WO2013080767A1 - Energy storage type steering apparatus - Google Patents

Energy storage type steering apparatus Download PDF

Info

Publication number
WO2013080767A1
WO2013080767A1 PCT/JP2012/078962 JP2012078962W WO2013080767A1 WO 2013080767 A1 WO2013080767 A1 WO 2013080767A1 JP 2012078962 W JP2012078962 W JP 2012078962W WO 2013080767 A1 WO2013080767 A1 WO 2013080767A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder shaft
energy storage
energy
rudder
shaft
Prior art date
Application number
PCT/JP2012/078962
Other languages
French (fr)
Japanese (ja)
Inventor
陽 秋山
芳孝 ▲濱▼本
石崎 達也
修司 土橋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2013080767A1 publication Critical patent/WO2013080767A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic

Definitions

  • the present invention relates to an energy storage type steering apparatus that can drive a rudder shaft with a small-capacity driving device by accumulating rudder shaft rotation energy.
  • the conventional marine steering system is mainly driven by a hydraulic actuator and is classified into two types: a Raphson slide type and a rotary vane type.
  • the Raphson slide type turns a rudder shaft by driving a hydraulic actuator connected to a chiller that turns the rudder shaft.
  • the rotary vane type includes a movable vane integrated with the rudder shaft in a housing surrounding the rudder shaft, and a plurality of the vanes partitioned by the movable vane between the housing and the rudder shaft.
  • a working chamber is formed. The working oil is supplied to one of the plurality of working chambers to rotate the rotor.
  • Patent Document 3 proposes an electric steering device.
  • a turning ring is mounted on an upper portion of a rudder shaft, an outer ring of the turning ring is formed as a large gear, two pinions are meshed with the large gear, and the two pinions are opposite to each other.
  • the motor is configured to rotate selectively with an electric motor that rotates at a constant speed.
  • the steering device needs to generate a large torque of 400 to 600 t ⁇ m. Therefore, the electric steering apparatus needs to include a large-capacity electric motor and a large speed reducer, and a large structure needs to be provided on the top of the rudder shaft. Therefore, from the viewpoint of cost and installation space, it is currently difficult to put into practical use.
  • the present invention has been made in view of the above-described problems of the prior art, and aims to reduce the capacity and size of the steering shaft drive device of the steering device, and to realize space saving, energy saving, and cost reduction of the steering device. .
  • an energy storage type steering device of the present invention is stored in a power generation device that generates rudder shaft rotation energy, an energy storage device that stores rudder shaft rotation energy, and an energy storage device.
  • the power generation device is operated, the power generated by the power generation device is stored in the energy storage device, and the rudder shaft is turned by the stored rudder shaft rotation energy. Since the steering device only turns at a small steering angle 10 or more times per hour, the required work amount is small when time averaged. Therefore, in the present invention, sufficient rudder shaft rotation energy can be accumulated by always operating a small-sized and small-sized power generation device. As a result, the power generation device can be reduced in size, thereby enabling space saving, energy saving, and cost reduction of the rudder shaft drive device.
  • the power generation device is a pump that sucks the working fluid and discharges it at a high pressure
  • the energy storage device is an accumulator that receives the working fluid discharged from the pump and stores it in a pressurized state
  • the power transmission device is
  • the fluid pressure actuator is connected to the rudder shaft and rotates the rudder shaft
  • the switching device may be a switching valve for switching the supply / discharge direction of the working fluid supply / discharge path connecting the accumulator and the fluid pressure actuator. Since the working fluid is accumulated in the accumulator by operating the pump for a long time, it is not necessary to increase the capacity of the pump. Therefore, the pump can be reduced in size, and the rudder shaft drive device can be made space-saving, energy-saving and cost-effective.
  • working fluid working oil such as lubricating oil or inert gas such as air can be used.
  • the power generation device is an electric motor
  • the energy storage device is a spring device that is connected to the output shaft of the electric motor and stores the steering shaft turning energy by the rotation of the electric motor
  • the power transmission device is A large-diameter gear coupled to the upper end of the rudder shaft, and a pinion that meshes with the large-diameter gear, is connected to the spring device, and is rotated by the reaction force of the spring device
  • the switching device includes the spring device and the pinion. 2 sets of rudder shaft drive devices with such a configuration are provided, one rudder shaft drive device turns the rudder shaft in the forward direction, and the other rudder shaft drive device reverses the rudder shaft. It is good to be comprised so that it may turn to.
  • the electric motor is rotated, and the rudder shaft rotation energy is accumulated as strain energy in the spring device.
  • the strain energy accumulated in the spring device is released as a reaction force of the spring device during steering, rotates the pinion through the clutch, and rotates the large-diameter gear through the pinion.
  • the steering device of the present invention can be used as a main drive device or an auxiliary drive device for a rudder shaft. Since the steering device of the present invention does not take a large installation space, even when used as an auxiliary, a sufficient installation space can be secured.
  • the generated rudder shaft rotation energy is stored in the energy storage device, and when the rudder shaft is steered, the accumulated energy is used. Since the rudder shaft is turned, the rudder shaft can be steered with a small-capacity and small-sized power generation device. Therefore, space saving, energy saving, and cost reduction of the rudder shaft drive mechanism are possible.
  • the rudder shaft 12 is turned by a hydraulic actuator 16 via a turning drive chiller 14.
  • the hydraulic actuator 16 includes a ram 18 and cylinders 20 a and 20 b provided at both ends of the ram 18.
  • the cylinders 20a and 20b form oil chambers 22a and 22b between the ram 18 and the cylinders 20a and 20b.
  • An oil tank 24 is provided in the vicinity of the rudder shaft 12, and oil passages 26 a and 26 b that connect the oil tank 24 and the oil chambers 22 a and 22 b of the hydraulic actuator 16 are provided.
  • the oil passage 26 a is provided with an oil pump 28 that draws the hydraulic oil o from the oil tank 24 and discharges it at a high pressure.
  • An accumulator 30 is provided on the downstream side of the oil pump 28, and the hydraulic oil o discharged from the oil pump 28 is supplied into the accumulator 30 at a high pressure.
  • the internal air of the accumulator 30 is pressurized to become pressurized air a, and a pressurized air region is formed above the liquid level of the hydraulic oil o.
  • a check valve 32 is provided upstream of the accumulator 30 to prevent the hydraulic oil o from flowing back to the oil pump 28 side.
  • a pressure sensor 34 is provided in the downstream oil passage 26a of the accumulator 30 to monitor the pressure in the accumulator 30 so as not to exceed an allowable value.
  • a switching valve 36 that sends hydraulic oil to the oil chamber 22a or 22b is provided.
  • the oil pump 28 is operated, the hydraulic oil o is supplied into the accumulator 30, and the hydraulic oil o is accumulated in the accumulator 30 in a high pressure state.
  • the oil pump 28 is stopped.
  • the rudder shaft 12 is steered, the operating oil o accumulated in the accumulator 30 is sent to the oil chamber 22a or 22b by the switching valve 36, the ram 18 is moved in the arrow a direction or the arrow b direction, and the rudder shaft 12 is moved to the arrow a. Turn in the direction or arrow b direction.
  • the ram 18 is moved in the arrow b direction, and the rudder shaft 12 is turned in the arrow b direction.
  • the hydraulic oil in the oil chamber 22b returns to the oil tank 24 through the oil passage 26b.
  • the oil pump 28 is operated to supply the hydraulic oil o into the accumulator 30, and the pressure in the accumulator 30 is returned to the set value.
  • the oil pump 28 is not used for directly driving the rudder shaft 12, but is used for accumulating hydraulic oil in the accumulator 30 in a pressurized state. There is no need to make it bigger. Therefore, the oil pump 28 can be reduced in size. Further, the pressure in the accumulator 30 is monitored by the pressure sensor 34. When the pressure in the accumulator 30 reaches a set value, the oil pump 28 is stopped. As a result, the oil pump 28 is not operated excessively and energy saving is possible. Thereby, space saving, energy saving, and cost reduction of the rudder shaft drive device can be achieved.
  • FIG. 2 a large diameter gear 38 is integrally attached to the upper end of the rudder shaft 12, and rudder shaft driving devices 40 ⁇ / b> A and 40 ⁇ / b> B are provided on both sides of the large diameter gear 38.
  • the rudder shaft drive devices 40A and 40B have substantially the same configuration.
  • the configuration will be described using the rudder shaft drive device 40A as an example.
  • An electric motor 42a is provided at the upper end, and an output shaft 44a of the electric motor 42a rotates clockwise and is connected to an end portion located on the center side of the helical spring 46a.
  • the other end 48a located on the outer peripheral side of the helical spring 46a is connected to a disk 50a provided below the helical spring 46a.
  • a shaft 52a is fixed to the center of the lower surface of the disk 50a, and the shaft 52a is connected to the clutch 54a.
  • the shaft 52a and the shaft 56a connected to the lower portion of the clutch 54a are connected to each other or released from the connected state by the clutch 54a.
  • the shaft 56a is coupled to the pinion 60a, and the pinion 60a meshes with the large-diameter gear 38.
  • a brake 60a is provided outside the disk 50a to stop the rotation of the disk 50a when the rudder shaft 12 is not turned.
  • the electric motor 42a rotates clockwise in the direction of the arrow and winds the center side end of the helical spring 46a.
  • the rudder axle rotation energy as the reaction force of the helical spring 46a is accumulated in the helical spring 46a.
  • the electric motor 42a is stopped.
  • the brake 60a is released, and the shaft 52a and the shaft 56a are connected by the clutch 54a.
  • the disk 50a rotates to the left by the reaction force of the helical spring 46a, and the rotation of the disk 50a is transmitted to the pinion 58a via the clutch 54a, thereby rotating the pinion 58a to the left.
  • the pinion 58a rotates in the left direction (arrow c direction), thereby rotating the large diameter gear 38 in the right direction.
  • the rudder shaft drive device 40B has the same configuration as the rudder shaft drive device 40A.
  • the output shaft 44b of the electric motor 42b is connected to the center side end of the helical spring 46b.
  • the electric motor 42b rotates counterclockwise in the direction of the arrow, and accumulates rudder shaft rotation energy in the helical spring 46b.
  • the outer peripheral side end of the helical spring 46b is connected to the disk 50b.
  • the disk 50b rotates to the right by the reaction force of the helical spring 46b, and the rotation of the disk 50b is transmitted to the pinion 58b via the clutch 54b to rotate the pinion 58b to the right (arrow d direction). .
  • the pinion 58b rotates to the right, the large diameter gear 38 is rotated to the left.
  • the role is shared so that the rudder shaft 12 is rotated to the right by the rudder shaft drive device 40A and the rudder shaft 12 is rotated to the left by the rudder shaft drive device 40B.
  • Fig. 3 shows the operation procedure.
  • the brake force of the brake 60a against the disk 50a is released and the clutch 54a is connected.
  • the brake force of the brake 60b against the disk 50b is maintained, and the clutch 54b is released (not connected).
  • the rudder shaft 12 is rotated counterclockwise, the brake force of the brake 60a against the disk 50a is maintained, and the clutch 54a is released (not connected).
  • the brake 60b is released and the clutch 54b is connected.
  • the rudder shaft 12 is fixed without steering, the brake force of the brakes 60a and 60b against the disks 50a and 50b is maintained, and the clutches 54a and 54b are connected.
  • the required work of the electric motors 42a and 42b is small when averaged over time. Further, since the rudder shaft 12 is not directly driven by the electric motors 42a and 42b, the electric motors 42a and 42b do not require a large capacity. According to this embodiment, since the electric motors 42a and 42b are always operated, the steering shaft rotation energy can be sufficiently accumulated in the helical springs 46a and 46b, so that the capacity of the electric motors 42a and 42b can be reduced. Therefore, the electric motors 42a and 42b can be reduced in size, and accordingly, space saving, energy saving and cost reduction of the rudder shaft drive device can be achieved. Moreover, since the rotational speed of the electric motors 42a and 42b may be slow, even a small electric motor that is sufficiently decelerated can be used.
  • any of the electric motors 42a and 42b and the helical springs 46a and 46b, the disks 50a and 50b and the clutches 54a and 54b, and the clutches 54a and 54b and the pinions 58a and 58b are used.
  • a reduction gear may be additionally provided.
  • an electric steering device 10C according to a third embodiment using the device of the present invention as an auxiliary device will be described with reference to FIG.
  • a turning drive chiller 14 is provided integrally with the rudder shaft 12 at the upper end of the rudder shaft 12, and a large-diameter gear 38 is provided integrally with the rudder shaft 12 below the chiller 14.
  • Pinions 62 a and 62 b that mesh with the large-diameter gear 38 are provided on both sides of the large-diameter gear 38.
  • the pinions 62a and 62b are connected to the output shafts of the electric motors 64a and 64b disposed below the pinions, and are rotated by the electric motors.
  • the pinion 64a and the pinion 64b rotate in opposite directions, and share the role of rotating the large-diameter gear 38 clockwise with one pinion and rotating the large-diameter gear 38 counterclockwise with the other pinion.
  • the large-diameter gear 38 is provided with an air-driven brake 66 that stops the movement of the large-diameter gear 38 when the steering of the rudder shaft 12 is stopped.
  • the large-diameter gear 38, the pinions 62a and 62b, the electric motors 64a and 64b, and the like constitute a main drive device that drives the rudder shaft 12.
  • an auxiliary drive device 70 is provided as a device for driving the rudder shaft 12 in an auxiliary manner.
  • the piston 74 of the air cylinder 72 is connected to the chiller 14 via a connecting rod 76, and the chiller 14 can be turned in both the left and right directions by the reciprocating motion of the piston 74.
  • the air passages 78 a and 78 b are connected to the left and right air chambers of the air cylinder 72.
  • An inlet air pump 80 for the air passage 78a is provided.
  • the air pump 80 takes in air from the air intake 82 and discharges pressurized air to the air passage 78a.
  • the accumulator 84 takes in and accumulates the pressurized air a.
  • the pressure of the accumulator 84 is monitored by a pressure sensor 86 provided in the air passage 78a in the vicinity of the accumulator, and when it reaches a set value, the air pump 80 is stopped.
  • a check valve 88 is provided between the air pump 80 and the accumulator 84, and the check valve 88 prevents the pressurized air from flowing back to the air pump 80.
  • a switching valve 90 is provided in the air passages 78 a and 78 b, and the pressurized air a supplied from the air passage 78 a by the switching valve 90 is switched and supplied to either the left or right air chamber of the air cylinder 72.
  • the air discharged from either the left or right air chamber of the air cylinder 72 passes through the air passage 78b and is discharged to the outside through the air discharge port 92.
  • the driving device of the air pump 80 is connected to the driving device 96 of the marine vessel propulsion device 94 via the rotational force transmitting device 98.
  • the rotation of the propelling device 94 is transmitted to the air pump 80 and is driven by utilizing the rotation.
  • the air drive brake 66 can also accumulate air using the rotation of the propelling device 94 and exert a braking force with the accumulated pressurized air.
  • the main rudder shaft 12 is steered by using a main drive device including the large-diameter gear 38 and pinions 62a and 62b, electric motors 64a and 64b, and the like.
  • the auxiliary drive device 70 is used to assist the braking force when the electric motors 64a and 64b constituting the main drive device are output or when the rudder shaft is stopped. That is, it is operated to assist the load torque of the main drive device at the start of steering, or assist the braking force acting on the rudder shaft 12 when the steering angle is fixed. Thereby, since the required torque of the electric motors 64a and 64b can be reduced, the electric motors 64a and 64b can be reduced in capacity and size.
  • the large diameter gear 38 and the brake desk may be used together. This can reduce equipment costs.
  • the electric steering device 10D is provided with a ball screw 100.
  • the ball screw 100 meshes with a nut (not shown) provided on the chiller 14, and rotates to enable the chiller 14 to turn left and right.
  • a gear 102 is attached to the tip of the ball screw 100, and the gear 102 meshes with a gear 106 attached to the output shaft 104 a of the electric motor 104.
  • the electric motor 104 uses a bidirectionally rotating electric motor.
  • the rudder shaft drive mechanism configured as described above is used as the main drive device.
  • the rudder shaft 12 is provided with a brake desk 108 and an air drive brake 66 as brake devices for stopping the turning of the rudder shaft 12.
  • an auxiliary drive device 70 is provided in addition to the main drive device.
  • the auxiliary drive device 70 has the same configuration as the auxiliary drive device 70 used in the third embodiment.
  • the piston 74 of the air cylinder 72 is connected to the chiller 14 via a connecting rod 76.
  • the auxiliary drive device 70 is used to assist the braking force when the main drive device is output or when the rudder shaft is stopped.
  • This electric steering device 10D ′ is provided with a pad-type air-driven brake 110 instead of the brake device including the brake desk 108 and the air-driven brake 66, as compared with the configuration of the fourth embodiment.
  • the air-driven brake 110 can accumulate air using the rotation of the propulsion device, and can exert a braking force with the accumulated pressurized air.
  • Other configurations are the same as those of the fourth embodiment.
  • the effect of this modification is the same as 4th Embodiment.
  • the rudder shaft drive device of the steering device can be reduced in capacity and size, and the rudder shaft drive device can be reduced in space, energy saving and cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Power Steering Mechanism (AREA)

Abstract

An oil pump (28) is operated full-time to suction hydraulic oil (o) from an oil tank (24), and accumulation is performed so that the hydraulic oil (o) becomes pressurized in an accumulator (30). During steering, the hydraulic oil (o) is supplied from the accumulator (30) to an oil chamber (22a or 22b) through a switching valve (36), and a steering shaft (12) is turned. Instead of directly turning the steering shaft (12) by using the oil pump (28), the steering shaft (12) is turned by using the high-pressure hydraulic oil (o) accumulated in the accumulator (30) so that the oil pump (28) may be capacity-saving and reduced in size. Therefore, a steering shaft driving device may be space-saving, energy-saving, and cost-saving.

Description

エネルギ蓄積型舵取装置Energy storage type steering device
 本発明は、舵軸回動エネルギを蓄積することで、小容量の駆動装置で舵軸を駆動可能にしたエネルギ蓄積型舵取装置に関する。 The present invention relates to an energy storage type steering apparatus that can drive a rudder shaft with a small-capacity driving device by accumulating rudder shaft rotation energy.
 従来の船舶用舵取装置は、油圧アクチュエータで駆動される油圧式が主流であり、油圧式はラプソンスライド型とロータリーベーン型の2つに分類される。ラプソンスライド型は、特許文献1に開示されているように、舵軸を旋回駆動するチラーに接続された油圧アクチュエータを駆動することで、舵軸を旋回させるものである。ロータリーベーン型は、特許文献2に開示されているように、舵軸を囲むハウジングの内部に舵軸と一体の可動ベーンを備え、ハウジングと舵軸の間に、可動ベーンで仕切られた複数の作動室を形成している。複数の作動室のひとつに作動油を供給して、ロータを回動させるようにしている。 The conventional marine steering system is mainly driven by a hydraulic actuator and is classified into two types: a Raphson slide type and a rotary vane type. As disclosed in Patent Document 1, the Raphson slide type turns a rudder shaft by driving a hydraulic actuator connected to a chiller that turns the rudder shaft. As disclosed in Patent Document 2, the rotary vane type includes a movable vane integrated with the rudder shaft in a housing surrounding the rudder shaft, and a plurality of the vanes partitioned by the movable vane between the housing and the rudder shaft. A working chamber is formed. The working oil is supplied to one of the plurality of working chambers to rotate the rotor.
 油圧式は船内への油漏れのリスクがある。そのため、近年、環境への配慮の観点から、作動油を使用しない電動式舵取装置に対するニーズが高まっている。特許文献3には、電動式舵取装置が提案されている。この舵取装置は、舵軸の上部に旋回環を装着し、該旋回環の外輪を大歯車に形成し、この大歯車に2個のピニオンを噛合させ、この2個のピニオンを互いに逆方向に回転する電動モータで、選択的に回転させるように構成している。 Hydraulic type has a risk of oil leakage into the ship. Therefore, in recent years, from the viewpoint of environmental considerations, there is an increasing need for an electric steering device that does not use hydraulic oil. Patent Document 3 proposes an electric steering device. In this steering device, a turning ring is mounted on an upper portion of a rudder shaft, an outer ring of the turning ring is formed as a large gear, two pinions are meshed with the large gear, and the two pinions are opposite to each other. The motor is configured to rotate selectively with an electric motor that rotates at a constant speed.
国際公開WO2010/052777A1公報International Publication WO2010 / 052777A1 特開2011-73526号公報JP 2011-73526 A 特開2007-8189号公報JP 2007-8189 A
 舵取装置は、400~600t・mの大トルクを発生させる必要がある。そのため、電動式舵取装置は大容量の電動モータと大型の減速機を備える必要があり、舵軸上部に大型の構造物を設ける必要がある。従って、コスト面及び設置スペースの面から、現状、実用化が困難な状況にある。 The steering device needs to generate a large torque of 400 to 600 t · m. Therefore, the electric steering apparatus needs to include a large-capacity electric motor and a large speed reducer, and a large structure needs to be provided on the top of the rudder shaft. Therefore, from the viewpoint of cost and installation space, it is currently difficult to put into practical use.
 本発明は、かかる従来技術の課題に鑑み、舵取装置の舵軸駆動装置を小容量化かつ小型化し、舵取装置の省スペース化、省エネ化及び低コスト化を実現することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and aims to reduce the capacity and size of the steering shaft drive device of the steering device, and to realize space saving, energy saving, and cost reduction of the steering device. .
 かかる目的を達成するため、本発明のエネルギ蓄積型舵取装置は、舵軸回動エネルギを発生する動力発生装置と、舵軸回動エネルギを蓄積するエネルギ蓄積装置と、エネルギ蓄積装置に蓄積された舵軸回動エネルギを操舵量に応じて舵軸に伝達する動力伝達装置と、動力伝達装置から舵軸に伝達される舵軸回動エネルギの舵軸に対する旋回方向を切り換えることで、舵軸の旋回方向を切り換える切換装置とを備えているものである。 In order to achieve such an object, an energy storage type steering device of the present invention is stored in a power generation device that generates rudder shaft rotation energy, an energy storage device that stores rudder shaft rotation energy, and an energy storage device. By switching the turning direction of the rudder shaft rotation energy transmitted from the power transmission device to the rudder shaft with respect to the rudder shaft. And a switching device for switching the turning direction.
 前記構成において、動力発生装置を稼働させ、動力発生装置で発生させた動力をエネルギ蓄積装置に蓄積しておき、この蓄積された舵軸回動エネルギで舵軸を旋回させる。舵取装置は、1時間に10数回小舵角で転舵するだけなので、時間平均すると、必要仕事量は少ない。従って、本発明では、小容量で小型の動力発生装置を常時稼働させることで、十分な舵軸回動エネルギを蓄積できる。そのため、動力発生装置を小型化できるので、舵軸駆動装置の省スペース化、省エネ化及び低コスト化を可能にする。 In the above configuration, the power generation device is operated, the power generated by the power generation device is stored in the energy storage device, and the rudder shaft is turned by the stored rudder shaft rotation energy. Since the steering device only turns at a small steering angle 10 or more times per hour, the required work amount is small when time averaged. Therefore, in the present invention, sufficient rudder shaft rotation energy can be accumulated by always operating a small-sized and small-sized power generation device. As a result, the power generation device can be reduced in size, thereby enabling space saving, energy saving, and cost reduction of the rudder shaft drive device.
 本発明において、動力発生装置が、作動流体を吸入し高圧で吐出するポンプであり、エネルギ蓄積装置が、該ポンプから吐出した作動流体を受け入れ加圧状態で蓄積するアキュムレータであり、動力伝達装置が、舵軸に連結され舵軸を回動する流体圧アクチュエータであり、切換装置が、アキュムレータと流体圧アクチュエータとを結ぶ作動流体給排路の給排方向を切り換える切換弁であるとよい。ポンプを長時間稼働させて作動流体をアキュムレータに蓄積するので、ポンプの容量を大きくする必要はない。そのため、ポンプを小型化でき、舵軸駆動装置の省スペース化、省エネ化及び低コスト化を可能とする。作動流体は潤滑油等の作動油又は空気等の不活性気体を用いることができる。 In the present invention, the power generation device is a pump that sucks the working fluid and discharges it at a high pressure, the energy storage device is an accumulator that receives the working fluid discharged from the pump and stores it in a pressurized state, and the power transmission device is The fluid pressure actuator is connected to the rudder shaft and rotates the rudder shaft, and the switching device may be a switching valve for switching the supply / discharge direction of the working fluid supply / discharge path connecting the accumulator and the fluid pressure actuator. Since the working fluid is accumulated in the accumulator by operating the pump for a long time, it is not necessary to increase the capacity of the pump. Therefore, the pump can be reduced in size, and the rudder shaft drive device can be made space-saving, energy-saving and cost-effective. As the working fluid, working oil such as lubricating oil or inert gas such as air can be used.
 本発明において、動力発生装置が電動モータであり、エネルギ蓄積装置が、電動モータの出力軸に連結され、電動モータの回転により舵軸回動エネルギを蓄積するバネ装置であり、動力伝達装置が、舵軸の上端に結合された大径歯車と、大径歯車と噛合し、バネ装置に連結され、バネ装置の反力により回転されるピニオンとで構成され、切換装置が、バネ装置とピニオンとを連結又は遮断するクラッチであり、かかる構成の舵軸駆動装置が2組設けられ、一方の舵軸駆動装置で舵軸を正方向へ旋回し、他方の舵軸駆動装置で舵軸を逆方向へ旋回させるように構成されているとよい。 In the present invention, the power generation device is an electric motor, the energy storage device is a spring device that is connected to the output shaft of the electric motor and stores the steering shaft turning energy by the rotation of the electric motor, and the power transmission device is A large-diameter gear coupled to the upper end of the rudder shaft, and a pinion that meshes with the large-diameter gear, is connected to the spring device, and is rotated by the reaction force of the spring device, and the switching device includes the spring device and the pinion. 2 sets of rudder shaft drive devices with such a configuration are provided, one rudder shaft drive device turns the rudder shaft in the forward direction, and the other rudder shaft drive device reverses the rudder shaft. It is good to be comprised so that it may turn to.
 前記構成では、電動モータを回転させ、バネ装置に歪エネルギとして舵軸回動エネルギが蓄積される。バネ装置に蓄積された歪エネルギは、操舵時にバネ装置の反力として放出され、クラッチを介してピニオンを回転させ、ピニオン介して大径歯車を回転させる。電動モータの駆動速度は遅くても、電動モータを常時稼働させることで、バネ装置に十分な量の歪エネルギを蓄積できる。そのため、十分に減速された小型電動モータで舵軸を操舵可能になる。従って、舵軸駆動装置の省スペース化、省エネ化及び低コスト化を達成できる。 In the above configuration, the electric motor is rotated, and the rudder shaft rotation energy is accumulated as strain energy in the spring device. The strain energy accumulated in the spring device is released as a reaction force of the spring device during steering, rotates the pinion through the clutch, and rotates the large-diameter gear through the pinion. Even if the drive speed of the electric motor is low, a sufficient amount of strain energy can be accumulated in the spring device by always operating the electric motor. Therefore, the steering shaft can be steered by a small electric motor that is sufficiently decelerated. Therefore, space saving, energy saving and cost reduction of the rudder shaft drive device can be achieved.
 本発明の舵取装置は、舵軸の主駆動装置又は補助用の駆動装置として用いることができる。本発明の舵取装置は、設置スペースを大きく取らないので、補助用として用いた場合でも、設置スペースを十分確保できる。 The steering device of the present invention can be used as a main drive device or an auxiliary drive device for a rudder shaft. Since the steering device of the present invention does not take a large installation space, even when used as an auxiliary, a sufficient installation space can be secured.
 本発明によれば、動力発生装置で直接舵軸を駆動するのではなく、発生させた舵軸回動エネルギをエネルギ蓄積装置に蓄積しておき、舵軸を操舵する時、蓄積されたエネルギで舵軸を旋回させるので、小容量で小型の動力発生装置で舵軸を操舵可能になる。そのため、舵軸駆動機構の省スペース化、省エネ化及び低コスト化が可能になる。 According to the present invention, instead of directly driving the rudder shaft by the power generation device, the generated rudder shaft rotation energy is stored in the energy storage device, and when the rudder shaft is steered, the accumulated energy is used. Since the rudder shaft is turned, the rudder shaft can be steered with a small-capacity and small-sized power generation device. Therefore, space saving, energy saving, and cost reduction of the rudder shaft drive mechanism are possible.
本発明装置の第1実施形態に係る油圧式舵取装置の構成図である。It is a lineblock diagram of the hydraulic steering device concerning a 1st embodiment of the present invention device. 本発明装置の第2実施形態に係る電動式舵取装置の斜視図である。It is a perspective view of the electric steering device which concerns on 2nd Embodiment of this invention apparatus. 前記第2実施形態の操作手順を示す図表である。It is a graph which shows the operation procedure of the said 2nd Embodiment. 本発明装置を補助装置として用いた第3実施形態に係る電動式舵取装置の構成図である。It is a block diagram of the electrically driven steering apparatus which concerns on 3rd Embodiment using this invention apparatus as an auxiliary | assistant apparatus. 本発明装置を補助装置として用いた第4実施形態に係る電動式舵取装置の構成図である。It is a block diagram of the electrically driven steering apparatus which concerns on 4th Embodiment using this invention apparatus as an auxiliary | assistant apparatus. 第4実施形態の変形例に係る電動式舵取装置の構成図である。It is a block diagram of the electrically driven steering apparatus which concerns on the modification of 4th Embodiment.
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。 Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.
(実施形態1)
 本発明装置の第1実施形態に係る油圧式船舶用舵取装置10Aを図1に基づいて説明する。舵軸12は旋回駆動用チラー14を介して油圧アクチュエータ16によって旋回される。油圧アクチュエータ16は、ラム18と、ラム18の両端に設けられたシリンダ20a及び20bとからなる。シリンダ20a、20bはラム18との間に油室22a、22bを形成している。舵軸12の近傍に油タンク24が設けられ、油タンク24と油圧アクチュエータ16の油室22a、22bとを結ぶ油路26a、26bが配設されている。
(Embodiment 1)
A hydraulic marine vessel steering apparatus 10A according to a first embodiment of the present invention apparatus will be described with reference to FIG. The rudder shaft 12 is turned by a hydraulic actuator 16 via a turning drive chiller 14. The hydraulic actuator 16 includes a ram 18 and cylinders 20 a and 20 b provided at both ends of the ram 18. The cylinders 20a and 20b form oil chambers 22a and 22b between the ram 18 and the cylinders 20a and 20b. An oil tank 24 is provided in the vicinity of the rudder shaft 12, and oil passages 26 a and 26 b that connect the oil tank 24 and the oil chambers 22 a and 22 b of the hydraulic actuator 16 are provided.
 油路26aには、油タンク24から作動油oを汲み上げ高圧で吐出する油ポンプ28が設けられている。油ポンプ28の下流側にはアキュムレータ30が設けられ、油ポンプ28から吐出された作動油oがアキュムレータ30の内部に高圧で供給される。作動油oが高圧で供給されることで、アキュムレータ30の内部空気が加圧され、加圧空気aとなって、作動油oの液面上方に加圧空気領域が形成される。アキュムレータ30の上流側に逆止弁32が設けられ、作動油oが油ポンプ28側へ逆流するのを防止している。アキュムレータ30の下流側油路26aに圧力センサー34が設けられ、アキュムレータ30内の圧力が許容値を超えないように監視している。圧力センサー34の下流側に、油室22a又は22bに作動油を送る切換弁36が設けられている。 The oil passage 26 a is provided with an oil pump 28 that draws the hydraulic oil o from the oil tank 24 and discharges it at a high pressure. An accumulator 30 is provided on the downstream side of the oil pump 28, and the hydraulic oil o discharged from the oil pump 28 is supplied into the accumulator 30 at a high pressure. By supplying the hydraulic oil o at a high pressure, the internal air of the accumulator 30 is pressurized to become pressurized air a, and a pressurized air region is formed above the liquid level of the hydraulic oil o. A check valve 32 is provided upstream of the accumulator 30 to prevent the hydraulic oil o from flowing back to the oil pump 28 side. A pressure sensor 34 is provided in the downstream oil passage 26a of the accumulator 30 to monitor the pressure in the accumulator 30 so as not to exceed an allowable value. On the downstream side of the pressure sensor 34, a switching valve 36 that sends hydraulic oil to the oil chamber 22a or 22b is provided.
 かかる構成において、油ポンプ28を稼働し、アキュムレータ30内に作動油oを供給し、アキュムレータ30に作動油oを高圧状態で蓄積する。アキュムレータ30内の圧力が設定圧力となったら、油ポンプ28を停止する。舵軸12を操舵する時、切換弁36によってアキュムレータ30に蓄積された作動油oを油室22a又は22bに送り、ラム18を矢印a方向又は矢印b方向に移動させ、舵軸12を矢印a方向又は矢印b方向へ旋回させる。例えば、作動油を油室22aに送ることで、ラム18を矢印b方向へ移動させ、舵軸12を矢印b方向へ旋回させる。同時に、油室22bの作動油は油路26bを介して油タンク24に戻る。圧力センサー34の検出値が設定値より低下したら、油ポンプ28を稼働させてアキュムレータ30内に作動油oを供給し、アキュムレータ30内の圧力を設定値に戻す。 In such a configuration, the oil pump 28 is operated, the hydraulic oil o is supplied into the accumulator 30, and the hydraulic oil o is accumulated in the accumulator 30 in a high pressure state. When the pressure in the accumulator 30 reaches the set pressure, the oil pump 28 is stopped. When the rudder shaft 12 is steered, the operating oil o accumulated in the accumulator 30 is sent to the oil chamber 22a or 22b by the switching valve 36, the ram 18 is moved in the arrow a direction or the arrow b direction, and the rudder shaft 12 is moved to the arrow a. Turn in the direction or arrow b direction. For example, by sending the hydraulic oil to the oil chamber 22a, the ram 18 is moved in the arrow b direction, and the rudder shaft 12 is turned in the arrow b direction. At the same time, the hydraulic oil in the oil chamber 22b returns to the oil tank 24 through the oil passage 26b. When the detection value of the pressure sensor 34 falls below the set value, the oil pump 28 is operated to supply the hydraulic oil o into the accumulator 30, and the pressure in the accumulator 30 is returned to the set value.
 本実施形態によれば、油ポンプ28を舵軸12を直接駆動するために用いるのではなく、作動油をアキュムレータ30に加圧状態で蓄積するために用いているので、油ポンプ28の容量を大きくする必要がない。そのため、油ポンプ28を小型化できる。また、圧力センサー34でアキュムレータ30内の圧力を監視し、アキュムレータ30内の圧力が設定値に達したら、油ポンプ28を停止させる。これによって、油ポンプ28を余分に稼働させることがなくなり、省エネが可能になる。これによって、舵軸駆動装置の省スペース化、省エネ化及び低コスト化を達成できる。 According to the present embodiment, the oil pump 28 is not used for directly driving the rudder shaft 12, but is used for accumulating hydraulic oil in the accumulator 30 in a pressurized state. There is no need to make it bigger. Therefore, the oil pump 28 can be reduced in size. Further, the pressure in the accumulator 30 is monitored by the pressure sensor 34. When the pressure in the accumulator 30 reaches a set value, the oil pump 28 is stopped. As a result, the oil pump 28 is not operated excessively and energy saving is possible. Thereby, space saving, energy saving, and cost reduction of the rudder shaft drive device can be achieved.
(実施形態2)
 次に、本発明装置の第2実施形態に係る電動式舵取装置10Bを図2及び図3により説明する。図2において、舵軸12の上端に大径歯車38が一体に装着され、大径歯車38の両側に舵軸駆動装置40A及び40Bが設けられている。舵軸駆動装置40A及び40Bはほぼ同一の構成を有し、まず、舵軸駆動装置40Aを例に取ってその構成を説明する。上端に電動モータ42aが設けられ、電動モータ42aの出力軸44aは右回転し、つるまきバネ46aの中心側に位置した端部に接続されている。つるまきバネ46aの外周側に位置する他端48aは、つるまきバネ46aの下方に設けられた円盤50aに接続されている。
(Embodiment 2)
Next, an electric steering apparatus 10B according to a second embodiment of the present invention apparatus will be described with reference to FIGS. In FIG. 2, a large diameter gear 38 is integrally attached to the upper end of the rudder shaft 12, and rudder shaft driving devices 40 </ b> A and 40 </ b> B are provided on both sides of the large diameter gear 38. The rudder shaft drive devices 40A and 40B have substantially the same configuration. First, the configuration will be described using the rudder shaft drive device 40A as an example. An electric motor 42a is provided at the upper end, and an output shaft 44a of the electric motor 42a rotates clockwise and is connected to an end portion located on the center side of the helical spring 46a. The other end 48a located on the outer peripheral side of the helical spring 46a is connected to a disk 50a provided below the helical spring 46a.
 円盤50aの下面中心部には軸52aが固着され、軸52aはクラッチ54aに接続されている。軸52aとクラッチ54aの下部に接続された軸56aとは、クラッチ54aによって連結し又は連結状態が解除される。軸56aはピニオン60aに結合しており、ピニオン60aは大径歯車38と噛合している。円盤50aの外側に、舵軸12を旋回させない時円盤50aの回転を停止させるブレーキ60aが設けられている。 A shaft 52a is fixed to the center of the lower surface of the disk 50a, and the shaft 52a is connected to the clutch 54a. The shaft 52a and the shaft 56a connected to the lower portion of the clutch 54a are connected to each other or released from the connected state by the clutch 54a. The shaft 56a is coupled to the pinion 60a, and the pinion 60a meshes with the large-diameter gear 38. A brake 60a is provided outside the disk 50a to stop the rotation of the disk 50a when the rudder shaft 12 is not turned.
 電動モータ42aは、矢印方向に右回転し、つるまきバネ46aの中心側端部を巻いていく。これによって、つるまきバネ46aにつるまきバネ46aの反力としての舵軸回動エネルギが蓄積されていく。舵軸回動エネルギを設定量蓄積したら、電動モータ42aを停止させる。操舵が必要な時、ブレーキ60aを解除すると共に、クラッチ54aによって軸52aと軸56aとを接続する。これによって、円盤50aがつるまきバネ46aの反力によって左方向に回転し、円盤50aの回転は、クラッチ54aを介してピニオン58aに伝達され、ピニオン58aを左方向へ回転させる。ピニオン58aが左方向(矢印c方向)へ回転することで、大径歯車38を右方向へ回転させる。 The electric motor 42a rotates clockwise in the direction of the arrow and winds the center side end of the helical spring 46a. As a result, the rudder axle rotation energy as the reaction force of the helical spring 46a is accumulated in the helical spring 46a. When the set amount of rudder shaft rotation energy is accumulated, the electric motor 42a is stopped. When steering is necessary, the brake 60a is released, and the shaft 52a and the shaft 56a are connected by the clutch 54a. As a result, the disk 50a rotates to the left by the reaction force of the helical spring 46a, and the rotation of the disk 50a is transmitted to the pinion 58a via the clutch 54a, thereby rotating the pinion 58a to the left. The pinion 58a rotates in the left direction (arrow c direction), thereby rotating the large diameter gear 38 in the right direction.
 舵軸駆動装置40Bも舵軸駆動装置40Aと同様な構成を有する。電動モータ42bの出力軸44bはつるまきバネ46bの中心側端部に接続されている。電動モータ42bは矢印方向へ左回転し、つるまきバネ46bに舵軸回動エネルギを蓄積させる。つるまきバネ46bの外周側端部が円盤50bに接続されている。操舵が必要な時、円盤50bに対するブレーキ60bのブレーキ力を解除すると共に、クラッチ54bによって軸52bと軸56bとを接続する。これによって、円盤50bがつるまきバネ46bの反力によって右方向に回転し、円盤50bの回転は、クラッチ54bを介してピニオン58bに伝達され、ピニオン58bを右方向(矢印d方向)へ回転させる。ピニオン58bが右方向へ回転することで、大径歯車38を左方向へ回転させる。 The rudder shaft drive device 40B has the same configuration as the rudder shaft drive device 40A. The output shaft 44b of the electric motor 42b is connected to the center side end of the helical spring 46b. The electric motor 42b rotates counterclockwise in the direction of the arrow, and accumulates rudder shaft rotation energy in the helical spring 46b. The outer peripheral side end of the helical spring 46b is connected to the disk 50b. When steering is necessary, the brake force of the brake 60b on the disk 50b is released, and the shaft 52b and the shaft 56b are connected by the clutch 54b. As a result, the disk 50b rotates to the right by the reaction force of the helical spring 46b, and the rotation of the disk 50b is transmitted to the pinion 58b via the clutch 54b to rotate the pinion 58b to the right (arrow d direction). . As the pinion 58b rotates to the right, the large diameter gear 38 is rotated to the left.
 このように、本実施形態では、舵軸駆動装置40Aによって舵軸12を右回転させ、舵軸駆動装置40Bによって舵軸12を左回転させるように、役割を分担している。 Thus, in this embodiment, the role is shared so that the rudder shaft 12 is rotated to the right by the rudder shaft drive device 40A and the rudder shaft 12 is rotated to the left by the rudder shaft drive device 40B.
 図3に、操作手順を示している。舵軸12を右回転させる時、円盤50aに対するブレーキ60aのブレーキ力を開放し、かつクラッチ54aを接続する。逆に、円盤50bに対するブレーキ60bのブレーキ力を保持し、かつクラッチ54bを開放(非接続)する。舵軸12を左回転させる時、ブレーキ60aの円盤50aに対するブレーキ力を保持し、かつクラッチ54aを開放(非接続)する。逆に、ブレーキ60bを開放し、クラッチ54bを接続する。舵軸12を操舵せずに固定する時、ブレーキ60a及び60bの円盤50a及び50bに対するブレーキ力を保持し、かつクラッチ54a及び54bを接続状態とする。 Fig. 3 shows the operation procedure. When the rudder shaft 12 is rotated clockwise, the brake force of the brake 60a against the disk 50a is released and the clutch 54a is connected. Conversely, the brake force of the brake 60b against the disk 50b is maintained, and the clutch 54b is released (not connected). When the rudder shaft 12 is rotated counterclockwise, the brake force of the brake 60a against the disk 50a is maintained, and the clutch 54a is released (not connected). Conversely, the brake 60b is released and the clutch 54b is connected. When the rudder shaft 12 is fixed without steering, the brake force of the brakes 60a and 60b against the disks 50a and 50b is maintained, and the clutches 54a and 54b are connected.
 舵軸12の操舵は、1時間に10数回であり、かつ小舵角で転舵するだけであるので、時間平均すると、電動モータ42a、42bの必要仕事量は小さい。また、電動モータ42a、42bで直接舵軸12を駆動するわけではないので、電動モータ42a、42bは大容量を必要としない。本実施形態によれば、電動モータ42a、42bを常時稼働させることで、つるまきバネ46a、46bに十分舵軸回動エネルギを蓄積できるので、電動モータ42a、42bの容量を小さくできる。そのため、電動モータ42a、42bを小型化でき、従って、舵軸駆動装置の省スペース化、省エネ化及び低コスト化を達成できる。また、電動モータ42a、42bの回転速度は遅くてもよいので、十分に減速された小型電動モータでも用いることができる。 Since the steering shaft 12 is steered ten times an hour and only steered at a small steering angle, the required work of the electric motors 42a and 42b is small when averaged over time. Further, since the rudder shaft 12 is not directly driven by the electric motors 42a and 42b, the electric motors 42a and 42b do not require a large capacity. According to this embodiment, since the electric motors 42a and 42b are always operated, the steering shaft rotation energy can be sufficiently accumulated in the helical springs 46a and 46b, so that the capacity of the electric motors 42a and 42b can be reduced. Therefore, the electric motors 42a and 42b can be reduced in size, and accordingly, space saving, energy saving and cost reduction of the rudder shaft drive device can be achieved. Moreover, since the rotational speed of the electric motors 42a and 42b may be slow, even a small electric motor that is sufficiently decelerated can be used.
 なお、本実施形態において、電動モータ42a、42bとつるまきバネ46a、46bとの間、円盤50a、50bとクラッチ54a、54bとの間、クラッチ54a、54bとピニオン58a、58bとの間のいずれかに、減速機を追設するようにしてもよい。 In the present embodiment, any of the electric motors 42a and 42b and the helical springs 46a and 46b, the disks 50a and 50b and the clutches 54a and 54b, and the clutches 54a and 54b and the pinions 58a and 58b are used. In addition, a reduction gear may be additionally provided.
(実施形態3)
 次に、本発明装置を補助装置として用いた第3実施形態に係る電動式舵取装置10Cを図4により説明する。電動式舵取装置10Cは、舵軸12の上端に旋回駆動用チラー14が舵軸12と一体に設けられ、チラー14の下方に大径歯車38が舵軸12と一体に設けられている。大径歯車38の両側に、大径歯車38と噛合するピニオン62a及び62bが設けられている。ピニオン62a、62bは、これらピニオンの下方に配置された電動モータ64a、64bの出力軸と接続され、該電動モータによって回転される。ピニオン64aとピニオン64bとは、互いに逆方向に回転し、一方のピニオンで大径歯車38を右回転させ、他方のピニオンで大径歯車38を左回転させる役割分担となっている。
(Embodiment 3)
Next, an electric steering device 10C according to a third embodiment using the device of the present invention as an auxiliary device will be described with reference to FIG. In the electric steering device 10 </ b> C, a turning drive chiller 14 is provided integrally with the rudder shaft 12 at the upper end of the rudder shaft 12, and a large-diameter gear 38 is provided integrally with the rudder shaft 12 below the chiller 14. Pinions 62 a and 62 b that mesh with the large-diameter gear 38 are provided on both sides of the large-diameter gear 38. The pinions 62a and 62b are connected to the output shafts of the electric motors 64a and 64b disposed below the pinions, and are rotated by the electric motors. The pinion 64a and the pinion 64b rotate in opposite directions, and share the role of rotating the large-diameter gear 38 clockwise with one pinion and rotating the large-diameter gear 38 counterclockwise with the other pinion.
 大径歯車38には、舵軸12の操舵を停止させる時、大径歯車38の動きを止める空気駆動ブレーキ66が設けられている。大径歯車38、ピニオン62a、62b及び電動モータ64a、64b等で、舵軸12を駆動する主駆動装置を構成している。また、舵軸12を補助的に駆動する装置として、補助駆動装置70が設けられている。以下、補助駆動装置70の構成を説明する。空気シリンダ72のピストン74は、連結棒76を介してチラー14に連結され、ピストン74の往復動によってチラー14を左右両方向へ旋回可能になっている。 The large-diameter gear 38 is provided with an air-driven brake 66 that stops the movement of the large-diameter gear 38 when the steering of the rudder shaft 12 is stopped. The large-diameter gear 38, the pinions 62a and 62b, the electric motors 64a and 64b, and the like constitute a main drive device that drives the rudder shaft 12. In addition, an auxiliary drive device 70 is provided as a device for driving the rudder shaft 12 in an auxiliary manner. Hereinafter, the configuration of the auxiliary drive device 70 will be described. The piston 74 of the air cylinder 72 is connected to the chiller 14 via a connecting rod 76, and the chiller 14 can be turned in both the left and right directions by the reciprocating motion of the piston 74.
 空気シリンダ72の左右空気室には、空気路78a及び78bが接続されている。空気路78aの入口空気ポンプ80が設けられ、空気ポンプ80は、空気取入口82から空気を取入れ、加圧空気を空気路78aに吐出する。アキュムレータ84は、加圧空気aを取入れ蓄圧する。アキュムレータ近傍の空気路78aに設けられた圧力センサー86でアキュムレータ84の圧力を監視し、それが設定値となったら、空気ポンプ80を停止する。空気ポンプ80とアキュムレータ84との間に逆止弁88を設けており、逆止弁88によって加圧空気が空気ポンプ80に逆流するのを防止している。 The air passages 78 a and 78 b are connected to the left and right air chambers of the air cylinder 72. An inlet air pump 80 for the air passage 78a is provided. The air pump 80 takes in air from the air intake 82 and discharges pressurized air to the air passage 78a. The accumulator 84 takes in and accumulates the pressurized air a. The pressure of the accumulator 84 is monitored by a pressure sensor 86 provided in the air passage 78a in the vicinity of the accumulator, and when it reaches a set value, the air pump 80 is stopped. A check valve 88 is provided between the air pump 80 and the accumulator 84, and the check valve 88 prevents the pressurized air from flowing back to the air pump 80.
 空気路78a、78bには切換弁90が設けられ、切換弁90によって空気路78aから供給される加圧空気aを空気シリンダ72の左右空気室のどちらかに切り換え供給する。加圧空気aの供給と共に、空気シリンダ72の左右空気室のどちらかから排出された空気は、空気路78bを通り、空気排出口92から外部へ排出される。空気ポンプ80の駆動装置は、船舶の推進器94の駆動装置96と回転力伝達装置98を介して接続されている。これによって、空気ポンプ80には推進器94の回転が伝達され、その回転を利用して駆動される。また、空気駆動ブレーキ66も、推進器94の回転を利用して空気を蓄圧し、蓄圧した加圧空気でブレーキ力を発揮させることができる。 A switching valve 90 is provided in the air passages 78 a and 78 b, and the pressurized air a supplied from the air passage 78 a by the switching valve 90 is switched and supplied to either the left or right air chamber of the air cylinder 72. Along with the supply of the pressurized air a, the air discharged from either the left or right air chamber of the air cylinder 72 passes through the air passage 78b and is discharged to the outside through the air discharge port 92. The driving device of the air pump 80 is connected to the driving device 96 of the marine vessel propulsion device 94 via the rotational force transmitting device 98. As a result, the rotation of the propelling device 94 is transmitted to the air pump 80 and is driven by utilizing the rotation. Further, the air drive brake 66 can also accumulate air using the rotation of the propelling device 94 and exert a braking force with the accumulated pressurized air.
 かかる構成において、通常の舵軸12の操舵は、大径歯車38及びピニオン62a、62b、電動モータ64a、64b等で構成される主駆動装置を用いる。補助駆動装置70は、主駆動装置を構成する電動モータ64a、64bの出力時又は舵軸停止時のブレーキ力を補助するために用いられる。即ち、操舵開始時に主駆動装置の負荷トルクを補助し、あるいは操舵角固定時に舵軸12に作用するブレーキ力を補助するためなどに稼働される。これによって、電動モータ64a、64bの必要トルクを軽減できるため、電動モータ64a、64bの小容量化及び小型化が可能になる。 In such a configuration, the main rudder shaft 12 is steered by using a main drive device including the large-diameter gear 38 and pinions 62a and 62b, electric motors 64a and 64b, and the like. The auxiliary drive device 70 is used to assist the braking force when the electric motors 64a and 64b constituting the main drive device are output or when the rudder shaft is stopped. That is, it is operated to assist the load torque of the main drive device at the start of steering, or assist the braking force acting on the rudder shaft 12 when the steering angle is fixed. Thereby, since the required torque of the electric motors 64a and 64b can be reduced, the electric motors 64a and 64b can be reduced in capacity and size.
 なお、本実施形態において、大径歯車38とブレーキデスクを兼用するようにしてもよい。これによって、設備費を軽減できる。 In the present embodiment, the large diameter gear 38 and the brake desk may be used together. This can reduce equipment costs.
(実施形態4)
 次に、本発明装置を補助装置として用いた第4実施形態に係る電動式舵取装置10Dを図5により説明する。電動式舵取装置10Dは、ボールネジ100が設けられ、ボールネジ100は、チラー14に設けられたナット(図示省略)と噛合し、回転してチラー14を左右に旋回可能にしている。ボールネジ100の先端に歯車102が取り付けられ、歯車102は電動モータ104の出力軸104aに取り付けられた歯車106と噛合している。電動モータ104が稼働すると、歯車106及び102を介してボールネジ100を回動させる。ボールネジ100の回転によりチラー14を右回転又は左回転する。電動モータ104は双方向回転の電動モータを用いる。前記構成の舵軸駆動機構を主駆動装置として用いている。
(Embodiment 4)
Next, an electric steering device 10D according to a fourth embodiment using the device of the present invention as an auxiliary device will be described with reference to FIG. The electric steering device 10D is provided with a ball screw 100. The ball screw 100 meshes with a nut (not shown) provided on the chiller 14, and rotates to enable the chiller 14 to turn left and right. A gear 102 is attached to the tip of the ball screw 100, and the gear 102 meshes with a gear 106 attached to the output shaft 104 a of the electric motor 104. When the electric motor 104 is operated, the ball screw 100 is rotated via the gears 106 and 102. As the ball screw 100 rotates, the chiller 14 rotates clockwise or counterclockwise. The electric motor 104 uses a bidirectionally rotating electric motor. The rudder shaft drive mechanism configured as described above is used as the main drive device.
 舵軸12には、舵軸12の旋回を停止させるためのブレーキ装置として、ブレーキデスク108と、空気駆動ブレーキ66とが設けられている。また、前記主駆動装置のほかに、補助駆動装置70が設けられている。補助駆動装置70は前記第3実施形態で用いられた補助駆動装置70と同一構成を有している。空気シリンダ72のピストン74は連結棒76を介してチラー14に接続されている。第3実施形態と同等に、補助駆動装置70は、主駆動装置の出力時又は舵軸停止時のブレーキ力を補助するために用いられる。 The rudder shaft 12 is provided with a brake desk 108 and an air drive brake 66 as brake devices for stopping the turning of the rudder shaft 12. In addition to the main drive device, an auxiliary drive device 70 is provided. The auxiliary drive device 70 has the same configuration as the auxiliary drive device 70 used in the third embodiment. The piston 74 of the air cylinder 72 is connected to the chiller 14 via a connecting rod 76. As in the third embodiment, the auxiliary drive device 70 is used to assist the braking force when the main drive device is output or when the rudder shaft is stopped.
 即ち、操舵開始時の電動モータ104の負荷トルクを補助し、あるいは操舵角固定時のブレーキ力を補助するためなどに稼働される。これによって、電動モータ104の必要トルクを軽減できるため、電動モータ104の小容量化及び小型化が可能になる。 That is, it is operated to assist the load torque of the electric motor 104 at the start of steering or assist the braking force when the steering angle is fixed. As a result, the required torque of the electric motor 104 can be reduced, so that the capacity and size of the electric motor 104 can be reduced.
 次に、前記第4実施形態の変形例を図6により説明する。この電動式舵取装置10D´は、第4実施形態の構成と比べて、ブレーキデスク108と空気駆動ブレーキ66とからなるブレーキ装置の代わりに、パッド方式の空気駆動ブレーキ110を設けている。空気駆動ブレーキ110は、推進器の回転を利用して空気を蓄圧し、蓄圧した加圧空気でブレーキ力を発揮させることができる。その他の構成は第4実施形態と同一である。本変形例の作用効果は第4実施形態と同一である。 Next, a modification of the fourth embodiment will be described with reference to FIG. This electric steering device 10D ′ is provided with a pad-type air-driven brake 110 instead of the brake device including the brake desk 108 and the air-driven brake 66, as compared with the configuration of the fourth embodiment. The air-driven brake 110 can accumulate air using the rotation of the propulsion device, and can exert a braking force with the accumulated pressurized air. Other configurations are the same as those of the fourth embodiment. The effect of this modification is the same as 4th Embodiment.
 本発明によれば、舵取装置の舵軸駆動装置を小容量化かつ小型化でき、舵軸駆動装置を省スペース化、省エネ化及び低コスト化できる。 According to the present invention, the rudder shaft drive device of the steering device can be reduced in capacity and size, and the rudder shaft drive device can be reduced in space, energy saving and cost.

Claims (5)

  1.  舵軸回動エネルギを発生する動力発生装置と、
     該舵軸回動エネルギを蓄積するエネルギ蓄積装置と、
     該エネルギ蓄積装置に蓄積された舵軸回動エネルギを操舵量に応じて舵軸に伝達する動力伝達装置と、
     該動力伝達装置から舵軸に伝達される舵軸回動エネルギの舵軸に対する旋回方向を切り換え、舵軸の旋回方向を切り換える切換装置とを備えていることを特徴とするエネルギ蓄積型舵取装置。
    A power generator for generating rudder shaft rotation energy;
    An energy storage device for storing the rudder shaft rotation energy;
    A power transmission device that transmits the rudder shaft rotation energy stored in the energy storage device to the rudder shaft according to the steering amount;
    An energy storage type steering apparatus comprising: a switching device that switches a turning direction of the rudder shaft rotation energy transmitted from the power transmission device to the rudder shaft with respect to the rudder shaft, and switches the turning direction of the rudder shaft. .
  2.  前記動力発生装置が、作動流体を吸入し高圧で吐出するポンプであり、
     前記エネルギ蓄積装置が、前記ポンプから吐出した作動流体を受け入れ加圧状態で蓄積するアキュムレータであり、
     前記動力伝達装置が、舵軸に連結され舵軸を回動する流体圧アクチュエータであり、
     前記切換装置が、前記アキュムレータと前記流体圧アクチュエータとを結ぶ作動流体給排路の給排方向を切り換える切換弁であることを特徴とする請求項1に記載のエネルギ蓄積型舵取装置。
    The power generation device is a pump that sucks a working fluid and discharges it at a high pressure;
    The energy storage device is an accumulator that receives the working fluid discharged from the pump and stores it in a pressurized state;
    The power transmission device is a fluid pressure actuator connected to the rudder shaft and rotating the rudder shaft;
    The energy storage type steering apparatus according to claim 1, wherein the switching device is a switching valve that switches a supply / discharge direction of a working fluid supply / discharge path connecting the accumulator and the fluid pressure actuator.
  3.  前記作動流体が作動油又は不活性気体であることを特徴とする請求項2に記載のエネルギ蓄積型舵取装置。 The energy storage type steering apparatus according to claim 2, wherein the working fluid is hydraulic oil or inert gas.
  4.  前記動力発生装置が電動モータであり、
     前記エネルギ蓄積装置が、前記電動モータの出力軸に連結され、該電動モータの回転により舵軸回動エネルギを蓄積するバネ装置であり、
     前記動力伝達装置が、舵軸の上端に結合された大径歯車と、該大径歯車と噛合し、前記バネ装置に連結され、バネ装置の反力により回転されるピニオンとで構成され、
     前記切換装置が、前記バネ装置と前記ピニオンとを連結又は遮断するクラッチであり、
     前記構成の舵軸駆動装置が2組設けられ、一方の舵軸駆動装置で舵軸を正方向へ旋回し、他方の舵軸駆動装置で舵軸を逆方向へ旋回させるように構成されていることを特徴とする請求項1に記載のエネルギ蓄積型舵取装置。
    The power generation device is an electric motor;
    The energy storage device is a spring device that is connected to the output shaft of the electric motor and stores the rudder shaft rotation energy by the rotation of the electric motor,
    The power transmission device is composed of a large-diameter gear coupled to the upper end of the rudder shaft, a pinion meshing with the large-diameter gear, coupled to the spring device, and rotated by a reaction force of the spring device,
    The switching device is a clutch that connects or disconnects the spring device and the pinion;
    Two sets of the rudder shaft drive device having the above-described configuration are provided, and the rudder shaft is turned in the forward direction by one rudder shaft drive device, and the rudder shaft is turned in the reverse direction by the other rudder shaft drive device. The energy storage type steering apparatus according to claim 1.
  5.  前記エネルギ蓄積型舵取装置が舵軸を駆動するための補助動力装置として設けられていることを特徴とする請求項1~4のいずれかの項に記載のエネルギ蓄積型舵取装置。 The energy storage type steering device according to any one of claims 1 to 4, wherein the energy storage type steering device is provided as an auxiliary power device for driving a steering shaft.
PCT/JP2012/078962 2011-11-28 2012-11-08 Energy storage type steering apparatus WO2013080767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011258470A JP2013112090A (en) 2011-11-28 2011-11-28 Energy storage type steering apparatus
JP2011-258470 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013080767A1 true WO2013080767A1 (en) 2013-06-06

Family

ID=48535234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078962 WO2013080767A1 (en) 2011-11-28 2012-11-08 Energy storage type steering apparatus

Country Status (2)

Country Link
JP (1) JP2013112090A (en)
WO (1) WO2013080767A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054725A1 (en) * 2012-10-03 2014-04-10 三菱重工業株式会社 Steering gear and ship comprising same
WO2014061776A1 (en) * 2012-10-18 2014-04-24 三菱重工業株式会社 Steering gear and ship provided therewith
CN113928527A (en) * 2020-06-29 2022-01-14 哈尔滨理工大学 Steering engine driving device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681558B2 (en) * 2016-04-19 2020-04-15 株式会社 神崎高級工機製作所 Deceleration and reversing machine and ship equipped with the same
JP7002232B2 (en) * 2017-06-30 2022-01-20 川崎重工業株式会社 Steering control system and stopping method of steering device
JP7002231B2 (en) * 2017-06-30 2022-01-20 川崎重工業株式会社 Steering control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
JP2007008189A (en) * 2005-06-28 2007-01-18 Oshima Shipbuilding Co Ltd Electrically driven steering gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316292A (en) * 1993-05-07 1994-11-15 Mitsubishi Heavy Ind Ltd Hydraulic steering system with emergency steering gear
JP2007008189A (en) * 2005-06-28 2007-01-18 Oshima Shipbuilding Co Ltd Electrically driven steering gear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054725A1 (en) * 2012-10-03 2014-04-10 三菱重工業株式会社 Steering gear and ship comprising same
JP2014073728A (en) * 2012-10-03 2014-04-24 Mitsubishi Heavy Ind Ltd Steering engine and ship comprising the same
WO2014061776A1 (en) * 2012-10-18 2014-04-24 三菱重工業株式会社 Steering gear and ship provided therewith
CN113928527A (en) * 2020-06-29 2022-01-14 哈尔滨理工大学 Steering engine driving device
CN113928527B (en) * 2020-06-29 2023-10-24 哈尔滨理工大学 Steering engine driving device

Also Published As

Publication number Publication date
JP2013112090A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2013080767A1 (en) Energy storage type steering apparatus
JP4890845B2 (en) Actuator mechanism
EP2391829B1 (en) Hydraulic energy storage system with accumulator and method of varying charge of same
US20130219875A1 (en) Hydraulic energy recovery system with dual-powered auxiliary hydraulics
WO2013146575A1 (en) Fluid pressure drive unit
KR20100099707A (en) Hydraulic arrangement for a power-actuated actuator
EP2791501B1 (en) A yawing system comprising a preload mechanism
JP5176673B2 (en) In-wheel motor for vehicles
KR101428428B1 (en) Engine system and ship
US20150233091A1 (en) Shovel and swiveling speed reducer
CN1514915A (en) Rotation transmitting device and hydraulic drive device
JP2008008422A (en) Power transmission and working machine
TWI624591B (en) Wind power plant
KR101734878B1 (en) Steering gear for ship
CN106257060A (en) A kind of dissimilar redundancy electric steering gear
EP2001695A2 (en) Hybrid earthmover
CN102947165A (en) Rotationally supported steering spindle
US9476499B2 (en) Shovel
US20070158926A1 (en) Hydraulic azimuth drive for a wind power plant, featuring play compensation
JP2009203811A (en) Variable displacement type gear pump
JP6681558B2 (en) Deceleration and reversing machine and ship equipped with the same
WO2006091541A2 (en) Hydraulic hybrid powertrain system
KR20220059580A (en) Closed loop driving device
WO2020167108A1 (en) System that increases energy efficiency for hydraulic devices
CN110374953A (en) Photovoltaic bracket rotary reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853411

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853411

Country of ref document: EP

Kind code of ref document: A1