant value can be used as the predetermined value of the pressure mentioned above. Also, for example, it is possible to set a variable value as the predetermined value of the pressure described above. For example, variable values can be set by the following method.
FIG. 7 is a diagram showing changes in pressure of the accumulator. The current time is t, and the pressure of the accumulator 10b according to the input history of the past steering command is indicated by a solid line. The pressure of the accumulator 10b decreases in response to steering and rises in response to stopping steering.
 例えば、転舵を行っていたのを停止した時刻と、その時刻におけるアキュムレータ10bの圧力を入力履歴として記憶部90に記憶しておく。そして、複数の入力履歴に基づいてアキュムレータ10bの圧力が所定値(例えば、大気圧を示す値)となる時刻Tを予測する。予測の方法は種々のものが採用可能であるが、例えば図7の点線で示されるように、入力履歴の2箇所を直線で結び、時間を変数とした圧力の1次関数を算出するようにすればよい。そして、算出した1次関数に現在時刻tを代入することで、所定値を示す圧力Pが求められる。この場合、圧力Pを前述した所定値(閾値)とすることで、ステップS604における判断を可変値を用いて行うことができる。この場合、1次関数の算出と圧力Pの設定は制御部(閾値設定部)60により行われる。 For example, the time when the steering was stopped and the pressure of the accumulator 10b at that time are stored in the storage unit 90 as an input history. Then, based on the plurality of input histories, the time T at which the pressure of the accumulator 10b becomes a predetermined value (for example, a value indicating the atmospheric pressure) is predicted. Although various prediction methods can be adopted, for example, as shown by a dotted line in FIG. 7, two places of the input history are connected by a straight line, and a linear function of pressure with time as a variable is calculated. do it. Then, by substituting the current time t into the calculated linear function, the pressure P indicating a predetermined value can be obtained. In this case, by setting the pressure P to the predetermined value (threshold value) described above, the determination in step S604 can be performed using a variable value. In this case, the calculation of the linear function and the setting of the pressure P are performed by the control unit (threshold setting unit) 60.
 以上説明したように、第3実施形態の舵取機によれば、制御部60が、アキュムレータ10bの圧力(蓄積量)が所定値(所定量)よりも多い場合は第1油ポンプ10aが発生する圧力(第1動力)を舵軸1に伝達し、アキュムレータ10bの圧力(蓄積量)が所定値(所定量)よりも少ない場合は第2油ポンプ20aが発生する圧力(第2動力)を舵軸1に伝達するよう第1切替弁10d(第1伝達部)および第2切替弁20b(第2伝達部)を制御する。このようにすることで、アキュムレータ10bの圧力(蓄積量)が所定値(所定量)よりも大きい場合にはエネルギー消費の大きい第2油ポンプ20a(第2動力発生部)を動作させないようにし、舵取機のエネルギー消費を抑えることができる。この場合、所定値(所定量)が、予め定められた不変量であってもよい。また、この場合、操舵指令の入力履歴を記憶部90に記憶しておき、記憶部90に記憶される入力履歴に基づいて、所定量を設定してもよい。このようにすることで、操舵指令の入力履歴に応じて適切に、第1油ポンプ10aが発生する圧力(第1動力)の舵軸1への伝達と第2油ポンプ20aが発生する圧力(第2動力)の舵軸1への伝達を制御することができる。 As described above, according to the steering gear of the third embodiment, when the pressure (accumulation amount) of the accumulator 10b is larger than the predetermined value (predetermined amount), the control unit 60 generates the first oil pump 10a. Pressure (first power) is transmitted to the rudder shaft 1, and if the pressure (accumulated amount) of the accumulator 10b is smaller than a predetermined value (predetermined amount), the pressure (second power) generated by the second oil pump 20a The first switching valve 10 d (first transmission unit) and the second switching valve 20 b (second transmission unit) are controlled to be transmitted to the rudder axle 1. By doing this, when the pressure (accumulation amount) of the accumulator 10b is larger than a predetermined value (predetermined amount), the second oil pump 20a (second power generation unit) which consumes a large amount of energy is not operated. Energy consumption of the steering gear can be reduced. In this case, the predetermined value (predetermined amount) may be a predetermined invariant. In this case, the input history of the steering command may be stored in the storage unit 90, and the predetermined amount may be set based on the input history stored in the storage unit 90. By doing this, transmission of the pressure (first power) generated by the first oil pump 10a to the rudder shaft 1 and the pressure generated by the second oil pump 20a appropriately in accordance with the input history of the steering command Transmission of the second power) to the rudder shaft 1 can be controlled.
〔他の実施形態〕
 第1実施形態においては、制御部60が、圧力センサ10cが検知する圧力を示す数値に応じた表示データを表示部80に表示させるものであったが、他の態様であってもよい。例えば、圧力センサ10cが検知する圧力そのものではなく、アキュムレータ10bに蓄積可能な最大圧力(最大動力)を100とし、それに対する圧力センサ10cが検知する圧力の割合を表示するようにしてもよい。このようにすることで、操舵者は、最大動力に対してどの程度の圧力(動力)が蓄積されているのかを容易に認識することができる。
Other Embodiments
In the first embodiment, the control unit 60 causes the display unit 80 to display display data corresponding to a numerical value indicating the pressure detected by the pressure sensor 10c. For example, instead of the pressure itself detected by the pressure sensor 10c, the maximum pressure (maximum power) that can be accumulated in the accumulator 10b may be 100, and the ratio of the pressure detected by the pressure sensor 10c may be displayed. By doing this, the rider can easily recognize how much pressure (power) is stored with respect to the maximum power.
 また、以上で説明した実施形態においては、圧力センサ10cを図3に示す油室55内に設けることとしたが、ブラダ51の内部に設けるようにしてもよい。この場合、圧力センサ10cは作動油の圧力ではなく、ブラダ51内の不活性ガスの圧力を検知することとなる。この不活性ガスの圧力と油室55の作動油の圧力とは、一致しているので、圧力センサ10cをブラダ51の内部に設けても、以上で説明した実施形態と同様となる。 In the embodiment described above, the pressure sensor 10 c is provided in the oil chamber 55 shown in FIG. 3, but may be provided inside the bladder 51. In this case, the pressure sensor 10c detects not the pressure of the hydraulic oil but the pressure of the inert gas in the bladder 51. Since the pressure of the inert gas and the pressure of the hydraulic oil in the oil chamber 55 coincide with each other, even if the pressure sensor 10c is provided in the inside of the bladder 51, it becomes the same as the embodiment described above.
 また、以上で説明した実施形態においては、第1油圧系統10から動力が供給されている場合には、第2油圧系統20からの動力は油圧アクチュエータ30に供給されないものとして説明したが、他の態様であってもよい。例えば、第1油圧系統10から動力が供給される際に、第1油圧系統10の動力を補うように、第2油圧系統20からの動力を供給するようにしてもよい。 Further, in the embodiment described above, although the power from the second hydraulic system 20 is not supplied to the hydraulic actuator 30 when the power is supplied from the first hydraulic system 10, the other is described. It may be an aspect. For example, when power is supplied from the first hydraulic system 10, power from the second hydraulic system 20 may be supplied to compensate for the power of the first hydraulic system 10.
1   舵軸
2   チラー
3   ラム
5a,5b 油室
10  第1油圧系統
10a 第1油ポンプ
10b アキュムレータ
10c 圧力センサ
10d 第1切替弁
10e 逆止弁
20  第2油圧系統
20a 第2油ポンプ
20b 第2切替弁
20c 逆止弁
60  制御部
70  入力部
80  表示部
90  記憶部
100 舵取機
Reference Signs List 1 rudder shaft 2 chiller 3 ram 5a, 5b oil chamber 10 first hydraulic system 10a first oil pump 10b accumulator 10c pressure sensor 10d first switching valve 10e check valve 20 second hydraulic system 20a second oil pump 20b second switching Valve 20 c Check valve 60 Control unit 70 Input unit 80 Display unit 90 Storage unit 100 Steering gear

Claims (11)

  1.  船舶の舵に連結された舵軸を回動する舵取機であって、
     前記舵軸を回動するための第1動力を発生する第1動力発生部と、
     前記第1動力発生部が発生した前記第1動力を蓄積する蓄積部と、
     入力される操舵指令に応じて、前記蓄積部に蓄積された前記第1動力を前記舵軸に伝達する第1伝達部と、
     前記蓄積部に蓄積されている前記第1動力の蓄積量を検知する検知部と、
    を備えることを特徴とする舵取機。
    A steering gear for turning a rudder shaft connected to a rudder of a ship, comprising:
    A first power generation unit that generates a first power for rotating the rudder shaft;
    An accumulation unit for accumulating the first power generated by the first power generation unit;
    A first transmission unit for transmitting the first power stored in the storage unit to the rudder shaft according to a steering command input;
    A detection unit that detects an accumulation amount of the first power accumulated in the accumulation unit;
    A steering gear characterized by comprising.
  2.  前記舵軸を回動するための第2動力を発生し、前記第1動力発生部よりも最大動力が大きい第2動力発生部と、
     前記操舵指令に応じて、前記第2動力発生部が発生した前記第2動力を前記舵軸に伝達する第2伝達部と、
    を備えることを特徴とする請求項1に記載の舵取機。
    A second power generation unit that generates a second power for rotating the rudder shaft and has a maximum power greater than that of the first power generation unit;
    A second transmission unit for transmitting the second power generated by the second power generation unit to the rudder shaft according to the steering command;
    The steering gear according to claim 1, comprising:
  3.  操舵者の入力指示に基づいて、前記第1動力を前記舵軸に伝達する第1の前記操舵指令、または前記第2動力を前記舵軸に伝達する第2の前記操舵指令のいずれかを入力する入力部と、
     前記検知部が検知する前記第1動力の蓄積量を前記操舵者に通知する通知部と、
     前記入力部に前記第1の操舵指令が入力された場合は前記第1動力を前記舵軸に伝達するよう前記第1伝達部を制御し、前記入力部に前記第2の操舵指令が入力された場合は前記第2動力を前記舵軸に伝達するよう前記第2伝達部を制御する制御部とを備えることを特徴とする請求項2に記載の舵取機。
    Inputting either the first steering command for transmitting the first power to the rudder shaft or the second steering command for transmitting the second power to the rudder shaft based on an input instruction from the driver The input unit to
    A notification unit that notifies the driver of the accumulated amount of the first power detected by the detection unit;
    When the first steering command is input to the input unit, the first transmission unit is controlled to transmit the first power to the rudder axle, and the second steering command is input to the input unit. The steering gear according to claim 2, further comprising: a control unit that controls the second transmission unit to transmit the second power to the rudder shaft.
  4.  前記通知部が、前記蓄積量を示す情報を表示部に表示することにより前記蓄積量を通知することを特徴とする請求項3に記載の舵取機。 The steering gear according to claim 3, wherein the notification unit notifies the accumulated amount by displaying information indicating the accumulated amount on a display unit.
  5.  前記検知部が検知する前記第1動力の蓄積量に応じて、前記第1伝達部および前記第2伝達部を制御する制御部を有することを特徴とする請求項2に記載の舵取機。 The steering gear according to claim 2, further comprising: a control unit configured to control the first transmission unit and the second transmission unit according to an accumulation amount of the first power detected by the detection unit.
  6.  前記操舵指令が目標舵角の指令を含み、
     前記制御部が、前記目標舵角の指令と前記第1動力の蓄積量に応じて、前記第1伝達部および前記第2伝達部を制御することを特徴とする請求項5に記載の舵取機。
    The steering command includes a target steering angle command,
    The steering according to claim 5, wherein the control unit controls the first transmission unit and the second transmission unit according to an instruction of the target steering angle and an accumulation amount of the first power. Machine.
  7.  前記制御部が、前記蓄積量が所定量よりも多い場合は前記第1動力を前記舵軸に伝達し、前記蓄積量が前記所定量よりも少ない場合は前記第2動力を前記舵軸に伝達するよう前記第1伝達部および前記第2伝達部を制御することを特徴とする請求項5に記載の舵取機。 The control unit transmits the first power to the rudder shaft when the accumulated amount is larger than a predetermined amount, and transmits the second motive power to the rudder shaft when the accumulated amount is smaller than the predetermined amount. The steering gear according to claim 5, wherein the first transmission unit and the second transmission unit are controlled to do so.
  8.  前記所定量が、予め定められた不変量であることを特徴とする請求項7に記載の舵取機。 The steering gear according to claim 7, wherein the predetermined amount is a predetermined invariant.
  9.  前記操舵指令の入力履歴を記憶する記憶部と、
     前記記憶部に記憶される前記入力履歴に基づいて、前記所定量を設定する閾値設定部と、
    を備えることを特徴とする請求項5に記載の舵取機。
    A storage unit that stores an input history of the steering command;
    A threshold setting unit configured to set the predetermined amount based on the input history stored in the storage unit;
    The steering gear according to claim 5, further comprising:
  10.  前記第1動力発生部が、作動流体を吸入し高圧で吐出するポンプであり、
     前記蓄積部が、前記ポンプから吐出した前記作動流体を加圧状態で蓄積するアキュムレータであることを特徴とする請求項1乃至9のいずれか1項に記載の舵取機。
    The first power generation unit is a pump that sucks in working fluid and discharges it at high pressure,
    The steering gear according to any one of claims 1 to 9, wherein the accumulation portion is an accumulator that accumulates the working fluid discharged from the pump in a pressurized state.
  11.  請求項1乃至10のいずれか1項に記載の舵取機を備えることを特徴とする船舶。 A ship comprising the steering gear according to any one of claims 1 to 10.
PCT/JP2013/078297 2012-10-18 2013-10-18 Steering gear and ship provided therewith WO2014061776A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20157006964A KR20150045489A (en) 2012-10-18 2013-10-18 Steering gear and ship provided therewith
CN201380047365.3A CN104619587B (en) 2012-10-18 2013-10-18 Steering wheel and the ship for possessing the steering wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-230725 2012-10-18
JP2012230725A JP6025497B2 (en) 2012-10-18 2012-10-18 Steering machine and ship equipped with the same

Publications (1)

Publication Number Publication Date
WO2014061776A1 true WO2014061776A1 (en) 2014-04-24

Family

ID=50488332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078297 WO2014061776A1 (en) 2012-10-18 2013-10-18 Steering gear and ship provided therewith

Country Status (4)

Country Link
JP (1) JP6025497B2 (en)
KR (1) KR20150045489A (en)
CN (1) CN104619587B (en)
WO (1) WO2014061776A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660205B2 (en) * 2016-02-22 2020-03-11 三菱重工業株式会社 Hydraulic steering device and ship
KR101781838B1 (en) * 2016-03-28 2017-10-23 훌루테크 주식회사 System backlash measurement method of the steering gear
KR101801622B1 (en) * 2016-03-28 2017-11-27 훌루테크 주식회사 How to reduce the system backlash of the steering gear
JP7409904B2 (en) * 2020-02-28 2024-01-09 川崎重工業株式会社 steering system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563357B2 (en) * 1983-06-23 1993-09-10 Blohm Voss Ag
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
WO2010052777A1 (en) * 2008-11-06 2010-05-14 三菱重工業株式会社 Ship steering device
WO2013080767A1 (en) * 2011-11-28 2013-06-06 三菱重工業株式会社 Energy storage type steering apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926253B2 (en) * 2002-11-21 2007-06-06 ジャパン・ハムワージ株式会社 Valve block structure of rotary vane type steering machine
CN102001435B (en) * 2010-10-26 2013-04-03 广西梧州运龙港船机械制造有限公司 Marine hydraulic steering engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563357B2 (en) * 1983-06-23 1993-09-10 Blohm Voss Ag
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
WO2010052777A1 (en) * 2008-11-06 2010-05-14 三菱重工業株式会社 Ship steering device
WO2013080767A1 (en) * 2011-11-28 2013-06-06 三菱重工業株式会社 Energy storage type steering apparatus

Also Published As

Publication number Publication date
CN104619587A (en) 2015-05-13
KR20150045489A (en) 2015-04-28
CN104619587B (en) 2017-08-11
JP2014080155A (en) 2014-05-08
JP6025497B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
CN101568460B (en) Motion-control system
WO2014061776A1 (en) Steering gear and ship provided therewith
US9656840B2 (en) Work vehicle and control method for work vehicle
JP2008260329A (en) Power steering device
JP2019010964A (en) Steering control system and method of stopping steering device
JP5641369B2 (en) Marine steering system
WO2016031058A1 (en) Steer-by-wire steering system
US7175133B2 (en) Wing driving apparatus
US20110289911A1 (en) Hydraulic system and method of actively damping oscillations during operation thereof
JP6224937B2 (en) Steering device abnormality detection device and steering device with abnormality detection device
JP6704206B2 (en) Steering machine, ship equipped with the same, and control method for steering machine
US9651062B2 (en) Construction machine and controller
RU181538U1 (en) Hybrid Electro-Hydraulic Steering
JP4737421B2 (en) Steering assist device
US20110158821A1 (en) Hydraulic circuit and method for controlling the same
JP2014210496A (en) Control device for hydraulic power steering device
WO2011065161A1 (en) Hydraulic device
CN115087593B (en) Steering system
JP4252583B2 (en) Blade drive
RU2484314C2 (en) Two-mode electrically-driven hydraulic drive with irreversible pump
JP4737957B2 (en) Solenoid valve controlled steering machine
RU2704931C2 (en) Hybrid electrohydraulic steering gear
KR101483457B1 (en) Controlling system and method for radial piston pump
JP2022165152A (en) Hydraulic device
JP2013133216A (en) Industrial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006964

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847896

Country of ref document: EP

Kind code of ref document: A1